, L'objectif de ce travail était d'étudier des voies catalytiques de transformation de l'acide aconitique en molécules d'intérêt industriel, notamment des polyols et des dérivés cycliques

H. La-catalyse, par l'hydrogénation de l'acide aconitique pour former des polyols ayant des applications diverses, notamment comme monomères et agents de réticulation pour former des polymères biodégradables

, La catalyse hétérogène, par hydro-cyclisation de l'acide aconitique en molécules cycliques, lactones et MTHF

. Dans-la-première-partie, hydrogénation d'une molécule modèle, choisie pour débuter notre étude d'hydrogénation, l'acide succinique en 1,4-Butanediol

, Les conditions réactionnelles ont été optimisées afin d'obtenir de plus de 90% de rendement en diol. Le temps de la réaction est relativement court (6h), en utilisant 1 à 3% de catalyseur et sans additif

, est son origine biossourcée, de plus, il est produit dans l'industrie sucrière par une étape de fermentation et distillation des jus résiduels de l'extraction du sucre. L'éthanol n'est pas encore utilisé pour cette réaction d'hydrogénation avec le complexe Ru/Triphos. De plus, l'étude de l'utilisation de l'éthanol de différentes teneurs en eau, permet encore l'obtention d'un rendement élevé >80% en diol avec un mélange eau/éthanol (50/50). Ceci permet l'utilisation de l

, Une étude cinétique de la réaction a permis de déterminer le mécanisme réactionnel de la transformation de l'acide en alcool. Par ailleurs, les essais de recyclage du complexe sont encourageants. Des rendements proches de 60% en diol sont encore obtenus après la quatrième utilisation, cette étape pourrait être optimisée pour donner des meilleurs résultats

, Concernant l'acide aconitique, son hydrogénation a abouti à la formation de deux produits majoritaires, ce qui est intéressant, malgré la difficulté d'identifier tous les produits formés pendant la réaction. Le premier produit formé présente un temps de rétention de 18,8 min, sous 60 bar d'hydrogène et à 200°C, mais il n'a pas pu être identifié, bien que des essais de purification et d'isolement de ce composé du mélange réactionnel aient été faits. Le second produit majoritaire est identifié comme étant un diol, le MBDO (2-méthyl 1,4-butanediol) avec un rendement de plus de 75% après 20 heures de réaction

, De plus, l'hydrogénation de l'acide aconitique extrait par eRcane, donne aussi un bon rendement en diol (67%) en soulignant l'importance de la pureté de l'acide aconitique

D. , hétérogénéiser ce complexe de Ru par l'utilisation de ligand triphos greffé sur silice, est intéressante d'un point de vue industriel

A. M. and -. Shehata, Applied Microbiology, vol.8, pp.73-75, 1960.

F. Santos, A. Borém, and C. Caldas, Sugarcane: Agricultural Production, p.378, 2015.

L. Corcodel and W. Hoareau, La bioraffinerie de canne à l'horizon 2020, 2008.

M. Y. Naniwadekar, A. S. Jadhav, A. Ghosh, and A. Sahu, International Journal of Basic and Applied Chemical Sciences, issue.3, pp.79-87, 2013.

F. Fao, And Agricultural Organization of United Nations: Economic And Social Department: The Statistical Division, 2016.

J. Chen and C. Chou, Cane Sugar Handbook, A manual for cane sugar manufacturers and their chemists, 1993.

L. Franceagrimer, , 2015.

. Tereos, Rapport annuel, un acteur mondial des sucres, des amidons et des alcools

J. Chen and C. Chou, Cane Sugar Handbook, A manual for cane sugar manufacturers and their chemists, 1993.

P. Rein, Bartens, 2007.

P. C. Ivin and C. D. Doyle, Proc. of Australian Society of Sugar Cane Technol, vol.11, pp.1-7, 1989.

L. S. Birkett, Proc. Int. Soc. Sugar Cane Technol, vol.12, pp.1636-1642, 1965.

R. P. Scott, D. Falconer, and G. R. Lionnet, Proc. of the South African Sugar Technol. Association, vol.52, pp.51-53, 1978.

, Effect of Sugar on the Thickening Time of Cement Slurries

C. Edser, Focus on Surfactants, pp.1-2, 2013.

J. S. Han and J. S. Rowell, Paper and Composites from Agro-based Resources, pp.83-134, 1997.

. Tereos, Rapport annuel, un acteur mondial des sucres, des amidons et des alcools

, FAO, 2005.

L. Lsbio and . Gamme-pulpe-de-canne-À-sucre,

R. Ruggiero, A. E. Machado, C. Gardrat, W. Hoareau, S. Grelier et al., Journal of Photochemistry and Photobiology A: Chemistry, vol.173, pp.150-155, 2005.

J. M. Paiva and E. Frollini, Journal of Applied Polymer Science, vol.83, pp.880-888, 2002.

. Tereos, Coproduits : ecumes de sucrerie

D. A. Aranda, M. V. Fagundes, L. B. Oliveira, and E. De, Castro Vieira in Process for extraction and catalytic esterification of fatty acids found in sewage scum, 2004.

R. Tereos and . Annuel, Un acteur mondial des sucres, des amidons et des alcools, Rapport annuel, 2014.

B. Payet, A. Shum-cheong-sing, and J. Smadja, Journal of Agricultural and Food Chemistry, vol.53, pp.10074-10079, 2005.

D. Pant and A. Adholeya, Water, Air, and Soil Pollution, vol.183, pp.165-176, 2007.

G. Nuissier, P. Bourgeois, L. Fahrasmane, and M. Grignon-dubois, Chemistry of Natural Compounds, vol.44, pp.552-555, 2008.

G. Nuissier, P. Bourgeois, M. Grignon-dubois, P. Pardon, and M. H. Lescure, Phytochemistry, vol.61, pp.721-726, 2002.

M. A. Godshall and . Spri-conference, , pp.257-267, 2006.

S. Tomic, Aux origines de la chimie organique: Méthodes et pratiques des pharmaciens et des chimistes, p.p, 2010.

C. , Restino in Production d'acide itaconique par des souches d'Aspergilli par fermentation en milieu solide, Ecole doctorale Sciences, technologies, santé, 2012.

P. Honig, Principles of Sugar Technology, 1963.

T. A. Bennet-clark, New Phytologist, vol.32, pp.37-71, 1933.

W. B. Sinclair and D. M. Eny, Botanical Gazette, pp.231-242, 1945.

L. F. Martin, C. A. Guilbeau, E. J. Fort, B. A. Roberts, E. E. Smith et al., Sugar Journal, vol.22, pp.11-20, 1960.

R. E. Miller and S. M. , Cantor in Aconitic Acid, A by-Product in the Manufacture of Sugar, vol.6, pp.231-249, 1951.

L. Pfendt, B. Drazic, G. Popovic, B. Drakulic, Z. Vitnik et al., Journal of Chemical Research, pp.247-248, 2003.

G. A. Burdock, Fenaroli's Handbook of Flavor Ingredients, Fifth Edition, 2004.

S. N. Walford, South African Sugar Technologists' Association (Durban) 1998, pp.234-241

S. N. Walford, South African Sugar Technologists' Association (Duban) 1996, pp.265-266

G. Montoya, J. Londono, P. Cortes, and O. Izquierdo, Journal of Agricultural and Food Chemistry, vol.62, pp.8314-8318, 2014.

R. R. Umbdenstock, Industrial and Engineering Chemistry, pp.963-966, 1945.

N. N. Reece, ) Louisiana state university, Master of Science in Biological & Agricultural Engineering, 2003.

J. A. Ambler and J. Roberts, Process for the elimination of magnesium from insoluble alkaline earth aconitates, 1947.

E. K. , Venire in Method for extracting aconitic acid from sugarcane and sorgo juices, sirups, and molasses, Google Patents, 1955.

E. K. , Ventre in Extraction of aconitic acid from sugar cane, Google Patents, 1949.

H. W. Haines and L. G. Joyner, Industrial & Engineering Chemistry, vol.47, pp.178-186, 1955.

H. Hanine, J. Mourgues, T. Conte, G. Malmary, and J. Molinier, International sugar journal, vol.93, pp.232-237, 1991.

A. S. Burns and F. C. , A in Recovering organic acids from fermentation wastes by iron salt precipitation, Google Patents, 1955.

R. G. Harrison, Bioseparations Science and Engineering, 2003.

E. A. Regna and P. F. Bruins, Industrial & Engineering Chemistry, vol.48, pp.1268-1277, 1956.

G. H. Malmary, F. Monteil, J. R. Molinier, H. Hanine, T. Conte et al., Bioresource Technology, vol.52, pp.33-36, 1995.

G. V. Anon, , p.519, 195729.

A. Hill and S. Kancharla, Proc. Ontern. Conference on Value-Added Products for the Sugar Industry, 1999.

N. G. Barnes, M. B. Gramajo-de-doz, and H. N. Sólimo, Industrial & Engineering Chemistry Research, vol.39, pp.3364-3369, 2000.

J. , Conversion of Sugar Industry By-Products to Value-Added Chemicals, 2000.

S. H. Mcmurray and G. J. Griffin, Journal of Chemical Technology & Biotechnology, vol.77, pp.1262-1268, 2002.

T. V. , De Dardel in Ion Exchangers, 2008.

J. A. Blinco and W. O. Doherty, Australian Society of Sugar Cane Technologists in Australian journal of Sugar Cane Technologists (Australia), pp.480-488, 2005.

M. Kearney, Int. Sugar. JNL, vol.104, p.1241, 2002.

M. Y. Naniwadekar, A. S. Jadhav, A. Ghosh, and A. Sahu, International Journal of Basic and Applied Chemical Sciences, issue.3, pp.79-87, 2013.

L. Beljaars, R. Floris, B. Berkhout, C. Smit, D. K. Meijer et al., Biochemical Pharmacology, vol.63, pp.1663-1673, 2002.

C. Day, British Homoeopathic journal, vol.82, pp.97-105, 1993.

A. Napellus-pour-préparations and . Homéopathiques, , 2009.

S. Kar, K. Kar, P. K. Bhattacharya, and D. K. Ghosh, , vol.37, pp.2459-2465, 1993.

N. J. Ronde, Catalysts for Continuous Homogeneous Catalysis, 2004.

W. Piang-siong, P. Caro, C. Lacaze-dufaure, A. S. Sing, and W. Hoareau, Industrial Crops and Products, vol.35, pp.203-210, 2012.

G. W. Parshall and R. E. Putscher, Journal of Chemical Education, vol.63, p.189, 1986.

C. E. Wilkes, J. W. Summers, C. A. Daniels, M. T. Berard, and . Handbook, , 2005.

M. Rahman and C. S. Brazel, Progress in Polymer Science, vol.29, pp.1223-1248, 2004.

H. L. Treut, Nouveau Climat sur la Terre: COMPRENDRE, PRÉDIRE, RÉAGIR, Flammarion, 2009.

A. W. Hanson and W. C. Goggin, , p.1942

G. M. Walker, Bioethanol: Science and technology of fuel alcohol, p.p, 2010.

J. Hagen, Industrial Catalysis: A Practical Approach, 2015.

A. P. Gouzerh, F. Averseng, S. Blanchard, X. Carrier, L. Delannoy et al., VILLANNEAU in Introduction à la chimie organométallique, 2007.

P. W. Leeuwen, Homogeneous Catalysis Understanding the Art, 2004.

L. S. Hegedus, Transition Metal Organometallics in Organic Synthesis, Comprehensive Organometallic Chemistry, 1995.

R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, 1994.

J. P. Collman, L. S. Norton, J. R. Finke, and R. G. , Principles and Applications of Organotransition Metal Chemistry, 1987.

K. R. Seddon, The Chemistry of Ruthenium, 1984.

F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 1972.

F. G. Abel and G. Wilkinson, Comprehensive Organometallic Chemistry II, 1987.

S. Siegel, Encyclopedia of Reagents for Organic Synthesis, 1996.

B. R. James, Homogeneous Hydrogenation, 1973.

P. S. Hallman, D. Evans, J. A. Osborn, and G. Wilkinson, Chemical Communications, pp.305-306, 1967.

S. Nishimura, T. Ichino, A. Akimoto, K. Tsuneda, and H. Mori, Bulletin of the Chemical Society of Japan, vol.48, pp.2852-2854, 1975.

D. R. Fahey, The Journal of Organic Chemistry, vol.38, pp.80-87, 1973.

J. M. Grosselin, C. Mercier, G. Allmang, and F. Grass, Organometallics, vol.10, pp.2126-2133, 1991.

W. M. , Kruse in Homogeneous hydrogenation process, 1977.

K. Osakada, T. Ikariya, and S. Yoshikawa, Journal of Organometallic Chemistry, vol.231, pp.79-90, 1982.

R. A. Grey, G. P. Pez, and A. Wallo, Journal of the American Chemical Society, vol.103, pp.7536-7542, 1981.

M. Bianchi, G. Menchi, F. Francalanci, F. Piacenti, U. Matteoli et al., Journal of Organometallic Chemistry, vol.188, pp.109-119, 1980.

Y. Huang, Y. Ma, Y. Cheng, L. Wang, and X. Li, Applied Catalysis A: General, vol.495, pp.124-130, 2015.

H. Kawano, Y. Ishii, T. Ikariya, M. Saburi, S. Yoshikawa et al., Tetrahedron Letters, vol.28, pp.1905-1908, 1987.

R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo et al., Journal of the American Chemical Society, vol.109, pp.5856-5858, 1987.

A. Charette and A. Giroux, Tetrahedron Letters, vol.37, pp.6669-6672, 1996.

G. J. Leigh and N. Winterton, Modern Coordination Chemistry : The Legacy of Joseph Chatt, 2002.

E. C. Alyea and S. Song, Comments on Inorganic Chemistry, vol.18, pp.189-221, 1996.

S. Song and E. C. Alyea, Comments on Inorganic Chemistry, vol.18, pp.145-164, 1996.

A. G. Orpen and N. G. Connelly, Organometallics, vol.9, pp.1206-1210, 1990.

D. H. Valentine and J. H. Hillhouse, Electron-Rich Phosphines in Organic Synthesis II. Catalytic Applications, pp.2437-2460, 2003.

S. P. Nolan, T. R. Belderrain, and R. H. Grubbs, Organometallics, vol.16, pp.5569-5571, 1997.

K. Sung, S. Huh, and M. , , vol.18, pp.469-479, 1998.

C. Bianchini, A. Meli, M. Peruzzini, F. Vizza, and F. Zanobini, Coordination Chemistry Reviews, vol.120, pp.193-208, 1992.

T. Suarez and B. , Journal of Molecular Catalysis, vol.32, pp.191-199, 1985.

E. Rocchini, A. Mezzetti, H. Rüegger, U. Burckhardt, V. Gramlich et al., Inorganic Chemistry, vol.36, pp.711-720, 1997.

C. Bianchini, C. Bohanna, M. A. Esteruelas, P. Frediani, A. Meli et al., Organometallics, vol.11, pp.3837-3844, 1992.

C. Landgrafe, W. S. Sheldrick, and M. Südfeld, European Journal of Inorganic Chemistry, pp.407-414, 1998.

D. V. , Tyers in The homogeneous hydrogenation of esters and related compounds by a ruthenium triphosphine complex, 2002.

B. J. Sarmah and D. K. Dutta, Journal of Organometallic Chemistry, vol.695, pp.781-785, 2010.

S. Savourey, G. Lefèvre, J. Berthet, P. Thuéry, C. Genre et al., Angewandte Chemie, vol.126, pp.10634-10638, 2014.

M. C. Van-engelen, H. T. Teunissen, J. G. De-vries, and C. J. , Journal of Molecular Catalysis A: Chemical, vol.206, pp.185-192, 2003.

M. J. Hanton, S. Tin, B. J. Boardman, and P. Miller, Journal of Molecular Catalysis A: Chemical, vol.346, pp.70-78, 2011.

F. M. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer et al., Angewandte Chemie International Edition, vol.49, pp.5510-5514, 2010.

F. M. Geilen, B. Engendahl, M. Hölscher, J. Klankermayer, and W. Leitner, Journal of the American Chemical Society, vol.133, pp.14349-14358, 2011.

L. Rosi, M. Frediani, and P. Frediani, Journal of Organometallic Chemistry, pp.695-1314, 2010.

. Bio-amber, , 2015.

G. W. Huber, S. Iborra, and A. Corma, Chemical Reviews, vol.106, pp.4044-4098, 2006.

G. Who, , 2014.

H. Liu and T. Lu, Metabolic Engineering, vol.29, pp.135-141, 2015.

K. H. Kang, U. G. Hong, Y. Bang, J. H. Choi, J. K. Kim et al., Applied Catalysis A: General, vol.490, pp.153-162, 2015.

A. Cukalovic and C. V. Stevens, Biofuels, Bioproducts and Biorefining, vol.2, pp.505-529, 2008.

T. Haas, B. Jaeger, R. Weber, S. F. Mitchell, and C. F. King, Applied Catalysis A: General, vol.280, pp.83-88, 2005.

, Décision de la Commission du 11 juillet 2001 déclarant une concentration compatible avec le marché commun et le fonctionnement de l'accord sur l'Espace économique européen, Journal officiel des Communautés européennes, pp.45-0064

C. Delhomme, D. Weuster-botz, and F. E. Kuhn, Green Chemistry, vol.11, pp.13-26, 2009.

C. Petitjean, L'amidon : du champ ... aux matériaux de performance de demain, 2010.

J. M. Corkery, B. Loi, H. Claridge, C. Goodair, O. Corazza et al., Neuroscience & Biobehavioral Reviews, vol.53, pp.52-78, 2015.

J. Hiquet, N. Grosleron, R. Bédry, E. Christin, V. Toulet et al., , vol.4, pp.197-202, 2013.

E. K. Lee and Y. , Production of tetrahydrofuran from 1,4-butanediol, 2008.

S. E. Hunter, C. E. Ehrenberger, and P. E. Savage, The Journal of Organic Chemistry, vol.71, pp.6229-6239, 2006.

S. H. Vaidya, V. M. Bhandari, and R. V. Chaudhari, Applied Catalysis A: General, vol.242, pp.321-328, 2003.

S. Bhogeswararao and D. Srinivas, Journal of Catalysis, vol.327, pp.65-77, 2015.

V. M. Shinde, G. N. Patil, A. Katariya, and Y. S. Mahajan, Process Intensification, vol.95, pp.241-248, 2015.

M. Mohsen-nia, H. Modarress, and F. Alimohammady, Journal of Chemical & Engineering Data, vol.54, pp.1375-1377, 2009.

S. E. Hunter, C. E. Ehrenberger, and P. E. Savage, The Journal of Organic Chemistry, vol.71, pp.6229-6239, 2006.

U. Limbeck, C. Altwicker, U. Kunz, and U. Hoffmann, Chemical Engineering Science, vol.56, pp.2171-2178, 2001.

D. Mech, G. Pandey, and J. S. Sangwai, Fluid Phase Equilibria, vol.402, pp.9-17, 2015.

A. H. Mohammadi and D. Richon, Industrial & Engineering Chemistry Research, vol.48, pp.7838-7841, 2009.

C. Naccache, Catalyse hétérogène dans les procédés industriels 2005, 2015.

J. A. Ambler, C. A. Laurence, and J. Roberts, Production of itaconic acid, 1948.

T. Willke and K. Vorlop, Applied Microbiology and Biotechnology, vol.56, pp.289-295

, From the Sugar Platform to biofuels and biochemicals, 2015.

T. A. Werpy, J. E. Holladay, and J. F. White, Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, 2004.

V. Lamberti and E. N. Gutierrez, Chemical processes for preparing citric acid, 1977.

, Citric acid and its salts, Patent, 1978.

E. Schuster, N. Dunn-coleman, J. Frisvad, and P. Van-dijck, Applied Microbiology and Biotechnology, vol.59, pp.426-435

G. S. Dhillon, S. K. Brar, M. Verma, and R. D. Tyagi, Food Chemistry, vol.128, pp.864-871, 2011.

, La Directive 95/2/CE Journal officiel de l'Union européenne, les additifs alimentaires autres que les colorants et les édulcorants, pp.1-56, 1995.

N. J. Zapata, ACONITIC ACID FROM SUGARCANE: PRODUCTION AND INDUSTRIAL APPLICATION, 2007.

D. S. Franklin and S. Guhanathan, Polymer Bulletin, vol.71, pp.93-110, 2013.

D. S. Franklin and S. Guhanathan, Ecotoxicology and Environmental Safety, vol.121, pp.80-86, 2015.

K. Yan, J. Liao, X. Wu, and X. Xie, , vol.3, pp.3853-3856, 2013.

K. L. Deutsch and B. H. Shanks, Journal of Catalysis, vol.285, pp.235-241, 2012.

C. Montassier, D. Giraud, and J. Barbier, Polyol Conversion by Liquid Phase Heterogeneous Catalysis Over Metals, pp.165-170, 1988.

G. L. Castiglioni, M. Gazzano, G. Stefani, and A. , Vaccari in Selective hydrogenation of maleic anhydride by modified copper chromite catalysts, pp.275-282, 1993.

S. H. , Bergens in Catalyst systems for use continuous flow reactors and methods of manufacture and use thereof, Google Patents, 2015.

G. Szöll?si, K. Balázsik, and M. Bartók, Applied Catalysis A: General, vol.319, pp.193-201, 2007.

X. Lu, A. P. Boyes, and J. M. Winterbottom, Chemical Engineering Science, vol.51, pp.2715-2720, 1996.

, One kind of itaconic acid hydrogenation catalyst and preparation method and use, as well as by the itaconic acid method of producing high value-added products, 2015.

S. Li, X. Wang, X. Liu, G. Xu, S. Han et al., Catalysis Communications, vol.61, pp.92-96, 2015.

R. A. Bourne, J. G. Stevens, J. Ke, and M. Poliakoff, Chemical Communications, pp.4632-4634, 2007.

L. Manzer and K. Hutchenson, Production of 5-methyl-dihydro-furan-2-one from levulinic acid in supercritical media, 2004.

P. P. Upare, J. Lee, D. W. Hwang, S. B. Halligudi, Y. K. Hwang et al., Journal of Industrial and Engineering Chemistry, vol.17, pp.287-292, 2011.

L. Corbel-demailly, B. Ly, D. Minh, B. Tapin, C. Especel et al., ChemSusChem, vol.6, pp.2388-2395, 2013.

D. C. Elliott and J. G. Frye, Hydrogenated 5-carbon compound and method of making, 1999.

S. H. Cho, T. Kim, K. I. Kim, S. C. Cho, J. K. Park et al., Preparation of gammabutyrolactone by catalytic hydrogenation of maleic anhydride, 2002.

M. Kitson and P. S. Williams, Catalysts for the catalysed hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters, 1995.

Z. Shao, C. Li, X. Di, Z. Xiao, and C. Liang, Industrial & Engineering Chemistry Research, vol.53, pp.9638-9645, 2014.

D. D. Freudenberger and F. D. , Wunder, 1,4-Butane-diol prodn. by hydrogenolysis of maleic anhydride -or maleic or fumaric acids, over a mixed metal catalyst on silico-acetate carrier, 1978.

S. H. Cho, T. Kim, K. I. Kim, S. C. Cho, J. K. Park et al., Preparation of gammabutyrolactone by catalytic hydrogenation of maleic anhydride, 2001.

A. Bertola, Procede de production de tetrahydrofurane, de gamma-butyrolactone, et de butanediol, 1999.

G. Michalczyk and K. H. Gluzek, Process for the production of gamma-butyrolactone and novel catalyst therefor, 1978.

, Process for production of GBL From MAN

D. Freudenberger and F. Wunder, Process for the preparation of ethylene glycol, 1980.

H. J. Weyer, R. D. Fischer, F. D. Merger, J. D. Frank, J. D. Henkelmann et al., Verfahren zur Herstellung von 2-Methyl-1,4-butandiol und 3-Methyltetrahydrofuran A process for the preparation of 2-methyl-1,4-butanediol and 3-methyltetrahydrofuran, 1994.

, Method for hydrogenating itaconic acid, Patent, 2010.

A. P. Dunlop, Reduction of dicarboxylic acid esters, 1962.

C. V. Rode and A. M. Hengne, PROCESS FOR PREPARATION OF gamma-VALEROLACTONE VIA CATALYTIC HYDROGENATION OF LEVULINIC ACID, 2013.

W. Hans-juergen, F. Rolf, S. Christoph, H. Weyer, R. Fischer et al., Hydrogenation of citric acid, 1995.

B. Putrakumar, N. Nagaraju, V. P. Kumar, and K. V. Chary, Catalysis Today, vol.250, pp.209-217, 2015.

V. V. Kumar, G. Naresh, M. Sudhakar, J. Tardio, S. K. Bhargava et al., Applied Catalysis A: General, vol.505, pp.217-223, 2015.

P. P. Upare, M. Jeong, Y. K. Hwang, D. H. Kim, Y. D. Kim et al., Applied Catalysis A: General, vol.491, pp.127-135, 2015.

U. Herrmann and G. Emig, Industrial & Engineering Chemistry Research, vol.36, pp.2885-2896, 1997.

U. Herrmann and G. Emig, Industrial & Engineering Chemistry Research, vol.37, pp.759-769, 1998.

F. J. Broecker and M. Schwarzmann, Manufacture of butanediol and/or tetrahydrofuran from maleic and/or succinic anhydride via ?-butyrolactone, 1977.

Y. K. Hwang, J. S. Chang, J. H. Lee, and J. M. Lee, Method for producing cyclicised compounds from organic acids having from 4 to 6 carbon atoms, 2011.

M. Roesch, R. Pinkos, M. Hesse, S. Schlitter, H. Junicke et al., Method for the production of defined mixtures of thf, bdo and gbl by gas phase hydrogenation, 2005.

M. M. Takemoto, Y. M. Shima, and T. M. Abe, Process for preparing 3-methyltetrahydrofuran, 1997.

H. J. Weyer, R. Fischer, F. Merger, J. Frank, J. Henkelmann et al., Preparation of 2-methyl-1,4-butanediol and 3-methyltetrahydrofuran, 1996.

S. Schlitter, H. Borchert, M. Hesse, M. Schubert, N. Bottke et al., Catalyst for the gas phase hydrogenation of dicarboxylic acids comprises copper oxide, 2003.

P. D. Groll, M. D. Haubner, S. D. Käshammer, V. D. Menger, K. P. Pfaff et al., Continuous production of tetrahydrofuran (THF), useful for the production of poly-THF, comprises reaction of a 1,4-butanediol reaction mixture containing 2-(4-hydroxybutoxy)tetrahydrofuran at a non-predried heteropolyacid catalyst, 2004.

L. E. Manzer, Manufacture of 3-methyl-tetrahydrofuran from 2-methyl-gamma-butyrolactone, 2004.

T. Abe, F. Tanaka, H. Nitobe, and M. Takemoto, Process for producing 3-methyltetrahydrofuran, 1997.

H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. Mika et al., Topics in Catalysis, vol.48, pp.49-54, 2008.

X. Du, Q. Bi, Y. Liu, Y. Cao, H. He et al., Green Chemistry, vol.14, pp.935-939, 2012.

F. Dong, Y. Zhu, H. Zheng, Y. Zhu, X. Li et al., Journal of Molecular Catalysis A: Chemical, vol.398, pp.140-148, 2015.

M. G. Al-shaal, A. Dzierbinski, and R. Palkovits, Green Chemistry, vol.16, pp.1358-1364, 2014.

Z. Yang, Y. Huang, Q. Guo, and Y. Fu, Chemical Communications, vol.49, pp.5328-5330, 2013.

K. Yan, G. Wu, T. Lafleur, and C. Jarvis, Renewable and Sustainable Energy Reviews, vol.38, pp.663-676, 2014.

H. J. Weyer, R. Fischer, W. Schnurr, N. Goetz, and T. Kuekenhoehner, Preparation of products of the reduction of 4-hydroxybutyric acid derivatives, 1994.

V. Pace, P. Hoyos, L. Castoldi, P. Domínguez-de-maría, and A. R. Alcántara, ChemSusChem, vol.5, pp.1369-1379, 2012.

S. Aldrich, Hydroxytoluène butylé -BHT, consulté en septembre, 2015.

K. Yan, T. Lafleur, G. Wu, J. Liao, C. Ceng et al., Applied Catalysis A: General, vol.468, pp.52-58, 2013.

D. F. Aycock, Organic Process Research & Development, vol.11, pp.156-159, 2007.

I. T. Horvath, H. Mehdi, V. Fabos, L. Boda, and L. T. Mika, Green Chemistry, vol.10, pp.238-242, 2008.

Q. Xu, X. Li, T. Pan, C. Yu, J. Deng et al., Green Chemistry, 2016.

D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, Green Chemistry, vol.15, pp.584-595, 2013.

J. Cui, J. Tan, T. Deng, X. Cui, H. Zheng et al., Green Chemistry, vol.17, pp.3084-3089, 2015.

V. Fabos, G. Koczo, H. Mehdi, L. Boda, and I. T. Horvath, Energy & Environmental Science, vol.2, pp.767-769, 2009.

K. Nasirzadeh, D. Zimin, R. Neueder, and W. Kunz, Journal of Chemical & Engineering Data, vol.49, pp.607-612, 2004.

W. Luo, U. Deka, A. M. Beale, E. R. Van-eck, P. C. Bruijnincx et al., Journal of Catalysis, vol.301, pp.175-186, 2013.

K. Yan and A. Chen, Fuel, vol.115, pp.101-108, 2014.

L. Deng, J. Li, D. Lai, Y. Fu, and Q. Guo, Angewandte Chemie International Edition, vol.48, pp.6529-6532, 2009.

K. Yan and A. Chen, , vol.58, pp.357-363, 2013.

Y. Roman-leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic, Nature, vol.447, pp.982-985, 2007.

H. Zheng, Y. Zhu, L. Huang, Z. Zeng, H. Wan et al., Catalysis Communications, vol.9, pp.342-348, 2008.

, Journal of Molecular Catalysis A: Chemical, vol.246, pp.18-23, 2006.

M. A. Al-daous, A. A. Manda, and H. Hattori, Journal of Molecular Catalysis A: Chemical, pp.512-520, 2012.

A. Saadi, R. Merabti, Z. Rassoul, and M. M. Bettahar, Journal of Molecular Catalysis A: Chemical, vol.253, pp.79-85, 2006.

A. Saadi, Z. Rassoul, and M. M. Bettahar, Journal of Molecular Catalysis A: Chemical, vol.164, pp.205-216, 2000.

M. M. Diaz-requejo, T. R. Belderrain, and P. J. Perez, Chemical Communications, pp.1853-1854, 2000.

M. L. Kantam, R. Arundhathi, P. R. Likhar, and D. Damodara, Advanced Synthesis & Catalysis, vol.351, pp.2633-2637, 2009.

S. Reymond and J. Cossy, Chemical Reviews, vol.108, pp.5359-5406, 2008.

J. E. Hein and V. V. Fokin, Chemical Society Reviews, vol.39, pp.1302-1315, 2010.

D. Ma and Q. Cai, Accounts of Chemical Research, vol.41, pp.1450-1460, 2008.

O. Daugulis, H. Do, and D. Shabashov, Accounts of Chemical Research, vol.42, pp.1074-1086, 2009.

A. E. Wendlandt, A. M. Suess, and S. S. Stahl, , vol.43, 2012.

Y. Liu and J. Wan, Organic & Biomolecular Chemistry, vol.9, pp.6873-6894, 2011.

Y. Liu and J. Wan, Chemistry -An Asian Journal, vol.7, pp.1488-1501, 2012.

S. Chassaing, A. Alix, T. Boningari, K. Sido, M. Keller et al., Synthesis, vol.2010, pp.1557-1567

M. J. Climent, A. Corma, and S. Iborra, Chemical Reviews, vol.111, pp.1072-1133, 2011.

E. D. Batyrev, N. R. Shiju, and G. Rothenberg, The Journal of Physical Chemistry C, vol.116, pp.19335-19341, 2012.

L. Shi, R. Yang, K. Tao, Y. Yoneyama, Y. Tan et al., Catalysis Today, vol.185, pp.54-60, 2012.

X. Guo, D. Mao, S. Wang, G. Wu, and G. Lu, Catalysis Communications, vol.10, pp.1661-1664, 2009.

H. Ren, C. Xu, H. Zhao, Y. Wang, J. Liu et al., Journal of Industrial and Engineering Chemistry, vol.28, pp.261-267, 2015.

J. Xiao, D. Mao, X. Guo, and J. Yu, Applied Surface Science, vol.338, pp.146-153, 2015.

K. K. Bando, K. Sayama, H. Kusama, K. Okabe, and H. Arakawa, Applied Catalysis A: General, vol.165, pp.391-409, 1997.

P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao et al., Journal of Catalysis, vol.298, pp.51-60, 2013.

J. Wu, M. Saito, M. Takeuchi, and T. Watanabe, Applied Catalysis A: General, vol.218, pp.235-240, 2001.

G. J. Bartley and R. Burch, Applied Catalysis, vol.43, pp.141-153, 1988.

M. Mrad, C. Gennequin, A. Aboukaïs, and E. Abi-aad, Catalysis Today, vol.176, pp.88-92, 2011.

Y. Choi, K. Futagami, T. Fujitani, and J. Nakamura, Applied Catalysis A: General, vol.208, pp.163-167, 2001.

J. C. Bart and R. P. Sneeden, Catalysis Today, vol.2, pp.1-124, 1987.

Y. Kanai, T. Watanabe, T. Fujitani, M. Saito, J. Nakamura et al., Catalysis Letters, vol.27, pp.67-78

R. G. Herman, K. Klier, G. W. Simmons, B. P. Finn, J. B. Bulko et al., Journal of Catalysis, vol.56, pp.407-429, 1979.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al., Journal of Applied Physics, vol.98, p.41301, 2005.

M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker et al., Science, vol.336, pp.893-897, 2012.

Y. Zhu and L. Shi, Journal of Industrial and Engineering Chemistry, vol.20, pp.2341-2347, 2014.

S. Chinayon, O. Mekasuwandumrong, P. Praserthdam, and J. Panpranot, Catalysis Communications, vol.9, pp.2297-2302, 2008.

M. V. Twigg and M. S. Spencer, Applied Catalysis A: General, vol.212, pp.161-174, 2001.

M. V. Twigg and M. S. Spencer, Topics in Catalysis, vol.22, pp.191-203, 2003.

M. Kurtz, H. Wilmer, T. Genger, O. Hinrichsen, and M. Muhler, Catalysis Letters, vol.86, pp.77-80, 2003.

M. Kurtz, N. Bauer, C. Büscher, H. Wilmer, O. Hinrichsen et al., Catalysis Letters, vol.92, pp.49-52

C. Yang, Z. Ma, N. Zhao, W. Wei, T. Hu et al., Catalysis Today, vol.115, pp.222-227, 2006.

E. K. Poels and D. S. Brands, Applied Catalysis A: General, vol.191, pp.83-96, 2000.

M. Saito, T. Fujitani, M. Takeuchi, and T. Watanabe, Applied Catalysis A: General, vol.138, pp.311-318, 1996.

J. A. Schwarz, C. Contescu, and A. Contescu, Chemical Reviews, vol.95, pp.477-510, 1995.

A. A. Khassin, G. N. Kustova, H. Jobic, T. M. Yurieva, Y. A. Chesalov et al., Physical Chemistry Chemical Physics, vol.11, pp.6090-6097, 2009.

J. A. Lercher, C. Colombier, H. Noller, J. C. Faraday, and I. , , vol.80, p.949, 1984.

H. Kurokawa, T. Kato, T. Kuwabara, W. Ueda, Y. Morikawa et al., Journal of Catalysis, vol.126, pp.208-218, 1990.

J. I. Di-cosimo, V. K. Díez, and C. R. Apesteguía, Applied Catalysis A: General, vol.137, pp.149-166, 1996.

X. Zhang, F. Zhang, and K. Chan, Materials Letters, vol.58, pp.2872-2877, 2004.

L. Ji, J. Lin, K. L. Tan, and H. C. Zeng, Chemistry of Materials, vol.12, pp.931-939, 2000.

M. Trueba and S. P. Trasatti, European Journal of Inorganic Chemistry, pp.3393-3403, 2005.

X. Han, Q. Zhang, F. Feng, C. Lu, L. Ma et al., Chinese Chemical Letters, vol.26, pp.1150-1154, 2015.

Z. Wang, Z. Xu, S. Peng, M. Zhang, G. Lu et al., ACS Catalysis, vol.5, pp.4255-4259, 2015.

D. Gao, Y. Feng, H. Yin, A. Wang, and T. Jiang, Chemical Engineering Journal, vol.233, pp.349-359, 2013.

P. Kasinathan, D. W. Hwang, U. H. Lee, Y. K. Hwang, and J. Chang, Catalysis Communications, vol.41, pp.17-20, 2013.

S. Sitthisa, T. Sooknoi, Y. Ma, P. B. Balbuena, and D. E. Resasco, Journal of Catalysis, vol.277, pp.1-13, 2011.

T. Hu, H. Yin, R. Zhang, H. Wu, T. Jiang et al., Catalysis Communications, vol.8, pp.193-199, 2007.

Y. Yu, Y. Guo, W. Zhan, Y. Guo, Y. Wang et al., Journal of Molecular Catalysis A: Chemical, vol.337, pp.77-81, 2011.

Y. Yu, W. Zhan, Y. Guo, G. Lu, S. Adjimi et al., Journal of Molecular Catalysis A: Chemical, vol.395, pp.392-397, 2014.

D. Zhang, H. Yin, C. Ge, J. Xue, T. Jiang et al., Journal of Industrial and Engineering Chemistry, vol.15, pp.537-543, 2009.

J. Wu, Y. Shen, C. Liu, H. Wang, C. Geng et al., Catalysis Communications, vol.6, pp.633-637, 2005.

J. Yang, H. Zheng, Y. Zhu, G. Zhao, C. Zhang et al., Catalysis Communications, vol.5, pp.505-510, 2004.

C. Wen, F. Li, Y. Cui, W. Dai, and K. Fan, Catalysis Today, vol.233, pp.117-126, 2014.

P. P. Upare, J. Lee, Y. K. Hwang, and D. W. Hwang,

, Chang ChemSusChem, vol.4, pp.1749-1752, 2011.

I. Acd/labs, Predicted NMR data calculated using Advanced Chemistry Development, 1994.

. Wiley, Spectral data were obtained from Wiley Subscription Services, Inc. (US), consulté en Octobre, 2015.

V. I. Bakhmutov, E. V. Bakhmutova, N. V. Belkova, C. Bianchini, L. M. Epstein et al., Can. J. Chem, vol.79, pp.479-489, 2001.

M. C. Engelen, H. T. Teunissen, J. G. Vries, and C. J. , Journal of Molecular Catalysis A: Chemical, vol.206, pp.185-192, 2003.

F. M. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer et al., Angew. Chem. Int. Ed, vol.49, pp.5510-5514, 2010.

C. Bianchini, V. Santo, A. Meli, W. Oberhauser, R. Psaro et al., Organometallics, vol.19, pp.2433-2444, 2000.

M. Kang, M. W. Song, and C. H. Lee, Applied Catalysis A: General, vol.251, pp.143-156, 2003.

M. P. Pechini, Barium titanium citrate, barium titanate and processes for producing same, 1966.

T. P. Braga, Applied Catalysis A: General, vol.366, pp.193-200, 2009.

D. Waller, D. Stirling, F. S. Stone, and M. S. Spencer, Faraday Discussions of the Chemical Society, vol.87, pp.107-120, 1989.

U. Mentouri--constantine, F. Des-sciences, D. Exactes, and . De-physique, Les manganites de type perovskite : synthèse, structure cristalline et propriétés électriques et catalytiques, 2010.

M. T. Hernández and M. González, Journal of the European Ceramic Society, vol.22, pp.2861-2868, 2002.

T. P. Braga, A. N. Pinheiro, C. V. Teixeira, and A. Valentini, Applied Catalysis A: General, vol.366, pp.193-200, 2009.

W. Yang, Y. Chang, and S. Huang, Journal of the European Ceramic Society, vol.25, pp.3611-3618, 2005.

S. Brunauer, P. H. Emmett, and E. Teller, Journal of the American Chemical Society, vol.60, pp.309-319, 1938.

R. E. Dinnebier, Powder Diffraction : Theory and Practice, 2008.

R. Guinebretière, X-Ray Diffraction by Polycrystalline Materials, 2013.

J. F. Moulder and J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics, p.203, 1995.

, Environmental tomographic Transmission Electron Microscope, consulté en septembre, 2015.

Q. Zhang, Z. Wu, and L. Xu, Industrial & Engineering Chemistry Research, vol.37, pp.3525-3532, 1998.

M. J. Ginés, N. Amadeo, M. Laborde, and C. R. Apesteguía, Applied Catalysis A: General, vol.131, pp.283-296, 1995.

T. W. Christian-reichardt, Solvents and Solvent Effects in Organic Chemistry, p.336, 2011.

N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa, and K. Inui, Journal of Molecular Catalysis A: Chemical, vol.212, pp.197-203, 2004.

D. Wu, J. Zhou, and Y. Li, AIChE Journal, vol.54, pp.3116-3123, 2008.

T. P. Braga, N. Essayem, and A. Valentini, , vol.5, pp.93394-93402, 2015.

F. Li, C. Lu, and X. Li, Chinese Chemical Letters, vol.25, pp.1461-1465, 2014.

J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao et al., Journal of the American Chemical Society, vol.134, pp.13922-13925, 2012.

A. Yin, X. Guo, W. Dai, and K. Fan, The Journal of Physical Chemistry C, vol.113, pp.11003-11013, 2009.