D. S. Dimitrova, DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci, J Cell Sci, vol.124, pp.2743-52, 2011.

M. Van-sluis and B. Mcstay, A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage, Genes Dev, vol.29, issue.11, p.4470283, 2015.

D. H. Larsen and M. Stucki, Nucleolar responses to DNA double-strand breaks, Nucleic Acids Res, vol.44, issue.2, p.4737151, 2016.

M. Franek, A. Kovarikova, E. Bartova, and S. Kozubek, Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction, J Histochem Cytochem, vol.64, issue.11, p.5084524, 2016.

L. Daniel, E. Cerutti, L. M. Donnio, J. Nonnekens, C. Carrat et al., Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA, Proc Natl Acad Sci U S A, vol.115, issue.29, p.6055190, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02148234

C. H. Chuang, A. E. Carpenter, B. Fuchsova, T. Johnson, P. De-lanerolle et al., Long-range directional movement of an interphase chromosome site, Curr Biol, vol.16, issue.8, pp.825-856, 2006.

M. Dundr, J. K. Ospina, M. H. Sung, S. John, M. Upender et al., Actin-dependent intranuclear repositioning of an active gene locus in vivo, J Cell Biol, vol.179, issue.6, p.2140015, 2007.

C. P. Caridi, D. 'agostino, C. Ryu, T. Zapotoczny, G. Delabaere et al., Nuclear F-actin and myosins drive relocalization of heterochromatic breaks, Nature, vol.559, issue.7712, pp.54-60, 2018.

V. V. Philimonenko, J. Zhao, S. Iben, H. Dingová, K. Kyselá et al., Nuclear actin and myosin I are required for RNA polymerase I transcription, Nat Cell Biol, vol.6, issue.12, 2004.

A. Sarshad, F. Sadeghifar, E. Louvet, R. Mori, S. Bohm et al., Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression, PLoS Genet, vol.9, issue.3, p.3605103, 2013.

J. Ye, J. Zhao, U. Hoffmann-rohrer, and I. Grummt, Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription, Genes Dev, vol.22, issue.3, p.2216692, 2008.

M. Kulashreshtha, I. S. Mehta, P. Kumar, and B. J. Rao, Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ?-H2AX signaling, Nucleic Acids Res, vol.44, issue.17, pp.8272-91, 2016.

G. Giglia-mari, A. Zotter, and W. Vermeulen, DNA damage response, Cold Spring Harb Perspect Biol, vol.3, issue.1, p.3003462, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02148357

K. H. Kraemer, N. J. Patronas, R. Schiffmann, B. P. Brooks, D. Tamura et al., Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship, Neuroscience, vol.145, issue.4, p.2288663, 2007.

R. Yonemasu, M. Minami, Y. Nakatsu, M. Takeuchi, I. Kuraoka et al., Disruption of mouse XAB2 gene involved in pre-mRNA splicing, transcription and transcription-coupled DNA repair results in preimplantation lethality, DNA Repair (Amst), vol.4, issue.4, pp.479-91, 2005.

Y. Nakatsu, H. Asahina, E. Citterio, S. Rademakers, W. Vermeulen et al., XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription, J Biol Chem, vol.275, issue.45, pp.34931-34938, 2000.

I. Kuraoka, S. Ito, T. Wada, M. Hayashida, L. Lee et al., Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair, J Biol Chem, vol.283, issue.2, pp.940-50, 2008.

S. Mourgues, V. Gautier, A. Lagarou, C. Bordier, A. Mourcet et al., ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair, Proc Natl Acad Sci U S A, vol.110, issue.44, p.3816466, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02148319

L. Daniel, E. Cerutti, L. M. Donnio, J. Nonnekens, C. Carrat et al., Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA, Proc Natl Acad Sci U S A, vol.115, issue.29, p.6055190, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02148234

G. Giglia-mari, M. C. Theil, A. F. Mari, P. O. Hoogstraten, D. Ng et al., Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells, PLoS Biol, vol.4, issue.6, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02148390

T. Hirose, T. Ideue, M. Nagai, M. Hagiwara, M. D. Shu et al., A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing, Mol Cell, vol.23, issue.5, pp.673-84, 2006.

S. Chanarat and K. Sträßer, Splicing and beyond: the many faces of the Prp19 complex, Biochim Biophys Acta, vol.1833, issue.10, pp.2126-2160, 2013.

Y. Matsushima, K. Matsumura, and Y. Kitagawa, Zinc finger-like motif conserved in a family of RNA binding proteins, Biosci Biotechnol Biochem, vol.61, issue.5, pp.905-911, 1997.

I. Dix, C. Russell, S. B. Yehuda, M. Kupiec, and J. D. Beggs, The identification and characterization of a novel splicing protein, Isy1p, of Saccharomyces cerevisiae, RNA, vol.5, issue.3, p.1369765, 1999.

S. Ben-yehuda, D. I. Russell, C. S. Mcgarvey, M. Beggs, J. D. Kupiec et al., Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae, Genetics, vol.156, issue.4, pp.1503-1520, 2000.

L. Shkreta and B. Chabot, The RNA Splicing Response to DNA Damage, Biomolecules

, , vol.5, pp.2935-77

P. Central and P. , , p.4693264

J. H. Hoeijmakers, Genome maintenance mechanisms for preventing cancer, Nature

, , pp.366-74

T. Lindahl, Instability and decay of the primary structure of DNA, Nature

, , vol.362, pp.709-724

J. H. Hoeijmakers, DNA damage, aging, and cancer, N Engl J Med, vol.361, issue.15, pp.1475-85, 2009.

B. L. Genes, , 2003.

T. Lindahl and B. Nyberg, Rate of depurination of native deoxyribonucleic acid, Biochemistry, vol.11, issue.19, pp.3610-3618, 1972.

B. Van-loon, E. Markkanen, and U. Hübscher, Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine, DNA Repair (Amst), vol.9, issue.6, pp.604-620, 2010.

R. Zaludová, A. Zákovská, J. Kasparková, Z. Balcarová, V. Kleinwächter et al., DNA interactions of bifunctional dinuclear platinum(II) antitumor agents, Eur J Biochem, vol.246, issue.2, pp.508-525, 1997.

D. Fu, J. A. Calvo, and L. D. Samson, Balancing repair and tolerance of DNA damage caused by alkylating agents, Nat Rev Cancer, vol.12, issue.2, p.3586545, 2012.

T. Lindahl and D. E. Barnes, Repair of endogenous DNA damage, Cold Spring Harb Symp Quant Biol, vol.65, pp.127-160, 2000.

W. J. Cannan and D. S. Pederson, Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin, J Cell Physiol, vol.231, issue.1, p.4994891, 2016.

M. M. Vilenchik and A. G. Knudson, Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer, Proc Natl Acad Sci U S A, vol.100, issue.22, p.240711, 2003.

B. B. Zhou and S. J. Elledge, The DNA damage response: putting checkpoints in perspective, Nature, vol.408, issue.6811, pp.433-442, 2000.

A. M. Whitaker, M. A. Schaich, M. R. Smith, T. S. Flynn, and B. D. Freudenthal, Base excision repair of oxidative DNA damage: from mechanism to disease, Front Biosci, vol.22, p.5567671, 2017.

H. E. Krokan and M. Bjørås, Base excision repair, Cold Spring Harb Perspect Biol

, , vol.5

J. Jiricny, The multifaceted mismatch-repair system, Nat Rev Mol Cell Biol, vol.7, issue.5, pp.335-381, 2006.

S. T. Bak, D. Sakellariou, and J. Pena-diaz, The dual nature of mismatch repair as antimutator and mutator: for better or for worse, Front Genet, vol.5, p.4139959, 2014.

M. Jasin and R. Rothstein, Repair of strand breaks by homologous recombination, Cold Spring Harb Perspect Biol, vol.5, issue.11, p.3809576, 2013.

E. Mladenov, S. Magin, A. Soni, and G. Iliakis, DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation, Semin Cancer Biol, 2016.

W. D. Wright, S. S. Shah, and W. D. Heyer, Homologous recombination and the repair of DNA double-strand breaks, J Biol Chem, vol.293, issue.27, p.6036207, 2018.

R. Bhargava, D. O. Onyango, and J. M. Stark, Regulation of Single-Strand Annealing and its Role in Genome Maintenance, Trends Genet, vol.32, issue.9, p.4992407, 2016.

A. J. Davis and D. J. Chen, DNA double strand break repair via non-homologous end-joining, Transl Cancer Res, vol.2, issue.3, p.3758668, 2013.

H. Chang, N. R. Pannunzio, N. Adachi, and M. R. Lieber, Non-homologous DNA end joining and alternative pathways to double-strand break repair, Nat Rev Mol Cell Biol, vol.18, issue.8, pp.495-506, 2017.

. Boyce-rp, . Howard-flanders-p.-release, . Of, . Light-induced, and . Thymine,

. E. Dimers-from-dna-in and . Coli-k-12, Proc Natl Acad Sci U S A, vol.51, p.300064, 1964.

H. P. Pettijohn-d, . Evidence-for-repair-replication, . Ultraviolet, . Dna-in, and . Bacteria, J Mol Biol, vol.9, pp.395-410, 1964.

C. Setlow-rb and . Wl, THE DISAPPEARANCE OF THYMINE DIMERS FROM DNA: AN ERROR-CORRECTING MECHANISM, Proc Natl Acad Sci U S A, vol.51, p.300053, 1964.

H. Menoni, J. H. Hoeijmakers, and W. Vermeulen, Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo, The Journal of cell biology, vol.199, issue.7, p.3529521, 2012.

R. D. Wood, Mammalian nucleotide excision repair proteins and interstrand crosslink repair

, Environ Mol Mutagen, vol.51, issue.6, pp.520-526, 2010.

P. Central and P. , , p.3017513

G. Spivak, Nucleotide excision repair in humans, DNA Repair (Amst), vol.36, p.4688078, 2015.

W. L. De-laat, N. G. Jaspers, and J. H. Hoeijmakers, Molecular mechanism of nucleotide excision repair, Genes Dev, vol.13, issue.7, pp.768-85, 1999.

J. T. Reardon and A. Sancar, Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease, Genes Dev, vol.17, issue.20, pp.2539-51, 2003.

J. Y. Tang, B. J. Hwang, J. M. Ford, P. C. Hanawalt, and G. Chu, Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis, Mol Cell, vol.5, issue.4, p.2894271, 2000.

A. Scrima, R. Konícková, B. K. Czyzewski, Y. Kawasaki, P. D. Jeffrey et al., Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex, Cell, vol.135, issue.7, pp.1213-1236, 2008.

O. D. Schärer and A. J. Campbell, Wedging out DNA damage, Nat Struct Mol Biol, vol.16, issue.2, pp.102-106, 2009.

H. Mu, Y. Zhang, N. E. Geacintov, and S. Broyde, Lesion Sensing during Initial Binding by Yeast XPC/Rad4: Toward Predicting Resistance to Nucleotide Excision Repair, Chem Res Toxicol, vol.31, issue.11, p.6247245, 2018.

J. M. Ng, W. Vermeulen, G. T. Van-der-horst, S. Bergink, K. Sugasawa et al., A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein, Genes Dev, vol.17, issue.13, p.196135, 2003.

S. Bergink, W. Toussaint, M. S. Luijsterburg, C. Dinant, S. Alekseev et al., Recognition of DNA damage by XPC coincides with disruption of the XPC-RAD23 complex, J Cell Biol, vol.196, issue.6, p.3308700, 2012.

R. Nishi, Y. Okuda, E. Watanabe, T. Mori, S. Iwai et al., Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein, Mol Cell Biol, vol.25, issue.13, pp.5664-74, 2005.

P. Central and P. , , p.1156980

R. Nishi, W. Sakai, D. Tone, F. Hanaoka, and K. Sugasawa, Structure-function analysis of the EFhand protein centrin-2 for its intracellular localization and nucleotide excision repair, Epub 2013/05/28, vol.41, pp.6917-6946, 2013.

P. Central and P. , , p.3737541

M. Okuda, M. Kinoshita, E. Kakumu, K. Sugasawa, and Y. Nishimura, Structural Insight into the Mechanism of TFIIH Recognition by the Acidic String of the Nucleotide Excision Repair Factor XPC, Structure, vol.23, issue.10, pp.1827-1864, 2015.

G. Spivak, Transcription-coupled repair: an update, Arch Toxicol, vol.90, issue.11, p.5065778, 2016.

A. H. Sarker, S. E. Tsutakawa, S. Kostek, C. Ng, D. S. Shin et al., Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome, Mol Cell, vol.20, issue.2, pp.187-98, 2005.

N. Charlet-berguerand, S. Feuerhahn, S. E. Kong, H. Ziserman, J. W. Conaway et al., RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors, EMBO J, vol.25, issue.23, pp.5481-91, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187859

T. T. Saxowsky, K. L. Meadows, A. Klungland, and P. W. Doetsch, 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells, Proc Natl Acad Sci U S A, vol.105, issue.48, pp.18877-82, 2008.

M. Harreman, M. Taschner, S. Sigurdsson, R. Anindya, J. Reid et al., Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation, Proc Natl Acad Sci, vol.106, issue.49, p.2778569, 2009.

S. Tornaletti, D. Reines, and P. C. Hanawalt, Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA, J Biol Chem, vol.274, issue.34, pp.24124-24154, 1999.

P. C. Hanawalt and G. Spivak, Transcription-coupled DNA repair: two decades of progress and surprises, Nat Rev Mol Cell Biol, vol.9, issue.12, pp.958-70, 2008.

H. Lans, J. A. Marteijn, and W. Vermeulen, ATP-dependent chromatin remodeling in the DNAdamage response, Epigenetics Chromatin, vol.5, 2012.

Y. Y. Chiou, J. Hu, A. Sancar, and C. P. Selby, RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells, J Biol Chem, vol.293, issue.7, pp.2476-86, 2018.

N. Beerens, J. H. Hoeijmakers, R. Kanaar, W. Vermeulen, and C. Wyman, The CSB protein actively wraps DNA, J Biol Chem, vol.280, issue.6, pp.4722-4731, 2005.

C. P. Selby and A. Sancar, Cockayne syndrome group B protein enhances elongation by RNA polymerase II, Proc Natl Acad Sci, vol.94, issue.21, p.23417, 1997.

Y. Sin, K. Tanaka, and M. Saijo, The C-terminal Region and SUMOylation of Cockayne Syndrome Group B Protein Play Critical Roles in Transcription-coupled Nucleotide Excision Repair, J Biol Chem, vol.291, issue.3, pp.1387-97, 2016.

T. Iyama and D. M. Wilson, Elements That Regulate the DNA Damage Response of Proteins Defective in Cockayne Syndrome, J Mol Biol, vol.428, issue.1, p.4738086, 2016.

R. Groisman, J. Polanowska, I. Kuraoka, J. Sawada, M. Saijo et al., The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage, Cell, vol.113, issue.3, pp.357-67, 2003.

P. J. Brooks, Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease, DNA Repair (Amst), vol.12, issue.8, p.4240003, 2013.

J. Fei and J. Chen, KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR), J Biol Chem, vol.287, issue.42, pp.35118-35144, 2012.

Y. Nakazawa, K. Sasaki, N. Mitsutake, M. Matsuse, M. Shimada et al., Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcriptioncoupled nucleotide-excision repair, Nat Genet, vol.44, issue.5, pp.586-92, 2012.

P. Schwertman, A. Lagarou, D. H. Dekkers, A. Raams, A. C. Van-der-hoek et al., UVsensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair, Nat Genet, vol.44, issue.5, pp.598-602, 2012.

X. Zhang, K. Horibata, M. Saijo, C. Ishigami, A. Ukai et al., Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair, Nat Genet, vol.44, issue.5, pp.593-600, 2012.

M. Okuda, Y. Nakazawa, C. Guo, T. Ogi, and Y. Nishimura, Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways, Nucleic Acids Res

, , vol.45, pp.13043-55

G. Giglia-mari, M. C. Theil, A. F. Mari, P. O. Hoogstraten, D. Ng et al., Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells, PLoS Biol, vol.4, issue.6, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02148390

N. Mathieu, N. Kaczmarek, P. Rüthemann, A. Luch, and H. Naegeli, DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH, Curr Biol, vol.23, issue.3, pp.204-216, 2013.

F. Coin, V. Oksenych, V. Mocquet, S. Groh, C. Blattner et al., Nucleotide excision repair driven by the dissociation of CAK from TFIIH, Mol Cell, vol.31, issue.1, pp.9-20, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00311093

O. D. Schärer, Nucleotide excision repair in eukaryotes, Cold Spring Harb Perspect Biol, vol.5, issue.10, p.3783044, 2013.

Y. Nakatsu, H. Asahina, E. Citterio, S. Rademakers, W. Vermeulen et al., XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription, J Biol Chem, vol.275, issue.45, pp.34931-34938, 2000.

A. F. Fagbemi, B. Orelli, and O. D. Schärer, Regulation of endonuclease activity in human nucleotide excision repair, DNA Repair (Amst), vol.10, issue.7, pp.722-731, 2011.

T. Ogi, S. Limsirichaikul, R. M. Overmeer, M. Volker, K. Takenaka et al., Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells, Mol Cell, vol.37, issue.5, pp.714-741, 2010.

, Replication factor C recruits DNA polymerase delta to sites of nucleotide excision repair but is not required for PCNA recruitment, Epub 2010/08/16, vol.30, p.2950542, 2010.

A. R. Lehmann, DNA polymerases and repair synthesis in NER in human cells, DNA Repair (Amst), vol.10, issue.7, pp.730-733, 2011.

S. Mourgues, V. Gautier, A. Lagarou, C. Bordier, A. Mourcet et al., ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair, Proc Natl Acad Sci U S A, vol.110, issue.44, p.3816466, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02148319

A. Dutta, V. Babbarwal, J. Fu, D. Brunke-reese, D. M. Libert et al., Ccr4-Not and TFIIS Function Cooperatively To Rescue Arrested RNA Polymerase II, Mol Cell Biol, vol.35, issue.11, p.4420917, 2015.

V. Oksenych, A. Zhovmer, S. Ziani, P. O. Mari, J. Eberova et al., Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack, PLoS Genet, vol.9, issue.7, p.1003611, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02148321

L. C. Andrade-lima, A. Veloso, and M. Ljungman, Transcription Blockage Leads to New Beginnings

, Biomolecules, vol.5, issue.3, p.4598766, 2015.

J. De-boer and J. H. Hoeijmakers, Nucleotide excision repair and human syndromes

, Carcinogenesis, vol.21, issue.3, pp.453-60, 2000.

K. H. Kraemer, N. J. Patronas, R. Schiffmann, B. P. Brooks, D. Tamura et al., Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship, Neuroscience, vol.145, issue.4, p.2288663, 2007.

M. J. Smerdon and M. W. Lieberman, Nucleosome rearrangement in human chromatin during UV-induced DNA-reapir synthesis, Proc Natl Acad Sci, vol.75, issue.9, p.336087, 1978.

C. L. Peterson and G. Almouzni, Nucleosome dynamics as modular systems that integrate DNA damage and repair, Cold Spring Harb Perspect Biol, vol.5, issue.9, p.3753706, 2013.

G. Soria, S. E. Polo, and G. Almouzni, Prime, repair, restore: the active role of chromatin in the DNA damage response, Mol Cell, vol.46, issue.6, pp.722-756, 2012.

Y. Jiang, X. Wang, S. Bao, R. Guo, D. G. Johnson et al., INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway, Proc Natl Acad Sci, vol.107, issue.40, pp.17274-17283, 2010.

Q. Zhao, Q. E. Wang, A. Ray, G. Wani, C. Han et al., Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex, J Biol Chem, vol.284, issue.44, pp.30424-30456, 2009.

M. S. Luijsterburg, C. Dinant, H. Lans, J. Stap, E. Wiernasz et al., Heterochromatin protein 1 is recruited to various types of DNA damage, J Cell Biol, vol.185, issue.4, pp.481-93, 2006.

S. Adam, S. E. Polo, and G. Almouzni, Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA, Cell, vol.155, issue.1, pp.94-106, 2013.

D. A. Bushnell and R. D. Kornberg, Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription, Proc Natl Acad Sci, vol.100, issue.12, pp.6969-73, 2003.

, Epub 2003/05/13

K. J. Armache, H. Kettenberger, and P. Cramer, Dahmus ME. Phosphorylation of the C-terminal domain of RNA polymerase II, Epub 2003/05/13, vol.100, pp.171-82, 1995.

D. Bentley, The mRNA assembly line: transcription and processing machines in the same factory, Curr Opin Cell Biol, vol.14, issue.3, pp.336-378, 2002.

N. I. Gershenzon and I. P. Ioshikhes, Synergy of human Pol II core promoter elements revealed by statistical sequence analysis, Bioinformatics, vol.21, issue.8, pp.1295-300, 2005.

S. T. Smale and J. T. Kadonaga, The RNA polymerase II core promoter, Annu Rev Biochem, vol.72, pp.449-79, 2003.

S. Hahn, Structure and mechanism of the RNA polymerase II transcription machinery, Nat Struct Mol Biol, vol.11, issue.5, p.1189732, 2004.

Y. He, J. Fang, D. J. Taatjes, and E. Nogales, Structural visualization of key steps in human transcription initiation, Nature, vol.495, issue.7442, p.3612373, 2013.

Y. J. Kim, S. Björklund, Y. Li, M. H. Sayre, and R. D. Kornberg, A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II, Cell, vol.77, issue.4, pp.599-608, 1994.

K. S. Murakami, S. Masuda, E. A. Campbell, O. Muzzin, and S. A. Darst, Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex, Science, vol.296, issue.5571, pp.1285-90, 2002.

F. Coin, E. Bergmann, A. Tremeau-bravard, and J. M. Egly, Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH, EMBO J, vol.18, issue.5, p.1171225, 1999.

X. Liu, D. A. Bushnell, and R. D. Kornberg, RNA polymerase II transcription: structure and mechanism, Biochim Biophys Acta, vol.1829, issue.1, p.4244541, 2013.

Y. Ohkuma and R. G. Roeder, Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation, Nature, vol.368, issue.6467, pp.160-163, 1994.

D. L. Bentley, Coupling mRNA processing with transcription in time and space, Nat Rev Genet, vol.15, issue.3, pp.163-75, 2014.

P. Central and P. , , p.4304646

L. Lei, D. Ren, and Z. F. Burton, The RAP74 subunit of human transcription factor IIF has similar roles in initiation and elongation, Mol Cell Biol, vol.19, issue.12, pp.8372-82, 1999.

P. Central and P. , , p.84928

Y. Yamaguchi, T. Takagi, T. Wada, K. Yano, A. Furuya et al., NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation, Cell, vol.97, issue.1, pp.41-51, 1999.

J. Peng, N. F. Marshall, and D. H. Price, Identification of a cyclin subunit required for the function of Drosophila P-TEFb, J Biol Chem, vol.273, issue.22, pp.13855-60, 1998.

N. F. Marshall, J. Peng, Z. Xie, and D. H. Price, Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase, J Biol Chem, vol.271, issue.43, pp.27176-83, 1996.

K. Fujinaga, D. Irwin, Y. Huang, R. Taube, T. Kurosu et al., Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element, Mol Cell Biol, vol.24, issue.2, p.343783, 2004.

T. Yamada, Y. Yamaguchi, N. Inukai, S. Okamoto, T. Mura et al., P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation, Mol Cell, vol.21, issue.2, pp.227-264, 2006.

F. X. Chen, E. R. Smith, and A. Shilatifard, Born to run: control of transcription elongation by RNA polymerase II, Nat Rev Mol Cell Biol, vol.19, issue.7, pp.464-78, 2018.

B. Bartkowiak and A. L. Greenleaf, Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb?, Transcription, vol.2, issue.3, p.3149687, 2011.

R. J. Sims, R. Belotserkovskaya, and D. Reinberg, Elongation by RNA polymerase II: the short and long of it, Genes Dev, vol.18, issue.20, pp.2437-68, 2004.

V. Schweikhard, C. Meng, K. Murakami, C. D. Kaplan, R. D. Kornberg et al., Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms, Proc Natl Acad Sci, vol.111, issue.18, pp.6642-6649, 2014.

Q. Zhou, T. Li, and D. H. Price, RNA polymerase II elongation control, Annu Rev Biochem, vol.81, pp.119-162, 2012.

J. N. Kuehner, E. L. Pearson, and C. Moore, Unravelling the means to an end: RNA polymerase II transcription termination, Nat Rev Mol Cell Biol, vol.12, issue.5, pp.283-94, 2011.

S. Lykke-andersen and T. H. Jensen, Overlapping pathways dictate termination of RNA polymerase II transcription, Biochimie, vol.89, issue.10, pp.1177-82, 2007.

N. J. Park, D. C. Tsao, and H. G. Martinson, The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain, Mol Cell Biol, vol.24, issue.10, p.400489, 2004.

A. Nag, K. Narsinh, and H. G. Martinson, The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase, Nat Struct Mol Biol, vol.14, issue.7, pp.662-671, 2007.

A. Kazerouninia, B. Ngo, and H. G. Martinson, Poly(A) signal-dependent degradation of unprocessed nascent transcripts accompanies poly(A) signal-dependent transcriptional pausing in vitro, PubMed PMID, vol.16, issue.1, p.2802029, 2010.

S. West, N. Gromak, and N. J. Proudfoot, Human 5' --> 3' exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites, Nature, vol.432, issue.7016, pp.522-527, 2004.

E. J. Steinmetz, N. K. Conrad, D. A. Brow, and J. L. Corden, RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts, Nature, vol.413, issue.6853, pp.327-358, 2001.

E. J. Steinmetz, C. L. Warren, J. N. Kuehner, B. Panbehi, A. Z. Ansari et al., Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase, Mol Cell, vol.24, issue.5, pp.735-781, 2006.

W. Gilbert, Why genes in pieces?, Nature, vol.271, issue.5645, p.501, 1978.

Y. Wang, J. Liu, B. O. Huang, Y. M. Xu, J. Li et al., Mechanism of alternative splicing and its regulation, Biomed Rep, vol.3, issue.2, p.4360811, 2015.

T. W. Nilsen and B. R. Graveley, Expansion of the eukaryotic proteome by alternative splicing, Nature, vol.463, issue.7280, p.3443858, 2010.

T. R. Mercer, M. B. Clark, S. B. Andersen, M. E. Brunck, W. Haerty et al., Genome-wide discovery of human splicing branchpoints, Genome Res, vol.25, issue.2, p.4315302, 2015.

L. Herzel, D. Ottoz, T. Alpert, and K. M. Neugebauer, Splicing and transcription touch base: cotranscriptional spliceosome assembly and function, Nat Rev Mol Cell Biol, vol.18, issue.10, p.5928008, 2017.

P. Fabrizio, J. Dannenberg, P. Dube, B. Kastner, H. Stark et al., The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome, Mol Cell, vol.36, issue.4, pp.593-608, 2009.

C. L. Will and R. Lührmann, Spliceosome structure and function, Cold Spring Harb Perspect Biol, vol.3, issue.7, 2011.

P. Central and P. , , p.3119917

R. Reed and T. Maniatis, Intron sequences involved in lariat formation during pre-mRNA splicing, Cell, vol.41, issue.1, pp.95-105, 1985.

A. L. Beyer, A. H. Bouton, and O. L. Miller, Correlation of hnRNP structure and nascent transcript cleavage, Cell, vol.26, issue.2, pp.155-65, 1981.

M. Montes, S. Becerra, M. Sánchez-Álvarez, and C. Suñé, Functional coupling of transcription and splicing, Gene, vol.501, issue.2, pp.104-121, 2012.

K. C. Abruzzi, S. Lacadie, and M. Rosbash, Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes, EMBO J, vol.23, issue.13, p.449771, 2004.

C. J. David, A. R. Boyne, S. R. Millhouse, and J. L. Manley, The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex, Genes Dev, vol.25, issue.9, pp.972-83, 2011.

S. Mccracken, N. Fong, K. Yankulov, S. Ballantyne, G. Pan et al., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription, Nature, vol.385, issue.6614, pp.357-61, 1997.

E. C. Merkhofer, P. Hu, and T. L. Johnson, Introduction to cotranscriptional RNA splicing, Methods Mol Biol, vol.1126, pp.83-96, 2014.

P. Central and P. , , p.4102251

J. Y. Ip, D. Schmidt, Q. Pan, A. K. Ramani, A. G. Fraser et al., Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation, Epub 2010/12/16, vol.21, pp.390-401, 2011.

P. Central and P. , , p.3044853

M. De-la-mata, C. R. Alonso, S. Kadener, J. P. Fededa, M. Blaustein et al., A slow RNA polymerase II affects alternative splicing in vivo, Mol Cell, vol.12, issue.2, pp.525-557, 2003.

K. J. Howe, C. M. Kane, and M. Ares, Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae, RNA, vol.9, issue.8, p.1370465, 2003.

K. T. Chathoth, J. D. Barrass, S. Webb, and J. D. Beggs, A splicing-dependent transcriptional checkpoint associated with prespliceosome formation, Mol Cell, vol.53, issue.5, p.3988880, 2014.

G. Orphanides, G. Leroy, C. H. Chang, D. S. Luse, and D. Reinberg, FACT, a factor that facilitates transcript elongation through nucleosomes, Cell, vol.92, issue.1, pp.105-121, 1998.

A. Saunders, J. Werner, E. D. Andrulis, T. Nakayama, S. Hirose et al., Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo, Science, vol.301, issue.5636, pp.1094-1100, 2003.

S. S. Teves, C. M. Weber, and S. Henikoff, Transcribing through the nucleosome, Trends Biochem Sci, vol.39, issue.12, pp.577-86, 2014.

F. Fontana, Traité sur le venin de la vipère

T. Mélèse, Z. Xue, G. Brown-dd, and . Jb, ABSENCE OF RIBOSOMAL RNA SYNTHESIS IN THE ANUCLEOLATE MUTANT OF XENOPUS LAEVIS, Proc Natl Acad Sci U S A, vol.7, issue.3, p.300879, 1964.

J. S. Andersen, C. E. Lyon, A. H. Fox, A. K. Leung, Y. W. Lam et al., Directed proteomic analysis of the human nucleolus, Curr Biol, vol.12, issue.1, pp.1705-1720, 2002.

P. Central and P. , , p.2743059

V. Sirri, S. Urcuqui-inchima, P. Roussel, and D. Hernandez-verdun, Nucleolus: the fascinating nuclear body, Histochem Cell Biol, vol.129, issue.1, p.2137947, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00195457

M. Tsekrekou, K. Stratigi, and G. Chatzinikolaou, The Nucleolus: In Genome Maintenance and Repair, Int J Mol Sci, vol.18, issue.7, p.5535903, 2017.

M. O. Christensen, H. U. Barthelmes, F. Boege, and C. Mielke, The N-terminal domain anchors human topoisomerase I at fibrillar centers of nucleoli and nucleolar organizer regions of mitotic chromosomes, J Biol Chem, vol.277, issue.39, pp.35932-35940, 2002.

A. S. Henderson, D. Warburton, and K. C. Atwood, Location of ribosomal DNA in the human chromosome complement, Proc Natl Acad Sci, vol.69, issue.11, p.389778, 1972.

T. Gautier, N. Fomproix, C. Masson, M. C. Azum-gélade, N. Gas et al., Fate of specific nucleolar perichromosomal proteins during mitosis: cellular distribution and association with U3 snoRNA, Biol Cell, vol.82, issue.2-3, pp.81-93, 1994.

P. Roussel, C. André, L. Comai, and D. Hernandez-verdun, The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs, J Cell Biol, vol.133, issue.2, p.235, 1996.

. Pubmed, , p.2120807

J. Gébrane-younès, N. Fomproix, and D. Hernandez-verdun, When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA, J Cell Sci, vol.110, pp.2429-2469, 1997.

T. Dousset, C. Wang, C. Verheggen, D. Chen, D. Hernandez-verdun et al., Initiation of nucleolar assembly is independent of RNA polymerase I transcription, Mol Biol Cell, vol.11, issue.8, pp.2705-2722, 2000.

D. Hernandez-verdun, P. Roussel, M. Thiry, V. Sirri, and D. L. Lafontaine, The nucleolus: structure/function relationship in RNA metabolism, Wiley Interdiscip Rev RNA, vol.1, issue.3, pp.415-446, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02333793

M. Dundr, T. Misteli, and M. O. Olson, The dynamics of postmitotic reassembly of the nucleolus, J Cell Biol, vol.150, issue.3, pp.433-479, 2000.

T. M. Savino, J. Gébrane-younès, D. Mey, J. Sibarita, J. B. Hernandez-verdun et al., Nucleolar assembly of the rRNA processing machinery in living cells, J Cell Biol, vol.153, issue.5, p.2174343, 2001.

O. L. Miller and B. R. Beatty, Visualization of nucleolar genes, Science, vol.164, issue.3882, pp.955-962, 1969.

E. O. Long and I. B. Dawid, Repeated genes in eukaryotes, Annu Rev Biochem, vol.49, pp.727-64, 1980.

Y. W. Lam and L. Trinkle-mulcahy, New insights into nucleolar structure and function, vol.7, 1000.

P. Central and P. , , p.4447046

I. Floutsakou, S. Agrawal, T. T. Nguyen, C. Seoighe, A. R. Ganley et al., The shared genomic architecture of human nucleolar organizer regions, Genome Res, vol.23, issue.12, p.3847771, 2013.

P. B. Moore and T. A. Steitz, The involvement of RNA in ribosome function, Nature, vol.418, issue.6894, pp.229-264, 2002.

T. Moss and V. Y. Stefanovsky, At the center of eukaryotic life, Cell, vol.109, issue.5, pp.545-553, 2002.

M. Dundr, U. Hoffmann-rohrer, Q. Hu, I. Grummt, L. I. Rothblum et al., A kinetic framework for a mammalian RNA polymerase in vivo, Science, vol.298, issue.5598, pp.1623-1629, 2002.

J. Russell and J. C. Zomerdijk, The RNA polymerase I transcription machinery, Biochem Soc Symp, issue.73, p.3858827, 2006.

J. R. Haag and C. S. Pikaard, RNA polymerase I: a multifunctional molecular machine, Cell, vol.131, issue.7, pp.1224-1229, 2007.

C. D. Kuhn, S. R. Geiger, S. Baumli, M. Gartmann, J. Gerber et al., Functional architecture of RNA polymerase I, Cell, vol.131, issue.7, pp.1260-72, 2007.

F. Beckouet, S. Labarre-mariotte, A. B. Imazawa, Y. Werner, M. Gadal et al., Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription, Mol Cell Biol, vol.28, issue.5, pp.1596-605, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00309037

P. Central and P. , , p.2258765

B. Albert, I. Léger-silvestre, N. C. Ostermaier, M. K. Pérez-fernández, J. Panov et al., RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle, J Cell Biol, vol.192, issue.2, p.3172167, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667459

S. J. Goodfellow and J. C. Zomerdijk, Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes, Subcell Biochem, vol.61, p.3855190, 2013.

L. Comai, N. Tanese, and R. Tjian, The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell, vol.68, issue.5, pp.965-76, 1992.

J. K. Friedrich, K. I. Panov, P. Cabart, J. Russell, and J. C. Zomerdijk, TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter, J Biol Chem, vol.280, issue.33, p.3858828, 2005.

K. M. Schmitz, N. Schmitt, U. Hoffmann-rohrer, A. Schäfer, I. Grummt et al., TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation, Mol Cell, vol.33, issue.3, pp.344-53, 2009.

G. Miller, K. I. Panov, J. K. Friedrich, L. Trinkle-mulcahy, A. I. Lamond et al., hRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters, EMBO J, vol.20, issue.6, p.145519, 2001.

A. H. Cavanaugh, I. Hirschler-laszkiewicz, Q. Hu, M. Dundr, T. Smink et al., Rrn3 phosphorylation is a regulatory checkpoint for ribosome biogenesis, J Biol Chem, vol.277, issue.30, pp.27423-27455, 2002.

H. Bierhoff, M. Dundr, A. A. Michels, and I. Grummt, Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I

, Mol Cell Biol, vol.28, issue.16, p.2519707, 2008.

C. Y. Lin, S. Navarro, S. Reddy, and L. Comai, CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction, Nucleic Acids Res, vol.34, issue.17, p.1635259, 2006.

T. B. Panova, K. I. Panov, J. Russell, and J. C. Zomerdijk, Casein kinase 2 associates with initiationcompetent RNA polymerase I and has multiple roles in ribosomal DNA transcription, Mol Cell Biol, vol.26, issue.16, pp.5957-68, 2006.

H. M. Jantzen, A. Admon, S. P. Bell, and R. Tjian, Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins, Nature, vol.344, issue.6269, pp.830-836, 1990.

K. I. Panov, T. B. Panova, O. Gadal, K. Nishiyama, T. Saito et al., RNA polymerase Ispecific subunit CAST/hPAF49 has a role in the activation of transcription by upstream binding factor, Mol Cell Biol, vol.26, issue.14, p.1592716, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00309039

J. Russell and J. C. Zomerdijk, RNA-polymerase-I-directed rDNA transcription, life and works, Trends Biochem Sci, vol.30, issue.2, pp.87-96, 2005.

I. Hirschler-laszkiewicz, A. H. Cavanaugh, A. Mirza, M. Lun, Q. Hu et al., Rrn3 becomes inactivated in the process of ribosomal DNA transcription, J Biol Chem, vol.278, issue.21, pp.18953-18962, 2003.

S. Iben, H. Tschochner, M. Bier, D. Hoogstraten, P. Hozak et al., TFIIH plays an essential role in RNA polymerase I transcription, Cell, vol.109, issue.3, pp.297-306, 2002.

K. I. Panov, J. K. Friedrich, and J. C. Zomerdijk, A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription, Mol Cell Biol, vol.21, issue.8, pp.2641-2650, 2001.

P. Central and P. , , p.86895

P. Jansa, C. Burek, E. E. Sander, and I. Grummt, The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I, Nucleic Acids Res, vol.29, issue.2, p.29675, 2001.

A. El-hage, M. Koper, J. Kufel, and D. Tollervey, Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast, Genes Dev, vol.22, issue.8, p.2335327, 2008.

F. Pontvianne, T. Blevins, C. Chandrasekhara, I. Mozgová, C. Hassel et al., Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states, Genes Dev, vol.27, issue.14, p.3731543, 2013.

B. Mcstay and I. Grummt, The epigenetics of rRNA genes: from molecular to chromosome biology, Annu Rev Cell Dev Biol, vol.24, pp.131-57, 2008.

R. Santoro and I. Grummt, Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation, Mol Cell Biol, vol.25, issue.7, p.1061655, 2005.

Y. Zhou, R. Santoro, and I. Grummt, The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription, EMBO J, vol.21, issue.17, pp.4632-4672, 2002.

T. Moss, J. C. Mars, M. G. Tremblay, and M. Sabourin-felix, The chromatin landscape of the ribosomal RNA genes in mouse and human, Chromosome Res, vol.27, issue.1-2, pp.31-40, 2019.

L. Daniel, E. Cerutti, L. M. Donnio, J. Nonnekens, C. Carrat et al., Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA, Proc Natl Acad Sci U S A, vol.115, issue.29, p.6055190, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02148234

A. Conconi, V. A. Bespalov, and M. J. Smerdon, Transcription-coupled repair in RNA polymerase Itranscribed genes of yeast, Proc Natl Acad Sci U S A, vol.99, issue.2, pp.649-54, 2002.

M. Franek, A. Kovarikova, E. Bartova, and S. Kozubek, Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction, J Histochem Cytochem, vol.64, issue.11, p.5084524, 2016.

D. H. Larsen and M. Stucki, Nucleolar responses to DNA double-strand breaks, Nucleic Acids Res, vol.44, issue.2, p.4737151, 2016.

M. Van-sluis and B. Mcstay, A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage, Genes Dev, vol.29, issue.11, p.4470283, 2015.

D. S. Dimitrova, DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci, J Cell Sci, vol.124, pp.2743-52, 2011.

P. Tessarz, H. Santos-rosa, S. C. Robson, K. B. Sylvestersen, C. J. Nelson et al., Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification, Nature, vol.505, issue.7484, pp.564-572, 2014.

P. Central and P. , , p.3901671

M. H. Wu and B. Y. Yung, UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA, J Biol Chem, vol.277, issue.50, pp.48234-48274, 2002.

M. Tourbez, C. Firanescu, A. Yang, L. Unipan, P. Duchambon et al., Calciumdependent self-assembly of human centrin 2, J Biol Chem, vol.279, issue.46, pp.47672-80, 2004.

A. E. West, W. G. Chen, M. B. Dalva, R. E. Dolmetsch, J. M. Kornhauser et al., Calcium regulation of neuronal gene expression, Proc Natl Acad Sci, vol.98, issue.20, p.58677, 2001.

C. Tsui, C. Inouye, M. Levy, A. Lu, L. Florens et al., dCas9-targeted locus-specific protein isolation method identifies histone gene regulators, Proc Natl Acad Sci U S A, vol.115, issue.12, p.5866577, 2018.

I. Kuraoka, S. Ito, T. Wada, M. Hayashida, L. Lee et al., Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair, J Biol Chem, vol.283, issue.2, pp.940-50, 2008.