D. R-=-rank-;-u and V. Svd, , vol.2

, 3) takes as input a matrix and returns 2 matrices. It applies the SVD to the input matrix and reshape the 2 matrices generated according to the choice we want

E. Acar, R. Bro, and A. Smilde, Data fusion in metabolomics using coupled matrix and tensor factorizations, Proceedings of the IEEE 103, pp.1602-1620, 2015.

E. Acar, T. G. Kolda, and D. M. Dunlavy, All-at-once Optimization for Coupled Matrix and Tensor Factorizations, 2011.

A. L. De-almeida, G. Favier, and J. C. Mota, PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization, Signal Processing, vol.87, pp.337-351, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00417636

A. L. De-almeida, G. Favier, and J. Mota, A constrained factor decomposition with application to MIMO antenna systems, IEEE Transactions on Signal Processing, vol.56, pp.2429-2442, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00417627

R. Badeau and R. Boyer, Fast multilinear singular value decomposition for structured tensors, SIAM Journal on Matrix Analysis and Applications, vol.30, pp.1008-1021, 2008.

R. Badeau, B. David, and G. Richard, A new perturbation analysis for signal enumeration in rotational invariance techniques, IEEE Transactions on Signal Processing, vol.54, pp.450-458, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00479779

J. Ballani, L. Grasedyck, and M. Kluge, Black box approximation of tensors in hierarchical Tucker format, Linear algebra and its Applications, vol.438, pp.639-657, 2013.

J. M. Berge and N. D. Sidiropoulos, On uniqueness in CANDECOMP/PARAFAC, Psychometrika, vol.67, issue.3, pp.399-409, 2002.

J. T. Berge, Unpublished Note, Heijmans Institute of Psychological Research, The Netherlands, 2000.

G. Bergqvist and E. Larsson, The higher-order singular value decomposition: Theory and an application [lecture notes, IEEE Signal Processing Magazine, vol.27, pp.151-154, 2010.

A. Boudehane, Y. Zniyed, A. Tenenhaus, L. L. Brusquet, and R. Boyer, Breaking the curse of dimensionality for coupled tensor-matrix factorization, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02417126

M. Boussé, O. Debals, and L. D. Lathauwer, A Tensor-Based Method for Large-Scale Blind Source Separation Using Segmentation, IEEE Transactions on Signal Processing, vol.65, pp.346-358, 2016.

M. Boussé, O. Debals, and L. D. Lathauwer, A Tensor-Based Method for Large-Scale Blind Source Separation Using Segmentation, IEEE Transactions on Signal Processing, vol.65, pp.346-358, 2016.

R. Boyer, Deterministic asymptotic Cramér-Rao bound for the multidimensional harmonic model, Signal Processing, vol.88, pp.2869-2877, 2008.

R. Boyer and P. Comon, Rectified ALS Algorithm for Multidimensional Harmonic Retrieval, Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314702

R. Boyer and M. Haardt, Noisy Compressive Sampling Based on Block-Sparse Tensors: Performance Limits and Beamforming Techniques, IEEE Transactions on Signal Processing, vol.64, pp.6075-6088, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01353875

R. Boyer and R. Badeau, Adaptive Multilinear SVD for Structured Tensors, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2006.
URL : https://hal.archives-ouvertes.fr/hal-00577274

R. Boyer, R. Badeau, and G. Favier, Fast Orthogonal Decomposition of Volterra Cubic Kernels using Oblique Unfolding, 36th IEEE International Conference on Acoustics, Speech and Signal Processing, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00576019

J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas, Symmetric tensor decomposition, Linear Algebra and its Applications, vol.433, pp.1851-1872, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00435908

D. Brie, R. Klotz, S. Miron, S. Moussaoui, C. Mustin et al., Joint analysis of flow cytometry data and fluorescence spectra as a non-negative array factorization problem, Chemometrics and Intelligent Laboratory Systems, vol.137, pp.21-32, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00990043

R. Bro, PARAFAC. Tutorial and applications, Chemometrics and Intelligent Laboratory Systems, vol.38, pp.149-171, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02141162

R. Bro, N. D. Sidiropoulos, and G. B. Giannakis, A Fast Least Squares Algorithm for Separating Trilinear Mixtures, Int. Workshop on Independent Component Analysis and Blind Separation, 1999.

R. Bro, R. A. Harshman, N. D. Sidiropoulos, and M. E. Lundy, Modeling multi-way data with linearly dependent loadings, Journal of Chemometrics: A Journal of the Chemometrics Society, vol.23, pp.324-340, 2009.

G. Camba-mendez and G. Kapetanios, Statistical tests and estimators of the rank of a matrix and their applications in econometric modelling, Econometric Reviews, vol.28, pp.581-611, 2009.

J. Carroll and J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of 'Eckart-Young' decomposition, Psychometrika, vol.35, pp.283-319, 1970.

T. F. Chan, Rank revealing QR factorizations, Linear algebra and its applications, vol.88, pp.67-82, 1987.

E. Chaumette, J. Galy, A. Quinlan, and P. Larzabal, A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum-Likelihood Estimators, IEEE Transactions on Signal Processing, vol.56, pp.5319-5333, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00344323

A. Cichocki, Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions, 2014.

A. Cichocki, Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions, 2014.

A. Cichocki, N. Lee, I. Oseledets, A. Phan, Q. Zhao et al., Low-Rank Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Problems: Perspectives and Challenges PART 1, 2016.

A. Cichocki, Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems, 2014.

A. Cichocki, D. Mandic, L. De-lathauwer, G. Zhou, Q. Zhao et al., Tensor Decompositions for Signal Processing Applications, IEEE Signal Processing Magazine, vol.32, pp.145-163, 2015.

A. Cichocki, N. Lee, I. Oseledets, A. Phan, Q. Zhao et al., Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Part 1 Low-Rank Tensor Decompositions, Foundations and Trends in Machine Learning, vol.9, pp.249-429, 2016.

M. Clark and L. Scharf, Two-dimensional modal analysis based on maximum likelihood, IEEE Transactions on Signal Processing, vol.42, pp.1443-1452, 1994.

J. E. Cohen, Environmental Multiway Data Mining, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01371777

P. Comon, X. Luciani, and A. L. De-almeida, Tensor Decompositions, Alternating Least Squares and other Tales, Journal of Chemometrics, vol.23, pp.393-405, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00410057

P. Comon, G. Golub, L. Lim, and B. Mourrain, Symmetric Tensors and Symmetric Tensor Rank, SIAM Journal on Matrix Analysis and Applications, vol.30, pp.1254-1279, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00327599

L. De-lathauwer, B. D. Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications, vol.21, pp.1253-1278, 2000.

L. De-lathauwer, B. D. Moor, and J. Vandewalle, R N ) Approximation of Higher-Order Tensors, SIAM Journal on Matrix Analysis and Applications, vol.21, pp.1324-1342, 2006.

J. H. De-morais-goulart, M. B. Boyer, G. Favier, and P. Comon, Tensor CP Decomposition with structured factor matrices: Algorithms and Performance, IEEE Journal of Selected Topics in Signal Processing, vol.10, pp.757-769, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01246855

V. , D. Silva, and L. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM Journal on Matrix Analysis and Applications, vol.30, pp.1084-1127, 2008.

V. , D. Silva, and L. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, In: SIAM J. Matrix Anal. Appl, vol.30, issue.3, pp.1084-1127, 2008.

M. Dohler and Y. Li, Cooperative Communications: Hardware, Channel and PHY, 2010.

I. Domanov and L. Lathauwer, Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm, Linear Algebra and its Applications, vol.513, pp.342-375, 2017.

C. Eckart and G. Young, THE APPROXIMATION OF ONE MATRIX BY AN-OTHER OF LOWER RANK, Psychometrika, pp.211-218, 1936.

S. Etter, Parallel ALS Algorithm for Solving Linear Systems in the Hierarchical Tucker Representation, In: SIAM J. Scientific Computing, vol.38, pp.2585-2609, 2016.

R. C. Farias, J. Cohen, and P. Comon, Exploring multimodal data fusion through joint decompositions with flexible couplings, IEEE Trans. SP, vol.64, pp.4830-4844, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01158082

G. Favier and A. L. De-almeida, Tensor space-time-frequency coding with semi-blind receivers for MIMO wireless communication systems, IEEE Transactions on Signal Processing, vol.62, pp.5987-6002, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01246038

G. Favier, C. A. Fernandes, and A. L. De-almeida, Nested Tucker Tensor Decomposition with Application to MIMO Relay Systems Using Tensor Space-Time Coding (TSTC), Signal Processing, vol.128, pp.318-331, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01312373

G. Favier and A. L. De-almeida, Tensor Space-Time-Frequency Coding With Semi-Blind Receivers for MIMO Wireless Communication Systems, IEEE Transactions on Signal Processing, vol.62, pp.5987-6002, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01246038

W. C. Freitas, G. Favier, and A. L. De-almeida, Sequential Closed-Form Semiblind Receiver for Space-Time Coded Multihop Relaying Systems, IEEE Signal Processing Letters, vol.24, pp.1070-9908, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01699755

W. C. Freitas, G. Favier, and A. L. De-almeida, Tensor-Based Joint Channel and Symbol Estimation for Two-Way MIMO Relaying Systems, IEEE Signal Processing Letters, vol.26, pp.1070-9908, 2019.

G. H. Golub and C. F. Van-loan, Matrix Computations. 4th, 2013.

J. H. Goulart, M. Boizard, R. Boyer, G. Favier, and P. Comon, Tensor CP Decomposition with structured factor matrices: Algorithms and Performance, IEEE Journal of Selected Topics in Signal Processing, vol.10, pp.757-769, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01246855

L. Grasedyck, Hierarchical singular value decomposition of tensors, In: SIAM J. Matrix Anal. Appl, vol.31, pp.2029-2054, 2010.

L. Grasedyck and W. Hackbusch, An introduction to hierarchical (h-) rank and TT-rank of tensors with examples, Comput. Meth. in Appl. Math, vol.11, issue.3, pp.291-304, 2011.

L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approximation techniques, CGAMM-Mitteilungen, vol.36, issue.3, pp.53-78, 2013.

X. Guo, S. Miron, D. Brie, and A. Stegeman, Uni-mode and partial uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings, SIAM Journal on Matrix Analysis and Applications, vol.33, issue.1, pp.111-129, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00628657

W. Hackbusch and S. Kühn, A new scheme for the tensor representation, Journal of Fourier Analysis and Applications, vol.15, pp.706-722, 2009.

R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multi-modal factor analysis, UCLA Working Papers in Phonetics, vol.16, pp.1-84, 1970.

R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, vol.16, pp.1-84, 1970.

C. J. Hillar and L. Lim, Most Tensor Problems Are NP-Hard, J. ACM, vol.60, issue.6, p.39, 2013.

F. L. Hitchcock, Multiple invariants and generalized rank of a p-way matrix or tensor, Journal of Mathematics and Physics, vol.7, pp.39-79, 1927.

Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. Acoust., Speech, vol.38, pp.814-824, 1990.

M. Jacquelin, L. Marchal, and Y. Robert, Complexity Analysis and Performance Evaluation of Matrix Product on Multicore Architectures, International Conference on Parallel Processing, 2009.
URL : https://hal.archives-ouvertes.fr/ensl-00381458

T. Jiang, N. D. Sidiropoulos, and J. M. Berge, Almost-sure identifiability of multidimensional harmonic retrieval, IEEE Transactions on Signal Processing, vol.49, pp.1849-1859, 2001.

T. Jiang, N. Sidiropoulos, and J. Ten-berge, Almost sure identifiability of multidimensional harmonic retrieval, IEEE International Conference on Acoustics, Speech and Signal Processing, 2001.

M. Jo, D. Araujo, T. Maksymyuk, A. L. De-almeida, T. F. Maciel et al., Massive MIMO: Survey and future research topics". In: IET Communications, 2016.

A. Kammoun, H. Khanfir, Z. Altman, M. Debbah, and M. Kamoun, Preliminary Results on 3D Channel Modeling: From Theory to Standardization, IEEE Journal on Selected Areas in Communications, vol.32, pp.1219-1229, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01847207

N. Kargas and N. Sidiropoulos, Completing a joint PMF from projections:a low-rank coupled tensor factorization approach, Proc. IEEE ITA, 2017.

V. Kazeev, O. Reichmann, and C. Schwab, Low-rank tensor structure of linear diffusion operators in the TT and QTT formats, Linear Algebra and its Applications, vol.438, pp.4204-4221, 2013.

B. Khoromskij, O(d log N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling, Constructive Approximation, vol.34, pp.257-280, 2011.

B. Khoromskij, Tensors-structured numerical methods in scientific computing: Survey on recent advances, Chemometrics and Intelligent Laboratory Systems, vol.110, pp.1-19, 2011.

A. Y. Kibangou and G. Favier, Non-iterative solution for PARAFAC with a Toeplitz matrix factor, 17th European Signal Processing Conference, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00397808

A. Y. Kibangou and G. Favier, Toeplitz-Vandermonde Matrix Factorization With Application to Parameter Estimation of Wiener-Hammerstein Systems, IEEE Signal Processing Letters, vol.14, pp.141-144, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00417634

L. Knockaert, The Barankin bound and threshold behavior in frequency estimation, IEEE Transactions on Signal Processing, vol.45, pp.2398-2401, 1997.

T. G. Kolda, A Counterexample to the Possibility of an Extension of the Eckart-Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.24, pp.762-767, 2003.

T. G. Kolda, A Counterexample to the Possibility of an Extension of the Eckart-Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decomposition, SIAM J. Matrix Anal. Appl, vol.24, pp.762-767, 2003.

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, In: SIAM Rev, vol.51, pp.455-500, 2009.

T. G. Kolda and J. Sun, Scalable Tensor Decompositions for Multi-aspect Data Mining, Eighth IEEE International Conference on Data Mining, 2008.

D. Kressner, M. Steinlechner, and B. Vandereycken, Low-rank tensor completion by Riemannian optimization, BIT Numerical Mathematics, vol.54, pp.447-468, 2014.

D. Kressner and C. Tobler, Algorithm 941: h-Tucker -A Matlab Toolbox for Tensors in Hierarchical Tucker Format, Math. Softw, vol.40, p.22, 2014.

S. Kritchman and B. Nadler, Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory, IEEE Transactions on Signal Processing, vol.57, pp.3930-3941, 2009.

P. M. Kroonenberg and J. De-leeuw, Principal component analysis of threemode data by means of alternating least squares algorithms, Psychometrika, vol.45, pp.69-97, 1980.

P. M. Kroonenberg and J. De-leeuw, Principal component analysis of threemode data by means of alternating least squares algorithms, Psychometrika, vol.45, pp.69-97, 1980.

J. B. , Three-way arrays: Rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics, Linear Algebra Appl, vol.18, pp.95-138, 1977.

D. Lahat, T. Adali, and C. Jutten, Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects, Proceedings of the IEEE 103, pp.1449-1477, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01179853

J. N. Laneman, D. Tse, and G. W. Wornell, Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior, IEEE Transactions on Information theory, vol.50, pp.3062-3080, 2004.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle, A multilinear singular value decomposition, In: SIAM J. Matrix Anal. Appl, vol.21, pp.1253-1278, 2000.

S. L. Lauritzen, Graphical models, vol.17, 1996.

N. Lee and A. Cichocki, Very Large-Scale Singular Value Decomposition Using Tensor Train Networks, 2014.

N. Li, S. Kindermann, and C. Navasca, Some convergence results on the Regularized Alternating Least-Squares method for tensor decomposition, Linear Algebra and its Applications, vol.438, pp.796-812, 2013.

Y. Li, J. Razavilar, and K. Liu, A high-resolution technique for multidimensional NMR spectroscopy, IEEE Transactions on Biomedical Engineering, vol.45, pp.78-86, 1998.

P. Lioliou, M. Viberg, and M. Coldrey, Efficient Channel Estimation Techniques for Amplify and Forward Relaying Systems, IEEE Transactions on Communications, vol.60, issue.11, pp.3150-3155, 2012.

J. Liu and X. Liu, An eigenvector-based approach for multidimensional frequency estimation with improved identifiability, IEEE Transactions on Signal Processing, vol.54, pp.4543-4556, 2006.

K. J. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative Communications and Networking, 2009.

H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, A survey of multilinear subspace learning for tensor data, Pattern Recognition, vol.44, pp.1540-1551, 2011.

V. Nguyen, K. Abed-meraim, and N. Linh-trung, Fast Tensor Decompositions for Big Data Processing, International Conference on Advanced Technologies for Communications (ATC), 2016.
URL : https://hal.archives-ouvertes.fr/hal-02144889

D. Nion and N. D. Sidiropoulos, Tensor algebra and multidimensional harmonic retrieval in signal processing for mimo radar, IEEE Transactions on Signal Processing, vol.58, pp.5693-5705, 2010.

P. D. Oliveira, C. Fernandes, G. Favier, and R. Boyer, PARATUCK semi-blind receivers for relaying multi-hop MIMO systems, Digital Signal Processing, vol.92, pp.127-138, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02002578

V. Ollier, M. E. Korso, R. Boyer, and P. Larzabal, French SKA White Book-The French community towards the Square Kilometer Array, 2017.

R. Orus, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of Physics, vol.349, pp.117-158, 2014.

I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra and its Applications, vol.432, pp.70-88, 2010.

I. V. Oseledets, Tensor-Train decomposition, In: SIAM J. Scientific Computing, vol.33, pp.2295-2317, 2011.

I. V. Oseledets, Tensor-Train decomposition, In: SIAM J. Scientific Computing, vol.33, pp.2295-2317, 2011.

I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Scientific Computing, vol.31, pp.3744-3759, 2009.

E. E. Papalexakis, C. Faloutsos, and N. Sidiropoulos, ParCube: Sparse Parallelizable Tensor Decompositions, ACM Transactions on Knowledge Discovery from Data (TKDD), p.10, 2015.

J. M. Papy, L. D. Lathauwer, and S. V. Huffel, A Shift Invariance-Based Order-Selection Technique for Exponential Data Modelling, IEEE Signal Processing Letters, vol.14, pp.473-476, 2007.

J. M. Papy, L. D. Lathauwer, and S. V. Huffel, Exponential data fitting using multilinear algebra: the single-channel and multi-channel case, Wiley Online Library, vol.12, pp.809-826, 2005.

N. Petrochilos and P. Comon, Link Between the Joint Diagonalisation of Symmetrical Cubes and PARAFAC: An Application to Secondary Surveillance Radar, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01693645

L. Qi, Q. Wang, and Y. Chen, Three dimensional strongly symmetric circulant tensors, Linear Algebra and its Applications 482.Supplement C, pp.207-220, 2015.

C. Qian, X. Fu, N. D. Sidiropoulos, and Y. Yang, Tensor-Based Channel Estimation for Dual-Polarized Massive MIMO Systems, 2018.

G. Quintana-orti and E. S. Quintana-orti, Parallel codes for computing the numerical rank, Linear algebra and its applications, vol.275, pp.451-470, 1998.

S. Ragnarsson and C. F. Loan, Block tensors and symmetric embeddings, Linear Algebra and its Applications, vol.438, pp.853-874, 2013.

M. Rajih, P. Comon, and R. A. Harshman, Enhanced Line Search: A novel method to accelerate Parafac, SIAM Journal on Matrix Analysis and Applications, vol.30, pp.1128-1147, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00327595

A. Renaux, L. Najjar-atallah, P. Larzabal, and P. Forster, A useful form of the Abel bound and its application to estimator threshold prediction, IEEE Transactions on Signal Processing, vol.55, pp.2365-2369, 2007.
URL : https://hal.archives-ouvertes.fr/halshs-00158261

C. D. Richmond, Mean-squared error and threshold SNR prediction of maximumlikelihood signal parameter estimation with estimated colored noise covariances, IEEE Transactions on Information Theory, vol.52, issue.5, pp.2146-2164, 2006.

F. Roemer and M. Haardt, A closed-form solution for Parallel Factor (PARAFAC) Analysis". In, In IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.

T. Rohwedder and A. Uschmajew, On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format, SIAM Journal on Numerical Analysis, vol.51, pp.1134-1162, 2013.

Y. Rong, M. Khandaker, and Y. Xiang, Channel Estimation of Dual-Hop MIMO Relay System via Parallel Factor Analysis, IEEE Transactions on Wireless Communications, vol.11, issue.6, pp.2224-2233, 2012.

Y. Rong, X. Tang, and Y. Hua, A Unified Framework for Optimizing Linear Nonregenerative Multicarrier MIMO Relay Communication Systems, IEEE Trans. on Signal Process, vol.57, pp.4837-4851, 2009.

R. Roy and T. Kailath, ESPRIT-Estimation of signal parameters via rotational invariance techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, pp.984-995, 1989.

S. Sahnoun, K. Usevich, and P. Comon, Multidimensional ESPRIT for Damped and Undamped Signals: Algorithm, Computations, and Perturbation Analysis, IEEE Transactions on Signal Processing, vol.65, pp.5897-5910, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01360438

S. Sahnoun and P. Comon, Joint Source Estimation and Localization, IEEE Transactions on Signal Processing, vol.63, pp.2485-2495, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01005352

A. Sandryhaila and J. Moura, Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure, IEEE Signal Processing Magazine, vol.31, pp.80-90, 2014.

N. D. Sidiropoulos, Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions, IEEE Transactions on Information Theory, vol.47, pp.1687-1690, 2001.

N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, Parallel Factor Analysis in Sensor Array Processing, IEEE Transactions on Signal Processing, vol.48, pp.2377-2388, 2000.

N. Sidiropoulos, G. Giannakis, and R. Bro, Blind PARAFAC receivers for DS-CDMA systems, IEEE Transactions on Signal Processing, vol.48, pp.810-823, 2000.

N. Sidiropoulos, E. Papalexakis, and C. Faloutsos, A parallel algorithm for big tensor decomposition using randomly compressed cubes (PARACOMP), IEEE International Conference on Acoustics, Speech and Signal Processing, 2014.

N. Sidiropoulos, L. De-lathauwer, X. Fu, K. Huang, E. Papalexakis et al., Tensor Decomposition for Signal Processing and Machine Learning, IEEE Transactions on Signal Processing, vol.65, pp.3551-3582, 2017.

N. D. Sidiropoulos and R. Bro, On the uniqueness of multilinear decomposition of N-way arrays, Journal of Chemometrics, vol.14, pp.229-239, 2000.

C. D. Silva and F. J. Herrmann, Optimization on the Hierarchical Tucker manifold -Applications to tensor completion, Linear Algebra and its Applications 481.Supplement C, pp.131-173, 2015.

M. Sørensen and L. Lathauwer, Multidimensional Harmonic Retrieval via Coupled Canonical Polyadic Decomposition -Part I: Model and Identifiability, IEEE Transactions on Signal Processing, vol.65, pp.517-527, 2016.

M. Sørensen and L. Lathauwer, Tensor decompositions with block-Toeplitz structure and applications in signal processing, 2011.

M. Sørensen and L. D. Lathauwer, Blind Signal Separation via Tensor Decomposition With Vandermonde Factor: Canonical Polyadic Decomposition, IEEE Transactions on Signal Processing, vol.61, pp.5507-5519, 2013.

M. Sørensen and L. D. Lathauwer, New Uniqueness Conditions for the Canonical Polyadic Decomposition of Third-Order Tensors, SIAM Journal on Matrix Analysis and Applications, vol.36, pp.1381-1403, 2015.

A. Stegeman and N. D. Sidiropoulos, On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition, Linear Algebra and its Applications, vol.420, pp.24-3795, 2007.

E. M. Stoudenmire and S. R. White, Real-space parallel density matrix renormalization group, In: Physical review B, vol.87, 2013.

P. Strobach, Bi-iteration svd subspace tracking algorithms, IEEE Transactions on signal processing, vol.45, pp.1222-1240, 1997.

G. Tomasi and R. Bro, A comparison of algorithms for fitting the PARAFAC model, Computational statistics & Data Analysis, vol.50, pp.1700-1734, 2006.

N. D. Tran, A. Renaux, R. Boyer, S. Marcos, and P. Larzabal, Weiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction, Signal Processing, vol.92, pp.1353-1358, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00771395

L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, vol.31, pp.279-311, 1966.

S. Ubaru and Y. Saad, Fast methods for estimating the numerical rank of large matrices, International Conference on Machine Learning, pp.468-477, 2016.

A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical tensors, Linear Algebra and its Applications, vol.439, pp.133-166, 2013.

N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, A New Truncation Strategy for the Higher-Order Singular Value Decomposition, SIAM Journal on Scientific Computing, vol.34, pp.1027-1052, 2012.

M. Vasilescu and D. Terzopoulos, Multilinear subspace analysis of image ensembles, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003.

N. Vervliet, O. Debals, L. Sorber, and L. D. Lathauwer, Breaking the curse of dimensionality using decompositions of incomplete tensors: Tensor based scientific computing in big data analysis, IEEE Signal Processing Magazine, vol.31, pp.71-79, 2014.

H. Wang and N. Ahuja, Compact representation of multidimensional data using tensor rank-one decomposition, 17th Interational Conference on Pattern Recognition, pp.44-47, 2004.

C. Wen, J. Chen, and P. Ting, Robust Transmitter Design for Amplifyand-Forward MIMO Relay Systems Exploiting Only Channel Statistics, IEEE Transactions on Wireless Communications, vol.11, pp.668-682, 2012.

L. Ximenes, G. Favier, and A. L. De-almeida, Semi-Blind Receivers for Non-Regenerative Cooperative MIMO Communications Based on Nested PARAFAC Modeling, IEEE Transactions on Signal Processing, vol.63, pp.4985-4998, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01246037

L. R. Ximenes, G. Favier, and A. L. De-almeida, Closed-Form Semi-Blind Receiver For MIMO Relay Systems Using Double Khatri-Rao Space-Time Coding, IEEE Signal Processing Letters, vol.23, pp.316-320, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01312376

L. Ximenes, A. L. Favier, Y. De-almeida, and . Silva, PARAFAC-PARATUCK semi-blind receivers for two-hop cooperative MIMO relay systems, IEEE Transactions on Signal Processing, vol.62, pp.3604-3615, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01246041

C. Xu, Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra and its Applications 491.Supplement C, pp.56-72, 2016.

L. Xu, T. Jing, Y. Longxiang, and Z. Hongbo, PARALIND-based identifiability results for parameter estimation via uniform linear array, EURASIP Journal on Advances in Signal Processing, 2012.

Y. Zniyed, R. Boyer, A. De-almedia, and G. Favier, A TT-based hierarchical framework for decomposing high-order tensors, SIAM Journal on Scientific Computing (SISC), 2018.
URL : https://hal.archives-ouvertes.fr/hal-02436368

Y. Zniyed, R. Boyer, A. L. Almeida, and G. Favier, High-order CPD estimator with dimensionality reduction using a tensor train model, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01815214

Y. Zniyed, R. Boyer, A. De-almedia, and G. Favier, High-order tensor factorization via trains of coupled third-order CP and Tucker decompositions, Algebra and its Applications (LAA), 2018.

Y. Zniyed, R. Boyer, A. L. De-almeida, and G. Favier, Multidimensional Harmonic Retrieval Based on Vandermonde Tensor Train, Signal Processing, vol.163, pp.75-86, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02123112

Y. Zniyed, R. Boyer, A. De-almedia, and G. Favier, Tensor-Train Modeling for MIMO-OFDM Tensor Coding-And-Forwarding Relay Systems, Advances on tensor and multi-dimensional data representation session, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02146466

Y. Zniyed, R. Boyer, A. De-almedia, and G. Favier, Tensor Train Representation of Massive MIMO Channels using the Joint Dimensionality Reduction and Factor Retrieval (JIRAFE) Method, Signal Processing (SP), 2019.

Y. Zniyed, S. Miron, R. Boyer, and D. Brie, Uniqueness of Tensor Train Decomposition with Linear Dependencies, Gretsi, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02141554

M. D. Zoltowski, M. Haardt, and C. P. Mathews, Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT, IEEE Transactions on Signal Processing, vol.44, pp.316-328, 1996.