R. L. Siegel, K. D. Miller, and A. Jemal, Cancer statistics, CA Cancer J Clin, vol.66, pp.7-30, 2016.

J. P. Neoptolemos, J. Kleeff, and P. Michl, Therapeutic developments in pancreatic cancer: current and future perspectives, Nat Rev Gastroenterol Hepatol, vol.15, pp.333-348, 2018.

M. Jpt, D. A. Cano, and S. Sekine, Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice, J Clin Invest, vol.120, pp.508-528, 2010.

M. P. Di-magliano and C. D. Logsdon, Roles for KRAS in pancreatic tumor development and progression, Gastroenterology, vol.144, pp.1220-1229, 2013.

A. M. Waters and C. J. Der, KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer, Cold Spring Harb Perspect Med, vol.8, 2018.

J. Campisi and F. Di-fagagna, Cellular senescence: when bad things happen to good cells, Nat Rev Mol Cell Biol, vol.8, pp.729-769, 2007.

T. Kuilman, C. Michaloglou, and W. J. Mooi, The essence of senescence, Genes Dev, vol.24, pp.2463-79, 2010.

M. Collado, J. Gil, and A. Efeyan, Tumour biology: senescence in premalignant tumours, Nature, vol.436, p.642, 2005.

J. P. Morton, P. Timpson, and S. A. Karim, Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer, Proc Natl Acad Sci U S A, vol.107, pp.246-51, 2010.

K. E. Lee and D. Bar-sagi, Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells, Cancer Cell, vol.18, pp.448-58, 2010.

C. Guerra, M. Collado, and C. Navas, Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence, Cancer Cell, vol.19, pp.728-767, 2011.

M. E. Caldwell, G. M. Denicola, and C. P. Martins, Cellular features of senescence during the evolution of human and murine ductal pancreatic cancer, Oncogene, vol.31, pp.1599-608, 2012.

M. Collado, M. A. Blasco, and M. Serrano, Cellular senescence in cancer and aging, Cell, vol.130, pp.223-256, 2007.

J. A. Moir, S. A. White, and J. Mann, Arrested development and the great escape--the role of cellular senescence in pancreatic cancer, Int J Biochem Cell Biol, vol.57, pp.142-150, 2014.

J. P. Coppe, C. K. Patil, and F. Rodier, Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol, vol.101, pp.2853-68, 2008.

N. Herranz and J. Gil, Mechanisms and functions of cellular senescence, J Clin Invest, vol.128, pp.1238-1246, 2018.

M. Rielland, D. J. Cantor, and R. Graveline, Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression, J Clin Invest, vol.124, pp.2125-2160, 2014.

M. Lesina, S. M. Wormann, and J. Morton, RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis, J Clin Invest, vol.126, pp.2919-2951, 2016.

J. C. Acosta, A. Banito, and T. Wuestefeld, A complex secretory program orchestrated by the inflammasome controls paracrine senescence, Nat Cell Biol, vol.15, pp.978-90, 2013.

J. Qian, J. Niu, and M. Li, In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis, Cancer Res, vol.65, pp.5045-53, 2005.

P. A. Perez-mancera, A. G. Rust, and L. Van-der-weyden, The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma, Nature, vol.486, pp.266-70, 2012.

W. Qiu, S. M. Tang, and S. Lee, Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS, Gastroenterology, vol.150, pp.218-228, 2016.

D. Ripoche, J. Gout, and R. M. Pommier, Generation of a conditional mouse model to target Acvr1b disruption in adult tissues, Genesis, vol.51, pp.120-127, 2013.

N. Bardeesy, K. H. Cheng, and J. H. Berger, Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer, Genes Dev, vol.20, pp.3130-3176, 2006.

A. J. Aguirre, N. Bardeesy, and M. Sinha, Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma, Genes Dev, vol.17, pp.3112-3138, 2003.

A. S. Bedrosian, A. H. Nguyen, and M. Hackman, Dendritic cells promote pancreatic viability in mice with acute pancreatitis, Gastroenterology, vol.141, pp.1915-1941, 2011.

J. J. Hulmi, B. M. Oliveira, and M. Silvennoinen, Muscle protein synthesis, mTORC1/MAPK/Hippo signalling, and capillary density are altered by blocking of myostatin and activins, Am J Physiol Endocrinol Metab, vol.304, pp.41-50, 2013.

G. Shi, D. Direnzo, and C. Qu, Maintenance of acinar cell organization is critical to preventing Kras-induced acinar-ductal metaplasia, Oncogene, vol.32, pp.1950-1958, 2013.

F. Guillaumond, G. Bidaut, and M. Ouaissi, Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma, Proc Natl Acad Sci U S A, vol.112, pp.2473-2481, 2015.

S. R. Hingorani, E. F. Petricoin, and A. Maitra, Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse, Cancer Cell, vol.4, pp.437-50, 2003.

M. M. Lerch and F. S. Gorelick, Models of acute and chronic pancreatitis, Gastroenterology, vol.144, pp.1180-93, 2013.

G. H. Su, R. Bansal, and K. M. Murphy, ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma, Proc Natl Acad Sci U S A, vol.98, pp.3254-3261, 2001.

Y. Togashi, H. Sakamoto, and H. Hayashi, Homozygous deletion of the activin A receptor, type IB gene is associated with an aggressive cancer phenotype in pancreatic cancer, Mol Cancer, vol.13, p.126, 2014.

J. Kleeff, T. Ishiwata, and H. Friess, Concomitant over-expression of activin/inhibin beta subunits and their receptors in human pancreatic cancer, Int J Cancer, vol.77, pp.860-868, 1998.

Y. Togashi, A. Kogita, and H. Sakamoto, Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer, Cancer Lett, vol.356, pp.819-846, 2015.

E. Lonardo, P. C. Hermann, and M. T. Mueller, Nodal/Activin signalling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy, Cell Stem Cell, vol.9, pp.433-479, 2011.

L. Perkhofer, K. Walter, and I. G. Costa, Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness, Stem Cell Res, vol.17, pp.367-378, 2016.

P. Parajuli, S. Kumar, and A. Loumaye, Twist1 Activation in Muscle Progenitor Cells Causes Muscle Loss Akin to Cancer Cachexia, Dev Cell, vol.45, pp.712-725, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02412686

M. Hoare, Y. Ito, and T. W. Kang, NOTCH1 mediates a switch between two distinct secretomes during senescence, Nat Cell Biol, vol.18, pp.979-92, 2016.

S. Lin, J. Yang, and A. G. Elkahloun, Attenuation of TGF-beta signalling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells, Mol Biol Cell, vol.23, pp.1569-81, 2012.

M. Xu, A. K. Palmer, and H. Ding, Targeting senescent cells enhances adipogenesis and metabolic function in old age, Elife, vol.4, p.12997, 2015.

S. Haridoss, M. I. Yovchev, and H. Schweizer, Activin A is a prominent autocrine regulator of hepatocyte growth arrest, Hepatol Commun, vol.1, pp.852-870, 2017.

E. Panopoulou, C. Murphy, and H. Rasmussen, Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms, Cancer Res, vol.65, pp.1877-86, 2005.

K. Grabliauskaite, A. B. Hehl, and G. M. Seleznik, p21(WAF1) (/Cip1) limits senescence and acinar-to-ductal metaplasia formation during pancreatitis, J Pathol, vol.235, pp.502-516, 2015.

J. P. Morton, N. B. Jamieson, and S. A. Karim, LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest, Gastroenterology, vol.139, pp.1-6, 2010.

M. Milanovic, D. Fan, and D. Belenki, Senescence-associated reprogramming promotes cancer stemness, Nature, vol.553, pp.96-100, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02364397

K. Alyodawi, W. P. Vermeij, and S. Omairi, Compression of morbidity in a progeroid mouse model through the attenuation of myostatin/activin signalling, J Cachexia Sarcopenia Muscle, 2019.

X. Zhou, J. L. Wang, and J. Lu, Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival, Cell, vol.142, pp.531-574, 2010.

S. Busquets, M. Toledo, and M. Orpi, Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance

, J Cachexia Sarcopenia Muscle, vol.3, pp.37-43, 2012.

T. A. Nissinen, J. Hentila, and F. Penna, Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses, J Cachexia Sarcopenia Muscle, vol.9, pp.514-529, 2018.

. Reference and . Bibliography,

J. C. Acosta, A. O'loghlen, A. Banito, M. V. Guijarro, A. Augert et al.,

M. Costa, C. Brown, N. Popov, Y. Takatsu, J. Melamed et al., Chemokine signaling via the CXCR2 receptor reinforces senescence, Cell, vol.133, pp.1006-1018, 2008.

J. C. Acosta, A. Banito, T. Wuestefeld, A. Georgilis, P. Janich et al., A complex secretory program orchestrated by the inflammasome controls paracrine senescence, Nature Cell Biology, vol.15, pp.978-990, 2013.

N. V. Adsay, K. Merati, A. Andea, F. Sarkar, R. H. Hruban et al., The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis, Modern Pathology, vol.15, pp.1087-1095, 2002.

A. J. Aguirre, N. Bardeesy, M. Sinha, L. Lopez, D. A. Tuveson et al., Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma, Genes & Development, vol.17, pp.3112-3126, 2003.

M. Aichler, C. Seiler, M. Tost, J. Siveke, P. K. Mazur et al., Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues, The Journal of Pathology, vol.226, pp.723-734, 2012.

K. M. Aird, O. Iwasaki, A. V. Kossenkov, H. Tanizawa, N. Fatkhutdinov et al., HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci, The Journal of Cell Biology, vol.215, pp.325-334, 2016.

T. M. Albury, V. Pandey, S. B. Gitto, L. Dominguez, L. P. Spinel et al., Constitutively active Akt1 cooperates with KRas(G12D) to accelerate in vivo pancreatic tumor onset and progression, Neoplasia, vol.17, pp.175-182, 2015.

A. Alimonti, C. Nardella, Z. Chen, J. G. Clohessy, A. Carracedo et al., A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis, The Journal of Clinical Investigation, vol.120, pp.681-693, 2010.

K. Alyodawi, W. P. Vermeij, S. Omairi, O. Kretz, M. Hopkinson et al.,

B. S. Rmc, N. Van-vliet, Y. Ridwan, J. Essers, R. Mitchell et al., Compression of morbidity in a progeroid mouse model through the attenuation of myostatin/activin signalling, Journal of Cachexia, Sarcopenia and Muscle, 2019.

N. Ambrozova, J. Ulrichova, and A. Galandakova, Models for the study of skin wound healing. The role of Nrf2 and NF-?B, Biomedical Papers of the Medical Faculty of the University Palacký, vol.161, pp.1-13, 2017.

, American gastroenterological association medical position statement: epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma, American Gastroenterological Association, vol.117, pp.1463-1484, 1999.

B. Ancrile, K. H. Lim, and C. M. Counter, Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis, Genes & Development, vol.21, pp.1714-1719, 2007.

F. Aroldi and A. Zaniboni, Immunotherapy for pancreatic cancer: present and future, Immunotherapy, vol.9, pp.607-616, 2017.

S. Ashizawa, F. C. Brunicardi, and X. P. Wang, PDX-1 and the pancreas, Pancreas, vol.28, pp.109-120, 2004.

R. Baer, C. Cintas, M. Dufresne, S. Cassant-sourdy, N. Schönhuber et al., Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110?, Genes & Development, vol.28, pp.2621-2635, 2014.

J. M. Bailey, J. Alsina, Z. A. Rasheed, F. M. Mcallister, Y. Y. Fu et al., , p.1, 2014.

, Gastroenterology, vol.146, pp.245-256, 24096005.

J. M. Bailey, A. M. Hendley, K. J. Lafaro, M. A. Pruski, N. C. Jones et al., mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells, Oncogene, vol.35, pp.4282-4288, 2016.

P. Bailey, D. K. Chang, K. Nones, A. L. Johns, A. M. Patch et al.,

K. Quek, A. Robertson, L. Pantano, L. Mincarelli, L. N. Sanchez et al.,

C. , R. B. Capelli, P. Salvia, R. Tortora, G. Mukhopadhyay et al.,

A. Pancreatic-cancer-genome-initiative, D. M. Munzy, W. E. Fisher, S. A. Karim, J. R. Eshleman et al., Genomic analyses identify molecular subtypes of pancreatic cancer, Nature, vol.531, pp.47-52, 2016.

D. J. Baker, B. G. Childs, M. Durik, M. E. Wijers, C. J. Sieben et al., Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, vol.530, pp.184-189, 2016.

U. K. Ballehaninna and R. S. Chamberlain, The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal, Journal of Gastrointestinal Oncology, vol.3, pp.105-119, 2012.

N. Bardeesy, A. J. Aguirre, G. C. Chu, K. H. Cheng, L. V. Lopez et al., Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse, Proceedings of the National Academy of Sciences of The United States of America, vol.103, pp.5947-5952, 2006.

N. Bardeesy, K. H. Cheng, J. H. Berger, G. C. Chu, J. Pahler et al., Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer, Genes & Development, vol.20, pp.3130-3146, 2006.

O. Basturk, S. Khayyata, D. S. Klimstra, R. H. Hruban, G. Zamboni et al., pyloropancreatic pathway, distinct from the intestinal pathway, in pancreatic carcinogenesis, The American Journal of Surgical Pathology, vol.34, pp.364-370, 2010.

M. Bauden, D. Pamart, D. Ansari, M. Herzog, M. Eccleston et al., Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer, Clinical Epigenetics, vol.7, p.106, 2015.

J. Bauer, J. C. Sporn, J. Cabral, J. Gomez, and B. Jung, Effects of activin and TGF? on p21 in colon cancer, PLoS One, vol.7, p.39381, 2012.

L. J. Bayne, G. L. Beatty, N. Jhala, C. E. Clark, A. D. Rhim et al., Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer, Cancer Cell, vol.21, pp.822-835, 2012.

C. M. Beauséjour, A. Krtolica, F. Galimi, M. Narita, S. W. Lowe et al., Reversal of human cellular senescence: roles of the p53 and p16 pathways, The EMBO Journal, vol.22, pp.4212-4222, 2003.

J. C. Bendell, M. S. Gordon, H. I. Hurwitz, S. F. Jones, D. S. Mendelson et al.,

S. Sharma, Safety, pharmacokinetics, pharmacodynamics, and antitumor activity of dalantercept, an activin receptor-like kinase-1 ligand trap, in patients with advanced cancer, Clinical Cancer Research, vol.20, pp.480-489, 2014.

S. Benitz, I. Regel, R. T. Popp, A. Schäffer, I. Raulefs et al., Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells, Oncotarget, vol.7, pp.11424-11433, 2016.

T. M. Beres, T. Masui, G. H. Swift, L. Shi, R. M. Henke et al., PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Molecular and Cellular Biology, vol.26, pp.117-130, 2006.

D. J. Bernard, K. B. Lee, and M. M. Santos, Activin B can signal through both ALK4 and ALK7 in gonadotrope cells, Reproductive Biology and Endocrinology, vol.4, p.52, 2006.

D. C. Berry, Y. Jiang, R. W. Arpke, E. L. Close, A. Uchida et al.,

J. M. Graff, Cellular Aging Contributes to Failure of Cold-Induced Beige Adipocyte Formation in Old Mice and Humans, Cell Metabolism, vol.25, pp.166-181, 2017.

P. Bertolino, R. Holmberg, E. Reissmann, O. Andersson, P. O. Berggren et al., , 2008.

, Activin B receptor ALK7 is a negative regulator of pancreatic beta-cell function, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.7246-7251, 18480258.

G. Biffi, J. Preall, and D. A. Tuveson, IL1-Induced JAK/STAT Signaling Is Antagonized by TGF? to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma, Cancer Discovery, vol.2, pp.282-301, 2019.

D. J. Birnbaum, E. Mamessier, and D. Birnbaum, The emerging role of the TGF? tumor suppressor pathway in pancreatic cancer, Cell Cycle, vol.11, pp.683-686, 2012.

F. T. Bosman, F. Carneiro, R. Hruban, and N. Theise, WHO classification of tumours of the digestive system, 2010.

C. A. Boulanger and G. H. Smith, Reducing mammary cancer risk through premature stem cell senescence, Oncogene, vol.20, pp.2264-2272, 2001.

L. Bouwens, Cytokeratins and cell differentiation in the pancreas, The Journal of Pathology, vol.184, pp.234-239, 1998.

M. Braig, S. Lee, C. Loddenkemper, C. Rudolph, A. H. Peters et al., Oncogene-induced senescence as an initial barrier in lymphoma development, Nature, vol.436, pp.660-665, 2005.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, and L. A. Torre, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians, vol.68, pp.394-424, 2018.

W. R. Brugge, Approach to cystic pancreatic lesions, Gastrointestinal endoscopy clinics of North America, vol.15, pp.485-496, 2005.

J. E. Burdette, J. S. Jeruss, S. J. Kurley, E. J. Lee, and T. K. Woodruff, Activin A mediates growth inhibition and cell cycle arrest through Smads in human breast cancer cells, Cancer Research, vol.65, pp.7968-7975, 2005.

D. G. Burton and V. Krizhanovsky, Physiological and pathological consequences of cellular senescence, Cellular and Molecular Life Sciences, vol.71, pp.4373-4386, 2014.

S. Busquets, M. Toledo, M. Orpí, D. Massa, M. Porta et al., Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance, Journal of Cachexia, Sarcopenia and Muscle, vol.3, pp.37-43, 2012.

M. E. Caldwell, G. M. Denicola, C. P. Martins, M. A. Jacobetz, A. Maitra et al.,

. Da, Cellular features of senescence during the evolution of human and murine ductal pancreatic cancer, Oncogene, vol.31, pp.1599-1608, 2012.

J. Campisi and F. Di-fagagna, Cellular senescence: when bad things happen to good cells, Nature Reviews. Molecular Cell Biology, vol.8, pp.729-740, 2007.

M. L. Campos, V. J. Sánchez-arévalo-lobo, A. Rodolosse, C. J. Gottardi, A. Mafficini et al., ICAT is a novel Ptf1a interactor that regulates pancreatic acinar differentiation and displays altered expression in tumours, The Biochemical journal, vol.451, pp.395-405, 2013.

, Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma, Cancer Genome Atlas Research Network, vol.32, pp.185-203, 2017.

B. C. Capell, A. M. Drake, J. Zhu, P. P. Shah, Z. Dou et al., MLL1 is essential for the senescence-associated secretory phenotype, Genes & Development, vol.30, pp.321-336, 2016.

B. M. Chacko, B. Y. Qin, A. Tiwari, G. Shi, S. Lam et al., Structural basis of heteromeric smad protein assembly in TGF-beta signaling, Molecular Cell, vol.15, pp.813-823, 2004.

M. Chalabi-dchar, S. Cassant-sourdy, C. Duluc, M. Fanjul, H. Lulka et al., Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16, Gastroenterology, vol.148, pp.1452-1465, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02472216

C. Ginestier, C. Iovino, F. Wicinski, J. Cervera, N. Finetti et al., Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature, Cancer Research, vol.69, pp.1302-1313, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01431954

H. Chen, B. Ridgway, J. Sai, T. Lai, J. Warming et al., Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.11887-11892, 2013.

N. M. Chen, G. Singh, A. Koenig, G. Y. Liou, P. Storz et al.,

B. Kühnemuth, S. A. Johnsen, M. Hebrok, J. Siveke, D. D. Billadeau et al., NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas, Gastroenterology, vol.148, pp.1024-1034, 2015.

Z. Chen, L. C. Trotman, D. Shaffer, H. K. Lin, Z. A. Dotan et al.,

T. Ludwig, W. Gerald, C. Cordon-cardo, and P. P. Pandolfi, Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis, Nature, vol.436, pp.725-730, 2005.

Y. Chien, C. Scuoppo, X. Wang, X. Fang, B. Balgley et al., Control of the senescence-associated secretory phenotype by NF-?B promotes senescence and enhances chemosensitivity, 2011.

, Genes & Development, vol.25, pp.2125-2136, 21979375.

B. G. Childs, D. J. Baker, T. Wijshake, C. A. Conover, J. Campisi et al., , 2016.

, Senescent intimal foam cells are deleterious at all stages of atherosclerosis, Science, vol.354, pp.472-477, 27789842.

L. C. Chu, M. G. Goggins, and E. K. Fishman, Diagnosis and Detection of Pancreatic Cancer, Cancer Journal, vol.23, pp.333-342, 2017.

Y. S. Chun, T. M. Pawlik, and J. N. Vauthey, of the AJCC Cancer Staging Manual: Pancreas and Hepatobiliary Cancers, Annals of Surgical Oncology, vol.25, pp.845-847, 2018.

A. Chuprin, H. Gal, T. Biron-shental, A. Biran, A. Amiel et al., Cell fusion induced by ERVWE1 or measles virus causes cellular senescence, 2013.

, Genes & Development, vol.27, pp.2356-2366, 24186980.

N. Chuvin, D. F. Vincent, R. M. Pommier, L. B. Alcaraz, J. Gout et al., Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRASG12D-driven, 2017.

, Pancreatic Tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, vol.4, pp.263-282, 28752115.

M. Cioffi, S. M. Trabulo, Y. Sanchez-ripoll, M. Lonardo, E. Dorado et al.,

C. Vieira, J. C. Ramirez, M. Hidalgo, A. Aicher, S. Hahn et al., The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells, Gut, vol.64, pp.1936-1948, 2015.

M. Collado, J. Gil, A. Efeyan, C. Guerra, A. J. Schuhmacher et al., Tumour biology: senescence in premalignant tumours, Nature, vol.436, p.642, 2005.

M. Collado and M. Serrano, Senescence in tumours: evidence from mice and humans, Nature Reviews. Cancer, vol.10, pp.51-57, 2010.

T. Conroy, F. Desseigne, M. Ychou, O. Bouché, R. Guimbaud et al.,

. Jl, S. Gourgou-bourgade, C. De-la-fouchardière, J. Bennouna, J. B. Bachet et al.,

, Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer, The New England Journal of Medicine, vol.364, pp.1817-1825, 21561347.

J. P. Coppé, C. K. Patil, F. Rodier, Y. Sun, D. P. Muñoz et al., Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biology, vol.6, pp.2853-2868, 2008.

J. P. Coppé, P. Y. Desprez, A. Krtolica, and J. Campisi, The senescence-associated secretory phenotype: the dark side of tumor suppression, Annual Review of Pathology, vol.5, pp.99-118, 2010.

R. B. Corcoran, G. Contino, V. Deshpande, A. Tzatsos, C. Conrad et al., STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis, Cancer Research, vol.71, pp.5020-5029, 2011.

S. Courtois-cox, G. Williams, S. M. Reczek, E. E. Johnson, B. W. Mcgillicuddy et al., A negative feedback signaling network underlies oncogene-induced senescence, Cancer Cell, vol.10, pp.459-472, 2006.

V. J. Craig, L. Zhang, J. S. Hagood, and C. A. Owen, Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis, American Journal of Respiratory Cell and Molecular Biology, vol.53, pp.585-600, 2015.

, Living on a break: cellular senescence as a DNA-damage response, Nature reviews Cancer, vol.8, pp.512-522, 2008.

A. Dauksa, A. Gulbinas, G. Barauskas, J. Pundzius, J. Oldenburg et al., Whole blood DNA aberrant methylation in pancreatic adenocarcinoma shows association with the course of the disease: a pilot study, PLoS One, vol.7, p.37509, 2012.

M. De-caestecher, The transforming growth factor-beta superfamily of receptors, 2004.

, Cytokine & Growth Factor Reviews, vol.15, pp.1-11, 14746809.

M. S. De-la-cruz, A. P. Young, and M. T. Ruffin, Diagnosis and management of pancreatic cancer, American Family Physician, vol.89, pp.626-632, 2014.

D. La, O. Jp, L. L. Emerson, J. L. Goodman, S. C. Froebe et al., Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.18907-18912, 2008.

K. E. Delgiorno, J. C. Hall, K. K. Takeuchi, F. C. Pan, C. J. Halbrook et al., Identification and manipulation of biliary metaplasia in pancreatic tumors, Gastroenterology, vol.146, pp.233-244, 2014.

M. Demaria, N. Ohtani, S. A. Youssef, F. Rodier, W. Toussaint et al.,

J. Vijg, H. Van-steeg, M. E. Dollé, J. H. Hoeijmakers, A. De-bruin et al., An essential role for senescent cells in optimal wound healing through secretion of, 2014.

, Developmental Cell, vol.31, pp.722-733, 25499914.

M. Demaria, M. N. O'leary, J. Chang, L. Shao, S. Liu et al., , 2017.

, Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse, Cancer Discovery, vol.7, pp.165-176, 27979832.

R. Derynck and Y. E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling, Nature, vol.425, pp.577-584, 2003.

E. De-waele, E. Wauters, Z. Ling, and L. Bouwens, Conversion of human pancreatic acinar cells toward a ductal-mesenchymal phenotype and the role of transforming growth factor ? and activin signaling, Pancreas, vol.43, pp.1083-1092, 2014.

P. Dey, S. Rachagani, A. P. Vaz, M. P. Ponnusamy, and S. K. Batra, PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia, Oncotarget, vol.5, pp.4480-4491, 2014.

M. Deygas, R. Gadet, G. Gillet, R. Rimokh, P. Gonzalo et al., Redox regulation of EGFR steers migration of hypoxic mammary cells towards oxygen, Nature Communication, vol.9, pp.4545-4558, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02322485

N. Dhomen, J. S. Reis-filho, S. Da-rocha-dias, R. Hayward, K. Savage et al., Oncogenic Braf induces melanocyte senescence and melanoma in mice, Cancer Cell, vol.15, pp.294-303, 2009.

M. P. Di-magliano and C. D. Logsdon, Roles for KRAS in pancreatic tumor development and progression, Gastroenterology, vol.144, pp.1220-1229, 2013.

D. Micco, R. Sulli, G. Dobreva, M. Liontos, M. Botrugno et al.,

V. Matti, G. Ario, E. Montani, C. Mercurio, W. C. Hahn et al., Adda di Fagagna F (2011) Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer, Nature Cell Biology, vol.13, pp.292-302, 21336312.

G. P. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.9363-9367, 1995.

C. A. Dinarello, M. Y. Donath, and T. Mandrup-poulsen, Role of IL-1beta in type 2 diabetes. Current Opinion in Endocrinology, Diabetes, and Obesity, vol.17, pp.314-321, 2010.

D. Direnzo, D. A. Hess, B. Damsz, J. E. Hallett, B. Marshall et al., Induced Mist1 expression promotes remodeling of mouse pancreatic acinar cells, Gastroenterology, vol.143, pp.469-480, 2012.

M. Distler, S. Kersting, M. Niedergethmann, D. E. Aust, M. Franz et al., Pathohistological subtype predicts survival in patients with intraductal papillary mucinous neoplasm (IPMN) of the pancreas, Annals of Surgery, vol.258, pp.324-330, 2013.

M. Distler, D. Aust, J. Weitz, C. Pilarsky, and R. Grützmann, Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN, BioMed Research International, vol.2014, p.474905, 2014.

M. Distler, T. Welsch, D. Aust, J. Weitz, and R. Grützmann, Intraductal papillary mucinous neoplasm of the pancreas (IPMN)--standards and new aspects, Zentralblatt für Chirurgie, vol.139, pp.308-317, 2014.

T. R. Donahue and D. W. Dawson, Nodal/Activin signaling: a novel target for pancreatic cancer stem cell therapy, Cell Stem Cell, vol.9, pp.383-384, 2011.

L. Elghazi, A. J. Weiss, D. J. Barker, J. Callaghan, L. Staloch et al., Regulation of pancreas plasticity and malignant transformation by Akt signaling, Gastroenterology, vol.136, pp.1091-1103, 2009.

H. Engin, C. Bilir, and Y. Ustünda?, MELD-sodium score and its prognostic value in malignancy-related ascites of pancreatic and gastric cancer, Supportive Care in Cancer, vol.21, pp.1153-1156, 2013.

S. Eser, N. Reiff, M. Messer, B. Seidler, K. Gottschalk et al., Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer, Cancer Cell, vol.23, pp.406-420, 2013.

K. Fearon, D. J. Glass, and D. C. Guttridge, Cancer cachexia: mediators, signaling, and metabolic pathways, Cell Metabolism, vol.16, pp.153-166, 2012.

B. Fitzner, S. Müller, M. Walther, M. Fischer, R. Engelmann et al., Senescence determines the fate of activated rat pancreatic stellate cells, Journal of Cellular and Molecular Medicine, vol.16, pp.2620-2630, 2012.

T. Flatt, A new definition of aging?, Frontiers in Genetics, vol.3, p.148, 2012.

A. Freund, C. K. Patil, and J. Campisi, is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype, The EMBO Journal, vol.30, pp.1536-1548, 2011.

S. Fritz, C. Fernandez-del-castillo, M. Mino-kenudson, S. Crippa, V. Deshpande et al., Global genomic analysis of intraductal papillary mucinous neoplasms of the pancreas reveals significant molecular differences compared to ductal adenocarcinoma, Annals of Surgery, vol.249, pp.440-447, 2009.

H. Gal and V. Krizhanovsky, Cell fusion induced senescence. Aging, vol.6, pp.353-354, 2014.

N. J. Gaspar, L. Li, A. M. Kapoun, S. Medicherla, M. Reddy et al., Inhibition of transforming growth factor beta signaling reduces pancreatic adenocarcinoma growth and invasiveness, Molecular Pharmacology, vol.72, pp.152-161, 2007.

F. Gerbe, J. H. Van-es, L. Makrini, B. Brulin, G. Mellitzer et al., Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium, The Journal of Cell Biology, vol.192, pp.767-780, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02459483

G. Friedlander, S. Y. Chu, G. C. Snyder, E. L. Girnius, N. Dibelius et al.,

, Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras, Cancer Cell, vol.16, pp.379-389, 19878870.

D. Goehrig, J. Nigri, R. Samain, Z. Wu, P. Cappello et al., Stromal protein ?ig-h3 reprogrammes tumour microenvironment in pancreatic cancer, Gut, vol.68, pp.693-707, 2019.

L. W. Goff, R. B. Cohen, J. D. Berlin, F. G. De-braud, A. Lyshchik et al.,

M. Carpentieri, C. G. Stampino, A. Abbattista, E. Wang, and H. Borghaei, A Phase I Study of the Anti-Activin Receptor-Like Kinase 1 (ALK-1) Monoclonal Antibody PF-03446962 in Patients with Advanced Solid Tumors, Clinical Cancer Research, vol.22, pp.2146-2154, 2016.

E. Gold and G. Risbridger, Activins and activin antagonists in the prostate and prostate cancer, Molecular and Cellular Endocrinology, vol.359, pp.107-112, 2012.

S. Goldstein, E. J. Moerman, S. Fujii, and B. E. Sobel, Overexpression of plasminogen activator inhibitor type-1 in senescent fibroblasts from normal subjects and those with Werner syndrome, Journal of Cellular Physiology, vol.161, pp.571-579, 1994.

F. J. Gonzalez-gonzalez, N. S. Chandel, M. Jain, and G. Budinger, Reactive oxygen species as signaling molecules in the development of lung fibrosis, Translational Research, vol.190, pp.61-68, 2017.

K. J. Gordon and G. C. Blobe, Role of transforming growth factor-beta superfamily signaling pathways in human disease, Biochimica et Biophysica Acta, vol.1782, pp.197-228, 2008.

V. G. Gorgoulis and T. D. Halazonetis, Oncogene-induced senescence: the bright and dark side of the response, Current Opinion in Cell Biology, vol.22, pp.816-827, 2010.

S. Gourgou-bourgade, C. Bascoul-mollevi, F. Desseigne, M. Ychou, O. Bouché et al., Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial, Journal of Clinical Oncology, vol.31, pp.23-29, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01795555

K. Grabliauskaite, A. B. Hehl, G. M. Seleznik, E. Saponara, K. Schlesinger et al., (WAF1) (/Cip1) limits senescence and acinar-to-ductal metaplasia formation during pancreatitis, The Journal of Pathology, vol.235, pp.502-514, 2015.

T. Gress, F. Müller-pillasch, H. P. Elsässer, M. Bachem, C. Ferrara et al.,

G. Adler, Enhancement of transforming growth factor beta 1 expression in the rat pancreas during regeneration from caerulein-induced pancreatitis, European Journal of Clinical Investigation, vol.24, pp.679-685, 1994.

A. Grimont, A. V. Pinho, M. J. Cowley, C. Augereau, A. Mawson et al., SOX9 regulates ERBB signalling in pancreatic cancer development, vol.64, pp.1790-1799, 2015.

P. J. Grippo and E. P. Sandgren, Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents, International Journal of Cancer, vol.131, pp.1243-1248, 2012.

R. Grützmann, M. Niedergethmann, C. Pilarsky, G. Klöppel, and H. D. Saeger, Intraductal papillary mucinous tumors of the pancreas: biology, diagnosis, and treatment, Oncologist, vol.15, pp.1294-1309, 2010.

C. Guerra, N. Mijimolle, A. Dhawahir, P. Dubus, M. Barradas et al., Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context, Cancer Cell, vol.4, pp.111-120, 2003.

C. Guerra, A. J. Schuhmacher, M. Cañamero, P. J. Grippo, L. Verdaguer et al.,

P. Dubus, E. P. Sandgren, and M. Barbacid, Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice, Cancer Cell, vol.11, pp.291-302, 2007.

C. Guerra, M. Collado, C. Navas, A. J. Schuhmacher, I. Hernández-porras et al., Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence, Cancer Cell, vol.19, pp.728-739, 2011.

C. Guerra and M. Barbacid, Genetically engineered mouse models of pancreatic adenocarcinoma, Molecular Oncology, vol.7, pp.232-247, 2013.

N. Habbe, G. Shi, R. A. Meguid, V. Fendrich, F. Esni et al., Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.18913-18918, 2008.

L. Ha, T. Ichikawa, M. Anver, R. Dickins, S. Lowe et al., ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.10968-10973, 2007.

S. A. Hahn, M. Schutte, A. T. Hoque, C. A. Moskaluk, L. T. Da-costa et al.,

. Cl, A. Fischer, C. J. Yeo, R. H. Hruban, and S. E. Kern, DPC4, a candidate tumor suppressor gene at human chromosome 18q21, Science, vol.1, pp.350-353, 1996.

H. Q. Han, X. Zhou, W. E. Mitch, and A. L. Goldberg, Myostatin/activin pathway antagonism: molecular basis and therapeutic potential, The International Journal of Biochemistry & Cell Biology, vol.45, pp.2333-2347, 2013.

L. Hanlon, J. L. Avila, R. M. Demarest, S. Troutman, M. Allen et al., Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma, Cancer Research, vol.70, pp.4280-4286, 2010.

T. Hardy, F. Oakley, Q. M. Anstee, and C. P. Day, Nonalcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum, Annual Review of Pathology, vol.11, pp.451-496, 2016.

S. Haridoss, M. I. Yovchev, H. Schweizer, S. Megherhi, M. Beecher et al., , 2017.

, Activin A is a prominent autocrine regulator of hepatocyte growth arrest, Hepatology Communications, vol.1, pp.852-870, 29404498.

C. B. Harley, A. B. Futcher, and C. W. Greider, Telomeres shorten during ageing of human fibroblasts, Nature, vol.345, pp.458-460, 1990.

C. A. Harrison, S. L. Al-musawi, and K. L. Walton, Prodomains regulate the synthesis, extracellular localisation and activity of TGF-? superfamily ligands, Growth Factors, vol.29, pp.174-186, 2011.

L. Hayflick and P. S. Moorhead, The serial cultivation of human diploid cell strains, Experimental Cell Research, vol.25, pp.585-621, 1961.

M. Hedger, W. R. Winnall, D. J. Phillips, and D. M. De-kretser, The regulation and functions of activin and follistatin in inflammation and immunity, Vitamins and Hormones, vol.85, pp.255-297, 2011.

P. M. Hempen, L. Zhang, R. K. Bansal, C. A. Iacobuzio-donahue, K. M. Murphy et al., Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers, Cancer Research, vol.63, pp.994-999, 2003.

N. Herranz, S. Gallage, M. Mellone, T. Wuestefeld, S. Klotz et al., ) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype, Nature Cell Biology, vol.17, pp.1205-1217, 2015.

E. Hessmann, J. S. Zhang, N. M. Chen, M. Hasselluhn, G. Y. Liou et al., NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation, Stem Cells International, vol.2016, p.5272498, 2016.

A. F. Hezel, A. C. Kimmelman, B. Z. Stanger, N. Bardeesy, and R. A. Depinho, Genetics and biology of pancreatic ductal adenocarcinoma, Genes & Development, vol.20, pp.1218-1249, 2006.

M. Hidalgo, S. Cascinu, J. Kleeff, R. Labianca, and J. M. Löhr,

J. L. Laethem and V. Heinemann, Addressing the challenges of pancreatic cancer: future directions for improving outcomes, Pancreatology, vol.15, pp.8-18, 2015.

S. R. Hingorani, E. F. Petricoin, A. Maitra, V. Rajapakse, C. King et al., Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse, Cancer Cell, vol.4, pp.437-450, 2003.

S. R. Hingorani, L. Wang, A. S. Multani, C. Combs, T. B. Deramaudt et al., Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice, Cancer Cell, vol.7, pp.469-483, 2005.

M. Hoare, Y. Ito, T. W. Kang, M. P. Weekes, N. J. Matheson et al.,

S. Menon, R. Salama, R. Antrobus, K. Tomimatsu, W. Howat et al., NOTCH1 mediates a switch between two distinct secretomes during senescence, Nature Cell Biology, vol.18, pp.979-992, 2016.

S. M. Hong, N. Omura, A. Vincent, A. Li, S. Knight et al., , 2012.

, Genome-wide CpG island profiling of intraductal papillary mucinous neoplasms of the pancreas, Clinical Cancer Research, vol.18, pp.700-712, 22173550.

R. H. Hruban, N. V. Adsay, J. Albores-saavedra, C. Compton, E. S. Garrett et al.,

. Se, D. S. Klimstra, G. Klöppel, D. S. Longnecker, J. Lüttges et al., Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions, The American Journal of Surgical Pathology, vol.25, pp.579-586, 2001.

R. H. Hruban, K. Takaori, D. S. Klimstra, N. V. Adsay, J. Albores-saavedra et al., An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms, The American Journal of Surgical Pathology, vol.28, pp.977-987, 2004.

R. H. Hruban, A. Maitra, and M. Goggins, Update on pancreatic intraepithelial neoplasia, International Journal of Clinical and Experimental Pathology, vol.1, pp.306-316, 2008.

R. H. Hruban and D. S. Klimstra, Adenocarcinoma of the pancreas, Seminars in Diagnostic Pathology, vol.31, pp.443-451, 2014.

S. Hubackova, K. Krejcikova, J. Bartek, and Z. Hodny, IL1-and TGF?-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'bystander senescence, Aging, vol.4, pp.932-951, 2012.

M. Huse, T. W. Muir, L. Xu, Y. G. Chen, J. Kuriyan et al., The TGF beta receptor activation process: an inhibitor-to substrate-binding switch, Molecular Cell, vol.8, pp.671-682, 2001.

S. E. Iismaa, X. Kaidonis, A. M. Nicks, N. Bogush, K. Kikuchi et al., Comparative regenerative mechanisms across different mammalian tissues, NPJ Regenerative medicine, vol.3, p.6, 2018.

H. Ijichi, A. Chytil, A. E. Gorska, M. E. Aakre, Y. Fujitani et al.,

, Genes & Development, vol.20, pp.3147-3160, 17114585.

K. Ikezawa, H. Hikita, M. Shigekawa, K. Iwahashi, H. Eguchi et al., Increased Bcl-xL Expression in Pancreatic Neoplasia Promotes Carcinogenesis by Inhibiting Senescence and, Apoptosis. Cellular and Molecular Gastroenterology and Hepatology, vol.4, pp.185-200, 2017.

D. Iliopoulos, H. A. Hirsch, G. Wang, and K. Struhl, Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.1397-1402, 2011.

G. J. Inman, F. J. Nicolás, and C. S. Hill, Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity, Molecular Cell, vol.10, pp.283-294, 2002.

K. Izeradjene, C. Combs, M. Best, A. Gopinathan, A. Wagner et al., Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas, Cancer Cell, vol.11, pp.229-243, 2007.

S. M. Jeurnink, E. W. Steyerberg, H. Gv, C. H. Van-eijck, E. J. Kuipers et al., , 2007.

, Gastrojejunostomy versus stent placement in patients with malignant gastric outlet obstruction: a comparison in 95 patients, Journal of Surgical Oncology, vol.96, pp.389-396

B. Ji, L. Tsou, H. Wang, S. Gaiser, D. Z. Chang et al., Ras activity levels control the development of pancreatic diseases, Gastroenterology, vol.137, pp.1072-1082, 2009.

D. Jia, Y. Sun, and S. F. Konieczny, Mist1 regulates pancreatic acinar cell proliferation through p21 CIP1/WAF1, Gastroenterology, vol.135, pp.1687-1697, 2008.

R. E. Jimenez, A. L. Warshaw, Z. 'graggen, K. Hartwig, W. Taylor et al., Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy, Annals of Surgery, vol.230, pp.501-509, 1999.

C. H. Jin, M. Krishnaiah, D. Sreenu, V. B. Subrahmanyam, K. S. Rao et al., Discovery of N, issue.4, 2014.

, -methylpyridin-2-yl)-1H-imidazol-2-yl) methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-? type I receptor kinase as cancer immunotherapeutic/antifibrotic agent, Journal of Medicinal Chemistry, vol.57, issue.5, pp.4213-4238, 24786585.

H. Kaneda, T. Arao, K. Matsumoto, D. Velasco, M. A. Tamura et al.,

K. Nagai, T. Fujita, Y. Tanaka, K. Yanagihara, K. Yamada et al., Activin A inhibits vascular endothelial cell growth and suppresses tumour angiogenesis in gastric cancer, British Journal of Cancer, vol.105, pp.1210-1217, 2011.

C. Kang, Q. Xu, T. D. Martin, M. Z. Li, M. Demaria et al., The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4, Science, vol.349, p.5612, 2015.

T. W. Kang, T. Yevsa, N. Woller, L. Hoenicke, T. Wuestefeld et al.,

M. , R. R. Potapova, A. Iken, M. Vucur, M. Weiss et al., Senescence surveillance of pre-malignant hepatocytes limits liver cancer development, Nature, vol.479, pp.547-551, 2011.

M. Katoh and M. Katoh, Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors, International Journal of Oncology, vol.36, pp.415-420, 2010.

A. L. Kennedy, J. P. Morton, I. Manoharan, D. M. Nelson, N. B. Jamieson et al., Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis, Molecular Cell, vol.42, pp.36-49, 2011.

F. Kiagiadaki, M. Kampa, A. Voumvouraki, E. Castanas, E. Kouroumalis et al., , 2018.

, Activin-A causes Hepatic stellate cell activation via the induction of TNF? and TGF? in Kupffer cells, Biochimica et Biophysica Acta. Molecular Basis of Disease, vol.1864, pp.891-899

S. K. Kim and R. J. Macdonald, Signaling and transcriptional control of pancreatic organogenesis, Current Opinion in Genetics & Development, vol.12, pp.540-547, 2002.

S. Y. Kim, J. W. Kang, X. Song, B. K. Kim, Y. D. Yoo et al., Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells, Cell Signalling, vol.25, pp.961-969, 2013.

H. Kinugasa, K. Nouso, K. Miyahara, Y. Morimoto, C. Dohi et al., Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer, Cancer, vol.121, pp.2271-2280, 2015.

I. Kitazono, M. Higashi, S. Kitamoto, S. Yokoyama, M. Horinouchi et al.,

M. Tabata, S. K. Batra, M. Goto, and S. Yonezawa, Expression of MUC4 mucin is observed mainly in the intestinal type of intraductal papillary mucinous neoplasm of the pancreas, Pancreas, vol.42, pp.1120-1128, 2013.

J. Kleeff, T. Ishiwata, H. Friess, M. W. Büchler, and M. Korc, Concomitant over-expression of activin/inhibin beta subunits and their receptors in human pancreatic cancer, International Journal of Cancer, vol.77, pp.860-868, 1998.

S. Komatsu, D. Ichikawa, M. Miyamae, T. Kawaguchi, R. Morimura et al.,

T. Ohashi, T. Imamura, H. Konishi, A. Shiozaki, H. Ikoma et al., Malignant potential in pancreatic neoplasm; new insights provided by circulating miR-223 in plasma, Expert Opinion on Biological Therapy, vol.15, pp.773-785, 2015.

J. B. Koorstra, G. Feldmann, N. Habbe, and A. Maitra, Morphogenesis of pancreatic cancer: role of pancreatic intraepithelial neoplasia (PanINs), Langenbeck's Archives of Surgery, vol.393, pp.561-570, 2008.

H. G. Kopp, A. T. Hooper, S. V. Shmelkov, and S. Rafii, Beta-galactosidase staining on bone marrow. The osteoclast pitfall, Histology and Histopathology, vol.22, pp.971-976, 2007.

J. L. Kopp, C. L. Dubois, A. E. Schaffer, E. Hao, H. P. Shih et al., Development, vol.138, pp.653-665, 2011.

J. L. Kopp, V. Figura, G. Mayes, E. Liu, F. F. Dubois et al., Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma, Cancer Cell, vol.22, pp.737-750, 2012.

N. M. Krah, D. La, O. Jp, G. H. Swift, C. Q. Hoang et al., The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma, 2015.

A. Krapp, M. Knöfler, S. Frutiger, G. J. Hughes, O. Hagenbüchle et al., , p.48, 1996.

, DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein, The EMBO Journal, vol.15, pp.4317-4329, 8861960.

A. Krapp, M. Knöfler, B. Ledermann, K. Bürki, C. Berney et al., The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas, Genes & Development, vol.12, pp.3752-3763, 1998.

M. Kretzschmar, J. Doody, and J. Massagué, Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1, Nature, vol.389, pp.618-622, 1997.

V. Krizhanovsky, Y. M. Dickins, R. A. Hearn, S. Simon, J. Miething et al.,

S. W. Lowe, Senescence of activated stellate cells limits liver fibrosis, Cell, vol.134, pp.657-667, 2008.

A. Krtolica, S. Parrinello, S. Lockett, P. Y. Desprez, and J. Campisi, Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.12072-12077, 2001.

T. Kuilman, C. Michaloglou, L. C. Vredeveld, S. Douma, R. Van-doorn et al., Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network, Cell, vol.133, pp.1019-1031, 2008.

S. Lamouille, J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition, Nature Reviews. Molecular Cell Biology, vol.15, pp.178-196, 2014.

L. Denchi, E. Attwooll, C. Pasini, D. Helin, and K. , Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland, Molecular and Cellular Biology, vol.25, pp.2660-2672, 2005.

B. Y. Lee, J. A. Han, J. S. Im, A. Morrone, K. Johung et al., Senescence-associated beta-galactosidase is lysosomal beta-galactosidase, Aging cell, vol.5, pp.187-195, 2006.

J. H. Lee, Y. Kim, J. W. Choi, and Y. S. Kim, KRAS, GNAS, and RNF43 mutations in intraductal papillary mucinous neoplasm of the pancreas: a meta-analysis, SpringerPlus, vol.5, p.1172, 2016.

K. E. Lee and D. Bar-sagi, Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells, Cancer Cell, vol.18, pp.448-458, 2010.

S. Lee and C. A. Schmitt, The dynamic nature of senescence in cancer, Nature Cell Biology, vol.21, pp.94-101, 2019.

M. Lesina, S. M. Wörmann, J. Morton, K. N. Diakopoulos, O. Korneeva et al.,

H. Einwächter, J. Sperveslage, I. E. Demir, T. Kehl, D. Saur et al., The Journal of Clinical Investigation, vol.126, pp.2919-2932, 2016.

L. Levy and C. S. Hill, Alterations in components of the TGF-beta superfamily signaling pathways in human cancer, Cytokine & Growth Factor Reviews, vol.17, pp.41-58, 2006.

D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese, Pancreatic cancer. Lancet, vol.363, pp.1049-1057, 2004.

M. Ligorio, S. Sil, J. Malagon-lopez, L. T. Nieman, S. Misale et al., , 2019.

, Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer, Cell, vol.178, pp.160-175, 31155233.

S. Lin, J. Yang, A. G. Elkahloun, A. Bandyopadhyay, L. Wang et al., Attenuation of TGF-? signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells, Molecular Biology of The Cell, vol.23, pp.1569-1581, 2012.

J. Ling, Y. Kang, R. Zhao, Q. Xia, D. F. Lee et al., KrasG12D-induced IKK2/?/NF-?B activation by IL-1? and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma, Cancer Cell, vol.21, pp.105-120, 2012.

G. Y. Liou, H. Döppler, B. Necela, M. Krishna, H. C. Crawford et al., , 2013.

, Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-?B and MMPs, The Journal of Cell Biology, vol.202, pp.563-577, 23918941.

G. Y. Liou, H. Döppler, U. B. Braun, R. Panayiotou, S. Buzhardt et al., Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia, Nature Communications, vol.6, p.6200, 2015.

G. Y. Liou, H. Döppler, B. Necela, B. Edenfield, L. Zhang et al., , 2015.

, Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions, Cancer Discovery, vol.5, pp.52-63, 25361845.

G. Y. Liou, H. Döppler, K. E. Delgiorno, L. Zhang, M. Leitges et al., Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions, Cell Reports, vol.14, pp.2325-2336, 2016.

G. Y. Liou, L. Bastea, A. Fleming, H. Döppler, B. H. Edenfield et al., The Presence of Interleukin-13 at Pancreatic ADM/PanIN Lesions Alters Macrophage Populations and Mediates Pancreatic Tumorigenesis, Cell Reports, vol.19, pp.1322-1333, 2017.

F. Liu, C. Pouponnot, and J. Massagué, Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes, Genes & Development, vol.11, pp.3157-3167, 1997.

R. Liu, J. H. Wang, C. Xu, B. Sun, and S. O. Kang, Activin pathway enhances colorectal cancer stem cell self-renew and tumor progression, Biochemical and Biophysical Research Communications, vol.479, pp.715-720, 2016.

Y. Liu, L. Shao, K. Chen, Z. Wang, J. Wang et al., GDF11 restrains tumor growth by promoting apoptosis in pancreatic cancer, OncoTargets and Therapy, vol.11, pp.8371-8379, 2018.

E. Lonardo, P. C. Hermann, M. T. Mueller, S. Huber, A. Balic et al., , 2011.

. Nodal, Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy, Cell Stem Cell, vol.9, pp.433-446

E. Lonardo, J. Frias-aldeguer, P. C. Hermann, and C. Heeschen, Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness, Cell Cycle, vol.11, pp.1282-1290, 2012.

M. Löhr, G. Klöppel, P. Maisonneuve, A. B. Lowenfels, and J. Lüttges, Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis, Neoplasia, vol.7, pp.17-23, 2005.

H. A. Loomans and C. D. Andl, Activin receptor-like kinases: a diverse family playing an important role in cancer, American Journal of Cancer Research, vol.6, pp.2431-2447, 2016.

A. Loumaye, M. De-barsy, M. Nachit, P. Lause, L. Frateur et al.,

D. and T. Jp, Role of Activin A and myostatin in human cancer cachexia, The Journal of Clinical Endocrinology and Metabolism, vol.100, pp.2030-2038, 2015.

J. Lüttges, H. Galehdari, V. Bröcker, I. Schwarte-waldhoff, D. Henne-bruns et al.,

W. Schmiegel and S. A. Hahn, Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis, The American Journal of Pathology, vol.158, pp.1677-1683, 2001.

J. Lüttges, G. Zamboni, D. Longnecker, and G. Klöppel, The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma, The American Journal of Surgical Pathology, vol.25, pp.942-948, 2001.

A. Maitra, N. V. Adsay, P. Argani, C. Iacobuzio-donahue, D. Marzo et al., Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray, Modern Pathology, vol.16, pp.902-912, 2003.

P. K. Majumder, C. Grisanzio, F. O'connell, M. Barry, J. M. Brito et al., A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression, Cancer Cell, vol.14, pp.146-155, 2008.

E. Maniati, M. Bossard, N. Cook, J. B. Candido, N. Emami-shahri et al., Crosstalk between the canonical NF-?B and Notch signaling pathways inhibits Ppar? expression and promotes pancreatic cancer progression in mice, The Journal of Clinical Investigation, vol.121, pp.4685-4699, 2011.

K. M. Mann, J. M. Ward, C. C. Yew, A. Kovochich, D. W. Dawson et al.,

D. Te, . Aj;-australian-pancreatic-cancer-genome-initiative, D. K. Chang, A. V. Biankin, N. Waddell et al., Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.5934-5941, 2012.

P. Martinelli, F. Madriles, M. Cañamero, E. C. Pau, N. D. Pozo et al., The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice, Gut, vol.65, pp.476-486, 2016.

A. J. Mason, P. G. Farnworth, and J. Sullivan, Characterization and determination of the biological activities of noncleavable high molecular weight forms of inhibin A and activin A, Molecular Endocrinology, vol.10, pp.1055-1065, 1996.

J. Massagué, How cells read TGF-beta signals, Nature Reviews. Molecular Cell Biology, vol.1, pp.169-178, 2000.

J. Massagué, S. W. Blain, and R. S. Lo, TGFbeta signaling in growth control, cancer, and heritable disorders, Cell, vol.103, pp.295-309, 2000.

J. Massagué, TGFbeta in Cancer. Cell, vol.134, pp.215-230, 2008.

T. Masui, G. H. Swift, T. Deering, C. Shen, W. S. Coats et al.,

R. J. Macdonald, Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells, Gastroenterology, vol.139, pp.270-280, 2010.

R. May, T. E. Riehl, C. Hunt, S. M. Sureban, S. Anant et al., Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice, Stem Cells, vol.26, pp.630-637, 2008.

P. K. Mazur, H. Einwächter, M. Lee, B. Sipos, H. Nakhai et al., Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.13438-13443, 2010.

A. L. Means, Y. Xu, A. Zhao, K. C. Ray, and G. Gu, A CK19(CreERT) knockin mouse line allows for conditional DNA recombination in epithelial cells in multiple endodermal organs, Genesis, vol.46, pp.318-323, 2008.

A. Melk, B. M. Schmidt, O. Takeuchi, B. Sawitzki, D. C. Rayner et al., Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney, Kidney International, vol.65, pp.510-520, 2004.

A. Menke, H. Yamaguchi, T. M. Gress, and G. Adler, Extracellular matrix is reduced by inhibition of transforming growth factor beta1 in pancreatitis in the rat, Gastroenterology, vol.113, pp.295-303, 1997.

C. Michaloglou, L. C. Vredeveld, M. S. Soengas, C. Denoyelle, T. Kuilman et al., BRAFE600-associated senescence-like cell cycle arrest of human naevi, Nature, vol.436, pp.720-724, 2005.

S. Midha, S. Chawla, and P. K. Garg, Modifiable and non-modifiable risk factors for pancreatic cancer: A review, Cancer Letters, vol.381, pp.269-277, 2016.

M. Milanovic, D. Fan, D. Belenki, J. Däbritz, Z. Zhao et al., Senescence-associated reprogramming promotes cancer stemness, Nature, vol.553, pp.96-100, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02364397

A. J. Millis, M. Hoyle, H. M. Mccue, and H. Martini, Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts, Experimental Cell Research, vol.201, pp.373-379, 1992.

T. Miyatsuka, H. Kaneto, T. Shiraiwa, T. A. Matsuoka, K. Yamamoto et al., Persistent expression of PDX-1 in the pancreas causes acinar-to-ductal metaplasia through Stat3 activation, Genes & Development, vol.20, pp.1435-1440, 2006.

D. Mohri, Y. Asaoka, H. Ijichi, K. Miyabayashi, Y. Kudo et al.,

M. and K. K. , Different subtypes of intraductal papillary mucinous neoplasm in the pancreas have distinct pathways to pancreatic cancer progression, Journal of Gastroenterology, vol.47, pp.203-213, 2012.

M. Jpt, D. A. Cano, S. Sekine, S. C. Wang, and M. Hebrok, Beta-catenin blocks, 2010.

, Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice, The Journal of Clinical Investigation, vol.120, pp.508-520, 20071774.

J. P. Morton, N. B. Jamieson, S. A. Karim, D. Athineos, R. A. Ridgway et al., , 2010.

, LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest, Gastroenterology, vol.139, pp.586-597, 20452353.

C. A. Moskaluk, R. H. Hruban, and S. E. Kern, and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma, Cancer Research, vol.57, pp.2140-2143, 1997.

A. C. Moss, E. Morris, and M. Mathuna, Palliative biliary stents for obstructing pancreatic carcinoma, The Cochrane Database of Systematic Reviews, issue.2, p.4200, 2006.

D. Muñoz-espín, M. Cañamero, A. Maraver, G. Gómez-lópez, J. Contreras et al., Programmed cell senescence during mammalian embryonic development, Cell, vol.155, pp.1104-1118, 2013.

D. Muñoz-espín and M. Serrano, Cellular senescence: from physiology to pathology, Nature Reviews. Molecular Cell Biology, vol.15, pp.482-496, 2014.

S. Muñoz-galván, A. Lucena-cacace, M. Perez, D. Otero-albiol, J. Gomez-cambronero et al., Tumor cell-secreted PLD increases tumor stemness by senescence-mediated communication with microenvironment, Oncogene, vol.38, pp.1309-1323, 2019.

V. Nagaraja, G. D. Eslick, and M. R. Cox, Endoscopic stenting versus operative gastrojejunostomy for malignant gastric outlet obstruction-a systematic review and meta-analysis of randomized and non-randomized trials, Journal of Gastrointestinal Oncology, vol.5, pp.92-98, 2014.

K. Nagata, M. Horinouchi, M. Saitou, M. Higashi, M. Nomoto et al., , 2007.

, Mucin expression profile in pancreatic cancer and the precursor lesions, Journal of Hepato-Biliary-Pancreatic Surgery, vol.14, pp.243-254, 17520199.

Y. Nakanishi, H. Seno, A. Fukuoka, T. Ueo, Y. Yamaga et al.,

Y. Kawaguchi, M. M. Taketo, S. Yonehara, and T. Chiba, Dclk1 distinguishes between tumor and normal stem cells in the intestine, Nature Genetics, vol.45, pp.98-103, 2013.

M. Narita, S. N?nez, E. Heard, M. Narita, A. W. Lin et al., Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence, Cell, vol.113, pp.703-716, 2003.

A. Neesse, H. Algül, D. A. Tuveson, and T. M. Gress, Stromal biology and therapy in pancreatic cancer: a changing paradigm, Gut, vol.64, pp.1476-1484, 2015.

G. Nelson, J. Wordsworth, C. Wang, D. Jurk, C. Lawless et al., A senescent cell bystander effect: senescence-induced senescence, Aging Cell, vol.11, pp.345-349, 2012.

T. A. Nissinen, J. Hentilä, F. Penna, A. Lampinen, J. H. Lautaoja et al., Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses, Journal of Cachexia, Sarcopenia and Muscle, vol.9, pp.514-529, 2018.

B. M. Nolen, R. E. Brand, D. Prosser, L. Velikokhatnaya, P. J. Allen et al., Prediagnostic serum biomarkers as early detection tools for pancreatic cancer in a large prospective cohort study, PLoS One, vol.9, p.94928, 2014.

C. Nøjgaard, U. Becker, P. Matzen, J. R. Andersen, C. Holst et al., Progression from acute to chronic pancreatitis: prognostic factors, mortality, and natural course, Pancreas, vol.40, pp.1195-1200, 2011.

J. Obata, M. Yano, H. Mimura, T. Goto, R. Nakayama et al., , 2001.

, p48 subunit of mouse PTF1 binds to RBP-Kl/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos, Genes to Cells : Devoted to Molecular & Cellular Mechanisms, vol.6, pp.345-360, 11318877.

K. Ogawa and M. Funaba, Activin in humoral immune responses, Vitamins and Hormones, vol.85, pp.235-253, 2011.

M. Ogrodnik, S. Miwa, T. Tchkonia, D. Tiniakos, C. L. Wilson et al., Cellular senescence drives age-dependent hepatic steatosis, Nature Communications, vol.8, p.15691, 2017.

C. J. Oh, J. Y. Kim, A. K. Min, K. G. Park, R. A. Harris et al., Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-?/Smad signaling, Free Radical Biology & Medicine, vol.52, pp.671-682, 2012.

N. Ohnishi, T. Miyata, H. Ohnishi, H. Yasuda, K. Tamada et al., Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis, Gut, vol.52, pp.1487-1493, 2003.

P. Ortiz-montero, A. Londoño-vallejo, and J. P. Vernot, Senescence-associated IL-6 and IL-8 cytokines induce a self-and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line, Cell Communication and Signaling, vol.15, p.17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541579

M. Ouarné, C. Bouvard, G. Boneva, C. Mallet, J. Ribeiro et al., BMP9, but not BMP10, acts as a quiescence factor on tumor growth, vessel normalization and metastasis in a mouse model of breast cancer, Journal of Experimental & Clinical Cancer Research: CR, vol.37, p.209, 2018.

E. Panopoulou, C. Murphy, H. Rasmussen, E. Bagli, E. K. Rofstad et al., Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms, Cancer Research, vol.65, pp.1877-1886, 2005.

P. Parajuli, S. Kumar, A. Loumaye, P. Singh, S. Eragamreddy et al., Twist1 Activation in Muscle Progenitor Cells Causes Muscle Loss Akin to Cancer Cachexia, Developmental Cell, vol.45, pp.712-725, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02412686

J. Y. Park, S. M. Hong, D. S. Klimstra, M. G. Goggins, A. Maitra et al., , p.1, 2011.

, expression in pancreatic precursor lesions and neoplasms, Applied Immunohistochemistry & Molecular Morphology, vol.19, pp.444-449, 21297446.

L. Parker, M. K. Caldow, R. Watts, P. Levinger, D. Cameron-smith et al., Age and sex differences in human skeletal muscle fibrosis markers and transforming growth factor-? signaling, European Journal of Applied Physiology, vol.117, pp.1463-1472, 2017.

K. S. Pedersen, W. R. Bamlet, A. L. Oberg, M. De-andrade, M. E. Matsumoto et al., Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls, PLoS One, vol.6, p.18223, 2011.

A. Pellicoro, P. Ramachandran, J. P. Iredale, and J. A. Fallowfield, Liver fibrosis and repair: immune regulation of wound healing in a solid organ, Nature Reviews. Immunology, vol.14, pp.181-194, 2014.

P. A. Pérez-mancera, A. G. Rust, L. Van-der-weyden, G. Kristiansen, A. Li et al., The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma, Nature, vol.486, pp.266-270, 2012.

L. Perkhofer, K. Walter, I. G. Costa, M. C. Carrasco, T. Eiseler et al., Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness, Stem Cell Research, vol.17, pp.367-378, 2016.

K. M. Perrott, C. D. Wiley, P. Y. Desprez, and J. Campisi, Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells, GeroScience, vol.39, pp.161-173, 2017.

P. P. Prévot, A. Simion, A. Grimont, M. Colletti, A. Khalaileh et al., Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia, Gut, vol.61, pp.1723-1732, 2012.

A. Prieur and D. S. Peeper, Cellular senescence in vivo: a barrier to tumorigenesis, Current Opinion in Cell Biology, vol.20, pp.150-155, 2008.

O. Protic, M. S. Islam, S. Greco, S. R. Giannubilo, P. Lamanna et al., Activin A in Inflammation, Tissue Repair, and Fibrosis: Possible Role as Inflammatory and Fibrotic Mediator of Uterine Fibroid Development and Growth, Seminars in Reproductive Medicine, vol.35, pp.499-509, 2017.

J. Qian, J. Niu, M. Li, P. J. Chiao, and M. S. Tsao, carcinogenesis. Cancer Research, vol.65, pp.5045-5053, 2005.

W. Qiu, S. M. Tang, S. Lee, A. T. Turk, A. N. Sireci et al., Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS, Gastroenterology, vol.150, pp.218-228, 2016.

W. Qiu, H. E. Remotti, S. M. Tang, E. Wang, L. Dobberteen et al., Pancreatic DCLK1+ Cells Originate Distinctly from, p.1, 2018.

, Progenitors and Contribute to the Initiation of Intraductal Papillary Mucinous Neoplasm in Mice, Cancer Letters, vol.423, pp.71-79, 29526803.

A. Ramachandran, E. S. Marshall, D. R. Love, B. C. Baguley, and A. N. Shelling, Activin is a potent growth suppressor of epithelial ovarian cancer cells, Cancer Letters, vol.285, pp.157-165, 2009.

K. C. Ray, K. M. Bell, J. Yan, G. Gu, C. H. Chung et al., Epithelial tissues have varying degrees of susceptibility to Kras(G12D)-initiated tumorigenesis in a mouse model, PLoS One, vol.6, p.16786, 2011.

M. D. Reid, B. Saka, S. Balci, A. S. Goldblum, and N. V. Adsay, Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications, American Journal of Clinical Pathology, vol.141, pp.168-180, 2014.

D. Ripoche, J. Charbord, A. Hennino, R. Teinturier, R. Bonnavion et al., ActivinB Is Induced in Insulinoma To Promote Tumor Plasticity through a ?-Cell-Induced Dedifferentiation, Molecular and Cellular Biology, vol.36, pp.756-764, 2015.

G. P. Risbridger, J. F. Schmitt, and D. M. Robertson, Activins and inhibins in endocrine and other tumors, Endocrine Reviews, vol.22, pp.836-858, 2001.

B. Ritschka, M. Storer, A. Mas, F. Heinzmann, M. C. Ortells et al., The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration, Genes & Development, vol.31, pp.172-183, 2017.

P. Rochefort, A. Lardy-cleaud, M. Sarabi, F. Desseigne, A. Cattey-javouhey et al., Long-Term Survivors in Metastatic Pancreatic Ductal Adenocarcinoma: A Retrospective and Matched Pair Analysis, 2019.

F. Rodier, Detection of the senescence-associated secretory phenotype (SASP), 2013.

, Methods in Molecular Biology, vol.965, pp.165-173, 23296657.

S. Ross and C. S. Hill, How the Smads regulate transcription, The International Journal of Biochemistry & Cell Biology, vol.40, pp.383-408, 2008.

K. L. Rudolph, S. Chang, H. W. Lee, M. Blasco, G. J. Gottlieb et al., , 1999.

, Longevity, stress response, and cancer in aging telomerase-deficient mice, Cell, vol.96, pp.701-712, 10089885.

R. Russell, L. Perkhofer, S. Liebau, Q. Lin, A. Lechel et al., Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition, Nature Communications, vol.6, p.7677, 2015.

B. Sainz, S. Alcala, E. Garcia, Y. Sanchez-ripoll, M. M. Azevedo et al., Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment, Gut, vol.64, pp.1921-1935, 2015.

C. J. Sarkisian, B. A. Keister, D. B. Stairs, R. B. Boxer, S. E. Moody et al., , 2007.

, Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis, Nature Cell Biology, vol.9, pp.493-505, 17450133.

R. Sartori, P. Gregorevic, and M. Sandri, TGF? and BMP signaling in skeletal muscle: potential significance for muscle-related disease, Trends in Endocrinology and Metabolism, vol.25, pp.464-471, 2014.

E. T. Sawey, J. A. Johnson, and H. C. Crawford, Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.19327-19332, 2007.

M. J. Schafer, T. A. White, K. Iijima, A. J. Haak, G. Ligresti et al., Cellular senescence mediates fibrotic pulmonary disease, Nature Communications, vol.8, p.14532, 2017.

H. Schofield, P. Di-magliano, and M. , Change isn't always better. Elife, vol.4, p.10054, 2015.

F. Schönleben, W. Qiu, K. C. Bruckman, N. T. Ciau, X. Li et al., BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas, Cancer Letters, vol.249, pp.242-248, 2007.

N. Serakinci, P. Guldberg, J. S. Burns, B. Abdallah, H. Schrødder et al., Adult human mesenchymal stem cell as a target for neoplastic transformation, Oncogene, vol.23, pp.5095-5098, 2004.

M. Serrano, A. W. Lin, M. E. Mccurrach, D. Beach, and S. W. Lowe, , 1997.

C. Shao, C. Tu, X. Cheng, Z. Xu, X. Wang et al., Inflammatory and Senescent Phenotype of Pancreatic Stellate Cells Induced by Sqstm1 Downregulation Facilitates Pancreatic Cancer Progression, International Journal of Biological Sciences, vol.15, pp.1020-1029, 2019.

D. N. Shelton, E. Chang, P. S. Whittier, D. Choi, and W. D. Funk, Microarray analysis of replicative senescence, Current Biology, vol.9, pp.939-945, 1999.

C. Shi, A. P. Klein, M. Goggins, A. Maitra, M. Canto et al., Increased Prevalence of Precursor Lesions in Familial Pancreatic Cancer Patients, Clinical Cancer Research, vol.15, pp.7737-7743, 2009.

G. Shi, L. Zhu, Y. Sun, R. Bettencourt, B. Damsz et al., Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia, Gastroenterology, vol.136, pp.1368-1378, 2009.

G. Shi, D. Direnzo, C. Qu, D. Barney, D. Miley et al., Maintenance of acinar cell organization is critical to preventing Kras-induced acinar-ductal metaplasia, Oncogene, vol.32, pp.1950-1958, 2013.

Y. Shi, Y. F. Wang, L. Jayaraman, H. Yang, J. Massagué et al., Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling, Cell, vol.94, pp.585-594, 1998.

Y. Shi and J. Massagué, Mechanisms of TGF-beta signaling from cell membrane to the nucleus, Cell, vol.113, pp.685-700, 2003.

S. Shroff, A. Rashid, H. Wang, M. H. Katz, J. L. Abbruzzese et al., , 2014.

, SOX9: a useful marker for pancreatic ductal lineage of pancreatic neoplasms, Human Pathology, vol.45, pp.456-463, 24418153.

E. C. Sikkens, D. L. Cahen, E. J. Kuipers, and M. J. Bruno, Pancreatic enzyme replacement therapy in chronic pancreatitis. Best practice & research, Clinical gastroenterology, vol.24, pp.337-347, 2010.

M. Simonelli, P. Zucali, A. Santoro, M. B. Thomas, F. G. De-braud et al.,

C. Stampino, M. Carpentieri, and J. A. Williams, Phase I study of PF-03446962, a fully human monoclonal antibody against activin receptor-like kinase-1, in patients with hepatocellular carcinoma, Annals of Oncology, vol.27, pp.1782-1787, 2016.

J. T. Siveke, H. Einwachter, B. Sipos, C. Lubeseder-martellato, G. Kloppel et al., , 2007.

, Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN, Cancer Cell, vol.12, pp.266-279, 17785207.

F. Skoulidis, L. D. Cassidy, V. Pisupati, J. G. Jonasson, H. Bjarnason et al.,

. Ar, Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer, Cancer Cell, vol.18, pp.499-509, 2010.

H. Sone and Y. Kagawa, Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice, Diabetologia, vol.48, pp.58-67, 2005.

S. Y. Song, M. Gannon, M. K. Washington, C. R. Scoggins, I. M. Meszoely et al., Expansion of, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00399011

, Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha, Gastroenterology, vol.117, pp.1416-1426

K. Sossey-alaoui and A. K. Srivastava, DCAMKL1, a brain-specific transmembrane protein on 13q12.3 that is similar to doublecortin (DCX), Genomics, vol.56, pp.121-126, 1999.

B. Z. Stanger, B. Stiles, G. Y. Lauwers, N. Bardeesy, M. Mendoza et al., , 2005.

, Pten constrains centroacinar cell expansion and malignant transformation in the pancreas, Cancer Cell, vol.8, pp.185-195, 16169464.

B. W. Stewart and C. P. Wild, World Cancer Report, 2014.

, Organization WH

M. Storer, A. Mas, A. Robert-moreno, M. Pecoraro, M. C. Ortells et al., Senescence is a developmental mechanism that contributes to embryonic growth and patterning, Cell, vol.155, pp.1119-1130, 2013.

I. Sturmlechner, M. Durik, C. J. Sieben, D. J. Baker, and J. M. Van-deursen, Cellular senescence in renal ageing and disease, Nature Reviews. Nephrology, vol.13, pp.77-89, 2017.

G. H. Su, R. Bansal, K. M. Murphy, E. Montgomery, C. J. Yeo et al., , 2001.

, ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.3254-3257, 11248065.

Q. Sun, B. Zhang, Q. Hu, Y. Qin, W. Xu et al., The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer, Theranostics, vol.8, pp.5072-5087, 2018.

A. Takahashi, Y. Imai, K. Yamakoshi, S. Kuninaka, N. Ohtani et al.,

M. Tachibana, E. Anderton, T. Takeuchi, Y. Shinkai, G. Peters et al., DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells, Molecular Cell, vol.45, pp.123-131, 2012.

K. Tamura, J. Yu, T. Hata, M. Suenaga, K. Shindo et al., Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer, Proceedings of the National Academy of Sciences of the United States of America, vol.115, pp.4767-4772, 2018.

M. Tanaka, F. Castillo, C. Adsay, V. Chari, S. Falconi et al., International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas, Pancreatology, vol.12, pp.183-197, 2012.

N. Tasdemir, A. Banito, J. S. Roe, D. Alonso-curbelo, M. Camiolo et al., BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance, Cancer Discovery, vol.6, pp.612-629, 2016.

M. A. Tempero, M. P. Malafa, M. Al-hawary, H. Asbun, A. Bain et al., , 2017.

P. Adenocarcinoma, NCCN Clinical Practice Guidelines in Oncology, Journal of the National Comprehensive Cancer Network, vol.15, pp.1028-1061, 2017.

M. J. Tisdale, Reversing cachexia, Cell, vol.142, pp.511-512, 2010.

Y. Togashi, H. Sakamoto, H. Hayashi, M. Terashima, M. A. De-velasco et al.,

K. Sakai, S. Tomida, M. Kitano, A. Ito, M. Kudo et al., Homozygous deletion of the activin A receptor, type IB gene is associated with an aggressive cancer phenotype in pancreatic cancer, Molecular Cancer, vol.13, p.126, 2014.

Y. Togashi, A. Kogita, H. Sakamoto, H. Hayashi, M. Terashima et al., Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer, Cancer Letters, vol.356, pp.819-827, 2015.

J. J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown, Myofibroblasts and mechano-regulation of connective tissue remodelling, Nature Reviews. Molecular Cell Biology, vol.3, pp.349-363, 2002.

T. Tsukazaki, T. A. Chiang, A. F. Davison, L. Attisano, and J. L. Wrana, SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor, Cell, vol.95, pp.779-791, 1998.

D. A. Tuveson, A. T. Shaw, N. A. Willis, D. P. Silver, J. E. Chang et al., Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects, Cancer Cell, vol.5, pp.375-387, 2004.

H. Ungefroren, D. Witte, K. Mihara, B. H. Rauch, P. Henklein et al., Transforming Growth Factor-?1/Activin Receptor-like Kinase 5-Mediated Cell Migration is Dependent on the Protein Proteinase-Activated Receptor 2 but not on Proteinase-Activated Receptor 2-Stimulated Gq-Calcium Signaling, Molecular Pharmacology, vol.92, pp.519-532, 2017.

H. Ungefroren, D. Witte, and H. Lehnert, The role of small GTPases of the Rho/Rac family in TGF-?-induced EMT and cell motility in cancer, Developmental Dynamics, vol.247, pp.451-461, 2018.

A. K. Uryga and M. R. Bennett, Ageing induced vascular smooth muscle cell senescence in atherosclerosis, The Journal of Physiology, vol.594, pp.2115-2124, 2016.

J. M. Van-deursen, The role of senescent cells in ageing, Nature, vol.509, pp.439-446, 2014.

R. H. Van-schaik, C. D. Wierikx, M. A. Timmerman, M. H. Oomen, W. M. Van-weerden et al., Variations in activin receptor, inhibin/activin subunit and follistatin mRNAs in human prostate tumour tissues, British Journal of Cancer, vol.82, pp.112-117, 2000.

D. F. Vincent, K. P. Yan, I. Treilleux, F. Gay, V. Arfi et al., Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas, PLoS Genetics, vol.5, p.1000575, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420083

G. Von-figura, A. Fukuda, N. Roy, M. E. Liku, M. Iv et al.,

S. J. Mulvihill, D. W. Dawson, J. Ferrer, W. F. Mueller, A. Busch et al., The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma, Nature Cell Biology, vol.16, pp.255-267, 2014.

G. Von-figura, . Morris, C. V. Wright, and M. Hebrok, Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation, Gut, vol.63, pp.656-664, 2014.

A. Vonlaufen, S. Joshi, C. Qu, P. A. Phillips, Z. Xu et al., Pancreatic stellate cells: partners in crime with pancreatic cancer cells, Cancer Research, vol.68, pp.2085-2093, 2008.

W. Wang, J. X. Chen, R. Liao, Q. Deng, J. J. Zhou et al., Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence, Molecular and Cellular Biology, vol.22, pp.3389-3403, 2002.

Y. J. Wang, F. Mcallister, J. M. Bailey, S. G. Scott, A. M. Hendley et al., , 2014.

, Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role in Kras-driven pancreatic neoplasia, PLoS One, vol.9, p.113127, 25405615.

T. Watabe and K. Miyazono, Roles of TGF-beta family signaling in stem cell renewal and differentiation, Cell Research, vol.19, pp.103-115, 2009.

S. Watanabe, S. Kawamoto, N. Ohtani, and E. Hara, Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases, Cancer Science, vol.108, pp.563-569, 2017.

D. Wei, L. Wang, Y. Yan, Z. Jia, M. Gagea et al., , 2016.

, KLF4 Is Essential for Induction of Cellular Identity Change and Acinar-to-Ductal Reprogramming during Early Pancreatic Carcinogenesis, Cancer Cell, vol.29, pp.324-338

S. Wei, W. Wei, and J. M. Sedivy, Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts, Cancer Research, vol.59, pp.1539-1543, 1999.

C. B. Westphalen, Y. Takemoto, T. Tanaka, M. Macchini, Z. Jiang et al., , 2016.

, Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis, Cell Stem Cell, vol.18, pp.441-455, 27058937.

D. C. Whitcomb and M. E. Lowe, Human pancreatic digestive enzymes, Digestive Diseases and Sciences, vol.52, pp.1-17, 2007.

R. E. Wilentz, J. Geradts, R. Maynard, G. J. Offerhaus, M. Kang et al., Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression, Cancer Research, vol.58, pp.4740-4744, 1998.

H. Witt, M. V. Apte, V. Keim, and J. S. Wilson, Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy, Gastroenterology, vol.132, pp.1557-1573, 2007.

J. M. Wong and K. Collins, Telomere maintenance and disease, Lancet, vol.362, pp.983-988, 2003.

C. Y. Wu, E. S. Carpenter, K. K. Takeuchi, C. J. Halbrook, L. V. Peverley et al., PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice, Gastroenterology, vol.147, pp.1405-1416, 2014.

J. Wu, Y. Jiao, M. Dal-molin, A. Maitra, R. F. De-wilde et al., , 2011.

, Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.21188-21193, 22158988.

L. Xu, Y. Kang, S. Cöl, and J. Massagué, Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus, Molecular Cell, vol.10, pp.271-282, 2002.

M. Xu, Q. Yu, R. Subrahmanyam, M. J. Difilippantonio, T. Ried et al., Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo, Molecular and Cellular Biology, vol.28, pp.1713-1723, 2008.

M. Xu, A. K. Palmer, H. Ding, M. M. Weivoda, T. Pirtskhalava et al.,

. Ko, M. B. Stout, N. Giorgadze, M. D. Jensen, N. K. Lebrasseur et al., Targeting senescent cells enhances adipogenesis and metabolic function in old age, Elife, vol.4, p.12997, 2015.

X. Xu, L. Zheng, Q. Yuan, G. Zhen, J. L. Crane et al., Transforming growth factor-? in stem cells and tissue homeostasis, Bone Research, vol.6, issue.2, 2018.

W. Xue, L. Zender, C. Miething, and R. A. Dickins,

C. and L. Sw, Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas, Nature, vol.445, pp.656-660, 2007.

J. Yamaguchi, M. Mino-kenudson, A. S. Liss, S. Chowdhury, T. C. Wang et al., Loss of trefoil factor 2 From pancreatic duct glands promotes formation of intraductal papillary mucinous neoplasms in mice, Gastroenterology, vol.151, pp.1232-1244, 2016.

J. Yamaguchi, Y. Yokoyama, T. Kokuryo, T. Ebata, and M. Nagino, Cells of origin of pancreatic neoplasms, Surgery Today, vol.48, pp.9-17, 2018.

M. Yamin, E. H. Holbrook, S. T. Gray, N. Y. Busaba, B. Lovett et al., , p.Profibrotic, 2015.

, International Forum of Allergy & Rhinology, vol.5, pp.573-582, 25914020.

H. L. Yang, Y. C. Tsai, M. Korivi, C. T. Chang, and Y. C. Hseu, Lucidone Promotes the Cutaneous Wound Healing Process via Activation of the PI3K/AKT, Wnt/?-catenin and NF-?B Signaling Pathways, Biochimica et Biophysica Acta. Molecular Cell Research, vol.1864, pp.151-168, 2017.

K. Yasunaga, T. Ito, M. Miki, K. Ueda, T. Fujiyama et al., Using CRISPR/Cas9 to Knock out Amylase in Acinar Cells Decreases Pancreatitis-Induced Autophagy, BioMed Research, p.8719397, 2018.

S. Yin, Q. Zhang, J. Yang, W. Lin, Y. Li et al., TGF?-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis, Biochimica et Biophysica Acta. Molecular Cell Research, vol.1864, pp.1207-1216, 2017.

S. Yokomuro, H. Tsuji, T. Sakamoto, T. Ezure, N. Murase et al., , 2000.

, Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth factor, transforming growth factor beta1, and activin A: comparison of a cholangiocarcinoma cell line with primary cultures of non-neoplastic biliary epithelial cells, Hepatology, vol.32, pp.26-35

S. Yonezawa, M. Higashi, N. Yamada, and M. Goto, Precursor lesions of pancreatic cancer, Gut and Liver, vol.2, pp.137-154, 2008.

J. H. Yoon, S. M. Jung, S. H. Park, M. Kato, T. Yamashita et al., Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes, EMBO Molecular Medicine, vol.5, pp.1720-1739, 2013.

A. P. Young, S. Schlisio, Y. A. Minamishima, Q. Zhang, L. Li et al., VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400, Nature Cell Biology, vol.10, pp.361-369, 2008.

G. Zamboni, A. Scarpa, G. Bogina, C. Iacono, C. Bassi et al., Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors, The American Journal of Surgical Pathology, vol.23, pp.410-422, 1999.

G. Zamboni, K. Hirabayashi, P. Castelli, and A. M. Lennon, Precancerous lesions of the pancreas, Best Practice & Research. Clinical Gastroenterology, vol.27, pp.299-322, 2013.

L. Zawel, J. L. Dai, P. Buckhaults, S. Zhou, K. W. Kinzler et al., , 1998.

, Human Smad3 and Smad4 are sequence-specific transcription activators, Molecular Cell, vol.1, pp.611-617

F. Zeeh, D. Witte, T. Gädeken, B. H. Rauch, E. Grage-griebenow et al.,

S. Stölting, K. Mihara, R. Kaufmann, U. Settmacher, H. Lehnert et al., Proteinase-activated receptor 2 promotes TGF-?-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-? type I receptor ALK5, Oncotarget, vol.7, pp.41095-41109, 2016.

E. Zeggini, M. N. Weedon, C. M. Lindgren, T. M. Frayling, K. S. Elliott et al.,

, Wellcome Trust Case Control Consortium (WTCCC)

H. Mi and . At, Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes, Science, vol.316, pp.1336-1341, 2007.

Y. Zhang, X. Feng, R. We, and R. Derynck, Receptor-associated Mad homologues synergize as effectors of the TGF-beta response, Nature, vol.383, pp.168-172, 1996.

L. Zheng, J. Xue, E. M. Jaffee, and A. Habtezion, Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma, Gastroenterology, vol.144, pp.1230-1240, 2013.

Q. Zhou, A. C. Law, J. Rajagopal, W. J. Anderson, P. A. Gray et al., A multipotent progenitor domain guides pancreatic organogenesis, Developmental cell, vol.13, pp.103-114, 2007.

X. Zhou, J. L. Wang, J. Lu, Y. Song, K. S. Kwak et al., Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival, Cell, vol.142, pp.531-543, 2010.

Z. Zhuang, H. Q. Ju, M. Aguilar, T. Gocho, H. Li et al., IL1 Receptor Antagonist Inhibits Pancreatic Cancer Growth by Abrogating NF-?B Activation, Clinical Cancer Research, vol.22, pp.1432-1444, 2016.

Y. Zhao, D. Goehrig, J. Nigri, X. Zhang, S. Vasseur et al., Loss of Alk4 impact the onset of pancreatic cancers through an active pancreas remodeling and an induced proliferation of Acinar to Ductal metaplastic (ADM) lesions. 2017, 09. The 3rd International Cancer Symposium of the Cancer research center of Lyon

Y. Zhao, D. Goehrig, J. Nigri, X. Zhang, S. Vasseur et al., Loss of Alk4 impact the onset of pancreatic cancers through an active pancreas remodeling and an induced proliferation of Acinar to Ductal metaplastic (ADM) lesions, 2017.

Y. Zhao, D. Goehrig, J. Nigri, X. Zhang, S. Vasseur et al., Loss of Alk4 impact the onset of pancreatic cancers through an active pancreas remodelling and an induced proliferation of Acinar to Ductal metaplastic (ADM) lesions, International ADELIH, p.3, 2018.