, International energy agency (IEA), 2017.

K. Branker, M. J. Pathak, and J. M. Pearce, A review of solar photovoltaic levelized cost of electricity, Renewable and Sustainable Energy Reviews, vol.15, issue.9, pp.4470-4482, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02120492

J. Hernández-moro and J. M. Martínez-duart, Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution, Renewable and Sustainable Energy Reviews, vol.20, pp.119-132, 2013.

, Levelized cost of electricity renewable energy technologies study, 2013.

, Best research-cell efficiencies chart, 2017.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop et al., Solar cell efficiency tables (version 49), Progress in Photovoltaics: Research and Applications, vol.25, pp.3-13, 2016.

T. Wolfram and S. Ellialtioglu, Electronic and Optical Properties of d-Band Perovskites, 2009.

H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, and E. Tosatti, Superconductivity near ferromagnetism in MgCNi 3, Physical Review Letters, vol.88, issue.2, 2001.

V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN 3 . physica status solidi (RRL) -Rapid Research Letters, vol.1, pp.89-91, 2007.

E. Rönnebro, D. Noréus, K. Kadir, A. Reiser, and B. Bogdanovic, Investigation of the perovskite related structures of namgh3, namgf3 and na3Alh6, Journal of Alloys and Compounds, vol.299, issue.1-2, pp.101-106, 2000.

D. Bedlivy and K. Mereiter, The structures of potassium lead triiodide dihydrate and ammonium lead triiodide dihydrate, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.36, issue.4, pp.782-785, 1980.

J. Mizusaki, K. Arai, and . Fueki, Ionic conduction of the perovskite-type halides, Solid State Ionics, vol.11, issue.3, pp.203-211, 1983.

D. E. Scaife, P. F. Weller, and W. G. Fisher, Crystal preparation and properties of cesium tin(II) trihalides, Journal of Solid State Chemistry, vol.9, issue.3, pp.308-314, 1974.

G. Thiele, H. W. Rotter, and K. D. Schmidt, Kristallstrukturen und phasentransformationen von caesiumtrihalogenogermanaten(II) CsGeX 3 (X=Cl, Br, I), vol.545, pp.148-156, 1987.

K. Yamada, S. Funabiki, H. Horimoto, T. Matsui, T. Okuda et al., Structural phase transitions of the polymorphs of CsSnI 3 by means of rietveld analysis of the x-ray diffraction, Chemistry Letters, vol.20, issue.5, pp.801-804, 1991.

H. L. Wells, Über die cäsium-und kalium-bleihalogenide, Zeitschrift für anorganische Chemie, vol.3, issue.1, pp.195-210, 1893.

. K. Chr and . Møller, Crystal structure and photoconductivity of caesium plumbohalides, Nature, vol.182, issue.4647, pp.1436-1436, 1958.

O. Busmundrud and J. Feder, Electrical conduction and phase transitions in CsPbCl 3, Solid State Communications, vol.9, issue.18, pp.1575-1577, 1971.

S. Hirotsu, J. Harada, M. Iizumi, and K. Gesi, Structural phase transitions in CsPbBr 3, Journal of the Physical Society of Japan, vol.37, issue.5, pp.1393-1398, 1974.

J. Stephen, J. D. Clark, J. A. Donaldson, ;. Harvey, . Mii-=-ge et al., Evidence for the direct population of solid-state bands by non-bonding electron pairs in compounds of the type CsMIIx, Br, I). Journal of Materials Chemistry, vol.3, issue.11, p.1813, 1995.

M. Nikl, K. Nitsch, K. Polák, E. Mihókova, S. Zazubovich et al., Quantum size effect in the excitonic luminescence of CsPbX 3 -like quantum dots in CsX (X=Cl, Br) single crystal host, Journal of Luminescence, pp.377-379, 1997.

J. Song, J. Li, X. Li, L. Xu, Y. Dong et al., Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX 3 ), Advanced Materials, vol.27, issue.44, pp.7162-7167, 2015.

A. S. Ionkin, W. J. Marshall, and B. M. Fish, Divalent germanium and tin compounds stabilized by sterically bulky P?O, P=O?O, P=S?O, and P=N?O ligands: synthesis and first insights into catalytic application to polyurethane systems ?, Organometallics, vol.25, issue.17, pp.4170-4178, 2006.

H. Wang, Z. Bao, H. Tsai, A. Tang, and R. Liu, Perovskite quantum dots and their application in light-emitting diodes, Small, vol.14, issue.1, p.1702433, 2017.

X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu et al., CsPbX 3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Advanced Functional Materials, vol.26, issue.15, pp.2435-2445, 2016.

F. Palazon, F. D. Stasio, Q. A. Akkerman, R. Krahne, M. Prato et al., Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs, Chemistry of Materials, vol.28, issue.9, pp.2902-2906, 2016.

Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, and A. Paul-alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies, Journal of the American Chemical Society, vol.137, issue.51, pp.16008-16011, 2015.

D. Weber, CH 3 NH 3 SnBr x I 3-x (x=0-3), ein Sn(II)-system mit kubischer perowskitstruktur, Z. Naturforsch, vol.33, pp.862-865, 1978.

D. Weber, CH 3 NH 3 PbX 3 , ein Pb(ii)-system mit kubischer perowskitstruktur / CH 3 NH 3 PbX 3 , a Pb(ii)-system with cubic perovskite structure, Z. Naturforschung, vol.33, issue.12, pp.1443-1445, 1978.

Y. I. Dolzhenko, T. Inabe, and Y. Maruyama, In situ x-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C 9 H 19 NH 3 ) 2 PbI 4 and (C 10 H 21 NH 3 ) 2 CdCl 4, Bulletin of the Chemical Society of Japan, vol.59, issue.2, pp.563-567, 1986.

T. Ishihara, J. Takahashi, and T. Goto, Optical properties due to electronic transitions in two-dimensional semiconductors C n H 2n+1 NH 3 ) 2 PbI 4, Physical Review B, vol.42, issue.17, pp.11099-11107, 1990.

J. Calabrese, N. L. Jones, R. L. Harlow, N. Herron, D. L. Thorn et al., Preparation and characterization of layered lead halide compounds, Journal of the American Chemical Society, vol.113, issue.6, pp.2328-2330, 1991.

S. Wang, D. B. Mitzi, C. A. Feild, and A. Guloy, Synthesis and characterization of [NH 2 C(I):NH 2 ] 3 MI 5 (M = Sn, Pb): Stereochemical activity in divalent tin and lead halides containing single <110> perovskite sheets, Journal of the American Chemical Society, vol.117, issue.19, pp.5297-5302, 1995.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, Conducting layered organicinorganic halides containing <110>-oriented perovskite sheets, Science, vol.267, issue.5203, pp.1473-1476, 1995.

L. I-b-koutselas, G. Ducasse, and . Papavassiliou, Electronic properties of three-and lowdimensional semiconducting materials with Pb halide and Sn halide units, Journal of Physics: Condensed Matter, vol.8, issue.9, pp.1217-1227, 1996.

D. B. Mitzi, Synthesis, crystal structure, and optical and thermal properties of (C 4 H 9 NH 3 ) 2 MI 4 (M = Ge, Sn, Pb), Chemistry of Materials, vol.8, issue.3, pp.791-800, 1996.

K. Liang, D. B. Mitzi, and M. T. Prikas, Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique, Chemistry of Materials, vol.10, issue.1, pp.403-411, 1998.

D. Mitzi, A layered solution crystal growth technique and the crystal structure of (C 6 H 5 C 2 H 4 NH 3 ) 2 PbCl 4, Journal of Solid State Chemistry, vol.145, issue.2, pp.694-704, 1999.

D. B. Mitzi, K. Chondroudis, and C. R. Kagan, Design, structure, and optical properties of organic-inorganic perovskites containing an oligothiophene chromophore, Inorganic Chemistry, vol.38, issue.26, pp.6246-6256, 1999.

N. Xu-hui-zhu, A. Mercier, P. Riou, P. Blanchard, and . Frère, C 4 H 3 SCH 2 NH 3 ) 2 (CH 3 NH 3 )Pb 2 I 7 : non-centrosymmetrical crystal structure of a bilayer hybrid perovskite, Chem. Commun, issue.18, pp.2160-2161, 2002.

N. Mercier, S. Poiroux, A. Riou, and P. Batail, Unique hydrogen bonding correlating with a reduced band gap and phase transition in the hybrid perovskites (HO(CH 2 ) 2 NH 3 ) 2 PbX 4 (X=I, Br), Inorganic Chemistry, vol.43, issue.26, pp.8361-8366, 2004.

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors, Applied Physics Letters, vol.89, issue.17, p.171110, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00160243

D. B. Mitzi, K. Chondroudis, and C. R. Kagan, Organic-inorganic electronics, IBM Journal of Research and Development, vol.45, issue.1, pp.29-45, 2001.

D. B. Mitzi, Thin-film deposition of organic-inorganic hybrid materials, Chemistry of Materials, vol.13, issue.10, pp.3283-3298, 2001.

C. R. Kagan, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors, Science, vol.286, issue.5441, pp.945-947, 1999.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, vol.131, issue.17, pp.6050-6051, 2009.

J. Im, C. Lee, and J. Lee, Sang-Won Park, and Nam-Gyu Park. 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, vol.3, issue.10, p.4088, 2011.

H. Kim, C. Lee, J. Im, K. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific Reports, vol.2, 2012.

T. Ibn-mohammed, S. C. Koh, I. M. Reaney, A. Acquaye, G. Schileo et al., Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies, Renewable and Sustainable Energy Reviews, vol.80, pp.1321-1344, 2017.

G. Grancini, C. Roldán-carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-year stable perovskite solar cells by 2d/3d interface engineering, Nature Communications, vol.8, p.15684, 2017.

A. E. Becquerel, Comptes rendus des séances de l'académie des sciences, Académie des Sciences, pp.145-149, 1839.

R. Adams and W. Day, The action of light on selenium, Phil. Trans. R. Soc. Lond, vol.167, pp.313-349, 1877.

A. Einstein, Concerning an heuristic point of view toward the emission and transformation of light, Annalen Phys, vol.17, pp.132-148, 1905.

D. M. Chapin, C. S. Fuller, and G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics, vol.25, issue.5, pp.676-677, 1954.

D. C. Reynolds, G. Leies, L. L. Antes, and R. E. Marburger, Photovoltaic effect in cadmium sulfide, Physical Review, vol.96, issue.2, pp.533-534, 1954.

V. M. Andreev, M. B. Kagan, I. I. Protasov-alferov, Z. I. , and V. G. Trofim, Solar-energy converters based on p-n Al x Ga 1-x As-GaAs heterojunctions, Sov. Phys. Semicond, vol.4, p.2047, 1971.

J. M. Woodall and H. J. Hovel, An isothermal etchback-regrowth method for high-efficiency ga1-xAlxAs-GaAs solar cells, Applied Physics Letters, vol.30, issue.9, pp.492-493, 1977.

D. E. Carlson and C. R. Wronski, Amorphous silicon solar cell, Applied Physics Letters, vol.28, issue.11, pp.671-673, 1976.

M. J. Ludowise, R. A. Larue, P. G. Borden, P. E. Gregory, and W. T. Dietze, High-efficiency organometallic vapor phase epitaxy AlGaAs/GaAs monolithic cascade solar cell using metal interconnects, Applied Physics Letters, vol.41, issue.6, pp.550-552, 1982.

W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, Journal of Applied Physics, vol.32, issue.3, pp.510-519, 1961.

A. W. Blakers and M. A. Green, 20% efficiency silicon solar cells, Applied Physics Letters, vol.48, issue.3, pp.215-217, 1986.

C. W. Tang, Two-layer organic photovoltaic cell, Applied Physics Letters, vol.48, issue.2, pp.183-185, 1986.

O. Brian, M. Regan, and . Grätzel, A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO 2 films, Nature, vol.353, issue.6346, pp.737-740, 1991.

K. Rajkanan, R. Singh, and J. Shewchun, Absorption coefficient of silicon for solar cell calculations, Solid-State Electronics, vol.22, issue.9, pp.793-795, 1979.

H. Hoppe and N. Sariciftci, Organic solar cells: An overview, Journal of Materials Research, vol.19, issue.07, pp.1924-1945, 2004.

M. A. Green, Improved value for the silicon free exciton binding energy, AIP Advances, vol.3, issue.11, p.112104, 2013.

J. D. Servaites, M. A. Ratner, and T. J. Marks, Organic solar cells: A new look at traditional models, Energy & Environmental Science, vol.4, issue.11, p.4410, 2011.

P. Baruch, A. Vos, P. T. Landsberg, and J. E. Parrott, On some thermodynamic aspects of photovoltaic solar energy conversion, Solar Energy Materials and Solar Cells, vol.36, issue.2, pp.201-222, 1995.

P. Würfel, A. S. Brown, T. E. Humphrey, and M. A. Green, Particle conservation in the hot-carrier solar cell, Progress in Photovoltaics: Research and Applications, vol.13, pp.277-285, 2005.

W. Shockley, The theory of p-nJunctions in semiconductors and p-nJunction transistors, Bell System Technical Journal, vol.28, issue.3, pp.435-489, 1949.

F. A. Lindholm, J. G. Fossum, and E. L. Burgess, Application of the superposition principle to solar-cell analysis, IEEE Transactions on Electron Devices, vol.26, issue.3, pp.165-171, 1979.

W. Deng, H. Fang, X. Jin, X. Zhang, X. Zhang et al., Organic-inorganic hybrid perovskite quantum dots for light-emitting diodes, Journal of Materials Chemistry C, vol.6, issue.18, pp.4831-4841, 2018.

I. L. Braly, D. W. Dequilettes, L. M. Pazos-outón, S. Burke, M. E. Ziffer et al., Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency, Nature Photonics, vol.12, issue.6, pp.355-361, 2018.

C. Zuo, J. Henk, H. Bolink, J. Han, D. Huang et al., Advances in perovskite solar cells, Advanced Science, vol.3, issue.7, p.1500324, 2016.

W. Zhang, G. E. Eperon, and H. J. Snaith, Metal halide perovskites for energy applications, Nature Energy, vol.1, issue.6, p.16048, 2016.

J. Chen, S. Zhou, S. Jin, H. Li, and T. Zhai, Crystal organometal halide perovskites with promising optoelectronic applications, Journal of Materials Chemistry C, vol.4, issue.1, pp.11-27, 2016.

M. Petrovi?, S. Vijila-chellappan, and . Ramakrishna, Perovskites: Solar cells & engineering applications -materials and device developments, Solar Energy, vol.122, pp.678-699, 2015.

W. Tian, H. Zhou, and L. Li, Hybrid organic-inorganic perovskite photodetectors, Small, vol.13, issue.41, p.1702107, 2017.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C 6 H 5 C 2 H 4 NH 3 ) 2 PbI 4, Applied Physics Letters, vol.65, issue.6, pp.676-678, 1994.

K. Naresh, A. Kumawat, K. L. Dey, D. Narasimhan, and . Kabra, Near infrared to visible electroluminescent diodes based on organometallic halide perovskites: Structural and optical investigation, ACS Photonics, vol.2, issue.3, pp.349-354, 2015.

K. Naresh, A. Kumawat, A. Dey, . Kumar, P. Sreelekha et al., Band gap tuning of CH 3 NH 3 Pb(Br 1-x Cl x ) 3 hybrid perovskite for blue electroluminescence, ACS Applied Materials & Interfaces, vol.7, issue.24, pp.13119-13124, 2015.

O. A. Jaramillo-quintero, R. S. Sanchez, M. Rincon, and I. Mora-sero, Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer, The Journal of Physical Chemistry Letters, vol.6, issue.10, pp.1883-1890, 2015.

Z. Tan, R. Saberi-moghaddam, M. L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite, Nature Nanotechnology, vol.9, issue.9, pp.687-692, 2014.

G. Li, Z. Tan, D. Di, M. L. Lai, L. Jiang et al., Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix, Nano Letters, vol.15, issue.4, pp.2640-2644, 2015.

Y. Kim, H. Cho, J. H. Heo, T. Kim, N. Myoung et al., Sang Hyuk Im, and Tae-Woo Lee. Multicolored organic/inorganic hybrid perovskite light-emitting diodes, Advanced Materials, vol.27, issue.7, pp.1248-1254, 2014.

B. Sebastian, D. Meier, A. Tordera, C. Pertegás, E. Roldán-carmona et al., Light-emitting electrochemical cells: recent progress and future prospects, Materials Today, vol.17, issue.5, pp.217-223, 2014.

J. Gao, Polymer light-emitting electrochemical cells-recent advances and future trends, Current Opinion in Electrochemistry, vol.7, pp.87-94, 2018.

F. Meltem, M. D. Aygüler, . Weber, M. D. Bianka, D. D. Puscher et al., Light-emitting electrochemical cells based on hybrid lead halide perovskite nanoparticles, The Journal of Physical Chemistry C, vol.119, issue.21, pp.12047-12054, 2015.

T. Kondo, T. Azuma, T. Yuasa, and R. Ito, Biexciton lasing in the layered perovskite-type material (C 6 H 13 NH 3 ) 2 PbI 4, Solid State Communications, vol.105, issue.4, pp.253-255, 1998.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nature Materials, vol.14, issue.6, pp.636-642, 2015.

L. Dou, Y. Yang, J. You, Z. Hong, W. Chang et al., Solution-processed hybrid perovskite photodetectors with high detectivity, Nature Communications, vol.5, p.5404, 2014.

M. Sergii-yakunin, D. Sytnyk, S. Kriegner, M. Shrestha, G. J. Richter et al., Detection of x-ray photons by solution-processed lead halide perovskites, Nature Photonics, vol.9, issue.7, pp.444-449, 2015.

D. Xin-yu-chin, J. Cortecchia, A. Yin, C. Bruno, and . Soci, Lead iodide perovskite light-emitting field-effect transistor, Nature Communications, vol.6, p.7383, 2015.

, FUNDAMENTAL OPTOELECTRONIC PROPERTIES OF HYBRID PEROVSKITES 2.6 References

D. R. Hartree, The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.01, p.89, 1928.

V. Fock, Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems, Zeitschrift für Physik, vol.61, issue.1-2, pp.126-148, 1930.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, issue.05, p.542, 1927.

E. Fermi, Un metodo statistico per la determinazione di alcune prioprietà dell atomo, Rendiconti: Accademia Nazionale dei Lincei, vol.6, pp.602-607, 1927.

P. A. Dirac, Note on exchange phenomena in the thomas atom, Mathematical Proceedings of the Cambridge Philosophical Society, vol.26, issue.03, p.376, 1930.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical Review, vol.136, issue.3B, pp.864-871, 1964.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.

D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters, vol.45, issue.7, pp.566-569, 1980.

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, pp.5048-5079, 1981.

P. John, Y. Perdew, and . Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, pp.13244-13249, 1992.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.

N. Troullier and J. Martins, Efficient pseudopotentials for plane-wave calculations, Physical Review B, vol.43, issue.3, 1991.

M. José, E. Soler, . Artacho, D. Julian, A. Gale et al., The SIESTA method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter, vol.14, issue.11, pp.2745-2779, 2002.

E. Artacho, . Anglada, J. Diéguez, . Gale, . García et al., The SIESTA method; developments and applicability, Journal of Physics: Condensed Matter, vol.20, issue.6, p.64208, 2008.

J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen et al., BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures, Computer Physics Communications, vol.183, issue.6, pp.1269-1289, 2012.

G. Kresse and J. Furthmüller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, Physical Review B, vol.54, issue.16, pp.11169-11186, 1996.

X. Gonze, J. Beuken, R. Caracas, F. Detraux, M. Fuchs et al., First-principles computation of material properties: the ABINIT software project, Computational Materials Science, vol.25, issue.3, pp.478-492, 2002.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, vol.21, issue.39, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

J. Even, L. Pedesseau, and M. Kepenekian, Electronic surface states and dielectric self-energy profiles in colloidal nanoscale platelets of CdSe, Phys. Chem. Chem. Phys, vol.16, issue.45, pp.25182-25190, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076761

M. Van-schilfgaarde, T. Kotani, and S. Faleev, Quasiparticle self-ConsistentGWTheory, Physical Review Letters, vol.96, issue.22, 2006.

L. Hedin, New method for calculating the one-particle green's function with application to the electron-gas problem, Physical Review, vol.139, issue.3A, pp.796-823, 1965.

E. E. Salpeter and H. A. Bethe, A relativistic equation for bound-state problems, Physical Review, vol.84, issue.6, pp.1232-1242, 1951.

M. A. Peña and J. L. Fierro, Chemical structures and performance of perovskite oxides, Chemical Reviews, vol.101, issue.7, pp.1981-2018, 2001.

C. Li, X. Lu, W. Ding, L. Feng, Y. Gao et al., Formability of ABX 3 (X= F, Cl, Br, I) halide perovskites, Acta Crystallographica Section B Structural Science, vol.64, issue.6, pp.702-707, 2008.

J. Brendan, . Kennedy, J. Christopher, B. C. Howard, and . Chakoumakos, Phase transitions in perovskite at elevated temperatures -a powder neutron diffraction study, Journal of Physics: Condensed Matter, vol.11, issue.6, pp.1479-1488, 1999.

T. Kanata, T. Yoshikawa, and K. Kubota, Grain-size effects on dielectric phase transition of BaTiO 3 ceramics, Solid State Communications, vol.62, issue.11, pp.765-767, 1987.

S. Sharma, N. Weiden, and A. Weiss, Phase diagrams of quasibinary systems of the type: ABX 3 -a'BX 3 , ABX 3 -AB'x 3 , and ABX 3 -ABX' 3 , X=halogen. Zeitschrift für Physikalische Chemie, vol.175, pp.63-80, 1992.

M. I. Cohen, K. F. Young, T. Chang, and W. S. Brower, Phase transitions in CsPbCl 3, Journal of Applied Physics, vol.42, issue.13, pp.5267-5272, 1971.

C. Carabatos-nédelec, M. Oussaïd, and K. Nitsch, Raman scattering investigation of cesium plumbochloride, CsPbCl 3 , phase transitions, Journal of Raman Spectroscopy, vol.34, issue.5, pp.388-393, 2003.

A. Lim and S. Jeong, Twin structure by 133cs NMR in ferroelastic CsPbCl 3 crystal, Solid State Communications, vol.110, issue.3, pp.131-136, 1999.

P. M. Woodward, Octahedral tilting in perovskites. II. structure stabilizing forces, Acta Crystallographica Section B Structural Science, vol.53, issue.1, pp.44-66, 1997.

W. Michael, P. M. Lufaso, and . Woodward, Jahn-teller distortions, cation ordering and octahedral tilting in perovskites, Acta Crystallographica Section B Structural Science, vol.60, issue.1, pp.10-20, 2004.

F. Optoelectronic, . Of, and . Perovskites,

J. A. Alonso, M. J. Martínez-lope, M. T. Casais, and M. T. Fernández-díaz, Evolution of the jahn-teller distortion of MnO 6 octahedra in RMnO 3 perovskites (r = pr, nd, dy, tb, ho, er, y): A neutron diffraction study, Inorganic Chemistry, vol.39, issue.5, pp.917-923, 2000.

D. M. Trots and S. V. Myagkota, High-temperature structural evolution of caesium and rubidium triiodoplumbates, Journal of Physics and Chemistry of Solids, vol.69, issue.10, pp.2520-2526, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00565442

G. W. West, Nuclear magnetic resonance in ?-brass, Nature, vol.182, issue.4647, pp.1436-1436, 1958.

A. Poglitsch and D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (ii) observed by millimeter-wave spectroscopy, The Journal of Chemical Physics, vol.87, issue.11, pp.6373-6378, 1987.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorganic Chemistry, vol.52, issue.15, pp.9019-9038, 2013.

G. Kieslich, S. Sun, and A. K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog, Chem. Sci, vol.5, issue.12, pp.4712-4715, 2014.

R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.25, pp.925-946, 1969.

M. A. Green, A. Ho-baillie, and H. J. Snaith, The emergence of perovskite solar cells, Nature Photonics, vol.8, issue.7, pp.506-514, 2014.

O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, J. M. Michiel et al., Alkylammonium lead halides. part 2. CH 3 NH 3 PbX 3 (X=Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation, Canadian Journal of Chemistry, vol.68, issue.3, pp.412-422, 1990.

R. E. Wasylishen, O. Knop, and J. B. Macdonald, Cation rotation in methylammonium lead halides, Solid State Communications, vol.56, issue.7, pp.581-582, 1985.

Y. Kawamura, H. Mashiyama, and K. Hasebe, Structural study on cubic-tetragonal transition of CH 3 NH 3 PbI 3, Journal of the Physical Society of Japan, vol.71, issue.7, pp.1694-1697, 2002.

B. Aurivillius, Mixed bismuth oxides with layer lattices, Arkiv for Kemi, vol.1, pp.463-480, 1949.

S. N. Ruddlesden and P. Popper, The compound sr3ti2o7 and its structure, Acta Crystallographica, vol.11, issue.1, pp.54-55, 1958.

M. Dion, M. Ganne, and M. Tournoux, Nouvelles familles de phases MIMII 2 Nb 3 O 10 à feuillets "perovskites, Materials Research Bulletin, vol.16, issue.11, pp.1429-1435, 1981.

A. J. Jacobson, J. W. Johnson, and J. T. Lewandowski, Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca 2 Na n-3 Nb n O 3n+1 (3 ? n ? 7), Inorganic Chemistry, vol.24, issue.23, pp.3727-3729, 1985.

D. B. Mitzi, C. A. Feild, W. T. Harrison, and A. M. Guloy, Conducting tin halides with a layered organic-based perovskite structure, Nature, vol.369, issue.6480, pp.467-469, 1994.

C. C. Stoumpos, H. Duyen, D. J. Cao, J. Clark, J. M. Young et al., Ruddlesden-popper hybrid lead iodide perovskite 2d homologous semiconductors, Chemistry of Materials, vol.28, issue.8, pp.2852-2867, 2016.

C. Soe, C. C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai et al., ) 3 )(CH 3 NH 3 ) n Pb n I 3n+1 : Structure, properties, and photovoltaic performance, Journal of the American Chemical Society, vol.139, issue.2, pp.16297-16309, 2017.

D. Sapori, M. Kepenekian, L. Pedesseau, C. Katan, and J. Even, Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites, Nanoscale, vol.8, issue.12, pp.6369-6378, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01242389

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J. Lauret et al., Solid-state physics perspective on hybrid perovskite semiconductors, The Journal of Physical Chemistry C, vol.119, issue.19, pp.10161-10177, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01138487

C. H. Park, K. Matsuishi, and Y. H. Chang, First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites CH 3 NH 3 PbX 3 and CsPbX 3 (X=Cl, Br, I), Journal of the Korean Physical Society, vol.44, issue.4, pp.889-893, 2004.

A. Radi, O. B. Jishi, A. A. Ta, and . Sharif, Modeling of lead halide perovskites for photovoltaic applications, The Journal of Physical Chemistry C, vol.118, issue.49, pp.28344-28349, 2014.

C. Grote and R. F. Berger, Strain tuning of tin-halide and lead-halide perovskites: A first-principles atomic and electronic structure study, The Journal of Physical Chemistry C, vol.119, issue.40, pp.22832-22837, 2015.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei et al., Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3 )PbI 3 for solid-state sensitised solar cell applications, Journal of Materials Chemistry A, vol.1, issue.18, p.5628, 2013.

I. P. Swainson, R. P. Hammond, C. Soullière, O. Knop, and W. Massa, Phase transitions in the perovskite methylammonium lead bromide, CH 3 ND 3 PbBr 3, Journal of Solid State Chemistry, vol.176, issue.1, pp.97-104, 2003.

J. Even, L. Pedesseau, M. Dupertuis, J. Jancu, and C. Katan, Electronic model for self-assembled hybrid organic/perovskite semiconductors: Reverse band edge electronic states ordering and spin-orbit coupling, Physical Review B, vol.86, issue.20, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00753888

J. Even, L. Pedesseau, J. Jancu, and C. Katan, Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications, The Journal of Physical Chemistry Letters, vol.4, issue.17, pp.2999-3005, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920110

L. Pedesseau, J. Jancu, A. Rolland, E. Deleporte, C. Katan et al., Electronic properties of 2d and 3d hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications, Optical and Quantum Electronics, vol.46, issue.10, pp.1225-1232, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920131

J. Even, L. Pedesseau, J. Jancu, and C. Katan, Importance of spin-orbit coupling in hybrid organic inorganic perovskites for photovoltaic applications, The Journal of Physical Chemistry Letters, vol.4, issue.17, pp.2999-3005, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920110

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari et al., Cation-induced band-gap tuning

M. Kepenekian, R. Robles, C. Katan, D. Sapori, L. Pedesseau et al., Rashba and dresselhaus effects in hybrid organic-inorganic perovskites: From basics to devices, ACS Nano, vol.9, issue.12, pp.11557-11567, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205437

L. Pedesseau, M. Kepenekian, R. Robles, D. Sapori, C. Katan et al., Theoretical studies of rashba and dresselhaus effects in hybrid organic-inorganic perovskites for optoelectronic applications, Physics and Simulation of Optoelectronic Devices XXIV. SPIE, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291660

J. Even, Pedestrian guide to symmetry properties of the reference cubic structure of 3d allinorganic and hybrid perovskites, The Journal of Physical Chemistry Letters, vol.6, issue.12, pp.2238-2242, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165777

J. Gregg, . Petej, C. Jouguelet, and . Dennis, Spin electronics a review, Journal of Physics D: Applied Physics, vol.35, issue.18, pp.121-155, 2002.

R. Jansen, The spin-valve transistor: a review and outlook, Journal of Physics D: Applied Physics, vol.36, issue.19, pp.289-308, 2003.

I. ?uti?, J. Fabian, and S. Sarma, Spintronics: Fundamentals and applications, Reviews of Modern Physics, vol.76, issue.2, pp.323-410, 2004.

R. Jansen, Silicon spintronics, Nature Materials, vol.11, issue.5, pp.400-408, 2012.

J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications, Nano-Micro Letters, vol.9, issue.3, 2017.

L. Polavarapu, B. Nickel, J. Feldmann, and A. S. Urban, Advances in quantum-confined perovskite nanocrystals for optoelectronics, Advanced Energy Materials, vol.7, issue.16, p.1700267, 2017.

A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, vol.271, issue.5251, pp.933-937, 1996.

F. Zhang, H. Zhong, C. Chen, X. Xian-gang-wu, H. Hu et al., Brightly luminescent and color-tunable colloidal CH 3 NH 3 PbX 3 (X=Br, I, Cl) quantum dots: Potential alternatives for display technology, ACS Nano, vol.9, issue.4, pp.4533-4542, 2015.

F. Zhu, L. Men, Y. Guo, Q. Zhu, U. Bhattacharjee et al., Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals, ACS Nano, vol.9, issue.3, pp.2948-2959, 2015.

K. T. Butler, J. M. Frost, and A. Walsh, Band alignment of the hybrid halide perovskites CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 . Materials Horizons, vol.2, pp.228-231, 2015.

J. Even, L. Pedesseau, and C. Katan, Understanding quantum confinement of charge carriers in layered 2d hybrid perovskites, ChemPhysChem, vol.15, issue.17, pp.3733-3741, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061361

L. C. Schmidt, A. Pertegás, S. González-carrero, O. Malinkiewicz, S. Agouram et al., Nontemplate synthesis of CH 3 NH 3 PbBr 3 perovskite nanoparticles, Journal of the American Chemical Society, vol.136, issue.3, pp.850-853, 2014.

Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer et al.,

, FUNDAMENTAL OPTOELECTRONIC PROPERTIES OF HYBRID PEROVSKITES monium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications, Journal of the American Chemical Society, vol.137, issue.17, pp.5810-5818, 2015.

P. Tyagi, S. M. Arveson, and W. A. Tisdale, Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement, The Journal of Physical Chemistry Letters, vol.6, issue.10, pp.1911-1916, 2015.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX 3 , X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Letters, vol.15, issue.6, pp.3692-3696, 2015.

S. González-carrero, R. E. Galian, and J. Pérez-prieto, Organometal halide perovskites: Bulk low-dimension materials and nanoparticles. Particle & Particle Systems Characterization, vol.32, pp.709-720, 2015.

J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer et al., Quantum size effect in organometal halide perovskite nanoplatelets, Nano Letters, vol.15, issue.10, pp.6521-6527, 2015.

Y. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang et al., Bright light-emitting diodes based on organometal halide perovskite nanoplatelets, Advanced Materials, vol.28, issue.2, pp.305-311, 2015.

Y. Park, S. Guo, N. S. Makarov, and V. I. Klimov, Room temperature single-photon emission from individual perovskite quantum dots, ACS Nano, vol.9, issue.10, pp.10386-10393, 2015.

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds, Physical Review B, vol.51, issue.20, pp.14370-14378, 1995.

D. Sapori, M. Kepenekian, L. Pedesseau, C. Katan, and J. Even, Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites, Nanoscale, vol.8, issue.12, pp.6369-6378, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01242389

J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer et al., Quantum size effect in organometal halide perovskite nanoplatelets, Nano Letters, vol.15, issue.10, pp.6521-6527, 2015.

J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications, Nano-Micro Letters, vol.9, issue.3, 2017.

K. F. Young and H. P. Frederikse, Compilation of the static dielectric constant of inorganic solids, Journal of Physical and Chemical Reference Data, vol.2, issue.2, pp.313-410, 1973.

E. E. Havinga, The temperature dependence of dielectric constants, Journal of Physics and Chemistry of Solids, vol.18, issue.2-3, pp.253-255, 1961.

I. Strzalkowski, S. Joshi, and C. R. Crowell, Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe, Applied Physics Letters, vol.28, issue.6, pp.350-352, 1976.

R. David and . Lide, Handbook of Chemistry and Physics 84 th Edition, 2003.

R. G. Barrera and C. B. Duke, Dielectric continuum theory of the electronic structure of interfaces, Physical Review B, vol.13, issue.10, pp.4477-4489, 1976.

M. Kumagai and T. Takagahara, Excitonic and nonlinear-optical properties of dielectric quantum-well structures, Physical Review B, vol.40, issue.18, pp.12359-12381, 1989.

R. Benchamekh, N. A. Gippius, J. Even, M. O. Nestoklon, J. Jancu et al., Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe, Physical Review B, vol.89, issue.3, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942566

B. Meyer and D. Vanderbilt, Ab initiostudy of BaTiO 3 and PbTiO 3 surfaces in external electric fields, Physical Review B, vol.63, issue.20, 2001.

F. Giustino and A. Pasquarello, Theory of atomic-scale dielectric permittivity at insulator interfaces, Physical Review B, vol.71, issue.14, 2005.

B. Lee, C. Lee, S. Han, J. Lee, and C. Hwang, Firstprinciples calculation of capacitance including interfacial effects, Journal of Applied Physics, vol.103, issue.2, p.24106, 2008.

G. Kresse and J. Furthmüller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, Physical Review B, vol.54, issue.16, pp.11169-11186, 1996.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al.,

. Dielectric, R. M. Halide-perovskites-umari, and . Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, vol.21, issue.39, p.395502, 2009.

N. Shi and R. Ramprasad, Dielectric properties of ultrathin SiO 2 slabs, Applied Physics Letters, vol.87, issue.26, p.262102, 2005.

N. Shi and R. Ramprasad, Atomic-scale dielectric permittivity profiles in slabs and multilayers, Physical Review B, vol.74, issue.4, 2006.

M. José, E. Soler, . Artacho, D. Julian, A. Gale et al., The SIESTA method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter, vol.14, issue.11, pp.2745-2779, 2002.

E. Artacho, . Anglada, J. Diéguez, . Gale, . García et al., The SIESTA method; developments and applicability, Journal of Physics: Condensed Matter, vol.20, issue.6, p.64208, 2008.

J. Even, L. Pedesseau, and M. Kepenekian, Electronic surface states and dielectric self-energy profiles in colloidal nanoscale platelets of CdSe, Phys. Chem. Chem. Phys, vol.16, issue.45, pp.25182-25190, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076761

J. Junquera, H. Morrel, K. M. Cohen, and . Rabe, Nanoscale smoothing and the analysis of interfacial charge and dipolar densities, Journal of Physics: Condensed Matter, vol.19, issue.21, p.213203, 2007.

K. Wakamura and Y. Noda, Enhanced interionic forces above tc in ABX 3 -type superionic conductors, Journal of Physics and Chemistry of Solids, vol.62, issue.11, pp.2027-2034, 2001.

M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Magnetoabsorption of the lowest exciton in perovskite-type compound (CH 3 NH 3 )PbI 3, Physica B: Condensed Matter, vol.201, pp.427-430, 1994.

F. Brivio, A. B. Walker, and A. Walsh, Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles, APL Materials, vol.1, issue.4, p.42111, 2013.

P. Umari, E. Mosconi, and F. Angelis, Relativistic gw calculations on CH 3 NH 3 PbI 3 and CH 3 NH 3 SnI 3 perovskites for solar cell applications, Scientific Reports, vol.4, 2014.

F. , A. Solsona, and J. , Dielectric properties of ten primary amines at microwave frequencies as a function of temperature, Journal of Physics D: Applied Physics, vol.15, issue.9, pp.1783-1793, 1982.

A. Poglitsch and D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (ii) observed by millimeter-wave spectroscopy, The Journal of Chemical Physics, vol.87, issue.11, pp.6373-6378, 1987.

N. Onoda-yamamuro, T. Matsuo, and H. Suga, Dielectric study of CH 3 NH 3 PbX 3 (X=Cl, Br, I), Journal of Physics and Chemistry of Solids, vol.53, issue.7, pp.935-939, 1992.

Q. Lin, A. Armin, R. Chandra-raju, P. L. Nagiri, P. Burn et al., Electro-optics of perovskite solar cells, Nature Photonics, vol.9, issue.2, pp.106-112, 2014.

J. Even, L. Pedesseau, and C. Katan, Understanding quantum confinement of charge carriers in layered 2d hybrid perovskites, ChemPhysChem, vol.15, issue.17, pp.3733-3741, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061361

M. Saliba, T. Matsui, J. Seo, K. Domanski, J. Correa-baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci, vol.9, issue.6, pp.1989-1997, 2016.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu et al., Highperformance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, vol.348, issue.6240, pp.1234-1237, 2015.

D. Liu and T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics, vol.8, issue.2, pp.133-138, 2013.

J. Hyuck-heo, S. H. Im, J. Hong-noh, T. N. Mandal, C. Lim et al., Michael Grätzel, and Sang Il Seok. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nature Photonics, vol.7, issue.6, pp.486-491, 2013.

H. Zhang and J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, Journal of Materials Chemistry, vol.8, issue.9, pp.2073-2076, 1998.

O. Brian, M. Regan, and . Grätzel, A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO 2 films, Nature, vol.353, issue.6346, pp.737-740, 1991.

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, Electrochemical and photoelectrochemical investigation of single-crystal anatase, Journal of the American Chemical Society, vol.118, issue.28, pp.6716-6723, 1996.

M. Lazzeri, A. Vittadini, and A. Selloni, Structure and energetics of stoichiometric TiO 2 anatase surfaces, Physical Review B, vol.63, issue.15, 2001.

R. , L. Penn, and J. F. Banfield, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania, Geochimica et Cosmochimica Acta, vol.63, issue.10, pp.1549-1557, 1999.

G. Hua, C. Yang, . Sun, J. Shi-zhang-qiao, G. Zou et al., Anatase TiO 2 single crystals with a large percentage of reactive facets, Nature, vol.453, issue.7195, pp.638-641, 2008.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. Kumar-chandiran et al., Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 heterojunction solar cells, Journal of the American Chemical Society, vol.134, issue.42, pp.17396-17399, 2012.

X. Wu, Z. Chen, G. Lu, and L. Wang, Nanosized anatase TiO 2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells, Advanced Functional Materials, vol.21, issue.21, pp.4167-4172, 2011.

L. Chu, Z. Qin, J. Yang, and X. Li, Anatase TiO 2 nanoparticles with exposed <001> facets for efficient dye-sensitized solar cells, Scientific Reports, vol.5, issue.1, 2015.

F. Hao, X. Wang, C. Zhou, X. Jiao, X. Li et al., Efficient light harvesting and charge collection of dye-sensitized solar cells with (001) faceted single crystalline anatase nanoparticles, J. Phys. Chem. C, vol.116, issue.36, pp.19164-19172, 2012.

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu et al., Hole-conductor-free mesoscopic TiO 2 /CH 3 NH 3 PbI 3 heterojunction solar cells

I. N. Dielectric-confinement, . Hybrid, and . Perovskites, The Journal of Physical Chemistry Letters, vol.5, issue.12, pp.2160-2164, 2014.

M. I. Dar, F. J. Ramos, Z. Xue, B. Liu, S. Ahmad et al., Photoanode based on (001)-oriented anatase nanoplatelets for organic-inorganic lead iodide perovskite solar cell, Chemistry of Materials, vol.26, issue.16, pp.4675-4678, 2014.

J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 k, Journal of the American Chemical Society, vol.109, issue.12, pp.3639-3646, 1987.

R. J. Gonzalez, R. Zallen, and H. Berger, Infrared reflectivity and lattice fundamentals in anatase TiO 2, Physical Review B, vol.55, issue.11, pp.7014-7017, 1997.

D. R. Lide, CRC Handbook of Chemistry and Physics, 2005.

R. Asahi, Y. Taga, W. Mannstadt, and A. J. Freeman, Electronic and optical properties of TiO 2, Physical Review B, vol.61, issue.11, pp.7459-7465, 2000.

M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, Lattice dynamics and dielectric properties of TiO 2 anatase: A first-principles study, Physical Review B, vol.66, issue.15, 2002.

Y. Kawamura, H. Mashiyama, and K. Hasebe, Structural study on cubic-tetragonal transition of CH 3 NH 3 PbI 3, Journal of the Physical Society of Japan, vol.71, issue.7, pp.1694-1697, 2002.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorganic Chemistry, vol.52, issue.15, pp.9019-9038, 2013.

E. Mosconi, E. Ronca, and F. Angelis, First-principles investigation of the TiO 2 /organohalide perovskites interface: The role of interfacial chlorine, The Journal of Physical Chemistry Letters, vol.5, issue.15, pp.2619-2625, 2014.

H. Feng, T. R. Paudel, Y. Evgeny, X. C. Tsymbal, and . Zeng, Tunable optical properties and charge separation in CH 3 nh 3 Sn x Pb 1-x I 3 /TiO 2 -based planar perovskites cells, Journal of the American Chemical Society, vol.137, issue.25, pp.8227-8236, 2015.

R. Long and O. V. Prezhdo, Dopants control electron-hole recombination at perovskite-TiO 2 interfaces: Ab initio time-domain study, ACS Nano, vol.9, issue.11, pp.11143-11155, 2015.

W. Geng, C. Tong, J. Liu, W. Zhu, W. Lau et al., Structures and electronic properties of different CH 3 NH 3 PbI 3 /TiO 2 interface: A first-principles study, Scientific Reports, vol.6, issue.1, 2016.

Q. Chen, H. Zhou, Y. Fang, A. Z. Stieg, T. Song et al., The optoelectronic role of chlorine in CH 3 NH 3 PbI 3 (cl)-based perovskite solar cells, Nature Communications, vol.6, p.7269, 2015.

A. Elham-halvani-anaraki, L. Kermanpur, K. Steier, T. Domanski, W. Matsui et al., Highly efficient and stable planar perovskite solar cells by solutionprocessed tin oxide, Energy Environ. Sci, vol.9, issue.10, pp.3128-3134, 2016.

W. Chen, F. Liu, X. Feng, A. B. Djuri?i?, W. K. Chan et al., Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells, Advanced Energy Materials, p.1700722, 2017.

M. Batzill, K. Katsiev, J. M. Burst, U. Diebold, A. M. Chaka et al., Gas-phase-dependent properties of SnO 2 (110), (100), and (101) single-crystal surfaces: Structure, composition, and electronic properties, Physical Review B, vol.72, issue.16, 2005.

J. Oviedo and M. Gillan, Energetics and structure of stoichiometric SnO 2 surfaces studied by first-principles calculations, Surface Science, vol.463, issue.2, pp.93-101, 2000.

M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, vol.79, issue.2-4, pp.47-154, 2005.

A. P. Cracknell and S. J. Joshua, The space group corepresentations of antiferromagnetic NiO, Mathematical Proceedings of the Cambridge Philosophical Society, vol.66, issue.02, p.493, 1969.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, vol.131, issue.17, pp.6050-6051, 2009.

M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.4, issue.2, pp.145-153, 2003.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dyesensitized solar cells, Chemical Reviews, vol.110, issue.11, pp.6595-6663, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02142488

J. Im, C. Lee, and J. Lee, Sang-Won Park, and Nam-Gyu Park. 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, vol.3, issue.10, p.4088, 2011.

J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. Cevey-ha et al., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells, Journal of the American Chemical Society, vol.133, issue.45, pp.18042-18045, 2011.

H. Kim, C. Lee, J. Im, K. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific Reports, vol.2, 2012.

J. Hong-noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel et al., Nanostructured TiO 2 /CH 3 NH 3 pbi 3 heterojunction solar cells employing spiro-OMeTAD/co-complex as hole-transporting material, Journal of Materials Chemistry A, vol.1, issue.38, p.11842, 2013.

J. Burschka, N. Pellet, S. Moon, R. Humphry-baker, and P. Gao, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, vol.499, issue.7458, pp.316-319, 2013.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. Kumar-chandiran et al., Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 heterojunction solar cells, Journal of the American Chemical Society, vol.134, issue.42, pp.17396-17399, 2012.

N. Joong-jeon, J. Hong-noh, and Y. C. Kim, Woon Seok Yang, Seungchan Ryu, and Sang Il Seok. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Materials, vol.13, issue.9, pp.897-903, 2014.

N. Joong-jeon, J. Hong-noh, W. Yang, Y. C. Kim, and S. Ryu, Jangwon Seo, and Sang Il Seok. Compositional engineering of perovskite materials for high-performance solar cells, Nature, vol.517, issue.7535, pp.476-480, 2015.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites, Science Advances, vol.2, issue.1, pp.1501170-1501170, 2016.

S. Ameen, M. A. Rub, A. Samia, K. A. Kosa, M. S. Alamry et al., Perovskite solar cells: Influence of hole transporting materials on power conversion efficiency, ChemSusChem, vol.9, issue.1, pp.10-27, 2015.

T. Swetha and S. Singh, Perovskite solar cells based on small molecule hole transporting materials, J. Mater. Chem. A, vol.3, issue.36, pp.18329-18344, 2015.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu et al., Highperformance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, vol.348, issue.6240, pp.1234-1237, 2015.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao et al., Impedance spectroscopic analysis of lead iodide perovskitesensitized solid-state solar cells, ACS Nano, vol.8, issue.1, pp.362-373, 2014.

J. Henry, A. Snaith, J. M. Abate, G. E. Ball, T. Eperon et al., Anomalous hysteresis in perovskite solar cells, The Journal of Physical Chemistry Letters, vol.5, issue.9, pp.1511-1515, 2014.

R. Chin-hoong-teh, . Daik, C. C. Eng-liang-lim, and . Yap, Mohd Adib Ibrahim, Norasikin Ahmad Ludin, Kamaruzzaman Sopian, and Mohd Asri Mat Teridi. A review of organic small molecule-based hole-transporting materials for meso-structured organic-inorganic perovskite solar cells, J. Mater. Chem. A, vol.4, issue.41, pp.15788-15822, 2016.

B. Woon-seok-yang, E. Park, N. J. Jung, Y. C. Jeon, D. U. Kim et al., Jun Hong Noh, and Sang Il Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Eun Kyu Kim, vol.356, issue.6345, pp.1376-1379, 2017.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, vol.338, issue.6107, pp.643-647, 2012.

M. Liu, M. B. Johnston, and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, vol.501, issue.7467, pp.395-398, 2013.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song et al., Interface engineering of highly efficient perovskite solar cells, Science, vol.345, issue.6196, pp.542-546, 2014.

D. Liu and T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics, vol.8, issue.2, pp.133-138, 2013.

W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin et al., Low-temperature solution, p.117

. Photovoltaic and . Architectures, AND FABRICATION PROCESSES tin oxide as an alternative electron transporting layer for efficient perovskite solar cells, Journal of the American Chemical Society, vol.137, issue.21, pp.6730-6733, 2015.

A. Elham-halvani-anaraki, L. Kermanpur, K. Steier, T. Domanski, W. Matsui et al., Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energy Environ. Sci, vol.9, issue.10, pp.3128-3134, 2016.

W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, J. Ge et al., Efficient planar perovskite solar cells using room-temperature vacuum-processed c60 electron selective layers, J. Mater. Chem. A, vol.3, issue.35, pp.17971-17976, 2015.

H. Yoon, M. Seong, J. Kang, M. Lee, and . Choi, Hysteresis-free lowtemperature-processed planar perovskite solar cells with 19.1% efficiency, Energy Environ. Sci, vol.9, issue.7, pp.2262-2266, 2016.

Y. Zhang, M. Liu, G. E. Eperon, T. C. Leijtens, D. Mcmeekin et al., Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells, Mater. Horiz, vol.2, issue.3, pp.315-322, 2015.

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nature Communications, vol.4, 2013.

J. Jeng, Y. Chiang, M. Lee, S. Peng, T. Guo et al., CH 3 NH 3 Pb 3 perovskite/fullerene planar-heterojunction hybrid solar cells, Advanced Materials, vol.25, issue.27, pp.3727-3732, 2013.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang et al., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy & Environmental Science, vol.7, issue.8, p.2619, 2014.

W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, vol.347, issue.6221, pp.522-525, 2015.

C. Wu, C. Chiang, Z. Tseng, M. K. Nazeeruddin, A. Hagfeldt et al., High efficiency stable inverted perovskite solar cells without current hysteresis, Energy Environ. Sci, vol.8, issue.9, pp.2725-2733, 2015.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science, vol.350, issue.6263, pp.944-948, 2015.

K. Wang, P. Shen, M. Li, S. Chen, M. Lin et al., Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH 3 NH 3 Pbi 3 perovskite heterojunction solar cells, ACS Applied Materials & Interfaces, vol.6, issue.15, pp.11851-11858, 2014.

K. Wang, J. Jeng, P. Shen, Y. Chang, E. Wei-guang et al., Tzung-Fang Guo, and Ten-Chin Wen. p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Scientific Reports, vol.4, issue.1, 2014.

J. Jeng, K. Chen, T. Chiang, P. Lin, T. Tsai et al., Nickel oxide electrode interlayer in CH 3 NH 3 PbI 3 perovskite/PCBm planar-heterojunction hybrid solar cells, Advanced Materials, vol.26, issue.24, pp.4107-4113, 2014.

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long et al., High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells, Angewandte Chemie, 2014.

W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang et al., Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells, Energy Environ. Sci, vol.8, issue.2, pp.629-640, 2015.

J. Jong-hoon-park, S. Seo, . Park, S. Seong, Y. C. Shin et al., Efficient CH 3 NH 3 PbI 3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition, Advanced Materials, vol.27, issue.27, pp.4013-4019, 2015.

J. Jung, C. Chueh, and A. Jen, A low-temperature, solutionprocessable, cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells, Advanced Materials, vol.27, issue.47, pp.7874-7880, 2015.

S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd et al., Tze Chien Sum, and Yeng Ming Lam. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells, Energy Environ. Sci, vol.7, issue.1, pp.399-407, 2014.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Grätzel et al., Perovskite solar cells employing organic charge-transport layers, Nature Photonics, vol.8, issue.2, pp.128-132, 2013.

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement, Advanced Materials, vol.26, issue.37, pp.6503-6509, 2014.

Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang et al., Abnormal crystal growth in CH 3 NH 3 PbI 3-x Cl x using a multi-cycle solution coating process, Energy Environ. Sci, vol.8, issue.8, pp.2464-2470, 2015.

M. Li, P. Shen, K. Wang, T. Guo, and P. Chen, Inorganic p-type contact materials for perovskite-based solar cells, J. Mater. Chem. A, vol.3, issue.17, pp.9011-9019, 2015.

C. Zuo and L. Ding, Solution-processed cu2o and CuO as hole transport materials for efficient perovskite solar cells, Small, vol.11, issue.41, pp.5528-5532, 2015.

J. Ik, G. Park, M. A. Kang, J. Park, . Kim et al., Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiO x hole-extraction layer, ChemSusChem, vol.10, issue.12, pp.2660-2667, 2017.

J. H. Kim, P. Liang, S. T. Williams, N. Cho, C. Chueh et al., , p.119

. Photovoltaic and . Architectures, AND FABRICATION PROCESSES planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer, Advanced Materials, vol.27, issue.4, pp.695-701, 2014.

X. Yin, M. Que, Y. Xing, and W. Que, High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer, J. Mater. Chem. A, vol.3, issue.48, pp.24495-24503, 2015.

. Md, M. Islam, Y. Yanagida, Y. Shirai, K. Nabetani et al., NiOx hole transport layer for perovskite solar cells with improved stability and reproducibility, ACS Omega, vol.2, issue.5, pp.2291-2299, 2017.

J. You, L. Meng, T. Song, T. Guo, Y. (. Michael et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nature Nanotechnology, vol.11, issue.1, pp.75-81, 2015.

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH 3 NH 3 PbI 3 planar heterojunction solar cells, Nature Communications, vol.5, p.5784, 2014.

N. Park, Methodologies for high efficiency perovskite solar cells, Nano Convergence, vol.3, issue.1, 2016.

Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai et al., Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells, Materials Science and Engineering: R: Reports, vol.101, pp.1-38, 2016.

J. Hong-noh, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal, and Sang Il Seok, vol.13, pp.1764-1769, 2013.

L. Zhao, D. Luo, J. Wu, Q. Hu, W. Zhang et al., High-performance inverted planar heterojunction perovskite solar cells based on lead acetate precursor with efficiency exceeding 18%, Rui Zhu, and Qihuang Gong, vol.26, pp.3508-3514, 2016.

K. Liang, D. B. Mitzi, and M. T. Prikas, Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique, Chemistry of Materials, vol.10, issue.1, pp.403-411, 1998.

D. B. Mitzi, Thin-film deposition of organic-inorganic hybrid materials, Chemistry of Materials, vol.13, issue.10, pp.3283-3298, 2001.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. Hsin-sheng-duan et al., Planar heterojunction perovskite solar cells via vaporassisted solution process, Journal of the American Chemical Society, vol.136, issue.2, pp.622-625, 2014.

M. Era, T. Hattori, T. Taira, and T. Tsutsui, Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition, Chemistry of Materials, vol.9, issue.1, pp.8-10, 1997.

D. B. Mitzi, M. T. Prikas, and K. Chondroudis, Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique, Chemistry of Materials, vol.11, issue.3, pp.542-544, 1999.

C. Chen, H. Kang, S. Hsiao, P. Yang, K. Chiang et al., Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition, Advanced Materials, vol.26, issue.38, pp.6647-6652, 2014.

J. H. Kim, S. T. Williams, N. Cho, C. Chueh, and A. Jen, Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating, Advanced Energy Materials, vol.5, issue.4, p.1401229, 2014.

S. Razza, F. D. Giacomo, F. Matteocci, L. Cinà, A. L. Palma et al., Perovskite solar cells and large area modules (100 cm 2 ) based on an air flow-assisted Pbi2 blade coating deposition process, Journal of Power Sources, vol.277, pp.286-291, 2015.

Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong et al., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers, Energy Environ. Sci, vol.8, issue.5, pp.1544-1550, 2015.

Z. Yang, C. Chueh, F. Zuo, J. H. Kim, P. Liang et al., High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition, Advanced Energy Materials, vol.5, issue.13, p.1500328, 2015.

K. Hwang, Y. Jung, Y. Heo, F. H. Scholes, S. E. Watkins et al., Toward large scale roll-to-roll production of fully printed perovskite solar cells, Advanced Materials, vol.27, issue.7, pp.1241-1247, 2015.

G. Cotella, J. Baker, D. Worsley, F. D. Rossi, C. Pleydell-pearce et al., One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications, Solar Energy Materials and Solar Cells, vol.159, pp.362-369, 2017.

A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. Dunbar, A. R. Buckley et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition, Energy & Environmental Science, vol.7, issue.9, p.2944, 2014.

S. Das, B. Yang, G. Gu, C. Pooran, . Joshi et al., High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing, ACS Photonics, vol.2, issue.6, pp.680-686, 2015.

S. Bahram-abdollahi-nejand, V. Gharibzadeh, H. R. Ahmadi, and . Shahverdi, New scalable cold-roll pressing for post-treatment of perovskite microstructure in perovskite solar cells, The Journal of Physical Chemistry C, vol.120, issue.5, pp.2520-2528, 2016.

. Woo-jin, D. Choi, C. Kwak, Y. Park, and . Sung, Characterization of transparent conductive ITO, ITiO, and FTO films for application in photoelectrochemical cells, Journal of Nanoscience and Nanotechnology, vol.12, issue.4, pp.3394-3397, 2012.

P. Liang, C. Liao, C. Chueh, F. Zuo, S. T. Williams et al., Additive enhanced crystallization of solution-processed per, p.121

, PHOTOVOLTAIC DEVICE ARCHITECTURES AND FABRICATION PROCESSES ovskite for highly efficient planar-heterojunction solar cells, Advanced Materials, vol.26, issue.22, pp.3748-3754, 2014.

D. Kwak, B. Moon, D. Lee, C. Park, and Y. Sung, Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorinedoped tin oxide films for dye-sensitized solar cell application, Journal of Electrical Engineering and Technology, vol.6, issue.5, pp.684-687, 2011.

L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao et al., Recent advances in bulk heterojunction polymer solar cells, Chemical Reviews, vol.115, issue.23, pp.12666-12731, 2015.

F. Di-giacomo, A. Fakharuddin, R. Jose, and T. M. Brown, Progress, challenges and perspectives in flexible perovskite solar cells, Energy Environ. Sci, vol.9, issue.10, pp.3007-3035, 2016.

J. R. Vig, UV/ozone cleaning of surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.3, issue.3, pp.1027-1034, 1985.

H. Yamaguchi, J. Granstrom, W. Nie, H. Sojoudi, T. Fujita et al., Reduced graphene oxide thin films as ultrabarriers for organic electronics, Advanced Energy Materials, vol.4, issue.4, p.1300986, 2013.

T. Leijtens, G. E. Eperon, N. K. Noel, N. Severin, A. Habisreutinger et al., Stability of metal halide perovskite solar cells, Advanced Energy Materials, vol.5, issue.20, p.1500963, 2015.

S. Pramod and . Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics, vol.59, issue.3, pp.185-198, 1999.

R. R. Chamberlin and J. S. Skarman, Chemical spray deposition process for inorganic films, Journal of The Electrochemical Society, vol.113, issue.1, p.86, 1966.

R. R. Chamberlin and J. S. Skarman, Chemically sprayed thin film photovoltaic converters, Solid-State Electronics, vol.9, issue.8, pp.819-823, 1966.

M. Fujimoto, T. Urano, S. Murai, and Y. Nishi, Microstructure and x-ray study of preferentially oriented SnO 2 thin film prepared by pyrohydrolytic decomposition, Japanese Journal of Applied Physics, vol.28, issue.12, pp.2587-2593, 1989.

K. Murakami, I. Yagi, and S. Kaneko, Oriented growth of tin oxide thin films on glass substrates by spray pyrolysis of organotin compounds, Journal of the American Ceramic Society, vol.79, issue.10, pp.2557-2562, 2005.

C. H. Lee and L. Y. Lin, Characteristics of spray pyrolytic ZnO thin films, Applied Surface Science, vol.92, pp.163-166, 1996.

A. F. Aktaruzzaman, G. L. Sharma, and L. K. Malhotra, Electrical, optical and annealing characteristics of ZnO:Al films prepared by spray pyrolysis, Thin Solid Films, vol.198, issue.1-2, pp.67-74, 1991.

W. W. Xu, R. Kershaw, K. Dwight, and A. Wold, Preparation and characterization of TiO 2 films by a novel spray pyrolysis method, Materials Research Bulletin, vol.25, issue.11, pp.1385-1392, 1990.

S. Zhang, Y. F. Zhu, and D. E. Brodie, Photoconducting TiO 2 prepared by spray pyrolysis using TiCl 4, Thin Solid Films, vol.213, issue.2, pp.265-270, 1992.

R. P-s-patil and . Patil, Studies on spray pyrolyzed molybdenum trioxide thin films, Bulletin of Materials Science, vol.18, issue.7, pp.911-916, 1995.

P. Patil and L. Kadam, Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films, Applied Surface Science, vol.199, issue.1-4, pp.211-221, 2002.

O. Stryckmans, P. Segato, and . Duvigneaud, Formation of MgO films by ultrasonic spray pyrolysis from ?-diketonate, Thin Solid Films, vol.283, issue.1-2, pp.17-25, 1996.

N. Golego and M. Cocivera, Polycrystalline RbTiOPO 4 and KTiOPO 4 bilayer thin films by spray pyrolysis, Thin Solid Films, vol.322, issue.1-2, pp.14-20, 1998.

C. S. Huang, Nebulized spray deposition of Pb(Zr,Ti)o 3 thin films, Journal of The Electrochemical Society, vol.144, issue.10, p.3556, 1997.

S. Mathew, P. S. Mukerjee, and K. P. Vijayakumar, Optical and surface properties of spraypyrolysed CdS thin films, Thin Solid Films, vol.254, issue.1-2, pp.278-284, 1995.

R. J-p-mangalhara, O. Thangaraj, and . Agnihotri, Photoelectrochemical conversion using sprayed CdSe, Bulletin of Materials Science, vol.10, issue.4, pp.333-340, 1988.

Y. and J. Hirde, Spray-pyrolytically deposited n-CuInSe 2 /polysulphide photoelectrochemical solar cells, Bulletin of Materials Science, vol.17, issue.5, pp.465-468, 1994.

N. Nakayama and K. Ito, Sprayed films of stannite cu2znsns4, Applied Surface Science, vol.92, pp.171-175, 1996.

S. P. Arya and H. E. Hintermann, Growth of Y-Ba-Cu-O superconducting thin films by ultrasonic spray pyrolysis, Thin Solid Films, pp.841-846, 1990.

L. Cattin, B. A. Reguig, A. Khelil, M. Morsli, K. Benchouk et al., Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions, Applied Surface Science, vol.254, issue.18, pp.5814-5821, 2008.

X. Chan, J. R. Jennings, M. Anower-hossain, K. Koh-zhen, Q. Yu et al., Characteristics of p-NiO thin films prepared by spray pyrolysis and their application in CdS-sensitized photocathodes, Journal of The Electrochemical Society, vol.158, issue.7, p.733, 2011.

A. Raid, . Ismail, G. A. Ghafori, and . Kadhim, Preparation and characterization of nanostructured nickel oxide thin films by spray pyrolysis, Applied Nanoscience, vol.3, issue.6, pp.509-514, 2012.

S. A. Mahmoud, A. A. Akl, H. Kamal, and K. Abdel-hady, Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis, Physica B: Condensed Matter, vol.311, issue.3-4, pp.366-375, 2002.

Y. Xie, W. Wang, Y. Qian, L. Yang, and Z. Chen, Deposition and microstructural characterization of NiO thin films by a spray pyrolysis method, Journal of Crystal Growth, vol.167, issue.3-4, pp.656-659, 1996.

H. Kamal, E. K. Elmaghraby, S. A. Ali, and K. Abdel-hady, Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis, Journal of Crystal Growth, vol.262, issue.1-4, pp.424-434, 2004.

R. Romero, F. Martin, J. R. Ramos-barrado, and D. Leinen, Synthesis and characterization of nanostructured nickel oxide thin films prepared with chemical spray pyrolysis, Thin Solid Films, vol.518, issue.16, pp.4499-4502, 2010.

S. Luo and W. A. Daoud, Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design, J. Mater. Chem. A, vol.3, issue.17, pp.8992-9010, 2015.

S. Albrecht, M. Saliba, J. Correa-baena, K. Jäger, L. Korte et al., Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells, Journal of Optics, vol.18, issue.6, p.64012, 2016.

S. Albrecht, M. Saliba, J. Baena, F. Lang, L. Kegelmann et al., Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energy Environ. Sci, vol.9, issue.1, pp.81-88, 2016.

O. Brian, M. Regan, and . Grätzel, A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO 2 films, Nature, vol.353, issue.6346, pp.737-740, 1991.

M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.4, issue.2, pp.145-153, 2003.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dyesensitized solar cells, Chemical Reviews, vol.110, issue.11, pp.6595-6663, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02142488

N. Park, J. Van-de-lagemaat, and A. J. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO 2 solar cells, The Journal of Physical Chemistry B, vol.104, issue.38, pp.8989-8994, 2000.

Y. Bai, I. Mora-seró, F. De-angelis, J. Bisquert, and P. Wang, Titanium dioxide nanomaterials for photovoltaic applications, Chemical Reviews, vol.114, issue.19, pp.10095-10130, 2014.

J. Lee, T. Lee, P. J. Yoo, M. Grätzel, S. Mhaisalkar et al., Rutile TiO 2 -based perovskite solar cells, Journal of Materials Chemistry A, vol.2, issue.24, p.9251, 2014.

H. S. , J. , and N. Park, Perovskite solar cells: From materials to devices, Small, vol.11, issue.1, pp.10-25, 2014.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song et al., Interface engineering of highly efficient perovskite solar cells, Science, vol.345, issue.6196, pp.542-546, 2014.

S. Luo and W. A. Daoud, Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design, J. Mater. Chem. A, vol.3, issue.17, pp.8992-9010, 2015.

P. Gao, M. Grätzel, and M. K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy Environ. Sci, vol.7, issue.8, pp.2448-2463, 2014.

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, Electrochemical and photoelectrochemical investigation of single-crystal anatase, Journal of the American Chemical Society, vol.118, issue.28, pp.6716-6723, 1996.

L. Kavan and M. Grätzel, Highly efficient semiconducting TiO 2 photoelectrodes prepared by aerosol pyrolysis, Electrochimica Acta, vol.40, issue.5, pp.643-652, 1995.

N. Joong-jeon, J. Hong-noh, and Y. C. Kim, Woon Seok Yang, Seungchan Ryu, and Sang Il Seok. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Materials, vol.13, issue.9, pp.897-903, 2014.

M. Saliba, T. Matsui, J. Seo, K. Domanski, J. Correa-baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci, vol.9, issue.6, pp.1989-1997, 2016.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites, Science Advances, vol.2, issue.1, pp.1501170-1501170, 2016.

W. W. Xu, R. Kershaw, K. Dwight, and A. Wold, Preparation and characterization of TiO 2 films by a novel spray pyrolysis method, Materials Research Bulletin, vol.25, issue.11, pp.1385-1392, 1990.

. Interfacial-layers-for-perovskite-based-solar and . Cells,

A. Conde-gallardo, M. Guerrero, N. Castillo, A. B. Soto, R. Fragoso et al.,

, TiO 2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium diisopropoxide, Thin Solid Films, vol.473, issue.1, pp.68-73, 2005.

M. Okuya, N. A. Prokudina, K. Mushika, and S. Kaneko, TiO 2 thin films synthesized by the spray pyrolysis deposition (SPD) technique, Journal of the European Ceramic Society, vol.19, issue.6-7, pp.903-906, 1999.

J. Castañeda, . Alonso, . Ortiz, J. Andrade, J. Saniger et al., Spray pyrolysis deposition and characterization of titanium oxide thin films, Materials Chemistry and Physics, vol.77, issue.3, pp.938-944, 2003.

C. Natarajan, G. Fukunaga, and . Nogami, Titanium dioxide thin film deposited by spray pyrolysis of aqueous solution, Thin Solid Films, vol.322, issue.1-2, pp.6-8, 1998.

M. Okuya, K. Nakade, and S. Kaneko, Porous TiO 2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.70, issue.4, pp.425-435, 2002.

W. Wang, I. W. Lenggoro, Y. Terashi, T. Kim, and K. Okuyama, One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors, Materials Science and Engineering: B, vol.123, issue.3, pp.194-202, 2005.

A. Nakaruk, D. Ragazzon, and C. C. Sorrell, Anatase thin films by ultrasonic spray pyrolysis, Journal of Analytical and Applied Pyrolysis, vol.88, issue.1, pp.98-101, 2010.

H. Kim, C. Lee, J. Im, K. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific Reports, vol.2, 2012.

W. Zhang, M. Saliba, D. T. Moore, K. Sandeep, M. T. Pathak et al., Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells, Nature Communications, vol.6, p.6142, 2015.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. Hsin-sheng-duan et al., Planar heterojunction perovskite solar cells via vaporassisted solution process, Journal of the American Chemical Society, vol.136, issue.2, pp.622-625, 2014.

M. Liu, M. B. Johnston, and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, vol.501, issue.7467, pp.395-398, 2013.

Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin et al., Highly compact TiO 2 layer for efficient hole-blocking in perovskite solar cells, Applied Physics Express, vol.7, issue.5, p.52301, 2014.

I. Oja-acik, J. Madarász, M. Krunks, K. Tõnsuaadu, G. Pokol et al., Titanium(IV) acetylacetonate xerogels for processing titania films, Journal of Thermal Analysis and Calorimetry, vol.97, issue.1, pp.39-45, 2009.

J. Liu, Y. Wu, C. Qin, X. Yang, T. Yasuda et al., A dopant-free hole-transporting material for efficient and stable perovskite solar cells, Energy Environ. Sci, vol.7, issue.9, pp.2963-2967, 2014.

D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. Johansson, Effect of different hole transport materials on recombination in CH 3 NH 3 PbI 3 perovskite-sensitized mesoscopic solar cells, The Journal of Physical Chemistry Letters, vol.4, issue.9, pp.1532-1536, 2013.

F. Di-giacomo, S. Razza, F. Matteocci, A. D. Epifanio, S. Licoccia et al., High efficiency CH 3 NH 3 PbI 3-x Cl x perovskite solar cells with poly(3-hexylthiophene) hole transport layer, Journal of Power Sources, vol.251, pp.152-156, 2014.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka et al., Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped p3ht holetransporting layer on a void-free perovskite active layer, J. Mater. Chem. A, vol.2, issue.34, pp.13827-13830, 2014.

M. Zhang, M. Lyu, H. Yu, J. Yun, Q. Wang et al., Stable and low-cost mesoscopic CH 3 NH 3 Pbi 2 br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter, Chemistry -A European Journal, vol.21, issue.1, pp.434-439, 2014.

J. Henry, M. Snaith, and . Grätzel, Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells, Applied Physics Letters, vol.89, issue.26, p.262114, 2006.

U. B. Cappel, T. Daeneke, and U. Bach, Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance, Nano Letters, vol.12, issue.9, pp.4925-4931, 2012.

S. Fantacci, M. K. Filippo-de-angelis, M. Nazeeruddin, and . Grätzel, Electronic and optical properties of the spiro-MeOTAD hole conductor in its neutral and oxidized forms: A DFT/TDDFT investigation, The Journal of Physical Chemistry C, vol.115, issue.46, pp.23126-23133, 2011.

A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio et al., Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells, Physical Chemistry Chemical Physics, vol.15, issue.7, p.2572, 2013.

Z. Hawash, L. K. Ono, and Y. Qi, Moisture and oxygen enhance conductivity of LiTFSI-doped spiro-MeOTAD hole transport layer in perovskite solar cells, Advanced Materials Interfaces, vol.3, issue.13, p.1600117, 2016.

S. Wang, W. Yuan, and Y. S. Meng, Spectrum-dependent spiro-OMeTAD oxidization mechanism in perovskite solar cells, ACS Applied Materials & Interfaces, vol.7, issue.44, pp.24791-24798, 2015.

A. Kumar, S. Sista, and Y. Yang, Dipole induced anomalous s-shape i-v curves in polymer solar cells, Journal of Applied Physics, vol.105, issue.9, p.94512, 2009.

A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, S-shaped current-voltage characteristics of organic solar devices, Physical Review B, vol.82, issue.11, 2010.

. Interfacial-layers-for-perovskite-based-solar and . Cells,

W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo et al., Imbalanced mobilities causing s-shaped IV curves in planar heterojunction organic solar cells, Applied Physics Letters, vol.98, issue.6, p.63301, 2011.

P. M. Kaminski, P. J. Isherwood, G. Womack, and J. M. Walls, Optical optimization of perovskite solar cell structure for maximum current collection, Energy Procedia, vol.102, pp.11-18, 2016.

Q. Li, W. Yoon, and H. Ju, Optimization of an organic photovoltaic device via modulation of thickness of photoactive and optical spacer layers, Nanoscale Research Letters, vol.9, issue.1, p.460, 2014.

A. Elham-halvani-anaraki, L. Kermanpur, K. Steier, T. Domanski, W. Matsui et al., Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energy Environ. Sci, vol.9, issue.10, pp.3128-3134, 2016.

H. Yoon, M. Seong, J. Kang, M. Lee, and . Choi, Hysteresis-free lowtemperature-processed planar perovskite solar cells with 19.1% efficiency, Energy Environ. Sci, vol.9, issue.7, pp.2262-2266, 2016.

P. Zhou, W. Li, T. Li, T. Bu, X. Liu et al., Ultrasonic spray-coating of large-scale TiO 2 compact layer for efficient flexible perovskite solar cells, Micromachines, vol.8, issue.2, p.55, 2017.

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, Sub-150 ? c processed meso-superstructured perovskite solar cells with enhanced efficiency, Energy Environ. Sci, vol.7, issue.3, pp.1142-1147, 2014.

A. Huang, J. Zhu, Y. Zhou, Y. Yu, Y. Liu et al., One step spray-coated TiO 2 electron-transport layers for decent perovskite solar cells on large and flexible substrates, Nanotechnology, vol.28, issue.1, pp.1-02, 2016.

B. Min-cheol-kim, J. Kim, J. Yoon, D. Wook-lee, N. Suh et al., Electro-spray deposition of a mesoporous TiO 2 charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells, Nanoscale, vol.7, issue.48, pp.20725-20733, 2015.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao et al., Impedance spectroscopic analysis of lead iodide perovskitesensitized solid-state solar cells, ACS Nano, vol.8, issue.1, pp.362-373, 2014.

J. Henry, A. Snaith, J. M. Abate, G. E. Ball, T. Eperon et al., Anomalous hysteresis in perovskite solar cells, The Journal of Physical Chemistry Letters, vol.5, issue.9, pp.1511-1515, 2014.

M. Jarvist, K. T. Frost, F. Butler, C. H. Brivio, . Hendon et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Letters, vol.14, issue.5, pp.2584-2590, 2014.

M. Jarvist, K. T. Frost, A. Butler, and . Walsh, Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells, APL Materials, vol.2, issue.8, p.81506, 2014.

H. Kim, S. K. Kim, B. Kim, K. Shin, M. Kumar-gupta et al., Ferroelectric polarization in CH 3 NH 3 PbI 3 perovskite, The Journal of Physical Chemistry Letters, vol.6, issue.9, pp.1729-1735, 2015.

P. Calado, A. M. Telford, D. Bryant, X. Li, J. Nelson et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis, Nature Communications, vol.7, p.13831, 2016.

S. Meloni, T. Moehl, W. Tress, M. Franckevi?ius, M. Saliba et al., Ionic polarization-induced current-voltage hysteresis in CH 3 NH 3 PbX 3 perovskite solar cells, Mohammad Khaja Nazeeruddin, vol.7, p.10334, 2016.

Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong et al., Giant switchable photovoltaic effect in organometal trihalide perovskite devices, Nature Materials, vol.14, issue.2, pp.193-198, 2014.

Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong et al., Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films, Energy Environ. Sci, vol.9, issue.5, pp.1752-1759, 2016.

G. Richardson, E. J. Simon, R. G. O&apos;kane, T. A. Niemann, J. M. Peltola et al., Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?, Energy Environ. Sci, vol.9, issue.4, pp.1476-1485, 2016.

J. M. Azpiroz, E. Mosconi, J. Bisquert, and F. Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation, Energy Environ. Sci, vol.8, issue.7, pp.2118-2127, 2015.

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH 3 NH 3 PbI 3 planar heterojunction solar cells, Nature Communications, vol.5, p.5784, 2014.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy et al.,

. Sargent, Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes, Nature Communications, vol.6, p.7081, 2015.

K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala et al., Heterojunction modification for highly efficient organic-inorganic perovskite solar cells, ACS Nano, vol.8, issue.12, pp.12701-12709, 2014.

J. H. Kim, P. Liang, S. T. Williams, N. Cho, C. Chueh et al., High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer, Advanced Materials, vol.27, issue.4, pp.695-701, 2014.

W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, vol.347, issue.6221, pp.522-525, 2015.

. Interfacial-layers-for-perovskite-based-solar and . Cells,

H. Kim, I. Jang, N. Ahn, M. Choi, A. Guerrero et al., Control of I-VHysteresis in CH 3 NH 3 PbI 3 perovskite solar cell, The Journal of Physical Chemistry Letters, vol.6, issue.22, pp.4633-4639, 2015.

J. Peng, Y. Wu, W. Ye, D. A. Jacobs, H. Shen et al., Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis, Energy Environ. Sci, vol.10, issue.8, pp.1792-1800, 2017.

W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, J. Ge et al., Efficient planar perovskite solar cells using room-temperature vacuum-processed c60 electron selective layers, J. Mater. Chem. A, vol.3, issue.35, pp.17971-17976, 2015.

H. William, C. D. Nguyen, E. L. Bailie, M. D. Unger, and . Mcgehee, Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2in perovskite and dye-sensitized solar cells, Journal of the American Chemical Society, vol.136, issue.31, pp.10996-11001, 2014.

J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. Cevey-ha et al., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells, Journal of the American Chemical Society, vol.133, issue.45, pp.18042-18045, 2011.

W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin et al., Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells, Journal of the American Chemical Society, vol.137, issue.21, pp.6730-6733, 2015.

J. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering, Energy Environ. Sci, vol.8, issue.10, pp.2928-2934, 2015.

J. Song, E. Zheng, J. Bian, X. Wang, W. Tian et al., Low-temperature SnO 2 -based electron selective contact for efficient and stable perovskite solar cells, J. Mater. Chem. A, vol.3, issue.20, pp.10837-10844, 2015.

Y. Li, J. Zhu, Y. Huang, F. Liu, M. Lv et al., Mesoporous SnO 2 nanoparticle films as electron-transporting material in perovskite solar cells, RSC Adv, vol.5, issue.36, pp.28424-28429, 2015.

Q. Dong, Y. Shi, K. Wang, Y. Li, S. Wang et al., Insight into perovskite solar cells based on SnO 2 compact electron-selective layer, The Journal of Physical Chemistry C, vol.119, issue.19, pp.10212-10217, 2015.

J. Seo, T. Matsui, J. Luo, J. Correa-baena, F. Giordano et al.,

, Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency, Advanced Energy Materials, vol.6, issue.20, p.1600767, 2016.

Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO 2 for high-efficiency planar-structure HC(NH 2 ) 2 PbI 3 -based perovskite solar cells, Nature Energy, vol.2, issue.1, p.16177, 2016.

P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, and L. M. Herz, Electron mobility and injection dynamics in mesoporous ZnO, SnO 2 , and TiO 2 films used in dye-sensitized solar cells, ACS Nano, vol.5, issue.6, pp.5158-5166, 2011.

P. D. Batista, M. Mulato, C. F. Graeff, F. J. Fernandez, F. Das et al., SnO 2 extended gate field-effect transistor as pH sensor, Brazilian Journal of Physics, vol.36, issue.2a, pp.478-481, 2006.

G. Gordillo, L. C. Moreno, W. De-la-cruz, and P. Teheran, Preparation and characterization of SnO 2 thin films deposited by spray pyrolysis from SnCl 2 and SnCl 4 precursors, Thin Solid Films, vol.252, issue.1, pp.61-66, 1994.

C. Wu, C. Chiang, Z. Tseng, M. K. Nazeeruddin, A. Hagfeldt et al., High efficiency stable inverted perovskite solar cells without current hysteresis, Energy Environ. Sci, vol.8, issue.9, pp.2725-2733, 2015.

M. Jørgensen, K. Norrman, and F. C. Krebs, Stability/degradation of polymer solar cells, Solar Energy Materials and Solar Cells, vol.92, issue.7, pp.686-714, 2008.

X. Yin, M. Que, Y. Xing, and W. Que, High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer, J. Mater. Chem. A, vol.3, issue.48, pp.24495-24503, 2015.

. Md, M. Islam, Y. Yanagida, Y. Shirai, K. Nabetani et al., NiOx hole transport layer for perovskite solar cells with improved stability and reproducibility, ACS Omega, vol.2, issue.5, pp.2291-2299, 2017.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science, vol.350, issue.6263, pp.944-948, 2015.

G. A. Sawatzky and J. W. Allen, Magnitude and origin of the band gap in NiO, Physical Review Letters, vol.53, issue.24, pp.2339-2342, 1984.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, and T. J. Marks, p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulkheterojunction solar cells, Proceedings of the National Academy of Sciences, vol.105, issue.8, pp.2783-2787, 2008.

J. R. Manders, S. Tsang, M. J. Hartel, T. Lai, S. Chen et al., Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells, Advanced Functional Materials, vol.23, issue.23, pp.2993-3001, 2013.

M. Li, P. Shen, K. Wang, T. Guo, and P. Chen, Inorganic p-type contact materials for perovskite-based solar cells, J. Mater. Chem. A, vol.3, issue.17, pp.9011-9019, 2015.

. Interfacial-layers-for-perovskite-based-solar and . Cells,

K. Wang, J. Jeng, P. Shen, Y. Chang, E. Wei-guang et al., p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Scientific Reports, vol.4, 2014.

H. Tian, B. Xu, H. Chen, E. M. Johansson, and G. Boschloo, Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells, ChemSusChem, vol.7, issue.8, pp.2150-2153, 2014.

W. Chen, F. Liu, X. Feng, A. B. Djuri?i?, W. K. Chan et al., Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells, Advanced Energy Materials, p.1700722, 2017.

J. Ik, G. Park, M. A. Kang, J. Park, . Kim et al., Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiO x hole-extraction layer, ChemSusChem, vol.10, issue.12, pp.2660-2667, 2017.

K. Wang, P. Shen, M. Li, S. Chen, M. Lin et al., Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH 3 NH 3 Pbi 3 perovskite heterojunction solar cells, ACS Applied Materials & Interfaces, vol.6, issue.15, pp.11851-11858, 2014.

A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes et al., Inorganic hole conducting layers for perovskite-based solar cells, The Journal of Physical Chemistry Letters, vol.5, issue.10, pp.1748-1753, 2014.

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long et al., High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells, Angewandte Chemie, 2014.

L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan et al., Sequential deposition of CH 3 NH 3 PbI 3 on planar NiO film for efficient planar perovskite solar cells, ACS Photonics, vol.1, issue.7, pp.547-553, 2014.

J. Jung, C. Chueh, and A. Jen, A low-temperature, solutionprocessable, cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells, Advanced Materials, vol.27, issue.47, pp.7874-7880, 2015.

J. Jong-hoon-park, S. Seo, . Park, S. Seong, Y. C. Shin et al., Efficient CH 3 NH 3 PbI 3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition, Advanced Materials, vol.27, issue.27, pp.4013-4019, 2015.

L. Cattin, B. A. Reguig, A. Khelil, M. Morsli, K. Benchouk et al., Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions, Applied Surface Science, vol.254, issue.18, pp.5814-5821, 2008.

X. Chan, J. R. Jennings, M. Anower-hossain, K. Koh-zhen, Q. Yu et al., Characteristics of p-NiO thin films prepared by spray pyrolysis and their application in CdS-sensitized photocathodes, Journal of The Electrochemical Society, vol.158, issue.7

P. Patil and L. Kadam, Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films, Applied Surface Science, vol.199, issue.1-4, pp.211-221, 2002.

A. Raid, . Ismail, G. A. Ghafori, and . Kadhim, Preparation and characterization of nanostructured nickel oxide thin films by spray pyrolysis, Applied Nanoscience, vol.3, issue.6, pp.509-514, 2012.

L. D. Kadam and P. S. Patil, Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique, Solar Energy Materials and Solar Cells, vol.69, issue.4, pp.361-369, 2001.

H. Kamal, E. K. Elmaghraby, S. A. Ali, and K. Abdel-hady, Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis, Journal of Crystal Growth, vol.262, issue.1-4, pp.424-434, 2004.

S. A. Mahmoud, A. A. Akl, H. Kamal, and K. Abdel-hady, Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis, Physica B: Condensed Matter, vol.311, issue.3-4, pp.366-375, 2002.

J. B. Rayappan, J. Mathiyan, D. Sivalingam, and J. B. Gopalakris, Spray coated nanostructured nickel oxide thin films for ethanol sensing, Journal of Applied Sciences, vol.12, issue.16, pp.1686-1690, 2012.

S. Sriram and A. Thayumanavan, Structural, optical and electrical properties of NiO thin films prepared by low cost spray pyrolysis technique, International Journal of Materials Science and Engineering, 2014.

Y. Xie, W. Wang, Y. Qian, L. Yang, and Z. Chen, Deposition and microstructural characterization of NiO thin films by a spray pyrolysis method, Journal of Crystal Growth, vol.167, issue.3-4, pp.656-659, 1996.

J. Denayer, G. Bister, P. Simonis, P. Colson, A. Maho et al., Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications, Applied Surface Science, vol.321, pp.61-69, 2014.

K. Sajilal and A. Moses-ezhil-raj, Effect of thickness on physico-chemical properties of p-NiO (bunsenite) thin films prepared by the chemical spray pyrolysis (CSP) technique, Optik -International Journal for Light and Electron Optics, vol.127, issue.3, pp.1442-1449, 2016.

W. Wang, Y. Itoh, I. W. Lenggoro, and K. Okuyama, Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis, Materials Science and Engineering: B, vol.111, issue.1, pp.69-76, 2004.

J. D. Desai, S. Min, K. Jung, and O. Joo, Spray pyrolytic synthesis of large area NiO x thin films from aqueous nickel acetate solutions, Applied Surface Science, vol.253, issue.4, pp.1781-1786, 2006.

R. Romero, F. Martin, J. R. Ramos-barrado, and D. Leinen, Synthesis and characterization of nanostructured nickel oxide thin films prepared with chemical spray pyrolysis, Thin Solid Films, vol.518, issue.16, pp.4499-4502, 2010.

S. Lany, J. Osorio-guillén, and A. Zunger, Origins of the doping asymmetry in oxides: Hole doping in NiO versus electron doping in ZnO, Physical Review B, vol.75, issue.24, 2007.

. Interfacial-layers-for-perovskite-based-solar and . Cells,

H. Kelvin, K. Zhang, . Xi, G. Mark, R. G. Blamire et al., P-type transparent conducting oxides, Journal of Physics: Condensed Matter, vol.28, issue.38, p.383002, 2016.

M. Sugiyama, H. Nakai, G. Sugimoto, A. Yamada, and S. F. Chichibu, Electrical properties of undoped and li-doped NiO thin films deposited by RF sputtering without intentional heating, Japanese Journal of Applied Physics, vol.55, issue.8, p.88003, 2016.

B. G. Baker, B. B. Johnson, and G. L. Maire, Photoelectric work function measurements on nickel crystals and films, Surface Science, vol.24, issue.2, pp.572-586, 1971.

M. Kaltenbrunner, G. Adam, E. D. G?owacki, M. Drack, R. Schwödiauer et al., Flexible high powerper-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air, Nature Materials, vol.14, issue.10, pp.1032-1039, 2015.

W. A. Macdonald, M. K. Looney, D. Mackerron, R. Eveson, R. Adam et al., Latest advances in substrates for flexible electronics, Journal of the Society for Information Display, vol.15, issue.12, p.1075, 2007.

D. Forgács, L. Gil-escrig, D. Pérez-del-rey, C. Momblona, J. Werner et al., Efficient monolithic perovskite/perovskite tandem solar cells, Advanced Energy Materials, vol.7, issue.8, p.1602121, 2016.

X. Yin, P. Chen, M. Que, Y. Xing, W. Que et al., Highly efficient flexible perovskite solar cells using solution-derived NiOx Hole contacts, ACS Nano, vol.10, issue.3, pp.3630-3636, 2016.

Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou et al., Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells, J. Mater. Chem. A, vol.5, issue.14, pp.6597-6605, 2017.

W. Chen, G. Ning-zhang, R. Lei-ming-xu, . Gu, H. Zheng-he-xu et al., Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer, Materials Today Energy, pp.1-2, 2016.

E. Singh and H. Singh-nalwa, Graphene-based dye-sensitized solar cells: A review, Science of Advanced Materials, vol.7, issue.10, pp.1863-1912, 2015.

E. Singh and H. Singh-nalwa, Graphene-based bulk-heterojunction solar cells: A review, Journal of Nanoscience and Nanotechnology, vol.15, issue.9, pp.6237-6278, 2015.

. Shao-sian, K. Li, C. Tu, C. Lin, M. Chen et al., Solutionprocessable graphene oxide as an efficient hole transport layer in polymer solar cells, ACS Nano, vol.4, issue.6, pp.3169-3174, 2010.

M. Acik and S. B. Darling, Graphene in perovskite solar cells: device design, characterization and implementation, J. Mater. Chem. A, vol.4, issue.17, pp.6185-6235, 2016.

M. Batmunkh, C. J. Shearer, M. J. Biggs, and J. G. Shapter, Nanocarbons for mesoscopic perovskite solar cells, J. Mater. Chem. A, vol.3, issue.17, pp.9020-9031, 2015.

J. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-webber et al., Low-temperature processed electron collection layers of graphene/TiO 2 nanocomposites in thin film perovskite solar cells, Nano Letters, vol.14, issue.2, pp.724-730

S. Gill, Y. H. Han, Y. U. Song, J. Jin, N. Lee et al., Reduced graphene oxide/mesoporous TiO 2 nanocomposite based perovskite solar cells, ACS Applied Materials & Interfaces, vol.7, issue.42, pp.23521-23526, 2015.

T. Liu, D. Kim, H. Han, and A. , Rashid bin Mohd Yusoff, and Jin Jang. Fine-tuning optical and electronic properties of graphene oxide for highly efficient perovskite solar cells, Nanoscale, vol.7, issue.24, pp.10708-10718, 2015.

Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang et al., Iodidereduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells, J. Mater. Chem. A, vol.3, issue.31, pp.15996-16004, 2015.

Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor, Nanoscale, vol.6, issue.18, pp.10505-10510, 2014.

J. Yeo, R. Kang, S. Lee, Y. Jeon, N. Myoung et al., You-Hyun Seo, Seok-Soon Kim, and Seok-In Na. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer, Nano Energy, vol.12, pp.96-104, 2015.

Q. Yang, ?. , J. Li, Y. Cheng, H. Li et al., Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability, J. Mater. Chem. A, vol.5, issue.20, pp.9852-9858, 2017.

H. Sung, N. Ahn, M. S. Jang, J. Lee, H. Yoon et al., Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency, Advanced Energy Materials, vol.6, issue.3, p.1501873, 2015.

P. You, Z. Liu, Q. Tai, S. Liu, and F. Yan, Efficient semitransparent perovskite solar cells with graphene electrodes, Advanced Materials, vol.27, issue.24, pp.3632-3638, 2015.

Y. Jiao, F. Ma, G. Gao, H. Wang, J. Bell et al., Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation, RSC Adv, vol.5, issue.100, pp.82346-82350, 2015.

A. L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio et al., Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells, Nano Energy, vol.22, pp.349-360, 2016.

A. Agresti, S. Pescetelli, B. Taheri, A. Castillo, L. Cinà et al., Graphene-perovskite solar cells exceed 18% efficiency: A stability study, ChemSusChem, vol.9, issue.18, pp.2609-2619, 2016.

L. Sygellou, Work function tuning of reduced graphene oxide thin films, Georgios Paterakis, Costas Galiotis, and Dimitrios Tasis, vol.120, pp.281-290, 2016.

E. , Matériaux transporteurs de Charges

E. Figure, 6: Niveaux d'énergie de plusieurs pérovskites halogénées hybrides et leur alignement avec les travaux de sortie de plusieurs ETM et

, Les figures E.7.b et c montrent les caractéristiques courant-tension obtenues pour deux préparations de Spiro-OMeTAD : dépôt en boîte à gants (atmosphère contrôlée à base d'argon) sans et avec post-exposition à l'air pendant 12 heures. La figure E.7.e montre le diffractogramme des rayons X obtenu pour une couche de NiO préparée par « spray coating » à 280 ? C suivi d'un recuit à 450 ? C, La figure E.7 illustrent quelques résultats obtenus

M. A. Peña and J. L. Fierro, Chemical structures and performance of perovskite oxides, Chemical Reviews, vol.101, issue.7, pp.1981-2018, 2001.

D. Bedlivy and K. Mereiter, The structures of potassium lead triiodide dihydrate and ammonium lead triiodide dihydrate, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.36, issue.4, pp.782-785, 1980.

D. E. Scaife, P. F. Weller, and W. G. Fisher, Crystal preparation and properties of cesium tin(II) trihalides, Journal of Solid State Chemistry, vol.9, issue.3, pp.308-314, 1974.

D. Weber, CH 3 NH 3 PbX 3 , ein Pb(ii)-system mit kubischer perowskitstruktur / CH 3 NH 3 PbX 3 , a Pb(ii)-system with cubic perovskite structure, Z. Naturforschung, vol.33, issue.12, pp.1443-1445, 1978.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites, Science Advances, vol.2, issue.1, pp.1501170-1501170, 2016.

Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang et al., Abnormal crystal growth in CH 3 NH 3 PbI 3-x Cl x using a multi-cycle solution coating process, Energy Environ. Sci, vol.8, issue.8, pp.2464-2470, 2015.

S. Luo and W. A. Daoud, Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design, J. Mater. Chem. A, vol.3, issue.17, pp.8992-9010, 2015.