, of the impact of guitars brace design on the vibratory behaviour of the guitar soundboard

. .. , Materials, models and methods used for the model-based study of guitar soundboards, p.233

, Results of the study of guitar soundboard using physical model

. .. Conclusion, 249 Numerical tools proposal Content 7.1 MICAD for guitars

F. Ablitzer, Influence des paramètres mécaniques et géométriques sur le comportement statique de l'archet de violon en situation de jeu, p.22, 2011.

F. Ablitzer, J. Dalmont, and &. Dauchez, Static model of a violin bow : Influence of camber and hair tension on mechanical behavior, The Journal of the Acoustical Society of America, vol.131, issue.1, p.22, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00586680

F. Ablitzer, N. Dauchez, and &. Dalmont, Buckling Instability of a Violin Bow, Acta Acustica united with Acustica, vol.103, issue.5, p.22, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02537521

H. Aizawa, E. Obataya, T. Ono, and &. Norimoto, Acoustic Converting Efficiency and Anisotropic Nature of Wood, Wood research, vol.85, p.45, 1998.

M. Alfano, L. Pagnotta, and &. Stigliano, Identifying Elastic Properties of Isotropic Materials by Finite Element Analyses and Vibration Data, Key Engineering Materials, p.75, 2007.

A. Alkadri, C. Carlier, I. Wahyudi, J. Gril, P. Langbour et al., Relationships between anatomical and vibrational properties of wavy sycamore maple, IAWA Journal, vol.39, issue.1, p.57, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01667816

R. J. Allemang-&-d and . Brown, A correlation coefficient for modal vector analysis, First International Modal Analysis Conference, vol.74, p.164, 1982.

J. Alteyrac, A. Cloutier, S. Y. Zhang, and &. Ung, Mechanical Properties in Relation To Selected Wood Characteristics of Black Spruce, Wood And Fiber Science, vol.38, issue.2, p.58, 2006.

E. B. Arnold, 179 [ASME 98] ASME. AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simuations (G-077-1998), 1998. 135 [ASME 06] ASME. Guide for verification and validation in computational solid mechanics, The Journal of the Acoustical Society of America, vol.72, issue.6, p.319, 1982.

S. Avril, M. Bonnet, A. S. Bretelle, M. Grédiac, F. Hild et al., Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements, Experimental Mechanics, vol.48, issue.4, p.65, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274639

E. Bécache, A. Chaigne, G. Derveaux, and &. P. Joly, Numerical simulation of a guitar, Computers and Structures, vol.83, issue.2-3, p.232, 2005.

Y. Ben-haim, Elsevier, 2006. 140 [Ben-Haim 12] Y. Ben-Haim & F. Hemez. Robustness, fidelity and prediction-looseness of models, 15th Real Time Linux Workshop, vol.468, p.258, 2012.

S. Benacchio, ;. S. Benacchio, B. Chomette, A. Mamou-mani, and &. V. Finel, Mode tuning of a simplified string instrument using time-dimensionless state-derivative control, Journal of Sound and Vibration, vol.334, issue.258, p.258, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01253682

H. Berlioz, Grand Traité D'Instrumentation et D'Orchestration Modernes, dédiéà sa majesté Frédéric Guillaume IV roi de Prusse, A. Bhattacharyya. On a Measure of Divergence between Two Multinomial Populations. Sankhy? : The Indian Journal of Statistics, vol.46, issue.4, p.139, 1933.

P. Bielski and &. Kujawa, Nonlinear modelling in time domain numerical analysis of stringed instrument dynamics, AIP Conference Proceedings, vol.1822, p.231, 2017.

C. Birkinshaw, M. &. Buggy, and . Henn, Dynamic mechanical analysis of wood, Journal of Materials Science Letters, vol.5, issue.9, p.58, 1986.

G. Bissinger, Modal analysis and the dynamic mechanical and acoustical properties of the violin. SPIE the international society for optical engineering, p.178, 1996.

G. Bissinger, Modal analysis of a violin octet, The Journal of the Acoustical Society of America, vol.113, issue.4, p.179, 2003.

G. Bissinger, Wall compliance and violin cavity modes, The Journal of the Acoustical Society of America, vol.113, issue.3, p.207, 2003.

G. Bissinger and &. Keiffer, Radiation damping, efficiency, and directivity for violin normal modes below 4 kHz, Acoustics Research Letters Online, vol.4, issue.1, p.179, 2003.

G. Bissinger and &. D. Oliver, 3-D laser vibrometry on legendary old Italian violins. Sound And Vibration, p.179, 2006.

G. Bissinger-&-r and . Mores, Model-based auralizations of violin sound trends accompanying plate-bridge tuning or holding, The Journal of the Acoustical Society of America, vol.137, issue.4, p.179, 2015.

J. S. Bogdanovitch, Classical guitar making, p.233, 2007.

M. Borrega, Mechanisms affecting the structure and properties of heat-treated and high-temperature dried Norway spruce ( Picea abies ) wood, p.58, 2011.

J. Bös, Numerical optimization of the thickness distribution of three-dimensional structures with respect to their structural acoustic properties. Structural and Multidisciplinary Optimization, vol.32, p.228, 2006.

H. Boutin and &. Besnainou, Physical parameters of the violin bridge changed by active control, Journal of the Acoustical Society of America, vol.123, issue.5, p.182, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02470042

H. Boutin, Méthodes de contrôle actif d'instruments de musique. Cas de la lame de xylophone et du violon, 2011.

M. V. Boven, Dynamic Response optimization of an acoustic guitar, p.232, 2017.

G. E. Box, Science and Statistics. Journal of the American Statistical Association, vol.71, issue.356, pp.791-799, 1976.

L. Brancheriau, Caractérisation acoustique et ultrasonore des produits bois et composites. Hdr thesis, p.58, 2013.

I. Brémaud, Actes de la journée d'étude Le bois : instrument du patrimoine musical -Cité de la musique, vol.37, p.323, 2008.

I. Brémaud-&-n.-poidevin, Approches culturelles et mécaniques dans le choix des bois en facture : cas des archets anciens, 5th Conference on Interdisciplinary Musicology, p.44, 2009.

I. Brémaud, P. Cabrolier, K. Minato, J. Gérard, and &. B. Thibaut, Vibrational properties of tropical woods with historical uses in musical instruments, Proceedings of the international conference held by COST Action IE0601, vol.45, p.58, 2010.

I. Brémaud, J. Gril, and &. B. Thibaut, Anisotropy of wood vibrational properties : Dependence on grain angle and review of literature data, Wood Science and Technology, vol.45, issue.4, p.323, 2011.

I. Brémaud, What do we know on " resonance wood " properties ? Selective review and ongoing research, Acoustics 2012, p.31, 2012.

I. Brémaud, Y. E. Kaïm, D. Guibal, K. Minato, B. Thibaut et al., Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types, Annals of Forest Science, vol.69, issue.3, p.59, 1931.

I. Brémaud, J. Ruelle, A. Thibaut, and &. B. Thibaut, Changes in viscoelastic vibrational properties between compression and normal wood : Roles of microfibril angle and of lignin, Holzforschung, vol.67, issue.1, p.60, 2013.

I. Brémaud and &. Gril, Effect of transitional moisture change on the vibrational properties of violin-making wood, 3rd Conference of COST Action FP1302 WoodMu-sICK "Effects of playing on early or modern musical instruments, vol.122, p.128, 2015.

J. Bretos, C. Santamari, and &. Moral, Finite element analysis and experimental measurements of natural eigenmodes and random responses of wooden bars used in musical instruments, Applied Acoustics, vol.56, issue.3, p.232, 1999.

L. Bruno, G. Felice, L. Pagnotta, A. Poggialini, and &. Stigliano, Elastic characterization of orthotropic plates of any shape via static testing, International Journal of Solids and Structures, vol.45, issue.3-4, p.65, 2008.

V. Bucur, Wood Structural Anisotropy Estimated by Acoustic Invariants, IAWA Bulletin n.special, vol.9, issue.1, p.58, 1988.
URL : https://hal.archives-ouvertes.fr/hal-02728110

V. Bucur and . Le-bois-de-lutherie, Journal de physique IV, vol.02, p.60, 1992.

V. Bucur, Acoustics of wood, vol.210, p.323, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02846676

C. Buksnowitz, A. Teischinger, U. Müller, A. Pahler, and &. Evans, Resonance wood [Picea abies] -evaluation and prediction of violin makers' quality-grading, The Journal of the Acoustical Society of America, vol.121, issue.4, p.68, 2007.

C. Buksnowitz, R. Evans, U. Müller, and &. Teischinger, Indented rings (hazel growth) of Norway spruce reduce anisotropy of mechanical properties, Wood Science and Technology, vol.46, issue.6, p.90, 2012.

G. Caldersmith, Designing a guitar family, Applied Acoustics, vol.46, issue.1, p.230, 1995.

M. Carfagni, E. Lenzi, and &. Pierini, The loss factor as a measure of mechanical damping, SPIE the international society for optical engineering, vol.1, p.72, 1998.

C. Carlier, I. Brémaud, and &. Gril, Violin making " tonewood " : comparing makers ' empirical expertise with wood structural / visual and acoustical properties, Symposium on Musical Acoustics ISMA2014, vol.27, p.90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01233098

H. Carrington, The elastic constants of spruce as influenced by moisture, The Aeronautical Journal, vol.26, issue.144, p.111, 1922.

, Recent advances in vibration and radiation of musical instruments. Flow, Turbulence and Combustion, vol.61, p.177, 1999.

A. Chaigne, Numerical simulations of stringed instruments-today's situation and trends for the future, Catgut Acoustical Society Journal, vol.4, issue.5, p.232, 2002.

A. Chaigne and &. Kergomard, Acoustique des instruments de musique, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00455011

F. Charle-&-p.-alexandre, Plan guitare Selmer Maccaferri, p.233, 2003.

D. H. Chitwood, Advancing the dynamic mechanical analysis of biomass : Comparison of tensile-torsion and compressive-torsion wood, DMA. Holzforschung, vol.9, issue.10, p.58, 2010.

J. Coffey-;-s.-corn, P. Ienny, J. Dupuy, and &. Daridon, Identification des propriétés viscoélastique d'un PMMA par analyse vibratoire : comparaison entre différentes méthodes expérimentales, 19ème Congrès Français de Mécanique, pp.24-28, 2009.

R. Courant, Variational Methods for the Solution of Problems of Equilibrium and Vibrations, Bulletin of the American Mathematical Society, vol.49, issue.1, pp.1-24

R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek, and &. H. Schaibly, Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory, The Journal of chemical physics, vol.59, issue.8, pp.3873-3878, 1973.

J. Cunha and &. Piranda, Identification of Stiffness Properties of Composite Tubes from Dynamic Tests, Experimental Mechanics, vol.40, issue.2, pp.211-218, 2000.

I. Curtu, M. D. Stanciu, and &. Grimberg, Correlations between the plates' vibrations from the guitar's structure and the physical, mechanical and elastically characteristics of the composite materials, Amta '08 : Proceedings of the 9th Wseas International Conference on Acoustics & Music : Theory & Applications, vol.231, p.242, 2008.

I. Curtu, M. Stanciu, N. Cretu, and &. Rosca, Modal Analysis of Different Types of Classical Guitar Bodies, Proceedings of the 10th WSEAS International Conference on ACOUSTICS & MUSIC : THEROY & APPLICATIONS, numéro March, vol.231, p.242, 2009.

K. B. Dahl-&-k and . Malo, Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave, Wood Science and Technology, vol.43, issue.5-6, p.65, 2009.

A. Damodaran, L. Lessard-&-a.-suresh, and . Babu, An overview of fibre-reinforced composites for musical instrument soundboards, Acoustics Australia, vol.43, issue.1, p.258, 2015.

E. B. Davis, On the Effective Material Properties of Violin Plates, Proceedings of the Stockholm Music Acoustic Conference 2013, SMAC 2013, pp.9-15, 2013.

M. De-munck, D. Moens, W. Desmet, and &. Vandepitte, A fuzzy FRF analysis of a stiffened conical shell structure using an intelligent Kriging based optimisation procedure. Collection of Technical Papers -AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, p.165, 2009.

M. Demoucron, On the control of virtual violins : Physical modelling and control of bowed strings instruments, p.182, 2008.

M. Demoucron, ;. Derome, A. Rafsanjani, S. Hering, M. Dressler et al., The role of water in the behavior of wood, FingerFiddle -Play Music Like On A Real Violin, vol.36, p.232, 2010.

J. M. Dlouha-;-s, C. Domnica, L. Ioan, C. Dumitru, S. Nicolae et al., A practical evaluation method of dynamical behaviour of classical guitar bodies, Comportement viscoélastique longitudinal du bois vert : diversité et prédictionà long terme, vol.231, p.17, 2006.

D. V. Doyle, R. S. Mcburney, and &. T. Drow, The elastic properties of wood -The moduli of rigidity of Sitka Spruce and their relations to moisture content, p.42, 1962.

T. Duerinck, E. &. Skrodzka, and . Linde, Modal analysis of a trapezoidal violin built after the description of Félix Savart, Archives of Acoustics, vol.39, issue.4, p.180, 2014.

P. Dumond and &. Baddour, Can a brace be used to control the frequencies of a plate ? SpringerPlus, vol.2, p.232, 2013.

P. Dumond and &. Baddour, Mechanical Property Relationships in Sitka Spruce Soundboard Wood, International Conference on Noise and Vibration Engineering, p.58, 2014.

K. Ege, X. Boutillon, B. David, K. Ege, X. Boutillon et al., Analyse modale haute résolution, p.215, 2009.

M. J. Elejabarrieta, A. Ezcurra, and &. Santamaria, Evolution of the vibrational behavior of a guitar soundboard along successive construction phases by means of the modal analysis technique, The Journal of the Acoustical Society of America, vol.108, issue.1, p.232, 2000.

B. Elie, Caractérisation vibratoire et acoustique des instrumentsà cordes, p.204, 2012.

B. Elie, F. Gautier, and &. B. David, Macro parameters describing the mechanical behavior of classical guitars, The Journal of the Acoustical Society of America, vol.132, issue.6, p.232, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02286800

B. Elie and &. B. David, Analysis of bridge mobility of violins, Proceedings of the Stockholm Music Acoustics Conference, SMAC 2013, vol.6, p.182, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01060528

B. Fabre, J. Gilbert, A. Hirschberg, and &. Pelorson, Aeroacoustics of Musical Instruments, Annual Review of Fluid Mechanics, vol.44, issue.1, p.179, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00686376

C. M. Fernholz and &. H. Robinson, Fully-Coupled Fluid / Structure Analysis Using MSC / NASTRAN Vibration. Rapport technique, National Aeronautics and Space Administration, p.183, 1996.

M. Fioravanti, G. Goli, and &. Carlson, Viscoelastic and mechano-sorptive studies applied to the conservation of historical violins : A case study of the guarneri "del gesù" violin (1743) known as the "cannone, Journal of Cultural Heritage, vol.14, issue.4, pp.297-303, 2013.

I. M. Firth and &. M. Buchanan, The wolf in the cello, The Journal of the Acoustical Society of America, vol.53, issue.2, p.179, 1971.

H. Fletcher and &. L. Sanders, Quality of Violin Vibrato Tones, The Journal of the Acoustical Society of America, vol.41, issue.6, p.179, 1966.

G. Franceschini and &. S. Macchietto, Model-based design of experiments for parameter precision : State of the art, Chemical Engineering Science, vol.63, issue.19, p.71, 2008.

M. L. François, Vers une mesure non destructive de la qualité des bois de lutherie, Revue des Composites et des Matériaux Avancés, vol.10, p.287, 2009.

M. I. Friswell and &. E. Mottershead, Finite element model updating in structural dynamics, vol.38, p.65, 2013.

C. Fritz, J. Curtin, J. Poitevineau, P. Morrel-samuels, and &. Tao, Player preferences among new and old violins, Proceedings of the National Academy of Sciences of the United States of America, vol.109, p.27, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01461752

E. K. Gamstedt, T. K. Bader, and &. Borst, Mixed numerical-experimental methods in wood micromechanics, Wood Science and Technology, vol.47, issue.1, p.58, 2013.

M. J. Géradin-&-d and . Rixen, Mechanical Vibrations : Theory and Application to Structural Dynamics, p.46, 2015.

C. C. Gerhards, Effect of moisture content and temperature on the mechanical properties of wood : an analysis of immediate effects, Wood and fiber Science, vol.14, issue.1, p.318, 1982.

G. Geymonat, Identification of elastic parameters by displacement field measurement, Comptes Rendus Mecanique, vol.330, p.65, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00002934

R. G. Ghanem-&-p and . Spanos, Stochastic Finite Elements : A Spectral Approach, p.141, 1991.

G. Gidion-&-r and . Gerhard, Characterization of bridge motions on the violin using polymer sensor technology, The Journal of the Acoustical Society of America, vol.19, issue.5, p.182, 2013.

P. P. Gillis, Orthotropic elastic constants of wood, Wood Science and Technology, vol.6, issue.2, p.60, 1972.

W. Gindl, H. S. Gupta, T. Schöberl, H. C. Lichtenegger, and &. Fratzl, Mechanical properties of spruce wood cell walls by nanoindentation, Applied Physics A : Materials Science and Processing, vol.79, issue.8, p.58, 2004.

A. V. Givois-;-s, . L. Glass-&-s, and . Zelinka, Moisture relations and physical properties of wood : chapter 4, 2014.

, General technical report FPL : GTR-190, vol.190

G. Goli, M. Fioravanti, S. Busoni, B. Carlson, and &. Mazzanti, Measurement and modelling of mass and dimensional variations of historic violins subjected to thermohygrometric variations : The case study of the Guarneri "del Gesù" violin (1743) known as the "Cannone, Journal of Cultural Heritage, vol.13, issue.3, p.172, 2012.

G. Goli, B. Marcon, L. Busoni, B. Carlson, A. Giordano et al., Antique violins : effect of the player on the moisture content, Intenational Journal of Conservation Science, vol.8, issue.2, p.106, 2017.

A. S. Golpayegani, Caractérisation du bois du Mûrier blanc ( Morus alba L .) en référenceà son utilisation dans les luths Iraniens, vol.288, p.122, 2011.

R. Gonçalves, A. Trinca, and &. Cerri, Comparison of Elastic Constants of Wood Determined by Ultrasonic Wave Propagation and Static Compression Testing, Wood and Fiber Science, vol.43, p.65, 2007.

T. Gore, Wood for Guitars, 161st Meeting Acoustical Society of America, vol.12, p.231, 2011.

C. Gough, Science and the Stradivarius, Acoustics Australia, vol.28, issue.1, p.317, 2000.

C. Gough, The violin : Chladni patterns, plates, shells and sounds, European Physical Journal : Special Topics, vol.145, issue.1, p.180, 2007.

C. Gough, Acoustic Characterization of Violin Family Signature Modes By Internal Cavity Measurements, SMAC 13 Stockholm, p.213, 0207.

C. Gough, Vibrational Modes of the Violin Family, Proceedings of the Stockholm Music Acoustics Conference, SMAC 2013, vol.178, p.324, 2013.

V. Gryc and &. Horacek, Variability in density of spruce (Picea abies [L.] Karst.) wood with the presence of reaction wood, Journal of Forest Science, vol.53, issue.3, p.31, 2007.

D. Guitard and &. E. Amri, Modèles prévisionnels de comportementélastique tridimensionnel pour les bois feuillus et les bois résineux, Annales des sciences forestières, vol.44, issue.3, p.325, 1987.

D. W. Haines, On Musical Instrument Wood, Journal of Catgut Acoustical Society, vol.33, p.113, 1980.

D. W. Haines, J. M. Leban, and &. Herbé, Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods, Wood Science and Technology, vol.30, issue.4, p.58, 1996.

D. M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models, Environmental Monitoring and Assessment, vol.32, issue.2, p.142, 1994.

J. J. Harrington, Hierarchical modelling of softwood hygro-elastic properties, vol.33, p.317, 2002.

F. Hemez, Uncertainty quantification and the verification and validation of computational models. Damage Prognosis for Aerospace, Civil and Mechanical Systems, p.135, 2004.

F. &. Hemez and . Kamm, A brief overview of the state-of-the-practice and current challenges of solution verification, Lecture Notes in Computational Science and Engineering, vol.62, p.150, 2008.

F. Hemez, S. Atamturktur, and &. Unal, Defining predictive maturity for validated numerical simulations, Computers and Structures, vol.88, issue.7-8, p.135, 2010.

O. P. Hendershot, Thermal expansion of wood, Science, vol.60, issue.1559, p.276, 1924.

F. Hild and &. S. Roux, Digital image correlation : From displacement measurement to identification of elastic properties -A review, Strain, vol.42, issue.2, p.65, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00013816

K. Hofstetter, C. Hellmich, and &. Eberhardsteiner, Development and experimental validation of a continuum micromechanics model for the elasticity of wood, European Journal of Mechanics, A/Solids, vol.24, issue.6, p.41, 2005.

T. Hole?ek, M. Ga?parík, R. Laga?a, V. Bor?vka, and &. E. Oberhofnerová, Measuring the Modulus of Elasticity of Thermally Treated Spruce Wood using the Ultrasound and resonance methods, BioResources, vol.12, issue.1, p.58, 2017.

D. Holz, On some relations between anatomic properties and acoustical qualities of resonance wood. Holztechnologie, vol.25, p.89, 1984.

R. Hori, M. Müller, U. Watanabe, H. C. Lichtenegger, P. Fratzl et al., The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties, Journal of Materials Science, vol.37, issue.20, p.61, 2002.

J. C. Houghton, Birth of a parent : The Wakeby Distribution for modeling flood flows, Water Resources Research, vol.14, issue.6, p.76, 1978.

A. Hrennikoff, Solution of problems of elasticity by the framework method, Journal of applied mechanics, vol.8, issue.4, p.159, 1941.

Z. Huang, C. &. Zang, and . Friswell, Parameter identification of a printed circuit board structure using model updating and scanning laser vibrometer measurements, Proceedings of the International Conference on Noise and Vibration Engineering ISMA 2014, p.66, 2014.

C. M. Hutchins, The Physics of Violins, Scientific American, vol.207, issue.5, p.180, 1962.

C. M. Hutchins, The acoustics of the violin plates, Scientific American, vol.245, issue.4, p.180, 1981.

C. M. Hutchins and &. Voskuil, Mode tuning for the violin maker, CAS J, vol.2, issue.4, p.324, 1993.

H. D. Hwang, Extension de la méthode SmEdA par la prise en compte des matériaux dissipatifs en moyennes fréquences, p.154, 2006.

H. D. Hwang, L. Maxit, K. Ege, Y. &. Gerges, and . Guyader, SmEdA vibro-acoustic modelling in the mid-frequency range including the effect of dissipative treatments, Journal of Sound and Vibration, vol.393, p.215, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01444453

R. Inta, The acoustics of the steel string guitar, vol.230, p.232, 2007.

C. Issanchou, S. Bilbao, C. Touze, and &. Doare, A modal approach to the numerical simulation of a string vibrating against an obstacle : Applications to sound synthesis, Proceedings of the 19th International Conference on Digital Audio Effects, p.22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354779

E. Jansson, An investigation of a violin by laser speckle interferometry and acoustical measurements, Acta Acustica united with Acustica, vol.29, issue.1, p.214, 1973.

E. V. Jansson, Admittance measurements of 25 high quality violins, Acta Acustica united with Acustica, vol.83, issue.2, p.181, 1997.

E. V. Jansson, Violin frequency response -Bridge mobility and bridge feet distance, EPJ Web of Conferences, vol.65, p.180, 2004.

E. V. Jansson and &. Barczewski, On the Violin Bridge Hill -Comparison of Experimental Testing and FEM, Vibrations in Physical Systems, vol.27, p.220, 2016.

J. Jiang, J. Lu, R. Huang, and &. X. Li, Effects of time and temperature on the viscoelastic properties of Chinese fir wood, Drying Technology, vol.27, issue.11, p.113, 2009.

J. Jiang, J. Lu, Y. Zhao, and &. Wu, Influence of frequency on wood viscoelasticity under two types of heating conditions, Drying Technology, vol.28, issue.6, p.114, 2010.

S. S. Kelley, T. G. Rials-&-w, and . Glasser, Relaxation behaviour of the amorphous components of wood, Journal of Materials Science, vol.22, issue.2, p.318, 1987.

R. M. Kellogg-&-f and . Wangaard, Variation in the cell-wall density of wood, Wood and Fiber Science, vol.1, issue.3, p.60, 1969.

D. Keunecke, W. Sonderegger, K. Pereteanu, T. Lüthi, and &. Niemz, Determination of Young's and shear moduli of common yew and Norway spruce by means of ultrasonic waves, Wood Science and Technology, vol.41, issue.4, p.288, 2007.

J. Kinkead, Aleatory or epistemic ? Does it matter ?, Structural Safety, vol.31, p.139, 2004.

G. J. Klir, ;. S. Knapic, J. L. Louzada, S. Leal, and &. Pereira, Radial variation of wood density components and ring width in cork oak trees, Reliability Engineering & System Safety, vol.85, issue.1-3, p.60, 2004.

G. A. Knott, A modal analysis of the violin using MSC/NASTRAN and PATRAN, p.159, 1987.

C. Kohlhauser and &. Hellmich, Determination of Poisson's ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonicmechanical testing of normal stiffnesses : Application to metals and wood, European Journal of Mechanics, A/Solids, vol.33, issue.58, pp.82-98, 2012.

Z. Koran, Tensile Properties of Spruce Under Different Conditions, Wood and Fiber, vol.11, issue.1, p.58, 1979.

K. Kránitz, M. Deublein, and &. Niemz, Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices, Materials and Structures, vol.47, issue.6, p.58, 2014.

Y. Kubojima, T. Okano, and &. Ohta, Effect of annual ring widths on structural and vibrationsl properties of wood, Journal, p.60, 1997.

I. Kusumaningtyas, H. &. Yordaniansyah, and . Purwanto, Acoustical properties of petung bamboo for the top plate of guitars, Applied Acoustics, vol.112, p.258, 2016.

T. C. Lai-&-t and . Lau, Determination of Elastic Constants of a Generally Orthotropic Plate by Modal Analysis, The International Journal of Analytical and Experimental Modal Analysis, vol.8, issue.1, p.73, 1993.

C. Lanvermann, R. Evans, U. Schmitt, S. Hering, &. Niemz-;-c.-lanvermann et al., Combination of neutron imaging (NI) and digital image correlation (DIC) to determine intra-ring moisture variation in Norway spruce, Wood Science and Technology, vol.47, issue.3, p.40, 2013.

J. Launay, G. Nepveu, D. Guitard, V. Bucur, and &. Carminatti, Comparison between six methods to estimate elastic constants of sitka spruce wood, vol.44, p.58, 1988.

T. Lauwagie, H. Sol, G. Roebben, W. Heylen, Y. Shi et al., Mixed numerical-experimental identification of elastic properties of orthotropic metal plates, NDT and E International, vol.36, issue.7, p.66, 2003.

T. Lauwagie, W. Heylen, H. Sol, &. O. Van-der, and . Biest, Validation of a vibration based identification procedure for layered materials, Proceedings of ISMA2004, p.66, 2004.

T. Lauwagie, Vibration-based methods for the identification of the elastic properties of layered materials, p.66, 2005.

J. Carrou, F. Gautier, and &. Badeau, Sympathetic string modes in the concert harp, Acta Acustica united with Acustica, vol.95, issue.4, p.21, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00945199

J. Carrou, J. Frelat, A. Mancel, and &. Navarret, Guitareélectrique : quel rôle pour leséléments de lutherie ?, 10ème Congrès Français d'Acoustique, p.230, 2010.

E. Le-clézio and &. L. Brancheriau, Caractérisation Ultrasonore du bois, 10ème Congrès français d'acoustique, p.58, 2010.

S. Le-conte, S. &. Vaidelich, and . François, A Wood Viscoelasticity Measurement Technique and Applications to Musical Instruments : First Results, J. Violin Society Am, vol.21, p.106, 2007.

S. L. Conte, S. Le-moyne, and &. F. Ollivier, Modal analysis comparison of two violins made by A. Stradivari, Acoustics, vol.2012, p.179, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00811010

L. L. Magorou, F. Bos, and &. Rouger, Identification of constitutive laws for woodbased panels by means of an inverse method, Composites Science and Technology, vol.62, issue.4, p.58, 2002.

S. Le-moyne, J. Frelat, C. Besnainou, S. L. Moyne, J. Frelat et al., Un nouveau concept de table d'harmonie de guitare.Étude numérique du comportement vibratoire, 11e Colloque National en Calcul des Structures, p.258, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01722103

J. Lemaitre, J. Chaboche, A. Benallal, and &. Desmorat, Mécanique des matériaux solides. Dunod, p.36, 2008.

S. Lev-yadun and &. R. Aloni, An Experimental Method of Inducing 'Hazel' Wood in Pinus Halepensis (Pinacae), Iawa Bulletin, vol.12, issue.4, p.63, 1991.

. Lgrp and . Lgrp#1--leonardo, , vol.231, p.245, 1929.

R. Longo, T. Delaunay, D. Laux, M. E. Mouridi, O. Arnould et al., Wood elastic characterization from a single sample by resonant ultrasound spectroscopy, Ultrasonics, vol.52, issue.8, p.65, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00742901

J. Luke, Measurement and analysis of body vibrations of a violin, The Journal of the Acoustical Society of America, vol.49, issue.4, p.177, 1971.

R. H. Lyon, R. G. Dejong, and &. Heckl, Theory and application of statistical energy analysis. The journal of the acoustical society of america, vol.98, p.154, 1995.

]. P. Mahalanobis, On the generalised distance in statistics, Proceedings of the National Institute of Sciences of India, p.139, 1936.

H. Mairson, The Digital Amati Project, p.187, 2017.

A. Mamou-mani, Effets de la mise en charge de la table d'harmonie du piano, vol.6, p.236, 2007.

H. Mansour, V. Fréour, C. &. Saitis, and . Scavone, Post-classification of nominally identical steel-string guitars using bridge admittances, Acta Acustica united with Acustica, vol.101, issue.2, p.238, 2015.

M. Matsunaga, E. Obataya, K. Minato, and &. Nakatsubo, Working mechanism of adsorbed water on the vibrational properties of wood impregnated with extractives of pernambuco (Guilandina echinata Spreng.), Journal of Wood Science, vol.46, issue.2, p.62, 2000.

M. Matter, T. Gmür, J. Cugnoni, and &. Schorderet, Numerical-experimental identification of the elastic and damping properties in composite plates, Composite Structures, vol.90, issue.2, p.70, 2009.

M. Matter, T. Gmür, J. Cugnoni, and &. Schorderet, Identification of the elastic and damping properties in sandwich structures with a low core-to-skin stiffness ratio, Composite Structures, vol.93, issue.2, p.66, 2011.

&. J. Mcintyre, ;. Woodhouse, &. Mcintyre, and . Woodhouse, On measuring the elastic and damping constants of orthotropic sheet materials, Acta Metallurgica, vol.36, issue.177, p.73, 1978.

M. D. Mckay, R. J. Beckman-&-w, and . Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, vol.21, issue.2, p.141, 1979.

J. E. Mclennan, The violin music acoustics from Baroque to Romantic, vol.179, 0200.

M. E. Mclntyre and &. Woodhouse, On measuring wood properties, Journal of Chemical Information and Modeling, vol.45, issue.9, p.78, 1986.

L. Mehrez, A. Doostan, D. Moens, and &. Vandepitte, Stochastic identification of composite material properties from limited experimental databases, part I : Experimental database construction, Mechanical Systems and Signal Processing, vol.27, p.66, 2012.

D. Mercier, Le livre des techniques du son. Eyrolle, 1994. 268 [Metropolis 49] N. Metropolis & S. Ulam. The Monte Carlo Method, Journal of the American Statistical Association, vol.44, issue.247, p.140, 1949.

D. Moens and &. Vandepitte, Interval Uncertainty Quantification in Numerical Models using Dynamic Fuzzy Finite Element Analysis, NATO AVT-147 Symposium on Computational Uncertainty in Military Vehicle Design, p.165, 2007.

N. E. Molin, M. Tinnsten, U. Wiklund, and &. E. Jansson, FEM-analysis of an orthotropic shell to determine material parameters of wood and vibrations modes of violin plates, Report STL-QPSR, vol.25, p.66, 1984.

N. E. Molin and T. &. Mats, A violinmaker's practical test of wood properties suggested from FEM-analysis of an orthotropic shell, Journal of Catgut Acoustical Society, vol.46, p.178, 1986.

C. Montero, B. Clair, T. Alméras, A. Van-der-lee, and &. J. Gril, Relationship between wood elastic strain under bending and cellulose crystal strain, Composites Science and Technology, vol.72, issue.2, p.58, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00646489

A. Moreau, Identification de propriétés viscoélastiques de matériaux polymères par mesures de champs de réponses en fréquences de structures, p.102, 2007.

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.33, issue.2, p.200, 1991.

J. E. Mottershead-&-m and . Friswell, Model Updating In Structural Dynamics : A Survey, Journal of Sound and Vibration, vol.167, issue.2, p.139, 1993.

J. E. Mottershead, M. I. Link-&-m, and . Friswell, The sensitivity method in finite element model updating : A tutorial, Mechanical Systems and Signal Processing, vol.25, issue.7, p.74, 2011.

F. Moussu and &. Nivoit, Determination of Elastic Constants of Orthotropic Plates By A Modal Analysis/Method of Superposition, Journal of Sound and Vibration, vol.165, issue.1, p.73, 1993.

P. Navi and &. Heger, Comportement thermo-hydromécanique du bois : Applications technologiques et dans les structures. PPUR presses polytechniques, vol.35, p.317, 2005.

H. T. Nia, Acoustic Function of Sound Hole Design in Musical Instruments, vol.179, p.188, 2010.

H. T. Nia, A. D. Jain, Y. Liu, M. Alam, R. &. Barnas et al., The evolution of air resonance power efficiency in the violin and its ancestors, Proc. R. soc. A, vol.471, issue.2175, p.208, 2015.

M. Nocetti and &. Romagnoli, Seasonal cambial activity of spruce (picea abies karst.) with indented rings in the Paneveggio Forest, Acta Biologica Cracoviensia Series Botanica, vol.50, issue.2, p.63, 2008.

M. Norimoto, T. Ono, and &. Watanabe, Selection of wood used for piano soundboards, J. Soc. Rheol. Jpn, vol.12, p.61, 1984.

E. Obataya, M. Norimoto, and &. Gril, The effects of adsorbed water on dynamic mechanical properties of wood, Polymer, vol.39, issue.14, p.107, 1998.

E. Obataya, T. Umezawa, F. Nakatsubo, and &. Norimoto, The Effects of Water Soluble Extractives on the Acoustic Properties of Reed (Arundo donax L.). Holzforschung, vol.53, p.62, 1999.

E. Obataya, T. Ono, and &. Norimoto, Vibrational properties of wood along the grain, Journal of Materials Science, vol.35, issue.12, p.61, 2000.

E. Obataya, K. Minato, and &. Tomita, Influence of moisture content on the vibrational properties of hematoxylin-impregnated wood, Journal of wood science, vol.47, issue.4, p.107, 2001.

W. L. Oberkampf, S. M. Deland, B. M. Rutherford, K. V. Diegert-&-k, and . Alvin, Error and uncertainty in modeling and simulation, Reliability Engineering & System Safety, vol.75, issue.3, p.140, 2002.

W. L. Oberkampf, T. G. Trucano, and &. C. Hirsch, Verification, validation, and predictive capability in computational engineering and physics, Applied Mechanics Reviews, vol.57, issue.5, p.135, 2004.

B. S. Ohlsson and &. Perstorper, Elastic Wood Properties From Dynamic Tests and Computer Modeling, Journal of Structural Engineering, vol.118, issue.10, p.66, 1993.

J. Ohtani, K. Fukazawa, and &. Fukumorita, SEM observations on indented rings. IAWA Bull.(NS), vol.8, issue.2, p.317, 1987.

A. M. Olsson and &. Salmén, Viscoelasticity of in-situ lignin as affected by structure : softwood vs. hardwood, ACS Symposium Series, vol.489, p.113, 1992.

T. Ono and &. Norimoto, Study on Young's modulus and internal friction of wood in relation to the evaluation of wood for musical instruments, Japanese journal of Applied physics, vol.22, issue.4R, p.61, 1983.

T. Ono, Frequency responses of wood for musical instruments in relation to the vibrational properties, Journal of the Acoustical Society of Japan (E), vol.17, issue.4, p.73, 1996.

D. Ouis, On the frequency dependence of the modulus of elasticity of wood, Wood Science and Technology, vol.36, issue.4, p.113, 2002.

G. Paiva, Analyse modale vibroacoustique de caisse de résonance de Viola Caipira, p.232, 2013.

L. C. Palka, Predicting the Effect of Specific Gravity , Moisture Content , Temperature and Strain Rate on the Elastic Properties of Softwoods, Wood Science and Technology, vol.7, issue.2, p.323, 1973.

A. J. Panshin and &. De-zeeuw, Textbook of wood technology. Volume I. Structure, identification, uses, and properties of the commercial woods of the United States and Canada. Textbook of wood technology. Volume I. Structure, identification, uses, and properties of the commercial woods of the United States and Canada, vol.35, p.317, 1970.

A. J. Panshin and &. De-zeeuw, Textbook of wood technology, p.60, 1980.

R. Pascual, J. C. Golinval, and &. Razeto, A Frequency Domain Correlation Technique for Model Correlation and Updating, 15th International Modal Analysis Conference (IMAC XV, p.165, 1997.

A. Paté, Lutherie de la guitareélectrique solid body : aspects mécaniques et perceptifs, p.230, 2014.

A. Paté, J. Carrou, and &. B. Fabre, Predicting the decay time of solid body electric guitar tones, The Journal of the Acoustical Society of America, vol.135, issue.5, p.230, 2014.

A. Paté, J. Carrou, and &. B. Fabre, Modal parameter variability in industrial electric guitar making : Manufacturing process, wood variability, and lutherie decisions, Applied Acoustics, vol.96, p.230, 2015.

K. Pearson and . Liii, On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.2, issue.11, p.141, 1901.

H. Peng, J. Lu, J. Jiang, and &. Cao, Longitudinal Mechano-Sorptive Creep Behavior of Chinese Fir in Tension during, Moisture Adsorption Processes. Materials, vol.10, issue.8, p.43, 2017.

M. A. Pérez, P. Poletti, and &. Espert, Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments, C. Vasques & J. Dias Rodrigues, editeurs, Vibration and Structural Acoustics Analysis, vol.58, p.66, 2011.

M. A. Pérez, A frequency domain correlation approach for the assessment of wooden musical instruments, Analysis and Characterisation of Wooden Cultural Heritage by means of Scientific Engineering Methods, p.145, 2016.

M. A. Pérez and &. Serra-lópez, A Frequency Domain Correlation Approach for Musical Instruments, vol.145, p.165, 2016.

M. A. Pérez, A. Manjón, J. Ray, and &. Serra-lópez, Experimental assessment of the effect of an eventual non-invasive intervention on a Torres guitar through vibration testing, Journal of Cultural Heritage, vol.27, p.238, 2017.

M. A. Pérez and &. Serra-lópez, A Frequency domain Correlation Approach for Musical Instruments Experimental Assessment, IMAC-XXXV Conference and Exposition on Structural Dynamics, vol.145, p.149, 2017.

I. Perry, Sound Radiation Measuremets on Guitars and Other Stringed Musical Instruments, p.230, 2014.

E. Pillet, Méthodologies d'aideà la décision en conception robuste, vol.143, p.319, 2011.

R. Pitteroff and &. Woodhouse, Mechanics of the Contact Area Between a Violin Bow and a String. Part II : Simulating the bowed String, Acta Acustica united with Acustica, vol.84, issue.5, p.22, 1998.

V. Placet, Conception et exploitation d'un dispositif expérimental innovant pour la caractérisation du comportement viscoélastique et de la dégradation thermique du bois dans des conditions sévères, vol.37, p.58, 2006.

V. Placet, J. Passard, and &. Perré, Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0-95°C : Hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung, vol.61, p.113, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00330249

V. Placet, J. Passard, and &. Perré, Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135°c : Evidence of thermal degradation, Journal of Materials Science, vol.43, issue.9, p.113, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00395497

A. Platanianaki, E. Tsetsekou, and &. Pournou, A Comparative Study on Adhesives Used in Wooden Musical Instruments, Preservation of Wooden Musical Instruments Ethics, 2017.

P. A. Poletti-&-m and . Pérez, Mechanical Characterization of Picea Abies for the Construction of Musical Instruments Through Experimental Modal Analysis, 3rd International Conference on Integrity, Reliability and Failure, vol.43, p.58, 2009.

T. Pritz, Frequency Dependences of Complex Moduli and Complex Poisson's Ration of Real Solid Materials, Journal of Sound and Vibration, vol.214, p.113, 1998.

M. A. Pyrkosz, Reverse engineering the structural and acoustic behavior of a Stradivari violin, vol.180, p.214, 2013.

V. Racko and &. Cunderlik, Selected Mechanical Properties of "Hazel Wood, Norway Spruce (Picea Abies L.). In Wood Structure and Properties' 06, vol.63, p.90, 2006.

V. Racko, O. Misikov, and &. Seman, Effect the Indentation of the Annual Growth Rings in Norway Spruce ( Picea Abies L .) on Shear Strength -Preliminary Study, Proceedings of the 57th International Convention of Society of Wood Science and Technology, p.63, 2014.

V. Ra?ko, F. Ka?ík, O. Mi?íková, P. Hlavá?, I. ?underlík et al., The onset of hazel wood formation in Norway spruce, Annals of Forest Science, vol.75, issue.82, p.62, 2018.

A. Rafsanjani, C. Lanvermann, P. Niemz, J. Carmeliet, and &. Derome, Multiscale analysis of free swelling of Norway spruce, Composites Part A : Applied Science and Manufacturing, vol.54, p.58, 2013.

A. Rafsanjani, M. Stiefel, K. Jefimovs, R. Mokso, D. Derome et al., Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy, Journal of The Royal Society Interface, vol.11, issue.95, p.40, 2014.

M. Rébillat and &. Boutillon, Measurement of relevant elastic and damping material properties in sandwich thick plates, Journal of Sound and Vibration, vol.330, issue.25, p.66, 2011.

W. Reinicke and &. Cremer, Application of Holographic Interferometry to Vibrations of the Bodies of String Instruments, The Journal of the Acoustical Society of America, vol.48, issue.4, p.179, 1970.

W. Reinicke, DieÜbertragungseigenschaften des Streichinstrumentenstegs, Catgut Acoustical Society Newsletter, vol.3, issue.19, p.317, 1924.

P. Ricciardi, Vibrations and Sound Quality of Cutaway guitars, International Congress on Acoustics, p.231, 2001.

B. Richardson, Guitar making-the acoustician's tale, Proc. Second Vienna Talk, p.230, 2010.

O. E. Rodgers, The effect of the elements of wood stiffness on violin plate vibration, CASJ Catgut acoustical society journal, vol.1, issue.47, p.178, 1988.

O. E. Rodgers-&-t and . Masino, The effect of wood removal on bridge frequencies, CASJ Catgut acoustical society journal, vol.1, p.182, 1990.

M. Roest, Design of a Composite Guitar, p.258, 2016.

M. Roma, L. Gonzalez, and &. Briones, Software based acoustic guitar simulation by means of its impulse response, 10th Meeting on Audio Engineering of the AES Portugal, p.258, 2008.

M. Romagnoli, M. Bernabei, and &. Codipietro, Density variations in spruce wood with indented rings (Picea abies karst), Holz als Roh -und Werkstoff, vol.61, issue.4, p.90, 2003.

T. D. Rossing, Science of percussion instruments, p.235, 2001.

S. Saft and &. Kaliske, Numerical simulation of the ductile failure of mechanically and moisture loaded wooden structures, Computers and Structures, vol.89, issue.23-24, p.323, 2011.

S. Saft and &. Kaliske, A hybrid interface-element for the simulation of moistureinduced cracks in wood, Engineering Fracture Mechanics, vol.102, p.323, 2013.

C. Saitis, C. Fritz, B. L. Giordano-&-g, and . Scavone, Bridge admittance measurements of 10 preference-rated violins, Acoustics, p.182, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00810717

C. Saitis, C. Fritz, C. &. Guastavino, and . Scavone, Conceptualization of Violin Quality By Experienced Performers, Proceedings of the Stockholm Music Acoustic Conference 2013, SMAC 2013, pp.123-128, 2013.

L. Salmén, Viscoelastic properties of in situ lignin under water-saturated conditions, Journal of Materials Science, vol.19, issue.9, p.110, 1984.

F. Savart, Mémoire sur la constructon des instrumentsà cordes età archets

J. C. Schelleng, Acoustical effects of violin varnish, The Journal of the Acoustical Society of America, vol.44, issue.5, p.149, 1968.

J. C. Schelleng, The bowed string and the player, The Journal of the Acoustical Society of America, vol.53, issue.1, p.317, 1973.

S. Schubert, Resonant ultrasound spectroscopy applied to wood : comparison of the shear modulus, 14th Int. Symp. of NDT of Wood, p.58, 2005.

S. I. Schubert, D. Gsell, J. Dual, M. Motavalli, and &. Niemz, Rolling shear modulus and damping factor of spruce and decayed spruce estimated by modal analysis, Holzforschung, vol.60, issue.1, p.58, 2006.

G. I. Schuëller, A state-of-the-art report on computational stochastic mechanics, Probabilistic Engineering Mechanics, vol.12, issue.4, p.140, 1997.

G. I. Schuëller, Computational stochastic mechanics-recent advances, Computers & Structures, vol.79, issue.22-25, p.140, 2001.

G. I. Schuëller, Developments in stochastic structural mechanics, Archive of Applied Mechanics, vol.75, issue.10-12, p.141, 2006.

R. T. Schumacher, S. Garoff, and &. Woodhouse, Probing the Physics of Slip-Stick Friction using a Bowed String, The Journal of Adhesion, vol.81, issue.7-8, p.24, 2005.

M. Schwaar, T. Gmür, and &. Frieden, Modal numerical-experimental identification method for characterising the elastic and damping properties in sandwich structures with a relatively stiff core, Composite Structures, vol.94, issue.7, p.66, 2012.

H. L. Schwab-&-k and . Chen, Finite element analysis of a guitar soundboard, Catgut Acoust. Soc. Newsletter, vol.24, p.159, 1975.

F. H. Schweingruber, ;. Sedighi-gilani, M. N. Boone, K. W. Mader-&-f, and . Schwarze, Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes, Journal of structural biology, vol.187, issue.62, pp.149-57, 2008.

M. Sedighi-gilani, P. Tingaut, M. &. Heeb, and . Schwarze, Influence of moisture on the vibro-mechanical properties of bio-engineered wood, Journal of Materials Science, vol.49, issue.22, pp.7679-7687, 2014.

M. Sedighi-gilani and &. F. Schwarze, Hygric properties of Norway spruce and sycamore after incubation with two white rot fungi, Holzforschung, vol.69, issue.1, pp.1-10, 2015.

S. Serafin, I. Smith, and J. O. Woodhouse, An investigation of the impact of torsion waves and friction characteristics on the playability of virtual bowed strings, Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, p.22, 1999.

S. Serafin, The Sound of Friction : Real-Time Models, Playability and Musical Applications, p.24, 2004.

J. F. Siau, Transport Processes in wood, vol.2, p.323, 1984.

C. Simonnet, V. Gibiat, and &. Halary, Physical and Chemical Properties of Varnishes and Their Vibrational Consequences, PACS reference 43 75, p.28, 2002.

W. T. Simpson, Predicting equilibrium moisture content of wood by mathematical models, Wood and Fiber, vol.5, p.194, 1973.

W. T. Simpson, Specific Gravity , Moisture Content , and Density Relationship for Wood. Rapport technique, United States Department of Agriculture, vol.42, p.317, 1976.

W. T. Simpson and &. Tenwolde, Physical Properties and Moisture Relations of Wood. Rapport technique, United States Department of Agriculture, vol.44, p.317, 1999.

A. N. Sinclair and &. Farshad, A comparison of three methods for determining elastic constants of wood. journal of testing and evaluation, vol.15, p.58, 1987.

E. Skrodzka, A. Krupa, E. J. Rosenfeld-&-b, and . Linde, Mechanical and optical investigation of dynamic behavior of violins at modal frequencies, Applied optics, vol.48, issue.7, p.179, 2009.

E. Skrodzka, A. Lapa, B. B. Linde, and &. E. Rosenfeld, Modal parameters of two incomplete and complete guitars differing in the bracing pattern of the soundboard, The Journal of the Acoustical Society of America, vol.130, issue.4, p.242, 2011.

E. B. Skrodzka, B. B. Linde, and &. Krupa, Effect of Bass Bar Tension on Modal Parameters of a Violin ' s Top Plate, Archives of Acoustics, vol.39, issue.1, p.199, 2014.

H. Sol, Identification of anisotropic plate rigidities using free vibration data

R. Sprossmann, M. Zauer, and &. Wagenführ, Characterization of acoustic and mechanical properties of common tropical woods used in classical guitars, Results in Physics, vol.7, p.235, 2017.

M. Spycher, F. W. Schwarze, and &. Steiger, Assessment of resonance wood quality by comparing its physical and histological properties, Wood Science and Technology, vol.42, issue.4, p.60, 2008.

M. D. Stanciu, I. Curtu, E. Moisan, D. Man, and &. Savin, Rheological Behaviour of Curlymaple Wood (Acer Pseudoplatanus) Used For Back Side Of Violin, Pro Ligno, vol.11, issue.2, p.32, 2015.

P. R. Stepanishen, The radiation impedance of a rectangular piston, Journal of Sound and Vibration, vol.55, issue.2, p.208, 1977.

P. H. Sulzberger, The Effect of Temperature On The Strength Of Wood, Plywood And Glued Joints. Aeronautical Research Consultative Committee Report, vol.16, p.318, 1953.

J. H. Tam, Z. C. Ong, Z. Ismail, B. C. Ang-&-s, and . Khoo, Identification of material properties of composite materials using nondestructive vibrational evaluation approaches : A review, Mechanics of Advanced Materials and Structures, vol.0, issue.0, p.66, 2016.

B. H. Thacker, S. W. Doebling, F. Hemez, M. C. Anderson, J. E. Pepin-&-e et al., Concepts of model verification and validation. Rapport technique, p.135, 2004.

S. Tirat, I. Degano, J. P. Echard, A. Lattuati-derieux, A. Lluveras-tenorio et al., Historical linseed oil/colophony varnishes formulations : Study of their molecular composition with micro-chemical chromatographic techniques, Microchemical Journal, vol.126, p.30, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01708530

J. A. Torres-&-r and . Boullosa, Influence of the bridge on the vibrations of the top plate of a classical guitar, Applied Acoustics, vol.70, issue.11-12, p.231, 2009.

K. L. Van-buren, M. G. Mollineaux, F. Hemez, and &. S. Atamturktur, Simulating the dynamics of wind turbine blades : part II, model validation and uncertainty quantification, Wind Energy, vol.16, issue.5, p.135, 2013.

K. L. Van-buren, S. Atamturktur, and &. Hemez, Model selection through robustness and fidelity criteria : modeling the dynamics of the CX-100 wind turbine blade, Mechanical Systems and Signal Processing, vol.43, issue.1-2, p.135, 2014.

K. Van-buren, M. Ouisse, S. Cogan, E. Sadoulet-reboul, and &. L. Maxit, Effect of model-form definition on uncertainty quantification in coupled models of midfrequency range simulations, Mechanical Systems and Signal Processing, vol.93, p.150, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01710839

R. Viala, V. Placet, and &. S. Cogan, Virtual Prototyping : A Potential Tool for Wooden Cultural Heritage Studies, Analysis and Characterisation of Wooden Cultural Heritage by means of Scientific Engineering Methods, p.298, 2016.

R. Viala, V. Placet, S. Cogan, and &. E. Foltête, Model-based effects screening of stringed instruments, Conference Proceedings of the Society, vol.3, p.298, 2016.

R. Viala, V. Placet, and &. S. Cogan, Mixed geometrical-material screening analysis for the study of complex phenomena in musical acoustics, Conference Proceedings of the Society for Experimental Mechanics Series, vol.3, p.298, 2017.

R. Viala, V. Placet, S. Cogan, R. Viala, V. Placet et al., Détermination de propriétés constitutives de piècesà géométrie complexe en matériaux composites par méthode, Journées Nationales sur les Composites JNC, vol.20, p.298, 2017.

R. Viala, V. Placet, and &. S. Cogan, Identification of the anisotropic elastic and damping properties of complex shape composite parts using an inverse method based on finite element model updating and 3D velocity fields measurements (FEMU-3DVF) : Application to bio-based composite violin sou, Composites Part A : Applied Science and Manufacturing, vol.106, p.298, 2018.

H. J. Vos, O. Warusfel, N. Misdariis, and &. De-vries, Analysis and reproduction of the frequency spectrum and directivity of a violin, J. Acoust. Soc. Neth, vol.167, p.179, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01107126

G. B. Weinreich-&-e and . Arnold, Method for measuring acoustic radiation fields, The Journal of the Acoustical Society of America, vol.68, issue.2, p.178, 1980.

G. Weinreich, Violin radiativity : concepts and measurements, Proceedings SMAC-Stockholm Music Acoustics Conf, p.178, 1985.

G. Weinreich, Directional tone color, J. Acoust. Soc. America, vol.101, p.183, 1996.

G. Weinreich, C. Holmes, and &. Mellody, Air-wood coupling and the Swiss-cheese violin, Journal of the Acoustical Society of America, vol.108, issue.5, p.179, 2000.

R. Wimmer, B. N. Lucas, T. Y. Tsui-&-w, and . Oliver, Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique, Wood Science and Technology, vol.31, issue.2, p.60, 1997.

J. Woodhouse, The physics of the violin, Contemporary Physics, vol.27, p.181, 1986.

J. Woodhouse, The acoustics of "A0-B0 mode matching" in the violin, Acta acustica, vol.84, p.180, 1998.

J. Woodhouse, On the Bridge-Hill of the Violin, Acta acustica united with acustica, vol.91, issue.1, p.319, 2005.

J. S. Woodhouse-&-r and . Langley, Interpreting the input admittance of violins and guitars, Acta Acustica united with Acustica, vol.98, issue.4, p.230, 2012.

J. Woodhouse, The acoustics of the violin : a review, Reports on Progress in Physics, vol.77, issue.11, p.317, 0204.

C. Xu, R. Arneil, D. Arancon, J. Labidi, and &. Luque, Lignin depolymerisation strategies : towards valuable chemicals and fuels, Chem. Soc. Rev. Chem. Soc. Rev, vol.43, issue.43, p.317, 2014.

H. Yano, The changes in the acoustic properties of Western Red Cedar due to methanol extraction, Holzforschung, vol.48, p.62, 1994.

H. Yano, K. Kyou, Y. Furuta, and &. Kajita, Acoustic properties of Brazilian rosewood used for guitar back plates, Mokuzai gakkaishi, vol.41, issue.1, p.62, 1995.

H. Yano, H. Kajita, and &. Minato, Chemical treatment of wood for musical instruments, Journal of the Acoustical Society of America, vol.99, issue.3, p.113, 1996.

H. Yoshihara, Off-axis Young's modulus and off-axis shear modulus of wood measured by flexural vibration tests, Holzforschung, vol.66, issue.2, p.58, 2012.

S. Yoshikawa, ;. Y. Yu, I. G. Jang, I. K. Kim-&-b, and . Kwak, Nodal line optimization and its application to violin top plate design, The Journal of the Acoustical Society of America, vol.122, issue.1, p.228, 2007.

Z. X. Yuan-&-k and . Yu, Finite element model updating of damped structures using vibration test data under base excitation, Journal of Sound and Vibration, vol.340, p.102, 2015.

T. Zhan, J. Lu, J. Jiang, H. Peng, A. Li et al., Viscoelastic properties of the Chinese fir (Cunninghamia lanceolata) during moisture sorption processes determined by harmonic tests, Materials, vol.9, issue.12, p.113, 2016.

T. Zhang, S. L. Bai, Y. F. Zhang, and &. B. Thibaut, Viscoelastic properties of wood materials characterized by nanoindentation experiments, Wood Science and Technology, vol.46, issue.5, p.113, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00856969

A. Zhang and &. Woodhouse, Reliability of the input admittance of bowed-string instruments measured by the hammer method, The Journal of the Acoustical Society of America, vol.136, issue.6, p.58, 2014.

.. .. , 19 1.2 Part of a photography of the Johan Sebastian Bach (1685-1750) sonata No.2 in A minor, BWV 1003, annotation by Yehudi Menuhin (1916-1999)

, Schelleng diagram [Schelleng 73] of the Helmoltz motion's domain of a violin string, from [Woodhouse 14]

, spatial representation of the 1 st to 16 th harmonics of a string ; (b), schematised amplitude of the first harmonics of a string

, Violin string spectrum, picture from [Reinicke 73]

, Scheme of the impact of the elements on the signal produced by the violin, from the string motion to the radiated sound, p.26

. .. , Violin scheme and nomenclature of its constituents, p.27

. .. , Selmer guitar scheme and nomenclature of its constituents, p.30

]. .. , 33 1.10 Scheme of the xylem functions

]. .. , 34 1.12 (a), scheme of the layers of the tracheid, from [Navi 05] ; (b), cellulose, hemicellulose and lignin relative content in the different tracheid cell wall layers

, Moisture content as a function of the temperature and relative humidity

, Gb gives the basic specific gravity (the ratio between the dried mass and the volume at fiber saturation point)

]. .. , 44 1.17 Comparison between computed eigenmode shapes and Chladni pattern of a violin back, with the permission of

M. .. Gilani, Microscopic view of spruce in RT-plane, at different scales, p.61

, 63 2.3 Microscopic views of indented and non indented spruce obtained by tomography reconstruction. The tomography has been performed by Marjan Gilani, from EMPA laboratory, and the reconstruction made by Romain Viala using ImageJ. Images taken from the same samples at different ages of the tree, Microscopic views obtained by SEM for standard and indented spruce samples. (a)

, Dimensions of the quarters (a) and plates (b)

. .. , Density as a function of the grade given by the supplier (smaller is better) for spruce plates and quarters

.. .. Femu-3dvf-method-scheme,

, 71 FIGURES LIST 2.8 Animation of the three modes of the plates used to evaluate the loss factor in different directions ; (a), mode 2 : pure bending in longitudinal direction ; (b), mode 4 : pure bending in radial direction ; (c), mode 1 : pure torsion in LR plane, see electronic version for animation

. .. , Finite difference sensitivity analysis of the first sixteen modes of the quarters. Legend gives the normalized elementary effects of each parameter

, Mode shape (left) and screening of the parameters (right) for the first twelve modes of the quarters, part II

, Mode shape (left) and screening of the parameters (right) for the first twelve modes of the plates, part II, Mode shape (left) and screening of the parameters (right) for the first twelve modes of the plates

, Global sensitivity ranking of the parameters according to the dynamic response for : (a), plates ; (b), quarters

.. .. , 83 2.16 MAC matrix before (left) and after (right) calibration for the spruce plates (a), Ia ; (b), IVa ; (c), VIIa, Global sensitivity ranking of the parameters according to the dynamic response for : (a), plates ; (b)

, Overall rigidities and loss factors of the spruce wood for all the samples, p.86

, Average rigidities and loss factors as a function of the grading (smaller is better), p.92

. .. , 93 2.20 Cost function as a function of the three considered rigidities for the quarters samples, vol.94

, Identified rigidities as a function of the densities for plates and quarters samples, (34 specimens). Red line, models proposed, p.96

. .. , Cumulative distribution function of the specific gravity for spruce, p.97

, Cumulative distribution functions of rigidities for spruce ; top : L direction, middle : R direction, bottom : LR direction

, Cumulative distribution functions of specific rigidities for spruce ; top : L direction, middle : R direction, bottom : LR direction

, Cumulative distribution functions of loss factors for spruce ; top : L direction, middle : R direction, bottom : LR direction

, Relative moisture content dependence of the longitudinal stiffness for spruce wood for different temperatures, blue square represents the area of interest, p.108

. .. , Moisture content dependence of (a), the longitudinal modulus ; (b), the radial modulus ; the blue square shows the area of interest[Gerhards 82], p.108

, Moisture content dependence of the relative changes of the shear LR modulus, the blue square shows the area of interest

, longitudinal dynamic modulus and (b), loss factor of spruce as a function of the temperature for different moisture content levels, 10 %

, Temperature dependence of (a), longitudinal dynamic modulus and (b), loss factor of spruce (solid lines) and maple (dashed lines) at 10 % moisture content

, (?1) and hemicelluloses (?2) as a function of the moisture content ; hexagons : ?2, square and circle : ?1

, the longitudianl modulus ; (b), the radial modulus [Gerhards 82] as a function of the temperature for different moisture content levels, p.111

, Absolute evolution of the longitudinal stiffness of spruce wood as a function of the temperature at different moisture content levels ; circles : 8 % MC, solid circles : 12 %, dotted circles : 20 % ; (b), models of the relative evolution of the longitudinal stiffness of spruce wood as a function of the temperature for different moisture content levels, vol.8

, Spruce plate from which specimen were cut for DMA tests, the remaining of the plate is used for FEMU-3DVF method

, Experimental set-up for the measurement of velocity fields on the plate XI in controlled climatic conditions

. .. , 117 3.13 RH and T protocol changes for (a), temperature sweep (PII ) ; (b), relative humidity sweep (PIII )

. .. Hz, Left, storage modulus and right, loss factor of L1 specimen as a function of the temperature for different relative humidity states ; RH=20, 30, 50, 60 % (protocol PII ), p.120

, Storage, loss moduli and loss factor of L specimens as a function of the relative humidity for the protocol PIII (T=32, 40 ? C)

. .. , Storage, loss moduli and loss factor of R1 specimen as a function of ; left, temperature (PII , RH=50±10 %) ; right, relative humidity (PIII T=32 ? C), p.124

, Evolution of rigidities and loss factors as a function of the relative humidity and the temperature, for the plate XI with the protocl PI

, Diagram of the V&V process elements, as proposed in, p.136

]. .. , Example of the trajectories of the Morris method, p.143

, Sorting of effects using Morris method

. .. , 147 4.5 (a), finite element model of the guitar soundboard at step 15 ; (b), location of the experimental measurement points and FRF synthesis nodes, p.147

, Frequencies and deformed shapes of the first nine computed modes of the spanish guitar soundboard, in free-free conditions. The red color representd the highest eigenvectors values

. .. Size, 153 4.9 FDAC matrix between the measured (ordonate) and computed (abscissa) FRF for each soundboard, the FDAC value is given for each sample. The model repsonse is computed with nominal values of the mechanical parameters, p.155

, Probability density functions of the values of the first four eigenfrequencies computed by the numerical model of soundboard, left part, relative humidity centered at 45 %, right part, relative humidity centered on 55 %

, Fuzzy FRF of spanish guitar soundboard at 55 % of relative humidity

, Material orientation of the wooden componenets

, Detailed results of the screening analysis of the modes 1, 2, 4 and 5, p.167

. .. , Detailed results of the screening analysis of the modes 11, 14 and 30, p.168

, Influence of the material mechanical parameters, densities and moisture content on the matched eigenfrequencies of the violin

, Influence of the material mechanical parameters, density and hygroscopicity towards the matched eigenfrequencies of the violin

, Ranking of the mechanical properties on the eigenfrequencies of the violin, p.170

. .. , Ranking of the densities on the eigenfrequencies of the violin, p.171

. .. Violin, 1 (a) Bridge admittance measurement and (b) bridge hill effect illustration based on the measure of the bridge admittance, vol.171

. .. , 182 5.3 Animation of the movement of the soundboard according to the position of the soundpost in (a) YZ plane, (b) XZ plane. With the permission of Stéphane Neid-hardt©. See electronic version for animation

, Scheme of the method used to determine the thermal expansion coefficients value needed to apply the correct tuning force

, Capstans used to attach the strings

. .. , Moulds and templates traditionnaly used in violin making, p.187

. .. , 187 5.10 Computer aided designs of the violin ; (a), rendering ; (b), CAD as displayed in the CAD software, Drafts of the violin drawn using the moulds and templates

, Computer aided design of the violin, see electronic version for interaction with object, p.189

, Close view of the bridge in XZ plane and nomenclature of the elements, p.190

, Close up of the violin soundboard in the XY plane and of the f-holes, p.190

, Tetrahedral meshing of the violin and close up of the soundboard, sides, heel interface, p.192

. .. , Scheme of the material orientation of the parts in the violin

. .. , Material orientation of the sides, linings and purflings

. .. , Air cavity of the violin ; (a), inside the violin ; (b), extracted

, Mesh and model of the air cavity for the computation of the acoustic modal basis

, Model and mesh used for the evaluation of the impedance of the f-hole, p.199

. .. , 21 (a)Bridge admittance evaluation scheme ; (b), input force ; (c), computed FRF at the bridge on full violin model, Scheme of the equilibrium of the forces inside the violin, vol.5

, 22 Operational modes of the violin obtain by LDV

. .. , Impedance of the f-holes area as a function of the frequency, p.206

, Numerical acoustic modes of the air cavity inside the violin, with their respective frequencies, the cavities are considered as rigid. The acoustic fields are given in Pa, p.207

, MAC matrix between correct and incorrect orientation of the sides and linings of the violin

.. .. , 212 5.28 Numerical modes of the tailpiece when mounted on the violon, no prestresses included

. .. , Numerical modes of the violin body, no prestress included, p.214

. .. , 215 5.32 Number of matched modes of the violin model as a function of the run, for a minimum MAC value equal to 0, Modal overlap factor dispersion of the violin model for 230 runs

, Matched eigenfrequencies dispersion as a function of the frequency for each mode, p.216

. .. , Numerical modes of a violin bridge fixed at its feet. The bridge shown is cut in the same way than instrument makers do. A difference is observed with the eigenfrequencies of a violin bridge uncut (as sold by the bridge seller), vol.217

, Numerical modes of a violin bridge coupled with violin soundboard. The red color gives the maximum eigenvector value

. .. , Maximum FRF value in the [1600-3000 Hz] frequency band, p.220

. .. , Frequency value of the maximum FRF in [1600-3000] Hz band, p.220

. .. , Minimum, maximum and mean FRF based on the 230 runs, p.221

. .. , Completed computed bridge admittance complete datasets, p.221

, Fuzzy-FRF of the violin bridge admittance based on the 230 computed cases, p.222

, Ranking of the parameters according to (a), the maximum admittance in the band

, overall maximum admittance ; (e), FRF curves ; (f), matched eigenvector error, p.223

, Ranking of the grouped material, climatic, preset and design parameters according to (a), the maximum admittance in the band

, FRF curves ; (f), matched eigenvector error

, Screening analysis of the parameters on the soundboard, back and body modes of the violin below 800 Hz

, Ranking of the grouped material, climatic, design and presets parameters according their influence on the back and body eigegnfrequencies of the modes of the violin below 800 Hz

, top view ; (b), classical guitar braces ; (c), folk guitar bars ; (d), selmer guitar bars, Computer aided designs of : (a)

, Computer aided designs of : (a), dimensions of the soundboard ; (b), dimension of the rosette ; (c), dimensions of the bridge

. .. , Bridge admittance evaluation and input force position and direction, p.238

. .. , Computed modes of the classical braces guitar soundboard, p.240

. .. , Computed modes of the string-steel braces guitar soundboard, p.241

. .. , Computed modes of the selmer braces guitar soundboard, p.241

, Material screening analysis on matched eigenfrequencies of : (a), classical soundboard ; (b), folk soundboard ; (c), selmer soundboard

, Modal overlap factor as a function of the third octave bands, for three different cases of guitar bars

, Fuzzy FRF of the bridge admittance for : (a) classical guitar braces ; (b), folk guitar bars ; (c), selmer guitar bars

, Coefficient of correlation between bridge admittance and material parameters : (a) classical guitar bracing ; (b), steel-string guitar bracing ; (c), selmer guitar bracing, p.247

, Representation of the tunable parameters of a guitar soundboard with classical braces, vol.252

, See electronic version for animation, Interface MICAD developped in collaboration with the LAUM

. .. , Results of the MICAD suite for given boundary conditions, p.255

, Interface MICAD for violin soundboards. See electronic version for animation, p.256

, Results of the MICAD suite for violin soundboard, first six eigenmodes shapes for clamped conditions and their given eigenfrequencies

A. , Loss factors as function of the frequency in longitudinal (a) and radial (b) directions, p.270

, Probability density function of the relative humidity

, Probability density function of the temperature

, Mass gain as a function of the relative humidity for spruce chips, p.273

, Sorption isotherm for spruce obtained using DVS

. .. A.6-;, Mass variation of one spruce beam specimen, L3, submitted to 23 ? C and 75 % RH from 50 % RH and 23 ? C. The evolution follows a Fick's law, p.274

A. ;. , Mass variation of the spruce beam specimen, L3, submitted to 23 ? C and 75 % RH from 50 % RH and 23

A. , Initial state (50 % RH, 23 ? C) ; (b) Equilibrium state (75 % RH, 23 ? C), dimensions are given in pixels

, A.9 Moisture content variation from 25 % to 95 % as a function of the time for the XIb plate, p.283

A. , 11 MAC matrix between modal basis nominal and indented rings spruce, p.286

A. , 12 Bridge admittance compared between bear claw and standard wood, p.286

A. , 13 Numerical modes of rhombicuboctahedron

A. , Selmer soundboard CAD and nomenclature ; (b)

. .. Wood, 297 A.19 Bridge admittance of the violin made of initial (red) and treated (blue) top and back. The remaining curves are obtained with an analysis taking into account the uncertainties in the making of the violin (180 curves), A.18 MAC matrix between initial and modified

A. , 20 Fuzzy FRF of the bridge admittance taking into account making uncertainties, p.297

. .. , Non-exhaustive list of musical instruments used in music, p.19

, First ten harmonics of a string, and their respective names in comparison with the tonic, based on C note

, Scales in wood, given in meters, and respective application domains

. .. , Dimensions of a tracheid and its wall layers, from [Siau 84], p.35

, Empirical models for the elastic properties as a function of the density, for both hardwoods and softwoods

, Constant for the empirical models for the elastic properties of spruce, as a function of the density and the moisture content, for a specific gravity in dried conditions equal to 0.38, from

, Relative change of elastic constants with 1 % increase in moisture content, between 5 and 25 % MC , for sitka spruce, vol.87

, Mechanical parameters considered for the characterisation at the macroscopic scale of the wood, mostly taken from

. .. , Frequency response function classification and label, p.47

, Mechanical properties of spruce from litterature data review, p.59

, Spruce and maple violin quarters labels, references, harvest year, grading and specific gravity

. .. Year, Spruce plates (for guitars) grades, density and harvest, p.69

, Matched eigenfrequencies and MAC before (b.c.) and after (a.c.) calibration for three spruce pltes of three different qualities

, Sum up of the mechanical parameters of spruce, and comparison with bibliography values

, Mean, standard deviation (SD) and relative standard deviation (RSD)

. .. , Identifed mechanical properties for spruce plate samples, vol.87

, Specific rigidities for spruce plate samples

, Identified material properties for spruce quarter samples

. .. , 89 2.10 Comparison of the mechanical properties between normal spruce and indented rings spruce

, Evaluation of the relative error on the identified values of the parameters for different sources of error and uncertainties for the quarter samples, p.95

. .. , Evaluation of the relative error on the identified values of the parameters for different sources of error and uncertainties for the plate samples, p.95

, Constants for the normal distribution for different material parameters, p.101

. .. , Constants for the wakeby distribution for all material parameters, p.101

, ? C of the mechanical properties of spruce wood

, Storage modulus and loss factor in L direction for different RH, with the protocol PI (T=27 and 38 ? C), at 1Hz

. .. , 128 3.5 Comparison between the relative variation of the material parameters for absolute variations of RH and T for DMA and FEMU-3DVFCLIM. For temperature variation, the RH and frequency considered are 50 % and 1Hz, Rigidities and loss factors identified for different cases of relative humidity and temperature, p.128

. .. %/-?-c, Relative changes of the rigidities and loss factors as a function of the temperature for different cases of relative humidity

%. .. Mc,

, Descritpion of the stages of construction of the guitar soundboards tests, p.146

. .. , Material and physical paremeters implemented and their given nominal values, standard deviation (SD) and relative standard deviation (RSD), p.149

, Sum up of the ten first eigenfrequencies values according to different mesh resolution levels

, Results of the error value and convergence for the three cases of mesh resolution

. .. , Results for the first four modes measured and computed. The mode shapes, eigenfrequencies and mean experimental modal damping are given, p.154

, Comparison of the first six computed modes with different relative humidity PDF (45 % and 55 %)

, Values of modal overlap factor for corresponding third octaves bands, and corresponding dynamic domain

, Material properties of Spruce, maple and ebony wood ; used in the unmounted violin model, based on relation between rigidity and density, p.163

. .. , 166 5.1 Nomenclature of the canonical modes of the violin below 800 Hz, according to

, Mean and relative values of the tunable parameters, and relative variation in comparison with nominal (nom.) value

, Fixed material properties values for different wood species and orientations. the values for ebony are taken from, p.193

, Deterministic variability implemented for Morris screening analysis, based on [Guitard 87] (maple) and chapter II results (spruce)

. .. , Wood species and orientation of the components of the violin, p.195

, Comparison of the canonical modes of the violin. V1 and V2 correspond to the violin studied experimentally. P and N oP correspond to the simulation case, respectively with prestresses and without

, Comparison of the frequencies of the operational mode and modal damping of the violin V2 with stretched and loosened strings

, Acoustic modes complex frequency, damping, and given impedance of the f-holes, p.207

, 210 5.10 Tuning tension of the strings, experimental values and string maker references, p.210

, Mechanical properties of the violin strings

, Thermal expansion coefficients applied on strings, soundpost and bass bar for the implementation of the prestresses

. .. , Frequency shift of the bridge, from rough state to cut state, p.217

, 15 Nomenclature of the parameters used for the screening analysis results display, p.222

, Material properties of Spruce wood, used for both guitar soundboard and braces, and indian rosewood for bridge and rosette

. .. , Truncated normal distribution of the spruce wood parameters, p.236

, Physical properties of the soundboard models

. .. , Name and description of the parameters considered for the analysis, p.238

, Matched eigenfrequencies of the three cases with nominal values of the parameters, vol.242

, Values of modal overlap factor (%)for corresponding third octaves bands for different cases of guitar bars

, Frequency mean values and absolute and relative dispersion (relative standard distribution, RSD) of the three cases for a normal distribution of the frequencies, p.245

, Octave and third octave bands definition

, Identified material properties for maple quarters

A. , Ratio between the rigidities and loss factors and the density for maple quarters, p.269

T. .. Rh, , p.271

, A.5 Dimensions relative change for 1 % RH increase for spruce plate in different directions, p.276

, Comparison of the matched eigenfrequencies and MAC value for two different cases of orientation of the sides part I

, Comparison of the matched eigenfrequencies and MAC value for two different cases of orientation of the sides part II

A. , Comparison between prestressed and non-prestressed modal basis on violin model part I

, 10 Comparison between bended and carved soundboard, part I

A. , Comparison between bended and carved soundboard computed modal basis, part II 282 A.12 Comparison between bear claw and standard soundboard computed modal basis part I

, A.13 Comparison between bear claw and standard soundboard computed modal basis part II

A. , Discrepancy between experimental and numerical for rhombicuboctahedron, p.288

A. , 15 Material properties for wooden rhombicuboctahedron

A. ;. , 16 Results of the modal analysis of the Selmer soundboard, p.289

A. , 17 Material properties implemented test-model correlation

A. , Experimental finite element model comparision of a guitar soundboard with theoretical value

A. , Experimental finite element model comparision of a guitar soundboard with theoretical value from this work

A. , Experimental finite element model comparison of a guitar soundboard with measured values of the soundboard and the bars

, A.C. comparison between initial and modified wood for exact geometry, part I, A.21 Geometrical parameter and range of variations

M. E. and M. A. , comparison between initial and modified wood for exact geometry, part I