J. W. Antoon, M. D. White, M. E. Burow, and B. S. Beckman, Dual inhibition of sphingosine kinase isoforms ablates TNF-induced drug resistance, Oncol Rep, vol.27, issue.6, pp.1779-1786, 2012.

J. W. Antoon, M. D. White, E. M. Slaughter, J. L. Driver, H. S. Khalili et al., Targeting NFkB mediated breast cancer chemoresistance through selective inhibition of sphingosine kinase-2, Cancer Biol Ther, vol.11, issue.7, pp.678-689, 2011.

L. Apetoh, S. Ladoire, G. Coukos, and F. Ghiringhelli, Combining immunotherapy and anticancer agents: the right path to achieve cancer cure?, Ann Oncol, vol.26, issue.9, pp.1813-1823, 2015.

P. Arora, A. Baena, K. O. Yu, N. K. Saini, S. S. Kharkwal et al.,

Z. Chang, R. Liu, A. Bittman, L. R. Al-shamkhani, P. J. Cox et al., A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens, Immunity, vol.40, issue.1, p.30742, 2012.

A. Bai, H. Hu, M. Yeung, and J. Chen, Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription, J Immunol, vol.178, issue.12, pp.7632-7639, 2007.

A. Bai, E. Kokkotou, Y. Zheng, and S. C. Robson, Role of acid sphingomyelinase bioactivity in human CD4+ T-cell activation and immune responses, Cell Death Dis, vol.6, p.1828, 2015.

A. Bai, A. Moss, E. Kokkotou, A. Usheva, X. Sun et al., CD39 and CD161 modulate Th17 responses in Crohn's disease, J Immunol, vol.193, issue.7, pp.3366-3377, 2014.

D. L. Baker, T. C. Pham, and M. A. Sparks, Structure and catalytic function of sphingosine kinases: analysis by site-directed mutagenesis and enzyme kinetics, Biochim Biophys Acta, vol.1831, issue.1, pp.139-146, 2013.

K. Baker, J. Lachapelle, I. Zlobec, T. A. Bismar, L. Terracciano et al., Prognostic significance of CD8+ T lymphocytes in breast cancer depends upon both oestrogen receptor status and histological grade, Histopathology, vol.58, issue.7, pp.22328-22337, 2010.

G. Barra, A. Lepore, M. Gagliardi, D. Somma, M. R. Matarazzo et al., Sphingosine Kinases promote IL-17 expression in human T lymphocytes, Sci Rep, vol.8, issue.1, p.13233, 2018.

G. J. Bates, S. B. Fox, C. Han, R. D. Leek, J. F. Garcia et al., Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse, J Clin Oncol, vol.24, issue.34, pp.5373-5380, 2006.

V. L. Battula, Y. Shi, K. W. Evans, R. Y. Wang, E. L. Spaeth et al., Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis, J Clin Invest, vol.122, issue.6, pp.2066-2078, 2012.

M. Bektas, M. L. Allende, B. G. Lee, W. Chen, M. J. Amar et al., Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver, J Biol Chem, vol.285, issue.14, pp.10880-10889, 2010.

A. P. Benechet, M. Menon, D. Xu, T. Samji, L. Maher et al., T cell-intrinsic S1PR1 regulates endogenous effector T-cell egress dynamics from lymph nodes during infection, Proc Natl Acad Sci U S A, vol.113, issue.8, pp.2182-2187, 2016.

L. Benevides, C. R. Cardoso, D. G. Tiezzi, H. R. Marana, J. M. Andrade et al., Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor, Eur J Immunol, vol.43, issue.6, pp.1518-1528, 2013.

C. Bezombes, B. Segui, O. Cuvillier, A. P. Bruno, E. Uro-coste et al., Lysosomal sphingomyelinase is not solicited for apoptosis signaling, FASEB J, vol.15, issue.2, pp.297-299, 2001.

K. Bienias, A. Fiedorowicz, A. Sadowska, S. Prokopiuk, and H. Car, Regulation of sphingomyelin metabolism, Pharmacol Rep, vol.68, issue.3, pp.570-581, 2016.

F. Binder-foucard, A. Belot, P. Delafosse, L. Remontet, A. S. Woronoff et al.,

, Estimation nationale de l'incidence et de la mortalité par cancer en France entre 1980 et 2012. Partie 1 -Tumeurs solides. Saint-Maurice (Fra), J Lipid Res, vol.55, issue.8, pp.1596-1608, 2014.

M. Bobowski, A. Vincent, A. Steenackers, F. Colomb, I. Van-seuningen et al., Estradiol represses the G(D3) synthase gene ST8SIA1 expression in human breast cancer cells by preventing NFkappaB binding to ST8SIA1 promoter, PLoS One, vol.8, issue.4, p.62559, 2013.

C. Bode, S. C. Sensken, U. Peest, G. Beutel, F. Thol et al., Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate, J Cell Biochem, vol.109, issue.6, pp.1232-1243, 2010.

H. Bonnefoi, T. Grellety, O. Tredan, M. Saghatchian, F. Dalenc et al., A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1), Ann Oncol, vol.27, issue.5, pp.812-818, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01791274

F. Bornancin, Ceramide kinase: the first decade, Cell Signal, vol.23, issue.6, pp.999-1008, 2011.

C. Bortlein, A. Draeger, R. Schoenauer, A. Kuhlemann, M. Sauer et al., The Neutral Sphingomyelinase 2 Is Required to Polarize and Sustain T Cell Receptor Signaling, Front Immunol, vol.9, p.815, 2018.

A. Bosio, E. Binczek, and W. Stoffel, Molecular cloning and characterization of the mouse CGT gene encoding UDP-galactose ceramide-galactosyltransferase (cerebroside synthetase), Genomics, vol.35, issue.1, pp.223-226, 1996.

L. M. Boucher, K. Wiegmann, A. Futterer, K. Pfeffer, T. Machleidt et al., CD28 signals through acidic sphingomyelinase, J Exp Med, vol.181, issue.6, pp.2059-2068, 1995.

M. Boutin, P. Lavoie, M. Abaoui, and C. Auray-blais, Tandem Mass Spectrometry Quantitation of Lyso-Gb3 and Six Related Analogs in Plasma for Fabry Disease Patients, Curr Protoc Hum Genet, vol.90, pp.23-34, 2016.

B. Breart, W. D. Ramos-perez, A. Mendoza, A. K. Salous, M. Gobert et al.,

J. J. Adams, D. Lafaille, A. J. Escalante-alcalde, S. R. Morris, and . Schwab, Lipid phosphate phosphatase 3 enables efficient thymic egress, J Exp Med, vol.208, issue.6, pp.1267-1278, 2011.

F. M. Burnet, Immunological surveillance in neoplasia, Transplant Rev, vol.7, pp.3-25, 1971.

M. Burnet, Cancer; a biological approach. I. The processes of control, Br Med J, vol.1, issue.5022, pp.779-786, 1957.

M. D. Burstein, A. Tsimelzon, G. M. Poage, K. R. Covington, A. Contreras et al., Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer, Clin Cancer Res, vol.21, issue.7, pp.129-131, 1996.

L. Cai, C. Oyeniran, D. D. Biswas, J. Allegood, S. Milstien et al., ORMDL proteins regulate ceramide levels during sterile inflammation, J Lipid Res, vol.57, issue.8, pp.1412-1422, 2016.

Q. Cao, X. Chen, X. Wu, R. Liao, P. Huang et al.,

. Dong, Inhibition of UGT8 suppresses basal-like breast cancer progression by attenuating sulfatide-alphaVbeta5 axis, J Exp Med, vol.215, issue.6, pp.1679-1692, 2018.

C. M. Carlson, B. T. Endrizzi, J. Wu, X. Ding, M. A. Weinreich et al., Kruppel-like factor 2 regulates thymocyte and T-cell migration, Nature, vol.442, issue.7100, pp.299-302, 2006.

A. Cazet, J. Lefebvre, E. Adriaenssens, S. Julien, M. Bobowski et al., GD(3) synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation, Mol Cancer Res, vol.8, issue.11, pp.1526-1535, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00523434

S. S. Chae, J. H. Paik, H. Furneaux, and T. Hla, Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference, J Clin Invest, vol.114, issue.8, pp.1082-1089, 2004.

S. Y. Chan, A. L. Hilchie, M. G. Brown, R. Anderson, and D. W. Hoskin, Apoptosis induced by intracellular ceramide accumulation in MDA-MB-435 breast carcinoma cells is dependent on the generation of reactive oxygen species, Exp Mol Pathol, vol.82, issue.1, pp.1-11, 2007.

J. V. Chapman, V. Gouaze-andersson, M. C. Messner, M. Flowers, R. Karimi et al., Metabolism of shortchain ceramide by human cancer cells--implications for therapeutic approaches, Biochem Pharmacol, vol.80, issue.3, pp.308-315, 2010.

A. G. Charles, T. Y. Han, Y. Y. Liu, N. Hansen, A. E. Giuliano et al., , 2001.

, Taxol-induced ceramide generation and apoptosis in human breast cancer cells, Cancer Chemother Pharmacol, vol.47, issue.5, pp.444-450

J. Che, Y. Huang, C. Xu, and P. Zhang, Increased ceramide production sensitizes breast cancer cell response to chemotherapy, Cancer Chemother Pharmacol, vol.79, issue.5, pp.933-941, 2017.

M. C. Cheang, D. Voduc, C. Bajdik, S. Leung, S. Mckinney et al.,

O. Nielsen, Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype, Clin Cancer Res, vol.14, issue.5, pp.1368-1376, 2008.

W. C. Chen, Y. H. Lai, H. Y. Chen, H. R. Guo, I. J. Su et al., Interleukin-17-producing cell infiltration in the breast cancer tumour microenvironment is a poor prognostic factor, Histopathology, vol.63, issue.2, pp.225-233, 2013.

K. Chiba, H. Matsuyuki, Y. Maeda, and K. Sugahara, Role of sphingosine 1-phosphate receptor type 1 in lymphocyte egress from secondary lymphoid tissues and thymus, Cell Mol Immunol, vol.3, issue.1, pp.11-19, 2006.

J. E. Chipuk, G. P. Mcstay, A. Bharti, T. Kuwana, C. J. Clarke et al., TNFR1-induced sphingomyelinase activation modulates TCR signaling by impairing store-operated Ca2+ influx, J Leukoc Biol, vol.148, issue.5, pp.266-278, 2005.

M. G. Cifone, R. De-maria, P. Roncaioli, M. R. Rippo, M. Azuma et al., Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase, J Exp Med, vol.180, issue.4, pp.1547-1552, 1994.

C. J. Clarke, E. A. Cloessner, P. L. Roddy, and Y. A. Hannun, Neutral sphingomyelinase 2 (nSMase2) is the primary neutral sphingomyelinase isoform activated by tumour necrosis factor-alpha in MCF-7 cells, Biochem J, vol.435, issue.2, pp.381-390, 2011.

N. Coant, W. Sakamoto, C. Mao, and Y. A. Hannun, Ceramidases, roles in sphingolipid metabolism and in health and disease, Adv Biol Regul, vol.63, pp.122-131, 2017.

J. G. Cock, A. D. Tepper, E. Vries, W. J. Van-blitterswijk, and J. Borst, CD95 (Fas/APO-1) induces ceramide formation and apoptosis in the absence of a functional acid sphingomyelinase, J Biol Chem, vol.273, issue.13, pp.7560-7565, 1998.

W. B. Coley, The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus), Proc R Soc Med, vol.3, pp.1-48, 1910.

L. Collenburg, N. Beyersdorf, T. Wiese, C. Arenz, E. M. Saied et al., The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration, Front Immunol, vol.8, p.1007, 2017.

G. Contesso and J. Y. Petit, Bull Cancer, vol.66, issue.1, pp.1-8, 1979.

F. X. Contreras, G. Basanez, A. Alonso, A. Herrmann, and F. M. Goni, Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes, Biophys J, vol.88, issue.1, pp.348-359, 2005.

U. Coskun, M. Grzybek, D. Drechsel, and K. Simons, Regulation of human EGF receptor by lipids, Proc Natl Acad Sci U S A, vol.108, issue.22, pp.9044-9048, 2011.

A. Cremesti, F. Paris, H. Grassme, N. Holler, J. Tschopp et al., Ceramide enables fas to cap and kill, J Biol Chem, vol.276, issue.26, pp.23954-23961, 2001.

C. Criscitiello, Tumor-associated antigens in breast cancer, Breast Care (Basel), vol.7, issue.4, pp.262-266, 2012.

A. C. Culhane and J. Quackenbush, Confounding effects in "A six-gene signature predicting breast cancer lung metastasis, Cancer Res, vol.69, issue.18, pp.7480-7485, 2009.

G. Curigliano, H. J. Burstein, P. W. , M. Gnant, P. Dubsky et al., De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer, vol.28, pp.1700-1712, 2017.

O. Cuvillier, G. Pirianov, B. Kleuser, P. G. Vanek, O. A. Coso et al., Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate, Nature, vol.381, issue.6585, pp.800-803, 1996.

G. D'angelo, E. Polishchuk, G. D. Tullio, M. Santoro, A. D. Campli et al., Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide, Nature, vol.449, issue.7158, pp.62-67, 2007.

A. Datta, S. Y. Loo, B. Huang, L. Wong, S. S. Tan et al., SPHK1 regulates proliferation and survival responses in triple-negative breast cancer, Oncotarget, vol.5, issue.15, pp.5920-5933, 2014.

J. Datta, E. Berk, S. Xu, E. Fitzpatrick, C. Rosemblit et al.,

P. J. Lewis, C. Zhang, R. E. Fisher, A. Roses, B. J. Demichele et al., Anti-HER2 CD4(+) T-helper type 1 response is a novel immune correlate to pathologic response following neoadjuvant therapy in HER2-positive breast cancer, Breast Cancer Res, vol.17, p.71, 2015.

D. G. Denardo, J. B. Barreto, P. Andreu, L. Vasquez, D. Tawfik et al., CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages, Cancer Cell, vol.16, issue.2, pp.91-102, 2009.

D. G. Denardo, D. J. Brennan, E. Rexhepaj, B. Ruffell, S. L. Shiao et al., Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy, Cancer Discov, vol.1, issue.1, pp.54-67, 2011.

C. Denkert, S. Loibl, A. Noske, M. Roller, B. M. Muller et al., Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer, J Clin Oncol, vol.28, issue.1, pp.105-113, 2010.

C. Denkert, G. Minckwitz, S. Darb-esfahani, B. Lederer, B. I. Heppner et al., Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy, Lancet Oncol, vol.19, issue.1, pp.40-50, 2018.

C. Denkert, S. Wienert, A. Poterie, S. Loibl, J. Budczies et al., Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group, vol.29, pp.1155-1164, 2016.

C. Detre, E. Kiss, Z. Varga, K. Ludanyi, K. Paszty et al., Death or survival: membrane ceramide controls the fate and activation of antigen-specific T-cells depending on signal strength and duration, Cell Signal, vol.18, issue.3, pp.294-306, 2006.

M. V. Dieci, C. Criscitiello, A. Goubar, G. Viale, P. Conte et al., Prognostic value of tumorinfiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study, Ann Oncol, vol.26, issue.7, p.1518, 2015.

M. V. Dieci, M. C. Mathieu, V. Guarneri, P. Conte, S. Delaloge et al., Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials, Ann Oncol, vol.26, issue.8, pp.1698-1704, 2015.

L. Y. Dirix, I. Takacs, G. Jerusalem, P. Nikolinakos, H. T. Arkenau et al., Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study, Breast Cancer Res Treat, vol.167, issue.3, pp.671-686, 2018.

S. I. Do, H. S. Kim, K. Kim, H. Lee, I. G. Do et al., Predictive and prognostic value of sphingosine kinase 1 expression in patients with invasive ductal carcinoma of the breast, Am J Transl Res, vol.9, issue.12, pp.5684-5695, 2017.

A. S. Don, X. Y. Lim, and T. A. Couttas, Re-configuration of sphingolipid metabolism by oncogenic transformation, Biomolecules, vol.4, issue.1, pp.315-353, 2014.

L. Dong, K. Watanabe, M. Itoh, C. R. Huan, X. P. Tong et al., CD4+ T-cell dysfunctions through the impaired lipid rafts ameliorate concanavalin A-induced hepatitis in sphingomyelin synthase 1-knockout mice, Int Immunol, vol.24, issue.5, pp.327-337, 2012.

M. S. Donoviel, N. C. Hait, S. Ramachandran, M. Maceyka, K. Takabe et al., Spinster 2, a sphingosine-1-phosphate transporter, plays a critical role in inflammatory and autoimmune diseases, FASEB J, vol.29, issue.12, pp.5018-5028, 2015.

A. Drouillard, A. Neyra, A. L. Mathieu, A. Marcais, M. Wencker et al., Human Naive and Memory T Cells Display Opposite Migratory Responses to Sphingosine-1 Phosphate, J Immunol, vol.200, issue.2, pp.551-557, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911329

W. Du, N. Takuwa, K. Yoshioka, Y. Okamoto, K. Gonda et al., S1P(2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice, Cancer Res, vol.70, issue.2, pp.772-781, 2010.

C. A. Dumitru and E. Gulbins, TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis, Oncogene, vol.25, issue.41, pp.5612-5625, 2006.

G. P. Dunn, L. J. Old, and R. D. Schreiber, The three Es of cancer immunoediting, Annu Rev Immunol, vol.22, pp.329-360, 2004.

J. M. Duran, F. Campelo, J. Van-galen, T. Sachsenheimer, J. Sot et al., Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex, EMBO J, vol.31, issue.24, pp.4535-4546, 2012.

P. Dziegiel, T. Owczarek, E. Plazuk, A. Gomulkiewicz, M. Majchrzak et al., Ceramide galactosyltransferase (UGT8) is a molecular marker of breast cancer malignancy and lung metastases, Br J Cancer, vol.103, issue.4, pp.524-531, 2010.

. Legembre, Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility, Oncogene, vol.34, issue.8, pp.996-1005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01063558

A. Eken, R. Duhen, A. K. Singh, M. Fry, J. H. Buckner et al., S1P1 deletion differentially affects TH17 and Regulatory T cells, vol.7, 2017.

A. M. Ellegaard, L. Groth-pedersen, V. Oorschot, J. Klumperman, T. Kirkegaard et al., Sunitinib and SU11652 inhibit acid sphingomyelinase, destabilize lysosomes, and inhibit multidrug resistance, Mol Cancer Ther, vol.12, issue.10, pp.2018-2030, 2013.

N. Engel, A. Adamus, M. Frank, K. Kraft, J. Kuhn et al., Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression, Biochem Biophys Res Commun, vol.13, issue.5, pp.219-223, 2010.

M. K. Eryilmaz, H. Mutlu, B. Unal, D. K. Salim, F. Y. Musri et al., The importance of stromal and intratumoral tumor lymphocyte infiltration for pathologic complete response in patients with locally advanced breast cancer, HER2-positive breast cancer: Current and new therapeutic strategies, vol.14, pp.80-88, 2018.

J. A. Espinoza, S. Jabeen, R. Batra, E. Papaleo, V. Haakensen et al., Cytokine profiling of tumor interstitial fluid of the breast and its relationship with lymphocyte infiltration and clinicopathological characteristics, Oncoimmunology, vol.5, issue.12, p.1248015, 2016.

M. A. Exley, P. Friedlander, N. Alatrakchi, L. Vriend, S. Yue et al., Adoptive Transfer of Invariant NKT Cells as Immunotherapy for Advanced Melanoma: A Phase I Clinical Trial, Semin Diagn Pathol, vol.23, issue.14, pp.193-198, 1994.

L. X. Feng, M. Li, Y. J. Liu, S. M. Yang, and N. Zhang, Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel, Int J Mol Sci, vol.15, issue.3, pp.4201-4220, 2014.

Y. H. Feng, W. Y. Chen, Y. H. Kuo, C. L. Tung, C. J. Tsao et al., Elovl6 is a poor prognostic predictor in breast cancer, Oncol Lett, vol.12, issue.1, pp.207-212, 2016.

N. S. Ferreira, H. Engelsby, D. Neess, S. L. Kelly, G. Volpert et al., Regulation of very-long acyl chain ceramide synthesis by acyl-CoA-binding protein, J Biol Chem, vol.292, issue.18, pp.7588-7597, 2017.

I. Filipenko, S. Schwalm, L. Reali, J. Pfeilschifter, D. Fabbro et al., Upregulation of the S1P3 receptor in metastatic breast cancer cells increases migration and invasion by induction of PGE2 and EP2/EP4 activation, Biochim Biophys Acta, vol.1861, issue.11, pp.1840-1851, 2016.

M. Flowers, G. Fabrias, A. Delgado, J. Casas, J. L. Abad et al., C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth, Breast Cancer Res Treat, vol.133, issue.2, pp.447-458, 2012.

E. J. Foley, Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin, Cancer Res, vol.13, issue.12, pp.835-837, 1953.

W. H. Fridman, F. Pages, C. Sautes-fridman, and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nat Rev Cancer, vol.12, issue.4, pp.298-306, 2012.

D. Fuentes, J. Avellanet, A. Garcia, N. Iglesias, M. R. Gabri et al., Combined therapeutic effect of a monoclonal anti-idiotype tumor vaccine against NeuGc-containing gangliosides with chemotherapy in a breast carcinoma model, Breast Cancer Res Treat, vol.120, issue.2, pp.379-389, 2010.

K. Fujii, T. Machida, K. Iizuka, and M. Hirafuji, Sphingosine 1-phosphate increases an intracellular Ca(2+) concentration via S1P3 receptor in cultured vascular smooth muscle cells, J Pharm Pharmacol, vol.66, issue.6, pp.802-810, 2014.

S. Fukuhara, S. Simmons, S. Kawamura, A. Inoue, Y. Orba et al., The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice, J Clin Invest, vol.122, issue.4, pp.1416-1426, 2012.

K. Funato and H. Riezman, Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast, J Cell Biol, vol.155, issue.6, pp.949-959, 2001.

A. H. Futerman, Y. A. Hannun-;-g-gabai-kapara, E. , A. Lahad, B. Kaufman et al., Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2, Proc Natl Acad Sci, vol.5, issue.8, pp.777-782, 2004.

V. Gagliostro, J. Casas, A. Caretti, J. L. Abad, L. Tagliavacca et al., Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy, Int J Biochem Cell Biol, vol.44, issue.12, pp.2135-2143, 2012.

L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, and G. Kroemer, Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents, Cancer Cell, vol.28, issue.6, pp.690-714, 2015.

L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, and G. Kroemer, Immunogenic cell death in cancer and infectious disease, Nat Rev Immunol, vol.17, issue.2, pp.97-111, 2017.

S. Garaud, C. Gu-trantien, J. N. Lodewyckx, A. Boisson, P. Silva et al., A simple and rapid protocol to non-enzymatically dissociate fresh human tissues for the analysis of infiltrating lymphocytes, J Vis Exp, vol.94, 2014.

A. B. Garcia-arribas, A. Alonso, and F. M. Goni, Cholesterol interactions with ceramide and sphingomyelin, Chem Phys Lipids, vol.199, pp.26-34, 2016.

T. Gargett, W. Yu, G. Dotti, E. S. Yvon, S. N. Christo et al., GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade, Mol Ther, vol.24, issue.6, pp.1135-1149, 2016.

C. S. Garris, V. A. Blaho, T. Hla, and M. H. Han, Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond, Immunology, vol.142, issue.3, pp.347-353, 2014.

C. S. Garris, L. Wu, S. Acharya, A. Arac, V. A. Blaho et al., Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation, Nat Immunol, vol.14, issue.11, pp.1166-1172, 2013.

S. Gebremeskel, L. Lobert, K. Tanner, B. Walker, T. Oliphant et al., Natural Killer T-cell Immunotherapy in Combination with Chemotherapy-Induced Immunogenic Cell Death Targets Metastatic Breast Cancer, Cancer Immunol Res, vol.5, issue.12, pp.1086-1097, 2017.

C. Ghirelli, F. Reyal, M. Jeanmougin, R. Zollinger, P. Sirven et al., Breast Cancer Cell-Derived GM-CSF Licenses Regulatory Th2 Induction by Plasmacytoid Predendritic Cells in Aggressive Disease Subtypes, Cancer Res, vol.75, issue.14, pp.2775-2787, 2015.

A. E. Giuliano, J. L. Connolly, S. B. Edge, E. A. Mittendorf, H. S. Rugo et al., Breast Cancer-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual, CA Cancer J Clin, vol.67, issue.4, pp.290-303, 2017.

M. Gobert, I. Treilleux, N. Bendriss-vermare, T. Bachelot, S. Goddard-leon et al., Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome, Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer, vol.69, pp.1736-1747, 2009.

S. Golfier, S. Kondo, T. Schulze, T. Takeuchi, G. Vassileva et al., Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosine-1-phosphate receptor S1P4, FASEB J, vol.24, issue.12, pp.4701-4710, 2010.

V. Gouaze, Y. Y. Liu, C. S. Prickett, J. Y. Yu, A. E. Giuliano et al., Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs, Cancer Res, vol.65, issue.9, pp.3861-3867, 2005.

M. H. Graler, G. Bernhardt, and M. Lipp, EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue, Genomics, vol.53, issue.2, pp.164-169, 1998.

M. H. Graler, R. Grosse, A. Kusch, E. Kremmer, T. Gudermann et al., The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13, J Cell Biochem, vol.89, issue.3, pp.507-519, 2003.

H. Grassme, V. Jendrossek, J. Bock, A. Riehle, and E. Gulbins, Ceramide-rich membrane rafts mediate CD40 clustering, J Immunol, vol.168, issue.1, pp.298-307, 2002.

N. M. Grin'kina, E. E. Karnabi, D. Damania, S. Wadgaonkar, I. A. Muslimov et al., Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation, PLoS One, vol.7, issue.5, p.36475, 2012.

L. Gross, Intradermal Immunization of C3H Mice against a Sarcoma That Originated in an Animal of the Same Line, Cancer Research, vol.3, issue.5, pp.326-333, 1943.

S. Groux-degroote, Y. Guerardel, and P. Delannoy, Gangliosides: Structures, Biosynthesis, Analysis, and Roles in Cancer, Chembiochem, vol.18, issue.13, pp.1146-1154, 2017.

C. Gu-trantien, S. Loi, S. Garaud, C. Equeter, M. Libin et al., CD4(+) follicular helper T cell infiltration predicts breast cancer survival, J Clin Invest, vol.123, issue.7, pp.2873-2892, 2013.

H. Guillou, D. Zadravec, P. G. Martin, and A. Jacobsson, The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice, Prog Lipid Res, vol.49, issue.2, pp.186-199, 2010.

N. C. Hait, J. Allegood, M. Maceyka, G. M. Strub, K. B. Harikumar et al., Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate, Science, vol.325, issue.5945, pp.1254-1257, 2009.

N. C. Hait, D. Avni, A. Yamada, M. Nagahashi, T. Aoyagi et al., The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that reactivates ERalpha expression and enhances hormonal therapy for breast cancer, 2015.

N. C. Hait, S. Sarkar, H. L. Stunff, A. Mikami, M. Maceyka et al., Role of sphingosine kinase 2 in cell migration toward epidermal growth factor, J Biol Chem, vol.280, issue.33, pp.29462-29469, 2005.

K. Hanada, K. Kumagai, S. Yasuda, Y. Miura, M. Kawano et al., Molecular machinery for non-vesicular trafficking of ceramide, Nature, vol.426, issue.6968, pp.803-809, 2003.

M. A. Hanson, C. B. Roth, E. Jo, M. T. Griffith, F. L. Scott et al., Crystal structure of a lipid G protein-coupled receptor, Science, vol.335, issue.6070, pp.851-855, 2012.

G. L. Harris, M. B. Creason, G. B. Brulte, and D. R. Herr, In vitro and in vivo antagonism of a G protein-coupled receptor (S1P3) with a novel blocking monoclonal antibody, PLoS One, vol.7, issue.4, p.35129, 2012.

D. Hartmann, J. Lucks, S. Fuchs, S. Schiffmann, Y. Schreiber et al., Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth, Int J Biochem Cell Biol, vol.44, issue.4, pp.620-628, 2010.

C. R. Heery, N. K. Ibrahim, P. M. Arlen, M. Mohebtash, J. L. Murray et al., Docetaxel Alone or in Combination With a Therapeutic Cancer Vaccine (PANVAC) in Patients With Metastatic Breast Cancer: A Randomized Clinical Trial, JAMA Oncol, vol.1, issue.8, pp.1087-1095, 2015.

K. Helke, P. Angel, P. Lu, E. Garrett-mayer, B. Ogretmen et al., Ceramide Synthase 6 Deficiency Enhances Inflammation in the DSS model of Colitis, Sci Rep, vol.8, issue.1, p.1627, 2018.

A. N. Henning, R. Roychoudhuri, and N. P. Restifo, Epigenetic control of CD8(+) T cell differentiation, Nat Rev Immunol, vol.18, issue.5, pp.340-356, 2018.

P. J. Hensbergen, P. G. Wijnands, M. W. Schreurs, R. J. Scheper, R. Willemze et al., The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis, J Immunother, vol.28, issue.4, pp.343-351, 2005.

S. Hernandez-tiedra, G. Fabrias, D. Davila, I. J. Salanueva, J. Casas et al.,

K. Abad, P. Hanada, F. Boya, M. Goni, P. Guzman et al., Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization, Autophagy, vol.12, issue.11, pp.2213-2229, 2016.

J. Herz, J. Pardo, H. Kashkar, M. Schramm, E. Kuzmenkina et al., Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes, Nat Immunol, vol.10, issue.7, pp.761-768, 2009.

J. P. Hindley, E. Jones, K. Smart, H. Bridgeman, S. N. Lauder et al., T-cell trafficking facilitated by high endothelial venules is required for tumor control after regulatory T-cell depletion, Cancer Res, vol.72, issue.21, pp.5473-5482, 2012.

N. Hirata, S. Yamada, T. Shoda, M. Kurihara, Y. Sekino et al., Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation, Nat Commun, vol.5, p.4806, 2014.

C. Hollmann, S. Werner, E. Avota, D. Reuter, L. Japtok et al., Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4+ Conventional versus Foxp3+ Regulatory T Cells, J Immunol, vol.197, issue.8, pp.3130-3141, 2016.

K. Honke, M. Tsuda, Y. Hirahara, A. Ishii, A. Makita et al., Molecular cloning and expression of cDNA encoding human 3'-phosphoadenylylsulfate:galactosylceramide 3'-sulfotransferase, J Biol Chem, vol.272, issue.8, pp.4864-4868, 1997.

T. Hornemann, A. Penno, M. F. Rutti, D. Ernst, F. Kivrak-pfiffner et al., The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases, J Biol Chem, vol.284, issue.39, pp.26322-26330, 2009.

K. Huitema, J. Van-den-dikkenberg, J. F. Brouwers, and J. C. Holthuis, Identification of a family of animal sphingomyelin synthases, EMBO J, vol.23, issue.1, pp.33-44, 2004.

N. K. Ibrahim, J. L. Murray, D. Zhou, E. A. Mittendorf, D. Sample et al., Survival Advantage in Patients with Metastatic Breast Cancer Receiving Endocrine Therapy plus Sialyl Tn-KLH Vaccine: Post Hoc Analysis of a Large Randomized Trial, Proc Natl Acad Sci U S A, vol.4, issue.7, pp.4638-4643, 1996.

I. Inoki, N. Takuwa, N. Sugimoto, K. Yoshioka, S. Takata et al., Negative regulation of endothelial morphogenesis and angiogenesis by S1P2 receptor, Biochem Biophys Res Commun, vol.346, issue.1, pp.293-300, 2006.

H. Ito, M. Murakami, A. Furuhata, S. Gao, K. Yoshida et al., Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin, Biochim Biophys Acta, vol.1789, p.1627, 2009.

C. Jaillard, S. Harrison, B. Stankoff, M. S. Aigrot, A. R. Calver et al., Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival, J Neurosci, vol.25, issue.6, pp.1459-1469, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01936307

S. Jayadev, B. Liu, A. E. Bielawska, J. Y. Lee, F. Nazaire et al., Role for ceramide in cell cycle arrest, J Biol Chem, vol.270, issue.5, pp.2047-2052, 1995.

R. Jennemann, M. Rabionet, K. Gorgas, S. Epstein, A. Dalpke et al., Loss of ceramide synthase 3 causes lethal skin barrier disruption, Hum Mol Genet, vol.21, issue.3, pp.586-608, 2012.

P. Jezequel, M. Campone, W. Gouraud, C. Guerin-charbonnel, C. Leux et al., bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer, Breast Cancer Res Treat, vol.131, issue.3, pp.765-775, 2012.

P. Jezequel, D. Loussouarn, C. Guerin-charbonnel, L. Campion, A. Vanier et al., Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response, Breast Cancer Res, vol.17, p.43, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01820311

Y. Jin, E. Knudsen, L. Wang, Y. Bryceson, B. Damaj et al., Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation, Blood, vol.101, issue.12, pp.4909-4915, 2003.

Z. X. Jin, C. R. Huang, L. Dong, S. Goda, T. Kawanami et al., Impaired TCR signaling through dysfunction of lipid rafts in sphingomyelin synthase 1 (SMS1)-knockdown T cells, Int Immunol, vol.20, issue.11, pp.1427-1437, 2008.

K. R. Johnson, K. P. Becker, M. M. Facchinetti, Y. A. Hannun, and L. M. Obeid, PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA), J Biol Chem, vol.277, issue.38, pp.35257-35262, 2002.

M. Jung, B. Oren, J. Mora, C. Mertens, S. Dziumbla et al., Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer, J Immunol Res, vol.9, issue.434, p.4757405, 2016.

E. Katsuta, L. Yan, M. Nagahashi, A. Raza, J. L. Sturgill et al., Doxorubicin effect is enhanced by sphingosine-1-phosphate signaling antagonist in breast cancer, J Surg Res, vol.219, pp.202-213, 2017.

A. Kawahara, T. Nishi, Y. Hisano, H. Fukui, A. Yamaguchi et al., The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors, Science, vol.323, issue.5913, pp.524-527, 2009.

T. Khoury, V. Nagrale, M. Opyrchal, X. Peng, D. Wang et al., Prognostic Significance of Stromal Versus Intratumoral Infiltrating Lymphocytes in Different Subtypes of Breast Cancer Treated With Cytotoxic Neoadjuvant Chemotherapy, Appl Immunohistochem Mol Morphol, vol.26, issue.8, pp.523-532, 2018.

A. Kihara and Y. Igarashi, FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane, J Biol Chem, vol.279, issue.47, pp.49243-49250, 2004.

E. S. Kim, J. S. Kim, S. G. Kim, S. Hwang, C. H. Lee et al., Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Galphaq coupling, J Cell Sci, vol.124, pp.2220-2230, 2011.

M. H. Kim, J. W. Park, E. J. Lee, S. Kim, S. H. Shin et al., C16ceramide and sphingosine 1phosphate/S1PR2 have opposite effects on cell growth through mTOR signaling pathway regulation, Oncol Rep, vol.40, issue.5, pp.2977-2987, 2018.

K. Kitatani, K. Sheldon, V. Rajagopalan, V. Anelli, R. W. Jenkins et al., Involvement of acid beta-glucosidase 1 in the salvage pathway of ceramide formation, J Biol Chem, vol.284, pp.12972-12978, 2009.

P. Ko, D. Kim, E. You, J. Jung, S. Oh et al., Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion, Sci Rep, vol.6, p.21564, 2016.

T. Kohno, H. Matsuyuki, Y. Inagaki, and Y. Igarashi, Sphingosine 1-phosphate promotes cell migration through the activation of Cdc42 in Edg-6/S1P4-expressing cells, Genes Cells, vol.8, issue.8, pp.685-697, 2003.

T. Kolter and K. Sandhoff, Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids, Annu Rev Cell Dev Biol, vol.21, pp.81-103, 2005.

S. Koybasi, C. E. Senkal, K. Sundararaj, S. Spassieva, J. Bielawski et al., Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas, J Biol Chem, vol.279, issue.43, pp.44311-44319, 2004.

C. S. Kue, M. Y. Jung, D. Cho, and T. S. Kim, C6-ceramide enhances Interleukin-12-mediated T helper type 1 cell responses through a cyclooxygenase-2-dependent pathway, Immunobiology, vol.217, issue.6, pp.601-609, 2012.

C. S. Kue, H. X. Lim, M. Y. Jung, H. J. Hong, D. Cho et al., C6-ceramide in combination with transforming growth factor-beta enhances Treg cell differentiation and stable FoxP3 expression in vitro and in vivo, Immunobiology, vol.218, issue.7, pp.952-959, 2013.

S. Ladoire, L. Arnould, L. Apetoh, B. Coudert, F. Martin et al., Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells, Clin Cancer Res, vol.14, issue.8, pp.2413-2420, 2008.

S. Ladoire, L. Arnould, G. Mignot, L. Apetoh, C. Rebe et al., T-bet expression in intratumoral lymphoid structures after neoadjuvant trastuzumab plus docetaxel for HER2-overexpressing breast carcinoma predicts survival, Br J Cancer, vol.105, issue.3, pp.366-371, 2011.

S. Ladoire, L. Arnould, G. Mignot, B. Coudert, C. Rebe et al., Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy, Breast Cancer Res Treat, vol.125, issue.1, pp.65-72, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00554998

E. Lafont, R. Dupont, N. Andrieu-abadie, T. Okazaki, K. Schulze-osthoff et al., Ordering of ceramide formation and caspase-9 activation in CD95L-induced Jurkat leukemia T cell apoptosis, Biochim Biophys Acta, vol.1821, issue.4, pp.684-693, 2012.

E. Lafont, D. Milhas, S. Carpentier, V. Garcia, Z. X. Jin et al.,

T. Schulze-osthoff, H. Levade, B. Benoist, and . Segui, Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death, Cell Death Differ, vol.17, issue.4, pp.642-654, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00473914

K. Lamontagne, A. Littlewood-evans, C. Schnell, T. O'reilly, L. Wyder et al., Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization, Cancer Res, vol.66, issue.1, pp.221-231, 2006.

E. L. Laviad, L. Albee, I. Pankova-kholmyansky, S. Epstein, H. Park et al., Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate, J Biol Chem, vol.283, issue.9, pp.5677-5684, 2008.

L. Stunff, H. , I. Galve-roperh, C. Peterson, S. Milstien et al., Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis, J Cell Biol, vol.158, issue.6, pp.1039-1049, 2002.

H. Lee, J. Deng, M. Kujawski, C. Yang, Y. Liu et al., STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors, Nat Med, vol.16, issue.12, pp.1421-1428, 2010.

J. Y. Lee, C. N. Skon, Y. J. Lee, S. Oh, J. J. Taylor et al., The transcription factor KLF2 restrains CD4(+) T follicular helper cell differentiation, Immunity, vol.42, issue.2, pp.252-264, 2015.

M. J. Lee, J. R. Van-brocklyn, S. Thangada, C. H. Liu, A. R. Hand et al., Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1, Science, vol.279, issue.5356, pp.1552-1555, 1998.

B. D. Lehmann, J. A. Bauer, X. Chen, M. E. Sanders, A. B. Chakravarthy et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies, J Clin Invest, vol.121, issue.7, pp.2750-2767, 2011.

F. J. Lei, B. H. Cheng, P. Y. Liao, H. C. Wang, W. C. Chang et al.,

L. C. Wu, W. L. Chu, and . Ma, Survival benefit of sphingosin-1-phosphate and receptors expressions in breast cancer patients, Cancer Med, vol.7, issue.8, pp.3743-3754, 2018.

D. Lepley, J. H. Paik, T. Hla, and F. Ferrer, The G protein-coupled receptor S1P2 regulates Rho/Rho kinase pathway to inhibit tumor cell migration, Cancer Res, vol.65, issue.9, pp.3788-3795, 2005.

M. Levy and A. H. Futerman, Mammalian ceramide synthases, IUBMB Life, vol.62, issue.5, pp.347-356, 2010.

F. Li, R. Xu, B. E. Low, C. L. Lin, M. Garcia-barros et al., Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates, FASEB J, vol.32, issue.6, pp.3058-3069, 2018.

G. Li, D. Liu, E. T. Kimchi, J. T. Kaifi, X. Qi et al., Nanoliposome C6-Ceramide Increases the Anti-tumor Immune Response and Slows Growth of Liver Tumors in Mice, Gastroenterology, vol.154, issue.4, pp.1024-1036, 2018.

Y. H. Li, H. T. Liu, J. Xu, A. Y. Xing, J. Zhang et al., The value of detection of S100A8 and ASAH1 in predicting the chemotherapy response for breast cancer patients, Hum Pathol, vol.74, pp.156-163, 2018.

K. Liakath-ali, V. E. Vancollie, C. J. Lelliott, A. O. Speak, D. Lafont et al., Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure, J Pathol, vol.239, issue.3, pp.374-383, 2016.

Y. J. Liang, Y. Ding, S. B. Levery, M. Lobaton, K. Handa et al., Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells, Proc Natl Acad Sci U S A, vol.110, issue.13, pp.4968-4973, 2013.

Y. J. Liang, C. Y. Wang, I. A. Wang, Y. W. Chen, L. T. Li et al., Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype, Oncotarget, vol.8, issue.29, pp.47454-47473, 2017.

F. Liu, R. Lang, J. Zhao, X. Zhang, G. A. Pringle et al., CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes, Breast Cancer Res Treat, vol.130, issue.2, pp.645-655, 2011.

G. Liu, S. Burns, G. Huang, K. Boyd, R. L. Proia et al., The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR, Nat Immunol, vol.10, issue.7, pp.769-777, 2009.

G. Liu, K. Yang, S. Burns, S. Shrestha, and H. Chi, The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells, Nat Immunol, vol.11, issue.11, pp.1047-1056, 2010.

J. Liu, P. Sun, Y. Sun, A. Liu, D. You et al., Expression of glucosylceramide synthase in invasive ductal breast cancer may be correlated with high estrogen receptor status and low HER-2 status, Diagn Pathol, vol.9, p.22, 2014.

S. Liu, J. Lachapelle, S. Leung, D. Gao, W. D. Foulkes et al., CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer, Breast Cancer Res, vol.14, issue.2, p.48, 2012.

Y. Liu, R. Wada, T. Yamashita, Y. Mi, C. X. Deng et al.,

S. S. Nava, M. J. Chae, C. H. Lee, T. Liu, S. Hla et al., Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation, J Clin Invest, vol.106, issue.8, pp.951-961, 2000.

Y. Y. Liu, T. Y. Han, A. E. Giuliano, and M. C. Cabot, Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells, J Biol Chem, vol.274, issue.2, pp.1140-1146, 1999.

Y. Y. Liu, T. Y. Han, A. E. Giuliano, N. Hansen, and M. C. Cabot, Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance, J Biol Chem, vol.275, issue.10, pp.7138-7143, 2000.

S. Loi, N. Sirtaine, F. Piette, R. Salgado, G. Viale et al.,

. Sotiriou, Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98, J Clin Oncol, vol.31, issue.7, pp.860-867, 2013.

J. S. Long, J. Edwards, C. Watson, S. Tovey, K. M. Mair et al., Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1-phosphate in estrogen receptor-positive breast cancer cells, Mol Cell Biol, vol.30, issue.15, pp.3827-3841, 2010.

J. S. Long, Y. Fujiwara, J. Edwards, C. L. Tannahill, G. Tigyi et al., Sphingosine 1-phosphate receptor 4 uses HER2 (ERBB2) to regulate extracellular signal regulated kinase-1/2 in MDA-MB-453 breast cancer cells, J Biol Chem, vol.285, pp.35957-35966, 2010.

M. A. Lopes-pinheiro, J. Kroon, M. Hoogenboezem, D. Geerts, B. Van-het et al., Acid Sphingomyelinase-Derived Ceramide Regulates ICAM-1 Function during T Cell Transmigration across Brain Endothelial Cells, J Immunol, vol.196, issue.1, pp.72-79, 2016.

I. Lopez-montero, M. Velez, and P. F. Devaux, Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes, Biochim Biophys Acta, vol.1768, issue.3, pp.553-561, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169686

A. Lucci, T. Y. Han, Y. Y. Liu, A. E. Giuliano, and M. C. Cabot, Modification of ceramide metabolism increases cancer cell sensitivity to cytotoxics, Int J Oncol, vol.15, issue.3, pp.541-546, 1999.

P. Luzi, M. A. Rafi, and D. A. Wenger, Structure and organization of the human galactocerebrosidase (GALC) gene, Genomics, vol.26, issue.2, pp.407-409, 1995.

M. Maceyka and S. Spiegel, Sphingolipid metabolites in inflammatory disease, Nature, vol.510, issue.7503, pp.58-67, 2014.

L. K. Mackay, A. Braun, B. L. Macleod, N. Collins, C. Tebartz et al., Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention, J Immunol, vol.194, issue.5, pp.2059-2063, 2015.

J. A. Magee, E. Piskounova, and S. J. Morrison, Cancer stem cells: impact, heterogeneity, and uncertainty, Cancer Cell, vol.21, issue.3, pp.283-296, 2012.

S. M. Mahmoud, E. C. Paish, D. G. Powe, R. D. Macmillan, M. J. Grainge et al., Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer, J Clin Oncol, vol.29, issue.15, pp.1949-1955, 2011.

L. N. Marekov and P. M. Steinert, Ceramides are bound to structural proteins of the human foreskin epidermal cornified cell envelope, J Biol Chem, vol.273, issue.28, pp.17763-17770, 1998.

G. Marquina, H. Waki, L. E. Fernandez, K. Kon, A. Carr et al., Gangliosides expressed in human breast cancer, Cancer Res, vol.56, issue.22, pp.5165-5171, 1996.

J. L. Martin, H. C. Silva, M. Z. Lin, C. D. Scott, and R. C. Baxter, Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade, Mol Cancer Ther, vol.13, issue.2, pp.316-328, 2014.

J. L. Martin, M. Z. Lin, E. M. Mcgowan, and R. C. Baxter, Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity, J Biol Chem, vol.284, issue.38, pp.25542-25552, 2009.

L. Martinet, I. Garrido, T. Filleron, S. L. Guellec, E. Bellard et al., Human solid tumors contain high endothelial venules: association with Tand B-lymphocyte infiltration and favorable prognosis in breast cancer, Cancer Res, vol.71, issue.17, pp.5678-5687, 2011.

G. Marvaso, A. Barone, N. Amodio, L. Raimondi, V. Agosti et al., Sphingosine analog fingolimod (FTY720) increases radiation sensitivity of human breast cancer cells in vitro, Cancer Biol Ther, vol.15, issue.6, pp.797-805, 2014.

M. Matloubian, C. G. Lo, G. Cinamon, M. J. Lesneski, Y. Xu et al., Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1, Nature, vol.427, issue.6972, pp.355-360, 2004.

M. Mehling, V. Brinkmann, J. Antel, A. Bar-or, N. Goebels et al., FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis, Neurology, vol.71, issue.16, pp.1261-1267, 2008.

A. Mendoza, B. Breart, W. D. Ramos-perez, L. A. Pitt, M. Gobert et al., The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate, Cell Rep, vol.2, issue.5, pp.1104-1110, 2012.

A. Mendoza, V. Fang, C. Chen, M. Serasinghe, A. Verma et al.,

T. Dustin, O. Hla, J. E. Elemento, S. R. Chipuk, and . Schwab, Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells, Nature, vol.546, issue.7656, pp.158-161, 2017.

E. A. Mittendorf, A. Ardavanis, J. K. Litton, N. M. Shumway, D. F. Hale et al., Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence, Oncotarget, vol.7, issue.40, pp.66192-66201, 2016.

E. A. Mittendorf, A. Ardavanis, J. Symanowski, J. L. Murray, N. M. Shumway et al., Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence, Ann Oncol, vol.27, issue.7, pp.1241-1248, 2016.

M. Miyaji, Z. X. Jin, S. Yamaoka, R. Amakawa, S. Fukuhara et al., Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis, J Exp Med, vol.202, issue.2, pp.249-259, 2005.

M. Miyan, J. Schmidt-mende, R. Kiessling, I. Poschke, and J. De-boniface, Differential tumor infiltration by T-cells characterizes intrinsic molecular subtypes in breast cancer, J Transl Med, vol.14, issue.1, p.227, 2016.

M. Miyashita, H. Sasano, K. Tamaki, H. Hirakawa, Y. Takahashi et al., Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study, Breast Cancer Res, vol.17, p.124, 2015.

K. Mizugishi, T. Yamashita, A. Olivera, G. F. Miller, S. Spiegel et al., Essential role for sphingosine kinases in neural and vascular development, Mol Cell Biol, vol.25, issue.24, pp.11113-11121, 2005.

Y. Mizukami, K. Kono, Y. Kawaguchi, H. Akaike, K. Kamimura et al., CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer, Int J Cancer, vol.122, issue.10, pp.2286-2293, 2008.

Y. Mizutani, A. Kihara, and Y. Igarashi, Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation, FEBS Lett, vol.563, issue.1-3, pp.93-97, 2004.

M. Moeller, M. H. Kershaw, R. Cameron, J. A. Westwood, J. A. Trapani et al.,

K. Darcy, Sustained antigen-specific antitumor recall response mediated by genemodified CD4+ T helper-1 and CD8+ T cells, Cancer Res, vol.67, issue.23, pp.11428-11437, 2007.

S. A. Morad, J. C. Levin, S. S. Shanmugavelandy, M. Kester, G. Fabrias et al., Ceramide--antiestrogen nanoliposomal combinations--novel impact of hormonal therapy in hormone-insensitive breast cancer, Mol Cancer Ther, vol.11, issue.11, pp.2352-2361, 2012.

R. A. Morgan, J. C. Yang, M. Kitano, M. E. Dudley, C. M. Laurencot et al., Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2, Mol Ther, vol.18, issue.4, pp.843-851, 2010.

S. Moriyama, N. Takahashi, J. A. Green, S. Hori, M. Kubo et al., Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers, J Exp Med, vol.211, issue.7, pp.1297-1305, 2014.

K. Moro, T. Kawaguchi, J. Tsuchida, E. Gabriel, Q. Qi et al., Ceramide species are elevated in human breast cancer and are associated with less aggressiveness, Oncotarget, vol.9, issue.28, pp.19874-19890, 2018.

M. Mrad, C. Imbert, V. Garcia, F. Rambow, N. Therville et al., Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma, Oncotarget, vol.7, issue.44, pp.71873-71886, 2016.

V. Mulens, A. De-la-torre, P. Marinello, R. Rodriguez, J. Cardoso et al., Immunogenicity and safety of a NeuGcGM3 based cancer vaccine: Results from a controlled study in metastatic breast cancer patients, Hum Vaccin, vol.6, issue.9, 2010.

A. M. Mulligan, D. Pinnaduwage, S. Tchatchou, S. B. Bull, and I. L. Andrulis, Validation of Intratumoral T-bet+ Lymphoid Cells as Predictors of Disease-Free Survival in Breast Cancer, Cancer Immunol Res, vol.4, issue.1, pp.41-48, 2015.

A. M. Mulligan, I. Raitman, L. Feeley, D. Pinnaduwage, L. T. Nguyen et al., Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis, Clin Cancer Res, vol.19, issue.2, pp.726-735, 2012.

M. Nagahashi, J. Tsuchida, K. Moro, M. Hasegawa, K. Tatsuda et al., High levels of sphingolipids in human breast cancer, J Surg Res, vol.204, issue.2, pp.435-444, 2016.

M. Nagahashi, A. Yamada, T. Aoyagi, J. Allegood, T. Wakai et al., Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods, Heliyon, vol.2, issue.12, p.219, 2016.

M. Nagahashi, A. Yamada, H. Miyazaki, J. C. Allegood, J. Tsuchida et al.,

K. P. Huang, B. J. Terracina, O. M. Adams, S. Rashid, T. Milstien et al., Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods, J Mammary Gland Biol Neoplasia, vol.21, issue.1-2, pp.9-17, 2016.

S. Y. Nam, A. A. Amoscato, and Y. J. Lee, Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide-Akt-FLIP pathway, Oncogene, vol.21, issue.3, pp.337-346, 2002.

R. Nanda, L. Q. Chow, E. C. Dees, R. Berger, S. Gupta et al., Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study, J Clin Oncol, vol.34, issue.21, pp.2460-2467, 2016.

H. Nedelkovska, A. F. Rosenberg, S. P. Hilchey, O. Hyrien, W. R. Burack et al., , 2016.

, Follicular Lymphoma Tregs Have a Distinct Transcription Profile Impacting Their Migration and Retention in the Malignant Lymph Node, PLoS One, vol.11, issue.5, p.155347

H. A. Neubauer, D. H. Pham, J. R. Zebol, P. A. Moretti, A. L. Peterson et al., An oncogenic role for sphingosine kinase 2, Oncotarget, vol.7, issue.40, pp.64886-64899, 2016.

B. Newcomb, C. Rhein, I. Mileva, R. Ahmad, C. J. Clarke et al., Identification of an acid sphingomyelinase ceramide kinase pathway in the regulation of the chemokine CCL5, J Lipid Res, vol.59, issue.7, pp.1219-1229, 2018.

J. Newton, S. Lima, M. Maceyka, and S. Spiegel, Revisiting the sphingolipid rheostat: Evolving concepts in cancer therapy, Exp Cell Res, vol.333, issue.2, pp.195-200, 2015.

A. Nijnik, S. Clare, C. Hale, J. Chen, C. Raisen et al.,

G. Steel, R. E. Dougan, and . Hancock, The role of sphingosine-1-phosphate transporter Spns2 in immune system function, J Immunol, vol.189, issue.1, pp.102-111, 2012.

J. R. Nofer, M. Van-der-giet, M. Tolle, I. Wolinska, K. Von-wnuck-lipinski et al., HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3, J Clin Invest, vol.113, issue.4, pp.569-581, 2004.

K. Nohara, F. Wang, and S. Spiegel, Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cell lines, Breast Cancer Res Treat, vol.48, issue.2, pp.149-157, 1998.

A. S. Novgorodov, M. El-alwani, J. Bielawski, L. M. Obeid, and T. I. Gudz, Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration, FASEB J, vol.21, issue.7, pp.1503-1514, 2007.

O. O'byrne, D. , and D. Sansom, Lack of costimulation by both sphingomyelinase and C2 ceramide in resting human T cells, Immunology, vol.100, issue.2, pp.225-230, 2000.

J. O'shaughnessy, M. Campone, E. Brain, P. Neven, D. Hayes et al., Abiraterone acetate, exemestane or the combination in postmenopausal patients with estrogen receptorpositive metastatic breast cancer, Ann Oncol, vol.27, pp.106-113, 2016.

C. O'sullivan and K. K. Dev, The structure and function of the S1P1 receptor, Trends Pharmacol Sci, vol.34, issue.7, pp.401-412, 2013.

L. M. Obeid, C. M. Linardic, L. A. Karolak, and Y. A. Hannun, Programmed cell death induced by ceramide, Science, vol.259, issue.5102, pp.1769-1771, 1993.

N. Oda, K. Shimazu, Y. Naoi, K. Morimoto, A. Shimomura et al., Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients, Breast Cancer Res Treat, vol.136, issue.1, pp.107-116, 2012.

C. Ogawa, A. Kihara, M. Gokoh, and Y. Igarashi, Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2, J Biol Chem, vol.278, issue.2, pp.1268-1272, 2003.

B. Ogretmen, B. J. Pettus, M. J. Rossi, R. Wood, J. Usta et al., Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide, J Biol Chem, vol.277, issue.15, pp.12960-12969, 2002.

Y. Ohno, S. Suto, M. Yamanaka, Y. Mizutani, S. Mitsutake et al., ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis, Proc Natl Acad Sci U S A, vol.107, issue.43, pp.18439-18444, 2010.

J. Ohotski, J. Edwards, B. Elsberger, C. Watson, C. Orange et al.,

. Pyne, Identification of novel functional and spatial associations between sphingosine kinase 1, sphingosine 1-phosphate receptors and other signaling proteins that affect prognostic outcome in estrogen receptor-positive breast cancer, Int J Cancer, vol.132, issue.3, pp.605-616, 2012.

J. Ohotski, J. S. Long, C. Orange, B. Elsberger, E. Mallon et al., Expression of sphingosine 1-phosphate receptor 4 and sphingosine kinase 1 is associated with outcome in oestrogen receptor-negative breast cancer, Br J Cancer, vol.106, issue.8, pp.1453-1459, 2012.

H. Okamoto, N. Takuwa, K. Gonda, H. Okazaki, K. Chang et al., EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition, J Biol Chem, vol.273, issue.42, pp.27104-27110, 1998.

M. O. Olurinde, C. H. Shen, A. Drake, A. Bai, and J. Chen, Persistence of tumorinfiltrating CD8 T cells is tumor-dependent but antigen-independent, Cell Mol Immunol, vol.8, issue.5, pp.415-423, 2011.

M. L. Oo, S. H. Chang, S. Thangada, M. T. Wu, K. Rezaul et al., Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice, J Clin Invest, vol.121, issue.6, pp.2290-2300, 2011.

M. L. Oo, S. Thangada, M. T. Wu, C. H. Liu, T. L. Macdonald et al., Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor, J Biol Chem, vol.282, issue.12, pp.9082-9089, 2007.

G. Orsi, M. Barbolini, G. Ficarra, G. Tazzioli, P. Manni et al., GD2 expression in breast cancer, Oncotarget, vol.8, pp.31592-31600, 2017.

A. Overbye, A. M. Holsaeter, F. Markus, N. Skalko-basnet, T. G. Iversen et al., Ceramide-containing liposomes with doxorubicin: time and cell-dependent effect of C6 and C12 ceramide, Oncotarget, vol.8, issue.44, pp.76921-76934, 2017.

T. B. Owczarek, J. Suchanski, B. Pula, A. M. Kmiecik, M. Chadalski et al., Galactosylceramide affects tumorigenic and metastatic properties of breast cancer cells as an anti-apoptotic molecule, N Engl J Med, vol.8, issue.12, pp.1836-1846, 2013.

R. Pappu, S. R. Schwab, I. Cornelissen, J. P. Pereira, J. B. Regard et al., Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate, Science, vol.316, issue.5822, pp.295-298, 2007.

A. W. Payne, D. K. Pant, T. C. Pan, and L. A. Chodosh, Ceramide kinase promotes tumor cell survival and mammary tumor recurrence, Cancer Res, vol.74, issue.21, pp.6352-6363, 2014.

L. R. Pedrosa, T. L. Hagen, R. Suss, A. Van-hell, A. M. Eggermont et al., Short-chain glycoceramides promote intracellular mitoxantrone delivery from novel nanoliposomes into breast cancer cells, Pharm Res, vol.32, issue.4, pp.1354-1367, 2015.

L. R. Pedrosa, A. Van-hell, R. Suss, W. J. Van-blitterswijk, A. L. Seynhaeve et al., Improving intracellular doxorubicin delivery through nanoliposomes equipped with selective tumor cell membrane permeabilizing short-chain sphingolipids, Pharm Res, vol.30, issue.7, pp.1883-1895, 2013.

M. Peres, A. Montfort, N. Andrieu-abadie, C. Colacios, and B. Segui, S1P: the elixir of life for naive T cells, Cell Mol Immunol, vol.15, issue.7, pp.657-659, 2018.

C. M. Perou, T. Sorlie, M. B. Eisen, M. Van-de-rijn, S. S. Jeffrey et al., Molecular portraits of human breast tumours, Nature, vol.406, issue.6797, pp.747-752, 2000.

T. H. Pham, P. Baluk, Y. Xu, I. Grigorova, A. J. Bankovich et al., Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning, J Exp Med, vol.207, issue.1, pp.17-27, 2010.

T. H. Pham, T. Okada, M. Matloubian, C. G. Lo, and J. G. Cyster, S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress, Immunity, vol.28, issue.1, pp.122-133, 2008.

S. M. Pitson, P. A. Moretti, J. R. Zebol, H. E. Lynn, P. Xia et al., Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation, EMBO J, vol.22, issue.20, pp.5491-5500, 2003.

A. Poissonnier, D. Sanseau, M. L. Gallo, M. Malleter, N. Levoin et al.,

N. Forcade, C. Rioux, T. Contin-bordes, A. M. Ducret, P. A. Vacher et al., CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice, Immunity, vol.45, issue.1, pp.209-223, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359568

A. Polk, I. M. Svane, M. Andersson, and D. Nielsen, Checkpoint inhibitors in breast cancer -Current status, Cancer Treat Rev, vol.63, pp.122-134, 2018.

A. P. Ponnapakam, J. Liu, K. N. Bhinge, B. A. Drew, T. L. Wang et al., 3-Ketone-4,6-diene ceramide analogs exclusively induce apoptosis in chemoresistant cancer cells, Bioorg Med Chem, vol.22, issue.4, pp.1412-1420, 2014.

S. Ponnusamy, S. P. Selvam, S. Mehrotra, T. Kawamori, A. J. Snider et al., Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis, EMBO Mol Med, vol.4, issue.8, pp.761-775, 2012.

I. O. Potapenko, T. Luders, H. G. Russnes, A. Helland, T. Sorlie et al., Glycan-related gene expression signatures in breast cancer subtypes; relation to survival, Mol Oncol, vol.9, issue.4, pp.861-876, 2015.

S. J. Priceman, S. Shen, L. Wang, J. Deng, C. Yue et al., S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3, Cell Rep, vol.6, issue.6, pp.992-999, 2014.

P. Puneet, C. T. Yap, L. Wong, Y. Lam, D. R. Koh et al., SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis, Science, vol.328, issue.5983, pp.1290-1294, 2010.

P. Purwaha, F. Gu, D. W. Piyarathna, T. Rajendiran, A. Ravindran et al., Unbiased Lipidomic Profiling of Triple-Negative Breast Cancer Tissues Reveals the Association of Sphingomyelin Levels with Patient Disease-Free Survival, Metabolites, vol.8, issue.3, 2018.

L. Pusztai, T. Karn, A. Safonov, M. M. Abu-khalaf, and G. Bianchini, Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases, Clin Cancer Res, vol.22, issue.9, pp.2859-2867, 1995.

A. Rathinasamy, C. Domschke, Y. Ge, H. H. Bohm, S. Dettling et al., Tumor specific regulatory T cells in the bone marrow of breast cancer patients selectively upregulate the emigration receptor S1P1, Cancer Immunol Immunother, vol.66, issue.5, pp.593-603, 2017.

R. S. Resop, M. Douaisi, J. Craft, L. C. Jachimowski, B. Blom et al., Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery, J Allergy Clin Immunol, vol.138, issue.2, pp.551-557, 2016.

N. P. Restifo, Big bang theory of stem-like T cells confirmed, Blood, vol.124, issue.4, pp.476-477, 2014.

K. Rex, S. Jeffries, M. L. Brown, T. Carlson, A. Coxon et al., Sphingosine kinase activity is not required for tumor cell viability, PLoS One, vol.8, issue.7, p.68328, 2013.

M. Rieck, C. Kremser, K. Jobin, E. Mettke, C. Kurts et al., Ceramide synthase 2 facilitates S1P-dependent egress of thymocytes into the circulation in mice, Eur J Immunol, vol.47, issue.4, pp.677-684, 2017.

J. Rivera, R. L. Proia, and A. Olivera, The alliance of sphingosine-1-phosphate and its receptors in immunity, Nat Rev Immunol, vol.8, issue.10, pp.753-763, 2008.

C. G. Roberts, E. Gurisik, T. J. Biden, R. L. Sutherland, and A. J. Butt, Synergistic cytotoxicity between tamoxifen and the plant toxin persin in human breast cancer cells is dependent on Bim expression and mediated by modulation of ceramide metabolism, Mol Cancer Ther, vol.6, issue.10, pp.2777-2785, 2007.

E. Ruckhaberle, U. Holtrich, K. Engels, L. Hanker, R. Gatje et al., Acid ceramidase 1 expression correlates with a better prognosis in ER-positive breast cancer, Climacteric, vol.12, issue.6, pp.502-513, 2009.

E. Ruckhaberle, T. Karn, L. Hanker, R. Gatje, D. Metzler et al., Prognostic relevance of glucosylceramide synthase (GCS) expression in breast cancer, J Cancer Res Clin Oncol, vol.135, issue.1, pp.81-90, 2009.

E. Ruckhaberle, T. Karn, A. Rody, L. Hanker, R. Gatje et al.,

. Kaufmann, Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer, J Cancer Res Clin Oncol, vol.135, issue.8, pp.1005-1013, 2009.

E. Ruckhaberle, A. Rody, K. Engels, R. Gaetje, G. Minckwitz et al., Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer, Breast Cancer Res Treat, vol.112, issue.1, pp.41-52, 2008.

B. Ruffell, A. Au, H. S. Rugo, L. J. Esserman, E. S. Hwang et al., Leukocyte composition of human breast cancer, Proc Natl Acad Sci U S A, vol.109, issue.8, pp.2796-2801, 2012.

H. S. Rugo, J. P. Delord, S. A. Im, P. A. Ott, S. A. Piha-paul et al., Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer, Clin Cancer Res, vol.24, issue.12, pp.2804-2811, 2018.

A. L. Symmans, J. Richardson, C. Brock, H. Criscitiello, M. Bailey et al., The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group, Ann Oncol, vol.26, issue.2, pp.259-271, 2014.

N. Sanger, E. Ruckhaberle, B. Gyorffy, K. Engels, T. Heinrich et al., Acid ceramidase is associated with an improved prognosis in both DCIS and invasive breast cancer, Mol Oncol, vol.9, issue.1, pp.58-67, 2015.

H. M. Sankala, N. C. Hait, S. W. Paugh, D. Shida, S. Lepine et al., Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin, Cancer Res, vol.67, issue.21, pp.10466-10474, 2007.

S. K. Santuario-facio, S. Cardona-huerta, Y. X. Perez-paramo, V. Trevino, F. Hernandez-cabrera et al., A New Gene Expression Signature for Triple Negative Breast Cancer Using Frozen Fresh Tissue before Neoadjuvant Chemotherapy, Mol Med, vol.23, pp.101-111, 2017.

D. Sarrio, S. M. Rodriguez-pinilla, D. Hardisson, A. Cano, G. Moreno-bueno et al., Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype, Cancer Res, vol.68, issue.4, pp.989-997, 2008.

T. Sassa, T. Hirayama, and A. Kihara, Enzyme Activities of the Ceramide Synthases CERS2-6 Are Regulated by Phosphorylation in the C-terminal Region, J Biol Chem, vol.291, issue.14, pp.7477-7487, 2016.

P. Savas, B. Virassamy, C. Ye, A. Salim, C. P. Mintoff et al., Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis, Nat Med, vol.24, issue.7, pp.986-993, 2018.

F. Scarlatti, C. Bauvy, A. Ventruti, G. Sala, F. Cluzeaud et al., Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1, J Biol Chem, vol.279, issue.18, pp.18384-18391, 2004.

A. Scharstuhl, H. A. Mutsaers, S. W. Pennings, F. G. Russel, and F. A. Wagener, Involvement of VDAC, Bax and ceramides in the efflux of AIF from mitochondria during curcumin-induced apoptosis, PLoS One, vol.4, issue.8, p.6688, 2009.

M. J. Scheffel, K. Helke, P. Lu, J. S. Bowers, B. Ogretmen et al., Adoptive Transfer of Ceramide Synthase 6 Deficient Splenocytes Reduces the Development of Colitis, Sci Rep, vol.7, issue.1, p.15552, 2017.

S. Schiffmann, J. Sandner, K. Birod, I. Wobst, C. Angioni et al., Ceramide synthases and ceramide levels are increased in breast cancer tissue, Carcinogenesis, vol.30, issue.5, pp.745-752, 2009.

G. Schmid, M. Guba, I. Ischenko, A. Papyan, M. Joka et al., The immunosuppressant FTY720 inhibits tumor angiogenesis via the sphingosine 1-phosphate receptor 1, J Cell Biochem, vol.101, issue.1, pp.259-270, 2007.

P. Schmid, J. Cortes, J. C. Bergh, L. Pusztai, C. Denkert et al., KEYNOTE-522: Phase III study of pembrolizumab (pembro) + chemotherapy (chemo) vs placebo + chemo as neoadjuvant therapy followed by pembro vs placebo as adjuvant therapy for triple-negative breast cancer (TNBC), Journal of Clinical Oncology, vol.36, issue.15_suppl, pp.602-602, 2018.

P. Schmid, C. Cruz, F. S. Braiteh, J. P. Eder, S. Tolaney et al., Abstract 2986: Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analyses, Cancer Research, vol.77, pp.2986-2986, 2013.

P. Schmid, Y. H. Park, E. Muñoz-couselo, S. Kim, J. Sohn et al., Pembrolizumab (pembro) + chemotherapy (chemo) as neoadjuvant treatment for triple negative breast cancer (TNBC): Preliminary results from KEYNOTE-173, Journal of Clinical Oncology, vol.35, pp.556-556, 2017.

T. H. Schreiber, The use of FoxP3 as a biomarker and prognostic factor for malignant human tumors, Cancer Epidemiol Biomarkers Prev, vol.16, issue.10, pp.1931-1934, 2007.

T. Schulze, S. Golfier, C. Tabeling, K. Rabel, M. H. Graler et al., Sphingosine-1-phospate receptor 4 (S1P(4)) deficiency profoundly affects dendritic cell function and TH17-cell differentiation in a murine model, FASEB J, vol.25, issue.11, pp.4024-4036, 2011.

S. R. Schwab, J. P. Pereira, M. Matloubian, Y. Xu, Y. Huang et al., Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients, Science, vol.309, issue.5741, pp.1735-1739, 2005.

L. S. Schwartzberg, D. A. Yardley, A. D. Elias, M. Patel, P. Lorusso et al., A Phase I/Ib Study of Enzalutamide Alone and in Combination with Endocrine Therapies in Women with Advanced Breast Cancer, Clin Cancer Res, vol.23, issue.15, pp.4046-4054, 2017.

R. D. Sentelle, C. E. Senkal, W. Jiang, S. Ponnusamy, S. Gencer et al.,

Y. K. Ramshesh, J. J. Peterson, Z. M. Lemasters, J. Szulc, B. Bielawski et al., Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy, Nat Chem Biol, vol.8, issue.10, pp.831-838, 2012.

A. N. Seo, H. J. Lee, E. J. Kim, H. J. Kim, M. H. Jang et al., Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer, Br J Cancer, vol.109, issue.10, pp.2705-2713, 2013.

L. D. Serpero, G. Filaci, A. Parodi, F. Battaglia, F. Kalli et al., Fingolimod modulates peripheral effector and regulatory T cells in MS patients, J Neuroimmune Pharmacol, vol.8, issue.5, pp.1106-1113, 2013.

T. M. Severson, D. M. Wolf, C. Yau, J. Peeters, D. Wehkam et al., The BRCA1ness signature is associated significantly with response to PARP inhibitor treatment versus control in the I-SPY 2 randomized neoadjuvant setting, Breast Cancer Res, vol.19, issue.1, p.99, 2017.

A. A. Shamseddine, C. J. Clarke, B. Carroll, M. V. Airola, S. Mohammed et al., P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest, Cell Death Dis, vol.6, p.1947, 2015.

S. L. Shiao, B. Ruffell, D. G. Denardo, B. A. Faddegon, C. C. Park et al., TH2-Polarized CD4(+) T Cells and Macrophages Limit Efficacy of Radiotherapy, Cancer Immunol Res, vol.3, issue.5, pp.518-525, 2015.

J. D. Silk, M. Salio, B. G. Reddy, D. Shepherd, U. Gileadi et al., Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells, J Immunol, vol.180, issue.10, pp.6452-6456, 2008.

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, issue.6633, pp.569-572, 1997.

H. P. Sinn and H. Kreipe, A Brief Overview of the WHO Classification of Breast Tumors, 4th Edition, Focusing on Issues and Updates from the 3rd Edition, Breast Care (Basel), vol.8, issue.2, pp.149-154, 2013.

D. L. Siow, C. D. Anderson, E. V. Berdyshev, A. Skobeleva, S. M. Pitson et al., Intracellular localization of sphingosine kinase 1 alters access to substrate pools but does not affect the degradative fate of sphingosine-1-phosphate, J Lipid Res, vol.51, issue.9, pp.2546-2559, 2010.

D. L. Siow and B. W. Wattenberg, Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis, J Biol Chem, vol.287, issue.48, pp.40198-40204, 2012.

L. J. Siskind and M. Colombini, The lipids C2-and C16-ceramide form large stable channels. Implications for apoptosis, J Biol Chem, vol.275, issue.49, pp.38640-38644, 2000.

L. J. Siskind, R. N. Kolesnick, and M. Colombini, Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations, Mitochondrion, vol.6, issue.3, pp.118-125, 2006.

R. G. Sitrin, T. M. Sassanella, and H. R. Petty, An obligate role for membraneassociated neutral sphingomyelinase activity in orienting chemotactic migration of human neutrophils, Am J Respir Cell Mol Biol, vol.44, issue.2, pp.205-212, 2011.

C. N. Skon, J. Y. Lee, K. G. Anderson, D. Masopust, K. A. Hogquist et al., Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells, Nat Immunol, vol.14, issue.12, pp.1285-1293, 2013.

G. D. Snell, E. Russell, E. Fekete, and P. Smith, Resistance of various inbred strains of mice to tumor homoiotransplants, and its relation to the H-2 allele which each carries, J Natl Cancer Inst, vol.14, issue.3, pp.485-491, 1953.

M. H. Sofi, J. Heinrichs, M. Dany, H. Nguyen, M. Dai et al., Ceramide synthesis regulates T cell activity and GVHD development, JCI Insight, vol.2, issue.10, 2017.

C. Solinas, L. Carbognin, P. Silva, C. Criscitiello, and M. Lambertini, Tumorinfiltrating lymphocytes in breast cancer according to tumor subtype: Current state of the art, Breast, vol.35, pp.142-150, 2017.

T. Sorlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc Natl Acad Sci U S A, vol.98, pp.10869-10874, 2001.

S. D. Spassieva, T. D. Mullen, D. M. Townsend, and L. M. Obeid, Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response, Biochem J, vol.424, issue.2, pp.273-283, 2009.

A. M. Stax, J. Tuengel, E. Girardi, N. Kitano, L. L. Allan et al., Autoreactivity to Sulfatide by Human Invariant NKT Cells, J Immunol, vol.199, issue.1, pp.97-106, 2017.

S. R. Stecklein, R. A. Jensen, and A. , Genetic and epigenetic signatures of breast cancer subtypes, Front Biosci (Elite Ed), vol.4, pp.934-949, 2012.

M. Stephan, S. B.-edelmann, O. Winoto-morbach, U. Janssen, C. Bertsch et al., Role of caspases in CD95-induced biphasic activation of acid sphingomyelinase, Oncotarget, vol.8, issue.12, pp.20067-20085, 2017.

B. Stoffel, P. Bauer, M. Nix, K. Deres, and W. Stoffel, Ceramide-independent CD28 and TCR signaling but reduced IL-2 secretion in T cells of acid sphingomyelinase-deficient mice, Eur J Immunol, vol.28, issue.3, pp.874-880, 1998.

T. Stover and M. Kester, Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells, J Pharmacol Exp Ther, vol.307, issue.2, pp.468-475, 2003.

T. C. Stover, A. Sharma, G. P. Robertson, and M. Kester, Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma, Clin Cancer Res, vol.11, issue.9, pp.3465-3474, 2005.

G. M. Strub, M. Paillard, J. Liang, L. Gomez, J. C. Allegood et al., Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration, FASEB J, vol.25, issue.2, pp.600-612, 2011.

A. P. Struckhoff, R. Bittman, M. E. Burow, S. Clejan, S. Elliott et al., Novel ceramide analogs as potential chemotherapeutic agents in breast cancer, J Pharmacol Exp Ther, vol.309, issue.2, pp.523-532, 2004.

S. Su, J. Liao, J. Liu, D. Huang, C. He et al., Blocking the recruitment of naive CD4(+) T cells reverses immunosuppression in breast cancer, Cell Res, vol.27, issue.4, pp.461-482, 2017.

M. Sugiura, K. Kono, H. Liu, T. Shimizugawa, H. Minekura et al., Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization, J Biol Chem, vol.277, issue.26, pp.23294-23300, 2002.

O. Sukocheva, C. Wadham, A. Holmes, N. Albanese, E. Verrier et al., Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1, J Cell Biol, vol.173, issue.2, pp.301-310, 2006.

O. Sukocheva, C. Wadham, and P. Xia, Estrogen defines the dynamics and destination of transactivated EGF receptor in breast cancer cells: role of S1P(3) receptor and Cdc42, Exp Cell Res, vol.319, issue.4, pp.455-465, 2013.

O. Sukocheva, L. Wang, E. Verrier, M. A. Vadas, and P. Xia, Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway, Endocrinology, vol.150, issue.10, pp.4484-4492, 2009.

O. A. Sukocheva, L. Wang, N. Albanese, S. M. Pitson, M. A. Vadas et al., Sphingosine kinase transmits estrogen signaling in human breast cancer cells, Mol Endocrinol, vol.17, issue.10, pp.2002-2012, 2003.

M. Sumitomo, M. Ohba, J. Asakuma, T. Asano, T. Kuroki et al., Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells, J Clin Invest, vol.109, issue.6, pp.827-836, 2002.

L. Svennerholm, . Xi-xiv, T. A. Taha, K. Kitatani, M. El-alwani et al., Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis, Prog Brain Res, vol.101, issue.3, pp.482-484, 1994.

S. Takashima, N. Sugimoto, N. Takuwa, Y. Okamoto, K. Yoshioka et al., G12/13 and Gq mediate S1P2-induced inhibition of Rac and migration in vascular smooth muscle in a manner dependent on Rho but not Rho kinase, Cardiovasc Res, vol.79, issue.4, pp.689-697, 2008.

H. Takeya, E. C. Gabazza, S. Aoki, H. Ueno, and K. Suzuki, Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells, Blood, vol.102, issue.5, pp.1693-1700, 2003.

A. Tanaka and S. Sakaguchi, Regulatory T cells in cancer immunotherapy, Cell Res, vol.27, issue.1, pp.109-118, 2017.

M. Tani and O. Kuge, Sphingomyelin synthase 2 is palmitoylated at the COOHterminal tail, which is involved in its localization in plasma membranes, Biochem Biophys Res Commun, vol.381, issue.3, pp.328-332, 2009.

P. Ternes, S. Franke, U. Zahringer, P. Sperling, and E. Heinz, Identification and characterization of a sphingolipid delta 4-desaturase family, J Biol Chem, vol.277, issue.28, pp.25512-25518, 2002.

G. Theilmeier, C. Schmidt, J. Herrmann, P. Keul, M. Schafers et al., High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor, Circulation, vol.114, issue.13, pp.1403-1409, 2006.

M. Thibaudin, M. Chaix, R. Boidot, F. Vegran, V. Derangere et al., Human ectonucleotidase-expressing CD25(high) Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions, Oncoimmunology, vol.5, issue.1, p.1055444, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438254

V. Thorsson, D. L. Gibbs, S. D. Brown, D. Wolf, D. S. Bortone et al.,

H. Malta, C. S. Noushmehr, S. Pedamallu, A. I. Bullman, A. Ojesina et al., The Immune Landscape of Cancer, Immunity, vol.48, issue.4, pp.812-830, 2018.

N. Tokuda, S. Numata, X. Li, T. Nomura, M. Takizawa et al., beta4GalT6 is involved in the synthesis of lactosylceramide with less intensity than beta4GalT5, Glycobiology, vol.23, issue.10, pp.1175-1183, 2013.

L. Tonnetti, M. C. Veri, E. Bonvini, and L. , A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction, J Exp Med, vol.189, issue.10, pp.1581-1589, 1999.

K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, vol.319, issue.5867, pp.1244-1247, 2008.

M. A. Tran, C. D. Smith, M. Kester, G. P. Robertson-;-u-uehiro, N. et al., Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development, Clin Cancer Res, vol.14, issue.11, pp.1013-1027, 2008.

A. Valdes-zayas, Z. Gonzalez, V. Mulens, A. M. Vega, K. Perez et al., Immunologic Response Elicited in Breast Cancer Patients Receiving a NeuGcGM3-based Vaccine as Adjuvant Therapy, J Immunother, vol.40, issue.8, pp.233-236, 2017.

K. Venkataraman, S. Thangada, J. Michaud, M. L. Oo, Y. Ai et al.,

F. Parikh, R. L. Khan, T. Proia, and . Hla, Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient, Biochem J, vol.397, issue.3, pp.461-471, 2006.

C. Verderio, M. Gabrielli, and P. Giussani, Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles, J Lipid Res, vol.59, issue.8, pp.1325-1340, 2018.

H. S. Vethakanraj, T. A. Babu, G. B. Sudarsanan, P. K. Duraisamy, S. et al., Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines, Biochem Biophys Res Commun, vol.464, issue.3, pp.833-839, 2015.

J. Von-gerichten, K. Schlosser, D. Lamprecht, I. Morace, M. Eckhardt et al., Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals, J Lipid Res, vol.58, issue.6, pp.1247-1258, 2017.

R. H. Vonderheide, S. M. Domchek, and A. S. Clark, Immunotherapy for Breast Cancer: What Are We Missing?, Clin Cancer Res, vol.23, issue.11, pp.2640-2646, 2017.

T. Walzer, L. Chiossone, J. Chaix, A. Calver, C. Carozzo et al., Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor, Nat Immunol, vol.8, issue.12, pp.1337-1344, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00297257

W. Wang, M. H. Graeler, and E. J. Goetzl, Type 4 sphingosine 1-phosphate G protein-coupled receptor (S1P4) transduces S1P effects on T cell proliferation and cytokine secretion without signaling migration, FASEB J, vol.19, issue.12, pp.1731-1733, 2005.

Y. C. Wang, C. F. Tsai, H. L. Chuang, Y. C. Chang, H. S. Chen et al., Benzyl butyl phthalate promotes breast cancer stem cell expansion via SPHK1/S1P/S1PR3 signaling, Oncotarget, vol.7, issue.20, pp.29563-29576, 2016.

Z. Q. Wang, K. Milne, H. Derocher, J. R. Webb, B. H. Nelson et al., CD103 and Intratumoral Immune Response in Breast Cancer, Clin Cancer Res, vol.22, issue.24, pp.6290-6297, 2016.

C. Watson, J. S. Long, C. Orange, C. L. Tannahill, E. Mallon et al., High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients, Am J Pathol, vol.177, issue.5, pp.2205-2215, 2010.

J. P. Weber, F. Fuhrmann, R. K. Feist, A. Lahmann, M. S. Baz et al., ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2, J Exp Med, vol.212, issue.2, pp.217-233, 2015.

M. S. Wegner, R. A. Wanger, S. Oertel, S. Brachtendorf, D. Hartmann et al., Ceramide synthases CerS4 and CerS5 are upregulated by 17beta-estradiol and GPER1 via AP-1 in human breast cancer cells, Biochem Pharmacol, vol.92, issue.4, pp.577-589, 2014.

B. Weichand, R. Popp, S. Dziumbla, J. Mora, E. Strack et al., S1PR1 on tumorassociated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1beta, J Exp Med, vol.214, issue.9, pp.2695-2713, 2017.

J. M. Weir, G. Wong, C. K. Barlow, M. A. Greeve, A. Kowalczyk et al., Plasma lipid profiling in a large population-based cohort, J Lipid Res, vol.54, issue.10, pp.2898-2908, 2013.

N. R. West, S. E. Kost, S. D. Martin, K. Milne, R. J. Deleeuw et al., Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer, Br J Cancer, vol.108, issue.1, pp.155-162, 2013.

A. C. Wolff, M. E. Hammond, K. H. Allison, B. E. Harvey, L. M. Mcshane et al., College of American Pathologists Clinical Practice Guideline Focused Update Summary, J Oncol Pract, vol.14, issue.7, pp.437-441, 2018.

S. M. Woo, B. R. Seo, K. J. Min, and T. K. Kwon, FTY720 enhances TRAILmediated apoptosis by up-regulating DR5 and down-regulating Mcl-1 in cancer cells, Oncotarget, vol.6, issue.13, pp.11614-11626, 2015.

L. Xu, W. Xu, S. Qiu, S. Xiong, Y. Yamashita et al., Differences in elongation of very long chain fatty acids and fatty acid metabolism between triple-negative and hormone receptor-positive breast cancer, Clin Immunol, vol.135, issue.3, p.589, 2010.

L. Yang, L. Y. Zheng, Y. Tian, Z. Q. Zhang, W. L. Dong et al., C6 ceramide dramatically enhances docetaxel-induced growth inhibition and apoptosis in cultured breast cancer cells: a mechanism study, Exp Cell Res, vol.332, issue.1, pp.47-59, 2015.

C. Yeang, S. Varshney, R. Wang, Y. Zhang, D. Ye et al., The domain responsible for sphingomyelin synthase (SMS) activity, Biochim Biophys Acta, vol.1781, issue.10, pp.610-617, 2008.

J. Yeong, A. A. Thike, J. C. Lim, B. Lee, H. Li et al., Higher densities of Foxp3(+) regulatory T cells are associated with better prognosis in triple-negative breast cancer, Breast Cancer Res Treat, vol.163, issue.1, pp.21-35, 2017.

C. M. Yoon, B. S. Hong, H. G. Moon, S. Lim, P. G. Suh et al., Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways, Blood, vol.112, issue.4, pp.1129-1138, 2008.

G. Yoon, K. O. Kim, J. Lee, D. Kwon, J. S. Shin et al., Ceramide increases Fas-mediated apoptosis in glioblastoma cells through FLIP down-regulation, J Neurooncol, vol.60, issue.2, pp.2773-2791, 2002.

L. Zhang, M. Zeng, and B. M. Fu, Sphingosine-1-phosphate reduces adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel walls by protecting endothelial surface glycocalyx, Cell Mol Biol, vol.63, issue.4, pp.16-22, 2017.

Q. Zhang, J. Qin, L. Zhong, L. Gong, B. Zhang et al., CCL5-Mediated Th2 Immune Polarization Promotes Metastasis in Luminal Breast Cancer, Cancer Res, vol.75, issue.20, pp.4312-4321, 2015.

X. Zhang, K. Kitatani, M. Toyoshima, M. Ishibashi, T. Usui et al., Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer, Mol Cancer Ther, vol.17, issue.1, pp.50-59, 2018.

L. Zhao, P. Yue, F. R. Khuri, and S. Y. Sun, mTOR complex 2 is involved in regulation of Cbl-dependent c-FLIP degradation and sensitivity of TRAIL-induced apoptosis, Cancer Res, vol.73, issue.6, pp.1946-1957, 2013.

J. Zhou and J. D. Saba, Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast, Biochem Biophys Res Commun, vol.242, issue.3, pp.502-507, 1998.

Y. Zhou, M. S. Salker, B. Walker, P. Munzer, O. Borst et al., Acid Sphingomyelinase (ASM) is a Negative Regulator of Regulatory T Cell (Treg) Development, Cell Physiol Biochem, vol.39, issue.3, pp.985-995, 2016.

Y. J. Zhu, H. You, J. X. Tan, F. Li, Z. Qiu et al., Overexpression of sphingosine kinase 1 is predictive of poor prognosis in human breast cancer, Oncol Lett, vol.14, issue.1, pp.63-72, 2017.

, Annexe 4

, Stratégie d'analyses des sous-populations de TIL par cytométrie en flux Analyse par cytométrie en flux des marquages lymphocytaires avec le premier panel d'anticorps. Stratégie d'analyse du panel d'anticorps pour l'étude des lymphocytes T CD8 + . L'exclusion des doublets est réalisée sur 2 fenêtres successives avec l'aire et la largeur des paramètres non fluorescents. Les cellules mortes sont éliminées avec le marqueur de viabilité et un premier fenêtrage des lymphocytes est réalisé avec le CD45, Les lymphocytes T sont repérés avec le marqueur CD3 et les T CD4 + et CD8 + sont aussi séparée sur un autre histogramme. Les populations CD8 + naïves, CM, EM, EMRA sont séparées avec CD45RO et CCR7