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Abstract 

 

Bone and joint infections are one of the most challenging bone pathologies 

that associated with irreversible bone loss and long costly treatment. Early diagnosis 

and management of bone and joint infections (BJI) is a difficult task. The high intra 

and inter patient's variability in terms of clinical presentation makes it impossible to 

rely on the systematic description or classical statistical analysis for its diagnosis or 

studying, particularly with regard to the number of cases. The development of BJI 

encompasses a complex interplay between the cellular and molecular mechanisms of 

the host bone tissue and the infecting bacteria. The objective of this thesis is to 

provide a novel computational modeling framework that simulates the behavior 

resulting from the interactions on the cellular and molecular levels to explore the BJI 

dynamics qualitatively and comprehensively, using an agent-based modeling 

approach. We relied on a meta-analysis-like method to extract the quantitative and 

qualitative data from the literature and used it for two aspects. First, elaborating the 

structure of the model by identifying the agents and the interactions, and second 

estimating quantitatively the different parameters of the model. The BJI system’s 

response to different microbial inoculum sizes was simulated with respect to the 

variation of several critical parameters. The simulation output data was then analyzed 

using a data-driven methodology and system dynamics approach, through which we 

summarized the BJI complex system and identified plausible relationships between 

the agents using differential equations. The BJI model succeeded in imitating the 

dynamics of bacteria, the innate immune cells, and the bone cells during the first stage 

of BJI and for different inoculum size in a compatible way. The simulation displayed 

the damage in bone tissue as a result of the variation in bone remodeling process 

during BJI. These findings can be considered as a foundation for further analysis and 

for the proposition of different hypotheses and simulation scenarios that could be 

investigated through this BJI model as a virtual lab. 
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CHAPTER 

1. Introduction 

 

1.1. Bone and Joint Infections (BJI): Introduction 

Bone and joint infections (BJI) are a group of clinical entities that all have in 

common the invasion and the progressive destruction of bone and cartilage tissue by 

microorganisms, most commonly bacteria. These infections constitute a very 

heterogeneous group of clinical cases, classified according to their anatomical 

location, their evolution time, the mechanism leading to infection, and the presence or 

not of orthopedic material (Mathews et al., 2010; Olson et al., 2013; Zimmerli et al., 

2004). BJI can result from hematogenous spread of infection and develop within two 

weeks (acute hematogenous BJI) (Carek et al., 2001; Jorge et al., 2010). In adults, BJI 

develop more frequently from direct inoculation of bacteria secondary to trauma, 

internal fixation of a fracture, or prostheses placement and progress slowly within 

months (Birt et al., 2017; Smith et al., 2006). This class of BJI is representing the 

most prevalent type in the western countries and characterized as a long-lasting 

infection (Chronic BJI) (Lew et al., 2004). The incidence rate of post-operative/post-

traumatic infections is showing an important annual increase due to the rising in 

arthroplasties procedures associated with mounting risk factors such as diabetes and 

peripheral vascular disease, in addition to the variation in the population's age 

structure (Walter et al., 2012). 

In 2013, the BJI prevalence in France was 70 per 100,000 of the population, in 

comparison with 54/100,000 of the population in 2008 representing a high increase 
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within a short period (Grammatico-Guillon et al., 2012; Laurent et al., 2018) (Figure 

1.1). In Olmsted County, USA, the BJI incidence has increased from 11.4/100,000 of 

the population per year in the period from 1969 to 1979 to 24.4/100,000 per year in 

the period from 2000 to 2009 (Kremers et al., 2015).  

Surveys integrated inpatient database of several countries involving Western 

European countries along with the United States reported a considerable rise in total 

joint arthroplasties (TJA) in the last ten years (Kurtz et al., 2011; NiemeläInen et al., 

2017; Patel et al., 2015). In 2008, the proceeded total hip (THA) and total knee (TKA) 

arthroplasties were 615,000 and 210,000 in the United States what represent an 

increase of 40% and 134%, respectively, compared to the year 1999 (Cram et al., 

2011; Losina et al., 2012). In France, the number of performed TKA showed a 

compound annual growth of 5.3% between 2002 and 2007, and the demand continued 

rising to reach 33% higher in 2013 than 2008 (Colas et al., 2016; Kurtz et al., 2011). 

Projections expect that by 2030, the request for THA and TKA procedures will 

increase by 174%, and 673%, respectively (Kurtz et al., 2007a). For both THA and 

TKA, the demographics of recipients has become younger (< 65 years old), and it is 

projected that young patients will exceed 50% of the patient population by 2030 

(Kurtz et al., 2009; Ravi et al., 2012).  

The revisions of total hip and total knee are also estimated to increase by 

173% and 601%, respectively, by 2030 in compare with 2005 (Kurtz et al., 2007a). It 

was reported that more than one-third of TKA revisions take place in the first two 

years, and the BJIs represent the second common failure cause (22.8%) of this group 

(Schroer et al., 2013). In France, a ten years’ follow-up study shows that the failure 

rate of TKA patients operated during the year 2000 was 7.5%, and the infections 

represented the failure cause of 25% of this rate (Argenson et al., 2013; Colas et al., 

2016). The infections have the prospect to become the most recurrent failure cause of 

TJA in the US in the following two decades. The revision procedures of THA and 

TKA were estimated to increase respectively from 8.4%, and 16.8% in 2005 to 47%, 

and 65.5% by 2030 (Kurtz et al., 2007b). 

BJI incidents are associated with a high risk of therapeutic failure, a mortality 

rate of nearly 5%, and long-term consequences that impact the quality of life of 40% 

of patients, despite long and costly medical and surgical treatment (Cohen et al., 2004; 
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McHenry et al., 2002). For one prosthesis-related BJI case, the overall cost of the 

treatment was estimated to be between 45,000 and 80,000 euros (Parvizi et al., 2010). 

In France, the total cost of the healthcare of BJI is estimated to be more than 250 

million euros per year, with an average hospital stay of 17.8 days per hospitalization 

(Grammatico-Guillon et al., 2012). 

 

 

 

 

Figure  1.1. Recurrence and prevalence of BJI in France, 2008.  
Source (Grammatico-Guillon et al., 2012)  
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The Staphylococcus aureus (S. aureus) is the predominant cause of BJI among 

the other types of causative micro-organisms (70% of cases) in both native and 

device-associated infections (Fritz et al., 2008; Grammatico-Guillon et al., 2012; 

Tande et al., 2014; Tong et al., 2015). Chronic BJI is still difficult to cure despite the 

prolonged treatment which usually combines various antimicrobial agents and 

surgical intervention (Bejon et al., 2017; Lew et al., 2004). This type is correlated 

with critical rates of relapse that could present after a long asymptomatic period 

(latent infection) (Osmon et al., 2013; Tande et al., 2014). This difficulty is due to 

bacterial avoidance of the host defense and the antibiotic treatment by forming 

biofilms or hiding intracellularly (Brady et al., 2008; Junka et al., 2017; Spellberg et 

al., 2012; Valour et al., 2013).  

BJI pathogenesis is identified by different factors including the comorbidities 

and the patient's immune status, besides the vascularity, status, and location of the 

infected bone (Sia et al., 2006). BJI can affect the different structure of the bone tissue 

and even parts of the neighboring soft tissue (Pineda et al., 2006). It rapidly indicates 

acute bone loss and irregular bone signaling system. 

The early diagnosis of BJI represents a challenge in its therapy due to the need 

of taking the best decision quickly and starting an aggressive treatment. BJI diagnosis 

relies on findings from different diagnostic methods include clinical examination, risk 

factors, laboratory results, diagnostic imaging (radiographs, computerized 

tomography, magnetic resonance imaging (MRI), scintigraphy, FDG-PET scans), and 

bone cultures (Forsberg et al., 2011). Despite the progress and accuracy of modern 

medical imaging techniques, it is still difficult to detect the BJI in its early hours or 

days. (Carek et al., 2001; Hatzenbuehler et al., 2011; Pineda et al., 2009). Also, it is 

difficult to rely on the systematic description or the statistical analysis tool to evaluate 

or predict the disease progress because of the great variety in disease presentations 

and pathophysiology intra and inter incident cases (Schmidt et al., 2011; Walter et al., 

2012).  

 

  



  
    5 

 

  

1.2. Aims and Scope of This Thesis 

Improving the understanding and management of BJI development need to 

integrate a new tool that able to comprise different properties of the system and 

facilitate studying its dynamics. Due to the complex structure of BJI system and the 

impacts of various factors on BJI pathogenesis, significant progress in understanding 

the disease can be achieved from deep grasping of the behaviors that could result from 

the interactions between the system components. 

A variety of experimental models range between simple in-vitro to 

complicated tissue or device-associated in-vivo models were proposed in the literature 

for imitating the behavior of microorganisms spreading during BJI or testing the 

effectiveness of a new treatment (Coenye et al., 2010). Nonetheless, these models 

increasingly improve our understanding of the BJI pathophysiology, as we yet away 

from an integral comprehension of the impact of various interactions that are 

managing and directing the dynamic of the system. 

Computational modeling represents a unique way to construct a model of BJI 

systems that can simulate their complex and dynamic behavior, analyze their 

progression, and provide insights in selecting evidence-based treatment strategies. 

Agent-based modeling (ABM) approach, even though is more consuming in 

terms of computational effort and time in comparison with the classical mathematical 

modeling approaches, provides a platform that has the capability to encompass 

various features of the biological system. The ABM approach can with its built-in 

structure involve the stochastic behaviors, the incremental changes, the multiple 

scales interactions, the heterogeneous components, and the multi-environment tissue 

characterizations. ABM is fitted to easily handle the cellular behaviors by embodying 

the information using the agent types, the local environment, rule-based behavior, and 

internal state.  

The objective of this thesis is to introduce a novel computational modeling 

framework of BJI system that enables investigating and understanding the behaviors 

evolve from the spatiotemporal cellular and molecular (signals) mechanisms and 

interactions, using an agent-based modeling approach. The work of this thesis is set to 

achieve three tasks. The first task is to use the data from basic literature in a form that 
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allows quantitative and mechanistic description of cellular attitudes. To achieve this 

goal and extract the information from the different studies we will employ a 

systematic literature search and then identify the range of applicable values of the 

parameters.  

The second task is to develop a two-dimensional agent-based model of BJI 

that introduces a plausible representation of the system and a simulated experimental 

environment to reproduce the infection and examine its dynamics as a result of 

cellular interactions. The BJI system will be modeled through the interaction between 

the components of three subsystems: the bacteria, the infected bone, and the immune 

response. The model simulation will be used to test several hypotheses that exist in 

the literature and to investigate the effect of different parameters changes on the cell 

dynamics, such as the initial concentration of bacteria and the quality of the immune 

system during the first stage of infection.  

The third task is to analyze the different patterns of the system behavior that 

result from the BJI model simulation and to identify plausible relationships between 

its components using an effective data analysis technique. To achieve this goal, we 

will use the system dynamics approach that can summarize the BJI model outcomes 

using differential equations.  

After a brief introduction of BJI, the motivation and objective of this work 

(Chapter I), the structure of this thesis is organized as follows: 

Chapter II: introduces the biological background of BJI system at the level of its 

constituent cells beside the most important processes that are affected by the disease. 

The presentation of the biological system allows us to identify the points that we will 

focus on in our proposal for a BJI model. 

Chapter III: is dedicated to presenting the state-of-the-art of the existing approaches 

to modeling the biological systems. Depending on several studies from the literature, 

we will compare in depth the two major approaches of modeling: the Top-down 

approach and the bottom-up approach. These details allow us to establish the 

following part of our thesis work, namely the proposal of a computational model of 

BJI.  
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Chapter IV: is devoted to explaining the method followed in this study for the 

literature review to describe and characterize the agent interactions and parameters, 

including the research questions, the inclusion and exclusion criteria, and the retrieved 

article that used to define the interactions between the components and the parameter 

ranges. 

Chapter V: introduces the agent-based model that we propose to simulate the BJI 

system. It starts with presenting different elements of the model: the chosen ABM 

platform namely NetLogo, the model structure, the parameters' identifications, the 

agents' rules, and interactions, then the coupling between the conceptual model and 

the NetLogo platform. It followed by the simulation design and the investigation of 

system behavior that result from the interaction between each of the immune system, 

the bone tissue, and the bacteria.  

Chapter VI: explains the Bayesian dynamic system modeling approach that we 

adopted to analyze the ABM outcomes under different hypotheses. This chapter 

includes the method followed in the analyses and the Bayesian selection method to 

identify the best dynamic models of the different variables of the system. 

Chapter VII: concludes the work we have done and introduced in this dissertation in 

a summary followed by the limitations and the different perspectives of the work we 

plan to pursue. 
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CHAPTER 

2. Overview of the Bone and Joint 

Infections Biological System 

 

BJI represents a complex biological system due to the nature of bone tissue, 

and to the overlapping elements and interactions on cellular and molecular levels. The 

infection and the manner of its development is a result of continued interaction 

between the bacteria and the host with its two parts: the infected bone and the immune 

defense system, on one side, and between the bacteria themselves on the other side 

(Lebeaux et al., 2013). These sub interacting systems consist of many components at 

the cellular and molecular level, which are the scales of interests of this thesis.  

The pathogen invasion of the bone leads to a cascade of adverse changes in 

bone tissue components and severe activation of bone destruction (Claro et al., 2011; 

Josse et al., 2015). The balanced function between bone formation and bone 

resorption during bone remodeling process is regulated by RANK/RANKL/OPG 

signaling system (Boyce et al., 2008). This balance is altered by the presence of 

bacteria toward increasing osteoclasts activity and decreasing the osteoblasts related, 

what leads to bone loss (Eriksen, 2010).  

At the same time, the presence of bacteria trigger the innate immune cells and 

signals to play their major role as the first line in defending the bacteria (Charles A 

Janeway et al., 2001; Dapunt et al., 2016). These cells, macrophages, neutrophils, and 

monocyte-derived macrophages, arrive consecutively to the site of infection under the 

stimulation by several signaling molecules and eradicate the bacteria by phagocytosis 

(Corrado et al., 2016; Shi et al., 2011). The infected bone cells also take place in 
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releasing cytokines, that may contribute either in directing immune cells reaction or in 

rising severe inflammatory damage (Bost et al., 1999; Marriott et al., 2005). 

Building the simulation model of BJI goes hand in hand with the 

characteristics of the biological system, and it is necessary before starting any 

description of the modeling framework first to understand the structure of the 

biological system and the function of its components. This is important here since we 

are going to build a model for the cellular mechanisms and behavior of the real 

system. The different constituents of the BJI system have been studied in details in the 

literature in different contexts, including the macro and micro scale components and 

processes. In this chapter, we will introduce the biological system that we will study 

and model in the next chapters. We will start with a brief biological overview of the 

system structure, and the main cells and signals that constitute the system in the early 

stage of the infection.  

 

2.1. Bone 

2.1.1. Bone Tissue Structure and Function 

Bone is a multifunction and multi-environment organ. It is a complex 

functional style of connected tissue that composite of cells surrounded by an 

extracellular matrix (Rodan, 1992). It is dynamic, renewable, and adaptable to always 

provide an architectural framework to support the soft tissue and protect the body 

organs (Steele et al., 1988). Bones are the site of blood cell production (in red 

marrow), and fat storage (in yellow marrow). Also, bones are the source of mineral 

homeostasis and have important roles in regulating various endocrine functions 

(Bilezikian et al., 2002).  

In consequence of this variety of functions, bones have two principal osseous 

tissues. First, cortical (compact) bone, which represents the outer hard layer and 

composites of a dense matrix with osteon units (Figure 2.1). These units have the 

central Haversian canals through which the blood vessels and nerves pass. Second, 

cancellous (spongy) bone, which represents the non-organized porous network that 

hosts the marrow and takes on its mineral maintenance function (Parfitt, 1994; Sarko, 
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2005). Both of these tissues are characterized as an ever-change quality since they 

undergo a life-long regenerating process that called the bone remodeling process. 

When an area of bone is exposed to pathogen or strain, the quality of bone structure 

along with the harmony of the remodeling process are affected (Buckwalter et al., 

1995). 

 

 

Figure  2.1. A cross-section of a monkey jawbone showing the different parts of cortical bone. 

The inner and outer surfaces, endosteum (E), periosteum (P), and between them, the 

Haversian bone (H), with its two types: the immature primary osteons (1°) and the mature 

bulls-eye shaped osteons (2°). Source (Roberts et al., 2006). 

 

 

2.1.2. Bone Cells 

There are four types of mature and specialized bone cells: osteoclasts, 

osteoblasts, lining bone cells, which all are found on the external and internal bone 

surfaces, periosteum and endosteum, and osteocytes which are trapped inside the bone 

matrix (Figure 2.2) (Rodan, 1992). Each of osteoblasts, osteocytes, and lining cells 

are arisen from osteoprogenitors cells, while on other hand osteoclasts are originated 

from the hematopoietic progenitors. These latter are also the origin of monocytes and 

macrophages blood cells (Bilezikian et al., 2002). 
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Figure  2.2. Enlarged space of trabeculae bone shows its different cells. 

 Source (http://higheredbcs.wiley.com). 

 

 

Osteoblasts 

They are the bone builder cells since they are responsible for forming new 

bone matrix either for replacing old bone by the life continuously bone remodeling 

process or for healing a damaged area (Figure 2.3) (Shapiro, 2008). They also have 

roles in activating osteoclasts and regulating bone matrix mineralization (Mackie, 

2003; Yamashita et al., 2012). When they are activated, they secret products such as 

collagen and other proteins in order to form the osteoid, and the non-mineralized bone 

matrix. Afterward, this osteoid is calcified to become a hard matrix where some 

osteoblasts are trapped inside and differentiate to osteocytes (Franz-Odendaal et al., 

2006). This differentiation process from osteoblast to osteocyte generally takes three 

days (Knothe Tate et al., 2004). Osteoblasts might also flatten on the bone surface to 

form the lining cells while most of them, 50–70%, die in programmed cell death with 

an average lifespan of 3 months (Jilka et al., 1998; Parfitt, 1994). Considering their 

interaction with other systems, osteoblasts have impacts on the regulation and 

maintenance of the hematopoietic stem cells, which are produced in the bone marrow 

(Lorenzo et al., 2008; Takayanagi, 2007). 
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Figure  2.3. The osteoblast cells activity in a remodeling cite. 
The image shows osteoblasts activity through the formation of the excavation area by 

synthesizing collagen to form new osteoids. These osteoids will be mineralized later to form 

the bone matrix. 

Source (Clarke, 2008) 

 

 

Osteocytes 

They are the most common cells in bone tissue, 90-95% of all bone cells, and 

they have a long lifespan of 25 years (Franz-Odendaal et al., 2006). Each osteocyte is 

located in space called lacunae within the mineralized bone matrix and communicates 

with other osteocytes and surfaces cells through gap junctions using their processes 

(Figure 2.4) (Schneider et al., 2010).  

Osteocytes are recognized to be the main sensors that translate the mechanical 

tension to biochemical signals through which they could stimulate the remodeling 

process to respond to this load (Bonewald et al., 2008). They amazingly could adjust 

to several situations or to adapt the reaction under different conditions such as growth 

and strain (Bonewald, 2002). In addition, their location within the mineralized matrix 
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facilitates their responsibility for regulating the minerals level in the matrix and their 

transformation (Dallas et al., 2013). Moreover, they are in charge of the quality and 

status of the bone tissue. They manage the response if a part needs repair, nutrition, 

renewal or even if it counters damage. In other words, they stimulate, in an uncertain 

way, the osteoblasts formation function and the osteoclasts resorption function 

(Bonewald, 2011; Prideaux et al., 2016; Schaffler et al., 2012, 2014). The osteocyte 

death happens according to the apoptosis, bone destruction or resorption (Knothe Tate 

et al., 2004). 

 

 

 

 

Figure  2.4. Human cortical bone section of osteocytes located in their lacunae (arrows). It 

shows the extended cell processes that are used to communicate with each other and with 

other cells. The osteocytes represent a network of cells that layout in Haversian system, (1, 2 

and 3) are active Haversian, while (4, 5 and 6) are old Haversian where parts of them undergo 

the remodeling process. Source (Bilezikian et al., 2002) 
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Lining-bone cells 

They derived from osteoblasts after they finish their role. They flatten on both 

inner and outer bone surfaces (Figure 2.5) (Florencio-Silva et al., 2015). They 

communicate with osteocytes through gap junctions and participate in regulating the 

mineral balance (Mullender et al., 1997). In addition, they take part in stimulating the 

osteoclasts and launching the remodeling process (Miller et al., 1987). They 

participate in initiating the bone formation by osteoblast through digesting the debris 

of the resorption phase (Everts et al., 2002). Due to their location, they inhibit the 

direct contact between osteoclasts and bone matrix in none remodeling site 

(Florencio-Silva et al., 2015). 

 

 

 

Figure  2.5. A micrograph shows several human bone-lining cells (arrows) alongside the 

endosteal bone surface. 

Source (Miller et al., 1987) 
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Osteoclasts 

They are phagocytic multinucleated huge cells that are derived from the 

hematopoietic precursor cells under the impact of various agents (Bar-Shavit, 2007). 

The hematopoietic precursor cells are also the source of originating monocytes and 

macrophages cells. The osteoclasts are known for their function as the bone eater 

cells, and they are found in the remodeling sites. Their lifespan is two weeks in 

general (Parfitt, 1994).  

Their main function of bone resorption is to eliminate the old, dead, or 

damaged bone so the new bone formation could take place (Figure 2.6). The 

osteoclasts have a very important role in maintaining the mineral homeostasis hence 

they free minerals while degrading the bone matrix (Suda et al., 1997).  

However, osteoclasts differentiation and activation are influenced by several 

mediators secreted by immune cells or another bone cells such as M-CSF, RANKL, 

IL-1, IL-7, TGF-beta, and TNF-alpha (Mori et al., 2013). Clues indicate that 

osteoclasts in return have roles in stimulating osteoblasts action (Sims et al., 2015), 

and activating immune cells such as T-cells through secreting special cytokines 

(Boyce, 2013; Boyce et al., 2009, 2012; Charles et al., 2014; Teti, 2013). It should be 

noted that not every deficiency of bone mass is a consequence of the extravagant 

activity of the osteoclasts, but it could result from the lack of harmony between 

osteoclasts and osteoblasts activities. 
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Figure  2.6. A microscopic photo shows tow active osteoclasts cells (OC) while resorbing the 

bone matrix. An osteocyte (OS) with its lacunae is also distinguished. Source (Mescher 2013) 

 

 

2.1.3. Bone Remodeling Process 

Even after its growth, the skeleton undergoes a permanent regeneration 

process called bone remodeling process, whereby the bones replace the old tissue with 

new ones (Hadjidakis et al., 2006). This process is also essential to maintain the 

balance of minerals in the blood and bone matrix and to respond to external stress. In 

addition, it is the basis for bone repair after injury (Rucci, 2008). 

This process is performed by the specialized bone cells, osteoclasts and 

osteoblasts, which work side by side harmoniously within groups called basic 

multicellular unit (BMU) (Zhou et al., 2010). When a site needs to go through 

remodeling, these units start their mission and move forward their aim destination. 

These units have a longer lifespan than their component cells; thus a continuous 

supply of new cells is needed to terminate the site remodeling (Table 2.1) 

(Manolagas, 2000). Accordingly, the number of cells in BMU and their lifespan are 

essential keys to evaluate the unit progress. The spatial and temporal correlation 

between osteoclasts and osteoblasts are well organized (Teti, 2013). The remodeling 

process starts by osteoclasts clinging to the tissue and secreting enzymes to acidify the 
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attached site of the matrix and result in decalcifying it, and consequently remove it 

(Figure 2.7). After that, the osteoclasts leave the corroded area and replaced by the 

osteoblasts, which start the phase of formation by restoring the site through emitting 

osteoid. This osteoid, at last, is mineralized to form the new bone (Raggatt et al., 

2010).  

 

 

 

Figure  2.7. Steps of the bone remodeling process: 1) under the influence of stimulating 

signals from osteocytes, the pre-osteoclasts and pre-osteoblasts are activated. 2) Pre-

osteoclasts extend RANK receptors that bind to pre-osteoblasts RANKL signals. 3) 

RANK/RANKL coupling persuade pre-osteoclasts proliferation and merging to found active 

mature osteoclasts that start degrading the site. 4) Mature osteoblasts express OPG receptor 

through which they bind to RANKL and start bone formation. 5) The newly formed osteoid is 

mineralized. 6) Finally, the primary state is rehabilitated. Source (Liò et al., 2012) 
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Table  2.1. Vitale data of bone basic multicellular unit (BMU). From (Parfitt, 1994) 

• The lifespan of BMU !6�9 months 

• The speed !25 μm/day 

• The bone volume replaced by a single BMU !0.025 mm3 

• The lifespan of osteoclasts !2 weeks 

• The lifespan of osteoblasts (active) !3 months 

• The interval between successive remodeling events at the same location !2–5 years. 

• The rate of turnover of the whole skeleton !10% per year 

 

 

The bone-remodeling process is controlled by the very important 

RANK/RANKL/OPG signaling system (Boyce et al., 2008). When a site of bone has 

to go through remodeling, the osteocytes send signals to bone lining cells, which in 

their turn pull away from the surface of the site. In the same time, they stimulate pre-

osteoblasts to express RANKL signal that binds to RANK receptors on pre-

osteoblasts (Jilka, 2003). This coupling between RANK/RANKL prompt the pre-

osteoclasts to proliferate, combine, and generate active osteoclasts that in turn will 

start their resorption role (Eriksen, 2010). After the termination of the resorption 

phase, other cells will remove the debris, and the formation phase will begin by the 

maturity of pre-osteoblasts to osteoblasts which the latter express osteoprotegerin 

(OPG) receptors on their surfaces and form the osteoid layer (Sims et al., 2015). OPG 

is in competition with RANK to bind to RANKL in order to inhibit osteoclasts 

activation and imbalanced bone resorption (Sims et al., 2008, 2014). In healthy state, 

the BMU number in addition to the rate of resorption phase and formation phase are 

constant, while during bone infections, the bacteria affect the balance in this process 

and their signals by increasing RANKL/OPG ratio and inhibiting osteoblasts 

functions (Figure 2.8) (Cassat et al., 2013; Josse et al., 2015; Raisz, 1999). 
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Figure  2.8. Bacteria effects on bone remodeling. During infections, the presence of bacteria 

stimulates osteoclasts proliferation and activity and increases osteoblasts apoptosis. 

Source (Merelli, 2013) 

 

 

2.2. Immune System 

2.2.1. The Innate and Adaptive Immune Response 

The immune system is a complex system that has a dynamic interactions 

network of cells. These cells communicate with each other through signals and 

receptors to apply a variety of mechanisms to encounter the infections. The immune 

system is classified into two subsystems: the innate immune system and the adaptive 

immune system. The innate immunity shoulder the first response against the invaders 

through their specialized phagocytes cells which have pre-existed defense 

mechanisms without the need for prior exposure to the pathogens (Alberts et al., 

2002). The innate immune cells are capable to 1) detect and distinguish instantly the 

determinants of microorganisms from the self-ones, 2) hold effective humoral and 

cellular techniques which will exterminate these microorganisms, and 3) activate and 

regulate the adaptive immune response to attack the survival pathogens (Charles A 

Janeway et al., 2001). This class of immune response has the same degree of 

expansion for responding to infection regardless of the type of infection or how many 
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times it faces that infection (Beutler, 2004). In contrast, the acquired immunity is 

improved with the repeated encounter of the pathogen and its cells have a memory 

that provides them with effective destruction mechanisms in the next exposure 

(Delves et al., 2000).  

The crucial role of the innate immune response is evident during the early 

hours of facing the pathogen, especially in the absence of the adaptive immunity. This 

latter can take several days and up to one week to initiate and become developed 

especially in the case of first exposure. In contrast, it takes only 10 generations for a 

bacterium to grow into a colony of 1024 cells, that means a lot of bacteria in less than 

12 hours for S.aureus which divide very quickly (about every 40 minutes) in optimal 

laboratory conditions (Alberts et al., 2002; Pray, 2008). Thus, the body relies on its 

non-specific defense in the first hours of exposure to pathogenic bacteria to combat 

infection. 

When recognizing the bacteria, the innate immune components immediately 

start the inflammatory response through macrophages, monocytes, neutrophils, and 

endothelial cells that are triggered by microbial products through receptors on their 

surfaces (Fearon et al., 1996). In turn, these cells take their action by releasing 

stimulating pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, IL-12 and 

tumor necrosis factor (TNF-α), to induce the intense stage response, promote the 

antibacterial function of macrophages and other innate immune cells, and boost the 

evolution of  T cells (Vasselon et al., 2002). 

The adaptive immune cells namely: the antigen-specific T and B cells, have 

receptors too and are activated when these receptors attach to antigen (Medzhitov et 

al., 1997). The structure of receptors and the type of signals or antigen, or in other 

words the way of pathogen recognition, in both of innate and adaptive immune cells 

represent an essential difference between those two classes of immunity (Delves et al., 

2000). It is worth mentioning that the innate and adaptive immune system work side 

by side, and despite the effectiveness and vital role of the adaptive immune system, it 

cannot do so without the innate immune cells which present the antigens and release 

the cytokines (Beutler, 2004; Fearon, 1999). 
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2.2.2. Innate Immune Cells 

There are a variety of specialized innate immune cells with different 

competencies, and which all derived from myeloid cells (Jr et al., 2001). They contain 

mononuclear phagocytes that include macrophages, derived monocytes, and 

dendritic cells, and polymorphonuclear phagocytes which contain 

neutrophils, basophils, and eosinophils. Macrophage, monocytes, and neutrophils are 

the main cells that responsible for engulfing the pathogen beside regulating the 

immune response (Savina et al., 2007). The other cells types are specialized in allergic 

and antigen presentation (Stone et al., 2010).  

Macrophages 

Recent evidence shows that tissue-resident macrophages are evolved and 

found prenatal, and they re-proliferate locally with little participation of monocytes 

(Figure 2.9) (Hashimoto et al., 2013; Mass et al., 2016; Patel et al., 2017; Yona et al., 

2013a). Although they do not represent the most abundant phagocytes in the body, 

they are spread throughout the body tissue to be close and in a state of readiness to 

address any pathogen entering any site (Davies et al., 2013). The lifespan of 

macrophage is long that could range from days up to months (Parihar et al., 2010; 

Parwaresch et al., 1984).  

Resident macrophages have several forms depending on the tissue (Kierdorf et 

al., 2015). Even though macrophages have a high ability to engulf and destroy the 

bacteria, their substantial function thought to be the regulation and management of 

following response steps (Gordon et al., 2017). They call up other phagocytes cells 

using their secreting signals, and they launch the adaptive immune response via 

presenting the pathogen antigen to T cells. Another function is subjected to 

macrophage which is cleaning the site by engulfing and digesting cells' debris in the 

inflammation site or cells go through apoptosis (Pinchuk, 2001). Macrophages keep 

controlling the site of inflammation for 1-2 days later. Macrophages have the ability 

to repopulate themselves locally (Ginhoux et al., 2014). 

  



  
    23 

 

  

Monocytes 

Monocytes are originated from bone marrow and then located in the 

bloodstream to begin performing their roles in tissue homeostasis and in regulating 

the initiation and recruitment of immune cells in a case of infection (Furth et al., 

1968). Monocytes are responsible for refilling the tissue macrophage during infection 

since they migrate to the site of infection very quickly and differentiate to monocyte-

derived-macrophage (Figure 2.9) (Ginhoux et al., 2014). Using in vivo deuterium 

labeling method, A. Patel et al. showed that classical monocytes have a lifespan of 24 

hours in circulation in the steady state (Patel et al., 2017).  

 

 

Figure  2.9. The dynamics of prenatal tissue-resident macrophage and monocyte-derived 
macrophage. In the infection, the monocyte migrates from blood circulation into the infected 

tissue to differentiate either to the monocyte-derived dendritic cell (DC) or to monocyte-

derived macrophage (MDM) to increase their population. Even though the MDM will 

eventually boost tissue-resident macrophage population to getting rid of the infection, the 

nature and level of their contribution will be determined upon the type of infection and the 

volume of tissue-resident macrophage' damage. In the figure, several cases of infection are 

shown wherein (a) little MDM are needed, and the embryonic-derived macrophages are 

repopulating locally, in (b) both type are needed and proliferate, in (c) the tissue-resident 

macrophages are damaged what need to MDM to refill the macrophage population. 

Source (Ginhoux et al., 2014) 
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Neutrophils 

Neutrophils have a very important role in constraint the infection since they 

are highly efficient in eliminating the bacteria using different means (Figure 2.10) 

(Witko-Sarsat et al., 2000). They are regenerated in bone marrow under the 

stimulation of G-CSF cytokine with an average of 1011 cells/day what make them the 

most numerous leukocytes in blood, 5000 cells/mm3 in normal case and it could 

increases 5-10 times in acute infection (Furze and Rankin, 2008; Summers et al., 

2010). In spite of what is known of the short lifespan of the neutrophils (6-8 hours), 

recent studies show that they have a longer lifespan (5.4 days), what expand the 

insight of the function of neutrophils especially in mediating the activation of adaptive 

immune cells (Bekkering, 2013; Pillay et al., 2010; Rankin, 2010; Simon et al., 2010). 

 

 

Figure  2.10. Electron micrograph of a neutrophil during the process of phagocytosing a 

bacterium, which is covered by antibodies and in the division phase. 

Source (Williams et al., 1972) 
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2.2.3. Cytokines and an Insight into TGF-beta 

Cytokines and their receptors represent the communication network between 

different cells, and not only immune cells (Van der Meide et al., 1996). One cytokine 

is secreted by more than several cells' type and has many activities which almost alike 

other cytokine functions (Cohen et al., 1996; Pinchuk, 2001). In addition, the 

cytokines have the ability to perform as a growth factor by inducing cells' 

reproduction and proliferation (Mousa et al., 2013; Renner et al., 2004). According to 

their functionality, the cytokines could be classified to three categories: mediators and 

stimulators for innate immune cells, for adaptive immune cells, or for blood stem cells 

(Turner et al., 2014). 

Cytokines and their receptors occupy a big area of research to study the 

immune response during infection (Cobelli et al., 2011; Evans et al., 1998; Yoshii et 

al., 2002). One of the important cytokine in innate immune response is TGF- β that 

has an important function in modulating macrophages and monocytes recruitment 

(Bogdan et al., 1993; Kehrl, 1991). TGF-β is one of the important cytokines that 

released by activated macrophages and T helper cells in case of infection (Reed, 

1999). It has shown that it has a double and contradictory effect on innate immunity 

(Lee et al., 2011). It stimulates the proliferation and recruitment of monocytes to the 

site of infection which in turn amplify and enhance the innate immune response 

(Ashcroft, 1999a). On the other side, it prohibits the macrophages activation which 

discouraged the innate response (Gong et al., 2012). 

2.2.4. Different Stages of Innate Immune Response 

When the bacteria success in breakthrough the host tissue, three types of 

innate immune cells reach the site of infection successively and engulf the pathogen: 

resident macrophages, monocyte-derived macrophages (MDMs), and neutrophils 

(Cheatle et al., 2013; Galli et al., 2011; Rochford et al., 2016; Silva, 2011). Resident 

Macrophages are the first line of cells defense that act against the invaders, and they 

stimulate and recruit rapidly other innate immune cells (Kim et al., 2015). When the 

bacterial count grows, macrophages demand and recruit neutrophils to the site through 

emitting pro-inflammatory cytokines including Interleukin-1 (IL-1) and Tumor 

necrosis factor alpha (TNF-α) (Kaufmann et al., 2016). The neutrophils reach the site 
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of infection 4-8 hours, and they increase rapidly to become the leader cell in the site 

(Strydom et al., 2013). A quick decrease in neutrophil population pursues their peak 

while in parallel derived monocytes arrive smoothly in 48 h after the virulence 

(Kaplanski et al., 2003a). The neutrophils which are faced with bacteria go through 

apoptosis what contribute to inflammation diminution and tissue healing (DeLeo, 

2004; Summers et al., 2010). The monocytes activation is stimulated by some 

cytokines such as IL-6 and MCP-1, which are produced by macrophages and other 

cells (Cassatella, 1995; Deshmane et al., 2009; Kaplanski et al., 2003a). 

2.3. Bacteria 

2.3.1. Bacterial Growth Style and Characteristics 

The acuity of bone infections is influenced by several factors, some of them 

are related to the bacteria themselves such as their virulence, colonization capability, 

pathogen type, and localization (Kahn et al., 1973). Bone and joint infections are 

mainly caused by bacteria called Staphylococcus aureus within 70% of infected cases 

(Grammatico-Guillon et al., 2012). One of the essential qualities of bacteria is the 

growth pattern where their reproduction process follows the binary fission function. 

While in some cases the daughter cells separate after division, in other cases they 

remain linked and divide into different planes as in Staphylococcus, which divide into 

random planes making a grapelike bunch (I. Edward Alcamo et al., 2009).  

A typical in-vitro growth curve of the bacteria is represented as in ( Figure 

2.11), where it is divided into three phases (Harris et al., 2003). The first phase is the 

lag phase, which lasts a few hours, during which the bacteria are growing in size and 

keeping energy. The second phase is the log phase, through which the bacterial cells 

divide rapidly and increase exponentially. Following that the stationary phase, where 

the old cells die or spread to another site in the same rate as new cells division, and no 

increasing in population has happened.  

The growth rate and generation time are determinant parameters to define the 

spread of bacteria. These parameters are dependent on the environment and 

microorganism type (POWELL, 1956). In a controlled culture condition, the bacterial 

count, growth rate, and generation time in the exponential phase are defined by the 

following equations (2.1-3) (Maier, 2009): 
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"#/"$ = !%$     (Eq. 2.1) 

# =!2&#0 (Eq. 2.1) 

% = (ln# ' ! ln#0)!/!$ (Eq. 2.2) 

Where 

X: The number of cells after n generations 

#0: Cells initial number 

 n: Generations number 

t: generation time 

%: Growth rate  

 

 

Figure  2.11. Ideal growth curve of bacteria with time. During the lag phase, the bacteria 

initiate the infection and get prepared to exponential phase, where they divide at a constant 

rate and make proteins that promote multiplying, growing and attaching to the host cells. In 

the stationary phase, the bacteria break away the localized infection to a new site. 

Source (Harris et al., 2003) 
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However, the in-vivo bacterial growth is influenced by several factors that 

modulate the doubling time and the bacterial behavior such as the host condition and 

the immune defense (M R W Brown et al., 1985). Although the environment state 

such as pH, oxygen, and nutrition have a critical effect on bacterial growth, it is hard 

to define their impacts in the human body as same as an in-vitro culture (Smith, 1990, 

1998, 2000; Walkup et al., 2015). 

Bone and joint infections are harmful to the bone resulting in debilitated bones 

correlated with a gradual bone loss. Until present, complete and clear comprehension 

of the mechanisms of losing bone during this disease is still missing (Marriott, 2013; 

Nair et al., 1996). Several studies present insights into important interactions to 

understand these mechanisms. Claro et al. proposed that the S. aureus protein-A 

(SpA) attaches straight to osteoblasts cells what lead to stimulating the latter 

apoptosis, prohibit their reproduction, prevent ECM mineralization, and induce 

RANKL to increase the activation of bone degradation (Claro et al., 2011). Other 

experimental studies investigated the role of osteoblasts in the infection (Bost et al., 

1999; Evans et al., 1998; Fullilove et al., 2000; Gillespie et al., 1990; Marriott et al., 

2004). They state that osteoblasts release cytokines such as MCP-1, IL-6, and IL-12, 

which is normally expressed by immune cells, to stimulate an immune response. In 

turn, this response can contribute either in directing immune cells reaction or in rising 

severe inflammatory damage. 

2.3.2. Staphylococcus aureus Resistance Mechanisms 

Staphylococcus aureus (S. aureus) is the most demanding pathogens of BJI 

associated with disease chronicity development and frequent relapses (Tong et al., 

2015). S. aureus BJIs are correlated with high treatment failure rate in both S. aureus 

methicillin-resistant and S. aureus methicillin-susceptible cases. The chronicity of BJI 

is estimated to reach 10-30% in hematogenous, and 1-20% in device associated 

infection (Marais et al., 2013; Valour et al., 2014). S. aureus BJIs can persist in the 

host tissue and reactivate months or years later (Brady et al., 2008; Panteli et al., 

2016; Walter et al., 2012). S. aureus has several qualities that facilitate its function as 

the most frequent bacteria in BJI. It has the capability to cohere to bone extracellular 

matrix and biomaterial using their own adhesion proteins (Harris et al., 2003). It 

secrets specific toxins and enzymes that facilitate local bone destruction and 
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spreading between host cells (Lowy, 2000; Nair et al., 1995). S. aureus has several 

mechanisms to adapt to the human environment. Two principal bacterial mechanisms 

have been demonstrated to explain the persistence of S. aureus and the chronicization 

of BJI. These factors are biofilms formation, and intraosteoblastic persistence, 

correlated with bacterial phenotype transformation to small-colony variants (SCV) 

(Bjarnsholt, 2013; Ciampolini et al., 2000; Ellington et al., 2006; Gbejuade et al., 

2015; Josse et al., 2015; Marais et al., 2013; Peeters et al., 2016; Valour et al., 2013). 

Both of these factors enable the bacteria to overcome the immune defense and 

become resistant to antibiotic treatment. 

Biofilms are defined as surface-associated bacterial communities, which are 

embedded within an extracellular polymeric substance (Hall-Stoodley et al., 2009). 

The bacteria within biofilms introduce coordinated behaviors and heterogeneous 

functions to facilitate their formation and antibiotic resistance. These include 

nutritional starvation, high cell density, virulence suppression, and coordinated cell-

cell communication behavior (Fux et al., 2005; Hall-Stoodley et al., 2004; Kong et al., 

2018). In device-associated infections, other non-bacterial factors also play a role in 

bacterial adhesion and biofilms development. These include material surface 

properties, such as implant size, surface roughness, chemical composition, 

hydrophobicity, and material charge (Ribeiro et al., 2012). 

S. aureus is able to incorporate within the osteoblasts and to grow 

intracellularly (Löffler et al., 2014; Tuchscherr et al., 2016). The intracellular S. 

aureus demonstrates severe resistance to treatment if it has been formed for more than 

12 hours, due to the structure change (Ellington et al., 2006). It also shows the ability 

to reactivate after the osteoblasts death and infect other osteoblasts (Dusane et al., 

2018). When the bacteria form SCV, which is an indication to phenotypical 

adaptation, they display decreasing virulence, increasing immune defense escape, and 

antibiotic resistance (Trouillet-Assant et al., 2016; Tuchscherr et al., 2010, 2016). 

S. aureus has serious effects on destroying the bone by preventing osteoblasts 

activities and increasing RANKL expression (Sanchez et al., 2013). It directly 

influences the coupled activity of osteoblasts and osteoclasts (Marriott, 2013). Also, it 

causes an increase in the osteoblasts apoptosis and osteogenic differentiation (Sanchez 

et al., 2013).  
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CHAPTER  

3. Modeling Biological System 

Approaches 

 

Understanding the behavior of a complex multi-scale biological system needs 

to use an efficient knowledge representation means. The computational modeling 

techniques represent an effective tool to integrate data from different sources and 

simulate the system behavior to test several existing patterns or even propose new 

ones. Choosing the best modeling technique is depending on the need of the 

investigators and on the capability of the technique to encompass different properties 

of the system at the purposed scale, here the spatiotemporal cellular and molecular 

mechanisms and interactions. 

This chapter summarizes the limitation of the traditional (animal models) 

approach used for modeling biological systems. Then, it provides details about the 

different characteristics and scales of the biological systems that influence the 

modeling approach. It follows by a description of the different modeling approaches 

that could be used when shifting to model and simulate the biological systems on the 

cellular level. Finally, it highlights the agent-based modeling approach as it is the one 

we have adopted for this research. 

3.1. Traditional Modeling Approach (Animal Models) 

Studying the BJI through investigating its pathogenesis and treatment was the 

goal of abundant created animal models (Funao et al., 2012; Gaudin et al., 2011; 

Horst et al., 2012; Inzana et al., 2015; Kim et al., 2014; Li et al., 2008; de Mesy 

Bentley et al., 2017). These models have been designed to investigate the 
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effectiveness of new antibiotic treatment (Gaudin et al., 2011b), the diffusion of 

antibiotic into biofilms BJI (Inzana et al., 2015), or the antibiotic activity on 

intracellular bacteria (Valour et al., 2015).  

Although these animal models provide an integral important part in the 

knowledge of BJI, several challenges and limitations accompany them (Reizner et al., 

2014). There are several critical issues to take in the account when choosing the 

model depending on the explored disease type or stage since no single animal model 

could comprise all aspects of BJI (Patel et al., 2009). The small animals (rabbit, rate) 

are easy to be handled and are cost-effective, but they are limited by the incapacity to 

tolerate the antibiotic treatment and the numerous procedures. In contrast, the large 

animals (sheep, dogs) have more ability to sustain the antibiotic doses and multiple 

procedures, but they are limited by their availability, cost, and ability to be handled 

(Patel et al., 2009). Other important factors that influence the model selection are 

those related to the pathogen or the antibiotic such as the bacteria inoculum size, the 

location of the infection, the antibiotic family, concentration and diffusion (Tatara et 

al., 2015).  

The physiological and anatomical variance in the infection progress or 

recovery between the model and human impose limitations in recapitulating the 

human conditions and further validating the model. For example, the infection 

initiation in an animal such as rabbit needs a high level of inoculum of bacteria (106 

CFU), while the infection in human needs much less inoculum comparatively (Mader, 

1985). In addition, the effects of the antibiotic on the animal are relatively different 

from human. For instance, rabbits are oversensitive to the toxicity of a broad-

spectrum long-term treatment which leads to death (Greek et al., 2013). Moreover, 

there is no animal model could handle all the stages of the infection since the 

infection could span over a long duration (An et al., 2006).  

These limitations besides the difficulties of interpreting results coming from 

the interaction between the host and pathogen promote the writers in (Lebeaux et al., 

2013) to highlight the importance of the computational modeling in improving the 

biological system understanding. The need for facilitating the exploration and the 

prediction of system behavior on different scales make the computational modeling 

approaches a powerful alternative approach to the wet lab.   
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3.2. Characteristics of Complex Biological Systems 

Human biological systems and diseases encompass different components 

which interplay with one another to develop complex and unforeseen attitudes 

(Cheema et al., 2016). Such systems have several characteristics to be taken in the 

account when choosing the modeling technique (Chiacchio et al., 2014; Gatti, M et 

al., 2007; Szallasi et al., 2006). These characteristics include the unpredictable 

behaviors, since they follow non-linear routines, in which a small disruption may have 

a big, comparable, or no effect on the system behavior. The relationships between the 

components are characterized by feedback loops in which the impact of a component's 

behavior influences the component itself. Moreover, the biological system is dynamic 

in that it is constantly changing over time. It is also characterized by having a 

memory, since previous system situations have impacts on the current situation. The 

biological system compounds of subsystems, which in their turns are built of several 

nested components. In addition, the biological system is a self-adaptive system, which 

reorganizes its components internally over time, space and function to enhance its 

attitude. In biological systems, the behavior patterns of a tissue emergent from the 

behaviors and interactions inter and intra cells (Alexander, 2013). These patterns have 

a contribution in the information about both the physiological and pathological 

process.  

Another important characteristic of biological systems is the multi-scale 

property, which is clearly shown in the several functional structures over both 

temporal and spatial sphere that all results in the development, growth, and 

functionality of the organisms (Ji et al., 2017). The spatial multi-scales of the 

biological system ranges from the molecular scale to the organs or organisms scales 

(Figure 3.1) (Walpole et al., 2013).  

3.3. Computational Modeling of Complex Biological Systems 

3.3.1. Strength of Computational Modeling Approach 

Studying and understanding the complex biological system through the 

dynamics and interactions of cells and signals, rather than studying these cells as 

isolated tissue in the experiments, represent a leap in shifting from this first basic 

knowledge to system-level understanding (Kitano, 2002a). In general, computational 
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biology aims at two different aspects (Kitano, 2002b). First, retrieving knowledge to 

take out the potential patterns from the pool of experimental data and use heuristics-

based prediction. Second, conducting simulation-based analyses that make a 

prediction of the system dynamics upon in-silico experiments, and validating the 

result using experimental knowledge and further examination by in-vivo researches. 

In other words, it is essential to recognize the different resulting patterns of system 

behavior, why such patterns arise, and how to solve and control them (Evora et al., 

2015). 

The presence of the multiple levels of arrangement in the system puts up 

serious challenges in front of the information that produced from a certain study at a 

specific level to be applied and translated to a phenomenon that appeared in a higher 

level (Eissing et al., 2011). This interest in knowledge translation over multiple scales 

belongs to the consequences of connecting between the researches of the therapeutic 

objectives at cellular and molecular levels and their influences in tissue or organ 

levels. Computational modeling approaches are greatly fitting to recognize the link 

between the different scale of the biological system from molecular scale up to organ 

scale, using single or combined modeling methods ( Figure 3.1) (Ghosh et al., 2011; 

Hambli, 2014; Pivonka et al., 2012). 
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Figure  3.1. An abstract map of computational modeling methods classified according to the 
most fitting biological spatial scale within discrete and continuous classes. 

Source (Walpole et al., 2013) 

 

 

3.3.2. Computational Modeling Approaches 

For a deeper understanding of complex biological systems, researchers have 

tended to model these systems using different mathematical and computational 

modeling approaches, which globally are classified into two main classes, the top-

down approach and the bottom-up approach (Bianca et al., 2012; Borshchev et al., 

2004; Chiacchio et al., 2014). The top-down approach aims at approximating the 

behaviors of the variable in the macroscopic level and modeling population instead of 

single entities. The most known methods of this class are the models based on the 

ordinary differential equations (ODE), the partial differential equations (PDE), and 

the stochastic differential equations (SDE), which have the ability to model a large 



  
    35 

 

  

number of entities. Although the PDE take into consideration the topology and the 

SDE add some stochastic terms, all of these methods disregard the interactions of the 

individuals. Models built on these methods that address complex systems face the 

problem of difficulty along with approximations that cannot be ignored. 

Using the equation-based modeling approach (EBM), two important models 

are proposed in the literature that study the bone mechanisms and they represent the 

basis of many following works that handle bone remodeling process in their 

researches using the EBM approach: the model of Komarova et al. and the model of 

Pivonka et al (Komarova, 2005; Komarova et al., 2003; Pivonka et al., 2008, 2010). 

These temporal mathematical models investigated the dynamics of bone cells and 

signals during the bone remodeling process.  

The bottom-up approach deals with the individual agent and models the 

behaviors and interactions of the entities in the microscopic level. In this approach, 

the overall behavior of the system results from the accumulation of the local attitudes 

and interactions of the concerned agents. The most used methods of this approach are 

the agent-based models (ABM) and the cellular automata (CA) (Alemani et al., 2012; 

Motta et al., 2013; Pappalardo et al., 2012, 2013). By adopting these methods, the 

system can be characterized more accurately, through passing the negativity of large 

approximations in the top-down methods. That is because the bottom-up approach is 

already containing the stochastic feature and the spatial distribution consideration 

inside. However, these methods require high computational attempt since the agents 

are processed individually. However, these methods require more computational 

efforts for the analytical study because of their lack of strong mathematical tools 

behind.  

3.4. Agent-Based Modeling (ABM) Approach 

3.4.1. ABM in Modeling Biological System 

The agent-based modeling (ABM) approach is a member of the discrete 

mathematical methods in which the global behavior of the system results from the 

behavior and interactions in entities level (Shi et al., 2014). The different features of 

ABM approach make it well fitting in biological system studies, especially when the 

goal is to verify the predefined mechanisms of the system rather than searching a 
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pattern from an existing data (An et al., 2009).  

The built-in randomness and the naturally taking parallel mechanisms 

outcomes features make ABM display the hidden and multi-scale behavior of the 

biological system (Figure 3.2) (Folcik et al., 2007; Politopoulos, 2007). The ABM 

models could reproduce the complex behavior of the system with heterogeneous 

components and divers essential rules, even if they are simples and not complete 

(Alexander, 2013; Hammond, 2015). The ABM also has an intuitive paradigm that 

considers the individual character, decision and propensity.  

Another important feature of ABM is the capability to encompass the spatial 

organization and position of cells that have important influences on their behavior, 

proliferation, expansion, and signal secretion within a specific interval (Gilbert, 

2008). As examples of this feature in the intra-cellular level, the molecular gradients 

that control intra-cellular signaling, and the sub-cellular localization that lead to 

different patterns of signaling pathways (Peter et al., 2012). In the cellular level, the 

spatial property of a process like chemotaxis directs the cell movement towards the 

high concentration chemotaxis or specific substances such as nutrients (Kholodenko, 

2006). In addition, the cellular spatial distribution determines the scope of neighbors 

with whom they will interacts (Fadiel et al., 2008).  

The agent-based modeling approach is a promising tool that offers a peer in-

silico experimental environment which could introduce a plausible dynamic 

representation of the achieved mechanistic knowledge from the literature or the 

laboratory experiments to examine the implicit hypotheses. It aims at getting more 

perception of the system behavior to produce and identify new behaviors and patterns 

through implementing the model using the essential rules and function. These new 

patterns could be further investigated as new hypotheses "generating hypotheses", or 

used as a means in enhancing the therapeutic design. 
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Figure  3.2. Mapping of the ABM approach to the research organization at each biological 
level of representation in multi-scale biological system structure, where the behavior in the 
upper level results from the sum of the behaviors at the bottom level. The proposed ABM 

model in this research of BJI is using the cellular level while the signaling mechanisms define 
the rule of these cells. 

Source (An, 2006) 

 

 

The advantages mentioned above of the ABM technique along with the 

improvement in computing processing power encouraged researchers to build 

numerous biomedical applications to investigate various subjects using the ABM 

approach. It has been used in investigating the intracellular pathways in the molecular 

levels in systems biology where it achieved advances especially with the ability of 

spatial characterization within ABM (An, 2009; Pogson et al., 2006, 2008; Ridgway 

et al., 2008).  

However, ABM applications that consider cell-level as the principal level of 

representation are the most evident in modeling biological systems and the most 

common in the preliminary ABM biomedical applications (An, 2008; Hunt et al., 

2006). That is because they could supply a connection between the laboratory 

experimental acquired information and the organization of ABM. Such applications 

either studied the dynamics of a disease process, or the changes in the spatial 
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physiology and function of tissues under pathological conditions, such as tumor 

growth, wound healing, and morphogenesis (An, 2001; Bauer et al., 2009; Engelberg 

et al., 2008; Folcik et al., 2007; Gary An, 2012; Grant et al., 2006; Segovia-Juarez et 

al., 2004; Zhang et al., 2009). These applications consider cell-cell interactions and 

spatial properties supported by ABM. 

ABM approach in different applications has also been combined with other 

modeling approaches to integrate the various features and the acquired knowledge 

from the different system level. Examples of these hybrid models are integrating the 

dynamic system approach using differential equations with agent-based modeling of 

cell level (Athale et al., 2006; Vodovotz et al., 2009), and incorporating the agent-

based modeling with finite elements analysis (Chincisan, 2016; Zahedmanesh et al., 

2012). On another hand, combining the experiments with agent-based modeling 

approach was the focus of (Thorne et al., 2007), to give realistic and explanatory 

knowledge about the biological system work. This combination takes place in a cycle 

of work steps showed in (Figure 3.3). 
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Figure  3.3. The cycle work of integrating the ABM model with experimental work, where 
first the rules of the agents in the ABM model and the interactions are obtained from the data 

in the literature or a parallel lab work such as in (Walker et al., 2006). Second, the 
parameterization step where the parameters should be set in a range that the model output 

matches the proper experimental data. Third, validating the ABM output using another group 
of experimental data that have not been used in the model building. The last step is the 

prediction from the validated models, which in turn fed the information of the experimental 
work and enhance the information used in building the model.  

Source (Thorne et al., 2007). 

 

 

3.4.2. Agent-Based Modeling Applications in Bone Biology and Infections 

Several studies were done to investigate the cellular mechanisms of bone 

using the ABM approach in different contexts. For example, the work of (Ausk et al., 

2006) investigated the role of osteocytes in stimulating bone remodeling process in 

response to mechanical strain using the agent-based modeling approach. Also in the 

research of (Schutte, 2012), an agent-based model was proposed to evaluate the 

dynamics of bone cells during the bone remodeling process. Another group studied 

the role of osteoclasts in bone resorption in BMU using a type of ABM, lattice-based 

model (Buenzli et al., 2012). A model of cell migration and proliferation in fracture 

healing using random-walk in lattice method was implemented by (Pérez et al., 2007).  
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A combination between shape calculus language and agent-based modeling 

was introduced by (Paoletti et al., 2012a) to study also the dynamics of the bone 

remodeling process. 

In regards to our scope of interest, one group explored the dynamics of two 

types of bone cells: osteoclasts and osteoblasts, in addition to bone density in a 

comparison between the effect of bone infection and osteoporosis on bone remodeling 

process (Liò et al., 2012). The authors in this work proposed a hybrid mathematical 

modeling framework composed of a differential equation-based model that is based 

on the mentioned works of Komarova et al. and Pivonka et al. and probabilistic 

verification model of the stochastic system that used population-based approach. 

However, the model emerges from an equation-based approach which lacks the 

spatial distribution and micro-interactions of the components, and it ignores the 

interplay with the immune system. 

In this study, we are focusing on how the cellular mechanisms and interactions 

influence the BJI development and give rise to the system-level behavior. In this 

thesis, we implemented the BJI system using ABM approach because of its inherent 

features and flexibility to investigate the system behavior as a result of the 

spatiotemporal dynamics and micro-scale interactions of BJI heterogenous 

components (bone cells, bacteria, immune cells). The model proposed here is the first 

model of BJI that use the agent-based modeling technique and represent the infection 

as a comprehensive system that involves the interactions between the pathogen 

(bacteria) and the host tissue. This modeling framework has the power of facilitating 

the integration of information retrieved from different sources, and the application of 

different exploratory and predictive analyses methods. 

3.4.3. Limitations of ABM approach 

The features that were mentioned of the ABM approach make it a powerful 

technique to model the biological system. Nevertheless, it has several limitations (An 

et al., 2009). The accuracy and quality of the model are coupled with the reliability of 

the implicit hypotheses and the fineness of their implementation during the model 

building (Vodovotz et al., 2008). One of the challenges is that ABM models are built 

initially depending on some simplifying assumption because of the complexity (Xiang 

et al., 2005). However, the models should be refined in further work step where these 



  
    41 

 

  

assumptions are re-examined. In addition, using the global analyses techniques to 

identify the relevance between the system behavior and the underlying agent's 

dynamics does not represent an easy task (Chiacchio et al., 2014). Another challenge 

is that the computing efficiency, however, handling a high number of agents and 

stochastic processes requires powerful computational processing effort (Bonabeau, 

2002). Using parallel processors could be addressed to the large and complex ABMs; 

however, most exist agent-based modeling toolkits run on a single processor (Thorne 

et al., 2007).  
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CHAPTER  

4. Parameters Identification of BJI 

Model 

 

Characterizing the system and its components in the cellular level represents 

the first step toward building the agent-based model of BJI. System characterization 

includes identifying the agent rules, interactions, and parameters. In Chapter 2, we 

presented the cellular and molecular attitudes of different components of BJI 

biological system during the first stage of infection; namely those cover the innate 

immune response, the bone remodeling cells and signals, and the bacteria 

development from the descriptive literature. These biological characteristics will be 

simplified and formulated as the agent rules in the next chapter. 

In this chapter, we will identify the agent parameters, quantify their range of 

applicable values, and extract the different possible interactions between them from 

the literature using a systematic search. Different information in the literature exists 

handling the system components in different contexts. Identifying one component's 

parameter needed applying defined criteria, comparing these different studies and 

finding the relevant ones. This chapter provides the detailed methodology that we 

conducted to explore the literature and retrieve the needed information.  

This characterization enhances our computational model by giving realistic 

values to the input parameters from the proven knowledge in the basic biology or 

experimental studies, by which the model could produce a meaningful prediction of 

the infection progression.  
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4.1. Bibliography Search Method 

Relying on PubMed and ScienceDirect databases, we explored the related 

journal paper works from their inception to date, July 2017. In order to do that, we 

identified the search questions, the inclusion and the exclusion criteria for each 

investigated key term. We took benefits of quantitative and qualitative description in 

the related biology, physiology, computational and mathematical model along with 

the in-vivo and in-vitro experiments. 

The queried terms are classified into four groups: bone cellular system group, 

the innate immune system group, bacterial system group, and the interactions between 

the components of these three systems group. In the following, we will itemize each 

group of terms with both inclusion and exclusion criteria. 

1. For characterizing the bone cells, their lifespan, reproduction rate, main function: 

bone remodeling process, and the signals that involving in, we proposed the 

following questions and criteria: 

a) The search questions were: 

1. Osteoblast AND ( half-life OR lifespan OR life-span OR (reproduc* rate)) 

2. Osteoclast* AND ( half-life OR lifespan OR life-span OR (reproduc* rate) ) 

3. Osteocyte* AND ( half-life OR lifespan OR life-span OR (reproduc* rate) OR 

ratio OR density) 

4. Bone remodeling process AND (signal* OR RANK OR RANKL OR OPG 

OR osteoprotegerin OR receptor activator of nuclear factor kappa* ) 

b) The inclusion criteria were human studies, articles on bone formation and bone 

resorption, bone biology and quantitative studies. 

c) The exclusion criteria were excluding the article related to specific cases and 

diseases, the article related to genetic researches, pathway mediated, or specific 

treatment effects studies. 

2. In order to identify the immune cells, quantify their lifespan, define the role of 

TGF signal on the immune response, and characterize the behavior of innate immune 

response, we proposed the following questions and criteria: 

a) The search questions were: 

1. Neutrophil* AND ( half-life OR lifespan OR life-span OR (reproduc* rate)) 
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2. Monocyte* AND ( half-life OR lifespan OR life-span OR (reproduc* rate))  

3. (macrophage* OR (resident macrophage*))AND ( half-life OR lifespan OR 

life-span OR (reproduc* rate)) 

4. (innate immun* OR innate immun* system) AND ((math* OR computation*) 

model) AND (macrophage OR monocyte OR neutrophil)  

5. (tgf* OR Transforming growth factor) AND (regule* OR interact* OR 

signal*) AND (innate immunity OR innate immune system OR innate immune 

cells AND (macrophage* OR neutrophil* OR monocyte*) ) 

b) The inclusion criteria were: human studies, articles handling lifespan and 

regulation leukocytes, and innate immune response studies 

c) The exclusion criteria were: excluding the article related to specific cases and 

diseases, the article related to labeling methods, receptors patterns or gene 

expression studies. 

3. In order to characterize the bacteria agents, their growth and population in the 

site of infection, we proposed the following questions and criteria: 

a) The search questions were: 

1. (Staphylococcus aureus AND bacteria) AND (count OR population) AND 

(osteomyelitis OR bone infection) AND animal model 

2. Staphylococcus aureus AND (reproduc* rate OR generat* time OR growth 

rate) AND (osteomyelitis OR bone infection) 

3. (computation* OR math*) AND model AND (osteomyelitis OR bone 

infection)  

b) The inclusion criteria were Staphylococcus aureus population or rate, animal 

model of BJI for (1, 2). 

c) The exclusion criteria were the implant material studies, in vitro studies, children 

osteomyelitis, antibodies studies, or image studies. 

4. To investigate the interactions between the agents of the three previous systems, 

we proposed the following questions: 

a) The search questions were: 

1. (Macrophage* OR neutrophil* OR monocyte*) AND (bacteria OR 

Staphylococcus aureus) AND (bone infection* OR osteomyelitis) 

2. (Osteoclast* OR osteoblast* OR osteocyte*) AND (bacteria OR 

Staphylococcus aureus) AND (bone infection* OR osteomyelitis) 
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3. (RANK OR RANKL OR OPG OR osteoprotegerin OR receptor activator of 

nuclear factor kappa* OR TGF OR transforming growth factor ) AND 

(bacteria OR Staphylococcus aureus) AND (bone infection* OR 

osteomyelitis) 

4. (macrophage* OR monocyte* OR neutrophil*) AND (osteoclast* OR 

osteoblast* OR osteocyte*) AND ( osteomyelitis OR bone infection) 

b) The inclusion criteria were Staphylococcus aureus or osteomyelitis studies, animal 

model or human studies, signals and regulations studies, matching keywords 

articles. 

c) The exclusion criteria were the implant material studies, children osteomyelitis, 

antibodies, and gene expression studies, or image studies. 

The Table 4.1 contains a summary of all research questions with the applied criteria. 
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Table  4.1. Table of research equations used in the literature review with corresponding  

inclusion and the exclusion criteria 

Search Equations  Including 

Criteria 

Excluding Criteria 

Bone cells 

1. Osteoblast* AND ( half-life OR lifespan OR life-span OR 
(reproduc* rate)) 

2. Osteoclast* AND ( half-life OR lifespan OR life-span OR 
(reproduc* rate) ) 

3. Osteocyte* AND ( half-life OR lifespan OR life-span OR 
(reproduc* rate) OR ratio OR density) 

4. Bone remodeling process AND (signal* OR RANK OR 
RANKL OR OPG OR osteoprotegerin OR receptor activator 
of nuclear factor kappa* ) 
 

human studies, 
articles on bone 
formation and 
bone resorption, 
quantitative 
studies, bone 
biology  

the article related to 
specific cases and 
diseases, the article 
related to genetic 
researches, pathway 
mediated, or some 
treatment effects 
studies 

Innate Immune Cells 

1. Neutrophil* AND ( half-life OR lifespan OR life-span OR 
(reproduc* rate)) 

2. Monocyte* AND ( half-life OR lifespan OR life-span OR 
(reproduc* rate))  

3. (macrophage* OR (resident macrophage*)) AND ( half-life 
OR lifespan OR life-span OR (reproduc* rate)) 

4. (innate immun* OR innate immun* system) AND ((math* OR 
computation*) model) AND (macrophage OR monocyte OR 
neutrophil)  

5. (tgf* OR Transforming growth factor) AND (regule* OR 
interact* OR signal*) AND (innate immunity OR innate 
immune system OR innate immune cells AND (macrophage* 
OR neutrophil* OR monocyte*) ) 

human studies, 
articles handling 
lifespan and 
regulation 
leukocytes, and 
innate immune 
response biology 
 

excluding the article 
related to specific 
cases and diseases, 
the article related to 
labeling methods, 
receptors patterns or 
gene expression 
studies 

 

Bacteria 

1.  (Staphylococcus aureus AND bacteria) AND (count OR 
population) AND (osteomyelitis OR bone infection) AND 
animal model 

2. Staphylococcus aureus AND (reproduc* rate OR generat* time 
OR growth rate) AND (osteomyelitis OR bone infection) 

3. (computation* OR math*) AND model AND (osteomyelitis 
OR bone infection) 

 
staphylococcus 
aureus 
population or 
rate, animal 
model of BJI for 
(1, 2) 

 

 
implant material, in 
vitro studies, 
children 
osteomyelitis, 
antibodies studies, 
or image studies 

Interactions 

1.  (Macrophage* OR neutrophil* OR monocyte*) AND (bacteria 
OR Staphylococcus aureus ) AND (bone infection* OR 
osteomyelitis) 

2. (Osteoclast* OR osteoblast* OR osteocyte*) AND (bacteria 
OR Staphylococcus aureus ) AND (bone infection* OR 
osteomyelitis) 

3. (RANK OR RANKL OR OPG OR osteoprotegerin OR 
receptor activator of nuclear factor kappa* OR TGF OR 
transforming growth factor ) AND (bacteria OR 
Staphylococcus aureus ) AND (bone infection* OR 
osteomyelitis) 

4. (macrophage* OR monocyte* OR neutrophil*) AND 
(osteoclast* OR osteoblast* OR osteocyte*) AND ( 
osteomyelitis OR bone infection) 

staphylococcus 
aureus or 
osteomyelitis 
studies, animal 
model or human 
studies, signals 
and regulations 
studies, 
matching 
keywords 
articles 

 

implant material, 
children 
osteomyelitis, 
antibodies and gene 
expression studies, 
or image studies 
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4.2. Literature Review Results 

Systematic search process identified 42 articles for bone cell characterizations, 

48 articles for immune cell characterization, 12 articles for bacteria characterization, 

and 29 articles for interactions (Figure. 4.1-4.4). Following the systematic literature 

search, we identified the agent interactions and the parameter ranges from the 

retrieved articles (Table 4.1). The list of all articles used for the study is reported in 

the Appendix (Table A.1). 

 

 

Table  4.2. Agent parameters and their values retrieved from the literature search. 

Parameter Summery Range 
In Literature 

References 

Bacteria production-rate 1-24 hour (Ansari et al., 2015; Anwar et al., 2007b; Cramton et al., 

2001; DosReis et al., 2001; Fux et al., 2005; Li et al., 

2008b; Melter et al., 2010) 

Bacteria inoculum size — Assumed 

Osteocytes initial number 500-900 cell/mm2 (Goggin et al., 2016; Vashishth et al., 2000) 

Osteoblasts production-rate 4 cell/day (Franchimont et al., 2000; Jilka et al., 2007; Ryser et al., 

2009) 

Osteoblasts lifespan  3 months (Kollet et al., 2012; Komarova et al., 2003; Manolagas, 

2000) 

Osteoblasts initial number ~ 800 - 2000 
cells/BMU 

(Florencio-Silva et al., 2015; Komarova, 2005; Paoletti et 

al., 2012a; Ryser et al., 2009) 

Osteoclasts production-rate 3 cell/day (Bar-Shavit, 2007; Buenzli et al., 2011; Chambers, 2010; 

Charles et al., 2014; Del Fattore et al., 2008; Ryser et al., 

2009) 

Osteoclasts lifespan  ~ 2 weeks (Lemaire et al., 2004; Manolagas, 2000; Mellis et al., 

2011; Roodman, 1999; Soysa et al., 2016; Tanaka et al., 

2006) 

Osteoclasts initial number ~ 5 - 20 cells/BMU (Komarova, 2005; Paoletti et al., 2012a; Ryser et al., 2009) 

RANKL concentration 10-6 mol/cell/day (Anandarajah, 2009; Bahar et al., 2007; Boyce et al., 2008; 

Henriksen et al., 2009; Iolascon et al., 2011; Kardas et al., 

2013; Ryser et al., 2009) 

OPG concentration 3.10-6 mol/cell/day (Nakashima, 2014; Paoletti et al., 2012b; Pivonka et al., 

2008, 2010; Ryser et al., 2009; Scheiner et al., 2013; Sims 

et al., 2008; Zhao et al., 2010; Zumsande et al., 2011) 

TGF-β concentration 150-500 pg/ml (Ashcroft, 1999b; Bismar et al., 1999; Kelly et al., 2017; 

Knapp et al., 1998; Pivonka et al., 2008; Schmidt-Weber et 

al., 2004; Sheng et al., 2015) 

TNF-α concentration 0-1000 pg/ml (Corrado et al., 2016; Sharma et al., 2002; Szondy et al., 

2017; Young et al., 2011) 

MCP-1 concentration 0-2000 pg/ml (Corrado et al., 2016; Kim et al., 2012; Ning et al., 2011) 

Neutrophil production-rate — See text 

Neutrophil lifespan tissue 24 - 120 hours (Anwar et al., 2007a; Asensi et al., 2004; Bekkering, 2013; 

Kaplanski et al., 2003b; Kettritz et al., 1999; Kumar et al., 
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2010; Maianski et al., 2004; Rankin, 2010; Schröder, 2000; 

Summers et al., 2010; Whyte et al., 1999) 

Monocyte lifespan 24 -120 hour (Brunet de la Grange et al., 2013; Dale et al., 2008; Fehder 

et al., 2007; Ginhoux et al., 2014; Goasguen et al., 2009; 

Gonzalez-Mejia et al., 2009; Italiani et al., 2014; Parihar et 

al., 2010; Patel et al., 2017; Reuter et al., 2009; Whitelaw 

et al., 1966; Yona et al., 2013b) 

Monocyte reproduction rate — See text 

Macrophage lifespan 1-14 days (Chazaud, 2014; Cole et al., 2014; Dancik et al., 2010; 

Dockrell et al., 2006; Epelman et al., 2014; Mulherin et al., 

1996; Parwaresch et al., 1984; Smith et al., 2011a) 

Macrophage reproduction 

rate 

— See text 

 

 

Several determinant factors have impacts on the parameter identified in the 

literature. These include the conditions of the study; however cells parameters are not 

the same in health and during infection. The type of tissue and the labeling method 

also has an impact on cells parameters.  

Moreover, some available cytokines concentration parameters existed in units 

which are difficult to be used in our ABM model, for which we made some 

approximations in order to use it. It is worth noting that since the parameters 

identification was based on varied studies, which in themselves were based on 

different conditions, the model calibration still to be carried out in order to ensure the 

parameters estimation accuracy. 
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Figure  4.1. Flowchart of the review method steps to identify the parameters of bone cells and 
signals. 
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Figure  4.2. Flowchart of the review method steps to identify the parameters of innate immune 
cells and signals. 

. 
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Figure  4.3. Flowchart of the review method steps to identify the parameters of bacteria (S. 

aureus). 

. 
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Figure  4.4. Flowchart of the review method steps to identify the interactions between agents. 
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CHAPTER 

5. Two-Dimensional Agent-Based Model 

of BJI 

 

This chapter aims to present the ABM model of BJI that we propose. The 

model includes the main cells and signals that represent the system in the first stage of 

infection. The model involves the main cellular behaviors such as proliferation, 

recruitment, death, interactions between cells and between cells and their 

environment. We modeled the effect of the bacteria on both of bone remodeling 

process and innate immune response. We also modeled several signals, allowing the 

cells to evaluate bacteria progress and then adapt their behaviors accordingly. 

This chapter is devoted to explaining step by step the workflow of the model 

development method (Fig. 5.1). The method is divided into two parts, first the model 

development process including platform selection, agents and rules identification, 

model implementation, and process overview. The second part describes the 

simulation design including steps and parameters used. After that, this chapter 

introduces the obtained results. 

Figure  5.1. Method flow of the model development. 
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5.1. Model Development 

5.1.1. The Model Platform 

The BJI model was implemented using the freeware toolkit for agent-based 

modeling NetLogo 6.0.1 (Wilensky, 1999). NetLogo implementation was started in 

the Center of Connected Learning and Computer-Based Modeling (CCL) at 

Northwestern University, in 1999, which keeps improving and adding new functions 

henceforward (Grimm et al., 2010). 

Even though ABM has object-oriented nature, several software matters are 

hard to be handled with traditional ones such as developing iterations scheduler, time 

synchronization, and processing parallel simulations. Therefore several agent-based 

modeling toolkits are developed with taking in the account the balance and trade-off 

between the representation capability, the computation competence, and the friendly 

user environment. 

Among these toolkits, NetLogo introduces a promising tool to simulate the 

compound phenomena using a high-level multi-agent programming language and a 

robust, simple modeling platform. NetLogo was chosen for implementing the BJI 

model for its several features such as supporting investigating the agent behaviors 

over time and space and emerging the agents' heterogeneity within its framework. 

Among the most commonly used agent-based modeling toolkits: Repast, Swarm, 

Mason, and Flame, NetLogo is the less complex, best documented with the most 

professional appearance platform (Allan, 2009; Railsback et al., 2011; Shi et al., 

2014). 

NetLogo has a wide range of library models and a built-in graphical interface. 

It has built-in agents and features that facilitate programming process in terms of both 

time and effort, while in the same time it gives the ability to the modelers for adding 

their own functions (Sklar, 2007). NetLogo also has a set of extensions which 

contribute in adding additional features (Macal et al., 2005). NetLogo has many 

applications in several domains such as social science and biology, for both research 

and education purposes, in which it introduces the capability to simulate the complex 

system (Chiacchio et al., 2014; Macal et al., 2010). However, it has some limitations 
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such as the slowness in processing too many numbers of agents and patches, besides 

the fixed square shape for the grid's patches (Railsback et al., 2011).  

Comparing to other most popular ABM platforms, Swarm has an advantage 

that it arranges multiple levels of ABM model's hierarchy and then combines these 

small models in an overall complex ABM model. Even this feature has a good 

application in systems biology; Swarm has remarkable limitations in both of the 

documentation and tutorial materials (Railsback et al., 2006). 

On another hand, Repast is recognized by the ability to customize the behavior 

of the agents and develop the more complex functions. Nevertheless, Repast is more 

complex in modeling several simple behaviors of the agents, such as the reproduction 

and death function. In addition, it lacks the good documentation and the well-defined 

structure (Railsback et al., 2006). 

Mason is also a common ABM platform, which is known as the faster 

alternative of those other toolkits. It has the minimal execution time, which is suitable 

to perform more iteration. However, Mason is the less mature platform (Shi et al., 

2014). 

Flame represents another powerful alternative tool due to the 3D modeling 

ability and the parallelism capability, for which it is suitable for large population 

models (Holcombe et al., 2012). Nevertheless, Flame has some constraints concerning 

the agents' communication and the impacts of the initial distribution on the processing 

efficiency, besides the limited documented examples (Kiran, 2014, 2017). A 

comparison between these different toolkits according to general features is 

summarized in (Table 5.1). 

For this study, NetLogo offers a good platform and features with an acceptable 

execution time for the number of agents that we already have. Even without many 

structure details, NetLogo allows studying the agents' behaviors with a 2D 

representation of the cells. Through this environment, we can observe the dynamics 

over time and space for the set of agents working at the same time, executing their 

rules, and emerging the macro-level system behavior as a result of the micro-level 

behaviors and interactions. 
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Table  5.1. A comparison between ABM platforms according to general features. Reproduced 
from (Abar et al., 2017; Berryman, 2008; Madey, 2009; Railsback et al., 2006; Tisue et al., 
2004) 

Feature  NetLogo  FLAME  Repast  SWARM  MASON  

Open-source  Yes  Yes  Yes  Yes  Yes  

Programming 

Language  

Logo-variant  C  C++ or Java  Objective-C or 

Java  

Java  

Built-in agents  Yes  NO  NO  NO  NO  

Easy to use GUI  Yes  Needs to 

integrate tool  

Yes  Yes  Yes  

Modeling 

Strength/scalability  

Medium ~ 

large scale  

High/Large 

scale  

High/Large 

scale  

Extreme-scale  Medium ~ 

Large scale  

Representation  2D/ 3D  2D/ 3D  2D/ 3D  2D/ 3D  2D/ 3D  

Modeling effort  Medium/easy  Complex/Hard  Complex/Hard  Complex/Hard  Complex/Hard  

 

 

5.1.2. The Agents in the Model 

The three sub-systems that compose the BJI are represented through main 

cells which have initial roles in BJI development. The bone is modeled through the 

cells (osteoblasts, osteoclasts, osteocytes) and signals (RANK/RANKL/OPG 

signaling system), which are mainly involved in the bone remodeling process.  

Osteoblasts and osteoclasts were chosen because of their direct function in 

forming and destroying the bone tissue when interacting with bacteria, while 

osteocytes represent the main tissue cells network. The bone-lining cells were not 

included to be represented in this stage of the model since their function is more 

involved in controlling the ECM mineral level and in stimulating with osteocytes the 

bone remodeling process in a specific site. Even other several molecules and 

hormones have effects on increasing or decreasing the bone formation, 

RANK/RANKL/OPG signaling pathway was chosen because it has the most essential 

and direct role on controlling osteoclasts/osteoblasts activity in BMU (Buenzli et al., 

2011; Lemaire et al., 2004; Martin, 2004; Pivonka et al., 2008).  

On the other hand, we considered as the innate immune cells those who play 

the major role in the first stage of infection including signaling cytokines between 
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them. These cells are the phagocytic cells which establish the first line of defense 

against the bacteria and activate other immune cells. The modeled agents and signals 

are macrophages, neutrophils, monocyte-derived macrophages, TNF- α, TGF- β and 

MCP-1 cytokines that mediate the interactions between these cells. 

Although these cytokines are produced by various cell types and have multiple 

roles, here we considered a simple pathway that reflects the interactions between 

cells. Many other cytokines have a role in stimulating the innate immune cells. For 

this proposed model we considered the three mentioned types of cytokines for their 

importance to model the sequence in cell activation. Once the model is validated, 

other cytokines will be investigated. 

This model is studying the important role of the innate immune defense in 

eliminating the bacteria in the first stage of infection when the innate immune cells 

are the only existing immune cells. The adaptive immune response normally is 

initiated 4-7 days after the invasion, for that none of the adaptive immune cells are 

counted here (Charles A Janeway et al., 2001). 

With regard to the selection of the pathogen agent, we represented 

Staphylococcus aureus, which is the most common cause of BJI and the most 

investigated in the literature (Grammatico-Guillon et al., 2012).  

At this stage of the study, we aimed at obtaining a robust feasible model with a 

reliable representation of the system. The model was based on the mentioned agent 

types which are the most relevant to BJI system in the first stage of infection. Once 

the model is validated and the parameters are well calibrated, another important agent 

types and functions will be included such as biofilms and developed ECM.  

The different agents in the model which were implemented in NetLogo and 

the signals between them are represented in (Figure 5.2). 

 

 



  
    60 

 

  

 

Figure  5.2. Schematic of the agents in the BJI model. 

 

 

5.1.3. BJI Logical Model 

The BJI system is modeled by considering the cells as embodies entities 

(agents) that interact with each other on micro-level (cellular and molecular level) and 

spread spatially as populations in the environment. The behaviors of cells were 

modeled embedding several functions and rules. This section describes how the 

biological functions of the agents are kept or simplified to be represented in this 

computational model as agent behaviors, which whole compose the logical model of 

the system. Summaries of agent and signals variables are included in (Table 5.2) and 

(Table 5.3), respectively. 

First, the bone tissue is represented as three types of cell agents surrounded by 

an extracellular matrix (the non-cell agents). The RANK/RANKL/OPG signaling 

system is modeled in a way that RANKL and OPG are released by osteoblasts agents, 

while the osteoclasts react as RANK receptors. The osteoclast agents were modeled to 

perform bone resorption through destroying existing osteocyte agents, after being 
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activated by binding to RANKL. On the other hand, the osteoblast agents were 

modeled to move towards building new osteocyte agents within the cell matrix and to 

control the osteoclast agents' activation through RANKL/OPG signals. While 

RANKL was modeled to increase osteoclasts activation, OPG, in turn, is modeled to 

inhibit this activation by binding to RANKL. In a healthy state, the resorption and 

formation of new osteocytes are balanced. However, this process is modeled to be 

altered during the infection by increasing the RANKL concentration and subsequently 

the osteoclasts activity towards increasing bone destruction. Bone cells were modeled 

to have the following behavior rules and functions. 

Osteocytes.  

1. At the initial state, they are distributed in the bone tissue space taking in the 

account a minimum distance between them forming a network of osteocytes cells 

within the extracellular matrix of bone. 

2. Because of their long lifespan, these cells agents will not go under apoptosis. 

3. Instead, osteocyte population will be decreased by bone resorption phase and 

increased by bone formation phase. 

Osteoclasts.  

1. During initialization, they are distributed depending on their count in one bone 

remodeling unit. 

2. They go through apoptosis when their ages, which are increased by each time 

step, reach the lifespan parameter.  

3. New osteoclasts are reproduced every day depending on their reproduction 

rate parameter. 

4. The osteoclasts have RANK receptors on their surfaces (Roodman, 1999), 

which cause osteoclasts activation through binding to RANKL molecules. 

5. Activated osteoclasts move towards destroying neighboring osteocytes cells. 

Osteoblasts. 

1. Their initial distribution is based on their count in one bone multicellular unit. 

2. When their ages reach their lifespan parameter, they change their status to new 

osteocytes.  
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3. New osteoblasts are reproduced every day depending on their reproduction 

rate parameter. 

4. Osteoblasts agents are considered as the source of releasing RANKL. 

Releasing RANKL is depending on both the production rate parameter and the 

existence of the bacteria. RANKL modeled to bind to RANK and activate 

osteoclasts. 

5. OPG molecules are also released by osteoblasts agents using their 

reproduction rate and modeled to bind to RANKL in order to inhibit osteoclasts 

activation.  

6. Osteoblasts agents migrate toward forming new osteocytes, after searching for 

a place where no osteocyte occupies a nearby location to maintain a minimum 

distance between two osteocytes (Repp et al., 2017).  

 

 

Table  5.2. List of the agents in the bone and joint infections agent-based model, their rules, 
and behaviors. 

Agent type Agent 

Parameters 

Agent’ rules in bond and joint infections ABM 

Bacteria Inoculum size 
Reproduction rate 

Increase rapidly and spread spatially to invade the bone tissue, stimulate 
releasing RANKL and activating OC, stimulate immune defense and 
engulfed by them, stimulate OB death 

Neutrophils 

(PMN) 

Count, Lifespan 
Reproduction rate 

Undergo reproduction and death function, recruited due to the presence of 
bacteria and try to ingest them, recruit MDM 

Macrophage

s 

(MA) 

Count, Lifespan 
Reproduction rate 

Undertake reproduction and death function, stimulated by the presence of 
bacteria and attack them, regulate macrophages and MDM recruitment 
through TGF-beta, stimulating neutrophils 

Monocytes 

(MDM) 

Count, Lifespan 
Reproduction rate 

Undergo reproduction and death function, stimulated by the presence of 
bacteria, PMN, and MA after T hours, phagocytosis the bacteria, release 
TGF-beta to regulate macrophages and MDM recruitment  

Osteoblasts 

(OB) 

Count, Lifespan 
Reproduction rate 

Go through reproduction and death cycle, spatial localization, releasing 
RANKL and OPG, take a role in bone remodeling process: form new 
osteocytes 

Osteoclasts 

(OC) 

Count, Lifespan 
Reproduction rate 

Go through reproduction and death cycle, spatial localization, bind with 
RANKL to be activated, take a role in bone remodeling process: destroying 
osteocytes 

Osteocytes 

(OS) 

Count, percentage  
 

Form bone osteocytes cells network with respecting the minimum distance 
between them, derived from mature osteoblasts, destroyed by active 
osteoclasts 

TGF-β: Transforming growth factor beta, RANKL: Receptor activator of nuclear factor kappa-Β ligand, OPG: 

Osteoprotegerin.  
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Second, the innate immune cells were modeled to respond to the presence of 

bacteria on sequence according to the biological events that were described in chapter 

2. This sequence is modeled on two steps. First, the macrophage and neutrophil 

agents, which are created at the initialization of the model, are modeled to react 

directly against the bacteria and phagocytose them. In addition, their stimulation is 

increased by the proliferating of bacteria and regulated by the tumor necrosis factor 

alpha TNF-α and transforming growth factor-beta TGF-β cytokines.  

The second step of defense is modeled to take place if both of macrophages 

and neutrophils cells could not succeed in eliminating the bacteria by the first 48 

hours, through recruiting the monocyte-derived macrophages cells to the site of 

infection. The MDM cells were modeled to be stimulated by the Monocyte 

chemoattractant protein-1 (MCP-1) cytokine that is released by neutrophil agents. 

MDM population is also regulated by the TGF- β signal through a positive feedback 

loop. The functions and rules behind the innate immune cells' work follow. 

Macrophages 

1. At initialization, macrophages agents are distributed randomly in the model 

space depending on their initial number, and they are stimulated by the presence 

of the bacteria. 

2. Macrophages go through apoptosis depending on their lifespan parameter, 

while their ages increase at each time step. 

3. New macrophages are reproduced depending on their production rate. The 

reproduction process follows the uniform distribution function in which the 

probability of reproducing new macrophages in an one time interval is the same 

for the whole reproduction time. 

4. The macrophages agents move around the space and are attracted to the 

presence of bacteria to phagocytosis them. When one macrophage engulfs a 

bacterial agent, it dies. 

5. The macrophages reproduce TGF-β cytokine that has a double role. They 

decrease the reproduction of macrophages through a negative feedback loop, 

while on the second hand, they increase the monocyte production. 
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6. The macrophages also increase the inflammation by releasing the TNF-α 

cytokine as an associated variable that used to interact with neutrophils agents to 

increase their recruitments. 

Neutrophils 

1. Neutrophils agents are created with the initialization of the model and 

randomly distributed in the modeled area with an initial concentration. 

2. Neutrophils go during their life cycle by increasing their age and then 

apoptosis which determined by the lifespan parameter. 

3. New neutrophils agents are reproduced each day depending on their 

reproduction rate. Agents' reproduction is also equally distributed over the time of 

reproduction. 

4. Neutrophils agents follow a random walk towards phagocytosis the bacteria. 

They die after engulfing the bacteria. 

5. They are stimulated by the presence of bacteria and by the pro-inflammatory 

cytokine TNF-α that are released by the macrophages. In addition, they are 

considered as the source of MCP-1, through which the monocytes are recruited. 

Monocyte-Derived Macrophages (MDM) 

1. They are recruited to the site 48 hours post the bacterial invasion, stimulated 

by macrophages and neutrophils through MCP-1 and TGF-β cytokines. 

2. They have a life cycle that goes through increasing the age and ends by the 

apoptosis depending on the lifespan parameter (Ginhoux et al., 2014; Italiani et 

al., 2014; Whitelaw et al., 1966). 

3. Each day, new MDM agents are modeled to reproduce following the uniform 

distribution function. 

4. They move randomly over the area towards phagocytosis bacteria, and they 

die after doing their mission. 

5. They also release TGF-β cytokines and regulated by them through a positive 

feedback loop. 
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Table  5.3. List of mediators and their effects that are represented in BJI model. 

Mediator 

Variable 

Mediator 

Parameter  

Source  Role in BJI agent-based model 

RANKL Concentration  Osteoblasts  Diffusion, activate osteoclasts by binding to them 
or inhibit their activation by binding with OPG 

OPG Concentration Osteoblasts Diffusion, bind with RANKL to inhibit activating 
osteoclasts 

TGF-beta 

 

Concentration Macrophages 
Monocytes 

Released by both monocyte and macrophages to 
increase monocytes recruitment and decrease 
macrophage recruitment 

MCP-1 

 

Concentration 
 

Neutrophils 
 

Released by neutrophils to stimulate monocytes 
recruitment 

TNF-alpha Concentration Macrophages Released by macrophages to enlist neutrophils to 
the site 

TGF-β: Transforming growth factor beta, RANKL: Receptor activator of nuclear factor kappa-Β ligand, OPG: 

Osteoprotegerin, MCP-1: Monocyte chemoattractant protein-1, TNF-α: Tumor necrosis factor alpha 

 

 

Third, the bacteria in the model are affected by several factors; some of them 

are related to the bacteria themselves, such as the concentration which is represented 

by the initial inoculum size, and the reproduction rate. The other types of factors are 

those related to the strength of immune cells defense and their ability to eliminate the 

bacteria. In their turn, the bacteria dynamics affect the bone tissue health represented 

by decreasing the number of osteocytes or ECM agents. The modeled bacterial 

behaviors rules follow. 

Bacteria 

1. Bacteria agents are randomly distributed depending on their initial inoculum 

number. 

2. Their life cycle goes first through the growing phase or reproduction phase, 

which follows the binary fission of bacteria. The distribution of reproduction 

modeled to follow the normal distribution function. At the time of reproduction, 

the agents that have to divide search for an empty place around it, otherwise, they 

will not divide. 

3. The bacteria spread and move towards invading the bone tissue. 

4. The bacteria go through death rate which symbolizes the run out of their 

resources for survival. 

5. The existence of bacteria stimulates the immune cells to react against the 

invasion starting by macrophages and neutrophils agents. 
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6. The bacteria are modeled to work on destroying and weaken the bone tissue 

by increasing the release of RANKL and thereby increasing osteoclasts activity. 

They also increase the osteoblasts apoptosis. 

An overall schematic of the agents, their functions and interactions, and the 

signals mechanisms included in the BJI model can be seen in (Figure 5.3). 

 

 

 

 

Figure  5.3. Schematic diagram showing agents used in the model, interactions between them, 
and governing functions for each of them. The oval shapes represent cell agents; hexagons 

represent signals in the model. The rectangle boxes represent the main functions and roles of 
each agent. A solid arrow indicates the flow of agent functions, a dotted arrow characterizes 

stimulation from source to target (destination), while a double lined arrow reflects the 
opposite effect (source leads to reduce the destination object). 
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Figure  5.4. A flowchart of the main body of the ABM code. 
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Figure  5.5. Logical flowcharts of the code run by the osteoclasts agents. 
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Figure  5.6. Logical flowcharts of the code run by the osteoblasts agents. 
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Figure  5.7. Logical flowcharts of the code run by the bacteria agents. 
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Figure  5.8. Logical flowcharts of the code run by the macrophage agents. 
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Figure  5.9. Logical flowcharts of the code run by the neutrophil agents. 
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Figure  5.10. Logical flowcharts of the code run by the monocyte agents. 
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5.1.4. Model Implementation in NetLogo and Parameters Identification 

The (Figure 5.11) shows the overall architecture of the BJI model 

implemented in NetLogo involves the representation of the 2-dimensional section of 

bone tissue and the adjacent section. Parameter values that used in the model and their 

applicable ranges that were identified from the literature are given in (Table 5.4). The 

simulator enables visualizing the location of the different agents in the model, the 

osteocyte density, the immune cells distribution, the damage occurs in bone tissue, the 

spreading of bacteria, and the spatial diffusion of RANK and OPG signals. In 

addition, it supports time-course plots of the cells and signals in the model to display 

their dynamics. It provides a user-friendly interface that facilitates the system 

simulation under different initial conditions using sliders that enable changing the 

value of parameters in order to test several hypotheses 

Time Step 

Given that the growth of bacteria could happen within hours, and the 

reproduction and apoptosis of the immune cells can vary between hours to days, we 

assume that each tick (the virtual time in NetLogo) is equal to one hour of real time. 

Projections 

The spatial domain of the BJI model is a discrete space of 2D grid of overall 

dimension 151×101 patch (patch is the NetLogo grid unit). We considered the grid as 

two adjacent surfaces: the bone tissue on the right, where each bone cell is mapped to 

a patch on the grid composing together the osteocytes cells network and the bone 

remodeling cells. This space has a dimension of 2 mm2 (101×101 patches). The left 

space is the adjacent tissue where the bacteria start from and spread towards the bone 

tissue. The dimension of this space is 50×101 patches. 
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Figure  5.11. Snapshot BJI model interface using NetLogo platform. The projection shows the 
bone tissue cells (right space), and the adjacent tissue (left space). The sliders enable adjusting 

parameter ranges. The output time course represents the different agents' dynamics. 

 

 

Bone Tissue  

The two-dimensional cell layer of bone tissue structured as a network of 

osteocytes cells and a set of osteoclasts and osteoblasts cells that all are distributed 

randomly and surrounded by the extracellular matrix (non-cell agents). The random 

distribution of the bone cells respects the allocation conditions. These conditions 

include representing each cell type according to its percentage in the surface unit and 

having a minimum distance between two osteocytes, which is represented by one 

patch. The osteocytes are represented by patches on the grid (the non-mobile agent in 

NetLogo). Each osteocyte occupies a place where there is no another osteocyte in the 

eight surrounding neighbors. 

We assumed that this area of bone tissue contains one active bone 

multicellular unit (BMU) represented by osteoclasts and osteoblasts cells, the 

responsible for bone destruction and formation phases. Both types are also 

represented as patches in the model, and they change their location to execute their 

functions. 
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The initial number of osteoclasts and osteoblasts is corresponding to their 

count in one BMU. They are defined from the literature to be 5–20 osteoclasts and 

800–2000 osteoblasts per BMU (Table 5.4) (Florencio-Silva et al., 2015; Komarova et 

al., 2003; Liò et al., 2012; Paoletti et al., 2012a; Ryser et al., 2009). 

The age variable of each of osteoclasts and osteoblasts agents increases with 

each time step until reaching their lifespan value. While aged osteoclasts undergo 

apoptosis, the aged osteoblasts change their status to new osteocytes. The lifespan 

parameter of each cell type was identified from the literature as ~2 weeks for 

osteoclasts, and ~3 months for osteocytes (Manolagas, 2000). The lifespan of 

osteoblasts is affected by the bacteria in the direction of increasing their apoptosis. On 

the other hand, the lifespan of the osteocytes determines by the resorption and 

formation activities of osteoclasts and osteoblasts cells (Dallas et al., 2013). During 

the simulation, new osteocytes originate from active or mature osteoblasts and are 

destroyed by active osteoclasts. 

New osteoclasts and osteoblasts cells are created in the site each day 

depending on their reproduction rate which also was taken from the mathematical 

model of Ryser and Komarova (Ryser et al., 2009). The reproduction rate for 

osteoclasts is identified as 3 cells per day, and for osteoblasts as 4 cells per day. 

The osteoblasts cells are the source of releasing RANKL and OPG signals that 

are responsible for mediating the bone formation and resorption. This function is 

accomplished using the "sprout" function in NetLogo. Both of RANKL and OPG are 

represented in the model as mobile agents. We assumed that RANK is located on the 

surface of osteoclasts, so they are not modeled as separate agents. Instead, the 

osteoclasts act as receptors of RANKL, and the osteoclasts activation occurs when 

collisions are detected between osteoclasts agents and RANKL signals. When an 

osteoclast is activated, it searches for a neighbor osteocyte and moves towards 

destroying it. When one osteocyte is destroyed, it changes its state to "empty" state. 

The osteoblasts cells in their turn change their location randomly searching for an 

empty place with no osteocytes around it and fill it by forming a new osteocyte. The 

osteocytes are also destroyed by the bacteria, which attack the tissue and spread 

through it.  
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The OPG molecules are in competition to bind to RANKL in order to inhibit 

activating the osteoclasts. While this process is balanced in the healthy condition, the 

bacteria alter this balance by increasing RANKL releasing and therefore osteoclasts 

activity and bone destruction. RANKL and OPG production parameters are defined 

from the literature as 10-6 mol/cell/day and 3.10-6 mol/cell/day respectively, which is 

equal to 1 µmol/cell/day and 3 µmol/cell/day (Table 5.4) (Ryser et al., 2009). We 

assumed in the model that each RANKL and OPG agent released by an osteoblast is 

representing 1µmol of concentration. 

Innate Immune Cells  

The innate immune cells in the model were represented as mobile agents 

(turtles) in NetLogo. At initialization, the macrophages and neutrophils agents are 

distributed randomly in the modeling space according to their initial condition. To my 

knowledge, information about the count of innate immune cells at steady state in bone 

tissue is not available in the literature, so we estimated these numbers from studies on 

lung tissue. The initial number of macrophages is estimated to have a value between 

20–100 cells per mm2 (Table 5.4). Since we have a surface of 2 mm2 in the model, this 

range becomes 40–200 macrophages (Wallace et al., 1993). The initial number of 

neutrophils was also estimated from lung tissue and inflammatory response studies to 

have a value between 70–150 cell/mm2 (150–300 neutrophils in the model) 

(Akbarshahi et al., 2012; Schirm et al., 2016; Wang et al., 2005). Regarding the 

monocytes cells, they do not exist during the initialization. Instead, they are recruited 

to the site after 48 hours of the infection by the stimulation of macrophages and 

neutrophils. 

During their life cycle, each of modeled immune cells searches for the bacteria 

to engulf it. When a collision between an immune cell and a bacterium is detected, the 

phagocytosis is accrued. These cells go through apoptosis when they reach their 

lifespan value. Each cell's agent has age variable that increases with each time step 

during the simulation. The lifespan for the three cells types was defined from the 

literature review (Table 5.4). The lifespan of each type was identified as following: 1–

2 weeks for macrophages, 5 days for neutrophils, and 4–5 days for monocytes 

(Bekkering, 2013; Ginhoux et al., 2014; Italiani et al., 2014; Parwaresch et al., 1984; 

Patel et al., 2017; Rankin, 2010; Whitelaw et al., 1966). 
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While the aged immune cells die, new cells are created each day according to 

the reproduction rate parameter for each type of cells. The production rate of each of 

these cells was estimated using the method used in the mathematical model of Smith 

et al. (Smith et al., 2011b). We assumed that the steady state N is given by N= s/d, 

where s is the production rate of cells per day and d is the clearance rate per day. The 

clearance rate of macrophages, which is taken from their identified lifespan, is in the 

range d = 7–14 ×10-2 day-1, implying s = 28–115 cell/day, for a steady state 200–800 

cell/mm3 (Wallace et al., 1993). In the same way, the production rate for each of 

neutrophils and monocytes was estimated for steady values taken from an animal 

model of bone infections (Corrado et al., 2016). The production rate of neutrophils 

was calculated as 120–700 cell/day for steady state 250–700 cell/mm3 and d = 0.2–1 

day-1. When the monocytes are activated, they will reproduce in a rate of 4–70 

cell/day that estimated for d = 0.2–1 day-1 and steady state 20–70 cell/mm3.  

The immune cells use signals or cytokines for intercellular communication to 

regulate the cells recruitments. MCP-1 and TNF-α cytokines were represented as 

associated variables of the source cells that release them using the "diffuse" function 

in NetLogo, while TGF-β was modeled as mobile agents released by the monocytes 

and macrophages cells to regulate their activities through feedback loops. The 

concentration value of these cytokines was investigated in the literature in several 

conditions. For instance, TNF-α take value as 0–1000 pg/ml, MCP-1 as 0–2000 pg/ml 

in Corrado model (Corrado et al., 2016), and TGF- β has a value of 150–500 pg/ml in 

(Knapp et al., 1998). In our model, and for simplifying the releasing value of these 

cytokines was assumed to be 1×10-3 pg per the source cell per day. 

Bacteria 

The bacteria are modeled as mobile agents (turtle in NetLogo), each of them 

occupies one patch on the grid. The initial inoculum size could be chosen from a 

range of values (0–500 CFU/mm2). Having this range enables testing several 

hypotheses for different bacteria inoculums to see their effects on the system 

dynamics, in addition to test the efficiency of the immune cells to eliminate the 

different bacteria population. At initializing the simulation, the initial bacterial agents 

are modeled to distribute randomly in the adjacent tissue or space, which is 
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represented by the left model space of size 50×101 patches, and then they spread 

towards the bone tissue. 

The bacteria reduplicate when reaching their generation time, following the 

binary fission function. Their age variable increases during the simulation with each 

time step. When a bacterium reaches the generation time, it searches for the non-

bacterial neighbor patch in the grid to propagate; otherwise it will not divide. The 

generation time of bacteria differs in the controlled culture from it in the human body. 

This time is difficult to be determined in the human body because of the different 

factors that have impacts on the bacterial growth in the infected bone such as the 

location, vascularization, pH, nutrition, and type of prosthesis, if exist. The bacteria 

characteristics, such as SCV, also have an impact on the growth rate towards 

decreasing it (Bui et al., 2015). The generation time in the model was identified by the 

range of 1-24 hours to cover several proposed values (Anwar et al., 2007b; Fux et al., 

2005). 

The existence of bacteria activates and stimulates several activities in the 

model, the immune response on one side, and the bone destruction on the other side. 

The factors that impact the bacteria growth represented as decline parameter taking a 

value in the range (0–20%) per day. 

In addition, since we don't have information about the bacteria count in 

human, we took some knowledge about the count range from the animal models. In 

the study of C.Jacqueline (Gaudin et al., 2011a), the count of bacteria could rise to 

107
–108 CFU/g of bone (~1.85×104

–105 CFU/mm3). For simplifying reason, and 

because we are using the 2D representation, we considered this value in the mm2 unit. 

Even though the inoculum size of bacteria in the animal model should be high to start 

an infection, this inoculum is much smaller in human (Mader, 1985). To give the 

initial number of bacteria a domain to divide and proliferate, we assumed that the 

inoculum range between 5–500 CFU, so it can reach the count of power 104 in some 

hours (that depends on the reproduction rate and the immune defense).  
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Table  5.4. Table of agent's parameters, their range of applicable values, the references, the 
corresponding ranges used in the model, the step size of each range slider, and the values used 
in the simulation for each parameter. 

Parameter 
Summery Range 

In literature 
Range in the model Step size Simulation value 

Bacteria production-rate 1-24 hour [1-24] hour 1 hour 12 hours 

Bacteria inoculum size 0-500 CFU/mm3 [0-500] CFU/mm2 10 CFU/mm2 5, 50, 500 CFU 

Osteocytes initial number 500-900 cell/mm2 1500-2000 cells  1790 cells 

Osteoblasts production-rate 4 cell/day [1-10] cell/day 1 cell/day 4 cell/day 

Osteoblasts lifespan  3 months [10-90] day 5 days 50 days 

Osteoblasts initial number 800-2000 cell/BMU 800-200 cells — 1000 cells 

Osteoclasts production-rate 3 cell/day [1-5] cell/day 1 cell/day 3 cell/day 

Osteoclasts lifespan  ~ 2 weeks [1-14] day 1 day 7 days 

Osteoclasts initial number 5 - 20 cell/BMU 5-20 cells — 8 cells 

RANKL concentration 10-6 mol/cell/day 1 µmol/cell/day 1 µmol/cell/day 1 µmol/cell/day 

OPG concentration 3.10-6 mol/cell/day 3 µmol/cell/day 1 µmol/cell/day 3 µmol/cell/day 

TGF-β concentration 150-500 pg/ml 1×10-3 pg/cell/day — 1×10-3 pg/cell/day 

TNF-α concentration 0-1000 pg/ml 1×10-3 pg/cell/day — 1×10-3 pg/cell/day 

MCP-1 concentration 0-2000 pg/ml 1×10-3 pg/cell/day — 1×10-3 pg/cell/day 

Neutrophil initial number 70–150 cell/mm2 250 cell — 250 cell 

Neutrophil production-rate See text [120–700] cell/hour 50 cells 550 cell/day 

Neutrophil lifespan tissue 24 - 120 hours [24 – 120] hour 6 hours 60 hours 

Monocyte lifespan 24 -120 hour [24-120] hour 5 hours 60 hours 

Monocyte reproduction rate See text [4–70 ] cell/day 50 cell/day 150 cell/day 

Macrophage initial number 20–100 cell/mm2 100 cell — 100 cell 

Macrophage lifespan 1-14 days [24-300] hours 6 hours 24 hours 

Macrophage reproduction rate See text [28–115] cell/day 10 cell/day 550 cell/day 
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5.1.5. Process Review and Event Series 

The model algorithm starts with an initial state, and then it is followed by a set 

of rules and functions (described in 5.1.3) that are repeated up to the end of simulation 

either by eliminating the bacteria or reaching the determined simulation time. 

Set-up: Initiating all model variables and set all parameters to their initial value, 

• creating the basic grid of (151×101) square patches, 

• initiating the bone cells patches according to their percentage of bone cells 

count and allocate them randomly respecting the allocation conditions, 

• creating a number of macrophages and neutrophils agents corresponds to their 

initial value, and distributing them randomly, 

• creating a number of bacteria agents resembles their chosen initial value and 

allocate each cell to one patch on the left part of the grid randomly, 

• and set hour = 1. 

Moving: The agents update their location and move upon their functions, 

• the bacteria move towards invading the bone tissue, 

• the immune cells move towards engulfing the bacteria, 

• and the osteoclasts and osteoblasts update their location towards resorbing and 

forming new osteocytes. 

Life cycle: The population and distribution of each type of agent are calculated at each 

time step, 

• if some agents reach their lifespan, they undergo apoptosis, otherwise increase 

the age. 

• If it is the time to reproduce, new agents are created upon their reproduction 

rate and allocation conditions, 

• During their life, each type of agents performs its rules and functions that 

described in 5.1.3. 

Saving data: At each time step, the population of a defined set of agents was saved to 

".csv" file. These output files are identified by the initial conditions of the simulation. 

Multiple runs of the same simulation are saved to the same output file in order to 

analyze the model outcomes for the same initial conditions. 

Update the view: The progress of the infection over time and space during the 

simulation is shown in the simulator interface (Figure 5.12).  
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Output plots: We can monitor the changes in the agents’ counts through time courses 

graph for each type of agent in the NetLogo interface; these populations are 

summarized in (Table 5.5).  

The code used for saving the data of the model output follows. 

 

 

//In Set-up function creates and identifies the file 

Let file (word "Model" bacteria-initial-num "-Rate" bacteria-reproduction-rate ".csv") 

  if is-string? file [ 

 file-open file] 

// In Run function call the write-to-file function in each time step 

write-to-file 

// The writ-to-file function where the population of set of agents is saved 

to write-to-file 

  ifelse  (ticks <simulation time)[ 

  file-print ( word ticks ","  Bacteria-population "," PMN-population "," Osteocytes-population )  ] 

  [  file-print ( word ticks "," "NA," "NA," "NA"  )  

 ] 

  file-flush 

end 

Code Snippet 1: Saving the data to .CSV file in NetLogo 

 

 

Table  5.5. List of the observed variables through the BJI model time courses 

Observed variable changes 

1) Bacteria population 

2) Immune cells’ population 

a. Neutrophils’ population 

b. Macrophages’ population 

c. Monocyte-derived-macrophage 

population 

3) Bone cells’ population 

a. Osteocytes’ population 

b. Osteoblasts’ population 

c. Osteoclasts’ population 

4) Bone remodeling mediators 

a. RANKL concentration 

b. OPG concentration 
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5.2. Simulation Design 

The goal of the simulation is to illustrate the relationships between the 

variation in bone cells' populations and the evolution of the infectious process. The 

goal is also to investigate the efficiency of the innate immune system in defending the 

bacteria during the first stage of BJI. Moreover, the simulation is designed to 

experience several scenarios of the system progress without treatment intervention 

and to detect the impact of several parameters on the dynamics of the system.  

To investigate the effect of bacteria initial concentration on the system 

dynamics, the initial inoculum of bacteria was adjusted to three different values (5, 

5×10, 5×102 CFU/mm2). These values were assumed to represent three different 

infected states, low (5 CFU/mm2), medium (5×10 CFU/mm2), and high (5×102 

CFU/mm2). The values of the other parameters in the model for this simulation were 

set to their given value in (Table 5.4). As we mentioned before, the virtual time in the 

platform was assumed as 1 tick = 1 hour of real time.  

We verified the model reliability and performance by running the simulation 

several iterations under the same initial conditions and examined how much the model 

responses varied. We ran the simulation (n= 100) iterations for each value of bacteria 

initial inoculum size (5, 5×10, 5×102 CFU/mm2) and for time duration of 300 hours (t 

= 300 ticks). For each iteration and at each time click (one hour), the dynamics of the 

population of each of bacteria, osteocyte, and neutrophil agents was tracked and saved 

to an output data file (.csv). Subsequently, the mean and standard deviation (SD) for 

the population at each time step and for each type of these agents was quantified and 

used to analyze the system response for these agents. The osteocyte population will 

express the bone density since any increase or decrease in bone remodeling process 

activity in responding to the infection will be reflected on the osteocyte population 

along with ECM density. 

Further, the relation between two agents over time under the same initial 

conditions for each of bacteria and neutrophil populations, bacteria and osteocyte 

populations, and neutrophil and osteocyte populations was analyzed using 3D surface 

graphs. 
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5.3. Results 

5.3.1. The Developed Agent-Based Model of BJI 

In the (Figure 5.12), snapshots of the model were taken at different times 

during a single simulation. (A) At t = 0: represents the initial state of the model, where 

the bacteria (yellow circles) is randomly distributed in the adjacent surface, the left 

rectangle, with low presence of immune cells macrophages (red circles) and 

neutrophils (violet circles). The right rectangle represents 2 mm2 of bone tissue where 

the bone cells, osteoblasts (magenta square patches), osteoclasts (blue square patches) 

and osteocytes (gray square patches), are randomly allocated respecting their 

percentage and allocation condition. 

 

 

Figure  5.12. Snapshots of the ABM space at three different time steps for inoculum infection 
state of (5×102 CFU/mm2). The left rectangle in each sub-figure represents bacteria 
population, and the right rectangle represents 2 mm2 of bone tissue where the cells, 

osteoclasts, osteoblasts, and osteocytes are randomly allocated respecting their percentage and 
the minimum distance between osteocyte agents. (A) Shows the initial state of the model at t= 

0 h, where the bacteria are randomly distributed in the adjacent surface, the left rectangle, 
with low presence of immune cells especially macrophages. (B) Shows the state at time t= 60 
h, where the bacteria entered the bone tissue and started destroying it. (C) Shows the model 

state at t= 150 h, where the damage happens to the bone tissue, the black patches within bone 
tissue reflect this destruction, while at the same time the bacteria count was decreased because 

of engulfing by immune cells.  
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(B) At t = 60: shows the state after two and a half days, where the bacteria 

have already entered the bone tissue and started destroying it. The monocytes (white 

square) also have been activated in this step besides the other immune cells. 

(C) At t = 150: shows the model state after 6 days, where the damage happens 

to the bone tissue. The black patches within bone tissue reflect this destruction. While 

at the same time the bacteria count was decreased because of the engulfing by the 

immune cells. 

The implemented ABM model is qualitatively representing several aspects of 

bone and joint infections evolution dynamics, such as the impact of bacteria 

proliferation on the bone cells in the site, and the induction and activation of several 

innate immune cells, accompany with the stimulation of various cytokines and signal 

that lead to alteration in bone remodeling process.  

 

5.3.2. Simulation Result 

The mean and the standard deviation of the dynamics of the population for 

100 iterations under different infection inoculum states (low, medium, high) revealed 

different behavior for each of bacterial, neutrophil (PMN), and osteocyte population is 

given in (Figure 5.13-5.15).  

The bacterial population inclined towards the same steady non-null counts 

regardless of the inoculum state (Figure 5.13, A-C). In addition, the population 

intensity of the first stage of infection was proportional to inoculum state. It was also 

observed that the behavior of the bacteria varied compared to the mean behavior with 

a small variance magnitude. The bacterial outcomes illustrated rapid variations within 

population behavior represented by the high-frequency oscillation. At the same time, 

it showed a lower frequency fluctuation in the context of the general trend of the 

bacteria population. It was also observed that the bacterial population faced quasi-

extinction, followed by re-growth for the medium and high infection state.  

On the other hand, the PMN dynamics followed the evolution of the bacteria 

with a slight delay, reaching a non-null stable level on the 12th day (Figure 5.14, A-
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C). In addition, it illustrated that PMN population did not subject to rapid variations 

represented by the low-frequency oscillations, which are comparatively smoother than 

those introduced by the bacteria. Asymptotic behavior of PMN population for the 

three-inoculum size seemed to be a non null mean value with fixed frequency 

oscillations and decreasing magnitude with time. 

Concerning the bone tissue loss (Figure 5.15, A-C), the osteocyte population 

dynamics were similar in mean population intensity for the three inoculum states. On 

the other hand, the outcomes of the osteocytes differ from the mean behavior with 

important variance magnitudes whatever the inoculum. The bone cells' population 

predicted a trend of unexpected high-frequency oscillations after t= 200 h.  
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Figure  5.13. The mean and standard deviation (SD) for 100 iterations for bacterial 
populations over time, t= 300 hours, at three different initial inoculum state of bacteria. (A) 

represents the outcomes for low inoculum state (5 CFU/ mm2), (B) the outcomes for medium 
inoculum state (50 CFU/ mm2), and (C) the outcomes for high inoculum state (500 CFU/ 

mm2). 
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Figure  5.14. The mean and standard deviation (SD) for 100 iterations for neutrophil 
populations over time, t= 300 hours, at three different initial inoculum state of bacteria. (A) 

represents the outcomes for low inoculum state (5 CFU/ mm2), (B) the outcomes for medium 
inoculum state (50 CFU/ mm2), and (C) the outcomes for high inoculum state (500 CFU/ 

mm2). 
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Figure  5.15. The mean and standard deviation (SD) for 100 iterations for osteocyte 
populations overtime, t= 300 hours, at three different initial inoculum state of bacteria. (A) 

represents the outcomes for low inoculum state (5 CFU/ mm2), (B) the outcomes for medium 
inoculum state (50 CFU/ mm2), and (C) the outcomes for high inoculum state (500 

CFU/mm2). 
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Figure  5.16. Comparisons of system response for three inoculum infection state of bacteria(5, 
50, 500 CFU/ mm2). (A) System response for bacteria population over time, (B) System 

response for PMN population over time, and (C)System response for osteocyte population 
over time. 
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Comparisons of system response for different inoculum sizes of bacteria over 

time for the same type of agent population suggested that the higher inoculum 

infection state was associated with close to full elimination of bacteria and PMN 

population (Figure 5.16, A-B). It was also associated with the highest population 

counts for both agent types in the first few days of the infection. The results presented 

that bacteria and PMN tended towards a steady asymptotic non-null state, regardless 

of the inoculum infection state. 

As regards to bone tissue damage, the first response stage had a similar 

degradation phase represented by decreasing count of osteocytes for all three-

inoculum size, while the recovery phase that followed was inversely proportional to 

the inoculum, with sub optimum recovery at 300 hours. It was noted that osteocytes 

passed by a common minimum level by the 7th- 8th day for all three-inoculum size, 

representing 2% of the loss in the infected site mass. During the recovery phase, it 

was observed that the smallest infection state caused more severe and relatively stable 

loss on bone cells by the 12th day, the medium infection state showed better 

progressive recovery, and the high infection state displayed an intermediate recovery. 

The displayed loss of bone tissue compared to baseline for each inoculum size was 

1.4%, 1.2% and 1%, respectively.  

The 3D representation of the relation between two types of agents over time 

suggested minimum levels of bacteria and PMN population count around the fourth 

day of infection, while it suggested a delay in minimum levels of population in 

osteocytes count, with regard to the minimum levels of bacteria and PMN (Figure 

5.17-5.19).  
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Figure  5.17. 3D surface graphs to analyze the relationship between the bacteria vs. 
neutrophils (PMN) over time at three inoculum infection state of bacteria (5, 50, 500 

(CFU/mm2)). 
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Figure  5.18. 3D surface graphs to analyze the relationship between the bacteria vs. osteocytes 
(OS) over time at three inoculum infection state of bacteria (5, 50 500 (CFU/mm2)). 
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Figure  5.19. 3D surface graphs to analyze the relationship between the neutrophils (PMN) vs. 
osteocytes (OS)over time at three inoculum infection state of bacteria (5, 50,500 (CFU/mm2)). 
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5.4. Discussion 

By integrating the ABM modeling technique along with the experimental 

knowledge from the literature review, this study introduces an innovative in-silico 

experimental environment to explore the BJI dynamics qualitatively and 

comprehensively. The interactions between the agents and signals provide an 

exhaustive ability to analyze the system considering the spatial characteristics and the 

inter-agent variability. The developed model offers a means to test the impact of 

several factors on the infected tissue. Through this model, this study illustrated the 

role of initial bacterial concentration and host defense state as important factors that 

identify the consequences of bacterial invasion to the bone.  

The outcomes of the simulation proposed several observations that could be 

used to explain different infection cases. For "realistic" inoculum ranges in human, on 

the 12th day, the observed bacterial population for the inoculum of the order of 100 

was stable, and not extinct, which could be considered as an indication for the latent 

infection. Since the PMN populations followed, in the same manner, the bacteria 

populations but in a slight delay to reach the stable non-null levels at the 12th day, it 

could also be used as a pointer to the latent infection. If so, it should be validated in 

terms of PMN count in the biological laboratory test.  

In addition, the outcomes of the osteocyte populations that revealed an inverse 

proportional relationship between the osteocyte population and the bacteria inoculum 

size raise the question of whether it refers to a restitutio ad integrum state.  

Further, it was notable that the bacterial population during the three bacteria 

inoculum states could not be completely eliminated by the innate immune cells, but it 

remained at stable levels. This behavior shows the imperative role of further defense 

methods: the adaptive immune response and the therapeutic intervention. 

In the term of population fluctuations (intra-simulation), the observed small 

variance within the bacterial population dynamics highlighted their stable behavior 

even with the rapid, strong oscillation, which the latter could be an artifact of the time 

characteristic. The fluctuations observed in PMN population had a less important 

effect compared to the inoculums state, which reflects a spatial impact. In fact, the 
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greater the probability that a PMN encountered a bacterium, the more likely it would 

have reacted, which ultimately reduced the fluctuations. 

On the other hand, the predicted high-frequency oscillating trend of the 

osteocyte population after t = 200 h was unexpected. It was expected to display a 

rapid decreasing phase, and then a slower increasing phase. This considerable 

fluctuations in osteocyte population appeared interesting as it could partially explain 

the inter-individual variability. Further, these fluctuations increased in intensity over 

time, raising the question if it could be explained as a pre-chaotic behavior "positive 

feedback". It was also noted that the PMN and the bacteria populations reach their 

minimum level simultaneously before rising again. This weakness in the innate 

immune response could provide a best possible window to start the therapeutic 

treatment. 

From another point of view, the model showed the ability to reproduce the 

infection with resulting patterns of system behavior that are close to what is observed 

clinically and microbiologically (Wagner et al., 2003). It has also shown its predictive 

ability for the evolution of bone mass with respect to the bacterial inoculum size and 

time. 

Despite the model features, several limitations emerged during the work and 

need to be enhanced. The first limitation is the model validation due to the lack of 

experimental data, which might be acquired at a later stage (e.g., the bone mass). 

Actually, the available patient data are the blood count and the images which are far 

for been used in validating this model. 

The 2D representation represents a limitation with regards to the ability of 

agents to interact in 3D space. However, we adopted the simplicity in building this 

first model aiming at developing a feasible modeling framework and understanding 

the complex integration of available physiological data with the ABM modeling 

framework. For future work, other ABM platforms aimed to be discovered in order to 

choose the best one for the 3D implementation of bone tissue architecture including 

the ECM. We aimed at enhancing the model by a more realistic architecture using 

patient-specific data. 
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The current model did not take in the account the second stage of the immune 

response, the adaptive immune response, which is necessary to investigate further 

progression of the infection. The current model also lacks of presenting the bacteria 

biofilms, which play an important role in identifying the behavior of the bacteria 

themselves and the system response due to their resistance to immune defense and 

antibiotic agents. Since biofilms are important in S. aureus pathogenesis during BJI, it 

is worthwhile to model them in the future. Other agents including implants and 

bacterial survival factors have a significant contribution in introducing an additional 

approximation to mimic the real system, which aimed at being integrated in the 

future. This work highlights the progression of the simulation environment that 

generates data which would be used in the extraction and synthesis of the model in the 

form of dynamical systems.   
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CHAPTER  

6. Analyzing BJI Model Simulation 

Output Data Using System Dynamics 

Approach 

 

Analyzing the model output is an essential part of the modeling process to 

describe, explore, and predict the model outcomes. The BJI model simulations result 

in different patterns of cell population changes for different initial conditions. Since 

one simulation is not enough to study properly and rigorously the model, many 

simulations are needed with a lot of key parameters testing. Therefore, so many 

simulation data cannot be analyzed easily by a human. There is a need for some 

information extraction techniques that summarize the overall model through its 

simulations. Differential equations (DEs) are a possibility that allows both numerical 

solution and structural analysis for a qualitative investigation of the system.  

In this study, we modeled a complex system with a meta-analysis-like 

approach, by which we characterized the model's agents and quantified its parameters. 

Then, we ran several simulations with a variety of parameters values and tried to 

summarize this complex system with the most possible compact and useful 

representation, here the differential equations. This chapter explains the method used 

to analyze the BJI model simulation data using nonlinear differential equations and 

the obtained results. 
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6.1. System Dynamics Approach 

We relied on the system dynamics approach and data-driven methodology to 

model the BJI model simulation output data with nonlinear, polynomial differential 

equations. We extracted the nonlinear DE system from data rather than testing 

predefined models against data. We identified the DE models that fit the agent's 

dynamics time series data and include interactions terms of these variables. We used 

the method and the developed R package proposed by Ranganathan and colleagues, 

namely Bayesian Dynamical Systems Modeling " bdynsys" (Ranganathan et al., 

2014a). The Bayesian framework is used in this method to identify the shape of the 

systems and to select the best fit model among other plausible models that have a 

different number of terms.   

We used models that identify relationships in cell population level to 

understand the data patterns that emerged from bottom level interactions (cells and 

signals) in order to answer questions about the causes of the infection progression and 

identify potential relationships between the components. This method uses the 

nonlinear polynomial differential equations to fulfill its purpose since they identify 

the changes in one variable at time t and t+1 as a function of the other variables in the 

system at time t.   

The methodology of the approach is first described for two variables, and then 

it is generalized (Ranganathan et al., 2014a). It is applied on longitudinal dataset 

containing changes in M entities and N variables over time of length T to fit them 

with the corresponding ordinary differential equations (ODE) system that can be 

represented as: 

"#1
"$ =!(1)#1 ,#2*!!!!!!!!!!!!!!!!!!(+,. 6.1) 

!

"#2
"$ =!(2)#1,#2*!!!!!!!!!!!!!!!!!!(+,. 6.2) 
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The degree of the polynomial fi(.) is chosen considering two principal 

constraints. First, to be of sufficient degree to allow modeling enough non-linearity 

that reflects sufficient complexity of the model. Second, to keep the number of 

estimated models acceptable, and keep allowing capturing the interactions between 

variables.  

For computational purposes, it is assumed that the function (-(.) contains the 

terms that result from the different combinations of the variables each of power -1, 0, 

and 1: 

 

.0 +!.1#1 +!
.2
#2 +!.3!#1 +!.4#2 +

.5
#1#2 +!

.6!#2
#1 +!

.7!#1
#2 !+ .8#1#2 

 

It is also allowed for the quadratic and cubic terms in the variables or their 

reciprocals, which allow capturing the nonlinear impact of the variables themselves: 

 

.9#12 +!.10#22 +!.11#12 +
.12
#22 + .13#1

3 +!.14#23 +!.15#13 +
.16
#23  

 

The method starts the standard performance of two variables model by 

studying models of the form: 

 

(-)#1 ,#2* = .0 +!.1#1 +!
.2
#2 +!.3!#1 +!.4#2 +

.5
#1#2 +

.6!#2
#1 +!

.7!#1
#2 !+ .8#1#2 +!.9#12

+!.10#22 + .11#12 +
.12
#22 + .13#1

3 +!.14#23 +!.15#13 +
.16
#23 !!!!!!!!(+,. 6.3)!!!!!!!!!!!! 

 

A model is identified by a set of coefficients {.0,� ,.16} that were acquired 

from the best fit regression of the corresponding polynomial terms.  
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For the previous general model of 17 terms (eq.6.3), different models with 

different number of terms m can result from the possible combinations. Thus, the 

number of models that have m terms is the result of!/1701. 

The fitting method is applied to select the best models that fit the data among 

all those possible models using two steps. The first step is to detect the maximum-

likelihood model for each possible number of terms m, by fitting the variation in the 

indicator variables employing multiple linear regression over the 217 = 131072 

possible models. The log-likelihood value is calculated for all models: 

 

234!5("71|!71, 72,8)!!!!!!!!!!(+,. 6.4) 

 

Where 8 is representing the parameter set of each specific model. Thus, the 

best fit model with the maximum-likelihood Li(m) for each number of terms is 

obtained in this step, (-9/#1,#2;8-9)0*1, - = 1,2. 

In the second step of the selection algorithm, the Bayesian marginal-likelihood 

or the Bayes factor Bi(m) is calculated for the models obtained from the first step 

(MacKay, 2002; Skilling, 2006). Bayesian marginal-likelihood is used to compare 

between a set of models and to choose the one with the largest Bi(m) value as the best 

overall model. Since the models acquired by the first step are those with the highest 

log-likelihood for each possible number of terms, the Bayes factor will be applied to 

select through these models the one with the best number of terms. 

 

:-)0* = ; 5)"7- |71, 72,8-
!

8-)0*
)0*</8-)0*1"8-)0*!!!!!!!!!!!!!!!!!!(+,. 6.5) 

where i = 1,2, and </8-)0*1 is the prior distribution of the parameters, which 

is assumed as uniform over the parameters' range (Bishop, 2006). This process is done 

for the both function (19(#1,#2;819(0)) and (29(#1,#2;829(0)). 
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In the absence of prior knowledge about the system, we choose as the best fit 

model the one with the highest Bayes factor. 

For systems with more than two variables, as in our case, the described 

method for two variables is expanded to get the best models by calculating 

(-9(#1,#2,� ,#=;8-9)0-*, - = 1,� ,=, and both of Li(m) and Bi(m). Since the number 

of models that will be explored increases exponentially with the number of variables, 

and due to computationalthe  issue, the model space is explored for models with up to 

five terms in this state (Ranganathan et al., 2014a). 

 

6.2. Methods 

6.2.1. Software 

We used "bdynsys" package in R, that could be reached on CRAN 

(https://cran.r-project.org), and which implemented by Ranganathan and colleagues 

(Ranganathan et al., 2014b). This package integrates methods to modeling the 

dynamics in up to four variables in longitudinal data over time as a function of the 

variables themselves and up to three predictor variables using the ordinary differential 

equations and polynomial terms. Within this package, the described Bayesian model 

selection method is implemented to choose the best fit models for each number of 

terms. The package includes tools to visualize phase portraits of the variables in the 

systems or to compare the Bayes factors of different models. The main tool in this 

package is "bdynsys" function that performs the Bayesian dynamical system modeling 

process. It is given by: 

 

bdynsys (dataset, indnr, paramnr, x, y, z, v)         (fun 6.1) 

 

The function's arguments include: 

dataset: panel data frame. 

indnr: number of the indicator variables to be included in the modeling process. 

paramnr: maximum number of polynomial terms included. 
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x, y, z, v: references of the variables from the dataset to be included as indicators 1, 2, 

3, and 4, respectively. 

The result of this function is the best first three models for the defined 

variables and for each number of terms, up to the maximum number defined in the 

function. The calculated Bayes factor is also obtained from this function for each 

selected model. 

6.2.2. Methods of analysis 

We applied Bayesian dynamical systems modeling approach on the output 

data of the proposed agent-based model of BJI system, aiming at two objectives: (a) 

verifying the simulation coherence when running for the same initial conditions, and 

(b) identifying relationships between model's agents. We investigated the relationship 

between bacteria dynamics and the host tissue cells dynamics, more specifically the 

relationships between bacteria, neutrophils, and osteocyte populations under different 

initial conditions. This method is able to capture the nonlinear and complex behaviors 

of the variables using differential equation models. 

However, this method is applied on a longitudinal data, so we produced the 

output data of BJI model simulations for agent population changes over time in the 

form of panel data and saved them to ".csv" file. The time step between the time t and 

t+1 was 1 tick which is equal to 1 hour. 

a. Exploring System Behavior for the Same Initial Conditions 

Since the BJI model uses random seeds, the coherence behavior of the system 

for the same initial conditions during different iterations should be confirmed. In other 

words, the independent simulations should reproduce similar outputs for the same 

input data, and this is considered as one of the verification faces of an agent-based 

model (Xiang et al., 2005).  

We explored the different behaviors of the system through comparing the 

resulting differential equations models of different iterations in order to confirm the 

model internal validity. The R-squared value for each model was calculated and 

compared with the other models. R-squared value is a measure of how close the data 

are from the fitted model and its value ranges between 0 and 100%. 

We followed the following steps. 
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1- Fixing the initial conditions (input parameters) as given in (Table 6.1). 

2- Running the simulation 20 iterations and generating one corresponding output file 

that contains the variables changes for the 20 iterations (first group). 

3- Calculating the differential equations corresponding to this first group of iterations, 

that represents the first dynamical system (Code snippet 2). 

4- Rerunning the simulation for another 20 iterations (second group) under the same 

initial conditions, generating the corresponding output file and calculating the new DE 

system. 

5- Redo the process until having 10 different groups of DE systems each one is for 20 

iterations. 

6- For each iterations group, the DE systems are obtained for two terms models, and 

as a function of two variables. We get the models for the relationship between 

bacteria and neutrophil population, then the relationship between bacteria and 

osteocyte population. 

7- Comparing the resulting DE systems. 

 

 

Table  6.1. The parameters' values at the initial state during 200 iterations of BJI model 
simulation for testing the system behavior coherence 

Bacteria inoculum size = 10 CFU osteoblasts reproduction rate = 5 cell/day 

bacteria reproduction rate = 12 h osteoblasts death rate = 90 days 

macrophages reproduction rate = 250 cell/day osteoclasts reproduction rate = 3 cell/day 

macrophages death rate = 24 h osteoblasts death rate = 12 days 

neutrophils reproduction rate = 250 cell/day monocytes reproduction rate = 150 cell/day 

neutrophils death rate = 48 h monocytes death rate = 120 h 
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library("bdynsys", lib.loc="~/R/win-library/3.3") 

# loading the csv file for the first group of 20 iterations (redoing this code for the whole groups) 

myData <- read.csv("group01.csv",header=TRUE, sep=",", stringsAsFactors=FALSE) 

# converting dataframe to panel dataframe 

myPanelData<-pdata.frame (myData, index = "ID", drop.index = FALSE, row.names=TRUE) 

# calculating the DE models of two terms for bacteria and neutrophils (PMN) dynamics 

bdynsys(myPanelData, 2, 2, myPanelData$BACTERIA, myPanelData$PMN) 

# calculating the DE models of two terms for bacteria and osteocyte (OS) dynamics 

bdynsys(myPanelData, 2, 2, myPanelData$BACTERIA, myPanelData$OS) 

Code Snippet 2: R code for calculating the DE systems using bdynsys function 

 

 

b. Analyzing Variable Relationships  

In this step, we used the Bayesian dynamical system method to analyze the 

relationships between the model variables under different initial conditions. This 

analysis enables studying the model dynamics in responding to the input variations 

and exploring different patterns of the system's behavior. The system was investigated 

using varying values of inoculum size, and bacteria reproduction rate. The initial 

values of other parameters were fixed. The effects of these varied inputs were 

observed on the dynamics of each of bacteria, neutrophils, and osteocytes cells. The 

steps follow. 

1- Setting the model parameters to their initial values that given in (Table 6.1), except 

the value of bacteria inoculum size which was set to value 50 (CFU/mm3) and the 

bacteria reproduction rate to value 2 h. 

2- Running the simulation 20 iterations under the same initial conditions and 

generating the output file that contains the outcomes for bacteria, neutrophil, and 

osteocyte populations for each time step and for all iterations (.csv file). 
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3- Changing the initial inoculum size of bacteria between the values (50, 100, 150, 

250 CFU/mm2), and for each of these inoculum values we changed the reproduction 

rate of bacteria between the values (2, 4, 6, 12, 18, 24 h) (Table 6.2).  

4- Running the simulation n= 20 iterations for each group of initial conditions and 

calculating the corresponding differential equation systems for each output file. We 

calculated the DEs using bdynsys function for 3 terms and 2 variables, first for 

bacteria and PMN, then for bacteria and osteocyte populations. 

5- Comparing the output of the dynamical system model with the output of the BJI 

model simulation. 

6- Combining the simulation data for the different initial conditions of bacteria 

inoculum size, while the same reproduction rate of 6 hours in one (.csv) file and 

calculating the corresponding dynamical system models for each possible number of 

terms of bacteria, neutrophils, and osteocytes variables. 

7- Choosing the best overall dynamical system models by comparing the Bayes factor 

for the different number of terms models. 

 

 

Table  6.2. The initial conditions used to identify relationships between variables. The table 
represents values of bacterial inoculum size (CFU/mm2) and reproduction rate (h) parameters 
for the 24 groups of simulations, for which each run for 20 iterations. 

Bacteria inoculum size  50 (CFU/mm2) 

Bacteria reproduction rate 2 h 4 h 6 h 12 h 18 h 24 h 

Bacteria inoculum size 100 (CFU/mm2) 

Bacteria reproduction rate 2 h 4 h 6 h 12 h 18 h 24 h 

Bacteria inoculum size 150 (CFU/mm2) 

Bacteria reproduction rate 2 h 4 h 6 h 12 h 18 h 24 h 

Bacteria inoculum size 250 (CFU/mm2) 

Bacteria reproduction rate 2 h 4 h 6 h 12 h 18 h 24 h 
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6.3. Results 

a. Exploring System Behavior for the Same Initial Conditions 

The two terms differential equation systems for the population of bacteria, 

neutrophils, and osteocytes for the 10 groups of iterations under the same initial 

conditions with their R-squared values are shown in (Table 6.3). Each group was 

calculated for 20 iterations of the BJI model simulation.  

 

 

Table  6.3. The two terms DE systems that result from the Bayesian dynamical system 
modeling method with their R-squared values. These systems were calculated for 10 groups 
of simulation data that were generated under the same initial conditions. The first column 
presents the DE systems for the bacteria population (x) and the neutrophil population (y), and 
the second column presents the DE systems for the bacteria population (x) and the osteocyte 
population (y). 

Group 2 terms DE system of bacteria (x) 

(CFU) and neutrophils (y) (cells) 

2 terms DE system of bacteria (x) (CFU) 

and osteocytes (y) (cells) 

 

group 

1 

dx = + 69 x/y -2.4×10-7 y3    

dy = + 0.18 x -0.00038 y2   

 

R2= 0.71 

R2= 0.70 

 

dx = + 0.00045 xy - 4×10-4 x2     

dy = + 0.10 y - 6.9×10-8 y3        

R2= 0.61 

R2= 0.19 

 

group 

2 

dx = + 73 x/y -2.7×10-7 y3    

dy = + 0.18 x - 0.00039 y2   

 

R2= 0.82 

R2= 0.70 

 

dx = + 0.00047 xy - 4×10-4 x2   

dy = + 0.13 y - 5.8×10-8 y3    

 

R2= 0.62 

R2= 0.19 

 

group 

3 

dx = + 71 x/y - 2.5 ×10-7 y3   

dy = + 0.17 x - 0.00036 y2   

 

R2= 0.79 

R2= 0.69 

 

dx = + 0.00047 xy - 4 ×10-4 x2    

dy = + 0.11 y - 5.9 ×10-8 y3     

 

R2= 0.62 

R2= 0.11 

 

group 

4 

dx = + 70 x/y - 2.7 ×10-7 y3   

dy = + 0.18 x - 0.00039 y2    

 

R2= 0.75 

R2= 0.66 

 

dx = + 0.00045 xy - 0.00039 x2   

dy = + 0.083 y - 6.9 ×10-8 y3       

 

R2= 0.58 

R2= 0.19 

 

group 

5 

dx = + 71 x/y - 2.7 ×10-7 y3   

dy = + 0.17 x - 0.00037 y2    

 

R2= 0.79 

R2= 0.68 

 

dx = + 0.00047 xy -0.00041 x2    

dy = + 0.083 y - 5.9 ×10-8 y3        

 

R2= 0.63 

R2= 0.19 

 

group 

6 

dx = + 69 x/y - 2.6 ×10-7 y3   

dy = + 0.17 x -0.00038 y2     

 

R2= 0.77 

R2= 0.62 

 

dx = + 0.00043 xy - 0.00037 x2   

dy = + 0.091 y - 6.4 ×10-8 y3       

 

R2= 0.65 

R2= 0.12 

 

group 

7 

dx = + 69 x/y - 2.6 ×10-7 y3   

dy = + 0.16 x -0.00035 y2     

 

R2= 0.78 

R2= 0.67 

 

dx = + 0.00046 xy -4 ×10-4 x2     

dy = + 0.11 y - 7.9 ×10-8 y3         

 

R2= 0.65 

R2= 0.15 

 

group 

8 

dx = + 71 x/y - 2.6 ×10-7 y3   

dy = + 0.18x -0.00037 y2      

R2= 0.78 

R2= 0.67 

 

dx = + 0.00045 xy -0.00039 x2   

dy= + 0.093y - 5.9 ×10-8 y3          

 

R2= 0.57 

R2= 0.15 

 

group 

9 

dx = + 70 x/y - 2.6 ×10-7 y3   

dy = + 0.17 x -0.00036 y2     

 

R2= 0.79 

R2= 0.66 

 

dx = + 0.00045 xy -0.00039 x2    

dy = + 0.11 y - 7.6 ×10-8 y3        

 

R2= 0.63 

R2= 0.16 

 

group 

10 

dx = + 68 x/y - 2.6 ×10-7 y3   

dy = + 0.18 x - 0.00039 y2    

 

R2= 0.76 

R2= 0.68 

 

dx = + 0.00041 xy -0.00035 x2   

dy = + 0.094 y - 6.6 ×10-8 y3      

 

R2= 0.52 

R2= 0.13 
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The system dynamics in the first column are calculated for the bacteria and 

neutrophil population. The (x) variable in the equations represents the bacteria 

population, while the (y) variable represents the neutrophil population. The second 

column presents the system dynamics models for the bacteria population (x) and the 

osteocyte population (y). The resulting equations are the best fit 2-term models with 

the highest log-likelihood for the defined initial conditions.  

Then, we compared the shape of the differential equations in the 10 groups 

and for each variable that shown in (Table 6.3). We then calculated the mean (M) and 

the standard deviation (SD) of the equations' coefficients of those 10 models for each 

variable (Table 6.4). 

 

 

Table  6.4. The form, coefficient values and R-squared values for each variables' models that 
are represented in (Table 6.3). 

System DE form Mean 

Coefficient 

SD Coefficient Mean R2 SD R2 

Bacteria 

(x) and 

PMN (y) 

dynamics 

system 

"7
"$ = . !7 >? + @!>3  

. = 70.1 1.4 0.78 0.02 

@ = '2.6 × 10'7 0.09! × 10'7 

">
"$ = A!7 + "!>2  

A = 0.174 0.007 0.67 0.02 

" = '3.8 × 10'4 0.14 × 10'4 

Bacteria 

(x) and OS 

(y) 

dynamics 

system 

"7
"$ = .!7> + @!72 

. = 4.5 × 10'4  0.2 × 10'4  0.61 0.04 

@ = '3.9 × 10'4 0.17 × 10'4 

">
"$ = A!> + "!>3  

A = 0.1 0.015 0.16 0.03 

" = '6.7 × 10'8 0.7 × 10'8  

PMN: neutrophils, OS: osteocytes, Coeff: Coefficient 

 

These results show that the DE models of different groups of BJI model given 

data under the same initial conditions have a similar form for each set of variable 

equations and small variances between the coefficient values of that set. That could be 

translated as an indicator for the similar behaviors of the system using the same initial 

conditions.  
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In addition, the different calculated models under the same initial conditions 

show a similar R-squared value for the same variable in one equation system. This 

value might also indicate the similarity in the behaviors of the system under the same 

initial conditions. It is noted that the R-squared measurements have good values for 

the bacteria and neutrophils models in the first system, which means that the 

calculated models are well fitting the BJI model simulation data. Regarding the 

bacteria and osteocytes system, the R-squared values are good for the bacteria 

dynamics models while their values for osteocytes dynamics model are remarkably 

low. This result is coupled with the observation that the calculated osteocyte 

dynamics models are autonomous, in which they only depend on y. That leads to the 

need for including more terms in the calculated equations and more variables to study 

the ability to enhance the model fitting goodness. 

b. Identifying Variable Relationships 

The impact of the bacterial inoculum size and the reproduction rate was 

investigated over different values and retrieved a set of differential equations. In 

(Table 6.5) we listed the calculated models for the initial condition of inoculum size 

(50 CFU/mm2) and different values of reproduction rate of bacteria (2, 4, 6, 12, 18, 24 

h). These resulting models are calculated for two variables, bacteria (x) and neutrophil 

(y) populations, and for three terms equations.  

We compared these best fit models with the means of 20 iterations of the BJI 

model simulation outputs in (Figure 6.1-6.2). Additional calculated dynamical models 

with the DE systems for inoculum size of (100, 150, 250 CFU/mm2) along with 

different reproduction rate, for bacteria, neutrophil, and osteocyte populations are 

represented in the Appendix (Figure B.1-B.11) and (Table B.1-B-2). 
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Table  6.5. The calculated three terms differential equations systems for bacteria (x) and 
neutrophils (y) dynamics when bacteria inoculum size= 50 (CFU/mm2) and for different 
bacteria reproduction rates= 2, 4, 6, 12, 18, 24 (h).

 GROUP 3 terms DE systems of 2 variables: Bacteria population (x) and 

Neutrophil population (y)   

R function: bdynsys(mydata, 2, 3, mydata$Bacteria, 

mydata$PMN) 

Condition 1: 

Bacteria inoculum 

size= 50 CFU/mm
2
, 

Bacteria 

reproduction rate= 

2h 

dx= -249212 /(xy)+406455/y2 + 3423620 /x3 
dx= -526/x + 6.1 x/y + 2807177 /x3 
dx=+606/y -77185/x2 + 5305618 /x3 

dy=+0.038 x -1.8 y/x+ 6×10
+5 /x3  

dy= -0.026 y +5.7 x/y + 0.00016 xy 
dy=+0.042 x -0.026y+8.1×10-5 xy 

Condition 2: 

Bacteria inoculum 

size = 50 CFU/mm
2
, 

Bacteria  

reproduction rate= 

4h 

dx= + 0.086 x - 0.00016 xy + 2.8×10
-5x2 

dx= - 0.00015 xy + 0.00029 x2 -1.7×10
-7 x3 

dx= -3.9 + 0.11 x - 0.00015 xy 

dy= - 987/y + 13 x/y - 0.79 y/x 

dy= + 0.041 x - 0.9 y/x - 3.1×10
-5 xy  

dy= -284/x + 0.028 x -1.2×10
-5 y2 

Condition 3: 

Bacteria inoculum 

size = 50 CFU/mm
2
, 

Bacteria  

reproduction rate= 

6h 

dx=+0.085x - 0.00016 xy + 2.5×10
-5x2 

dx=+0.13x - 8.2 x/y - 0.00018 xy 

dx=+0.092x - 0.00016 xy + 1.5×10
-8x3 

dy= -1015 /y + 14 x/y - 0.8y/x 

dy=+0.04 x - 0.93 y/x - 2.9×10
-5 xy 

dy=+0.027 x - 0.75 y/x -8.2×10
-6 y2 

Condition 4: 

Bacteria inoculum 

size = 50 CFU/mm
2
, 

Bacteria  

reproduction rate= 

12h 

dx=+0.073 x - 0.00015 xy -1.8×10
-7 x3 

dx=+0.082 x - 0.00015 xy -8.5×10
-5 x2  

dx=+0.063x + 0.0065 y - 0.00018 xy 

dy=+0.033x -2y/x+519329 /x^3  
dy=+0.033 x -2.1y/x+11689 /x^2  

dy=+0.059x -0.038 y + 3×10
-5y^2 

Condition 5: 

Bacteria inoculum 

size= 50 CFU/mm
2
, 

Bacteria 

reproduction rate= 

18h  

dx=+9.5 -351/x -0.00014 xy 
dx=+0.075x - 0.00014 xy - 0.00016 x2 

dx=+0.063x - 0.00015 xy - 4.6×10
-7 x3 

dy=+0.037x - 2 y/x + 555997 /x3 
dy=+0.037 x - 2.1 y/x + 11999 /x2 

dy=+0.087x - 0.025 y -7.4 x/y 

Condition 6: 

Bacteria inoculum 

size= 50 CFU/mm
2
, 

Bacteria  

reproduction rate= 

24h 

dx=+5.6 - 0.00015 xy - 373021/x3 

dx=+6.3 - 0.00015 xy - 8976/x2 

dx=+8.2 - 259/x - 0.00016 xy 

dy=+0.092 x -0.026 y - 6.9 x/y 
dy=+0.064 x -0.023 y - 1.1e+07 /y3 

dy= -0.016 y + 5×10
-4 x2 -1.2×10

-6 x3 
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Figure  6.1. Comparison between the BJI model simulation outputs and the system dynamics 

model outputs of bacteria population over time. The outputs were calculated for bacteria 
inoculum size= 50 (CFU/mm2) and for different values of bacterial reproduction rate= 2, 4, 6, 
12, 18, 24 hours, respectively. The red line represents the mean of 20 iterations of simulation 
output. The other lines represent the three best-fit models calculated by Bayesian dynamical 

system approach for the same data. The blue line represents the first best fit calculated model. 
The green line represents the second best fit calculated model. The orange line represents the 

third best fit calculated model. 

 

As we mentioned before, the function "bdynsys"' calculates the best three 

models according to the Bayes factor. We represented here the three resulting models 

within these figures, except in some cases where the calculated models are non-

reasonable and out of range. It is noted that the calculated models of bacteria change 

for the values 2, 4, and 6 hours of bacteria reproduction rate differ from the simulation 

output, especially in the maximum and minimum values with a time offset in some 

cases. Nevertheless, the calculated models for the bacteria reproduction rate values 

equal to 12, 18 and 24 hours are very close to the simulation outputs. These 

observations were also noted for the models calculated for the inoculum size of 100, 

150, while with more variation for 250 (CFU/mm2) (Figure B.1-B.3 in the Appendix). 
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Figure  6.2. Comparison between BJI model simulation outputs and the system dynamics 

model outputs of the neutrophil (PMN) population over time. The outputs were calculated for 
bacteria inoculum size= 50 (CFU/mm2), and for different values of bacterial reproduction 

rate= 2,4,6,12,18 and 24 hours, respectively. The red line represents the mean of 20 iterations 
of simulation output. The other lines represent the three best-fit models calculated by 

Bayesian dynamical system approach for the same data. The blue line represents the first best 
calculated model. The green line represents the second best calculated model. The orange line 

represents the third best fit calculated model. 
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The calculated models for the neutrophils populations introduced differences 

between the simulation models and the dynamical systems models with the values 2, 

4, and 6 hours of reproduction rates (Figure 6.2). For the results of the values 12, 18 

and 24 hours of reproduction rates, the dynamical systems could capture the dynamics 

of the neutrophil population in the first phase (up to t= 120 hours), after that, it 

showed big differences between the dynamical models and the simulation. Similar 

behaviors were noted for models calculated for inoculum size = 100 (CFU/mm2), 

while more differences were noted in the models calculated for the inoculum size= 

150, 250 (CFU/mm2) (Figure B.4-B.6 in the Appendix). 

Similarly, the dynamical models of osteocytes cells as a function of 

themselves and bacteria was calculated for the longitudinal data generated from the 

ABM model of BJI. The best three fit models of three terms for bacteria initial 

inoculum equal to 50 (CFU/mm2) and different bacteria reproduction rate (2, 4, 6, 12, 

18, 24 hours), are given in (Table 6.6), where x variables represents the bacteria 

population and y variable represents the osteocyte population. We displayed the 

resulting best-selected models with the output of BJI model simulation as a mean of 

20 iterations for the same initial conditions in (Figure 6.3).  

By comparing the result, it is notable that the calculated dynamic models were 

able to capture the dynamics of the osteocytes cells in the given time (t= 0–240 hours) 

for the different reproduction rate of bacteria with a little more differences for the 

reproduction rate of 2, 4, 6 hours. It is noted that in all cases, the high-frequency 

oscillation within the agent dynamics could not be considered in the dynamical 

models. For the inoculum size= 100, 150 (CFU/mm2), the dynamic models showed 

differences from the simulation output, while they were closer for the inoculum size= 

250 (CFU/mm2) and reproduction rate = 12, 18, 24 hours (Figure B.9-B-11).  
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Table  6.6. The calculated three terms differential equations systems for bacteria population 
(x) and osteocyte population (y) dynamics for bacteria inoculum size = 50 (CFU/mm2) and for 
different bacteria reproduction rates (2, 4, 6, 12, 18, 24 h).

 GROUP 3 terms DE systems of 2 variables: Bacteria population (x) 

and Osteocyte population (y)   

R function: bdynsys(mydata, 2, 3, mydata$Bacteria, 

mydata$Osteocyte) 

Condition 1: 

Bacteria 

inoculum size= 

50 CFU/mm
2
, 

Bacteria  

reproduction 

rate= 2h 

dx= -6295/x + 3.4y/x + 1813531 /x3 
dx= -5581341 /(xy) + 1.7y/x + 1812667/x3 
dx= +5893/x - 1.1 ×10+7 /(xy) + 1811915/x3 

dy= +1196593 /(xy) -135970 /x^2+6563221 /x3  
dy= +618/x -127079 /x2 + 6222056 /x3 
dy= -74810/x^2 + 4809727 /x3 + 1.3×10+10 /y3 

Condition 2: 

Bacteria 

inoculum size= 

50 CFU/mm
2
, 

Bacteria  

reproduction 

rate= 4h 

dx= -1.9x + 0.0011xy -3.9×10-5 x2 
dx= -1.9x + 0.0011xy -2.6×10-8 x3 
dx= -1670x/y + 0.00055 xy -3.9×10-5 x2 

dy= +1.9 x -1695 x/y - 0.00056 xy 
dy= +3.5/x + 0.021 x - 1.2×10-05 xy 
dy= +0.021 x + 0.002 y/x -1.2×10-05 xy 

Condition 3: 

Bacteria 

inoculum size= 

50 CFU/mm
2
, 

Bacteria  

reproduction 

rate= 6h 

dx= -108x + 93757 x/y + 0.031 xy 
dx= -1.5x + 0.00089 xy - 4.6×10-5 x2 
dx= -1.5x + 0.00087 xy - 3.4×10-8 x3 

dy= +0.022 x -1.3×10-5 xy + 1.8×10-11y3 
dy= +0.022 x -1.3×10-5 xy + 3.1×10-8y2 
dy= +20 x/y - 6.7×10-6 xy + 1.8×10-11y3  

Condition 4: 

Bacteria 

inoculum size= 

50 CFU/mm
2
, 

Bacteria  

reproduction 

rate= 12h 

dx= -0.4 x + 0.00025 xy - 0.00014 x2 
dx= -357 x/y + 0.00013 xy - 0.00014 x2 
dx= + 0.47 x -776 x/y - 0.00014 x2 

dy= - 4.5×10+7 /y2 + 88860/x3 +7.9×10+10/y3 
dy= - 12716/y + 88914/x3 + 3.9×10+10 /y3 
dy= - 4.8 + 88968/x3 + 2.6×10+10 /y3 

Condition 5: 

Bacteria 

inoculum size= 

50 CFU/mm
2
, 

Bacteria  

reproduction 

rate= 18h  

dx= -0.41 x+ 0.00026 xy - 0.00024 x2 
dx= -368 x/y + 0.00014 xy - 0.00024 x2 
dx= -729994 /(xy) -100 x/y + 2.1×10-9 y3 

dy= -2663/x + 4676659 /(xy) + 218842/x3 
dy= +2298545 /(xy) - 0.75 y/x + 218760/x3 
dy= +2573/x -1.5 y/x + 218676 /x3 

Condition 6: 

Bacteria 

inoculum size= 

50 CFU/mm
2
, 

Bacteria  

reproduction 

rate= 24h 

dx= +2740359/(xy) -51647/x2 -5.1×10+10 /y3 
dx= +1551/x - 52496/x2 - 2.9 ×10+7 /y2 
dx= +1548/x - 52595/x2 - 5.1×10+10 /y3 

dy= -2827/x + 4923928 /(xy) + 4963/x2 
dy= +2397612 /(xy) - 0.79 y/x + 4956/x2 
dy= +2683/x - 1.5 y/x + 4949 /x2 
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Figure  6.3.  Comparison between BJI model simulation outputs and the system dynamics 

model outputs of the osteocyte population over time. The outputs were calculated for bacteria 
inoculum size= 50 (CFU/mm2), and for different values of bacterial reproduction rate= 

2,4,6,12,18 and 24 hours, respectively. The red line represents the mean of 20 iterations of 
simulation output. The other lines represent the three best-fit models calculated by Bayesian 
dynamical system approach for the same data. The blue line represents the first acceptable 

best model. The green line represents the second acceptable best calculated model. The 
orange line represents the third acceptable best fit calculated model. 
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6.4. Analysis of Results: Optimal Selection of System Dynamics Model 

The calculated models resulted from applying the steps described in 6.2.2.b by 

considering the model simulation data for all initial conditions of bacteria inoculum 

size (50, 100, 150, 250 CFU/mm2) and the same reproduction rates of 12 hours are 

shown in (Table 6.7). The table shows the system dynamics models with the 

maximum log-likelihood (MLL) and R-squared value for each number of terms 

models. 

 

Table  6.7. System dynamics models of up to four terms with their maximum log-likelihood 
(MLL) calculated for data that combines the simulation output for different initial conditions 
of bacteria inoculum size (CFU/mm2). The models are calculated for bacteria (CFU), 
neutrophil (cells) and osteocyte population (cells). 

Models of Bacteria (x) with PMN (y) dynamics  MLL R2 

BC
BD  = - 1.9 ×10-8 y3      
BC
BD  = + 0.058 x - 0.00012 x y        
BC
BD  =  + 0.054 x  - 0.00014 x y + 3.6×10-5 x2  
BC
BD  = + 0.041 x - 0.00014 x y + 0.00011 x2 - 8.5 ×10-8 x3   

-9256.74 

-8922.96 

-8874.54 

-8858.02 

0.03 

0.07 

0.08 

0.08 

Models of PMN (y) with Bacteria (x) dynamics   

BE
BD= +3.8 ×10-5 x2 
BE
BD= + 0.023 x - 0. 81  y/ x 
BE
BD  = + 0.034 x - 0.0085  y - 0.56 y/ x 
BE
BD  = -148/ x +0.057  x - 0.016 y -0.29 y/ x  -3.3 ×10-5  x2 

-6749.3 

-2731.6 

-2373.88 

-2116.6 

0.29 

0.7 

0.75 

0.77 

Models of Bacteria (x) with OS (y) dynamics   

BC
BD  =  -2.4×10-8  x3 

BC
BD  = + 4×10-6  x y - 4.4×10-8  x3 
BC
BD  = - 0.79  x + 0.00045  x y - 4.7×10-5  x2 
BC
BD  = - 54  x + 47536  x/y + 0.015 x y - 4.9×10-8  x3 

-9532.99 

-9504.43 

-9439.81 

-9429.03 

0.006 

0.010 

0.016 

0.018 

Models of OS (y) with Bacteria (x) dynamics   

BE
BD  = -8.8×10-7  x2 

BE
BD  = -0.067  x+118  x/y     
BE
BD  = -5.2  x + 4706  x/y +0.0014  x y 

BE
BD  = -6952/ x y - 8.6×10-7  x2 - 4.9×10+7/y2 + 8.7×10+10/y3 x3 

-9585.18 

-9557.27 

-9549.32 

-9546.3 

0.002 

0.004 

0.005 

0.006 

 PMN: neutrophils, OS: osteocytes 
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We can see that the MLL value increases with each addition of a new term. 

Since the Bayesian dynamical system modeling method first calculates the best fit 

models that have the MLL value for each number of terms, the Bayes factor is used 

then to choose the best overall model. For reducing the computational complexity, the 

Bayes factors in this method are calculated in their logarithmic value (log Bf). (Figure 

6.4) shows the Bayes factor for each number of terms (m) models of bacteria and 

neutrophils changes.  

The Bayes factor for (a) bacteria dynamics significantly increased when we 

add a second term, increased slightly for m = 3, and m= 4. The best fit selected model 

is the model with the highest Bayes factor (the four terms model). Since complex 

models with a high number of terms overfitting the data and are more difficult to be 

interpreted, we can choose the model of three terms whose Bayes factor is only a little 

smaller. Considering the Bayes factor of neutrophils changes models (b), the best 

overall model is the model with three terms.  

 

 

 

Figure  6.4. Log Bf for the bacteria and neutrophils system dynamics models. On the left: Log 
Bayes factor for each number of terms models for the changes in bacteria models as a 

function of bacteria and PMN. On the right: Log Bayes factor for each number of terms 
models for the changes in PMN models as a function of bacteria and PMN. 
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For the model systems of bacteria and osteocyte, the Bayes factor for each 

number of terms model given in (Figure 6.5). The overall best-selected model of (a) 

bacteria dynamics was also chosen as the model of four terms. While the two terms 

model was selected as the best model of (b) osteocytes changes models, the three 

terms model might be more informative with a little smaller value of Bayes factor. 

 

 

 

Figure  6.5. Log Bf for bacteria and osteocytes system dynamics model. (a) log Bayes factor 
for each number of terms models for the changes in bacteria models as a function of bacteria 

and osteocytes. (b) log Bayes factor for each number of terms models for the changes in 
osteocytes (OS) models as a function of bacteria and osteocytes. 

 

 

The dynamical models that result for each of bacteria, neutrophils and 

osteocytes agents give more information about the behaviors of these variables over 

time. They show complex interactions and identify different relationships between 

them. 

The dynamical system model of two variables bacteria (x) and neutrophils (y) 

is given by the equations (eq.6.6-6.8). The (Eq.6.6) gives the best fit model of bacteria 

population changes as a function of themselves and neutrophil population: 
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"7
"$ = + 0.041 x - 0.00014 x y + 0.00011 x2 - 8.5 ×10-8 x3    (+,. 6.6) 

This equation shows that the bacteria population increases by the rise in their 

count (in the first and third terms). The model shows in the second term a decreasing 

effect of the growth of neutrophils on the increase in bacteria. This effect is more 

stimulated by the bacteria themselves. The fourth term shows the secondary effect of 

the bacteria population on themselves, which slows the percentage increase in their 

population when it is very high due to the -x3. This effect will be neglected for the 

small value of the bacteria population because of the very small coefficient: 8.5×10-8. 

By comparing this four terms model (eq 6.6) with the three terms model (eq 

6.7) that have a very close Bayes factor and which is given by:  

 

"7
"$  =  + 0.054 x  - 0.00014 x y + 3.6×10-5 x2      (+,. 6.7) 

 

We find that the three terms model could be considered as a good candidate as 

the best fit model of bacteria population changes since it is less complex, similar to 

the first three terms in the four terms model, and since the fourth term in (eq.6.6) has a 

very small effect. And according to Occam's Razors, a model with less complexity 

(fewer terms) is preferable. 

The best fit model of neutrophil population changes as a function of bacteria 

(x) and neutrophils (y) themselves is shown by:  

 

">
"$  = + 0.034  x - 0.0085 y - 0.56 y/ x      (+,. 6.8) 

 

This model shows that the recruitment of neutrophil cells increases by the 

growth of bacteria once they amount to a specific value that determined by the count 
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of neutrophils themselves. The model also shows a self-limiting effect in the second 

term that is representing the clearance of neutrophils.  

The selected best fit model system of bacteria and osteocyte population 

changes is given by the equations (eq.6.9-6.10). The (eq. 6.9) shows the bacteria 

dynamics model as a function of osteocytes and bacteria themselves: 

 

"7
"$   = -54  x + 47536  x/y + 0.015  x y - 4.9×10-8  x3       (+,. 6.9) 

 

This model shows bacteria clearance in the first and fourth negative feedback 

terms. It also shows that the bacteria growth rate increases by the rising in bacteria 

themselves. This growth is slowed if the number of osteocytes is high. It is noted that 

the third term shows the exact opposite effect of osteocyte population on the increase 

of bacteria. This result has to be more verified and investigated with more data and 

different terms.  

The best overall model of osteocyte population changes as a function of 

bacteria and osteocytes themselves is given by (eq. 6.10): 

 

">
"$ = - 0.067  x + 118  x/y       (+,. 6.10) 

 

This model shows that the osteocyte population decreases by the growth of 

bacteria until reaching a specific threshold. This decrease is determined by the count 

of osteocytes themselves. The greater the number of osteocytes in the site, the greater 

the induction of resorption. That might refer to the role of osteocytes in controlling 

the bone remodeling process. 

The result also showed that the models of bacteria in the bacteria and 

neutrophils DE system have low R-squared values, while the neutrophils models have 

good values especially in the models with more than one term. The results also 
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showed R-squared values are very low for the models in bacteria and osteocytes DE 

system. However, the R-squared value is not an indicator of the goodness of the 

model, unfitted model could have good R-squared value1. The low R-squared value 

could result from the generalization of the model. The complexity of the investigated 

system could result in a low R-squared value too. More investigation of the model in 

comparison with other possible terms and data set is needed. 

 

6.5. Discussion 

Although the Bayesian dynamical system approach was first proposed to study 

social systems (Ranganathan et al., 2014a), we have benefited from it here to study 

the behavior of a complex biological systems. Integrating the Bayesian dynamical 

system modeling approach with the ABM simulation model has introduced an 

exploratory method that supports identifying novel and unforeseen patterns and 

explication of the model outputs data (Beyer H., 2007; Gelman, 2004; Ranganathan et 

al., 2014c, 2014a). This method has used the data to tell us about the mathematical 

relationships between the variables.  

We used this method to verify the system response to the same initial 

conditions of BJI model simulation. The resulting DEs showed small variance values 

in terms of coefficients and R-squared values, and similar form of the DEs. Bayesian 

system dynamics modeling method represented a good solution to compare and 

explore the BJI model behaviors. In addition, it was used to identify relationships 

between different variables of the system. It produced a set of differential equation 

systems which express the dynamics of each of bacteria, neutrophil and osteocyte 

populations as a function of the variables themselves and the other indicators. Even 

the obtained models do not solve definitely the system; it could be a starting point for 

explaining the relationship between the variables. It was shown that the Bayesian 

dynamical system modeling method could propose models that well fit the simulation 

data for different initial conditions, especially for the reproduction rate of bacteria 12, 

18, 24 h. Nonetheless, other calculated models introduced some differences for other 

condition of reproduction rate (2, 4, 6 h).  

                                                                 
1 http://blog.minitab.com 
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Since the method output a set of dynamical models with a different number of 

terms, choosing the best informative and correct model represents a challenge. As 

more than one model could be plausible, comparing the Bayes factor of the selected 

models gives insight and facilitates choosing the best model and making a tradeoff 

between the model complexity and informativity. On the other hand, using the DEs 

will contribute in enriching the further analysis with more explanation of the system 

behavior and how the variables influence each other, with the ability to make a 

prediction of system progression. 

Although comparing the models of the BJI system using the Bayes factor 

facilitates choosing the best fit model, other factors have an impact on the model 

selection such as our knowledge about the system. Additional comparison with other 

theoretical or mathematical models, if exist, could give another insight on the model 

selection. More comparison between the calculated models for different initial 

conditions or with more indicators could help in finding more relationships between 

variables. Integrating the knowledge of the mechanisms in macro and micro-level will 

give a better understanding of the system. 

Moreover, it was noted that the calculated models were limited by the 

conditions of the simulated experiments, in which more investigation is required to 

generalize the models by integrating the data of all initial conditions in the modeling 

process. Validating the models in terms of the real system behavior introduces a 

challenge and requires integrating more information and variables.   
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CHAPTER 

7. Conclusion 

 

7.1. Brief Summary of the Study 

Management and diagnosis of bone and joint infections is a challenging task 

due to more frequent paucisymptomatic cases, and increasing rate of developing 

chronicity. It represents a complex multi-environment biological system that is 

characterized by not well understood possible cellular interactions that control BJI 

pathogenesis.  

Developing a model that captures the emergent behavior of the disease 

development from the cellular interactions, in this stage without therapeutic 

intervention, allows exploring the natural evolution of the infection and characterizing 

the potential role of different system elements such as innate immune cells, and the 

consequences on the micro-structure of bone tissue. Thus, it can provide a novel 

insight into the bacterial development and the system response. 

In this dissertation, we implemented a novel computational framework aiming 

at introducing a simulated experimental environment to investigate the BJI dynamics 

in an integral qualitative manner. We successfully developed an agent-based model of 

BJI that focused on studying the emergent behaviors of the system result from the 

spatiotemporal mechanisms of cellular interactions between BJI components during 

the first stage of infection.  

In this thesis, the BJI model was built on the diverse descriptive knowledge 

from the literature, through which we provided the specifications of the agent 

behaviors, interactions, and parameter. It was built on a set of agent rules and 
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interactions, which result from simplifying the biological behaviors of the 

components, to mimic their response to the local environment. 

We then analyzed the different patterns generated by the developed ABM of 

BJI by the Bayesian dynamical system modeling approach to find the best differential 

equations that identify relationships between BJI agents. Applying this method on the 

ABM output resulted in proposing a set of plausible dynamical system models of the 

agent behaviors. We employed the Bayes factor to choose the best fit model through 

those all proposed solutions. We as well used this method to verify the BJI model 

reliability. The BJI model displayed small variances of system behavior when 

comparing the different dynamical models calculated for the same input of the 

different model iterations. 

7.2. Contribution 

The implemented framework in this study is the first model of BJI that 

comprehends different heterogeneous variables of the system using ABM approach 

and explores the different patterns of the agent dynamics and the system behavior 

using Bayesian dynamical system method; thus it can be the basis of upcoming 

developing work. Even Liò et al. (Liò et al., 2012) proposed a computational model of 

BJI, they rely on EBM models, and they miss the integration of immune system role. 

The model succeeded in mimicking the dynamics of bacteria, the innate 

immune cells (macrophages, neutrophils, monocyte-derived macrophages), and the 

bone cells (osteocytes, osteoblasts, osteoclasts) during the first stage of infection and 

for different inoculum levels in a compatible manner. The developed model offers a 

tool to investigate the influence of several variables on the dynamics of the infection. 

Through this model, we tested the effect of the bacteria inoculum size on the 

dynamics of innate immune cell and bone cells. The simulation showed that the innate 

immune cells followed the increasing of bacteria with the inability to eliminate them 

totally for the suggested inoculum size. The simulation suggested a minimum level of 

bacteria around the fourth day of infection. However, it highlighted the need for 

another type of defense such as the adaptive immune response or treatment 

intervention. The simulation also showed that the bone mass reached a common 

minimum level by the 7th day of infection representing 2% of loss in bone mass. It 
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suggested a reverse proportional relation between the inoculum size and the osteocyte 

population. Although the simulations are at the preliminary levels with regards to 

their accuracy and validity, several interesting outcomes were observed that would 

certainly provide insights into the BJI dynamics. 

However, the mathematical models of biological systems are not considered as 

the mathematical solutions of these systems, they are considered as a systematic 

representation of the systems to test several hypotheses or further to predict the 

outcomes of the model under several therapeutic intervention conditions (An, 2005). 

 In this context, the proposed model framework introduces a flexible and 

interactive virtual laboratory to test and explain several existing hypotheses or 

knowledge or even to explore new ones. It gives rise to new perceptions to research 

and facilitate studying the biological system and processes under the different 

scenario that could not be realized in the laboratory, besides saving in terms of time 

and cost. 

By using the ABM approach, the complex model behavior results from 

integrating the entities behaviors which also predict the collective behavior of cells. It 

well fits in the biomedical application where there are no predefined patterns of data. 

Instead, it uses a set of rules and the computational representation of the agent 

mechanisms to rebuild the observed patterns.  

7.3. Limitation and Future Work 

However, there is no complete model, but there is the model which give a best 

approximate representation that supply practical knowledge about the addressed 

system (An, 2005). The model proposed in this thesis is a simplified representation of 

the real system since several assumptions and simplifications have been made while 

implementing this model for several reasons such as missing information and the 

limited number of agents. We aimed at this stage of work to construct this first basic 

BJI model with plausible type of agents that represent the system in the first stage of 

infection and to build upon it later. In general, the assumptions and extractions lead to 

differences between the phenomena and the models' behaviors. 

As all simulation modeling works, testing the model accuracy and reliability 

comparing to the original real system is a main task in the modeling work. However 
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several difficulties faced the validation task in this work, such as the absence of 

historical data concerning the cellular scale during BJI, which could be used either for 

building the model or for examining it. In addition, the real system proceeds 

differently following several factors and patient personal state, which have not been 

taken in the account in this basic model.  

Nevertheless, more work could be done for future work to validate this 

developed model following proposed validation schemes or methods in the literature 

(Guerini et al., 2017; Kleijen, 1999; Sanchez, 1999; Sargent, 2007; Windrum et al., 

2007; Xiang et al., 2005). 

Future work will include making more comparisons with different patterns of 

the bone mass and signals changes to make the ABM able to reproduce it in accurate 

time. It also will integrate important agents and variables such as bacteria biofilms, 

implants, and adaptive immune cells, to increase the correlation between the ABM 

model and the real BJI system. The future work also aims to represent three-

dimensional ECM taking in the account the patient variability. This integration will 

lead to more confidence in the ability of BJI model to describe the real system and 

represent the cells spatial localization (Figure 2.2) in order to predict the pathology 

outcomes. As further data is made available, the model would be refined to better 

estimate an in-depth comprehension of BJI pathophysiology. 

Although this model showed the ability to incorporated varied data from the 

literature, it is still in its early stages and has not integrated enough of knowledge and 

variables to predict the output of patient-specific treatment. This model is meant to be 

integrated with a decision support system called (Spot-Risc) as a hybrid approach 

between the modeling and the exploitation of real data. This global framework aims to 

use the population data stored in the electronic health record (EHR), the patient-

specific clinical, biological and imaging data, and then execute exploratory and 

explanatory analysis to understand and predict the infection outcomes. 

Several prediction methods could be used to enhance the prediction process 

such as machine learning techniques and Bayesian network. It would also be useful to 

get benefit from an advanced technique such as mass cytometric to better validate the 

cell behaviors and dynamics in different states. 
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Such a framework can be a starting point for future works that could have 

direct influences on multiple directions in the way of progress against the disease. 

These impacts include choosing the best diagnostic criteria, treatment protocol, and 

efficient follow-up parameters, besides simulating clinical trials and predicting 

patient-specific response. In other words, if we realize how to control the infection 

progress in the model, we can infer feasible counsel for the real infection 

management.  
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Publication and Communication 

The work presented in this manuscript has been the subject of poster communications, 

and provide the material for a journal publication that is already submitted 

§ Alsassa S, Lefèvre T, Laugier V, Ansart S, Stindel E. "Simulating bone and 

joint infections using a combined agent-based modeling framework and 

Bayesian dynamic systems approach", (journal paper being written) 

§ Alsassa S, Lefèvre T, Laugier V, Ansart S, Stindel E. "Modeling Early Stages 

of Bone and Joint Infections Dynamics in Humans: a Multi-Agents, Multi 

Systems Based Model", (submitted to Frontiers journal) 

§ E-Health Research International Congress, 2016. "A First Simple Two- 

Dimensional Agent-Based Model Of Bone And Joint Infections To Simulate 

The Behavior Of The System". (abstract & poster) 

§  IEEE International Conference on Healthcare Informatics (ICHI), Doctoral 

consortium session, 2016. "Individualizing Treatment of Patients With Bone 

And Joint Infections: The Use of Embedded Agent-Based Modeling and 

Analytical Methods In Clinical Framework". (abstract & poster) 
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 The equation systems for different initial condition of bacteria inoculum size and 

reproduction rate along with the corresponding figures follows. 

 

Table  B.1. The calculated three terms differential equations systems for the bacteria(x) and 

neutrophils (y) population for different initial conditions: for bacteria inoculum size = 100, 

150, 250 CFU/mm2 and reproduction rates = 2, 4, 6, 12, 18, 24 hour
The initial condition of 

BJI model simulation 

The resulting three terms models of bacteria (x) and 

neutrophils (y) population 

 

Bacteria inoculum size 

= 100 CFU/mm
2
 

reproduction rate= 2 h 

dx=+0.00051x^2 -3e-05y^2 -2.1e-06 x^3 

dx= -0.00014 xy+0.00063x^2 -1.9e-06 x^3 

dx=+0.00034x^2 -1.4e-06 x^3 -5.3e-08 y^3 

dy = + 5.4 -2.3 y/x + 2.7e-07 x^3 

dy = + 5.1 -2.3 y/x + 6e-05 x^2 

dy = + 225 /x + 0.032 x -2.3 y/x 

 

Bacteria inoculum size 

= 100 CFU/mm2 

reproduction rate= 4 h 

dx= -0.00014 xy+0.00023x^2 -1e-07x^3 

dx=+0.094x -0.00015 xy+2.7e-05x^2 

dx=+0.1x -0.00011 xy -9.6e-09 y^3 

dy= -122/x+0.024x -1.2e-05 y^2 

dy=+0.04x -0.36y/x -3e-05 xy 

dy= -130/x+0.022x -1e-08 y^3 

 

Bacteria inoculum size 

= 100 CFU/mm2 

reproduction rate= 6 h 

dx= -0.00015 xy+0.00026x^2 -1.3e-07 x^3 

dx=+0.093x -0.00016 xy+2.9e-05x^2 

dx= -5.3+0.12x -0.00015 xy 

dy=+0.041x -0.44y/x -3.1e-05 xy 

dy=+0.022x -0.38y/x -7.5e-09 y^3 

dy=+0.023x -0.36y/x -8.2e-06 y^2 

Bacteria inoculum size 

= 100 CFU/mm2 

reproduction rate= 12 h 

dx=+0.12x -9.7x/y -0.00022 xy 

dx= -251/y+0.079x -0.00017 xy 

dx=+0.074x -0.00016 xy -23840/y^2 

dy= -756/x+12x/y+11088 /x^2 

dy= -589/x+11x/y+159801 /x^3 

dy= -961/y+14x/y -0.89 y/x  

 

Bacteria inoculum size 

= 100 CFU/mm2 

reproduction rate= 18 h 

dx=+0.055x -0.00014 xy -1.3e-07 x^3  

dx=+0.06x -0.00014 xy -5e-05x^2 

dx=+0.051x+0.0035y -0.00016 xy  

dy=+0.04x -1.7y/x -1.9e-05 xy 

dy=+0.034x -1.6y/x -7.7e-09 y^3 

dy=+0.035x -1.6y/x -4.9e-06 y^2 

Bacteria inoculum size 

= 100 CFU/mm2 

reproduction rate= 24 h 

dx=+0.06x -0.00015 xy -1e-04x^2 

dx=+0.053x -0.00015 xy -3.2e-07 x^3  

dx=+1.8+0.032x -0.00015 xy 

dy=+0.042x -1.6y/x -4.7e-05 x^2 

dy=+0.038x -1.6y/x -1.3e-07 x^3 

dy=+1.1+0.028 x -1.6y/x 
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Bacteria inoculum size 

= 150 CFU/mm2 

reproduction rate= 2 h 

dx= -2e-04xy+0.001x^2 -2.5e-06 x^3  

dx=+0.00081x^2 -4.4e-05 y^2 -2.5e-06 x^3 

dx=+0.00065x^2 -2e-06x^3 -6.9e-08 y^3 

dy=+4.8 -2.1y/x+1.8e-07 x^3 

dy=+4.5 -2.1y/x+5.5e-05 x^2 

dy=+194/x+0.03 x -2.2 y/x 

Bacteria inoculum size 

= 150 CFU/mm2 

reproduction rate= 4 h 

dx= -0.00013 xy+2e-04x^2 -7.9e-08 x^3  

dx=+0.1x -0.00011 xy -9.4e-09 y^3  

dx=+0.11x -0.00011 xy -9.4e-06 y^2 

dy= -104/x+0.022x -1.1e-05 y^2 

dy= -112/x+0.021x -8.9e-09 y^3 

dy= -90/x+0.023x -0.012 y 

 

Bacteria inoculum size 

= 150 CFU/mm2 

reproduction rate= 6 h 

dx= -0.00014 xy+0.00021x^2 -8.8e-08 x^3 

dx=+0.1x -0.00011 xy -9.7e-09 y^3 

dx=+0.096x -0.00015 xy+2.5e-05x^2 

 

dy=+0.04x -0.3y/x -2.9e-05 xy 

dy=+0.02x -0.26y/x -7.2e-09 y^3 

dy=+0.021x -0.25y/x -8.4e-06 y^2 

 

Bacteria inoculum size 

= 150 CFU/mm2 

reproduction rate= 12 h 

dx= -0.00015 xy+0.00041x^2 -4.6e-07 x^3 

dx=+0.11x -8.1x/y -0.00019 xy 

dx= -2.3+0.084x -0.00015 xy 

 

dy= -743/y+13x/y -0.78 y/x 

dy= -625 /x+11x/y+6542 /x^2 

dy=+0.038x -0.92y/x -2.7e-05 xy 

 

Bacteria inoculum size 

= 150 CFU/mm2 

reproduction rate= 18 h 

dx=+0.12x -11x/y -0.00023 xy 

dx= -226/y+0.063x -0.00015 xy 

dx=+0.06x -0.00015 xy -30038/y^2 

 

dy=+0.041x -1.4y/x -2.8e-05 xy  

dy=+0.021 x+3x/y -1.4y/x 

dy= -796 /y+13x/y -1.1 y/x 

 

Bacteria inoculum size 

= 150 CFU/mm2 

reproduction rate= 24 h 

dx=+6e-05y^2 -1.3e-07 x^3 -1.5e-07 y^3 

dx=+0.13x -15x/y -0.00026 xy 

dx=+0.01y -1.2e-07 x^3 -6.9e-08 y^3  

 

dy=+0.033x -1.4y/x -1.3e-08 y^3 

dy=+0.034x -1.3y/x -7.6e-06 y^2 

dy=+239/y+0.028 x -1.6y/x 

 

Bacteria inoculum size 

= 250 CFU/mm2 

reproduction rate= 2 h 

dx= -0.00031 xy+0.0014x^2 -2.5e-06 x^3 

dx=+0.00058x^2 -1.2e-06 x^3 -6.4e-08 y^3 

dx= -8.5+23x/y -2e-07 x^3  
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dy=+0.033x -1.1y/x -1e-05 y^2 

dy=+0.037x -0.0095 y -0.85y/x 

dy=+0.031x -1.2y/x -1.3e-08 y^3 

 

Bacteria inoculum size 

= 250 CFU/mm2 

reproduction rate= 2 h 

dx= -0.00012 xy+0.00018x^2 -6.8e-08 x^3 

dx=+0.1x -9.7e-05 xy -9.8e-09 y^3 

dx=+0.1x -1e-04 xy -1e-05 y^2 

 

dy= -62/x+0.021x -1.2e-05 y^2 

dy= -67/x+0.02x -9.6e-09 y^3 

dy= -52/x+0.021x -0.014 y 

 

Bacteria inoculum size 

= 250 CFU/mm2 

reproduction rate= 6 h 

dx= -0.00013 xy+0.00019x^2 -7e-08x^3 

dx=+0.1x -1e-04xy -9.4e-09 y^3 

dx=+0.11x -0.00011 xy -9.6e-06 y^2 

dy=+0.04x -0.26y/x -2.8e-05 xy 

dy=+0.018x -0.23y/x -6.9e-09 y^3 

dy=+0.019x -0.21y/x -8.4e-06 y^2 

 

Bacteria inoculum size 

= 250 CFU/mm2 

reproduction rate= 12 h 

dx= -0.00014 xy+0.00032x^2 -2.9e-07 x^3 

dx=+0.062x -9.7e-05 xy -1.1e-08 y^3 

dx= -2.8 + 0.085x -0.00014 xy 

 

dy=+0.03x -0.0078 y -0.48y/x 

dy=+0.026x -0.55y/x -7.8e-06 y^2 

dy=+0.025x -0.58y/x -8.4e-09 y^3 

 

Bacteria inoculum size 

= 250 CFU/mm2 

reproduction rate= 18 h 

dx=+6.7e-05 y^2-4.3e-08 x^3 -1.2e-07 y^3  

dx=-1.5e-05 x^2 +6.7e-05 y^2-1.2e-07 y^3  

dx=-0.00011 xy +0.00034x^2 -5.2e-07 x^3  

 

dy=+0.039 x -1.3 y/x -2.8e-05 xy  

dy=+0.018 x + 3.4 x/y -1.3 y/x  

dy=+0.029 x -1.2 y/x -8.1e-09 y^3  

 

Bacteria inoculum size 

= 250 CFU/mm2 

reproduction rate= 24 h 

dx=+5.2e-05 y^2 -7.4e-08 x^3 -1.2e-07 y^3 

dx=-2.2e-05 x^2 +5.5e-05 y^2 -1.2e-07 y^3 

dx=-1.7e-05 xy + 5.5e-05 y^2 -1.2e-07 y^3 

 

dy=+ 0.031 x -1.2 y/x -1.4e-08 y^3  

dy=+ 0.033 x -1.1 y/x -9.2e-06 y^2  

dy=+ 0.041 x -1.3 y/x -3.4e-05 xy  
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Table  B.2. The calculated three terms differential equations systems for the bacteria(x) and 

osteocytes (y) population for different initial conditions: for bacteria inoculum size = 100, 
150, 250 CFU/mm2 and reproduction rates = 2, 4, 6, 12, 18, 24 hour. 

The initial condition of 

BJI model simulation 
The resulting three terms models of bacteria (x) 

and osteocytes (y) population 
 

Bacteria inoculum size = 

100 CFU/mm
2
 

reproduction rate= 2 h 

dx = -0.36 x + 2e-04 xy -2.2e-07 x^3 

dx = -318 x/y + 1e-04 xy -2.3e-07 x^3 

dx = + 0.37 x -647 x/y -2.3e-07 x^3 

 

dy = + 2438646 /y -8.8e+09 /y^2 + 7.9e+12 /y^3 

dy = + 453 -4.4e+09 /y^2 + 5.3e+12 /y^3 

dy = + 0.13 y -2.9e+09 /y^2 + 4e+12 /y^3 

 

 

Bacteria inoculum size = 

100 CFU/mm2 

reproduction rate= 4 h 

dx= -1.6x+0.00092 xy -1e-08x^3 

dx= -1428x/y+0.00046 xy -1e-08x^3 

dx=+1.6x -2864x/y -1e-08 x^3 

 

dy= -0.028x+48x/y+7.3e+08 /y^3 

dy= -0.028 x+49x/y+413913 /y^2 

dy=+234/y -0.028 x+49x/y 

 

Bacteria inoculum size = 

100 CFU/mm2 

reproduction rate= 6 h 

dx=+1.6x -2775x/y -1.5e-08 x^3 

dx= -1372x/y+0.00044xy -1.5e-08 x^3 

dx= -1.5x+0.00088xy -1.5e-08 x^3 

 

dy=+2.2x/y -4.5e-06 x^2+2.5e-09x^3 

dy=+0.0012x -4.4e-06 x^2+2.5e-09x^3  

dy=+6.3e-07xy -4.3e-06 x^2+2.4e-09x^3 

 

Bacteria inoculum size = 

100 CFU/mm2 

reproduction rate= 12 h 

dx= -1.2x+0.00068xy -1.4e-07 x^3 

dx= -1061x/y+0.00034xy -1.4e-07 x^3 

dx=+1.2x -2140x/y -1.4e-07 x^3 

 

dy= -0.13x+225x/y -1.7e-06 x^2 

dy=+113x/y -3.5e-05 xy -1.8e-06 x^2 

dy=+0.13x -7.1e-05 xy -1.8e-06 x^2 

 

Bacteria inoculum size = 

100 CFU/mm2 

reproduction rate= 18 h 

dx= -0.41x+0.00024xy -0.00013 x^2 

dx= -361x/y+0.00013xy -0.00013 x^2 

dx=+0.46x -764x/y -0.00013 x^2 

 

dy=+1731167/y -6.2e+09 /y^2+5.6e+12/y^3 

dy=+324 -3.1e+09 /y^2+3.8e+12/y^3 

dy=+0.091y -2.1e+09 /y^2+2.8e+12/y^3 
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Bacteria inoculum size = 

100 CFU/mm2 

reproduction rate= 24 h 

dx= -0.21x+0.00013xy -0.00018 x^2 

dx= -184x/y+7.3e-05xy -0.00018 x^2 

dx=+0.26x -412x/y -0.00018 x^2 

 

dy= -8.9x+8062x/y+0.0025 xy  

dy= -0.12x+224x/y -8.5e-06 x^2 

dy=+112x/y -3.5e-05 xy -8.5e-06 x^2 

 

Bacteria inoculum size = 

150 CFU/mm2 

reproduction rate= 2 h 

dx= -54x+48480 x/y+0.015 xy 

dx=+2.7y -0.003y^2+8.5e-07 y^3 

dx=+1596 -0.0015 y^2+5.7e-07 y^3 

 

dy= -52046/(xy) -9.5e+07 /y^2+1.7e+11/y^3 

dy= -29/x -9.4e+07 /y^2+1.7e+11/y^3 

dy= -0.016y/x -9.3e+07 /y^2+1.7e+11/y^3 

 

Bacteria inoculum size = 

150 CFU/mm2 

reproduction rate= 4 h 

dx=+2.6x -4631x/y -8.4e-09 x^3 

dx= -2302x/y+0.00074xy -8.4e-09 x^3 

dx= -2.6x+0.0015xy -8.3e-09 x^3 

 

dy= -0.037x+65x/y -2.9e-07 x^2 

dy=+32x/y -1e-05xy -2.9e-07 x^2 

dy=+0.036x -2.1e-05 xy -2.9e-07 x^2 

 

Bacteria inoculum size = 

150 CFU/mm2 

reproduction rate= 6 h 

dx= -2311x/y+0.00074 xy -8e-09x^3 

dx=+2.6x -4641x/y -8e-09 x^3 

dx= -2.6x+0.0015 xy -8e-09 x^3  

 

dy= -0.034x+58x/y+7.7e+08 /y^3 

dy= -0.034 x+59x/y+434262 /y^2 

dy=+28x/y -9.4e-06 xy+7.7e+08/y^3 

 

Bacteria inoculum size = 

150 CFU/mm2 

reproduction rate= 12 h 

dx= -1.1x+0.00065xy -8.3e-08 x^3 

dx= -1017x/y+0.00033xy -8.3e-08 x^3  

dx=+1.2x -2054x/y -8.3e-08 x^3 

 

dy= -9.8x+8808x/y+0.0027 xy 

dy=+1356633/y -4.9e+09 /y^2+4.4e+12/y^3 

dy=+254 -2.5e+09 /y^2+3e+12/y^3 

 

Bacteria inoculum size = 

150 CFU/mm2 

reproduction rate= 18 h 

dx= -0.54x+0.00031xy -1.9e-07 x^3 

dx= -479x/y+0.00016xy -1.9e-07 x^3 

dx=+0.55x -969x/y -1.9e-07 x^3  
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dy= -31576/(xy) -8.4e+07 /y^2+1.5e+11/y^3 

dy= -18/x -8.3e+07 /y^2+1.5e+11/y^3 

dy= -0.01y/x -8.3e+07 /y^2+1.5e+11/y^3 

 

Bacteria inoculum size = 

150 CFU/mm2 

reproduction rate= 24 h 

dx= -0.11x+7.2e-05xy -0.00011 x^2 

dx=+3e-06xy -2.5e-07 x^3+143300/x^3 

dx= -99x/y+4e-05xy -0.00011 x^2 

 

dy= -1595/x+2844595 /(xy) -1140/x^2  

dy=+1430343 /(xy) -0.45y/x -1146/x^2 

dy=+1613/x -0.9y/x -1151 /x^2 

 

Bacteria inoculum size = 

250 CFU/mm2 

reproduction rate= 2 h 

dx= -25x+21690 x/y+0.007 xy 

dx= -0.38x+0.00021 xy+307/x^2 

dx= -0.39x+17202/(xy)+0.00021 xy  

 

dy= -19029/y -15612/(xy)+6.1e+10 /y^3  

dy= -15579/(xy) -6.8e+07 /y^2+1.2e+11/y^3 

dy= -38274/y -15645/(xy)+6.8e+07 /y^2 

 

Bacteria inoculum size = 

250 CFU/mm2 

reproduction rate= 2 h 

dx= -2.6x+0.0015xy -7.3e-09 x^3 

dx= -2341x/y+0.00076xy -7.3e-09 x^3 

dx=+2.7x -4699x/y -7.4e-09 x^3 

 

dy=+4.2x/y -4.7e-06 x^2+1.7e-09x^3 

dy=+0.0022x -4.5e-06 x^2+1.7e-09x^3 

dy= -0.031x+54x/y+7.9e+08 /y^3 

 

Bacteria inoculum size = 

250 CFU/mm2 

reproduction rate= 6 h 

dx= -2.1x+0.0012xy -7.1e-09 x^3 

dx= -1836x/y+0.00059xy -7.1e-09 x^3 

dx=+2.1x -3684x/y -7.2e-09 x^3  

 

dy= -3.4e-07 x^2 -8e+07/y^2+1.4e+11/y^3 

dy= -22701/y -3.4e-07 x^2+7.2e+10/y^3 

dy= -8.6 -3.4e-07 x^2+4.8e+10/y^3 

 

Bacteria inoculum size = 

250 CFU/mm2 

reproduction rate= 12 h 

dx=+0.76x -1329x/y -5.1e-08 x^3 

dx= -652x/y+0.00021xy -5.1e-08 x^3 

dx= -0.73x+0.00042xy -5.1e-08 x^3 

 

dy= -3.7e+07 /y^2 -7.3e-10 x^3+6.6e+10/y^3 

dy= -10468/y -7.3e-10 x^3+3.3e+10/y^3 

dy= -3.9 -7.3e-10 x^3+2.2e+10/y^3 

 

Bacteria inoculum size = 

250 CFU/mm2 

reproduction rate= 18 h 

dx = -0.53 x + 3e-04 xy -1e-07 x^3  

dx = -468 x/y + 0.00015 xy -1e-07 x^3  

dx = + 0.54 x -945 x/y -1e-07 x^3  

 



      

171 

 

  

dy = + 10 -14720 /(xy) -3.2e-06 y^2  

dy = + 20 -0.011 y -14679 /(xy) 

dy = + 8973 /y -14720 /(xy) -8.9e-10 y^3  

 

Bacteria inoculum size = 

250 CFU/mm2 

reproduction rate= 24 h 

dx = -1723 /x + 3096524 /(xy) -1e-07 x^3  

dx = + 1568274 /(xy) -0.49 y/x -1e-07 x^3  

dx = + 1768 /x -0.98 y/x -1e-07 x^3  

 

dy = + 3.8 x/y + 9.2e-06 y^2 -5.3e-09 y^3  

dy = + 0.0082 y + 3.8 x/y -2.7e-09 y^3  

dy = + 0.017 y + 3.8 x/y -9.4e-06 y^2  
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Figure B.1. Comparison between the BJI model simulation outputs and the system dynamics 

model outputs of bacteria population over time. The outputs were calculated for bacteria 
inoculum size= 100 (CFU/mm2) and for different values of bacterial reproduction rate= 2, 4, 

6, 12, 18, 24 hours, respectively. The red line represents the mean of 20 iterations of 
simulation output. The other lines represent the three best fit models calculated by Bayesian 

dynamical system approach for the same data. Blue line represents the first best fit calculated 
model. Green line represents the second best fit calculated model. Orange line represents the 

third best fit calculated model. 
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Figure B.2. Comparison between the BJI model simulation outputs and the system dynamics 
model outputs of bacteria population over time. The outputs were calculated for bacteria 

inoculum size= 150 (CFU/mm2) and for different values of bacterial reproduction rate= 2, 4, 
6, 12, 18, 24 hours, respectively. The red line represents the mean of 20 iterations of 

simulation output. The other lines represent the three best fit models calculated by Bayesian 
dynamical system approach for the same data. Blue line represents the first best fit calculated 
model. Green line represents the second best fit calculated model. Orange line represents the 

third best fit calculated model. 
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Figure B.3. Comparison between the BJI model simulation outputs and the system dynamics 

model outputs of bacteria population over time. The outputs were calculated for bacteria 
inoculum size= 250 (CFU/mm2) and for different values of bacterial reproduction rate= 2, 4, 

6, 12, 18, 24 hours, respectively. The red line represents the mean of 20 iterations of 
simulation output. The other lines represent the three best fit models calculated by Bayesian 

dynamical system approach for the same data. Blue line represents the first best fit calculated 
model. Green line represents the second best fit calculated model. Orange line represents the 

third best fit calculated model. 
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Figure B.4. Comparison between the BJI model simulation outputs and the system dynamics 

model outputs of neutrophil (PMN) population over time. The outputs were calculated for 
bacteria inoculum size= 100 (CFU/mm2) and for different values of bacterial reproduction 

rate= 2, 4, 6, 12, 18, 24 hours, respectively. The red line represents the mean of 20 iterations 
of simulation output. The other lines represent the three best fit models calculated by 

Bayesian dynamical system approach for the same data. Blue line represents the first best fit 
calculated model. Green line represents the second best fit calculated model. Orange line 

represents the third best fit calculated model. 
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Figure B.5. Comparison between the BJI model simulation outputs and the system dynamics 
model outputs of neutrophil (PMN) population over time. The outputs were calculated for 
bacteria inoculum size= 150 (CFU/mm2) and for different values of bacterial reproduction 

rate= 2, 4, 6, 12, 18, 24 hours, respectively. The red line represents the mean of 20 iterations 
of simulation output. The other lines represent the three best fit models calculated by 

Bayesian dynamical system approach for the same data. Blue line represents the first best fit 
calculated model. Green line represents the second best fit calculated model. Orange line 

represents the third best fit calculated model. 
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Figure B.6. Comparison between the BJI model simulation outputs and the system dynamics 

model outputs of neutrophil (PMN) population over time. The outputs were calculated for 
bacteria inoculum size= 250 (CFU/mm2) and for different values of bacterial reproduction 

rate= 2, 4, 6, 12, 18, 24 hours, respectively. The red line represents the mean of 20 iterations 
of simulation output. The other lines represent the three best fit models calculated by 

Bayesian dynamical system approach for the same data. Blue line represents the first best fit 
calculated model. Green line represents the second best fit calculated model. Orange line 

represents the third best fit calculated model. 
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Figure B.7. Comparison between the BJI model simulation outputs and the system dynamics 
model outputs of bacteria population over time for bacteria and osteocyte dynamic system. 
The outputs were calculated for bacteria inoculum size= 100 and 150 (CFU/mm2) and for 

different values of bacterial reproduction rate= 4, 6, 12, 18 hours, respectively.  

  



      

179 

 

  

  

  

  

 

Figure B.8. Comparison between the BJI model simulation outputs and the system dynamics 
model outputs of bacteria population over time for bacteria and osteocyte dynamic system. 
The outputs were calculated for bacteria inoculum size= 250 (CFU/mm2) and for different 

values of bacterial reproduction rate= 2, 4, 6, 12, 18, 24 hours, respectively. 

  



      

180 

 

  

  

  

Figure B.9. Comparison between the BJI model simulation outputs and the system dynamics 
model outputs of osteocyte population over time for bacteria and osteocyte dynamic system. 
The outputs were calculated for bacteria inoculum size= 100 (CFU/mm2) and for different 

values of bacterial reproduction rate= 2, 4, 6, 24 hours, respectively. 
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Figure B.10. Comparison between the BJI model simulation outputs and the system 
dynamics model outputs of osteocyte population over time for bacteria and osteocyte dynamic 

system. The outputs were calculated for bacteria inoculum size= 150 (CFU/mm2) and for 
different values of bacterial reproduction rate= 4, 6, 18, 24 hours, respectively. 
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Figure B.11. Comparison between the BJI model simulation outputs and the system 
dynamics model outputs of osteocyte population over time for bacteria and osteocyte dynamic 

system. The outputs were calculated for bacteria inoculum size= 250 (CFU/mm2) and for 
different values of bacterial reproduction rate= 2, 4, 6, 12, 18, 24 hours, respectively. 
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Titre: Modélisations complexes bi dimensionnelles des infections ostéo-articulaires à base de simulations 

multi-agents. 

Mots clés: Infections ostéo-articulaires, systèmes multi-agents, NetLogo, modélisation par systèmes 

dynamiques non-linéaires, multi-échelle, remodelage osseux, Staphylococcus aureus 

Résumé: Le diagnostic et la prise en charge des infections ostéo-articulaires (IOA) sont souvent complexes 

occasionnant une perte osseuse irréversible. La variabilité intra et inter-patient en terme de présentation clinique 

rend impossible le recours à une description systématique ou à une analyse statistique pour le diagnostic et 

l'étude de cette pathologie. Le développement d'IOA résulte d'interactions complexes entre les mécanismes 

cellulaires et moléculaires du tissu osseux et les bactéries. L'objectif de cette thèse est de modéliser l'IOA afin de 

simuler le comportement du système suite à des interactions au niveau cellulaire et moléculaire en utilisant 

l'approche de modélisation à base d'agents. Nous avons utilisé une méthode basée sur l'analyse bibliographique 

pour extraire les caractéristiques du modèle et les utiliser pour deux aspects. Le premier consiste en l'élaboration 

de la structure du modèle en identifiant les agents et les interactions, et le deuxième concerne l'estimation 

quantitative des différents paramètres du modèle. La réponse du système BJI aux différentes tailles d’inoculum 

bactérien a été simulée par la variation de différents paramètres. L'évolution des agents simulés a ensuite été 

analysée en utilisant une modélisant par des systèmes dynamiques non linéaires et une méthodologie "Data-

driven", grâce auxquelles nous avons décrit le système d'IOA et identifié des relations plausibles entre les 

agents. Le modèle a réussi à présenter la dynamique des bactéries, des cellules immunitaires innées et des 

cellules osseuses au cours de la première étape de l'IOA et pour différentes tailles d'inoculum bactérien. La 

simulation a mis en évidence les conséquences sur le tissu osseux résultant du processus de remodelage osseux 

au cours de l'IOA. Ces résultats peuvent être considérés comme une base pour une analyse plus approfondie et 

pour la proposition de différentes hypothèses et scénarios de simulation qui pourraient être étudiés dans ce 

laboratoire virtuel.  

 

Title: Two-dimensional complex modeling of bone and joint infections using agent-based simulation 

Keywords: Bone and joint infections, agent-based modeling, NetLogo, nonlinear system dynamics modeling, 

multi-scale, bone destruction prediction, bone remodeling process, Staphylococcus aureus   

Abstract: Bone and joint infections are one of the most challenging bone pathologies that associated with 

irreversible bone loss and long costly treatment. The high intra and inter patient's variability in terms of clinical 

presentation makes it impossible to rely on the systematic description or classical statistical analysis for its 

diagnosis or studying. The development of BJI encompasses a complex interplay between the cellular and 

molecular mechanisms of the host bone tissue and the infecting bacteria. The objective of this thesis is to 

provide a novel computational modeling framework that simulates the behavior resulting from the interactions 

on the cellular and molecular levels to explore the BJI dynamics qualitatively and comprehensively, using an 

agent-based modeling approach. We relied on a meta-analysis-like method to extract the quantitative and 

qualitative data from the literature and used it for two aspects. First, elaborating the structure of the model by 

identifying the agents and the interactions, and second estimating quantitatively the different parameters of the 

model. The BJI system’s response to different microbial inoculum sizes was simulated with respect to the 

variation of several critical parameters. The simulation output data was then analyzed using a data-driven 

methodology and system dynamics approach, through which we summarized the BJI complex system and 

identified plausible relationships between the agents using differential equations. The BJI model succeeded in 

imitating the dynamics of bacteria, the innate immune cells, and the bone cells during the first stage of BJI and 

for different inoculum size in a compatible way. The simulation displayed the damage in bone tissue as a result 

of the variation in bone remodeling process during BJI. These findings can be considered as a foundation for 

further analysis and for the proposition of different hypotheses and simulation scenarios that could be 

investigated through this BJI model as a virtual lab. 


