S. Lafon-lafourcade, C. Geneix, and P. Ribéreau-gayon, Inhibition of alcoholic fermentation of grape must by Fatty acids produced by yeasts and their elimination by yeast ghosts, Appl. Environ. Microbiol, vol.47, pp.1246-1249, 1984.

G. P. League, J. C. Slot, and A. Rokas, The ASP3 locus in Saccharomyces cerevisiae originated by horizontal gene transfer from Wickerhamomyces, FEMS Yeast Res, vol.12, pp.859-863, 2012.

G. Lesage and H. Bussey, Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. MMBR, vol.70, pp.317-343, 2006.

R. Mercadé-prieto, C. R. Thomas, and Z. Zhang, Mechanical double layer model for Saccharomyces Cerevisiae cell wall, Eur. Biophys. J, vol.42, pp.613-620, 2013.

K. Millsap, Adhesive interactions between medically important yeasts and bacteria, FEMS Microbiol. Rev, vol.21, pp.321-336, 1998.

T. H. Nguyen, G. H. Fleet, and P. L. Rogers, Composition of the cell walls of several yeast species, Appl. Microbiol. Biotechnol, vol.50, pp.206-212, 1998.

M. Novak and V. Vetvicka, Glucans as biological response modifiers, Endocr. Metab. Immune Disord. Drug Targets, vol.9, pp.67-75, 2009.

G. A. Pope, D. A. Mackenzie, M. Defernez, M. A. Aroso, L. J. Fuller et al., Metabolic footprinting as a tool for discriminating between brewing yeasts, Yeast Chichester Engl, vol.24, pp.667-679, 2007.

J. L. Reissig, J. L. Storminger, and L. F. Leloir, A modified colorimetric method for the estimation of N-acetylamino sugars, J. Biol. Chem, vol.217, pp.959-966, 1955.

C. Roduit, B. Saha, L. Alonso-sarduy, A. Volterra, G. Dietler et al., OpenFovea: open-source AFM data processing software, Nat. Methods, vol.9, pp.774-775, 2012.

S. Rupp, E. Summers, H. Lo, H. Madhani, and G. Fink, MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene, EMBO J, vol.18, pp.1257-1269, 1999.

M. Sacher, J. Barrowman, D. Schieltz, J. R. Yates, and S. Ferro-novick, Identification and characterization of five new subunits of TRAPP, Eur. J. Cell Biol, vol.79, pp.71-80, 2000.

M. Schiavone, A. Vax, C. Formosa, H. Martin-yken, E. Dague et al., , 2014.

G. K. Smyth, V. ;-r.-gentleman, S. Carey, R. Dudoit, W. Irizarry et al., Limma: linear models for microarray data, In Bioinformatics and Computational Biology Solutions Using R and Bioconductor, pp.397-420, 2005.

A. A. Suharja, A. Henriksson, and S. Liu, Impact of Saccharomyces Cerevisiae on Viability of Probiotic Lactobacillus Rhamnosus in Fermented Milk under Ambient Conditions, J. Food Process. Preserv, vol.38, pp.326-337, 2014.

A. W. Teunissen and H. Y. Steensma, Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family, Yeast Chichester Engl, vol.11, pp.1001-1013, 1995.

A. Tirelli, D. Fracassetti, D. Noni, and I. , Determination of Reduced Cysteine in Oenological Cell Wall Fractions of Saccharomyces cerevisiae, J. Agric. Food Chem, vol.58, pp.4565-4570, 2010.

G. M. Walker, Yeast Physiology and Biotechnology, 1998.

P. J. Westfall, D. R. Ballon, and J. Thorner, When the stress of your environment makes you go HOG wild, Science, vol.306, pp.1511-1512, 2004.

W. H. Zyl, . Van, L. R. Lynd, R. Haan, and J. E. Mcbride, Consolidated Bioprocessing for Bioethanol Production Using Saccharomyces cerevisiae, pp.205-235, 2007.

B. Aguilar-uscanga and J. M. Francois, A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation, Lett. Appl. Microbiol, vol.37, pp.268-274, 2003.

H. Alexandre and M. Guilloux-benatier, Yeast autolysis in sparkling wine -a review, Aust. J. Grape Wine Res, vol.12, pp.119-127, 2006.

C. Alkim, L. Benbadis, U. Yilmaz, Z. P. Cakar, and J. M. François, Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering, Met. Integr. Biometal Sci, vol.5, pp.1043-1060, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02650092

D. Alsteens, V. Dupres, K. Mc-evoy, L. Wildling, H. J. Gruber et al., Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM, Nanotechnology, vol.19, p.384005, 2008.

D. Alsteens, M. C. Garcia, P. N. Lipke, and Y. F. Dufrene, Force-induced formation and propagation of adhesion nanodomains in living fungal cells, Proc. Natl. Acad. Sci, vol.107, pp.20744-20749, 2010.

M. R. Armando, R. P. Pizzolitto, C. A. Dogi, A. Cristofolini, C. Merkis et al., Adsorption of ochratoxin A and zearalenone by potential probiotic, 2012.

, Saccharomyces cerevisiae strains and its relation with cell wall thickness, J. Appl. Microbiol, vol.113, pp.256-264

M. Arnoldi, M. Fritz, E. Bäuerlein, M. Radmacher, E. Sackmann et al., Bacterial turgor pressure can be measured by atomic force microscopy, Phys. Rev. E, vol.62, pp.1034-1044, 2000.

C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Entropic elasticity of lambda-phage DNA, Science, vol.265, pp.1599-1600, 1994.

M. Cavagna, R. Dell'anna, F. Monti, F. Rossi, and S. Torriani, Use of ATR-FTIR, 2010.

L. Chopinet, C. Formosa, M. P. Rols, R. E. Duval, and E. Dague, Imaging living cells surface and quantifying its properties at high resolution using AFM in QITM mode, 2013.

E. Dague, Y. Gilbert, C. Verbelen, G. Andre, D. Alsteens et al., Towards a nanoscale view of fungal surfaces, Yeast, vol.24, pp.229-237, 2007.

E. Dague, R. Bitar, H. Ranchon, F. Durand, H. M. Yken et al., An atomic force microscopy analysis of yeast mutants defective in cell wall architecture, Yeast Chichester Engl, vol.27, pp.673-684, 2010.

E. Dague, E. Jauvert, L. Laplatine, B. Viallet, C. Thibault et al., Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bioexperiments, Nanotechnology, vol.22, p.395102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01767584

N. Dallies, J. Francois, and V. Paquet, A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae, Yeast Chichester Engl, vol.14, pp.1297-1306, 1998.

Y. F. Dufrêne, Atomic force microscopy of fungal cell walls: an update, Yeast, vol.27, pp.465-471, 2010.

M. Fomina and G. M. Gadd, Biosorption: current perspectives on concept, definition and application, Bioresour. Technol, vol.160, pp.3-14, 2014.

C. Formosa, M. Schiavone, H. Martin-yken, J. M. François, R. E. Duval et al., , 2013.

, Nanoscale Effects of Caspofungin against Two Yeast Species, Saccharomyces cerevisiae and Candida albicans, Antimicrob. Agents Chemother, vol.57, pp.3498-3506

C. Formosa, M. Schiavone, A. Boisrame, M. L. Richard, R. E. Duval et al., , 2014.

, Multiparametric imaging of adhesive nanodomains at the surface of Candida albicans by atomic force microscopy, Nanomedicine Nanotechnol. Biol. Med

J. M. Francois, A simple method for quantitative determination of polysaccharides in fungal cell walls, Nat. Protoc, vol.1, pp.2995-3000, 2006.

G. Giovani and I. Rosi, Release of cell wall polysaccharides from Saccharomyces cerevisiae thermosensitive autolytic mutants during alcoholic fermentation, Int. J. Food Microbiol, vol.116, pp.19-24, 2007.

R. Hatoum, S. Labrie, and I. Fliss, Antimicrobial and Probiotic Properties of Yeasts: From Fundamental to Novel Applications, 2012.

T. Hernawan and G. Fleet, Chemical and cytological changes during the autolysis of yeasts, 1995.

, J. Ind. Microbiol, vol.14, pp.440-450

P. Hinterdorfer, M. F. Garcia-parajo, and Y. F. Dufrêne, Single-Molecule Imaging of Cell Surfaces Using Near-Field Nanoscopy, Acc. Chem. Res, vol.45, pp.327-336, 2012.

Y. Hochberg and Y. Benjamini, More powerful procedures for multiple significance testing, 1990.

, Stat. Med, vol.9, pp.811-818

J. L. Hutter and J. Bechhoefer, Calibration of atomic-force microscope tips, Rev. Sci. Instrum, vol.64, pp.1868-1873, 1993.

E. Jauvert, E. Dague, M. Séverac, L. Ressier, A. Caminade et al., Probing single molecule interactions by AFM using bio-functionalized dendritips, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268327

B. Actuators and . Chem, , vol.168, pp.436-441

S. Karunanithi, N. Vadaie, C. A. Chavel, B. Birkaya, J. Joshi et al., , 2010.

, Shedding of the Mucin-like Flocculin Flo11p Reveals a New Aspect of Fungal Adhesion Regulation

, Curr. Biol. CB, vol.20, pp.1389-1395

G. Lesage and H. Bussey, Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol, 2006.

, Biol. Rev. MMBR, vol.70, pp.317-343

P. N. Lipke, M. C. Garcia, D. Alsteens, C. B. Ramsook, S. A. Klotz et al., , 2012.

, Strengthening relationships: amyloids create adhesion nanodomains in yeasts, Trends Microbiol, vol.20, pp.59-65

A. J. Mart??ez-rodr??uez, M. C. Polo, and A. V. Carrascosa, Structural and ultrastructural changes in yeast cells during autolysis in a model wine system and in sparkling wines, Int. J. Food Microbiol, vol.71, pp.45-51, 2001.

T. H. Nguyen, G. H. Fleet, and P. L. Rogers, Composition of the cell walls of several yeast species, Appl. Microbiol. Biotechnol, vol.50, pp.206-212, 1998.

P. Orlean, Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall, Genetics, vol.192, pp.775-818, 2012.

M. Osumi, The ultrastructure of yeast: Cell wall structure and formation, Micron, vol.29, pp.207-233, 1998.

L. Petruzzi, M. Sinigaglia, M. R. Corbo, D. Campaniello, B. Speranza et al., , 2014.

, Decontamination of ochratoxin A by yeasts: possible approaches and factors leading to toxin removal in wine, Appl. Microbiol. Biotechnol, vol.98, pp.6555-6567

F. Pillet, S. Lemonier, M. Schiavone, C. Formosa, H. Martin-yken et al.,

R. Pradelles, H. Alexandre, A. Ortiz-julien, C. , and D. , Effects of yeast cell-wall characteristics on 4-ethylphenol sorption capacity in model wine, J. Agric. Food Chem, vol.56, pp.11854-11861, 2008.

R. Pradelles, S. Vichi, H. Alexandre, C. , and D. , Influence of the drying processes of yeasts on their volatile phenol sorption capacity in model wine, Int. J. Food Microbiol, vol.135, pp.152-157, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00454567

C. B. Ramsook, C. Tan, M. C. Garcia, R. Fung, G. Soybelman et al., Yeast Cell Adhesion Molecules Have Functional Amyloid-Forming Sequences, Eukaryot. Cell, vol.9, pp.393-404, 2010.

M. Schiavone, A. Vax, C. Formosa, H. Martin-yken, E. Dague et al., A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts, FEMS Yeast Res, vol.14, pp.933-947, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638140

N. Sharon and H. Lis, Lectins, 2007.

G. K. Smyth, V. ;-r.-gentleman, S. Carey, R. Dudoit, W. Irizarry et al., Limma: linear models for microarray data, In Bioinformatics and Computational Biology Solutions Using R and Bioconductor, pp.397-420, 2005.

S. White, M. Mcintyre, D. R. Berry, and B. Mcneil, The Autolysis of Industrial Filamentous Fungi, Crit. Rev. Biotechnol, vol.22, pp.1-14, 2002.

Y. H. Yang and T. Speed, Design issues for cDNA microarray experiments, Nat. Rev. Genet, vol.3, pp.579-588, 2002.

. Chapter,

D. J. Adams, Fungal cell wall chitinases and glucanases, Microbiol. Read. Engl, vol.150, pp.2029-2035, 2004.

B. Aguilar-uscanga and J. M. Francois, A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation, Lett. Appl. Microbiol, vol.37, pp.268-274, 2003.

B. Aguilar-uscanga, J. Arrizon, J. Ramirez, and J. Solis-pacheco, , 2007.

, Antonie Van Leeuwenhoek, vol.91, pp.151-157

F. Ahimou, A. Touhami, and Y. F. Dufrêne, Real-time imaging of the surface topography of living yeast cells by atomic force microscopy, Yeast, vol.20, pp.25-30, 2003.

V. Aimanianda, C. Clavaud, C. Simenel, T. Fontaine, M. Delepierre et al., Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00512054

, J. Biol. Chem, vol.284, pp.13401-13412

H. Alexandre and M. Guilloux-benatier, Yeast autolysis in sparkling wine -a review, Aust. J. Grape Wine Res, vol.12, pp.119-127, 2006.

D. Alsteens, E. Dague, P. G. Rouxhet, A. R. Baulard, and Y. F. Dufrêne, Direct Measurement of Hydrophobic Forces on Cell Surfaces Using AFM. Langmuir, vol.23, pp.11977-11979, 2007.

D. Alsteens, V. Dupres, K. Mc-evoy, L. Wildling, H. J. Gruber et al., Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM, Nanotechnology, vol.19, p.384005, 2008.

D. Alsteens, V. Dupres, S. Yunus, J. Latgé, J. J. Heinisch et al., High-Resolution Imaging of Chemical and Biological Sites on Living Cells Using Peak Force Tapping Atomic Force Microscopy, Langmuir, vol.28, pp.16738-16744, 2012.

J. Arfsten, S. Leupold, C. Bradtmöller, I. Kampen, and A. Kwade, Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae, Colloids Surf. B Biointerfaces, vol.79, pp.284-290, 2010.

M. R. Armando, R. P. Pizzolitto, C. A. Dogi, A. Cristofolini, C. Merkis et al., Adsorption of ochratoxin A and zearalenone by potential probiotic, 2012.

, Saccharomyces cerevisiae strains and its relation with cell wall thickness, J. Appl. Microbiol, vol.113, pp.256-264

J. Arroyo, C. Bermejo, R. García, and J. M. Rodríguez-peña, Genomics in the detection of damage in microbial systems: cell wall stress in yeast, Clin. Microbiol. Infect, vol.15, pp.44-46, 2009.

M. Azuma, J. N. Levinson, N. Pagé, and H. Bussey, Saccharomyces cerevisiae Big1p, 2002.

B. C. Baguley, G. Rommele, J. Gruner, and W. Wehrli, Papulacandin B: an Inhibitor of Glucan Synthesis in Yeast Spheroplasts, Eur. J. Biochem, vol.97, pp.345-351, 1979.

V. Baladron, S. Ufano, E. Duenas, A. B. Martin-cuadrado, F. Rey et al.,

. Eng1p, Endo-1,3--Glucanase Localized at the Daughter Side of the Septum, Is Involved in Cell Separation in Saccharomyces cerevisiae, Eukaryot. Cell, vol.1, pp.774-786

A. Beaussart, S. El-kirat-chatel, R. M. Sullan, D. Alsteens, P. Herman et al.,

Y. F. Dufrêne, Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy, Nat. Protoc, vol.9, pp.1049-1055, 2014.

M. Bernstein, W. Hoffmann, G. Ammerer, and R. Schekman, Characterization of a gene product (Sec53p) required for protein assembly in the yeast endoplasmic reticulum, J. Cell Biol, vol.101, pp.2374-2382, 1985.

E. E. Bezsonov, M. Groenning, O. V. Galzitskaya, A. A. Gorkovskii, G. V. Semisotnov et al., , 2013.

Q. Binnig and . Gerber, Atomic force microscope, Phys. Rev. Lett, vol.56, pp.930-933, 1986.

N. Blanco, M. Reidy, J. Arroyo, and E. Cabib, Crosslinks in the cell wall of budding yeast control morphogenesis at the mother-bud neck, J. Cell Sci, vol.125, pp.5781-5789, 2012.

E. Boles, W. Liebetrau, M. Hofmann, and F. K. Zimmermann, A family of hexosephosphate mutases in Saccharomyces cerevisiae, Eur. J. Biochem. FEBS, vol.220, pp.83-96, 1994.

I. J. Bom, S. K. Dielbandhoesing, K. N. Harvey, S. J. Oomes, F. M. Klis et al., A new tool for studying the molecular architecture of the fungal cell wall: one-step purification of recombinant trichoderma beta-(1-6)-glucanase expressed in Pichia pastoris, Biochim. Biophys. Acta, vol.1425, pp.419-424, 1998.

C. Boone, Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly, 1990.

, J. Cell Biol, vol.110, pp.1833-1843

A. Boorsma, H. Nobel, . De, B. Riet, . Ter et al., , 2004.

, Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae, Yeast, vol.21, pp.413-427

J. Bourdineaud, . Van-der, J. M. Vaart, M. Donzeau, G. De-sampaïo et al.,

G. J. and -. , Pmt1 mannosyl transferase is involved in cell wall incorporation of several proteins in Saccharomyces cerevisiae, Mol. Microbiol, vol.27, pp.85-98, 1998.

G. D. Brown, G. , and S. , Fungal ?-Glucans and Mammalian Immunity, Immunity, vol.19, pp.311-315, 2003.

J. Brown, Z. Kossaczka, B. Jiang, and H. Bussey, A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1-->6)-beta-glucan synthesis, Genetics, vol.133, pp.837-849, 1993.

. Brown-jl and H. Bussey, The yeast KRE9 gene encodes an O glycoprotein involved in cell surface beta-glucan assembly, Mol. Cell. Biol, vol.13, pp.6346-6356, 1993.

F. Bugli, B. Posteraro, M. Papi, R. Torelli, A. Maiorana et al., Vitro Interaction between Alginate Lyase and Amphotericin B against Aspergillus fumigatus Biofilm Determined by Different Methods, vol.57, pp.1275-1282, 2013.

C. E. Bulawa, O. , and B. C. , Chitin synthase I and chitin synthase II are not required for chitin synthesis in vivo in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.7424-7428, 1990.

P. Burda, A. , and M. , The dolichol pathway of N-linked glycosylation, Biochim. Biophys. Acta, vol.1426, pp.239-257, 1999.

N. A. Burnham, X. Chen, C. S. Hodges, G. A. Matei, E. J. Thoreson et al.,

S. J. Tendler, Comparison of calibration methods for atomic-force microscopy cantilevers, Nanotechnology, vol.14, p.1, 2003.

C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Entropic elasticity of lambda-phage DNA, Science, vol.265, pp.1599-1600, 1994.

K. P. Byrne and K. H. Wolfe, The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species, Genome Res, vol.15, pp.1456-1461, 2005.

A. Bzducha-wróbel, M. Kieliszek, and S. B?a?ejak, Chemical composition of the cell wall of probiotic and brewer's yeast in response to cultivation medium with glycerol as a carbon source, Eur. Food Res. Technol, vol.237, pp.489-499, 2013.

E. Cabib, Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins, Antimicrob. Agents Chemother, vol.35, pp.170-173, 1991.

E. Cabib, Synthase III-dependent Chitin Is Bound to Different Acceptors Depending on Location on the Cell Wall of Budding Yeast, J. Biol. Chem, vol.280, pp.9170-9179, 2005.

E. Cabib, Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both beta(1-6)-and beta(1-3)glucan in the Saccharomyces cerevisiae cell wall, Eukaryot. Cell, vol.8, pp.1626-1636, 2009.

E. Cabib and J. Arroyo, How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall, Nat. Rev. Microbiol, vol.11, pp.648-655, 2013.

E. Cabib, S. J. Silverman, and J. A. Shaw, Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae, J. Gen. Microbiol, vol.138, pp.97-102, 1992.

E. Cabib, N. Blanco, C. Grau, J. M. Rodríguez-peña, and J. Arroyo, Crh1p and Crh2p are required for the cross-linking of chitin to ?(1-6)glucan in the Saccharomyces cerevisiae cell wall, 2007.

. Microbiol, , vol.63

E. Cabib, V. Farkas, O. Kosik, N. Blanco, J. Arroyo et al., Assembly of the Yeast Cell Wall: Crh1p AND Crh2p ACT AS TRANSGLYCOSYLASES IN VIVO AND IN VITRO, 2008.

, Chem, vol.283, pp.29859-29872

E. Cabib, N. Blanco, and J. Arroyo, , 2012.

, Eukaryot. Cell, vol.11, pp.388-400

E. Canetta, A. K. Adya, and G. M. Walker, Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology, FEMS Microbiol. Lett, vol.255, pp.308-315, 2006.

,. Lê-cao, I. González, and S. Déjean, integrOmics: an R package to unravel relationships between two omics datasets, Bioinforma. Oxf. Engl, vol.25, pp.2855-2856, 2009.

C. Cappellaro, V. Mrsa, and W. Tanner, New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating, J. Bacteriol, vol.180, pp.5030-5037, 1998.

L. Carreto, M. F. Eiriz, A. C. Gomes, P. M. Pereira, D. Schuller et al., , 2008.

L. Castillo, A. I. Martinez, A. Garcera, M. Victoria-elorza, E. Valentin et al., Functional analysis of the cysteine residues and the repetitive sequence ofSaccharomyces cerevisiae, 2003.

, Pir4/Cis3: the repetitive sequence is needed for binding to the cell wall ?-1,3-glucan, Yeast, vol.20, pp.973-983

C. Castro, J. C. Ribas, M. H. Valdivieso, R. Varona, F. Rey et al., Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae, J. Bacteriol, vol.177, pp.5732-5739, 1995.

M. Celton, I. Sanchez, A. Goelzer, V. Fromion, C. Camarasa et al., A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation, BMC Genomics, vol.13, p.317, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02649995

A. Cerf, J. C. Cau, C. Vieu, and E. Dague, Nanomechanical properties of dead or alive single-patterned bacteria, Langmuir ACS J. Surf. Colloids, vol.25, pp.5731-5736, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02061192

P. Chalier, B. Angot, D. Delteil, T. Doco, and Z. Gunata, Interactions between aroma compounds and whole mannoprotein isolated from Saccharomyces cerevisiae strains, Food Chem, vol.100, pp.22-30, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02663849

J. Chen and R. Seviour, Medicinal importance of fungal ?-(1?3), (1?6)-glucans, Mycol. Res, vol.111, pp.635-652, 2007.

J. M. Cherry, C. Adler, C. Ball, S. A. Chervitz, S. S. Dwight et al., SGD: Saccharomyces Genome Database, Nucleic Acids Res, vol.26, pp.73-79, 1998.

L. Chopinet, C. Formosa, M. P. Rols, R. E. Duval, and E. Dague, Imaging living cells surface and quantifying its properties at high resolution using AFM in QITM mode, 2013.

V. J. Cid, A. Duran, F. Del-rey, M. P. Snyder, C. Nombela et al., Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae, Microbiol. Rev, vol.59, pp.345-386, 1995.

F. B. Claro, K. Rijsbrack, and E. V. Soares, Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress, J. Appl. Microbiol, vol.102, pp.693-700, 2007.

F. Comitini, I. Mannazzu, and M. Ciani, Tetrapisispora phaffii killer toxin is a highly specific ?glucanase that disrupts the integrity of the yeast cell wall, Microb. Cell Factories, vol.8, p.55, 2009.

E. Dague, R. Bitar, H. Ranchon, F. Durand, H. M. Yken et al., An atomic force microscopy analysis of yeast mutants defective in cell wall architecture, Yeast Chichester Engl, vol.27, pp.673-684, 2010.

E. Dague, E. Jauvert, L. Laplatine, B. Viallet, C. Thibault et al., Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bioexperiments, Nanotechnology, vol.22, p.395102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01767584

N. Dallies, J. Francois, and V. Paquet, A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae, Yeast Chichester Engl, vol.14, pp.1297-1306, 1998.

M. E. Danielson, R. Dauth, N. A. Elmasry, R. R. Langeslay, A. S. Magee et al., , 2010.

, Enzymatic method to measure Î2-1,3-Î2-1,6-glucan content in extracts and formulated products (GEM assay), J. Agric. Food Chem, vol.58, pp.10305-10308

J. M. Daran, N. Dallies, D. Thines-sempoux, V. Paquet, and J. François, Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae, Eur. J. Biochem. FEBS, vol.233, pp.520-530, 1995.

K. R. Davenport, M. Sohaskey, Y. Kamada, D. E. Levin, and M. C. Gustin, A Second Osmosensing Signal Transduction Pathway in Yeast HYPOTONIC SHOCK ACTIVATES THE PKC1, 1995.

, PROTEIN KINASE-REGULATED CELL INTEGRITY PATHWAY. J. Biol. Chem, vol.270, pp.30157-30161

P. B. Dengis and P. G. Rouxhet, Flocculation Mechanisms of Top and Bottom Fermenting Brewing Yeast, J. Inst. Brew, vol.103, pp.257-261, 1997.

D. W. Denning, Echinocandin antifungal drugs, The Lancet, vol.362, pp.1142-1151, 2003.

M. Destruelle, H. Holzer, and D. J. Klionsky, Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation, Mol. Cell. Biol, vol.14, pp.2740-2754, 1994.

A. Devrekanli, M. Foltman, C. Roncero, A. Sanchez-diaz, and K. Labib, Inn1 and Cyk3 regulate chitin synthase during cytokinesis in budding yeasts, J. Cell Sci, vol.125, pp.5453-5466, 2012.

G. J. Dijkgraaf, M. Abe, Y. Ohya, and H. Bussey, Mutations in Fks1p affect the cell wall content of beta-1,3-and beta-1,6-glucan in Saccharomyces cerevisiae, Yeast Chichester Engl, vol.19, pp.671-690, 2002.

D. S. Donohue, F. S. Ielasi, K. V. Goossens, and R. G. Willaert, The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containing glycans, Mol. Microbiol, vol.80, pp.1667-1679, 2011.

C. M. Douglas, F. Foor, J. A. Marrinan, N. Morin, J. B. Nielsen et al., The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase, Proc. Natl. Acad. Sci. U, 1994.

S. , , vol.91, pp.12907-12911

Y. F. Dufrêne, Atomic Force Microscopy, a Powerful Tool in Microbiology, J. Bacteriol, vol.184, pp.5205-5213, 2002.

Y. F. Dufrêne, Atomic force microscopy and chemical force microscopy of microbial cells, Nat. Protoc, vol.3, pp.1132-1138, 2008.

A. Dünkler, S. Jorde, and J. Wendland, An Ashbya gossypii cts2 mutant deficient in a sporulation-specific chitinase can be complemented by Candida albicans CHT4, Microbiol. Res, vol.163, pp.701-710, 2008.

A. Ebner, L. Wildling, R. Zhu, C. Rankl, T. Haselgrübler et al., , 2008.

, Functionalization of probe tips and supports for single-molecule recognition force microscopy, Top. Curr. Chem, vol.285, pp.29-76

W. Eng, L. Faucette, M. M. Mclaughlin, R. Cafferkey, Y. Koltin et al.,

R. K. Johnson and G. P. Livi, The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth, Gene, vol.151, pp.61-71, 1994.

J. Friedrichs, J. Helenius, and D. J. Muller, Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy, Nat. Protoc, vol.5, pp.1353-1361, 2010.

B. B. Fuchs and E. Mylonakis, Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways, Eukaryot. Cell, vol.8, pp.1616-1625, 2009.

F. Gaboriaud and Y. F. Dufrêne, Atomic force microscopy of microbial cells: Application to nanomechanical properties, surface forces and molecular recognition forces, Colloids Surf. B Biointerfaces, vol.54, pp.10-19, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01819529

M. Gad and A. Ikai, Method for immobilizing microbial cells on gel surface for dynamic AFM studies, Biophys. J, vol.69, pp.2226-2233, 1995.

R. García, C. Bermejo, C. Grau, R. Pérez, J. M. Rodríguez-peña et al., The Global Transcriptional Response to Transient Cell Wall Damage in Saccharomyces cerevisiae and Its Regulation by the Cell Integrity Signaling Pathway, J. Biol. Chem, vol.279, pp.15183-15195, 2004.

R. García, J. M. Rodríguez-peña, C. Bermejo, C. Nombela, and J. Arroyo, The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae, J. Biol. Chem, vol.284, pp.10901-10911, 2009.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-harel, M. B. Eisen et al., Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes, Mol. Biol. Cell, vol.11, pp.4241-4257, 2000.

M. Gentzsch and W. Tanner, The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital, EMBO J, vol.15, pp.5752-5759, 1996.

V. Girrbach and S. Strahl, Members of the Evolutionarily Conserved PMT Family of ProteinO-Mannosyltransferases Form Distinct Protein Complexes among Themselves, J. Biol. Chem, vol.278, pp.12554-12562, 2003.

A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon et al., Life with 6000 genes, Science, vol.274, pp.563-567, 1996.

L. Goldschmidt, P. K. Teng, R. Riek, and D. Eisenberg, Identifying the amylome, proteins capable of forming amyloid-like fibrils, Proc. Natl. Acad. Sci, vol.107, pp.3487-3492, 2010.

I. J. Goldstein, H. C. Winter, H. Mo, A. Misaki, E. J. Van-damme et al., , 2001.

, Carbohydrate binding properties of banana (Musa acuminata) lectin II. Binding of laminaribiose oligosaccharides and beta-glucans containing beta1,6-glucosyl end groups, Eur. J. Biochem. FEBS, vol.268, pp.2616-2619

F. Gómez-esquer, J. M. Rodríguez-peña, G. Díaz, E. Rodriguez, and P. Briza,

J. Arroyo, CRR1, a gene encoding a putative transglycosidase, is required for proper spore wall assembly in Saccharomyces cerevisiae, Microbiol. Read. Engl, vol.150, pp.3269-3280, 2004.

D. Gonzalez-ramos and R. Gonzalez, Genetic determinants of the release of mannoproteins of enological interest by Saccharomyces cerevisiae, J. Agric. Food Chem, vol.54, pp.9411-9416, 2006.

K. V. Goossens, C. Stassen, I. Stals, D. S. Donohue, B. Devreese et al., The N-Terminal Domain of the Flo1 Flocculation Protein from Saccharomyces cerevisiae Binds Specifically to Mannose Carbohydrates, Eukaryot. Cell, vol.10, pp.110-117, 2011.

. Götzinger, Effect of roughness on particle adhesion in aqueous solutions: A study of Saccharomyces cerevisiae, Colloids and Surfaces B: Biointerfaces | ScienceDirect.com, 2006.

G. Guerriero, L. Silvestrini, M. Obersriebnig, M. Salerno, D. Pum et al., Sensitivity of Aspergillus nidulans to the Cellulose Synthase Inhibitor Dichlobenil: Insights from Wall-Related Genes' Expression and Ultrastructural Hyphal Morphologies, PLoS ONE, vol.8, p.80038, 2013.

C. Ha, K. Lim, Y. Kim, S. Lim, C. Kim et al., Analysis of alkali-soluble glucan produced by Saccharomyces cerevisiae wild-type and mutants, Appl. Microbiol. Biotechnol, vol.58, pp.370-377, 2002.

H. Hashimoto, A. Sakakibara, M. Yamasaki, Y. , and K. , Saccharomyces cerevisiae VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein glycosylation, J. Biol. Chem, vol.272, pp.16308-16314, 1997.

R. Hatoum, S. Labrie, and I. Fliss, Antimicrobial and Probiotic Properties of Yeasts: From Fundamental to Novel Applications, 2012.

J. J. Heinisch, V. Dupres, S. Wilk, A. Jendretzki, and Y. F. Dufrêne, Single-Molecule Atomic Force Microscopy Reveals Clustering of the Yeast Plasma-Membrane Sensor Wsc1, PLoS ONE, vol.5, 2010.

J. J. Heinisch, P. N. Lipke, A. Beaussart, S. El-kirat-chatel, V. Dupres et al., Atomic force microscopy -looking at mechanosensors on the cell surface, J. Cell Sci, vol.125, pp.4189-4195, 2012.

T. Hernawan and G. Fleet, Chemical and cytological changes during the autolysis of yeasts, 1995.

, J. Ind. Microbiol, vol.14, pp.440-450

A. Herscovics and P. Orlean, Glycoprotein biosynthesis in yeast, FASEB J, vol.7, p.540, 1993.

P. Hinterdorfer and Y. F. Dufrêne, Detection and localization of single molecular recognition events using atomic force microscopy, Nat. Methods, vol.3, pp.347-355, 2006.

M. Hofmann, E. Boles, and F. K. Zimmermann, Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase, Eur. J. Biochem. FEBS, vol.221, pp.741-747, 1994.

Z. Hong, P. Mann, K. J. Shaw, and B. Didomenico, Analysis of beta-glucans and chitin in a Saccharomyces cerevisiae cell wall mutant using high-performance liquid chromatography, Yeast Chichester Engl, vol.10, pp.1083-1092, 1994.

A. S. Howell and D. J. Lew, Morphogenesis and the Cell Cycle, Genetics, vol.190, pp.51-77, 2012.

J. Hu, R. Lipowsky, and T. R. Weikl, Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.15283-15288, 2013.

L. S. Huang, H. K. Doherty, and I. Herskowitz, The Smk1p MAP kinase negatively regulates, 2005.

. Gsc2p, 3-?-glucan synthase, during spore wall morphogenesis in Saccharomyces cerevisiae, vol.1

, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.12431-12436

L. B. Huberman and A. W. Murray, Genetically engineered transvestites reveal novel mating genes in budding yeast, Genetics, vol.195, pp.1277-1290, 2013.

J. L. Hutter and J. Bechhoefer, Calibration of atomic-force microscope tips, Rev. Sci. Instrum, vol.64, pp.1868-1873, 1993.

K. Imai, A Novel Endoplasmic Reticulum Membrane Protein Rcr1 Regulates Chitin Deposition in the Cell Wall of Saccharomyces cerevisiae, J. Biol. Chem, vol.280, pp.8275-8284, 2004.

S. Ishihara, A. Hirata, S. Nogami, A. Beauvais, J. Latge et al., Homologous Subunits of 1,3-Beta-Glucan Synthase Are Important for Spore Wall Assembly in Saccharomyces cerevisiae, Eukaryot. Cell, vol.6, pp.143-156, 2007.

N. Jacquier and R. Schneiter, Mechanisms of sterol uptake and transport in yeast, J. Steroid Biochem. Mol. Biol, vol.129, pp.70-78, 2012.

A. Janshoff, M. Neitzert, Y. Oberdörfer, and H. Fuchs, Force Spectroscopy of Molecular Systems-Single Molecule Spectroscopy of Polymers and Biomolecules, Angew. Chem, vol.39, pp.3212-3237, 2000.

E. Jauvert, E. Dague, M. Séverac, L. Ressier, A. Caminade et al., Probing single molecule interactions by AFM using bio-functionalized dendritips, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268327

B. Actuators and . Chem, , vol.168, pp.436-441

B. P. Jena and J. K. Hörber, Force Microscopy: Applications in Biology and Medicine, 2006.

B. Jiang, A. F. Ram, J. Sheraton, F. M. Klis, and H. Bussey, Regulation of cell wall betaglucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription, Mol. Gen. Genet. MGG, vol.248, pp.260-269, 1995.

C. Joannis-cassan, M. Tozlovanu, K. Hadjeba-medjdoub, N. Ballet, and A. Leszkowicz, Binding of Zearalenone, Aflatoxin B<SUB>1</SUB>, and Ochratoxin A by Yeast-Based Products: A Method for Quantification of Adsorption Performance, J. Food Prot, vol.74, pp.1175-1185, 2011.

M. E. Johnson and T. D. Edlind, Topological and Mutational Analysis of Saccharomyces cerevisiae Fks1, Eukaryot. Cell, vol.11, pp.952-960, 2012.

J. Jungmann, J. C. Rayner, and S. Munro, The Saccharomyces cerevisiae protein, 1999.

, Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complex, J. Biol. Chem, vol.274, pp.6579-6585

T. S. Kalebina, T. A. Plotnikova, A. A. Gorkovskii, O. Selyakh-irina, O. V. Galzitskaya et al., Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences, Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: Prediction and experimental evidences, 2008.

, Prion Prion, vol.2, pp.91-96

Y. Kamada, U. S. Jung, J. Piotrowski, and D. E. Levin, The protein kinase C-activated MAP, 1995.

, Genes Dev, vol.9, pp.1559-1571

J. C. Kapteyn, A. F. Ram, E. M. Groos, R. Kollar, R. C. Montijn et al., Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content, J. Bacteriol, 1997.

G. Kogan and A. Kocher, Role of yeast cell wall polysaccharides in pig nutrition and health protection, Livest. Sci, vol.109, p.161, 2007.

R. Kollar, E. Petrakova, G. Ashwell, P. W. Robbins, and E. Cabib, Architecture of the yeast cell wall. The linkage between chitin and beta(1-->3)-glucan, J. Biol. Chem, vol.270, pp.1170-1178, 1995.

R. Kollar, B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell et al., Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein, beta(1-->)3-glucan, and chitin, J. Biol. Chem, vol.272, pp.17762-17775, 1997.

M. Kopecká, Papulacandin B: Inhibitor of biogenesis of (1?3)-?-d-glucan fibrillar component of the cell wall ofSaccharomyces cerevisiae protoplasts, Folia Microbiol. (Praha), vol.29, pp.441-449, 1984.

M. Kopecká, Yeast and fungal cell-wall polysaccharides can self-assemble in vitro into an ultrastructure resembling in vivo yeast cell walls, Microscopy, vol.62, pp.327-339, 2013.

M. Kopecka and M. Gabriel, The influence of Congo red on the cell wall and (1,3)-beta-dglucan microfibril biogenesis in Saccharomyces cerevisiae, Arch. Microbiol, vol.158, pp.115-126, 1992.

M. J. Kuranda and P. W. Robbins, Chitinase is required for cell separation during growth of Saccharomyces cerevisiae, J. Biol. Chem, vol.266, pp.19758-19767, 1991.

T. Kurita, Y. Noda, T. Takagi, M. Osumi, Y. et al., Kre6 Protein Essential for Yeast Cell Wall -1,6-Glucan Synthesis Accumulates at Sites of Polarized Growth, J. Biol. Chem, vol.286, pp.7429-7438, 2011.

S. Lafon-lafourcade, C. Geneix, and P. Ribéreau-gayon, Inhibition of alcoholic fermentation of grape must by Fatty acids produced by yeasts and their elimination by yeast ghosts, Appl. Environ, 1984.

. Microbiol, , vol.47, pp.1246-1249

A. Lagorce, Genome-wide Analysis of the Response to Cell Wall Mutations in the Yeast Saccharomyces cerevisiae, J. Biol. Chem, vol.278, pp.20345-20357, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02681963

A. Lagorce, V. Le-berre-anton, B. Aguilar-uscanga, H. Martin-yken, A. Dagkessamanskaia et al., Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae, Eur. J. Biochem. FEBS, vol.269, pp.1697-1707, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02682871

N. I. Abu-lail and T. A. Camesano, Polysaccharide properties probed with atomic force microscopy, J. Microsc, vol.212, pp.217-238, 2003.

K. K. Lam, Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3, J. Cell Biol, vol.174, pp.19-25, 2006.

G. Larriba, R. D. Basco, E. Andaluz, and J. P. Luna-arias, Yeast exoglucanases. Where redundancy implies necessity, Arch. Med. Res, vol.24, pp.293-299, 1993.

G. P. League, J. C. Slot, and A. Rokas, The ASP3 locus in Saccharomyces cerevisiae originated by horizontal gene transfer from Wickerhamomyces, FEMS Yeast Res, vol.12, pp.859-863, 2012.

G. Lesage and H. Bussey, Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol, 2006.

, Biol. Rev. MMBR, vol.70, pp.317-343

D. E. Levin, Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev, vol.69, pp.262-291, 2005.

D. E. Levin, Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway, Genetics, vol.189, pp.1145-1175, 2011.

H. Li, M. Ma, S. Luo, R. Zhang, P. Han et al., Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach, Int. J. Biochem. Cell Biol, vol.44, pp.1087-1096, 2012.

B. Y. Liu, G. M. Zhang, X. L. Li, C. , and H. , Effect of glutaraldehyde fixation on bacterial cells observed by atomic force microscopy: Effect of glutaraldehyde fixation on bacterial cells, Scanning, vol.34, pp.6-11, 2012.

M. Lussier, M. Gentzsch, A. Sdicu, H. Bussey, and W. Tanner, Protein O-Glycosylation in Yeast THE PMT2 GENE SPECIFIES A SECOND PROTEIN O-MANNOSYLTRANSFERASE THAT FUNCTIONS IN ADDITION TO THE PMT1-ENCODED ACTIVITY, J. Biol. Chem, vol.270, pp.2770-2775, 1995.

M. Lussier, A. White, J. Sheraton, T. Paolo, . Di et al., Large Scale Identification of Genes Involved in Cell Surface Biosynthesis and Architecture in Saccharomyces cerevisiae, Genetics, vol.147, pp.435-450, 1997.

M. Lussier, A. Sdicu, E. Winnett, D. H. Vo, J. Sheraton et al., Completion of the Saccharomyces cerevisiae Genome Sequence Allows Identification of KTR5, 1997.

, Mannosyltransferase Gene Family in this Organism, Yeast, vol.13, pp.267-274

M. Lussier, A. Sdicu, and H. Bussey, The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae, Biochim. Biophys. Acta BBA -Gen. Subj, vol.1426, pp.323-334, 1999.

K. Machi, Rot1p of Saccharomyces cerevisiae is a putative membrane protein required for normal levels of the cell wall, Microbiology, vol.1, pp.3163-3173, 2004.

P. Magnelli, J. F. Cipollo, A. , and C. , A Refined Method for the Determination of Saccharomyces cerevisiae Cell Wall Composition and [beta]-1,6-Glucan Fine Structure, 2002.

, Biochem, vol.301, p.136

D. J. Manners, A. J. Masson, and J. C. Patterson, The structure of a beta-(1 leads to 3)-Dglucan from yeast cell walls, Biochem. J, vol.135, pp.19-30, 1973.

D. J. Manners, A. J. Masson, J. C. Patterson, H. Björndal, and B. Lindberg, The structure of a beta-(1--6)-D-glucan from yeast cell walls, Biochem. J, vol.135, pp.31-36, 1973.

A. Martín-cuadrado, T. Fontaine, P. Esteban, J. E. Del-dedo, and M. De-medina-redondo,

F. Rey, J. P. Latgé, and C. R. De-aldana, Characterization of the endo-beta-1,3-glucanase activity of S. cerevisiae Eng2 and other members of the GH81 family, Fungal Genet. Biol. FG B, vol.45, pp.542-553, 2008.

H. Martin-yken, Mémoire de l'Habilitation à diriger des recherches, 2011.

M. Mazá?, E. Ragni, L. Popolo, and V. Farka?, Catalytic properties of the Gas family ?, J, vol.438, issue.1, pp.275-282, 2011.

P. Meaden, K. Hill, J. Wagner, D. Slipetz, S. S. Sommer et al., The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1----6)-beta-D-glucan synthesis and normal cell growth, Mol. Cell. Biol, vol.10, pp.3013-3019, 1990.

F. Meitinger, S. Palani, B. Hub, and G. Pereira, Dual function of the NDR-kinase Dbf2 in the regulation of the F-BAR protein Hof1 during cytokinesis, Mol. Biol. Cell, vol.24, pp.1290-1304, 2013.

R. Mercadé-prieto, C. R. Thomas, and Z. Zhang, Mechanical double layer model for Saccharomyces Cerevisiae cell wall, Eur. Biophys. J, vol.42, pp.613-620, 2013.

M. Bl, P. Nh, J. Ap, and S. Vl, Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae, J. Bacteriol, vol.150, pp.878-889, 1982.

S. Milewski, I. Gabriel, and J. Olchowy, Enzymes of UDP-GlcNAc biosynthesis in yeast, Yeast Chichester Engl, vol.23, pp.1-14, 2006.

K. Millsap, Adhesive interactions between medically important yeasts and bacteria, FEMS Microbiol. Rev, vol.21, pp.321-336, 1998.

T. Mio, T. Yabe, M. Arisawa, and H. Yamada-okabe, The eukaryotic UDP-Nacetylglucosamine pyrophosphorylases. Gene cloning, protein expression, and catalytic mechanism, 1998.

, J. Biol. Chem, vol.273, pp.14392-14397

T. Mio, T. Yamada-okabe, M. Arisawa, and H. Yamada-okabe, Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis, J. Biol. Chem, vol.274, pp.424-429, 1999.

J. F. Mora, . De, R. Gil, R. Sentandreu, and E. Herrero, Isolation and characterization of Saccharomyces cerevisiae mutants resistant to aculeacin A, Antimicrob. Agents Chemother, vol.35, pp.2596-2601, 1991.

I. Mouyna, Glycosylphosphatidylinositol-anchored Glucanosyltransferases Play an Active Role in the Biosynthesis of the Fungal Cell Wall, J. Biol. Chem, vol.275, pp.14882-14889, 2000.

V. Mrsa, F. Klebl, and W. Tanner, Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase, J. Bacteriol, vol.175, pp.2102-2106, 1993.

K. Nakamata, T. Kurita, M. S. Bhuiyan, K. Sato, Y. Noda et al., , 2007.

, Encodes a Novel Kre6-binding Endoplasmic Reticulum Membrane Protein Responsible for beta-1,6-Glucan Synthesis in Saccharomyces cerevisiae, J. Biol. Chem, vol.282, pp.34315-34324

K. C. Neuman and A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Methods, vol.5, pp.491-505, 2008.

T. H. Nguyen, G. H. Fleet, and P. L. Rogers, Composition of the cell walls of several yeast species, Appl. Microbiol. Biotechnol, vol.50, pp.206-212, 1998.

M. Novak and V. Vetvicka, Glucans as biological response modifiers, Endocr. Metab. Immune Disord. Drug Targets, vol.9, pp.67-75, 2009.

Y. Oh, K. Chang, P. Orlean, C. Wloka, R. Deshaies et al., Mitotic exit kinase Dbf2 directly phosphorylates chitin synthase Chs2 to regulate cytokinesis in budding yeast, Mol. Biol. Cell, vol.23, pp.2445-2456, 2012.

H. Okada, S. Ohnuki, C. Roncero, J. B. Konopka, and Y. Ohya, Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data, Mol. Biol. Cell, vol.25, pp.222-233, 2014.

P. Orlean, Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.10, pp.5796-5805, 1990.

P. Orlean, Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall, Genetics, vol.192, pp.775-818, 2012.

S. Ostergaard, L. Olsson, and J. Nielsen, Metabolic Engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev, vol.64, pp.34-50, 2000.

M. Osumi, The ultrastructure of yeast: Cell wall structure and formation, Micron, vol.29, pp.207-233, 1998.

R. Ovalle, S. T. Lim, B. Holder, C. K. Jue, C. W. Moore et al., A spheroplast rate assay for determination of cell wall integrity in yeast, Yeast, vol.14, pp.1159-1166, 1998.

N. Pagé, M. Gérard-vincent, P. Ménard, M. Beaulieu, M. Azuma et al., A Saccharomyces cerevisiae Genome-Wide Mutant Screen for Altered Sensitivity to K1 Killer Toxin, Genetics, vol.163, pp.875-894, 2003.

A. E. Pelling, S. Sehati, E. B. Gralla, J. S. Valentine, and J. K. Gimzewski, Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae, Science, vol.305, pp.1147-1150, 2004.

C. Peneff, D. Mengin-lecreulx, and Y. Bourne, The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar Nacetyltransferase, J. Biol. Chem, vol.276, pp.16328-16334, 2001.

F. Pillet, S. Lemonier, M. Schiavone, C. Formosa, H. Martin-yken et al.,

M. Pittet and A. Conzelmann, Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta BBA -Mol. Cell Biol. Lipids, vol.1771, pp.405-420, 2007.

T. A. Plotnikova, I. O. Selyakh, T. S. Kalebina, and I. S. Kulaev, Bgl2p and Gas1p are the major glucan transferases forming the molecular ensemble of yeast cell wall, Dokl. Biochem. Biophys, vol.409, pp.244-247, 2006.

G. A. Pope, D. A. Mackenzie, M. Defernez, M. A. Aroso, L. J. Fuller et al., Metabolic footprinting as a tool for discriminating between brewing yeasts, Yeast Chichester Engl, vol.24, pp.667-679, 2007.

L. Popolo and M. Vai, The Gas1 glycoprotein, a putative wall polymer cross-linker, Biochim. Biophys. Acta BBA -Gen. Subj, vol.1426, pp.385-400, 1999.

G. Popolo, D. Gilardelli, P. Bonfante, and M. Vai, , 1997.

, Bacteriol, vol.179, pp.463-469

L. Popolo, T. Gualtieri, and E. Ragni, The yeast cell-wall salvage pathway, Med. Mycol, p.39, 2000.

M. Á. Pozo-bayón, I. Andújar-ortiz, and M. V. Moreno-arribas, Volatile profile and potential of inactive dry yeast-based winemaking additives to modify the volatile composition of wines, J. Sci. Food Agric, vol.89, pp.1665-1673, 2009.

R. Pradelles, H. Alexandre, A. Ortiz-julien, C. , and D. , Effects of yeast cell-wall characteristics on 4-ethylphenol sorption capacity in model wine, J. Agric. Food Chem, vol.56, pp.11854-11861, 2008.

R. Pradelles, D. Chassagne, S. Vichi, R. Gougeon, A. et al., , 2010.

E. Ragni, T. Fontaine, C. Gissi, J. P. Latgè, and L. Popolo, The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis, Yeast Chichester Engl, vol.24, pp.297-308, 2007.

E. Ragni, A. Coluccio, E. Rolli, J. M. Rodriguez-peña, G. Colasante et al., GAS2 and GAS4, a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae, Eukaryot. Cell, vol.6, pp.302-316, 2007.

A. F. Ram and F. M. Klis, Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red, Nat. Protoc, vol.1, pp.2253-2256, 2006.

A. F. Ram, A. Wolters, R. T. Hoopen, and F. M. Klis, A new approach for isolating cell wall mutants inSaccharomyces cerevisiae by screening for hypersensitivity to calcofluor white, Yeast, vol.10, pp.1019-1030, 1994.

A. F. Ram, J. C. Kapteyn, R. C. Montijn, L. H. Caro, J. E. Douwes et al., Loss of the Plasma Membrane-Bound Protein Gas1p in Saccharomyces cerevisiae Results in the Release of ?1,3-Glucan into the Medium and Induces a Compensation Mechanism To Ensure Cell Wall Integrity, J. Bacteriol, vol.180, pp.1418-1424, 1998.

C. B. Ramsook, C. Tan, M. C. Garcia, R. Fung, G. Soybelman et al., Yeast Cell Adhesion Molecules Have Functional Amyloid-Forming Sequences, Eukaryot. Cell, vol.9, pp.393-404, 2010.

J. C. Rayner and S. Munro, Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae, J. Biol. Chem, vol.273, pp.26836-26843, 1998.

A. Reyes, M. Sanz, A. Duran, and C. Roncero, Chitin synthase III requires Chs4p-dependent translocation of Chs3p into the plasma membrane, J. Cell Sci, vol.120, 1998.

J. Van-rinsum, F. M. Klis, and H. V. Ende, Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9, Yeast, vol.7, pp.717-726, 1991.

J. M. Rodriguez-nogales, E. Fernández-fernández, and J. Vila-crespo, Effect of the addition of ?-glucanases and commercial yeast preparations on the chemical and sensorial characteristics of traditional sparkling wine, Eur. Food Res. Technol, vol.235, pp.729-744, 2012.

J. M. Rodriguez-pena, The "yeast cell wall chip" -a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae, Microbiology, vol.151, pp.2241-2249, 2005.

J. M. Rodríguez-peña, R. García, C. Nombela, and J. Arroyo, The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes, Yeast, vol.27, pp.495-502, 2010.

C. Roduit, B. Saha, L. Alonso-sarduy, A. Volterra, G. Dietler et al., OpenFovea: open-source AFM data processing software, Nat. Methods, vol.9, pp.774-775, 2012.

T. Roemer and H. Bussey, Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro, Proc. Natl. Acad. Sci, vol.88, pp.11295-11299, 1991.

T. Roemer, S. Delaney, and H. Bussey, SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis, Mol. Cell. Biol, vol.13, pp.4039-4048, 1993.

E. Rolli, E. Ragni, J. Calderon, S. Porello, U. Fascio et al., Immobilization of the Glycosylphosphatidylinositol-anchored Gas1 Protein into the Chitin Ring and Septum Is Required for Proper Morphogenesis in Yeast, Mol. Biol. Cell, vol.20, pp.4856-4870, 2009.

P. A. Romero, M. Lussier, S. Veronneau, A. Sdicu, A. Herscovics et al., Mnt2p and Mnt3p of Saccharomyces cerevisiae are members of the Mnn1p family of ?-1,3-mannosyltransferases responsible for adding the terminal mannose residues of O-linked oligosaccharides, Glycobiology, vol.9, pp.1045-1051, 1999.

C. Roncero and A. Duran, Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization, J. Bacteriol, vol.163, pp.1180-1185, 1985.

C. Roncero, V. Mh, R. Jc, A. , and D. , Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white, J. Bacteriol, vol.170, pp.1950-1954, 1988.

S. Rupp, E. Summers, H. Lo, H. Madhani, and G. Fink, , 1999.

, EMBO J, vol.18, pp.1257-1269

M. Sacher, J. Barrowman, D. Schieltz, J. R. Yates, and S. Ferro-novick, Identification and characterization of five new subunits of TRAPP, Eur. J. Cell Biol, vol.79, pp.71-80, 2000.

P. San-segundo, J. Correa, C. R. Vazquez-de-aldana, D. Rey, and F. , SSG1, a gene encoding a sporulation-specific 1,3-beta-glucanase in Saccharomyces cerevisiae, J. Bacteriol, vol.175, pp.3823-3837, 1993.

B. Santos, A. Duran, and M. H. Valdivieso, CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.17, pp.2485-2496, 1997.

L. D. Saravolatz, S. C. Deresinski, and D. A. Stevens, Caspofungin. Clin. Infect. Dis, vol.36, pp.1445-1457, 2003.

M. Schiavone, A. Vax, C. Formosa, H. Martin-yken, E. Dague et al., , 2014.

M. Schmidt, A. Varma, T. Drgon, B. Bowers, and E. Cabib, Septins, under Cla4p Regulation, and the Chitin Ring Are Required for Neck Integrity in Budding Yeast, Mol. Biol. Cell, vol.14, pp.2128-2141, 2003.

N. Sharon and H. Lis, Lectins, 2007.

J. A. Shaw, P. C. Mol, B. Bowers, S. J. Silverman, M. H. Valdivieso et al., , 1991.

, The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle, J. Cell Biol, vol.114, pp.111-123

M. El-sherbeini and J. A. Clemas, Nikkomycin Z supersensitivity of an echinocandin-resistant mutant of Saccharomyces cerevisiae, Antimicrob. Agents Chemother, vol.39, pp.200-207, 1995.

P. H. Shetty and L. Jespersen, Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents, Trends Food Sci. Technol, vol.17, pp.48-55, 2006.

H. Shokri, F. Asadi, and A. R. Khosravi, Isolation of beta-glucan from the cell wall of Saccharomyces cerevisiae, Nat. Prod. Res, vol.22, pp.414-421, 2008.

E. V. Soares, Flocculation in Saccharomyces cerevisiae: a review, J. Appl. Microbiol, vol.110, pp.1-18, 2011.

A. Striebeck, D. A. Robinson, A. W. Schüttelkopf, and D. M. Van-aalten, Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis, Open Biol, vol.3, p.130022, 2013.

A. Suchodolskis, V. Feiza, A. Stirke, A. Timonina, A. Ramanaviciene et al., , 2011.

, Elastic properties of chemically modified baker's yeast cells studied by AFM, Surf. Interface Anal, vol.43, pp.1636-1640

A. A. Suharja, A. Henriksson, and S. Liu, Impact of Saccharomyces Cerevisiae on Viability of Probiotic Lactobacillus Rhamnosus in Fermented Milk under Ambient Conditions, J. Food Process. Preserv, vol.38, pp.326-337, 2014.

T. Sumita, T. Yoko-o, Y. Shimma, J. , and Y. , Comparison of Cell Wall Localization among Pir Family Proteins and Functional Dissection of the Region Required for Cell Wall Binding and Bud Scar Recruitment of Pir1p, Eukaryot. Cell, vol.4, pp.1872-1881, 2005.

J. Watari, Y. Takata, M. Ogawa, H. Sahara, S. Koshino et al., Molecular cloning and analysis of the yeast flocculation geneFLO1, Yeast, vol.10, pp.211-225, 1994.

P. J. Westfall, D. R. Ballon, and J. Thorner, When the stress of your environment makes you go HOG wild, Science, vol.306, pp.1511-1512, 2004.

L. Wildling, B. Unterauer, R. Zhu, A. Rupprecht, T. Haselgru?bler et al., Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips, Bioconjug. Chem, vol.22, pp.1239-1248, 2011.

L. Wodicka, H. Dong, M. Mittmann, M. H. Ho, and D. J. Lockhart, Genome-wide expression monitoring in Saccharomyces cerevisiae, Nat. Biotechnol, vol.15, pp.1359-1367, 1997.

A. Yiannikouris, G. Andre, A. Buleon, G. Jeminet, I. Canet et al., Comprehensive conformational study of key interactions involved in zearalenone complexation with beta-D-glucans, Biomacromolecules, vol.5, pp.2176-2185, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02676454

A. Yiannikouris, J. Francois, L. Poughon, C. G. Dussap, G. Bertin et al., Alkali extraction of beta-d-glucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone, J. Agric. Food Chem, vol.52, pp.3666-3673, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02681944

A. Yiannikouris, G. Andre, L. Poughon, J. Francois, C. G. Dussap et al., Chemical and conformational study of the interactions involved in mycotoxin complexation with beta-D-glucans, Biomacromolecules, vol.7, pp.1147-1155, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666756

K. Yoda, T. Kawada, C. Kaibara, A. Fujie, M. Abe et al., Defect in cell wall integrity of the yeast saccharomyces cerevisiae caused by a mutation of the GDP-mannose pyrophosphorylase gene VIG9, Biosci. Biotechnol. Biochem, vol.64, pp.1937-1941, 2000.

G. Zhang, R. Kashimshetty, K. E. Ng, H. B. Tan, Y. et al., Exit from mitosis triggers Chs2p transport from the endoplasmic reticulum to mother-daughter neck via the secretory pathway in budding yeast, J. Cell Biol, vol.174, pp.207-220, 2006.

M. Ziman, J. S. Chuang, and R. W. Schekman, Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway, 1996.

, Biol. Cell, vol.7, pp.1909-1919

, QI: Quantitative Imaging RNA: Ribonucleic Acid SCFS: Single-Cell Force Spectroscopy SCW: Soluble Cell Wall SDS: Sodium Dodecyl Sulfate SMFS: Single Molecule Force Spectroscopy STRE: Stress Response Elements TFA: Trifluoroacetic Acid TLC: Thin-Layer Chromatography WLC: Worm-Like Chain WLC+: extensive Worm-Like Chain YCW: Yeast Cell Wall YKO: Yeast Knock-Out

M. Schiavone, C. Formosa, H. Martin-yken, J. M. François, and E. Dague,

L. Winter-workshop-;-schiavone, M. Martin-yken, H. François, and J. , A simple method to determine Saccharomyces cerevisiae cell wall composition by combined chemical and enzymatic hydrolysis, 2014.

, Biochemical and biophysical study of Saccharomyces cerevisiae cell wall, Vth International conference on molecular mechanism of fungal cell wall biogenesis, pp.6-9, 2012.

M. Schiavone, R. E. Duval, and E. Dague, Imaging of adhesive nanodomaines at the surface of Candida albicans by Atomic Force Microscopy» Formosa

L. Winter-workshop, , 2014.

M. Schiavone, H. Martin-yken, E. Dague, and J. M. François, « A method to determine Saccharomyces cerevisiae cell wall composition by combined chemical and enzymatics hydrolysis, Vth Conference on physiology of yeast and filamentous fungi, pp.4-7, 2013.

, « A simple method to determine Saccharomyces cerevisiae cell wall composition by combined chemical and enzymatic hydrolysis

, Vth International conference on molecular mechanism of fungal cell wall biogenesis, pp.6-9, 2012.

M. Schiavone, H. Martin-yken, and J. M. François, « A method to determine Saccharomyces cerevisiae cell wall composition by combined chemical and enzymatics hydrolysis, Levures Modèles et Outils (10ème édition), 2012.

P. N. Lipke and R. Ovalle, Cell wall architecture in yeast: new structure and new challenges, J. Bacteriol, vol.180, pp.3735-3740, 1998.

J. M. Francois, A simple method for quantitative determination of polysaccharides in fungal cell walls, Nat. Protoc, vol.1, pp.2995-3000, 2006.

W. L. Chaffin, Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev, vol.72, pp.495-544, 2008.

E. Dague, Y. Gilbert, C. Verbelen, G. Andre, D. Alsteens et al., Towards a nanoscale view of fungal surfaces, Yeast, vol.24, pp.229-237, 2007.

Y. F. Dufrêne, Atomic force microscopy of fungal cell walls: an update, Yeast, vol.27, pp.465-471, 2010.

D. Alsteens, V. Dupres, K. Mcevoy, L. Wildling, H. J. Gruber et al., Structure, cell wall elasticity and polysaccharide properties of living yeasts cells, as probed by AFM, Nanotechnology, vol.19, p.384005, 2008.

A. K. Adya, E. Canetta, and G. M. Walker, Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe, FEMS Yeast Res, vol.6, pp.120-128, 2006.

E. Canetta, A. K. Adya, and G. M. Walker, Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology, FEMS Microbiol. Lett, vol.255, pp.308-315, 2006.

P. Sudbery, N. Gow, and J. Berman, The distinct morphogenic states of Candida albicans, Trends Microbiol, vol.12, pp.317-324, 2004.

N. A. Gow and B. Hube, Importance of the Candida albicans cell wall during commensalism and infection, Curr. Opin. Microbiol, vol.15, pp.406-412, 2012.

D. W. Denning, Invasive aspergillosis, Clin. Infect. Dis, vol.26, pp.781-803, 1998.

D. Sanglard and F. C. Odds, Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences, Lancet Infect. Dis, vol.2, pp.73-85, 2002.

D. W. Denning, Echinocandin antifungal drugs, Lancet, vol.362, pp.1142-1151, 2003.

S. Park, R. Kelly, J. N. Kahn, J. Robles, M. Hsu et al., Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates, Antimicrob. Agents Chemother, vol.49, pp.3264-3273, 2005.

S. V. Balashov, S. Park, and D. S. Perlin, Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1, Antimicrob. Agents Chemother, vol.50, pp.2058-2063, 2006.

G. Garcia-effron, S. Park, and D. S. Perlin, Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints, Antimicrob. Agents Chemother, vol.53, pp.112-122, 2009.

G. Garcia-effron, S. Lee, S. Park, J. D. Cleary, and D. S. Perlin, Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-13-D-glucan synthase: implication for the existing susceptibility breakpoint, Antimicrob. Agents Chemother, vol.53, pp.3690-3699, 2009.

G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett, vol.56, pp.930-934, 1986.

D. J. Müller and Y. F. Dufrêne, Atomic force microscopy: a nanoscopic window on the cell surface, Trends Cell Biol, vol.21, pp.461-469, 2011.

C. Formosa, M. Grare, E. Jauvert, A. Coutable, J. B. Regnouf-de-vains et al., Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain, Sci. Rep, vol.2, p.575, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01650390

C. Formosa, M. Grare, R. E. Duval, and E. Dague, Nanoscale effects of antibiotics on P. aeruginosa, Nanomedicine, vol.8, pp.12-16, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01650395

C. Baker-brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li et al., Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast, vol.14, pp.115-132, 1998.

, Document E.DEF 7.2. Method for the determination of broth dilution of antifungal agents for fermentative yeasts, 2012.

. Clsi, Reference method for broth dilution antifungal susceptibility. Testing of yeasts. Approved standard, CLSI, vol.28, issue.14, 2008.

E. Dague, E. Jauvert, L. Laplatine, B. Viallet, C. Thibault et al., Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments, Nanotechnology, vol.22, p.395102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01767584

G. Francius, B. Tesson, E. Dague, M. Dufrêne, and V. , Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes, Environ. Microbiol, vol.10, pp.1344-1356, 2008.

, JPK Instruments. 2011. QI TM mode-quantitative imaging with the Nano-Wizard 3 AFM

L. Chopinet, C. Formosa, M. P. Rols, R. E. Duval, and E. Dague, Imaging living cells surface and quantifying its properties at high resolution using AFM in QI TM mode, Micron, vol.48, pp.26-33, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01493934

J. L. Hutter and J. Bechhoefer, Calibration of atomic-force microscope tips, Rev. Sci. Instruments, vol.64, pp.1868-1873, 1993.

N. Dallies, J. François, and V. Paquet, A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae, Yeast, vol.14, pp.1297-1306, 1998.

J. L. Reissig, J. L. Strominger, and L. F. Leloir, A modified colorimetric method for the estimation of N-acetylamino sugars, J. Biol. Chem, vol.217, pp.959-966, 1955.

M. Juchimiuk, M. Pasikowska, E. Zatorska, A. E. Laudy, G. Smole?-ska-sym et al., Defect in dolichol-dependent glycosylation increases sensitivity of Saccharomyces cerevisiae towards anti-fungal drugs, Yeast, vol.27, pp.637-645, 2010.

A. Ram, J. C. Kapteyn, R. C. Montijn, L. Caro, J. E. Douwes et al., Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of 131,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity, J. Bacteriol, vol.180, pp.1418-1424, 1998.

K. Radoti?, C. Roduit, J. Simonovi?, P. Hornitschek, C. Fankhauser et al., Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth, Biophys. J, vol.103, pp.386-394, 2012.

C. Roduit, B. Saha, L. Alonso-sarduy, A. Volterra, G. Dietler et al., OpenFovea: open-source AFM data processing software, Nat. Methods, vol.9, pp.774-775, 2012.

F. C. Bizerra, A. Melo, E. Katchburian, E. Freymüller, A. H. Straus et al., Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species, Antimicrob. Agents Chemother, vol.55, pp.302-310, 2011.

W. L. Chaffin, J. L. López-ribot, M. Casanova, D. Gozalbo, and J. P. Martínez, Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol, Mol. Biol. Rev, vol.62, pp.130-180, 1998.

M. Schmidt, A. Varma, T. Drgon, B. Bowers, and E. Cabib, Septins, under Cla4p regulation, and the chitin ring are required for neck integrity in budding yeast, Mol. Biol. Cell, vol.14, pp.2128-2141, 2003.

E. Cabib, N. Blanco, and J. Arroyo, Presence of a large 13(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control, Eukaryot. Cell, vol.11, pp.388-400, 2012.

N. Blanco, M. Reidy, J. Arroyo, and E. Cabib, Cross-links in the cell wall of budding yeast control morphogenesis at the mother-bud neck, J. Cell Sci, vol.125, pp.5781-5789, 2012.

J. Lippincott and R. Li, Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis, J. Cell Biol, vol.140, pp.355-366, 1998.

E. Cabib and A. Durán, Synthase III-dependent chitin is bound to different acceptors depending on location on the cell wall of budding yeast, J. Biol. Chem, vol.280, pp.9170-9179, 2005.

E. Dague, R. Bitar, H. Ranchon, F. Durand, H. M. Yken et al., An atomic force microscopy analysis of yeast mutants defective in cell wall architecture, Yeast, vol.27, pp.673-684, 2010.

P. Sundstrom, Adhesion in Candida spp, Cell. Microbiol, vol.4, pp.461-469, 2002.

L. L. Hoyer, C. B. Green, S. Oh, and X. Zhao, Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family-a sticky pursuit, Med. Mycol, vol.46, pp.1-15, 2008.

L. L. Hoyer, The ALS gene family of Candida albicans, Trends Microbiol, vol.9, pp.176-180, 2001.

D. Alsteens, M. C. Garcia, P. N. Lipke, and Y. F. Dufrêne, Force-induced formation and propagation of adhesion nanodomains in living fungal cells, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.20744-20749, 2010.

A. Beaussart, D. Alsteens, S. El-kirat-chatel, P. N. Lipke, S. Kucharíková et al., Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis, ACS Nano, vol.6, pp.10950-10964, 2012.

D. A. Coleman, S. Oh, X. Zhao, and L. L. Hoyer, Heterogeneous distribution of Candida albicans cell-surface antigens demonstrated with an Als1-specific monoclonal antibody, Microbiology, vol.156, pp.3645-3659, 2010.

C. Gregori, W. Glaser, I. E. Frohner, C. Reinoso-martín, S. Rupp et al., Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1, Eukaryot. Cell, vol.10, pp.1694-1704, 2011.

. Pillet, BMC Biology, vol.12, 2014.

V. Dupres, Y. F. Dufrêne, and J. J. Heinisch, Measuring Cell Wall Thickness in Living Yeast Cells Using Single Molecular Rulers, ACS Nano, vol.4, pp.5498-5504, 2010.

F. M. Klis, P. Mol, K. Hellingwerf, and S. Brul, Dynamics of cell wall structure in Saccharomyces cerevisiae, FEMS Microbiology Reviews, vol.26, pp.239-256, 2002.

B. Aguilar-uscanga and J. François, A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation, Letters in Applied Microbiology, vol.37, pp.268-274, 2003.

F. M. Klis, A. Boorsma, D. Groot, and P. , Cell wall construction in Saccharomyces cerevisiae. Yeast, vol.23, pp.185-202, 2006.

J. G. Smits, C. J. Kapteyn, H. Van-den-ende, and M. F. Klis, Cell wall dynamics in yeast, Current Opinion in Microbiology, vol.2, pp.348-352, 1999.

E. Dague, R. Bitar, H. Ranchon, F. Durand, H. M. Yken et al., An atomic force microscopy analysis of yeast mutants defective in cell wall architecture, Yeast, vol.27, pp.673-684, 2010.

R. Kollár, B. B. Reinhold, E. Petráková, H. Yeh, G. Ashwell et al., Architecture of the Yeast Cell Wall ?(1 ? 6)-glucan interconnects mannoprotein, ?(1 ? 3)-glucan, and chitin, J Biol Chem, vol.272, pp.17762-17775, 1997.

S. Shahinian, G. J. Dijkgraaf, A. M. Sdicu, D. Y. Thomas, C. A. Jakob et al., Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall beta-1,6-glucan of Saccharomyces cerevisiae, Genetics, vol.149, pp.843-856, 1998.

D. E. Levin, Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, vol.69, pp.262-291, 2005.

B. R. Gibson, S. J. Lawrence, J. Leclaire, C. D. Powell, and K. A. Smart, Yeast responses to stresses associated with industrial brewery handling, FEMS Microbiology Reviews, vol.31, pp.535-569, 2007.

E. Canetta, G. M. Walker, and A. K. Adya, Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study, J Microbiol Biotechnol, vol.19, pp.547-555, 2009.

N. Kobayashi and K. Mcentee, Evidence for a heat shock transcription factorindependent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae, PNAS, vol.87, pp.6550-6554, 1990.

J. Yeh and B. K. Haarer, Profilin is required for the normal timing of actin polymerization in response to thermal stress, FEBS Letters, vol.398, pp.303-307, 1996.

X. Q. Zhao and F. W. Bai, Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production, Journal of Biotechnology, vol.144, pp.23-30, 2009.

K. S. Kim, Y. Kim, H. I. Kim, M. Jung, M. H. Park et al., Quantitative and Qualitative Analyses of the Cell Death Process in Candida albicans Treated by Antifungal Agents, PLoS ONE, vol.6, p.28176, 2011.

S. El-kirat-chatel, A. Beaussart, D. Alsteens, D. N. Jackson, P. N. Lipke et al., Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans, Nanoscale, vol.5, pp.1105-1115, 2013.

D. E. Levin, Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway, Genetics, vol.189, pp.1145-1175, 2011.

E. Cabib and A. Durán, Synthase III-dependent Chitin Is Bound to Different Acceptors Depending on Location on the Cell Wall of Budding Yeast, J Biol Chem, vol.280, pp.9170-9179, 2005.

M. Valdivieso, L. Ferrario, M. Vai, A. Duran, and L. Popolo, Chitin Synthesis in a gas1 Mutant ofSaccharomyces cerevisiae, J Bacteriol, vol.182, pp.4752-4757, 2000.

G. Lesage and H. Bussey, Cell Wall Assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, vol.70, pp.317-343, 2006.

E. Dague, Y. Gilbert, C. Verbelen, G. Andre, D. Alsteens et al., Towards a nanoscale view of fungal surfaces, Yeast, vol.24, pp.229-237, 2007.

Y. F. Dufrêne, Atomic force microscopy of fungal cell walls: an update, Yeast, vol.27, pp.465-471, 2010.

J. Verghese, J. Abrams, Y. Wang, and K. A. Morano, Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System, Microbiol Mol Biol Rev, vol.76, pp.115-158, 2012.

M. J. Neves and J. Francois, On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae, Biochem J, vol.288, pp.859-864, 1992.

J. Postmus, A. B. Canelas, J. Bouwman, B. M. Bakker, W. Van-gulik et al., Quantitative Analysis of the High Temperature-induced Glycolytic Flux Increase in Saccharomyces cerevisiae Reveals Dominant Metabolic Regulation, Mol Biol Cell, vol.283, pp.4241-4257, 2000.

A. K. Adya, E. Canetta, and G. M. Walker, Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe, FEMS Yeast Research, vol.6, pp.120-128, 2006.

E. Dague, E. Jauvert, L. Laplatine, B. Viallet, C. Thibault et al., Assembly of live micro-organisms on microstructured PDMS stamps by convective/ capillary deposition for AFM bio-experiments, Nanotechnology, vol.22, p.395102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01767584

C. Virgilio, T. Hottiger, J. Dominguez, T. Boller, and A. Wiemken, The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant, European Journal of Biochemistry, vol.219, pp.179-186, 1994.

E. Cabib, D. Roh, M. Schmidt, L. B. Crotti, and A. Varma, The Yeast Cell Wall and Septum as Paradigms of Cell Growth and Morphogenesis, J Biol Chem, vol.276, pp.19679-19682, 2001.

B. L. Drees, B. Sundin, E. Brazeau, J. P. Caviston, G. Chen et al., Drubin DG: A protein interaction map for cell polarity development, J Cell Biol, vol.154, pp.549-576, 2001.

A. Sahin, B. Daignan-fornier, and I. Sagot, Polarized Growth in the Absence of F-Actin in Saccharomyces cerevisiae Exiting Quiescence, PLoS ONE, vol.3, p.2556, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324980

B. Futcher, Metabolic cycle, cell cycle, and the finishing kick to Start

, Genome Biol, vol.7, p.107, 2006.

M. Ziman, J. S. Chuang, and R. W. Schekman, Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway, Mol Biol Cell, vol.7, pp.1909-1919, 1996.

E. Cabib, S. J. Silverman, and J. A. Shaw, Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae, J Gen Microbiol, vol.138, pp.97-102, 1992.

D. Pruyne and A. Bretscher, Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states, J Cell Sci, vol.113, pp.365-375, 2000.

A. L. Lodder, T. K. Lee, and R. Ballester, Characterization of the Wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae, Genetics, vol.152, pp.1487-1499, 1999.

K. S. Lee and D. E. Levin, Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog, Mol Cell Biol, vol.12, pp.172-182, 1992.

Y. F. Dufrêne and A. E. Pelling, Force nanoscopy of cell mechanics and cell adhesion, Nanoscale, vol.5, pp.4094-4104, 2013.

D. Pruyne, A. Legesse-miller, L. Gao, Y. Dong, and A. Bretscher, Mechanisms of Polarized Growth and Organelle Segregation in Yeast, Annual Review of Cell and Developmental Biology, vol.20, pp.559-591, 2004.

P. Delley and M. N. Hall, Cell Wall Stress Depolarizes Cell Growth via Hyperactivation of Rho1, J Cell Biol, vol.147, pp.163-174, 1999.

J. Verna, A. Lodder, K. Lee, A. Vagts, and R. Ballester, A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae, PNAS, vol.94, pp.13804-13809, 1997.

A. Winkler, C. Arkind, C. P. Mattison, A. Burkholder, K. Knoche et al., Heat Stress Activates the Yeast High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway, and Protein Tyrosine Phosphatases Are Essential under Heat Stress, Eukaryotic Cell, vol.1, pp.163-173, 2002.

C. Formosa, M. Schiavone, H. Martin-yken, J. M. François, R. E. Duval et al., Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans, Antimicrob Agents Chemother, vol.57, pp.3498-3506, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268080

C. Baker-brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li et al., Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast, vol.14, pp.115-132, 1998.

L. Chopinet-mayeux, C. Formosa, M. Rols, R. E. Duval, and E. Dague, Imaging living cells surface and quantifying its properties at high resolution using AFM in QITM mode

J. L. Hutter and J. Bechhoefer, Calibration of atomic force microscope tips, Review of Scientific Instruments, vol.64, pp.1868-1873, 1993.

H. Hertz, Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 1882, vol.1881, pp.156-171

N. Dallies, J. François, and V. Paquet, A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae, Yeast, vol.14, pp.1297-1306, 1998.

J. M. François, A simple method for quantitative determination of polysaccharides in fungal cell walls, Nat Protoc, vol.1, pp.2995-3000, 2006.

J. L. Parrou and J. François, A Simplified Procedure for a Rapid and Reliable Assay of both Glycogen and Trehalose in Whole Yeast Cells, Analytical Biochemistry, vol.248, pp.186-188, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02522231

J. L. Reissig, J. L. Strominger, and L. F. Leloir, A Modified Colorimetric Method for the Estimation of N-Acetylamino Sugars, J Biol Chem, vol.217, pp.959-966, 1955.

J. Baggett, J. Shaw, C. Sciambi, . Watson-h-a, and B. Wendland, Fluorescent Labeling of Yeast, Current Protocols in Cell Biology, 2001.

R. Tepari?, I. Stuparevi?, and V. Mr?a, Increased mortality of Saccharomyces cerevisiae cell wall protein mutants, Microbiology, vol.150, pp.3145-3150, 2004.

. Pillet, Submit your next manuscript to BioMed Central and take full advantage of: ? Convenient online submission ? Thorough peer review ? No space constraints or color figure charges ? Immediate publication on acceptance ? Inclusion in PubMed, CAS, Scopus and Google Scholar d'hydrolyser différent substrats (mannanes, chitine, laminarine comme ?-1,3-d'activités secondaires. De plus, la production et la purification dans notre laboratoire d'une endo-?(1,6)-glucanase de Trichoderma harzianum selon, BMC Biology, vol.12, issue.6, 1998.

, L'utilisation de la méthode de micro-Kejdahl a permis de montrer que les quantités de protéines contenues dans les parois purifiées sont différentes selon les mutants. Finalement, différentes configurations enzymatiques ont été étudiées, ce qui a permis d'établir une procédure enzymatique, capable d'hydrolyser la chitine, les ?-1,3-glucanes et les ?-1,6-glucanes restants

. Ainsi, N-acetylglucosamine et glucose, par l'action combinée de la chitinase de Streptomyces griseus avec une exo et une endo-?-1,3 glucanase de Trichoderma. Les ?-glucanes sont quantifiés à la suite de l'hydrolyse par le mélange endo-?(1,6)-glucanase de Trichoderma harzianum et ?-glucosidase d'Aspergillus niger. La quantité de ?-1,6 glucanes est alors déterminée par soustraction entre la quantité de ?-glucanes et la quantité de ?-1,3 glucanes déterminée à la première étape, méthode développée sur des parois purifiées de levure est basée sur 2 étapes : la chitine et les ?-1,3-glucanes sont hydrolysés en leurs monomères respectifs

. Bzducha-wróbel, Tout comme les éléments nutritifs et les sources de carbone, les conditions de culture et environnementales influencent la composition de la paroi cellulaire. Lorsque la levure est soumise à une augmentation de température, de 22°C à 37°C, la quantité de fraction résistante à une ?-1,3-glucanase augmente significativement, Par ailleurs, le glycérol à une concentration de 3% dans le milieu conduit également à une augmentation des quantités de mannoprotéines et ?-glucane dans la paroi cellulaire de S. cerevisiae, 2007.

. Formosa, du fait que l'on a distingué la fraction de ?-1,3-glucane des ?-1,6-glucane. Ainsi, nous avons observé que la teneur en ?-1,6-glucane, contenue dans la fraction de ?-glucanes totaux, est en général modifiée en fonction des souches de levure et des conditions de culture. Les ?-1,6-glucanes contenues dans la paroi cellulaire est également modifiée en réponse à exposition à un antifongique tel que la Caspofungin, Ici, des informations complémentaires ont été apportées, 2013.

. Dague, et chapitre 3A), était le manque de connexion directe des propriétés nanomécaniques de la paroi cellulaire (spécifiquement exprimés comme le module de Young qui est une valeur qui compte pour l'élasticité ou la rigidité) à un composant spécifique de celle-ci. Toutefois, cette conclusion peut être contestée avec le constat d'une corrélation étroite entre le module de Young et la teneur en ?-1,3-glucane, qui a été obtenu à partir de notre analyse de corrélation par l'utilisation de méthodes statistiques dédiés (S-PLS et CCA dans le pack mixOmics), vol.1, p.2, 2010.

, Un autre résultat intéressant qui est ressorti des travaux est l'association étroite entre le contenu de mannanes et la nature des mannoprotéines dans la paroi de la cellule avec le nombre d'interactions surface-concanavalin A. En effet, l'utilisation d'une pointe AFM fonctionnalisée avec la