Skip to Main content Skip to Navigation

Experimental investigation of heterogeneous nucleation of ice in remote locations

Abstract : Heterogeneous ice nucleation is one element inside the overall complexity of the Earth's atmosphere, however, it has a profound impact on our representation of cloud properties: this process affects the optical thickness and lifetime of mixed-phase clouds and cirrus clouds, and it is responsible for a significant proportion of precipitations formed globally. Heterogeneous ice nucleation is related to the presence of specific aerosol particles, named ice nuclei particles (INP), with the unique ability of lowering the energy barrier required for the formation of ice crystals, especially where cloud’s temperatures are >-38 °C. In the last decades, significant advancements have been made to the fundamental understanding of ice nucleation, however the lack of knowledge on the cloud ice phase still contributes to major uncertainties in climate model prediction of radiative forcing. This is partly due to limited observational data quantifying INP distributions and properties all over the world, especially in remote locations. In the first part of this thesis, field observations of ice nucleating particles have been performed at the Italian Climate Observatory “O. Vittori” on Mountain Cimone (2165 m above sea level), in the spring 2014 and autumn 2015, within the Bacchus and Air Sea Lab projects. For the first time we report the results of offline INP measurements, performed at a high altitude site within the Mediterranean basin. In the period 19-29 May 2014, a parallel campaign took place at the low-altitude station San Pietro Capofiume, a rural site in the Po Valley. The two campaigns were concerned, for a few days, by a Saharan Dust transport Event, which was recorded simultaneously at the high and the low-level station. We investigated the ambient number concentration of INP under condensation freezing activation mechanism (at -18 °C and above water saturation). In the second part of this thesis, we present the observations that were performed during the Arctic campaign Parcs-Maca, in the period of transition among the polar night and the polar day. We could characterise for the first time the ice nucleating and physical/chemical properties of the Arctic Primary Marine Aerosol, in a laboratory-controlled generation approach, that was combined to a mesocosm experiment. The aim of the mesocosm experiment was to adopt a multidisciplinary approach to study the effect of marine pollution on marine emissions. We found a moderate but significant decrease of the ice nuclei concentration in the polluted seawater (with respect to the control seawater) recorded in the freezing range between -8.5 and -19 °C and activated through immersion-freezing. Within the seaspray our measurements have indicated a relation among INP active at warm temperature (above -15 °C through immersion-freezing) and a calcium enrichment detected in PM1 filters (and followed by an apparent Chloride depletion). On the basis of our observations, and the results reported from other studies, a few suggestions on the nature of these marine ice nuclei have been suggested. In summary, the measurements made for this thesis provide new information on the concentrations of ice nuclei in ambient aerosol particles in remote regions (a high-altitude observatory in the central Mediterranean region) and in relation to a specific source (the Arctic sea spray).
Complete list of metadatas

Cited literature [320 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Thursday, August 20, 2020 - 10:10:18 AM
Last modification on : Friday, August 21, 2020 - 3:31:46 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02918036, version 1



Alessia Nicosia. Experimental investigation of heterogeneous nucleation of ice in remote locations. Earth Sciences. Université Clermont Auvergne; Università degli studi (Ferrare, Italie), 2018. English. ⟨NNT : 2018CLFAC076⟩. ⟨tel-02918036⟩



Record views


Files downloads