, mRNA without cap-structure and poly(A)-tail: a cryo electron tomography study, Nucleic Acids Res, vol.42, pp.9461-9469

P. V. Afonine, R. W. Grosse-kunstleve, N. Echols, J. J. Headd, N. W. Moriarty et al., Toward automated crystallographic structure refinement with phenix.refine, Acta Cryst, vol.68, pp.352-367, 2012.

M. Allegretti, D. J. Mills, G. Mcmullan, W. Kühlbrandt, and J. Vonck, Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector, Elife, vol.3, p.1963, 2014.

L. Andronov, Y. Lutz, J. Vonesch, and B. P. Klaholz, SharpViSu: integrated analysis and segmentation of super-resolution microscopy data, Bioinformatics, vol.32, pp.2239-2241, 2016.

L. Andronov, I. Orlov, Y. Lutz, J. Vonesch, and B. P. Klaholz, ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy, Sci. Rep, vol.6, p.24084, 2016.

J. Arnold, J. Mahamid, V. Lucic, A. De-marco, J. J. Fernandez et al., Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy, Biophys. J, vol.110, pp.860-869, 2016.

S. Asano, B. D. Engel, and W. Baumeister, Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology, vol.428, pp.332-343, 2016.

X. C. Bai, I. S. Fernandez, G. Mcmullan, and S. H. Scheres, Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles, vol.2, p.461, 2013.

N. J. Baird, S. J. Ludtke, H. Khant, W. Chiu, T. Pan et al., Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy, J. Am. Chem. Soc, vol.132, pp.16352-163523, 2010.

S. Banerjee, A. Bartesaghi, A. Merk, P. Rao, S. L. Bulfer et al., ) 2.3Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition, Science, vol.351, pp.871-875, 2016.

B. A. Barad, N. Echols, R. Y. Wang, Y. Cheng, F. Dimaio et al., EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy, Nat. Methods, vol.12, pp.943-946, 2015.

M. Beck, F. Förster, M. Ecke, J. M. Plitzko, F. Melchior et al., Nuclear pore complex structure and dynamics revealed by cryoelectron tomography, Science, vol.306, pp.1387-1390, 2004.

B. Beinsteiner, J. Michalon, and B. P. Klaholz, IBiSS, a versatile and interactive tool for integrated sequence and 3D structure analysis of large macromolecular complexes, Bioinformatics, vol.31, pp.3339-3344, 2015.

A. Ben-shem, L. Jenner, G. Yusupova, and M. Yusupov, Crystal structure of the eukaryotic ribosome, Science, vol.330, pp.1203-1209, 2010.

F. Brandt, L. A. Carlson, F. U. Hartl, W. Baumeister, and K. Grünewald, The three-dimensional organization of polyribosomes in intact human cells, Mol. Cell, vol.39, pp.560-569, 2010.

J. A. Briggs, Structural biology in situ -the potential of subtomogram averaging, Curr. Opin. Struct. Biol, vol.23, pp.261-267, 2013.

A. F. Brilot, J. Z. Chen, A. Cheng, J. Pan, S. C. Harrison et al., Beam-induced motion of vitrified specimen on holey carbon film, J. Struct. Biol, vol.177, pp.630-637, 2012.

C. Broennimann, E. F. Eikenberry, B. Henrich, R. Horisberger, G. Huelsen et al., The PILATUS 1M detector, J. Synchrotron Radiat, vol.13, pp.120-130, 2006.

A. Brown, F. Long, R. A. Nicholls, J. Toots, P. Emsley et al., Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions, 2015.

, Acta Crystallogr. D Biol. Crystallogr, vol.71, pp.136-153

M. G. Campbell, A. Cheng, A. F. Brilot, A. Moeller, D. Lyumkis et al., Movies of ice-embedded particles enhance resolution in electron cryo-microscopy, Structure, vol.20, pp.1823-1828, 2012.

J. M. Carazo, C. O. Sorzano, J. Otón, R. Marabini, and J. Vargas, Three-dimensional reconstruction methods in Single Particle Analysis from transmission electron microscopy data, Arch. Biochem. Biophys, vol.581, pp.39-48, 2015.

M. Carroni and H. R. Saibil, Cryo electron microscopy to determine the structure of macromolecular complexes, Methods, vol.95, pp.78-85, 2016.

A. Casanas, R. Warshamanage, A. D. Finke, E. Panepucci, V. Olieric et al., EIGER detector: application in macromolecular crystallography, Acta Crystallogr. D Struct. Biol, vol.72, pp.1036-1048, 2016.

D. Castaño-díez, M. Kudryashev, and H. Stahlberg, Dynamo Catalogue: Geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms, J. Struct. Biol, vol.16, pp.30111-30113, 2016.

Y. W. Chang, L. A. Rettberg, A. Treuner-lange, J. Iwasa, L. Søgaard-andersen et al., Architecture of the type IVa pilus machine, Science, vol.351, p.2001, 2016.

B. Chen, S. Kaledhonkar, M. Sun, B. Shen, Z. Lu et al., Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy, Structure, vol.23, pp.1097-1105, 2015.

J. Z. Chen, E. C. Settembre, S. T. Aoki, X. Zhang, A. R. Bellamy et al., Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.10644-10648, 2009.

Y. Chen, S. Pfeffer, J. J. Fernández, C. O. Sorzano, and F. Förster, Autofocused 3D classification of cryoelectron subtomograms, Structure, vol.22, pp.1528-1537, 2014.

E. Y. Chua, V. K. Vogirala, O. Inian, A. S. Wong, L. Nordenskiöld et al., ) 3.9Å structure of the nucleosome core particle determined by phase-plate cryo-EM, Nucleic Acids Res, vol.44, pp.8013-8019, 2016.

W. Dai, C. Fu, H. A. Khant, S. J. Ludtke, M. F. Schmid et al., Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages, Nat. Protoc, vol.9, pp.2630-2642, 2014.

R. Danev and W. Baumeister, Cryo-EM single particle analysis with the Volta phase plate, Elife, vol.5, p.13046, 2016.

R. Danev, B. Buijsse, M. Khoshouei, J. M. Plitzko, and W. Baumeister, Volta potential phase plate for in-focus phase contrast transmission electron microscopy, Proc. Natl Acad. Sci. U.S.A, vol.44, pp.15635-15640, 2014.

J. Dubochet, M. Adrian, J. J. Chang, J. C. Homo, J. Lepault et al., Cryo-electron microscopy of vitrified specimens, Q. Rev. Biophys, vol.21, pp.129-228, 1988.

A. Dubrovsky, S. Sorrentino, J. Harapin, K. Sapra, T. Medalia et al., Developments in cryo-electron tomography for in situ structural analysis, Arch. Biochem. Biophys, vol.581, pp.78-85, 2015.

N. V. Dudkina, R. Kouril, J. B. Bultema, and E. J. Boekema, Imaging of organelles by electron microscopy reveals protein-protein interactions in mitochondria and chloroplasts, FEBS Lett, vol.584, pp.2510-2515, 2010.

, www.biolcell.net | Volume (109) | Pages, pp.81-93

L. A. Subramaniam and S. , Cryo-EM of viruses and vaccine design, Integrative role of cryo-EM in structural biology Review Earl, vol.113, pp.8903-8905, 2016.

D. Eiler, J. Lin, A. Simonetti, B. P. Klaholz, and T. A. Steitz, IF2 Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases, Proc. Nat. Acad. Sci. U.S.A, vol.110, pp.15662-15667, 2013.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

N. Fischer, A. L. Konevega, W. Wintermeyer, M. V. Rodnina, and H. Stark, Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy, Nature, vol.466, pp.329-333, 2010.

N. Fischer, P. Neumann, A. L. Konevega, L. V. Bock, R. Ficner et al., Structure of the E. coli ribosome-EF-Tu complex at <3Å resolution by Cs-corrected cryo-EM, Nature, vol.520, pp.567-570, 2015.

A. S. Frangakis, J. Böhm, F. Förster, S. Nickell, D. Nicastro et al., Identification of macromolecular complexes in cryoelectron tomograms of phantom cells, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.14153-14158, 2002.

G. A. Frank, A. Bartesaghi, O. Kuybeda, M. J. Borgnia, T. A. White et al., Computational separation of conformational heterogeneity using cryo-electron tomography and 3D sub-volume averaging, J. Struct. Biol, vol.178, pp.165-176, 2012.

N. Frindt, M. Oster, S. Hettler, B. Gamm, L. Dieterle et al., In-focus electrostatic Zach phase plate imaging for transmission electron microscopy with tunable phase contrast of frozen hydrated biological samples, Microsc. Microanal, vol.1, pp.175-183, 2014.

J. Fu, H. Gao, and J. Frank, Unsupervised classification of single particles by cluster tracking in multi-dimensional space, J. Struct. Biol, vol.157, pp.226-239, 2006.

J. G. Galaz-montoya, C. W. Hecksel, P. R. Baldwin, E. Wang, S. C. Weaver et al., Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography, J. Struct. Biol, vol.194, pp.383-394, 2016.

H. Gao, M. Valle, M. Ehrenberg, and J. Frank, Dynamics of EF-G interaction with the ribosome explored by classification of a heterogeneous cryo-EM dataset, J. Struct. Biol, vol.147, pp.283-290, 2004.

R. M. Glaeser, Protein complexes in focus, Elife, vol.5, 2016.

T. Grant and N. Grigorieff, Measuring the optimal exposure for single particle cryo-EM using a 2.6Å reconstruction of rotavirus VP6, vol.4, p.6980, 2015.

B. J. Greber, P. Bieri, M. Leibundgut, A. Leitner, R. Aebersold et al., The complete structure of the 55S mammalian mitochondrial ribosome, Science, vol.348, pp.303-308, 2015.

C. Hagen, K. C. Dent, T. Zeev-ben-mordehai, M. Grange, J. B. Bosse et al., Cell, vol.163, pp.1692-1701, 2015.

W. J. Hagen, W. Wan, and J. A. Briggs, Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging, J. Struct. Biol, vol.16, pp.30113-30117, 2016.

J. M. Heumann, A. Hoenger, and D. N. Mastronarde, Clustering and variance maps for cryo-electron tomography using wedge-masked differences, J. Struct. Biol, vol.175, pp.288-299, 2011.

R. N. Irobalieva, B. Martins, and O. Medalia, Cellular structural biology as revealed by cryo-electron tomography, J. Cell Sci, vol.129, pp.469-476, 2016.

M. A. Karreman, L. Mercier, N. L. Schieber, G. Solecki, G. Allio et al., Fast and precise targeting of single tumor cells in vivo by multimodal correlative microscopy, J. Cell Sci, vol.129, pp.444-456, 2016.

H. Khatter, A. G. Myasnikov, L. Mastio, I. M. Billas, C. Birck et al., Purification, characterization and crystallization of the human 80S ribosome, Nucleic Acids Res, vol.42, pp.1-11, 2014.

H. Khatter, A. G. Myasnikov, K. Natchiar, and B. P. Klaholz, Structure of the human 80S ribosome, Nature, vol.520, pp.640-645, 2015.

M. Khoshouei, S. Pfeffer, W. Baumeister, F. Förster, and R. Danev, Subtomogram analysis using the Volta phase plate, J. Struct. Biol, vol.16, pp.30103-30104, 2016.

M. Khoshouei, M. Radjainia, A. J. Phillips, J. A. Gerrard, A. K. Mitra et al., Volta phase plate cryo-EM of the small protein complex Prx3, Nat. Commun, vol.7, p.10534, 2016.

D. Kim, T. J. Deerinck, Y. M. Sigal, H. P. Babcock, M. H. Ellisman et al., Correlative stochastic optical reconstruction microscopy and electron microscopy, PLoS One, vol.10, 2015.

C. Kizilyaprak, J. Daraspe, and B. M. Humbel, Focused ion beam scanning electron microscopy in biology, J. Microsc, vol.254, pp.109-114, 2014.

B. P. Klaholz, Structure sorting of multiple macromolecular states in heterogeneous cryo-EM samples by 3D multivariate statistical analysis, Open J. Stat, vol.5, pp.820-836, 2015.

B. P. Klaholz, A. G. Myasnikov, and M. Van-heel, Visualization of release factor 3 on the ribosome during termination of protein synthesis, Nature, vol.427, pp.862-865, 2004.

R. I. Koning, K. Celler, J. Willemse, E. Bos, G. P. Van-wezel et al., Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces, Methods Cell Biol, vol.124, pp.217-239, 2014.

J. Kosinski, S. Mosalaganti, A. Von-appen, R. Teimer, A. L. Diguilio et al., Molecular architecture of the inner ring scaffold of the human nuclear pore complex, Science, vol.352, pp.363-365, 2016.

M. Kuijper, G. Van-hoften, B. Janssen, R. Geurink, S. De-carlo et al., FEI's direct electron detector developments: Embarking on a revolution in cryo-TEM, J. Struct. Biol, vol.192, pp.179-187, 2015.

W. Kunath, K. Weiss, H. Sack-kongehl, M. Kessel, and E. Zeitler, Time-resolved low-dose microscopy of glutamine synthetase molecules, Ultramicroscopy, vol.13, pp.241-252, 1984.

O. Kuybeda, G. A. Frank, A. Bartesaghi, M. Borgnia, S. Subramaniam et al., Collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography, J. Struct. Biol, vol.181, pp.116-127, 2013.

R. F. Laine, A. Albecka, S. Van-de-linde, E. J. Rees, C. M. Crump et al., Structural analysis of herpes simplex virus by optical super-resolution imaging, Nat. Commun, vol.6, p.5980, 2015.

X. Li, P. Mooney, S. Zheng, C. R. Booth, M. B. Braunfeld et al., Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM, Nat. Methods, vol.10, pp.584-590, 2013.

H. Y. Liao, Y. Hashem, and J. Frank, Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy, Structure, vol.23, pp.1129-1237, 2015.

D. H. Lin, T. Stuwe, S. Schilbach, E. J. Rundlet, T. Perriches et al., , vol.352, p.6283, 2016.

A. Löschberger, C. Franke, G. Krohne, S. Van-de-linde, and M. Sauer, Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution, J. Cell Sci, vol.127, pp.4351-4355, 2014.

V. Lu?i?, A. Rigort, and W. Baumeister, Cryo-electron tomography: the challenge of doing structural biology in situ, J. Cell Biol, vol.202, pp.407-419, 2013.

D. Lyumkis, A. F. Brilot, D. L. Theobald, and N. Grigorieff, Likelihood-based classification of cryo-EM images using FREALIGN, J. Struct. Biol, vol.183, pp.377-388, 2013.

J. Mahamid, S. Pfeffer, M. Schaffer, E. Villa, R. Danev et al., Visualizing the molecular sociology at the HeLa cell nuclear periphery, Science, vol.351, pp.969-972, 2016.

J. Mahamid, R. Schampers, H. Persoon, A. A. Hyman, W. Baumeister et al., A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms, J. Struct. Biol, vol.192, pp.262-269, 2015.

M. Maletta, I. M. Orlov, P. Roblin, Y. Beck, D. Moras et al., The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning, Nat. Commun, vol.5, p.4139, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02640131

G. Mcmullan, S. Chen, R. Henderson, and A. R. Faruqi, Detective quantum efficiency of electron area detectors in electron microscopy, Ultramicroscopy, vol.109, pp.1126-1143, 2009.

G. Mcmullan, A. R. Faruqi, D. Clare, and R. Henderson, Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy, Ultramicroscopy, vol.147, pp.156-163, 2014.

O. Medalia, I. Weber, A. S. Frangakis, D. Nicastro, G. Gerisch et al., Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography, Science, vol.298, pp.1209-1213, 2002.

J. Ménétret, H. Khatter, A. Simonetti, I. Orlov, A. G. Myasnikov et al., Integrative structure-function analysis of large nucleoprotein complexes, 2013.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao et al., Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery, Cell, vol.165, pp.1698-1707, 2016.

J. L. Milne, M. J. Borgnia, A. Bartesaghi, E. E. Tran, L. A. Earl et al., Cryo-electron microscopy -a primer for the non-microscopist, FEBS J, vol.280, pp.28-45, 2013.

K. Murata, X. Liu, R. Danev, J. Jakana, M. F. Schmid et al., Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions, Structure, vol.18, pp.903-912, 2010.

A. G. Myasnikov, Z. A. Afonina, J. Ménétret, V. A. Shirokov, A. S. Spirin et al., The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes, Nat. Commun, vol.5, p.5294, 2014.

A. G. Myasnikov, Z. Afonina, and B. P. Klaholz, Single particle and molecular assembly analysis of polyribosomes by single-and double-tilt cryo electron tomography, Ultramicroscopy, vol.126, pp.33-39, 2013.

A. G. Myasnikov, S. K. Natchiar, M. Nebout, I. Hazemann, V. Imbert et al., Structure-function insights reveal the human ribosome as a cancer target for antibiotics, Nat. Commun, vol.7, p.12856, 2016.

A. Nans, M. Kudryashev, H. R. Saibil, and R. D. Hayward, Structure of a bacterial type III secretion system in contact with a host membrane in situ, Nat. Commun, vol.6, p.10114, 2015.

I. Nederlof, Y. W. Li, M. Van-heel, and J. P. Abrahams, Imaging protein three-dimensional nanocrystals with cryo-EM, Acta Crystallogr. D Biol. Crystallogr, vol.69, pp.852-859, 2013.

J. M. Obbineni, R. Yamamoto, and T. Ishikawa, A simple and fast approach for missing-wedge invariant classification of subtomograms extracted from filamentous structures, J. Struct. Biol, vol.16, p.30172, 2016.

I. Orlov, N. Rochel, D. Moras, and B. P. Klaholz, Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA, EMBO J, vol.31, pp.291-300, 2012.

I. Orlov, A. Schertel, G. Zuber, B. P. Klaholz, R. Drillien et al., Live cell immunogold labelling of RNA polymerase II, Sci. Rep, vol.5, p.8324, 2015.

E. V. Orlova and H. R. Saibil, Methods for three-dimensional reconstruction of heterogeneous assemblies, Methods Enzymol, vol.482, pp.321-362, 2010.

J. O. Ortiz, F. Förster, J. Kürner, A. A. Linaroudis, and W. Baumeister, Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition, J. Struct. Biol, vol.156, pp.334-341, 2006.

P. A. Penczek, J. Frank, and C. M. Spahn, A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation, J. Struct. Biol, vol.154, pp.184-194, 2006.

C. Rajendran, F. S. Dworkowski, M. Wang, and C. Schulze-briese, Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector, J. Synchrotron Radiat, vol.18, pp.318-328, 2011.

P. Ray, B. P. Klaholz, R. D. Finn, E. V. Orlova, P. C. Burrows et al., Determination of Escherichia coli RNA polymerase structure by single particle cryoelectron microscopy, Methods Enzymol, vol.370, pp.24-42, 2003.

I. Razinkov, V. P. Dandey, H. Wei, Z. Zhang, D. Melnekoff et al., A new method for vitrifying samples for cryoEM, J. Struct. Biol, vol.195, pp.190-198, 2016.

D. Rhinow, Towards an optimum design for thin film phase plates, Ultramicroscopy, vol.160, pp.1-6, 2016.

A. Rigort and J. M. Plitzko, Cryo-focused-ion-beam applications in structural biology, Arch. Biochem. Biophys, vol.581, pp.122-130, 2015.

R. S. Ruskin, Z. Yu, and N. Grigorieff, Quantitative characterization of electron detectors for transmission electron microscopy, J. Struct. Biol, vol.184, pp.385-393, 2013.

M. R. Sawaya, J. Rodriguez, D. Cascio, M. J. Collazo, D. Shi et al., Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED, Proc. Natl. Acad. Sci. U.S.A, p.201606287, 2016.

M. Schaffer, J. Mahamid, B. D. Engel, T. Laugks, W. Baumeister et al., Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins, J. Struct. Biol, vol.16, pp.30151-30154, 2016.

S. H. Scheres, M. Valle, R. Nuez, C. O. Sorzano, R. Marabini et al., Maximum likelihood multi-reference refinement for electron microscopy images, J. Mol. Biol, vol.22, pp.139-149, 2005.

S. H. Scheres, Classification of structural heterogeneity by maximum-likelihood methods, Methods Enzymol, vol.482, pp.295-320, 2010.

S. H. Scheres, Beam-induced motion correction for sub-megadalton cryo-EM particles, Elife, vol.3, p.3665, 2014.

R. T. Schirra and P. Zhang, Correlative fluorescence and electron microscopy, Curr. Protoc. Cytom, vol.70, pp.1-10, 2014.

M. Schorb, L. Gaechter, O. Avinoam, F. Sieckmann, M. Clarke et al., New hardware and workflows for semi-automated correlative cryo-fluoresence and cryo-electron microscopy/tomography, J. Struct. Biol, vol.16, pp.30135-30136, 2016.

F. K. Schur, M. Obr, W. J. Hagen, W. Wan, A. J. Jakobi et al., An 92 www.biolcell.net | Volume (109) | Pages, pp.81-93, 2016.

D. Shi, B. L. Nannenga, M. J. De-la-cruz, J. Liu, S. Sawtelle et al., The collection of MicroED data for macromolecular crystallography, Nat. Protoc, vol.11, pp.895-904, 2016.

F. J. Sigworth, A maximum-likelihood approach to single-particle image refinement, J. Struct. Biol, vol.122, pp.328-339, 1998.

A. Simonetti, S. Marzi, A. Fabbretti, I. Hazemann, L. Jenner et al., Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms, Acta Cryst, vol.69, pp.925-933, 2013.

A. Simonetti, S. Marzi, I. M. Billas, A. Tsai, A. Fabbretti et al., Involvement of IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor, Proc. Nat. Acad. Sci. U.S.A, vol.110, pp.15656-15661, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02645085

A. Simonetti, J. Ménétret, F. Martin, A. G. Myasnikov, Q. Vicens et al., Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation, Nat. Commun, vol.7, p.12622, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02294260

A. Simonetti, S. Marzi, A. G. Myasnikov, A. Fabbretti, G. Yusupova et al., Structure of the 30S translation initiation complex, Nature, vol.455, pp.416-420, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00342095

O. S. Smart, T. O. Womack, C. Flensburg, P. Keller, W. Paciorek et al., Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER, Acta Crystallogr. D Biol. Crystallogr, vol.68, pp.368-380, 2012.

O. V. Sobolev, P. V. Afonine, P. D. Adams, and A. Urzhumtsev, Programming new geometry restraints: parallelity of atomic groups, J. Appl. Crystallogr, vol.48, pp.1130-1141, 2015.

J. M. Spear, A. J. Noble, Q. Xie, D. R. Sousa, M. S. Chapman et al., The influence of frame alignment with dose compensation on the quality of single particle reconstructions, J. Struct. Biol, vol.192, pp.196-203, 2015.

S. Spinelli, C. Bebeacua, I. Orlov, D. Tremblay, B. P. Klaholz et al., CryoEM structure of the lactococcal siphophage 1358 virion, J. Virol, vol.88, pp.8900-8910, 2014.

M. Stölken, F. Beck, T. Haller, R. Hegerl, I. Gutsche et al., Maximum likelihood based classification of electron tomographic data, J. Struct. Biol, vol.173, pp.77-85, 2011.

A. Szymborska, A. De-marco, N. Daigle, V. C. Cordes, J. A. Briggs et al., Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging, Science, vol.341, pp.655-658, 2013.

Y. Z. Tan, A. Cheng, C. S. Potter, B. Carragher, M. Van-heel et al., Single-particle electron cryo-microscopy: towards atomic resolution, Microscopy (Oxf.), vol.65, pp.307-369, 2000.

D. Veesler, M. G. Campbell, A. Cheng, C. Y. Fu, Z. Murez et al., Maximizing the potential of electron cryomicroscopy data collected using direct detectors, J. Struct. Biol, vol.184, pp.193-202, 2013.

E. Villa, M. Schaffer, J. M. Plitzko, and W. Baumeister, Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography, Curr. Opin. Struct. Biol, vol.23, pp.771-777, 2013.

A. Walter, S. Steltenkamp, S. Schmitz, P. Holik, E. Pakanavicius et al., Towards an optimum design for electrostatic phase plates, Ultramicroscopy, vol.153, pp.22-31, 2015.

W. Wan and J. A. Briggs, Cryo-electron tomography and subtomogram averaging, Methods Enzymol, vol.579, pp.329-367, 2016.

K. Wang, C. Y. Fu, R. Khayat, P. C. Doerschuk, and J. E. Johnson, In vivo virus structures: simultaneous classification, resolution enhancement, and noise reduction in whole-cell electron tomography, J. Struct. Biol, vol.174, pp.425-433, 2011.

H. E. White, H. R. Saibil, A. Ignatiou, and E. V. Orlova, Recognition and separation of single particles with size variation by statistical analysis of their images, J. Mol. Biol, vol.13, pp.453-460, 2004.

W. Wong, X. C. Bai, A. Brown, I. S. Fernandez, E. Hanssen et al., Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. Elife 3, 2014.

M. Xu and F. Alber, Automated target segmentation and real space fast alignment methods for high-throughput classification and averaging of crowded cryo-electron subtomograms, Bioinformatics, vol.29, pp.274-282, 2013.

Z. Yang, K. Lasker, D. Schneidman-duhovny, B. Webb, C. C. Huang et al., UCSF Chimera, MODELLER, and IMP: an integrated modeling system, J. Struct. Biol, vol.179, pp.269-278, 2012.

J. Zhang, G. Ji, X. Huang, W. Xu, and F. Sun, An improved cryo-FIB method for fabrication of frozen hydrated lamella, J. Struct. Biol, vol.194, pp.218-223, 2016.

X. Zhang, P. Ge, X. Yu, J. M. Brannan, G. Bi et al., Cryo-EM structure of the mature dengue virus at 3.5-Å resolution, Nat. Struct. Mol. Biol, vol.20, pp.105-110, 2013.

. Références,

S. Allard, R. T. Utley, J. Savard, A. Clarke, P. Grant et al., NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p, EMBO J, vol.18, pp.5108-5119, 1999.

H. F. Allen, P. A. Wade, and T. G. Kutateladze, The NuRD architecture, Cell. Mol. Life Sci, vol.70, pp.3513-3524, 2013.

V. G. Allfrey and A. E. Mirsky, Structural Modifications of Histones and their Possible Role in the Regulation of RNA Synthesis, Science, vol.144, p.559, 1964.

S. S. Alqarni, A. Murthy, W. Zhang, M. R. Przewloka, A. P. Silva et al., Insight into the Architecture of the NuRD Complex: STRUCTURE OF THE RbAp48-MTA1 SUBCOMPLEX, Journal of Biological Chemistry, vol.289, pp.21844-21855, 2014.

C. Ambrosi, M. Manzo, and T. Baubec, Dynamics and Context-Dependent Roles of DNA Methylation, J. Mol. Biol, vol.429, pp.1459-1475, 2017.

R. E. Amir, I. B. Van-den-veyver, M. Wan, C. Q. Tran, U. Francke et al., Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2, Nat. Genet, vol.23, pp.185-188, 1999.

K. Arita, M. Ariyoshi, H. Tochio, Y. Nakamura, and M. Shirakawa, Recognition of hemimethylated DNA by the SRA protein UHRF1 by a base-flipping mechanism, Nature, vol.455, pp.818-821, 2008.

K. Armache, J. D. Garlick, D. Canzio, G. J. Narlikar, and R. E. Kingston, Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution, Science, vol.334, pp.977-982, 2011.

D. E. Ayer, Histone deacetylases: transcriptional repression with SINers and NuRDs, Trends Cell Biol, vol.9, pp.193-198, 1999.

S. A. Baker, L. Chen, A. D. Wilkins, P. Yu, O. Lichtarge et al., An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders, Cell, vol.152, pp.984-996, 2013.

G. S. Banting, O. Barak, T. M. Ames, A. C. Burnham, M. D. Kardel et al., CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L, Hum. Mol. Genet, vol.14, pp.513-524, 2005.

O. Barak, M. A. Lazzaro, W. S. Lane, D. W. Speicher, D. J. Picketts et al., Isolation of human NURF: a regulator of Engrailed gene expression, EMBO J, vol.22, pp.6089-6100, 2003.

A. Bartesaghi, C. Aguerrebere, V. Falconieri, S. Banerjee, L. A. Earl et al., Atomic Resolution Cryo-EM Structure of ?-Galactosidase, vol.26, pp.848-856, 2018.

J. Basta and M. Rauchman, The nucleosome remodeling and deacetylase complex in development and disease, Transl Res, vol.165, pp.36-47, 2015.

T. Baubec, R. Ivánek, F. Lienert, and D. Schübeler, Methylation-dependent and -independent genomic targeting principles of the MBD protein family, Cell, vol.153, pp.480-492, 2013.

J. Bednar, I. Garcia-saez, R. Boopathi, A. R. Cutter, G. Papai et al., Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1, Molecular Cell, vol.66, pp.384-397, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01537811

J. W. Bergs, N. Neuendorff, G. Van-der-heijden, E. Wassenaar, P. Rexin et al., Differential expression and sex chromosome association of CHD3/4 and CHD5 during spermatogenesis, PLoS ONE, vol.9, p.98203, 2014.

C. Biertümpfel, J. Basquin, D. Suck, and C. Sauter, Crystallization of biological macromolecules using agarose gel, Acta Crystallographica Section D Biological Crystallography, vol.58, pp.1657-1659, 2002.

M. Bostick, J. K. Kim, P. Esteve, A. Clark, S. Pradhan et al., UHRF1 Plays a Role in Maintaining DNA Methylation in Mammalian Cells, Science, vol.317, pp.1760-1764, 2007.

L. A. Boyer, R. R. Latek, C. L. Peterson, C. B. Brachmann, J. M. Sherman et al., The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability, Nat. Rev. Mol. Cell Biol, vol.5, pp.2888-2902, 1995.

M. Brackertz, J. Boeke, R. Zhang, and R. Renkawitz, Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3, J. Biol. Chem, vol.277, pp.40958-40966, 2002.

M. Brackertz, Z. Gong, J. Leers, and R. Renkawitz, p66alpha and p66beta of the Mi-2/NuRD complex mediate MBD2 and histone interaction, Nucleic Acids Res, vol.34, pp.397-406, 2006.

S. Brahma, M. I. Udugama, J. Kim, A. Hada, S. K. Bhardwaj et al., INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers, Nat Commun, vol.8, p.15616, 2017.

M. K. Brakke, Density Gradient Centrifugation: A New Separation Technique 1, Journal of the American Chemical Society, vol.73, pp.1847-1848, 1951.

C. Brasen, J. Dorosz, A. Wiuf, T. Boesen, O. Mirza et al., Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation, Biochim. Biophys. Acta, vol.1865, pp.843-851, 1996.

R. Brunmeir, S. Lagger, and C. Seiser, Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation, Int. J. Dev. Biol, vol.53, pp.275-289, 2009.

B. A. Buck-koehntop, M. A. Martinez-yamout, H. J. Dyson, and P. E. Wright, Kaiso uses all three zinc fingers and adjacent sequence motifs for high affinity binding to sequence-specific and methyl-CpG DNA targets, FEBS Lett, vol.586, pp.734-739, 2012.

I. Callebaut, J. C. Courvalin, and J. P. Mornon, The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation, FEBS Lett, vol.446, pp.189-193, 1999.

L. Cao, X. Song, L. Pei, L. Liu, H. Wang et al., Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer, Medicine, p.96, 2017.

M. Chahrour, S. Y. Jung, C. Shaw, X. Zhou, S. T. Wong et al., MeCP2, a key contributor to neurological disease, activates and represses transcription, Science, vol.320, pp.1224-1229, 2008.

J. Y. Chia, W. S. Tan, C. L. Ng, N. Hu, H. L. Foo et al., A/T Run Geometry of Bform DNA Is Independent of Bound Methyl-CpG Binding Domain, Cytosine Methylation and Flanking Sequence. Scientific Reports, vol.6, 2016.

P. Chiu, D. F. Kelly, and T. Walz, The use of trehalose in the preparation of specimens for molecular electron microscopy, Micron, vol.42, pp.762-772, 2011.

C. R. Clapier and B. R. Cairns, The biology of chromatin remodeling complexes, Annu. Rev. Biochem, vol.78, pp.273-304, 2009.

C. R. Clapier, J. Iwasa, B. R. Cairns, and C. L. Peterson, Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes, Nat. Rev. Mol. Cell Biol, vol.18, pp.407-422, 2017.

T. Clouaire, J. I. De-las-heras, C. Merusi, and I. Stancheva, Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA, Nucleic Acids Research, vol.38, pp.4620-4634, 2010.

D. F. Corona, C. R. Clapier, P. B. Becker, and J. W. Tamkun, Modulation of ISWI function by site-specific histone acetylation, EMBO Rep, vol.3, pp.242-247, 2002.

J. M. Cramer, J. N. Scarsdale, N. M. Walavalkar, W. A. Buchwald, G. D. Ginder et al., Probing the Dynamic Distribution of Bound States for Methylcytosine-binding Domains on DNA, J Biol Chem, vol.289, pp.1294-1302, 2014.

H. N. Cukier, J. M. Lee, D. Ma, J. I. Young, V. Mayo et al., The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1, Autism Res, vol.5, pp.385-397, 2012.

D. Carlo, . Adrian, . Kälin, and D. Mayer, Unexpected property of trehalose as observed by cryo-electron microscopy: unexpected property of trehalose as observed by cryo-electron microscopy, Journal of Microscopy, vol.196, pp.40-45, 1999.

D. Meyer, T. Mampaey, E. Vlemmix, M. Denil, S. Trooskens et al., Quality evaluation of methyl binding domain based kits for enrichment DNA-methylation sequencing, PLoS ONE, vol.8, pp.887-896, 2013.

S. A. Denslow and P. A. Wade, The human Mi-2/NuRD complex and gene regulation, Oncogene, vol.26, pp.5433-5438, 2007.

M. A. Desai, H. D. Webb, L. M. Sinanan, J. N. Scarsdale, N. M. Walavalkar et al., An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex, Nucleic Acids Res, vol.43, pp.3100-3113, 2015.

R. L. Santos, L. Tosti, A. Radzisheuskaya, I. M. Caballero, K. Kaji et al., MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner, Cell Stem Cell, vol.15, pp.102-110, 2014.

D. P. Dowling, S. L. Gantt, S. G. Gattis, C. A. Fierke, and D. W. Christianson, Structural Studies of Human Histone Deacetylase 8 and Its Site-Specific Variants Complexed with Substrate and Inhibitors ?, ? . Biochemistry, vol.47, pp.13554-13563, 2008.

N. Dyballa and S. Metzger, Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels, J Vis Exp, 2009.

S. Eustermann, K. Schall, D. Kostrewa, K. Lakomek, M. Strauss et al., Structural basis for ATP-dependent chromatin remodelling by the INO80 complex, Nature, vol.556, pp.386-390, 2018.

Q. Feng, R. Cao, L. Xia, H. Erdjument-bromage, P. Tempst et al., Identification and functional characterization of the p66/p68 components of the MeCP1 complex, Mol. Cell. Biol, vol.22, pp.536-546, 2002.

M. S. Finnin, J. R. Donigian, A. Cohen, V. M. Richon, R. A. Rifkind et al., Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors, Nature, vol.401, pp.188-193, 1999.

D. D. Fischer, R. Cai, U. Bhatia, F. A. Asselbergs, C. Song et al., Isolation and characterization of a novel class II histone deacetylase, HDAC10, J. Biol. Chem, vol.277, pp.6656-6666, 2002.

F. Forneris, C. Binda, E. Battaglioli, and A. Mattevi, LSD1: oxidative chemistry for multifaceted functions in chromatin regulation, Trends Biochem. Sci, vol.33, pp.181-189, 2008.

M. F. Fraga, E. Ballestar, G. Montoya, P. Taysavang, P. A. Wade et al., The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties, Nucleic Acids Res, vol.31, pp.1765-1774, 2003.

R. A. Frye, Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity, Biochem. Biophys. Res. Commun, vol.260, pp.273-279, 1999.

J. Fu, L. Qin, T. He, J. Qin, J. Hong et al., The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis, Cell Research, vol.21, pp.275-289, 2011.

L. Gao, M. A. Cueto, F. Asselbergs, and P. Atadja, Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family, J. Biol. Chem, vol.277, pp.25748-25755, 2002.

M. N. Gnanapragasam, J. N. Scarsdale, M. L. Amaya, H. D. Webb, M. A. Desai et al., p66Alpha-MBD2 coiledcoil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.7487-7492, 2011.

F. Gong, T. Clouaire, M. Aguirrebengoa, G. Legube, and K. M. Miller, Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair, J Cell Biol, vol.216, pp.1959-1974, 2017.

Z. Gong, M. Brackertz, and R. Renkawitz, SUMO Modification Enhances p66-Mediated Transcriptional Repression of the Mi-2/NuRD Complex, Molecular and Cellular Biology, vol.26, pp.4519-4528, 2006.

I. V. Gregoretti, Y. Lee, and H. V. Goodson, Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis, J. Mol. Biol, vol.338, pp.17-31, 2004.

C. M. Grozinger, C. A. Hassig, and S. L. Schreiber, Three proteins define a class of human histone deacetylases related to yeast Hda1p, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.4868-4873, 1999.

K. Günther, M. Rust, J. Leers, T. Boettger, M. Scharfe et al., Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences, Nucleic Acids Res, vol.41, pp.3010-3021, 2013.

M. Hakimi, D. A. Bochar, J. A. Schmiesing, Y. Dong, O. G. Barak et al., A chromatin remodelling complex that loads cohesin onto human chromosomes, Nature, vol.418, pp.994-998, 2002.

K. L. Harms and X. Chen, Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity, Cancer Res, vol.67, pp.3145-3152, 2007.

H. Hashimoto, J. R. Horton, X. Zhang, M. Bostick, S. E. Jacobsen et al., The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix, Nature, vol.455, pp.826-829, 2008.

H. Hashimoto, X. Zhang, and X. Cheng, Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation, Nucleic Acids Res, vol.40, pp.8276-8284, 2012.

F. Hauer, C. Gerle, N. Fischer, A. Oshima, K. Shinzawa-itoh et al., GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM, Structure, vol.23, pp.1769-1775, 2015.

Y. He, B. Li, Z. Li, P. Liu, Y. Wang et al., Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA, Science, vol.333, pp.1303-1307, 2011.

B. Hendrich and A. Bird, Identification and characterization of a family of mammalian methyl-CpG binding proteins, Mol. Cell. Biol, vol.18, pp.6538-6547, 1998.

B. Hendrich, J. Guy, B. Ramsahoye, V. A. Wilson, and A. Bird, Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development, Genes Dev, vol.15, pp.710-723, 2001.

B. Hendrich, U. Hardeland, H. H. Ng, J. Jiricny, and A. Bird, The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites, Nature, vol.401, pp.301-304, 1999.

B. Hendrich and S. Tweedie, The methyl-CpG binding domain and the evolving role of DNA methylation in animals, Trends Genet, vol.19, pp.269-277, 2003.

K. L. Ho, I. W. Mcnae, L. Schmiedeberg, R. J. Klose, A. P. Bird et al., MeCP2 binding to DNA depends upon hydration at methyl-CpG, Mol. Cell, vol.29, pp.525-531, 2008.

E. A. Hoffman, B. L. Frey, L. M. Smith, and D. T. Auble, Formaldehyde crosslinking: a tool for the study of chromatin complexes, J. Biol. Chem, vol.290, pp.26404-26411, 2015.

H. Hoffmeister, A. Fuchs, F. Erdel, S. Pinz, R. Gröbner-ferreira et al., CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality, Nucleic Acids Research, vol.45, pp.10534-10554, 2017.

R. D. Hotchkiss, The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography, J. Biol. Chem, vol.175, pp.315-332, 1948.

J. Huang, R. Sengupta, A. B. Espejo, M. G. Lee, J. A. Dorsey et al., , vol.449, pp.105-108, 2007.

A. Inoue and D. Fujimoto, Enzymatic deacetylation of histone, Biochem. Biophys. Res. Commun, vol.36, pp.146-150, 1969.

T. Jain, P. Sheehan, J. Crum, B. Carragher, and C. S. Potter, Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM, Journal of Structural Biology, vol.179, pp.68-75, 2012.

N. Javaid and S. Choi, Acetylation-and Methylation-Related Epigenetic Proteins in the Context of Their Targets, Genes, 2017.

H. F. Jørgensen, I. Ben-porath, and A. P. Bird, Mbd1 Is Recruited to both Methylated and Nonmethylated CpGs via Distinct DNA Binding Domains, Molecular and Cellular Biology, vol.24, pp.3387-3395, 2004.

Z. Kaczmarska, E. Ortega, A. Goudarzi, H. Huang, S. Kim et al., Structure of p300 in complex with acyl-CoA variants, Nature Chemical Biology, vol.13, pp.21-29, 2017.

P. Kahl, L. Gullotti, L. C. Heukamp, S. Wolf, N. Friedrichs et al., Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence, Cancer Res, vol.66, pp.11341-11347, 2006.

K. Kaji, J. Nichols, and B. Hendrich, Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells, Development, vol.134, pp.1123-1132, 2007.

H. Kao, C. Lee, A. Komarov, C. C. Han, and R. M. Evans, Isolation and characterization of mammalian HDAC10, a novel histone deacetylase, J. Biol. Chem, vol.277, pp.187-193, 2002.

P. Kapoor, M. Chen, D. D. Winkler, K. Luger, and X. Shen, Evidence for monomeric actin function in INO80 chromatin remodeling, Nat Struct Mol Biol, vol.20, pp.426-432, 2013.

P. Kapoor and X. Shen, Mechanisms of Nuclear Actin in Chromatin Remodeling Complexes, Trends Cell Biol, vol.24, pp.238-246, 2014.

M. Kashiwagi, B. A. Morgan, and K. Georgopoulos, The chromatin remodeler Mi-2beta is required for establishment of the basal epidermis and normal differentiation of its progeny, Development, vol.134, pp.1571-1582, 2007.

R. D. Kelly and S. M. Cowley, The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts, Biochem. Soc. Trans, vol.41, pp.741-749, 2013.

J. Kim, S. Sif, B. Jones, A. Jackson, J. Koipally et al., Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes, Immunity, vol.10, pp.345-355, 1999.

S. L. Kloet, H. I. Baymaz, M. Makowski, V. Groenewold, P. W. Jansen et al., Towards elucidating the stability, dynamics and architecture of the nucleosome remodeling and deacetylase complex by using quantitative interaction proteomics, FEBS Journal, vol.282, pp.1774-1785, 2015.

R. J. Klose, S. A. Sarraf, L. Schmiedeberg, S. M. Mcdermott, I. Stancheva et al., DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG, Mol. Cell, vol.19, pp.667-678, 2005.

D. Koh, D. Han, H. Ryu, W. Choi, B. Jeon et al., KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.15078-15083, 2014.

M. H. Kuo and C. D. Allis, Roles of histone acetyltransferases and deacetylases in gene regulation, Bioessays, vol.20, pp.615-626, 1998.

A. Kuzmichev, K. Nishioka, H. Erdjument-bromage, P. Tempst, and D. Reinberg, Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein, Genes Dev, vol.16, pp.2893-2905, 2002.

A. H. Kwan, D. A. Gell, A. Verger, M. Crossley, J. M. Matthews et al., Solution structure of the 2nd PHD domain from Mi2b with C-terminal loop replaced by corresponding loop from WSTF, 2003.

A. Y. Lai and P. A. Wade, Cancer biology and NuRD: a multifaceted chromatin remodelling complex, Nat. Rev. Cancer, vol.11, pp.588-596, 2011.

S. M. Lauberth and M. Rauchman, A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex, J. Biol. Chem, vol.281, pp.23922-23931, 2006.

B. E. Lauffer, R. Mintzer, R. Fong, S. Mukund, C. Tam et al., Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability, Journal of Biological Chemistry, vol.288, pp.26926-26943, 2013.

L. Guezennec, X. Vermeulen, M. Brinkman, A. B. Hoeijmakers, W. A. Cohen et al., MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties, Mol. Cell. Biol, vol.26, pp.843-851, 2006.

M. G. Lee, C. Wynder, D. A. Bochar, M. Hakimi, N. Cooch et al., Functional Interplay between Histone Demethylase and Deacetylase Enzymes, Molecular and Cellular Biology, vol.26, pp.6395-6402, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00171607

M. G. Lee, C. Wynder, D. A. Bochar, M. Hakimi, N. Cooch et al., Functional interplay between histone demethylase and deacetylase enzymes, Mol. Cell. Biol, vol.26, pp.6395-6402, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00171607

M. G. Lee, C. Wynder, N. Cooch, and R. Shiekhattar, An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation, Nature, vol.437, pp.432-435, 2005.

D. D. Leipe and D. Landsman, Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily, Nucleic Acids Res, vol.25, pp.3693-3697, 1997.

S. Lejon, S. Y. Thong, A. Murthy, S. Alqarni, N. V. Murzina et al., Insights into Association of the NuRD Complex with FOG-1 from the Crystal Structure of an RbAp48·FOG-1 Complex, Journal of Biological Chemistry, vol.286, pp.1196-1203, 2011.

C. Leo and J. D. Chen, The SRC family of nuclear receptor coactivators, Gene, vol.245, pp.1-11, 2000.

B. Li, M. Carey, and J. L. Workman, The role of chromatin during transcription, Cell, vol.128, pp.707-719, 2007.

K. Liu, C. Xu, M. Lei, A. Yang, P. Loppnau et al., Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA, J. Biol. Chem, vol.293, pp.7344-7354, 2018.

W. Liu, Y. Xie, J. Ma, X. Luo, P. Nie et al., IBS: an illustrator for the presentation and visualization of biological sequences: Fig. 1, Bioinformatics, vol.31, pp.3359-3361, 2015.

Y. Lorch, M. Zhang, and R. D. Kornberg, Histone octamer transfer by a chromatin-remodeling complex, Cell, vol.96, pp.389-392, 1999.

J. K. Low, S. R. Webb, A. P. Silva, H. Saathoff, D. P. Ryan et al., CHD4 Is a Peripheral Component of the Nucleosome Remodeling and Deacetylase Complex, J. Biol. Chem, vol.291, pp.15853-15866, 2016.

M. J. Lyst, J. Connelly, C. Merusi, and A. Bird, Sequence-specific DNA binding by AT-hook motifs in MeCP2, FEBS Letters, vol.590, pp.2927-2933, 2016.

P. Ma and R. M. Schultz, HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos: Specificity versus compensation, Cell Death Differ, vol.23, pp.1119-1127, 2016.

R. E. Mansfield, C. A. Musselman, A. H. Kwan, S. S. Oliver, A. L. Garske et al., Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9, J. Biol. Chem, vol.286, pp.11779-11791, 2011.

R. Marmorstein and R. C. Trievel, Histone modifying enzymes: structures, mechanisms, and specificities, Biochim. Biophys. Acta, vol.1789, pp.58-68, 2009.

R. R. Meehan, J. D. Lewis, S. Mckay, E. L. Kleiner, and A. P. Bird, Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs, Cell, vol.58, pp.499-507, 1989.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao et al., Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery, Cell, vol.165, pp.1698-1707, 2016.

C. J. Millard, L. Fairall, and J. W. Schwabe, Towards an understanding of the structure and function of MTA1, Cancer Metastasis Rev, vol.33, pp.857-867, 2014.

C. J. Millard, N. Varma, A. Saleh, K. Morris, P. J. Watson et al., The structure of the core NuRD repression complex provides insights into its interaction with chromatin, 2016.

C. J. Millard, P. J. Watson, I. Celardo, Y. Gordiyenko, S. M. Cowley et al., Class I HDACs Share a Common Mechanism of Regulation by Inositol Phosphates, Molecular Cell, vol.51, pp.57-67, 2013.

A. Mohd-sarip, M. Teeuwssen, A. G. Bot, M. J. Herdt, S. M. Willems et al., DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells, Cell Reports, vol.20, pp.61-75, 2017.

T. Mori, Y. Li, H. Hata, K. Ono, and H. Kochi, NIRF, a novel RING finger protein, is involved in cell-cycle regulation, Biochem. Biophys. Res. Commun, vol.296, pp.530-536, 2002.

N. V. Murzina, X. Pei, W. Zhang, M. Sparkes, J. Vicente-garcia et al., Structural Basis for the Recognition of Histone H4 by the Histone-Chaperone RbAp46, Structure, vol.16, pp.1077-1085, 2008.

C. A. Musselman, R. E. Mansfield, A. L. Garske, F. Davrazou, A. H. Kwan et al., Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications, Biochem. J, vol.423, pp.179-187, 2009.

C. A. Musselman, J. Ramírez, J. K. Sims, R. E. Mansfield, S. S. Oliver et al., Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.787-792, 2012.

S. S. Nair, D. Li, and R. Kumar, A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes, Mol. Cell, vol.49, pp.704-718, 2013.

X. Nan, R. R. Meehan, and A. Bird, Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2, Nucleic Acids Research, vol.21, pp.4886-4892, 1993.

S. K. Natchiar, A. G. Myasnikov, H. Kratzat, I. Hazemann, and B. P. Klaholz, Visualization of chemical modifications in the human 80S ribosome structure, Nature, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02409680

J. Nitarska, J. G. Smith, W. T. Sherlock, M. M. Hillege, A. Nott et al., A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development, Cell Rep, vol.17, pp.1683-1698, 2016.

Y. M. Oh, Y. E. Kwon, J. M. Kim, S. J. Bae, B. K. Lee et al., Chfr is linked to tumour metastasis through the downregulation of HDAC1, Nat. Cell Biol, vol.11, pp.295-302, 2009.

I. Ohki, N. Shimotake, N. Fujita, J. Jee, T. Ikegami et al., Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA, Cell, vol.105, pp.487-497, 2001.

I. Orlov, A. G. Myasnikov, L. Andronov, S. K. Natchiar, H. Khatter et al., The integrative role of cryo electron microscopy in molecular and cellular structural biology: Integrative role of cryo-EM in structural biology, Biology of the Cell, vol.109, pp.81-93, 2017.

J. Otani, K. Arita, T. Kato, M. Kinoshita, H. Kimura et al., Structural Basis of the Versatile DNA Recognition Ability of the Methyl-CpG Binding Domain of Methyl-CpG Binding Domain Protein 4, J. Biol. Chem, vol.288, pp.6351-6362, 2013.

R. S. Pantelic, J. C. Meyer, U. Kaiser, W. Baumeister, and J. M. Plitzko, Graphene oxide: A substrate for optimizing preparations of frozen-hydrated samples, Journal of Structural Biology, vol.170, pp.152-156, 2010.

M. R. Parthun, J. Widom, and D. E. Gottschling, The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism, Cell, vol.87, pp.85-94, 1996.

A. Prokhortchouk, B. Hendrich, H. Jørgensen, A. Ruzov, M. Wilm et al., The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor, Genes Dev, vol.15, pp.1613-1618, 2001.

Y. W. Qian, Y. C. Wang, R. E. Hollingsworth, D. Jones, N. Ling et al., A retinoblastoma-binding protein related to a negative regulator of Ras in yeast, Nature, vol.364, pp.648-652, 1993.

Y. Qian, Z. Liu, D. Pan, and K. Li, Tumoricidal activities of pterostilbene depend upon destabilizing the MTA1-NuRD complex and enhancing P53 acetylation in hepatocellular carcinoma, Exp Ther Med, vol.14, pp.3098-3104, 2017.

Y. Rais, A. Zviran, S. Geula, O. Gafni, E. Chomsky et al., Deterministic direct reprogramming of somatic cells to pluripotency, Nature, vol.502, pp.65-70, 2013.

B. A. Reddy, P. K. Bajpe, A. Bassett, Y. M. Moshkin, E. Kozhevnikova et al., Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the, Chromatin Remodeler NuRD. Molecular and Cellular Biology, vol.30, pp.5234-5244, 2010.

N. Reichert, M. Choukrallah, and P. Matthias, Multiple roles of class I HDACs in proliferation, differentiation, and development, Cell. Mol. Life Sci, vol.69, pp.2173-2187, 2012.

N. Reynolds, P. Latos, A. Hynes-allen, R. Loos, D. Leaford et al., NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment, Cell Stem Cell, vol.10, pp.583-594, 2012.

A. E. Roche, B. J. Bassett, S. A. Samant, W. Hong, G. A. Blobel et al., The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex, Journal of Molecular and Cellular Cardiology, vol.44, pp.352-360, 2008.

S. A. Sarraf and I. Stancheva, Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly, Mol. Cell, vol.15, pp.595-605, 2004.

N. Sasai and P. Defossez, Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes, Int. J. Dev. Biol, vol.53, pp.323-334, 2009.

J. W. Schmidberger, M. Sharifi-tabar, M. Torrado, A. P. Silva, M. J. Landsberg et al., The MTA1 subunit of the nucleosome remodeling and deacetylase complex can recruit two copies of RBBP4/7, Protein Sci, vol.25, pp.1472-1482, 2016.

F. W. Schmitges, A. B. Prusty, M. Faty, A. Stützer, G. M. Lingaraju et al., Histone methylation by PRC2 is inhibited by active chromatin marks, Mol. Cell, vol.42, pp.330-341, 2011.

A. Schuetz, J. Min, A. Allali-hassani, M. Schapira, M. Shuen et al., Human HDAC7 Harbors a Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity, Journal of Biological Chemistry, vol.283, pp.11355-11363, 2008.

H. P. Seelig, M. Renz, I. N. Targoff, Q. Ge, and M. B. Frank, Two forms of the major antigenic protein of the dermatomyositis-specific Mi-2 autoantigen, Arthritis Rheum, vol.39, pp.1769-1771, 1996.

C. V. Segré and S. Chiocca, Regulating the Regulators: The Post-Translational Code of Class I HDAC1 and HDAC2, J Biomed Biotechnol, 2011.

L. A. Serebryannyy, C. M. Cruz, and P. De-lanerolle, A Role for Nuclear Actin in HDAC 1 and 2 Regulation, 2016.

E. Seto and M. Yoshida, Erasers of Histone Acetylation: The Histone Deacetylase Enzymes, Cold Spring Harb Perspect Biol, vol.6, 2014.

M. D. Shahbazian and H. Y. Zoghbi, Rett syndrome and MeCP2: linking epigenetics and neuronal function, Am. J. Hum. Genet, vol.71, pp.1259-1272, 2002.

E. Shen, Q. Wang, H. Rabe, W. Liu, H. Cantor et al., Chromatin remodeling by the NuRD complex regulates development of follicular helper and regulatory T cells, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.6780-6785, 2018.

X. Shen, G. Mizuguchi, A. Hamiche, and C. Wu, A chromatin remodelling complex involved in transcription and DNA processing, Nature, vol.406, pp.541-544, 2000.

Y. Shi, Histone lysine demethylases: emerging roles in development, physiology and disease, Nat. Rev. Genet, vol.8, pp.829-833, 2007.

Y. Shi, C. Matson, F. Lan, S. Iwase, T. Baba et al., Regulation of LSD1 histone demethylase activity by its associated factors, Mol. Cell, vol.19, pp.857-864, 2005.

Y. Shi, F. Lan, C. Matson, P. Mulligan, J. R. Whetstine et al., Histone demethylation mediated by the nuclear amine oxidase homolog LSD1, Cell, vol.119, pp.941-953, 2004.

T. Shimbo, Y. Du, S. A. Grimm, A. Dhasarathy, D. Mav et al., MBD3 localizes at promoters, gene bodies and enhancers of active genes, PLoS Genet, vol.9, 2013.

T. Shimbo, M. Takaku, and P. A. Wade, High-quality ChIP-seq analysis of MBD3 in human breast cancer cells, Genom Data, vol.7, pp.173-174, 2016.

S. K. Singh, F. Sigworth, Z. D. Smith, and A. Meissner, DNA methylation: roles in mammalian development, Nat. Rev. Genet, vol.23, pp.204-220, 2013.

J. Song, M. Teplova, S. Ishibe-murakami, and D. J. Patel, Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation, Science, vol.335, pp.709-712, 2012.

C. G. Spruijt, S. J. Bartels, A. B. Brinkman, J. V. Tjeertes, I. Poser et al., CDK2AP1/DOC-1 is a bona fide subunit of the Mi-2/NuRD complex, Mol. BioSyst, vol.6, pp.1700-1706, 2010.

C. G. Spruijt, M. S. Luijsterburg, R. Menafra, R. G. Lindeboom, P. W. Jansen et al., ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage, Cell Reports, vol.17, pp.783-798, 2016.

R. Sridharan and S. T. Smale, Predominant interaction of both Ikaros and Helios with the NuRD complex in immature thymocytes, J. Biol. Chem, vol.282, pp.30227-30238, 2007.

H. Stark, GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM, Meth. Enzymol, vol.481, pp.109-126, 2010.

R. Strohner, A. Nemeth, P. Jansa, U. Hofmann-rohrer, R. Santoro et al., NoRC--a novel member of mammalian ISWI-containing chromatin remodeling machines, EMBO J, vol.20, pp.4892-4900, 2001.

A. I. Su, T. Wiltshire, S. Batalov, H. Lapp, K. A. Ching et al., A gene atlas of the mouse and human protein-encoding transcriptomes, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.6062-6067, 2004.

H. Szerlong, K. Hinata, R. Viswanathan, H. Erdjument-bromage, P. Tempst et al., The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases, Nat. Struct. Mol. Biol, vol.15, pp.469-476, 2008.

M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala et al., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, vol.324, pp.930-935, 2009.

M. Tan, H. Luo, S. Lee, F. Jin, J. S. Yang et al., Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification, Cell, vol.146, pp.1016-1028, 2011.

Y. Z. Tan, S. Aiyer, M. Mietzsch, J. A. Hull, R. Mckenna et al., Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1, J. Mol. Biol, vol.9, pp.27-38, 2001.

A. H. Tencer, K. L. Cox, L. Di, J. B. Bridgers, J. Lyu et al., Covalent Modifications of Histone H3K9 Promote Binding of CHD3, Cell Reports, vol.21, pp.455-466, 2017.

R. Todd, J. Mcbride, T. Tsuji, R. B. Donoff, M. Nagai et al., Deleted in oral cancer-1 (doc-1), a novel oral tumor suppressor gene, FASEB J, vol.9, pp.1362-1370, 1995.

J. K. Tong, C. A. Hassig, G. R. Schnitzler, R. E. Kingston, and S. L. Schreiber, Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex, Nature, vol.395, pp.917-921, 1998.

S. E. Torigoe, D. L. Urwin, H. Ishii, D. E. Smith, and J. T. Kadonaga, Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF, Mol. Cell, vol.43, pp.638-648, 2011.

A. Tosi, C. Haas, F. Herzog, A. Gilmozzi, O. Berninghausen et al., Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex, Cell, vol.154, pp.1207-1219, 2013.

R. Tricarico, S. Cortellino, A. Riccio, S. Jagmohan-changur, H. Van-der-klift et al., Oncotarget, vol.6, pp.42892-42904, 2015.

Y. Uchimura, T. Ichimura, J. Uwada, T. Tachibana, S. Sugahara et al., Involvement of SUMO Modification in MBD1-and MCAF1-mediated Heterochromatin Formation, J. Biol. Chem, vol.281, pp.23180-23190, 2006.

A. Vannini, C. Volpari, P. Gallinari, P. Jones, M. Mattu et al., Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex, EMBO reports, vol.8, pp.96-108, 1998.

A. Verreault, P. D. Kaufman, R. Kobayashi, and B. Stillman, Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4, Cell, vol.87, pp.95-104, 1996.

O. Von-loeffelholz, G. Papai, R. Danev, A. G. Myasnikov, S. K. Natchiar et al., Volta phase plate data collection facilitates image processing and cryo-EM structure determination, Journal of Structural Biology, vol.202, pp.191-199, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02409698

K. S. Voo, D. L. Carlone, B. M. Jacobsen, A. Flodin, and D. G. Skalnik, Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1, Mol. Cell. Biol, vol.20, pp.2108-2121, 2000.

P. A. Wade, P. L. Jones, D. Vermaak, and A. P. Wolffe, A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase, Curr. Biol, vol.8, pp.843-846, 1998.

N. M. Walavalkar, N. Gordon, and D. C. Williams, Unique features of the anti-parallel, heterodimeric coiled-coil interaction between methyl-cytosine binding domain 2 (MBD2) homologues and GATA zinc finger domain containing 2A (GATAD2A/p66?), J. Biol. Chem, vol.288, pp.3419-3427, 2013.

J. Wang, K. Scully, X. Zhu, L. Cai, J. Zhang et al., Opposing LSD1 complexes function in developmental gene activation and repression programmes, Nature, vol.446, pp.882-887, 2007.

Y. Wang, H. Zhang, Y. Chen, Y. Sun, F. Yang et al., LSD1 Is a Subunit of the NuRD Complex and Targets the Metastasis Programs in, Breast Cancer. Cell, vol.138, pp.660-672, 2009.

P. J. Watson, C. J. Millard, A. M. Riley, N. S. Robertson, L. C. Wright et al., Insights into the activation mechanism of class I HDAC complexes by inositol phosphates, Nature Communications, vol.7, p.11262, 2016.

Y. D. Wen, V. Perissi, L. M. Staszewski, W. M. Yang, A. Krones et al., The histone deacetylase-3 complex contains nuclear receptor corepressors, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.7202-7207, 2000.

D. Wenzel, F. Palladino, and M. Jedrusik-bode, Epigenetics in C. elegans: Facts and challenges, genesis, vol.49, pp.647-661, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00814756

I. Whitehouse, A. Flaus, B. R. Cairns, M. F. White, J. L. Workman et al., Nucleosome mobilization catalysed by the yeast SWI/SNF complex, Nature, vol.400, pp.784-787, 1999.

W. A. Whyte, S. Bilodeau, D. A. Orlando, H. A. Hoke, G. M. Frampton et al., Enhancer decommissioning by LSD1 during embryonic stem cell differentiation, Nature, vol.482, pp.221-225, 2012.

C. M. Wilczewski, A. J. Hepperla, T. Shimbo, L. Wasson, Z. L. Robbe et al., CHD4 and the NuRD complex directly control cardiac sarcomere formation, Proceedings of the National Academy of Sciences, vol.115, pp.6727-6732, 2018.

J. Winter, A. Pantelis, R. Reich, S. Jepsen, J. P. Allam et al., Risk Estimation for a Malignant Transformation of Oral Lesions by S100A7 and Doc-1 Gene Expression, Cancer Investigation, vol.29, pp.478-484, 2011.

D. Wion and J. Casadesús, N6-methyl-adenine: an epigenetic signal for DNA-protein interactions, Nat. Rev. Microbiol, vol.4, pp.183-192, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390766

O. Witt, H. E. Deubzer, T. Milde, and I. Oehme, HDAC family: What are the cancer relevant targets?, Cancer Letters, vol.277, pp.8-21, 2009.

K. H. Wood and Z. Zhou, Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation, Frontiers in Genetics, vol.7, 2016.

L. Wu, Y. Chen, W. Wu, C. Li, H. Huang et al., Expression of cyclin-dependent kinase 2-associated protein 1 confers an independent prognosticator in nasopharyngeal carcinoma: a cohort study, J. Clin. Pathol, vol.65, pp.795-801, 2012.

X. Wu and Y. Zhang, TET-mediated active DNA demethylation: mechanism, function and beyond, Nat. Rev. Genet, vol.18, pp.517-534, 2017.

H. Xiao, R. Sandaltzopoulos, H. M. Wang, A. Hamiche, R. Ranallo et al., Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions, Mol. Cell, vol.8, pp.531-543, 2001.

C. Xu, K. Liu, M. Lei, A. Yang, Y. Li et al., DNA Sequence Recognition of Human CXXC Domains and Their Structural Determinants, Structure, vol.26, pp.85-95, 2018.

T. Yamaguchi, F. Cubizolles, Y. Zhang, N. Reichert, H. Kohler et al., Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression, Genes Dev, vol.24, pp.455-469, 2010.

Y. Yan, N. A. Barlev, R. H. Haley, S. L. Berger, and R. Marmorstein, Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases, Mol. Cell, vol.6, pp.1195-1205, 2000.

T. Yang, W. Jian, Y. Luo, X. Fu, C. Noguchi et al., Acetylation of Histone Deacetylase 1 Regulates NuRD Corepressor Complex Activity, J Biol Chem, vol.287, pp.40279-40291, 2012.

W. M. Yang, C. Inouye, Y. Zeng, D. Bearss, and E. Seto, Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3, Proc. Natl. Acad. Sci. U.S.A, vol.93, pp.12845-12850, 1996.

Y. Yang, W. Huang, R. Qiu, R. Liu, Y. Zeng et al., LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer, J Mol Cell Biol, 2018.

O. Yildirim, R. Li, J. Hung, P. B. Chen, X. Dong et al., Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells, Cell, vol.147, pp.1498-1510, 2011.

H. Yoon, D. W. Chan, A. B. Reynolds, J. Qin, and J. Wong, N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso, Mol. Cell, vol.12, pp.723-734, 2003.

A. You, J. K. Tong, C. M. Grozinger, and S. L. Schreiber, CoREST is an integral component of the CoREST-human histone deacetylase complex, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.1454-1458, 2001.

H. Yuan and R. Marmorstein, Histone acetyltransferases: Rising ancient counterparts to protein kinases, Biopolymers, vol.99, pp.98-111, 2013.

W. Zhang, M. Tyl, R. Ward, F. Sobott, J. Maman et al., Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1, Nat. Struct. Mol. Biol, vol.20, pp.29-35, 2013.

Y. Zhang, G. Leroy, H. P. Seelig, W. S. Lane, and D. Reinberg, The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities, Cell, vol.95, pp.279-289, 1998.

T. Zhou, J. Xiong, M. Wang, N. Yang, J. Wong et al., Structural Basis for Hydroxymethylcytosine Recognition by the SRA Domain of UHRF2, Molecular Cell, vol.54, pp.879-886, 2014.

X. Zou, W. Ma, I. A. Solov&apos;yov, C. Chipot, and K. Schulten, Recognition of methylated DNA through methyl-CpG binding domain proteins, Nucleic Acids Res, vol.40, pp.2747-2758, 2012.

G. Zupkovitz, J. Tischler, M. Posch, I. Sadzak, K. Ramsauer et al., Negative and Positive Regulation of Gene Expression by Mouse Histone Deacetylase 1, Molecular and Cellular Biology, vol.26, pp.7913-7928, 2006.