J. Lehn, Toward complex matter: Supramolecular chemistry and self-organization, Proc. Natl. Acad. Sci, vol.99, pp.4763-4768, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00690670

J. Lehn, Toward self-organization and complex matter, Science, vol.295, pp.2400-2403, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00690670

B. Alberts, Molecular Biology of the Cell, 2002.

R. Merindol and A. Walther, Materials learning from life: concepts for active, adaptive and autonomous molecular systems, Chem. Soc. Rev, 2017.

J. Lehn, From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry, Chem. Soc. Rev, vol.36, pp.151-160, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00166420

J. Lehn, From Molecular to Supramolecular Chemistry, Supramolecular Chemistry 1-9, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00019534

J. Lehn, Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chem. Int. Ed. Engl, vol.27, pp.89-112, 1988.

J. Lehn, Supramolecular Chemistry: Concepts and Perspectives, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00019531

T. Aida, E. W. Meijer, and S. I. Stupp, Functional Supramolecular Polymers. Science, vol.335, pp.813-817, 2012.

J. W. Steed and J. L. Atwood, Supramolecular Chemistry, 2013.

D. Fujita, Self-Assembly of M30L60 Icosidodecahedron, vol.1, pp.91-101, 2016.

M. W. Urban, Handbook of Stimuli-Responsive Materials, 2011.

T. F. De-greef, Supramolecular Polymerization, Chem. Rev, vol.109, pp.5687-5754, 2009.

A. Ciferri, . Supramolecular, and . Polymers, , 2005.

F. Tantakitti, Energy landscapes and functions of supramolecular systems, Nat. Mater, vol.15, pp.469-476, 2016.

L. D. Evans, G. P. Stafford, S. Ahmed, G. M. Fraser, and C. Hughes, An escort mechanism for cycling of export chaperones during flagellum assembly, Proc. Natl. Acad. Sci, vol.103, pp.17474-17479, 2006.

E. Mattia and S. Otto, Supramolecular systems chemistry, Nat. Nanotechnol, vol.10, pp.111-119, 2015.

J. Boekhoven, Dissipative Self-Assembly of a Molecular Gelator by Using a Chemical Fuel, Angew. Chem, vol.122, pp.4935-4938, 2010.

J. Boekhoven, W. E. Hendriksen, G. J. Koper, R. Eelkema, J. H. Esch et al., Transient assembly of active materials fueled by a chemical reaction, Science, vol.349, pp.1075-1079, 2015.

S. Debnath, S. Roy, and R. V. Ulijn, Peptide Nanofibers with Dynamic Instability through Nonequilibrium Biocatalytic Assembly, J. Am. Chem. Soc, vol.135, pp.16789-16792, 2013.

S. Maiti, I. Fortunati, C. Ferrante, P. Scrimin, and L. J. Prins, Dissipative self-assembly of vesicular nanoreactors, Nat. Chem, vol.8, pp.725-731, 2016.

D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2014.

P. Atkins, J. D. Paula, and . Atkins, Physical Chemistry, 2014.

G. Nicolis and I. Prigogine, Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations, 1977.

M. M. Smulders, How to Distinguish Isodesmic from Cooperative Supramolecular Polymerisation, Chem. -Eur. J, vol.16, pp.362-367, 2010.

P. A. Korevaar, T. F. De-greef, and E. W. Meijer, Pathway Complexity in ?-Conjugated Materials, Chem. Mater, vol.26, pp.576-586, 2014.

D. Van-der-zwaag, Kinetic Analysis as a Tool to Distinguish Pathway Complexity in Molecular Assembly: An Unexpected Outcome of Structures in Competition, J. Am. Chem. Soc, vol.137, pp.12677-12688, 2015.

A. J. Markvoort, H. M. Eikelder, . Ten, P. A. Hilbers, and T. F. De-greef, Fragmentation and Coagulation in Supramolecular (Co)polymerization Kinetics, ACS Cent. Sci, vol.2, pp.232-241, 2016.

D. Van-der-zwaag, P. A. Korevaar, A. J. Markvoort, and T. F. De-greef,

, Chapter 1 Introduction: Molecular self-assembly inspired by nature 26

P. A. Korevaar, Pathway complexity in supramolecular polymerization, Nature, vol.481, pp.492-496, 2012.

E. T. Powers and D. L. Powers, Mechanisms of Protein Fibril Formation: Nucleated Polymerization with Competing Off-Pathway Aggregation, Biophys. J, vol.94, pp.379-391, 2008.

S. Ogi, K. Sugiyasu, S. Manna, S. Samitsu, and M. Takeuchi, Living supramolecular polymerization realized through a biomimetic approach, Nat. Chem, vol.6, pp.188-195, 2014.

J. Kang, A rational strategy for the realization of chain-growth supramolecular polymerization, Science, vol.347, pp.646-651, 2015.

A. T. Haedler, Pathway Complexity in the Enantioselective Self-Assembly of Functional Carbonyl-Bridged Triarylamine Trisamides, J. Am. Chem. Soc, vol.138, pp.10539-10545, 2016.

C. Escudero, Hierarchical dependence of porphyrin self-aggregation: controlling and exploiting the complexity, J. Porphyr. Phthalocyanines, vol.14, pp.708-712, 2010.

Z. El-hachemi, G. Mancini, J. M. Ribó, and A. Sorrenti, Role of the Hydrophobic Effect in the Transfer of Chirality from Molecules to Complex Systems: From Chiral Surfactants to Porphyrin/Surfactant Aggregates, J. Am. Chem. Soc, vol.130, pp.15176-15184, 2008.

A. Akbarzadeh, Liposome: classification, preparation, and applications, Nanoscale Res. Lett, vol.8, p.102, 2013.

T. M. Hermans, Stepwise Noncovalent Synthesis Leading to Dendrimer-Based Assemblies in Water, J. Am. Chem. Soc, vol.129, pp.15631-15638, 2007.

T. M. Hermans, Self-assembly of soft nanoparticles with tunable patchiness, Nat. Nanotechnol, vol.4, pp.721-726, 2009.

M. Numata, Supramolecular Chemistry in Microflow Fields: Toward a New Material World of Precise Kinetic Control, Chem. -Asian J, vol.10, pp.2574-2588, 2015.

J. M. Ribó, Z. El-hachemi, and J. Crusats, Effects of flows in auto-organization, self-assembly, and emergence of chirality, Rendiconti Lincei, vol.24, pp.197-211, 2013.

J. M. Ribó, J. Crusats, F. Sagués, J. Claret, and R. Rubires, Chiral Sign Induction by Vortices During the Formation of Mesophases in Stirred Solutions, Science, vol.292, pp.2063-2066, 2001.

N. Micali, Selection of supramolecular chirality by application of rotational and magnetic forces, Nat. Chem, vol.4, pp.201-207, 2012.

A. D'urso, M. E. Fragalà, and R. Purrello, From self-assembly to noncovalent synthesis of programmable porphyrins' arrays in aqueous solution, Chem. Commun, vol.48, p.8165, 2012.

F. Helmich, C. C. Lee, A. P. Schenning, and E. W. Meijer, Chiral Memory via Chiral Amplification and Selective Depolymerization of Porphyrin Aggregates, J. Am. Chem. Soc, vol.132, pp.16753-16755, 2010.

G. Ashkenasy, M. Hermans, T. Otto, S. F. Taylor, and A. , Systems chemistry, Chem. Soc. Rev, vol.46, pp.2543-2554, 2017.

L. Heinen and A. Walther, Celebrating Soft Matter's 10th Anniversary: Approaches to program the time domain of self-assemblies, Soft Matter, vol.11, pp.7857-7866, 2015.

D. ). , R. A. Ph, R. A. Harvey, D. R. Ferrier, and . Biochemistry, , 2011.

H. Obermann, E. M. Mandelkow, G. Lange, and E. Mandelkow, Microtubule oscillations. Role of nucleation and microtubule number concentration, J. Biol. Chem, vol.265, pp.4382-4388, 1990.

D. N. Drechsel, A. A. Hyman, M. H. Cobb, and M. W. Kirschner, Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau, Mol. Biol. Cell, vol.3, pp.1141-1154, 1992.

L. Ernster and G. Schatz, Mitochondria: a historical review, J. Cell Biol, vol.91, pp.227-255, 1981.

I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, 1998.

S. Dhiman, A. Jain, and S. J. George, Transient Helicity: Fuel-Driven Temporal Control over Conformational Switching in a Supramolecular Polymer, Angew. Chem, vol.129, pp.1349-1353, 2017.

J. Chen, S. Maiti, I. Fortunati, C. Ferrante, and L. J. Prins, Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels, Chem. -Eur. J, 2017.

, Chapter 1 Introduction: Molecular self-assembly inspired by nature 27

C. Pezzato and L. J. Prins, Transient signal generation in a self-assembled nanosystem fueled by ATP, Nat. Commun, vol.6, p.7790, 2015.

F. Würthner, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials, Chem. Rev, vol.116, pp.962-1052, 2016.

F. Würthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chem. Commun, vol.0, pp.1564-1579, 2004.

F. Würthner, Z. Chen, V. Dehm, and V. Stepanenko, One-dimensional luminescent nanoaggregates of perylene bisimides, Chem. Commun, vol.0, pp.1188-1190, 2006.

Z. Chen, Photoluminescence and Conductivity of Self-Assembled ?-? Stacks of Perylene Bisimide Dyes, Chem. -Eur. J, vol.13, pp.436-449, 2007.

F. Würthner, C. Thalacker, S. Diele, and C. Tschierske, Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes, Chem. -Eur. J, vol.7, pp.2245-2253, 2001.

D. Görl, X. Zhang, and F. Würthner, Molecular Assemblies of Perylene Bisimide Dyes in Water, Angew. Chem. Int. Ed, vol.51, pp.6328-6348, 2012.

J. Van-herrikhuyzen, A. Syamakumari, A. P. Schenning, and E. W. Meijer, Synthesis of n-Type Perylene Bisimide Derivatives and Their Orthogonal Self-Assembly with p-Type Oligo(p-phenylene vinylene)s, J. Am. Chem. Soc, vol.126, pp.10021-10027, 2004.

R. Weegen and . Van-der, Small sized perylene-bisimide assemblies controlled by both cooperative and anti-cooperative assembly processes, Chem. Commun, vol.49, pp.5532-5534, 2013.

J. Gershberg, F. Fennel, H. Rehm, T. Lochbrunner, S. Würthner et al., Anti-cooperative supramolecular polymerization: a new K 2 -K model applied to the self-assembly of perylene bisimide dye proceeding via well-defined hydrogen-bonded dimers, Chem. Sci, vol.7, pp.1729-1737, 2016.

S. Ogi, V. Stepanenko, K. Sugiyasu, M. Takeuchi, and F. Würthner, Mechanism of Self-Assembly Process and Seeded Supramolecular Polymerization of Perylene Bisimide Organogelator, J. Am. Chem. Soc, vol.137, pp.3300-3307, 2015.

Y. Tidhar, H. Weissman, S. G. Wolf, A. Gulino, and B. Rybtchinski, Pathway-Dependent Self-Assembly of Perylene Diimide/Peptide Conjugates in Aqueous Medium, Chem. -Eur. J, vol.17, pp.6068-6075, 2011.

F. Würthner, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials, Chem. Rev, vol.116, pp.962-1052, 2016.

Y. Tidhar, H. Weissman, S. G. Wolf, A. Gulino, and B. Rybtchinski, Pathway-Dependent Self-Assembly of Perylene Diimide/Peptide Conjugates in Aqueous Medium, Chem. -Eur. J, vol.17, pp.6068-6075, 2011.

P. A. Korevaar, Pathway complexity in supramolecular polymerization, Nature, vol.481, pp.492-496, 2012.

P. A. Korevaar, T. F. De-greef, and E. W. Meijer, Pathway Complexity in ?-Conjugated Materials, Chem. Mater, vol.26, pp.576-586, 2014.

S. Ogi, V. Stepanenko, K. Sugiyasu, M. Takeuchi, and F. Würthner, Mechanism of Self-Assembly Process and Seeded Supramolecular Polymerization of Perylene Bisimide Organogelator, J. Am. Chem. Soc, vol.137, pp.3300-3307, 2015.

D. Görl, X. Zhang, V. Stepanenko, and F. Würthner, Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides, Nat. Commun, vol.6, p.8009, 2015.

Z. El-hachemi, G. Mancini, J. M. Ribó, and A. Sorrenti, Role of the Hydrophobic Effect in the Transfer of Chirality from Molecules to Complex Systems: From Chiral Surfactants to Porphyrin/Surfactant Aggregates, J. Am. Chem. Soc, vol.130, pp.15176-15184, 2008.

D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature, vol.437, pp.640-647, 2005.

F. Würthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chem. Commun, vol.0, pp.1564-1579, 2004.

F. Würthner, Z. Chen, V. Dehm, and V. Stepanenko, One-dimensional luminescent nanoaggregates of perylene bisimides, Chem. Commun, vol.0, pp.1188-1190, 2006.

R. Draper and E. , Air-stable photoconductive films formed from perylene bisimide gelators, J. Mater. Chem. C, vol.2, pp.5570-5575, 2014.

P. , S. M. Neugebauer, and W. , Manufacture of vat dyestuffs, 1929.

E. Shirman, Stable Aromatic Dianion in Water, J. Phys. Chem. B, vol.112, pp.8855-8858, 2008.

R. O. Marcon and S. Brochsztain, Aggregation of 3,4,9,10-Perylenediimide Radical Anions and Dianions Generated by Reduction with Dithionite in Aqueous Solutions, J. Phys. Chem. A, vol.113, pp.1747-1752, 2009.

M. A. Iron, R. Cohen, and B. Rybtchinski, On the Unexpected Stability of the Dianion of Perylene Diimide in Water-A Computational Study, J. Phys. Chem. A, vol.115, pp.2047-2056, 2011.

E. Krieg, Supramolecular Gel Based on a Perylene Diimide Dye: Multiple Stimuli Responsiveness, Robustness, and Photofunction, J. Am. Chem. Soc, vol.131, pp.14365-14373, 2009.

X. Cao, Y. Wu, H. Fu, and J. Yao, Self-Assembly of Perylenediimide Nanobelts and Their Size-Tunable Exciton Dynamic Properties, J. Phys. Chem. Lett, vol.2, pp.2163-2167, 2011.

A. T. Haedler, Pathway Complexity in the Enantioselective Self-Assembly of Functional Carbonyl-Bridged Triarylamine Trisamides, J. Am. Chem. Soc, vol.138, pp.10539-10545, 2016.

D. Görl, X. Zhang, and F. Würthner, Molecular Assemblies of Perylene Bisimide Dyes in Water, Angew. Chem. Int. Ed, vol.51, pp.6328-6348, 2012.

Z. Chen, Photoluminescence and Conductivity of Self-Assembled ?-? Stacks of Perylene Bisimide Dyes, Chem. -Eur. J, vol.13, pp.436-449, 2007.

J. Seibt, On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide, Chem. Phys, vol.328, pp.354-362, 2006.

X. Zhang, D. Görl, V. Stepanenko, and F. Würthner, Hierarchical Growth of Fluorescent Dye Aggregates in Water by Fusion of Segmented Nanostructures, Angew. Chem. Int. Ed, vol.53, pp.1270-1274, 2014.

R. B. Martin, Comparisons of Indefinite Self-Association Models, Chem. Rev, vol.96, pp.3043-3064, 1996.

M. M. Smulders, How to Distinguish Isodesmic from Cooperative Supramolecular Polymerisation, Chem. -Eur. J, vol.16, pp.362-367, 2010.

T. F. De-greef, Supramolecular Polymerization, Chem. Rev, vol.109, pp.5687-5754, 2009.

M. Fialkowski, Principles and Implementations of Dissipative (Dynamic) Self-Assembly, J. Phys. Chem. B, vol.110, pp.2482-2496, 2006.

N. R. Council, Inspired by Biology: From Molecules to Materials to Machines, 2008.

L. Heinen and A. Walther, Celebrating Soft Matter's 10th Anniversary: Approaches to program the time domain of self-assemblies, Soft Matter, vol.11, pp.7857-7866, 2015.

R. Merindol and A. Walther, Materials learning from life: concepts for active, adaptive and autonomous molecular systems, Chem. Soc. Rev, 2017.

I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, 1998.

D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2014.

H. W. Roekel and . Van, Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach, Chem. Soc. Rev, vol.44, pp.7465-7483, 2015.

B. Alberts, Molecular Biology of the Cell, 2002.

M. Gallego and D. M. Virshup, Post-translational modifications regulate the ticking of the circadian clock, Nat. Rev. Mol. Cell Biol, vol.8, pp.139-148, 2007.

C. H. Ko and J. S. Takahashi, Molecular components of the mammalian circadian clock, Hum. Mol. Genet, vol.15, pp.271-277, 2006.

F. Guillaumond, H. Dardente, V. Giguère, and N. Cermakian, Differential Control of Bmal1 Circadian Transcription by REV-ERB and ROR Nuclear Receptors, J. Biol. Rhythms, vol.20, pp.391-403, 2005.

J. A. Mohawk, C. B. Green, and J. S. Takahashi, Central and Peripheral Circadian Clocks in Mammals, Annu. Rev. Neurosci, vol.35, pp.445-462, 2012.

S. M. Reppert and D. R. Weaver, Coordination of circadian timing in mammals, Nature, vol.418, pp.935-941, 2002.

S. Yoo, PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.5339-5346, 2004.

E. M. Mandelkow, G. Lange, A. Jagla, U. Spann, and E. Mandelkow, Dynamics of the microtubule oscillator: role of nucleotides and tubulin-MAP interactions, EMBO J, vol.7, pp.357-365, 1988.

E. Mandelkow and E. Mandelkow, Microtubule oscillations, Cell Motil. Cytoskeleton, vol.22, pp.235-244, 1992.

G. Lange, E. Mandelkow, A. Jagla, and E. Mandelkow, Tubulin oligomers and microtubule oscillations, Eur. J. Biochem, vol.178, pp.61-69, 1988.

D. Sept, H. J. Limbach, H. Bolterauer, and J. A. Tuszynski, A Chemical Kinetics Model for Microtubule Oscillations, J. Theor. Biol, vol.197, pp.77-88, 1999.

A. Marx and E. Mandelkow, A model of microtubule oscillations, Eur. Biophys. J, vol.22, pp.405-421, 1994.

H. Bowne-anderson, M. Zanic, M. Kauer, and J. Howard, Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe, BioEssays, vol.35, pp.452-461, 2013.

M. Caplow and J. Shanks, Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules, Mol. Biol. Cell, vol.7, pp.663-675, 1996.

J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, 2001.

B. Belousov, A periodic reaction and its mechanism, Ref Radiats Med, 1958.

A. N. Zaikin and A. M. Zhabotinsky, Concentration Wave Propagation in Two-dimensional Liquidphase Self-oscillating System, Nature, vol.225, pp.535-537, 1970.

I. R. Epstein and B. Xu, Reaction-diffusion processes at the nano-and microscales, Nat. Nanotechnol, vol.11, pp.312-319, 2016.

G. Rabai, M. T. Beck, K. Kustin, and I. R. Epstein, Sustained and damped pH oscillation in the periodate-thiosulfate reaction in a continuous-flow stirred tank reactor, J. Phys. Chem, vol.93, pp.2853-2858, 1989.

G. A. Frerichs, T. M. Mlnarik, R. J. Grun, and R. C. Thompson, A New pH Oscillator: The Chlorite?Sulfite?Sulfuric Acid System in a CSTR, J. Phys. Chem. A, vol.105, pp.829-837, 2001.

K. Kovacs, R. Mcilwaine, K. Gannon, A. F. Taylor, and S. K. Scott, Complex Behavior in the Formaldehyde?Sulfite Reaction, J. Phys. Chem. A, vol.109, pp.283-288, 2005.

K. Kovacs, R. E. Mcilwaine, S. K. Scott, and A. F. Taylor, An Organic-Based pH Oscillator, J. Phys. Chem. A, vol.111, pp.549-551, 2007.

S. N. Semenov, Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions, Nature, vol.537, pp.656-660, 2016.

M. W. Urban, Handbook of Stimuli-Responsive Materials, 2011.

R. Yoshida, Self-Oscillating Gels Driven by the Belousov-Zhabotinsky Reaction as Novel Smart Materials, Adv. Mater, vol.22, pp.3463-3483, 2010.

R. Yoshida and T. Ueki, Evolution of self-oscillating polymer gels as autonomous polymer systems, NPG Asia Mater, vol.6, p.107, 2014.

I. Lagzi, D. Wang, B. Kowalczyk, and B. A. Grzybowski, Vesicle-to-Micelle Oscillations and Spatial Patterns, Langmuir, vol.26, pp.13770-13772, 2010.

T. Ueki, M. Shibayama, and R. Yoshida, Self-oscillating micelles, Chem. Commun, vol.49, pp.6947-6949, 2013.

I. Lagzi, B. Kowalczyk, D. Wang, and B. A. Grzybowski, Nanoparticle Oscillations and Fronts, Angew. Chem. Int. Ed, vol.49, pp.8616-8619, 2010.

G. Wang, The non-equilibrium self-assembly of amphiphilic block copolymers driven by a pH oscillator, Colloids Surf. Physicochem. Eng. Asp, vol.529, pp.808-814, 2017.

R. Tamate, T. Ueki, M. Shibayama, and R. Yoshida, Effect of substrate concentrations on the aggregation behavior and dynamic oscillatory properties of the self-oscillating block copolymers, Phys. Chem. Chem. Phys, 2017.

Y. Murase, S. Maeda, S. Hashimoto, and R. Yoshida, Design of a Mass Transport Surface Utilizing Peristaltic Motion of a Self-Oscillating Gel, Langmuir, vol.25, pp.483-489, 2009.

Y. Murase, M. Hidaka, and R. Yoshida, Self-driven gel conveyer: Autonomous transportation by peristaltic motion of self-oscillating gel, Sens. Actuators B Chem, vol.149, pp.272-283, 2010.

A. Pal, Controlling the Structure and Length of Self-Synthesizing Supramolecular Polymers through Nucleated Growth and Disassembly, Angew. Chem. Int. Ed, vol.54, pp.7852-7856, 2015.

J. M. Carnall, Mechanosensitive Self-Replication Driven by Self-Organization, Science, vol.327, pp.1502-1506, 2010.

M. M. Smulders, How to Distinguish Isodesmic from Cooperative Supramolecular Polymerisation, Chem. -Eur. J, vol.16, pp.362-367, 2010.

T. F. De-greef, Supramolecular Polymerization, Chem. Rev, vol.109, pp.5687-5754, 2009.

A. Sorrenti, J. Leira-iglesias, J. Markvoort, A. Greef, T. F. De-&-m et al., Non-equilibrium supramolecular polymerization, Chem. Soc. Rev, 2017.

C. Kulkarni, E. W. Meijer, and A. R. Palmans, Cooperativity Scale: A Structure-Mechanism Correlation in the Self-Assembly of Benzene-1,3,5-tricarboxamides, Acc. Chem. Res, 2017.

M. Nic, , 2006.

P. A. Korevaar, Pathway complexity in supramolecular polymerization, Nature, vol.481, pp.492-496, 2012.

J. M. Mo, M. E. Holtzer, and A. Holtzer, Kinetics of self-assembly of alpha alpha-tropomyosin coiled coils from unfolded chains, Proc. Natl. Acad. Sci, vol.88, pp.916-920, 1991.

K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, Polymeric Systems for Controlled Drug Release, Chem. Rev, vol.99, pp.3181-3198, 1999.

B. D. Ulery, L. S. Nair, and C. T. Laurencin, Biomedical applications of biodegradable polymers, J. Polym. Sci. Part B Polym. Phys, vol.49, pp.832-864, 2011.

J. A. Tamada and R. Langer, Erosion kinetics of hydrolytically degradable polymers, Proc. Natl. Acad. Sci, vol.90, pp.552-556, 1993.

R. O. Marcon and S. Brochsztain, Highly Stable 3,4,9,10-Perylenediimide Radical Anions Immobilized in Robust Zirconium Phosphonate Self-Assembled Films, Langmuir, vol.23, pp.11972-11976, 2007.

S. I. Cohen, Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments, J. Chem. Phys, vol.135, p.65105, 2011.

M. M. Ayass, M. Al-ghoul, and I. Lagzi, Chemical Waves in Heterogeneous Media, J. Phys. Chem. A, vol.118, pp.11678-11682, 2014.

R. Kapral and K. Showalter, Chemical Waves and Patterns, 2012.

M. Lovrak, Free-standing supramolecular hydrogel objects by reaction-diffusion, Nat. Commun, vol.8, p.15317, 2017.

, Calcium Signaling, vol.740, 2012.

B. A. Grzybowski, Chemistry in Motion: Reaction-Diffusion Systems for Micro-and Nanotechnology, 2009.

K. J. Bishop and B. A. Grzybowski, Localized Chemical Wave Emission and Mode Switching in a Patterned Excitable Medium, Phys. Rev. Lett, vol.97, p.128702, 2006.

S. K. Scott, Oscillations, Waves, and Chaos in Chemical Kinetics, 1994.

S. K. Scott and K. Showalter, Simple and complex propagating reaction-diffusion fronts, J. Phys. Chem, vol.96, pp.8702-8711, 1992.

D. Horváth, V. Petrov, S. K. Scott, and K. Showalter, Instabilities in propagating reaction-diffusion fronts, J. Chem. Phys, vol.98, pp.6332-6343, 1993.

D. S. Goodsell, The Machinery of Life, 2009.

I. R. Epstein and B. Xu, Reaction-diffusion processes at the nano-and microscales, Nat. Nanotechnol, vol.11, pp.312-319, 2016.

K. T. Rogers and . Cell, , 2011.

B. Alberts, Molecular Biology of the Cell, 2002.

L. Ernster and G. Schatz, Mitochondria: a historical review, J. Cell Biol, vol.91, pp.227-255, 1981.

T. Hunter, Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling, Cell, vol.80, pp.225-236, 1995.

D. R. Ph, R. A. Harvey, D. R. Ferrier, and . Biochemistry, , 2011.

R. H. Garrett, C. M. Grisham, and . Biochemistry, , 2016.

E. Kandel, Principles of Neural Science, Fifth Edition, 2013.

E. P. Widmaier, H. Raff, A. J. Vander, and K. T. Strang, Vander's Human Physiology: The Mechanisms of Body Function, 2011.

C. Mcneil, Alzheimer's Disease, 1997.

J. Boekhoven, Dissipative Self-Assembly of a Molecular Gelator by Using a Chemical Fuel, Angew. Chem, vol.122, pp.4935-4938, 2010.

J. Boekhoven, W. E. Hendriksen, G. J. Koper, R. Eelkema, J. H. Esch et al., Transient assembly of active materials fueled by a chemical reaction, Science, vol.349, pp.1075-1079, 2015.

M. J. Webber, C. J. Newcomb, R. Bitton, and S. I. Stupp, Switching of self-assembly in a peptide nanostructure with a specific enzyme, Soft Matter, vol.7, p.9665, 2011.

S. Debnath, S. Roy, and R. V. Ulijn, Peptide Nanofibers with Dynamic Instability through Nonequilibrium Biocatalytic Assembly, J. Am. Chem. Soc, vol.135, pp.16789-16792, 2013.

Z. Yang, G. Liang, L. Wang, and B. Xu, Using a Kinase/Phosphatase Switch to Regulate a Supramolecular Hydrogel and Forming the Supramolecular Hydrogel in Vivo, J. Am. Chem. Soc, vol.128, pp.3038-3043, 2006.

A. R. Hirst, Biocatalytic induction of supramolecular order, Nat. Chem, vol.2, pp.1089-1094, 2010.

M. Kumar, A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis, Nat. Commun, vol.5, p.6793, 2014.

C. Pezzato and L. J. Prins, Transient signal generation in a self-assembled nanosystem fueled by ATP, Nat. Commun, vol.6, p.7790, 2015.

S. Maiti, I. Fortunati, C. Ferrante, P. Scrimin, and L. J. Prins, Dissipative self-assembly of vesicular nanoreactors, Nat. Chem, vol.8, pp.725-731, 2016.

S. Dhiman, A. Jain, and S. J. George, Transient Helicity: Fuel-Driven Temporal Control over Conformational Switching in a Supramolecular Polymer, Angew. Chem, vol.129, pp.1349-1353, 2017.

C. S. Wood, C. Browne, D. M. Wood, and J. R. Nitschke, Fuel-Controlled Reassembly of Metal-Organic Architectures, ACS Cent. Sci, vol.1, pp.504-509, 2015.

B. E. Kemp and R. B. Pearson, Protein kinase recognition sequence motifs, Trends Biochem. Sci, vol.15, pp.342-346, 1990.

T. Ku, Controlling and Switching the Morphology of Micellar Nanoparticles with Enzymes, J. Am. Chem. Soc, vol.133, pp.8392-8395, 2011.

D. Görl, X. Zhang, and F. Würthner, Molecular Assemblies of Perylene Bisimide Dyes in Water, Angew. Chem. Int. Ed, vol.51, pp.6328-6348, 2012.

F. Würthner, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials, Chem. Rev, vol.116, pp.962-1052, 2016.

E. Mattia and S. Otto, Supramolecular systems chemistry, Nat. Nanotechnol, vol.10, pp.111-119, 2015.

M. W. Urban, Handbook of Stimuli-Responsive Materials, 2011.

J. Seibt, On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide, Chem. Phys, vol.328, pp.354-362, 2006.

D. Görl and F. Würthner, Entropically Driven Self-Assembly of Bolaamphiphilic Perylene Dyes in Water, Angew. Chem. Int. Ed, vol.128, pp.12273-12277, 2016.

, Non-equilibrium steady states in supramolecular polymerization 104

T. F. De-greef, Supramolecular Polymerization, Chem. Rev, vol.109, pp.5687-5754, 2009.

M. M. Smulders, How to Distinguish Isodesmic from Cooperative Supramolecular Polymerisation, Chem. Eur. J, vol.16, pp.362-367, 2010.

X. Zhang, D. Görl, V. Stepanenko, and F. Würthner, Hierarchical Growth of Fluorescent Dye Aggregates in Water by Fusion of Segmented Nanostructures, Angew. Chem. Int. Ed, vol.53, pp.1270-1274, 2014.

F. Würthner, Supramolecular p?n-Heterojunctions by Co-Self-Organization of Oligo(pphenylene Vinylene) and Perylene Bisimide Dyes, J. Am. Chem. Soc, vol.126, pp.10611-10618, 2004.

T. H. Rehm, Interaction of spermine-alanine functionalized perylene bisimide dye aggregates with ds-DNA/RNA secondary structure, Chem. Sci, vol.3, p.3393, 2012.

N. Berova, K. Nakanishi, R. C. Woody, and . Dichroism, Principles and Applications, 2000.

S. Onogi, In situ real-time imaging of self-sorted supramolecular nanofibres, Nat. Chem, vol.8, pp.743-752, 2016.

A. R. Hirst, B. Huang, V. Castelletto, I. W. Hamley, and D. K. Smith, Self-Organisation in the Assembly of Gels from Mixtures of Different Dendritic Peptide Building Blocks, Chem. Eur. J, vol.13, pp.2180-2188, 2007.

P. C. Sims, Electronic Measurements of Single-Molecule Catalysis by cAMP-Dependent Protein Kinase A, J. Am. Chem. Soc, vol.135, pp.7861-7868, 2013.

J. Lew, S. S. Taylor, and J. A. Adams, Identification of a Partially Rate-Determining Step in the Catalytic Mechanism of cAMP-Dependent Protein Kinase: A Transient Kinetic Study Using Stopped-Flow Fluorescence Spectroscopy, Biochemistry (Mosc.), vol.36, pp.6717-6724, 1997.

N. J. Reiter, D. J. White, and F. Rusnak, Inhibition of Bacteriophage ? Protein Phosphatase by Organic and Oxoanion Inhibitors, Biochemistry (Mosc.), vol.41, pp.1051-1059, 2002.

J. B. Reece and . Biology, , 2011.

P. Atkins, J. D. Paula, and . Atkins, Physical Chemistry, 2014.

D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2014.

A. Isidro-llobet, M. Álvarez, and F. Albericio, Amino Acid-Protecting Groups, Chem. Rev, vol.109, pp.2455-2504, 2009.

O. A. Scherman, G. B. Ligthart, H. Ohkawa, R. P. Sijbesma, and E. W. Meijer, Olefin metathesis and quadruple hydrogen bonding: A powerful combination in multistep supramolecular synthesis, Proc. Natl. Acad. Sci, vol.103, pp.11850-11855, 2006.

J. A. Adams, Kinetic and Catalytic Mechanisms of Protein Kinases, Chem. Rev, vol.101, pp.2271-2290, 2001.

S. Whitehouse, J. R. Feramisco, J. E. Casnellie, E. G. Krebs, and D. A. Walsh, Studies on the kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase, J. Biol. Chem, vol.258, pp.3693-3701, 1983.

S. Zhuo, J. C. Clemens, D. J. Hakes, D. Barford, and J. E. Dixon, Expression, purification, crystallization, and biochemical characterization of a recombinant protein phosphatase, J. Biol. Chem, vol.268, pp.17754-17761, 1993.

T. P. Knowles, M. Vendruscolo, and C. M. Dobson, The amyloid state and its association with protein misfolding diseases, Nat. Rev. Mol. Cell Biol, vol.15, pp.384-396, 2014.

A. Mietelska-porowska, U. Wasik, M. Goras, A. Filipek, and G. Niewiadomska, Tau Protein Modifications and Interactions: Their Role in Function and Dysfunction, Int. J. Mol. Sci, vol.15, pp.4671-4713, 2014.

K. R. Brunden, J. Q. Trojanowski, V. M. Lee, and .. , Advances in Tau-focused drug discovery for Alzheimer's disease and related tauopathies, Nat. Rev. Drug Discov, vol.8, pp.783-793, 2009.

E. Chang, Modulation and Detection of Tau Aggregation with Small-Molecule Ligands, Curr. Alzheimer Res, vol.6, pp.409-414, 2009.

K. Cisek, L. Cooper, G. , J. Huseby, C. Kuret et al., Structure and Mechanism of Action of Tau Aggregation Inhibitors, Curr. Alzheimer Res, vol.11, pp.918-927, 2014.

L. E. Rojo, J. Alzate-morales, I. N. Saavedra, P. Davies, and R. B. Maccioni, Selective Interaction of Lansoprazole and Astemizole with Tau Polymers: Potential New Clinical Use in Diagnosis of Alzheimer's Disease, J. Alzheimers Dis, vol.19, pp.573-589, 2010.

H. Watanabe, M. Ono, and H. Saji, Novel PET/SPECT Probes for Imaging of Tau in Alzheimer's Disease, The Scientific World Journal, 2015.

M. Jerabek-willemsen, C. J. Wienken, D. Braun, P. Baaske, and S. Duhr, Molecular Interaction Studies Using Microscale Thermophoresis, ASSAY Drug Dev. Technol, vol.9, pp.342-353, 2011.

C. Soret, Archives des Sciences Physiques et Naturelles de Genève, pp.48-61, 1879.

M. Jerabek-willemsen, MicroScale Thermophoresis: Interaction analysis and beyond, J. Mol. Struct, vol.1077, pp.101-113, 2014.

S. Duhr and D. Braun, Thermophoretic Depletion Follows Boltzmann Distribution, Phys. Rev. Lett, vol.96, p.168301, 2006.

S. Duhr and D. Braun, Why molecules move along a temperature gradient, Proc. Natl. Acad. Sci, vol.103, 2006.

M. Wolff, Quantitative thermophoretic study of disease-related protein aggregates, Sci. Rep, vol.6, p.22829, 2016.

M. Braibanti, D. Vigolo, and R. Piazza, Does Thermophoretic Mobility Depend on Particle Size?, Phys. Rev. Lett, vol.100, p.108303, 2008.

C. J. Wienken, P. Baaske, U. Rothbauer, D. Braun, and S. Duhr, Protein-binding assays in biological liquids using microscale thermophoresis, Nat. Commun, vol.1, p.1093, 2010.

S. A. Seidel, Label-Free Microscale Thermophoresis Discriminates Sites and Affinity of Protein-Ligand Binding, Angew. Chem. Int. Ed, vol.51, pp.10656-10659, 2012.

E. Fisher, Detection and Characterization of Small Molecule Interactions with Fibrillar Protein Aggregates Using Microscale Thermophoresis, ACS Chem. Neurosci, 2017.

C. Entzian and T. Schubert, Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST), Methods, vol.97, pp.27-34, 2016.

P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, Optical Thermophoresis for Quantifying the Buffer Dependence of Aptamer Binding, Angew. Chem. Int. Ed, vol.49, pp.2238-2241, 2010.

M. Doetsch, Study of E. coli Hfq's RNA annealing acceleration and duplex destabilization activities using substrates with different GC-contents, Nucleic Acids Res, vol.41, pp.487-497, 2013.

T. Schubert, Df31 Protein and snoRNAs Maintain Accessible Higher-Order Structures of Chromatin, Mol. Cell, vol.48, pp.434-444, 2012.

S. M. Wilson, Inhibition of Transmitter Release and Attenuation of Anti-retroviral-associated and Tibial Nerve Injury-related Painful Peripheral Neuropathy by Novel Synthetic Ca 2+ Channel Peptides, J. Biol. Chem, vol.287, pp.35065-35077, 2012.

X. Xiong, Receptor binding by a ferret-transmissible H5 avian influenza virus, Nature, vol.497, pp.392-396, 2013.

, Pushing supramolecular polymerization out of equilibrium by thermophoresis 138

N. Arbel, D. Ben-hail, and V. Shoshan-barmatz, Mediation of the Antiapoptotic Activity of Bcl-xL Protein upon Interaction with VDAC1 Protein, J. Biol. Chem, vol.287, pp.23152-23161, 2012.

X. Shang, Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors, Proc. Natl. Acad. Sci, vol.110, pp.3155-3160, 2013.

E. C. Gaffarogullari, A. Krause, J. Balbo, D. Herten, and A. Jäschke, Microscale thermophoresis provides insights into mechanism and thermodynamics of ribozyme catalysis, RNA Biol, vol.10, pp.1815-1821, 2013.

G. Bogaart, . Van-den, K. Meyenberg, U. Diederichsen, and R. Jahn, Phosphatidylinositol 4,5-Bisphosphate Increases Ca 2+ Affinity of Synaptotagmin-1 by 40-fold, J. Biol. Chem, vol.287, pp.16447-16453, 2012.

G. Van-den-bogaart, Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation, Nat. Struct. Mol. Biol, vol.18, pp.805-812, 2011.

V. L. Schramm, Enzymatic Transition States, Transition-State Analogs, Dynamics, Thermodynamics, and Lifetimes, Annu. Rev. Biochem, vol.80, pp.703-732, 2011.

R. Baron and J. A. Mccammon, Molecular Recognition and Ligand Association, Annu. Rev. Phys. Chem, vol.64, pp.151-175, 2013.

M. Kunitz, Crystalline Desoxyribonuclease: I. Isolation and General Properties Spectrophotometric Method for the Measurement of Desoxyribonuclease Activity, J. Gen. Physiol, vol.33, pp.349-362, 1950.

S. Vanecko and M. S. Laskowski, Studies of the Specificity of Deoxyribonuclease I. Hydrolysis of Oligonucleotides Carrying a Monoesterified Phosphate on Carbon 3, J. Biol. Chem. US, vol.236, 1961.

V. N. Uverski? and O. B. Ptitsyn, Three-stage equilibrium unfolding of small globular proteins by denaturing agents. I. Carboanhydrase B

, Mol. Biol. (Mosk.), vol.30, pp.1124-1134, 1996.

R. A. Sperling, Size Determination of (Bio)conjugated Water-Soluble Colloidal Nanoparticles: A Comparison of Different Techniques, J. Phys. Chem. C, vol.111, pp.11552-11559, 2007.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J, vol.16, pp.1055-1069, 1976.

F. Würthner, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials, Chem. Rev, vol.116, pp.962-1052, 2016.

D. Görl, X. Zhang, and F. Würthner, Molecular Assemblies of Perylene Bisimide Dyes in Water, Angew. Chem. Int. Ed, vol.51, pp.6328-6348, 2012.

J. Seibt, On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide, Chem. Phys, vol.328, pp.354-362, 2006.

Z. Chen, Photoluminescence and Conductivity of Self-Assembled ?-? Stacks of Perylene Bisimide Dyes, Chem. -Eur. J, vol.13, pp.436-449, 2007.

I. Ghosh, T. Ghosh, J. I. Bardagi, and B. König, Reduction of aryl halides by consecutive visible lightinduced electron transfer processes, Science, vol.346, pp.725-728, 2014.

M. J. Tauber, R. F. Kelley, J. M. Giaimo, B. Rybtchinski, and M. R. Wasielewski, Electron Hopping in ?-Stacked Covalent and Self-Assembled Perylene Diimides Observed by ENDOR Spectroscopy, J. Am. Chem. Soc, vol.128, pp.1782-1783, 2006.

B. Alberts, Molecular Biology of the Cell, 2002.

M. Endo, Y. Yang, and H. Sugiyama, DNA origami technology for biomaterials applications, Biomater. Sci, vol.1, pp.347-360, 2013.

A. Kuzuya, M. Komiyama, and . Origami, Fold, stick, and beyond, vol.2, pp.309-321, 2010.

T. Tørring, N. V. Voigt, J. Nangreave, H. Yan, and K. V. Gothelf, DNA origami: a quantum leap for self-assembly of complex structures, Chem. Soc. Rev, vol.40, pp.5636-5646, 2011.

, Résumé Polymérisation supramoléculaire dissipative sous carburant chimique 149

, Résultats et discussions

, Leur propension à s'auto-assembler (?-? stacking) et leur propriétés spectroscopiques déjà bien connues en font un système plus qu'indiqué pour l'élaboration d'objets supramoléculaires dissipatifs. 9 Au cours de ces trois années, nous avons donc usé de divers stimulus, Les Perylènes diimides (PDIs) sont des briques moléculaires de choix en chimie supramoléculaire

, Ce dernier peut facilement être réduit en dianion (PDI-1 2-) en présence de dithionite (Na2S2O4, Figure 3A). PDI-1 peut aisément être dissout dans une solution tampon borate en une solution rouge. L'agrégation de PDI-1 en objets colloïdaux a pu être mise en évidence par UV-Vis et microscopie confocale (ces agrégats précipitent en 12h). Lors de la réduction sous addition de dithionite, Un dérivé de perylène diimide (PDI-1) soluble dans l'eau a d'abord dû être synthétisé

. Là-encore and . Uv-vis, Une exposition à l'air libre de la solution de PDI-1 2-permet de l'oxyder et d'y retrouver l'espèce neutre (Figure 3A). Il a ensuite été décidé d'étudier l'effet d'un cycle redox sur la structure de l'assemblage supramoléculaire (Figure 3B)

, Ces résultats sont caractéristiques d'une polymérisation supramoléculaire auto-catalytique (après un cycle redox, Figure 3C)). Forts de ce constat, il a ensuite été décidé d'évaluer l'effet de plusieurs cycles redox successifs sur le système supramoléculaire. Pour ce faire, la croissance autocatalytique de PDI-1 a été suivie par diffusion dynamique de la lumière (DLS) et par UV-Vis après chaque cycle redox (7 cycles espacés de 20 minutes chacun), Cette hypothèse a pu être vérifiée en effectuant un ensemencement d'une solution fraîche de PDI-1 avec d'autres ayant subi un cycle redox (1 heure après), ensemencement à l'issue duquel le temps de latence a pu être diminué de façon significative (caractéristique des systèmes auto-catalytiques)

J. Lehn, Proc. Natl. Acad. Sci, vol.99, pp.4763-4768, 2002.

T. Aida, E. W. Meijer, and S. I. Stupp, Science, vol.335, pp.813-817, 2012.

A. Sorrenti, J. Leira-iglesias, J. Markvoort, A. Greef, T. F. Hermans et al., Chem. Soc. Rev, 2017.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., Molecular Biology of the Cell, 2002.

J. Boekhoven, A. M. Brizard, K. N. Kowlgi, G. J. Koper, R. Eelkema et al., Angew. Chem, vol.122, pp.4935-4938, 2010.

S. Debnath, S. Roy, and R. V. Ulijn, J. Am. Chem. Soc, vol.135, pp.16789-16792, 2013.

S. Maiti, I. Fortunati, C. Ferrante, P. Scrimin, and L. J. Prins, Nat. Chem, vol.8, pp.725-731, 2016.

I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, 1998.

F. Würthner, C. R. Saha-möller, B. Fimmel, S. Ogi, P. Leowanawat et al., Chem. Rev, vol.116, pp.962-1052, 2016.

J. Leira-iglesias, A. Sorrenti, A. Sato, P. A. Dunne, and T. M. Hermans, Chem Commun, vol.52, pp.9009-9012, 2016.

I. Lagzi, D. Wang, B. Kowalczyk, and B. A. Grzybowski, Langmuir, vol.26, pp.13770-13772, 2010.

I. Lagzi, B. Kowalczyk, D. Wang, and B. A. Grzybowski, Angew. Chem. Int. Ed, vol.49, pp.8616-8619, 2010.

A. Sorrenti, J. Leira-iglesias, A. Sato, T. M. Hermans, and . Nat,

R. D. Astumian, Proc. Natl. Acad. Sci, vol.104, pp.3-4, 2007.

M. Braibanti, D. Vigolo, and R. Piazza, Phys. Rev. Lett, vol.100, p.108303, 2008.

M. Jerabek-willemsen, C. J. Wienken, D. Braun, P. Baaske, and S. Duhr, ASSAY Drug Dev. Technol, vol.9, pp.342-353, 2011.