, Dans Le Diagnostic étiologique Des Granulomatoses Systémiques. La Rev, Médecine Interne, vol.29, pp.682-683, 2008.

Y. Zhang and W. Yew, Mechanisms of Drug Resistance in Mycobacterium tuberculosis

, Int J Tuberc Lung Dis, vol.13, pp.1320-1330, 2009.

G. Koumba-yoya and C. Synthèse-d'analogues, Inhibiteurs Potentiels Contre Mycobacterium tuberculosis, 2010.

D. Silva, P. E. Palomino, and J. C. , Molecular Basis and Mechanisms of Drug Resistance in Mycobacterium tuberculosis: Classical and New Drugs, J. Antimicrob. Chemother, vol.66, pp.1417-1430, 2011.

A. Telenti, P. Imboden, F. Marchesi, L. Matter, K. Schopfer et al., Detection of Rifampicin-Resistance Mutations in Mycobacterium tuberculosis, Lancet, vol.341, pp.647-651, 1993.

Y. Zhang and D. Mitchison, The Curious Characteristics of Pyrazinamide: A Review, Int. J. Tuberc. Lung Dis, vol.7, pp.6-21, 2003.

Y. Zhang, M. M. Wade, A. Scorpio, H. Zhang, and Z. Sun, Mode of Action of Pyrazinamide: Disruption of Mycobacterium tuberculosis Membrane Transport and Energetics by Pyrazinoic Acid, J. Antimicrob. Chemother, vol.52, pp.790-795, 2003.

W. Shi, X. Zhang, X. Jiang, H. Yuan, J. S. Lee et al., Pyrazinamide Inhibits Trans-Translation in Mycobacterium tuberculosis, Science, vol.333, pp.1630-1632, 2011.

K. Takayama and J. O. Kilburn, Inhibition of Synthesis of Arabinogalactan by Ethambutol in Mycobacterium smegmatis, Antimicrob. Agents Chemother, vol.33, pp.1493-1499, 1989.

K. Mikusová, R. A. Slayden, G. S. Besra, and P. J. Brennan, Biogenesis of the Mycobacterial Cell Wall and the Site of Action of Ethambutol, Antimicrob. Agents Chemother, vol.39, pp.2484-2489, 1995.

W. R. Jr, A. Telenti, J. M. Musser, S. Sreevatsan, K. E. Stockbauer et al., Ethambutol Resistance in Mycobacterium tuberculosis : Critical Role of embB Mutations, Antimicrob. Agents Chemother, vol.41, pp.1677-1681, 1997.

A. Telenti, W. J. Philipp, S. Sreevatsan, C. Bernasconi, K. E. Stockbauer et al., The Emb Operon, a Gene Cluster of Mycobacterium tuberculosis Involved in Resistance to Ethambutol, Nat. Med, vol.3, pp.567-570, 1997.

B. R. Bloom and C. J. Murray, Tuberculosis: Commentary on a Reemergent Killer, Science, vol.257, pp.1055-1064, 1992.

S. Okamoto, A. Tamaru, C. Nakajima, K. Nishimura, Y. Tanaka et al., , p.16

, rRNA Confers Low-Level Streptomycin Resistance in Bacteria, Mol. Microbiol, vol.63, pp.1096-1106, 2007.

C. E. Maus, B. B. Plikaytis, and T. M. Shinnick, Molecular Analysis of Cross-Resistance to Capreomycin, Kanamycin, Amikacin, and Viomycin in Mycobacterium tuberculosis

, Antimicrob. Agents Chemother, vol.49, pp.3192-3197, 2005.

C. E. Maus, B. B. Plikaytis, M. Thomas, and T. M. Shinnick, Mutation of tlyA Confers Capreomycin Resistance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother, vol.49, pp.571-577, 2005.

D. C. Hooper, Mechanisms of Action and Resistance of Older and Newer Fluoroquinolones, Clin Infect Dis, vol.31, issue.2, pp.24-28, 2000.

T. A. Vannelli, A. Dykman, and P. R. Ortiz-de-montellano, The Antituberculosis Drug Ethionamide Is Activated by a Flavoprotein Monooxygenase, J. Biol. Chem, vol.277, pp.12824-12829, 2002.

O. Wallach, Zur Kenntniss Der Terpene Und ätherischen Oele, Justus Liebigs Ann. Chem, vol.1887, pp.78-89

L. Ruzicka, The Isoprene Rule and the Biogenesis of Terpenic Compounds, Experientia, vol.9, pp.357-367, 1953.

L. Ruzicka, History of the Isoprene Rule, Proc. Chem. Soc, pp.341-360, 1959.

N. Schramek, H. Wang, W. Römisch-margl, B. Keil, T. Radykewicz et al., Artemisinin Biosynthesis in Growing Plants of Artemisia Annua. A 13 CO Study, Phytochemistry, vol.71, pp.179-187, 2010.

K. Ogura and T. Koyama, Enzymatic Aspects of Isoprenoid Chain Elongation, Chem. Rev, vol.98, pp.1263-1276, 1998.

K. Clifford, J. W. Cornforth, R. Mallaby, and G. T. Phillips, Stereochemistry of Isopentenyl Pyrophosphate Isomerase, J. Chem. Soc. D Chem. Commun, issue.24, p.1599, 1971.

A. C. Ramos-valdivia, R. Van-der-heijden, and R. Verpoorte, Isopentenyl Diphosphate Isomerase: A Core Enzyme in Isoprenoid Biosynthesis. A Review of Its Biochemistry and Function, Nat. Prod. Rep, vol.14, pp.591-603, 1997.

K. Bloch, Sterol Molecule: Structure, Biosynthesis, and Function. Steroids, vol.57, pp.378-383, 1992.

J. W. Porter and N. Qureshi, Conversion of Acetyl-Coenzyme A Ti Isopentenyl Pyrophosphate, In Biosynthesis of isoprenoid compounds, pp.47-94, 1981.

M. Rohmer, M. Knani, P. Simonin, B. Sutter, and H. Sahm, Isoprenoid Biosynthesis in Bacteria: A Novel Pathway for the Early Steps Leading to Isopentenyl Diphosphate

, Biochem. J, vol.295, pp.517-524, 1993.

J. W. Porter and S. Spurgeon, Biosynthesis of Isoprenoid Compounds, In Biosynthesis of isoprenoid compounds, pp.1-46, 1983.

Y. Boucher and W. F. Doolittle, The Role of Lateral Gene Transfer in the Evolution of Isoprenoid Biosynthesis Pathways, Mol. Microbiol, vol.37, pp.703-716, 2000.

M. Rohmer, The Discovery of a Mevalonate-Independent Pathway for Isoprenoid Biosynthesis in Bacteria, Algae and Higher Plants, Nat. Prod. Rep, vol.16, pp.565-574, 1999.

M. Rohmer, Mevalonate-Independent Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis. Elucidation and Distribution, Pure Appl. Chem, vol.75, pp.375-388, 2003.

H. Jomaa, J. Wiesner, S. Sanderbrand, B. Altincicek, C. Weidemeyer et al., Inhibitors of the Nonmevalonate Pathway of Isoprenoid Biosynthesis as Antimalarial Drugs, Science, vol.285, pp.1573-1576, 1999.

H. Seto, H. Watanabe, and K. Furihata, Simultaneous Operation of the Mevalonate and Non-Mevalonate Pathways in the Biosynthesis of Isopentenyl Diphosphate in Streptomyces Aeriouvifer, Tetrahedron Lett, vol.37, pp.7979-7982, 1996.

H. K. Lichtenthaler, J. Schwender, A. Disch, and M. Rohmer, Biosynthesis of Isoprenoids in Higher Plant Chloroplasts Proceeds via a Mevalonate-Independent Pathway, FEBS Lett, vol.400, pp.271-274, 1997.

A. Disch, A. Hemmerlin, T. J. Bach, and M. Rohmer, Mevalonate-Derived Isopentenyl Diphosphate Is the Biosynthetic Precursor of Ubiquinone Prenyl Side Chain in Tobacco BY-2 Cells, Biochem. J, vol.331, pp.615-621, 1998.

M. K. Schwarz, Terpen-Biosynthese in Ginkgo Biloba : Eine überraschende Geschichte, 1994.

K. Bloch and D. Rittenberg, The Biological Formation of Cholesterol from Acetic Acid, J. Biol. Chem, p.297, 1942.

G. Flesch, M. Rohmer, and . ;-d-ribose, Prokaryotic Hopanoids: The Biosynthesis of the Bacteriohopane Skeleton. Formation of Isoprenic Units from Two Distinct Acetate Pools and a Novel Type of Carbon

, Eur. J. Biochem, vol.175, pp.405-411, 1988.

M. Rohmer, A Mevalonate-Independent Route to Isopentenyl Diphosphate, Comprehensive Natural Product Chemistry. Isoprenoids including steroids and carotenoids, vol.2, pp.45-68, 1999.

M. Rohmer, M. Seemann, S. Horbach, S. Bringer-meyer, and H. Sahm, Glyceraldehyde 3-Phosphate and Pyruvate as Precursors of Isoprenic Units in an Alternative Non

, Mevalonate Pathway for Terpenoid Biosynthesis, J. Am. Chem. Soc, vol.118, pp.2564-2566, 1996.

M. Schwarz, D. G. Arigoni, and . Biosynthesis, Comprehensive Natural Product Chemistry. Isoprenoids including steroids and carotenoids, pp.367-400, 1999.

G. A. Sprenger, U. Schörken, T. Wiegert, S. Grolle, A. A. De-graaf et al.,

T. P. Begley, S. Bringer-meyer, and H. Sahm, Identification of a Thiamin-Dependent Synthase in Escherichia coli Required for the Formation of the 1-Deoxy-D-Xylulose 5-Phosphate Precursor to Isoprenoids, Thiamin, and Pyridoxol, Proc. Natl. Acad. Sci, vol.94, pp.12857-12862, 1997.

L. M. Lois, N. Campos, S. R. Putra, K. Danielsen, M. Rohmer et al., Cloning and Characterization of a Gene from Escherichia coli Encoding a Transketolase-like Enzyme That Catalyzes the Synthesis of D-1-Deoxyxylulose 5-Phosphate, a Common Precursor for Isoprenoid, Thiamin, and Pyridoxol Biosynthesis, Proc. Natl. Acad. Sci

U. S. , , vol.95, pp.2105-2110, 1998.

R. Croteau and J. Gershenzon, Genetics Control of Monoterpene Biosynthesis in Mints (Mentha : Lamiaceae), In Genetic Engineering of Plant Secondary Metabolism, pp.193-229, 1994.

J. Querol, M. Rodríguez-concepción, A. Boronat, and S. Imperial, Essential Role of Residue H49 for Activity of Escherichia coli 1-Deoxy-D-Xylulose 5-Phosphate Synthase, the Enzyme Catalyzing the First Step of the 2-C-Methyl-D-Erythritol 4-Phosphate Pathway for Isoprenoid Synthesis, Biochem. Biophys. Res. Commun, vol.289, pp.155-160, 2001.

S. David, B. Estramareix, J. Fischer, and M. Thérisod, The Biosynthesis of Thiamine. Synthese of [1,1,1,5-2 H 4 ]-1-Deoxy-D-Threo-2-Pentulose and Incorporation of This Sugar in Biosynthesis of Thiazole by Escherichia coli Cells, J. Chem. Soc. Perkin Trans. 1, p.2131, 1982.

D. E. Cane, S. Du, J. K. Robinson, Y. Hsiung, and I. D. Spenser, Biosynthesis of Vitamin B6 : Enzymatic Conversion of 1-Deoxy-D-Xylulose-5-Phosphate to Pyridoxol Phosphate, J. Am. Chem. Soc, vol.121, pp.7722-7723, 1999.

J. Mao, H. Eoh, R. He, Y. Wang, B. Wan et al., Structure-Activity Relationships of Compounds Targeting Mycobacterium tuberculosis 1-Deoxy-D-Xylulose 5-Phosphate Synthase, Bioorg. Med

, Chem. Lett, vol.18, pp.5320-5323, 2008.

J. M. Smith, R. J. Vierling, and C. F. Meyers, Selective Inhibition of E. coli 1-Deoxy-D-Xylulose-5-Phosphate Synthase by Acetylphosphonates, Med Chem Comm, vol.3, pp.65-67, 2012.

D. Hayashi, N. Kato, T. Kuzuyama, Y. Sato, and J. Ohkanda, Antimicrobial N-(2-Chlorobenzyl)-Substituted Hydroxamate Is an Inhibitor of 1-Deoxy-D-Xylulose 5-Phosphate Synthase, Chem. Commun, vol.49, pp.5535-5537, 2013.

S. Takahashi, T. Kuzuyama, H. Watanabe, and H. Seto, A 1-Deoxy-D-Xylulose 5-Phophate Reductoisomerase Catalyzing the Formation of 2-C-Methyl-D-Erythritol 4-Phosphate in an Alternative Nonmevalonate Pathway for Terpenoid Biosynthesis

, Proc. Natl. Acad. Sci, vol.95, pp.9879-9884, 1998.

T. Kuzuyama, S. Takahashi, M. Takagi, and H. Seto, Characterization of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, an Enzyme Involved in Isopentenyl Diphosphate Biosynthesis, and Identification of Its Catalytic Amino Acid Residues, J. Biol. Chem, vol.275, 2000.

J. F. Hoeffler, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Isoprenoid Biosynthesis via the Methylerythritol Phosphate Pathway. Mechanistic Investigations of the 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, Eur. J. Biochem, vol.269, pp.4446-4457, 2002.

T. Kuzuyama, S. Takahashi, H. Watanabe, and H. Seto, Direct Formation of 2-C-Methyl-D-Erythritol 4-Phosphate from 5-Phosphate Reductoisomerase , a New Enzyme in the Non-Mevalonate Pathway to Isopentenyl Diphosphate, Tetrahedron Lett, vol.39, pp.4509-4512, 1998.

D. T. Fox and C. D. Poulter, Mechanistic Studies with 2-C-Methyl-D-Erythritol 4-Phosphate Synthase from Escherichia coli, Biochemistry, vol.44, pp.8360-8368, 2005.

D. T. Fox and C. D. Poulter, Synthesis and Evaluation of 1-Deoxy-D-Xylulose 5-Phosphoric Acid Analogues as Alternate Substrates for Methylerythritol Phosphate Synthase, J. Org. Chem, vol.70, 1978.

J. W. Munos, X. Pu, S. O. Mansoorabadi, H. J. Kim, and H. Liu, A Secondary Kinetic Isotope Effect Study of the 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase-Catalyzed Reaction: Evidence for a Retroaldol-Aldol Rearrangement, J. Am. Chem

. Soc, , vol.131, pp.2048-2049, 2009.

U. Wong and R. J. Cox, The Chemical Mechanism of D-1-Deoxyxylulose-5-Phosphate Reductoisomerase from Escherichia coli, Angew. Chem. Int. Ed. Engl, vol.46, pp.4926-4929, 2007.

D. Arigoni, J. Giner, S. Sagner, J. Wungsintaweekul, M. H. Zenk et al., Stereochemical Course of the Reduction Step in the Formation of 2-C-Methylerythritol from the Terpene Precursor 1-Deoxyxylulose in Higher Plants, Chem. Commun, issue.12, pp.1127-1128, 1999.

P. J. Proteau, Y. H. Woo, R. T. Williamson, and C. Phaosiri, Stereochemistry of the Reduction Step Mediated by Recombinant 1-Deoxy-D-Xylulose 5-Phosphate Isomeroreductase, Org. Lett, vol.1, pp.921-923, 1999.

P. J. Proteau, Biosynthesis of Phytol in the Cyanobacterium Synechocystis sp. UTEX 2470: Utilization of the Non-Mevalonate Pathway, J. Nat. Prod, vol.61, pp.841-843, 1998.

T. Radykewicz, F. Rohdich, J. Wungsintaweekul, S. Herz, K. Kis et al., Biosynthesis of Terpenoids: 1-Deoxy-D

, Xylulose-5-Phosphate Reductoisomerase from Escherichia coli Is a Class B Dehydrogenase, FEBS Lett, vol.465, pp.157-160, 2000.

L. M. Henriksson, C. Björkelid, S. L. Mowbray, and T. Unge, The 1.9 Å Resolution Structure of Mycobacterium tuberculosis 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, a Potential Drug Target, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.62, pp.807-813, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00670601

L. M. Henriksson, T. Unge, J. Carlsson, J. Aqvist, S. L. Mowbray et al., Structures of Mycobacterium tuberculosis 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase Provide New Insights into Catalysis, J. Biol. Chem, vol.282, pp.19905-19916, 2007.

S. Ricagno, S. Grolle, S. Bringer-meyer, H. Sahm, Y. Lindqvist et al., Crystal Structure of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase from Zymomonas mobilis at 1.9 Å Resolution, Biochim. Biophys. Acta -Proteins Proteomics, vol.1698, pp.37-44, 2004.

K. Reuter, S. Sanderbrand, H. Jomaa, J. Wiesner, I. Steinbrecher et al., Crystal Structure of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase, a Crucial Enzyme in the Non-Mevalonate Pathway of Isoprenoid Biosynthesis, J. Biol. Chem, vol.277, pp.5378-5384, 2002.

S. Yajima, T. Nonaka, T. Kuzuyama, H. Seto, and K. Ohsawa, Crystal Structure of 1-Desoxy-D-Xylulose 5-Phosphate Reductoisomerase Complexed with Cofactors : Implications of a Flexible Loop Movement upon Substrate Binding, J. Biochem, vol.131, pp.313-317, 2002.

S. Steinbacher, J. Kaiser, W. Eisenreich, R. Huber, A. Bacher et al., Structural Basis of Fosmidomycin Action Revealed by the Complex with 2-C-Methyl

D. , Implications for the Catalytic Mechanism and Anti-Malaria Drug Development, J. Biol. Chem, vol.278, pp.18401-18407, 2003.

M. Sweeney, A. Lange, R. Fernandes, R. P. Schulz, H. Dale et al.,

, D-Xylulose-5-Phosphate Reductoisomerase in a Ternary Complex with the

, Antimalarial Compound Fosmidomycin and NADPH Reveals a Tight-Binding Closed Enzyme Conformation, J. Mol. Biol, vol.345, pp.115-127, 2005.

M. Okuhara, Y. Kuroda, T. Goto, M. Okamoto, H. Terano et al., Studies on New Phosphonic Acid Antibiotics. I. FR-900098, Isolation and Characterization, J. Antibiot, vol.33, pp.13-17, 1980.

M. Okuhara, Y. Kuroda, T. Goto, M. Okamoto, H. Terano et al., Studies on New Phosphonic Acid Antibiotics. III. Isolation and Characterization of FR-31564, FR-32863 and FR-33289, J. Antibiot, vol.33, pp.24-28, 1980.

Y. Kuroda, M. Okuhara, T. Goto, M. Okamoto, H. Terano et al., Studies on New Phosphonic Acid Antibiotics. IV. Structure Determination of FR-33289, FR-31564 and FR-32863, J Antibiot, vol.33, pp.29-35, 1980.

T. Kuzuyama, T. Shimizu, S. Takahashi, and H. Seto, Fosmidomycin, a Specific Inhibitor of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase in the Nonmevalonate Pathway for Terpenoid Biosynthesis, Tetrahedron Lett, vol.39, pp.7913-7916, 1998.

Y. Shigi, Inhibition of Bacterial Isoprenoid Synthesis by Fosmidomycin, a Phosphonic Acid-Containing Antibiotic, J Antimicrob Chemother, vol.24, pp.131-145, 1989.

S. Borrmann, S. Issifou, G. Esser, A. Adegnika, M. Ramharter et al., Fosmidomycin-Clindamycin for the Treatment of Plasmodium falciparum Malaria, J. Infect. Dis. Dis, vol.190, pp.1534-1540, 2004.

N. Katayama, S. Tsubotani, Y. Nozaki, S. Harada, and H. Ono, Fosfadecin and Fosfocytocin, New Nucleotide Antibiotics Produced by Bacteria, J. Antibiot, vol.43, pp.238-246, 1990.

T. Haemers, J. Wiesner, D. Giessmann, T. Verbrugghen, U. Hillaert et al., Synthesis of ?-?-Oxa Isosteres of Fosmidomycin and FR900098 as Antimalarial Candidates, Bioorg. Med. Chem, vol.16, pp.3361-3371, 2008.

H. Kojo, Y. Shigi, and M. Nishida, FR-31564, A New Phosphonic Acid Antibiotic:bacterial Resistance and Membrane Permeability, J. Antibiot, vol.33, pp.44-48, 1980.

A. C. Brown and T. Parish, DXR Is Essential in Mycobacterium tuberculosis and Fosmidomycin Resistance Is due to a Lack of Uptake, BMC Microbiol, vol.8, pp.78-86, 2008.

S. Fujisaki, S. Ohnuma, and . Ichi,

T. Horiuchi, I. Takahashi, S. Tsukui, Y. Nishimura, T. Nishino et al., Cloning of a Gene from Escherichia coli That Confers Resistance to Fosmidomycin as a Consequence of Amplification, Gene, vol.175, pp.83-87, 1996.

A. S. Messiaen, T. Verbrugghen, C. Declerck, R. Ortmann, M. Schlitzer et al., Resistance of the Burkholderia Cepacia Complex to Fosmidomycin and Fosmidomycin Derivatives, Int. J. Antimicrob. Agents, vol.38, pp.261-264, 2011.

C. Phaosiri and P. J. Proteau, Substrate Analogs for the Investigation of Deoxyxylulose 5-Phosphate Reductoisomerase Inhibition: Synthesis and Evaluation

, Chem. Lett, vol.14, pp.5309-5312, 2004.

A. Wong, J. W. Munos, V. Devasthali, K. A. Johnson, and H. Liu, Study of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase : Synthesis and Evaluation of Fluorinated Substrate Analogues, Org. Lett, vol.6, pp.3625-3628, 2004.

J. R. Walker and C. D. Poulter, Synthesis and Evaluation of 1-Deoxy-D-Xylulose 5-Phosphate Analogues as Chelation-Based Inhibitors of Methylerythritol Phosphate Synthase, J. Org. Chem, vol.70, pp.9955-9959, 2005.

L. Kuntz, D. Tritsch, C. Grosdemange-billiard, A. Hemmerlin, A. Willem et al., Isoprenoid Biosynthesis as a Target for Antibacterial and Antiparasitic Drugs: Phosphonohydroxamic Acids as Inhibitors of Deoxyxylulose Phosphate Reducto-Isomerase, Biochem. J, vol.386, pp.127-135, 2005.

L. Mercklé, A. De-andrés-gomez, B. Dick, R. J. Cox, and C. R. Godfrey, A Fragment-Based Approach to Understanding Inhibition of 1-Deoxy-D-Xylulose-5-Reductoisomerase, Bioorg. Med. Chem, vol.14, pp.2375-2385, 2006.

T. Verbrugghen, P. Cos, L. Maes, and S. Van-calenbergh, Synthesis and Evaluation of ?-Halogenated Analogues of 3-(acetylhydroxyamino)propylphosphonic Acid (FR900098) as Antimalarials, J. Med. Chem, vol.53, pp.5342-5346, 2010.

T. Haemers, J. Wiesner, S. Van-poecke, J. Goeman, D. Henschker et al., Synthesis of ?-Substituted Fosmidomycin Analogues as Highly Potent Plasmodium falciparum Growth Inhibitors, Bioorg. Med. Chem. Lett, vol.16, pp.1888-1891, 2006.

M. Andaloussi, L. M. Henriksson, A. Wie, M. Lindh, C. Bj et al., Design, Synthesis, and X-Ray Crystallographic Studies of ?-Aryl Substituted Fosmidomycin Analogues as Inhibitors of Mycobacterium tuberculosis 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, J. Med. Chem, vol.54, pp.4964-4976, 2011.

V. Devreux, J. Wiesner, H. Jomaa, J. Rozenski, and J. Van-der-eycken, Van Calenbergh, S. Divergent Strategy for the Synthesis of ?-Aryl-Substituted Fosmidomycin Analogues, J. Org. Chem, vol.72, pp.3783-3789, 2007.

J. Xue, J. Diao, G. Cai, L. Deng, B. Zheng et al., Antimalarial and Structural Studies of Pyridine-Containing Inhibitors of 1-Deoxyxylulose-5-Phosphate Reductoisomerase, ACS Med. Chem. Lett, vol.4, pp.278-282, 2013.

T. Verbrugghen, P. Vandurm, J. Pouyez, L. Maes, and J. Wouters, Van Calenbergh, S. ?-Heteroatom Derivatized Analogues of 3-(acetylhydroxyamino)propyl Phosphonic Acid (FR900098) as Antimalarials, J. Med. Chem, vol.56, pp.376-380, 2013.

C. T. Behrendt, A. Kunfermann, V. Illarionova, A. Matheeussen, T. Gräwert et al., Synthesis and Antiplasmodial Activity of Highly Active Reverse Analogues of the Antimalarial Drug Candidate Fosmidomycin, ChemMedChem, vol.5, pp.1673-1676, 2010.

C. T. Behrendt, A. Kunfermann, V. Illarionova, A. Matheeussen, M. K. Pein et al., Reverse Fosmidomycin Derivatives against the Antimalarial Drug Target IspC (DXR), J. Med. Chem, vol.54, pp.6796-6802, 2011.

K. Brücher, B. Illarionov, J. Held, S. Tschan, A. Kunfermann et al., Kurz, T. ?-Substituted ?-Oxa Isosteres of Fosmidomycin: Synthesis and Biological Evaluation, J. Med. Chem, vol.55, pp.6566-6575, 2012.

A. Kunfermann, C. Lienau, B. Illarionov, J. Held, T. Gräwert et al., IspC as Target for Antiinfective Drug Discovery: Synthesis, Enantiomeric Separation, and Structural Biology of Fosmidomycin Thia Isosters, J. Med. Chem, vol.56, pp.8151-8162, 2013.

S. Konzuch, T. Umeda, J. Held, S. Hähn, K. Brücher et al., Binding Modes of Reverse Fosmidomycin Analogs toward the Antimalarial Target IspC, J. Med. Chem, vol.57, pp.8827-8838, 2014.

T. Haemers, J. Wiesner, R. Busson, H. Jomaa, and S. Van-calenbergh, Synthesis of ?-Aryl-Substituted and Conformationally Restricted Fosmidomycin Analogues as Promising Antimalarials, Eur. J. Org. Chem, pp.3856-3863, 2006.

V. Devreux, J. Wiesner, J. L. Goeman, J. Van-der-eycken, H. Jomaa et al., Synthesis and Biological Evaluation of Cyclopropyl Analogues of Fosmidomycin as Potent Plasmodium Falciparum Growth Inhibitors, J. Med. Chem, vol.49, pp.2656-2660, 2006.

J. Perruchon, R. Ortmann, M. Altenkämper, K. Silber, J. Wiesner et al., Studies Addressing the Importance of Charge in the Binding of Fosmidomycin-like Molecules to Deoxyxylulosephosphate Reductoisomerase, ChemMedChem, vol.3, pp.1232-1241, 2008.

B. Gadakh, J. Pouyez, J. Wouters, A. Venkatesham, P. Cos et al., Acylated Sulfonamide Congeners of Fosmidomycin Lack Any Inhibitory Activity against DXR, Bioorg. Med. Chem. Lett, vol.25, pp.1577-1579, 2015.

A. T. Nguyen-trung, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Synthesis of Tetrazole Analogues of Phosphonohydroxamic Acids: An Attempt to Improve the Inhibitory Activity against the DXR, Bioorg. Med. Chem. Lett, vol.23, pp.1643-1647, 2013.

A. Albert, Chemical Aspects of Selective Toxicity, Nature, vol.182, pp.421-422, 1958.

C. G. Wermuth, C. R. Ganellin, P. Lindberg, and L. A. Mitscher, Glossary of Terms Used in Medicinal Chemistry, Pure Appl. Chem, vol.70, pp.1129-1143, 1998.

K. M. Huttunen, H. Raunio, and J. Rautio, Prodrugs -from Serendipity to Rational Design, Pharmacol. Rev, vol.63, pp.750-771, 2011.

D. Jornada, G. Dos-santos-fernandes, D. Chiba, T. De-melo, and J. Santos, Chung, (Phosphonomethoxy)ethoxy]adenine, J. Med. Chem, vol.38, pp.1372-1379, 1995.

E. P. Brass, Pivalate-Generating Prodrugs and Carnitine Homeostasis in Man, Pharmacol. Rev, vol.54, pp.589-598, 2002.

R. Srinivas,

B. L. Robbins, M. C. Connelly, Y. Gong, N. Bischofberger, and . Fridlandl, Antiretroviral Activities

. Bis, Pivaloyloxymethyl) Prodrugs of Acyclic Nucleoside Phosphonates, Antimicrob. Agents Chemother, vol.37, pp.2247-2250, 1993.

J. R. Choi, D. G. Cho, K. Y. Roh, J. T. Hwang, S. Ahn et al., -Phosphonomethoxycyclopropyl)methyl]guanine as a Potent and Selective Anti-HBV Agent, J. Med. Chem, vol.9, issue.1, pp.2864-2869, 2004.

R. V. Srinivas and A. Fridland, Antiviral Activities of 9-(R)-2-Phosphonomethoxypropyl Adenine (PMPA) and bis(isopropyloxymethylcarbonyl)PMPA against Various Drug-Resistant Human Immunodeficiency Virus Strains, Antimicrob. Agents Chemother, vol.42, pp.1484-1487, 1998.

C. Périgaud, G. Gosselin, I. Lefebvre, J. L. Girardet, S. Benzaria et al., Rational Design for Cytosolic Delivery of Nucleoside Monphosphates

, Bioorg. Med. Chem. Lett, vol.3, pp.2521-2526, 1993.

F. Puech, G. Gosselin, I. Lefebvre, A. Pompon, A. M. Aubertin et al., Intracellular Delivery of Nucleoside Monophosphates through a Reductase-Mediated Activation Process, Antiviral Res, vol.22, pp.155-174, 1993.

S. Benzaria, H. Pélicano, R. Johnson, G. Maury, J. L. Imbach et al., Synthesis, in vitro Antiviral Evaluation, and Stability Studies of bis(S-Acyl-2-Thioethyl) Ester Derivatives of 9, J. Med, issue.2

. Chem, , vol.39, pp.4958-4965, 1996.

M. D. Erion, P. D. Poelje, D. Van;-mackenna, T. J. Colby, A. C. Montag et al., Liver-Targeted Drug Delivery Using HepDirect Prodrugs, J. Pharmacol. Exp. Ther, vol.312, pp.554-560, 2005.

A. T. Dinkova-kostova, M. A. Massiah, R. E. Bozak, R. J. Hicks, and P. Talalay, Potency of Michael Reaction Acceptors as Inducers of Enzymes That Protect against Carcinogenesis Depends on Their Reactivity with Sulfhydryl Groups, Proc. Natl. Acad

. U. Sci, , vol.98, pp.3404-3409, 2001.

K. R. Reddy, M. C. Matelich, B. G. Ugarkar, J. E. Gómez-galeno, J. Dare et al., Pradefovir: A Prodrug That Targets Adefovir to the Liver for the Treatment of Hepatitis B, J. Med. Chem, vol.51, pp.666-676, 2008.

S. H. Boyer, Z. Sun, H. Jiang, J. Esterbrook, J. E. Gómez-galeno et al., Synthesis and Characterization of a Novel Liver-Targeted Prodrug of Cytosine-1-?-D

, Arabinofuranoside Monophosphate for the Treatment of Hepatocellular Carcinoma

, Med. Chem, vol.49, pp.7711-7720, 2006.

C. Meier, 2-Nucleos-5'-O-yl-4H-1,3,2-Benzodioxaphophinin-2oxides-A New Concept for Lipophilic, Potential Prodrugs of Biologically Active Nucleoside Monophosphates

, Angew. Chem. Int. Ed. Engl, vol.35, pp.70-72, 1996.

A. Reichenberg, J. Wiesner, C. Weidemeyer, E. Dreiseidler, S. Sanderbrand et al., Diaryl Ester Prodrugs of FR900098 with Improved in vivo Antimalarial Activity, Bioorg. Med. Chem. Lett, vol.11, pp.833-835, 2001.

R. Ortmann, J. Wiesner, A. Reichenberg, D. Henschker, E. Beck et al., Acyloxyalkyl Ester Prodrugs of FR900098 with Improved in vivo Anti-Malarial Activity, Bioorg. Med. Chem. Lett, vol.13, pp.2163-2166, 2003.

R. Paul, G. W. Anderson, and N. '-carbonyldiimidazole, New Peptide Forming Reagent1, J. Am. Chem. Soc, vol.82, pp.4596-4600, 1960.

S. Ponaire, C. Zinglé, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Growth Inhibition of Mycobacterium smegmatis by Prodrugs of Deoxyxylulose Phosphate Reducto-Isomerase Inhibitors, Promising Anti-Mycobacterial Agents, Eur. J. Med

. Chem, , vol.51, pp.277-285, 2012.

G. F. Ruda, V. P. Alibu, C. Mitsos, O. Bidet, M. Kaiser et al., Synthesis and Biological Evaluation of Phosphate Prodrugs of 4-Phospho-D-Erythronohydroxamic Acid, an Inhibitor of 6-Phosphogluconate Dehydrogenase, ChemMedChem, vol.2, pp.1169-1180, 2007.

D. A. Brown, W. K. Glass, R. Mageswarant, and B. Girmay, Cis-Trans Isomerism in Monoalkylhydroxamic Acids by 1 H , 13 C and 15 N NMR Spectroscopy

. Chem, , vol.26, pp.970-973, 1988.

D. A. Brown, R. A. Coogan, N. J. Fitzpatrick, W. K. Glass, D. E. Abukshima et al., Conformational Behaviour of Hydroxamic Acid : ab initio and Structural Studies, J. Chem. Soc. Perkin Trans, vol.2, pp.2673-2679, 1996.

D. A. Brown, W. K. Glass, R. Mageswarant, and S. A. Mohammed, 1 H and 13 C NMR Studies of Isomerism in Hydroxamic Acids, Magn. Reson. Chem, vol.29, pp.40-45, 1991.

R. Kakkar, R. Grover, and P. Chadha, Conformational Behavior of Some Hydroxamic Acids, Org. Biomol. Chem, vol.1, pp.2200-2206, 2003.

S. M. Coutts, Differential Effects of a Series of Hydroxamic Acid Derivatives on 5-Lipoxygenase and Cyclooxygenase from Neutrophils and 12-Lipoxygenase from Platelets and Their in vivo Effects on Inflammation and Anaphylaxis, J. Med. Chem, vol.32, pp.1836-1842, 1989.

L. Wang, B. Prabhudas, and D. L. Clive, Formation of Carbocycles by Intramolecular Conjugate Displacement: Scope and Mechanistic Insights, J. Am. Chem. Soc, vol.131, pp.6003-6012, 2009.

D. W. Lin, T. Masuda, M. B. Biskup, J. D. Nelson, and P. S. Baran, Synthesis-Guided Structure Revision of the Sarcodonin, Sarcoviolin, and Hydnellin Ntural Product Family, J. Org. Chem, vol.76, pp.1013-1030, 2011.

Y. Woo, R. P. Fernandes, and P. J. Proteau, Evaluation of Fosmidomycin Analogs as Inhibitors of the Synechocystis sp. PCC6803 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, Bioorg. Med. Chem, vol.14, pp.2375-2385, 2006.

A. B. Smith and . Wan, Z. Total Synthesis of the Ansamycin Antibiotic

E. Thiazinotrienomycin, J. Org. Chem, vol.65, pp.3738-3753, 2000.

A. Mico and . De,

R. Margarita, L. Parlanti, A. Vescovi, G. Piancatelli, and L. Sapienza, A Versatile and Highly Selective Hypervalent Iodine (III)/ Alcohols to Carbonyl Compounds, J. Org. Chem, vol.62, pp.6974-6977, 1997.

R. Ortmann, J. Wiesner, A. Reichenberg, D. Henschker, E. Beck et al., Alkoxycarbonyloxyethyl Ester Prodrugs of FR900098 with Improved in vivo Antimalarial Activity, Arch. Pharm. Chem. Life Sci, vol.338, pp.305-314, 2005.

A. Gissot, A. Volonterio, and M. Zanda, One-Step Synthesis of O-Benzyl Hydroxamates from Unactivated Aliphatic and Aromatic Esters, J. Org. Chem, vol.70, pp.6925-6928, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02475525

S. K. Sharma, M. J. Miller, and S. M. Payne, Spermexatin and Spermexatol : New Synthetic Spermidine-Based Siderophore Analogues, J. Med. Chem, vol.32, pp.357-367, 1989.

R. Johnsson, K. Mani, F. Cheng, and U. Ellervik, Regioselective Reductive Openings of Acetals; Mechanistic Details and Synthesis of Fluorescently Labeled Compounds, J. Org. Chem, vol.71, pp.3444-3451, 2006.

P. Wang, H. Hu, and Y. Wang, Application of Excited State Meta-Effect in Photolabile Protecting Group Design, Org. Lett, vol.9, pp.2831-2833, 2007.

L. Zuo, S. Yao, W. Wang, and W. Duan, An Efficient Method for Demethylation of Aryl Methyl Ethers, Tetrahedron Lett, vol.49, pp.4054-4056, 2008.

N. Mamidi, R. Borah, N. Sinha, C. Jana, and D. Manna, Effects of Ortho Substituent Groups of Protocatechualdehyde Derivatives on Binding to the C1 Domain of Novel Protein Kinase C, J. Phys. Chem. B, vol.116, pp.10684-10692, 2012.

B. Barlaam, A. Hamon, and M. Maudet, New Hydroxylamines for the Synthesis of Hydroxamic Acids, Tetrahedron Lett, vol.39, pp.7865-7868, 1998.

D. A. Brown, W. K. Glass, R. Mageswarant, and B. Girmay, Cis-Trans Isomerism in Monoalkylhydroxamic Acids by 1 H , 13 C and 15 N NMR Spectroscopy

. Chem, , vol.26, pp.970-973, 1988.

D. A. Brown, W. K. Glass, R. Mageswarant, and S. A. Mohammed, 1 H and 13 C NMR Studies of Isomerism in Hydroxamic Acids, Magn. Reson. Chem, vol.29, pp.40-45, 1991.

D. A. Brown, R. A. Coogan, N. J. Fitzpatrick, W. K. Glass, D. E. Abukshima et al., Conformational Behaviour of Hydroxamic Acid : Ab Initio and Structural Studies, J. Chem. Soc. Perkin Trans, vol.2, pp.2673-2679, 1996.

R. Kakkar, R. Grover, and P. Chadha, Conformational Behavior of Some Hydroxamic Acids, Org. Biomol. Chem, vol.1, pp.2200-2206, 2003.

T. Kolasa, The Conformational Behaviour of Hydroxamic Acids, Tetrahedron, vol.39, pp.1753-1754, 1983.

A. C. Brown and T. Parish, DXR Is Essential in Mycobacterium tuberculosis and Fosmidomycin Resistance Is due to a Lack of Uptake, BMC Microbiol, vol.8, pp.78-86, 2008.

J. T. Whitteck, P. Malova, S. C. Peck, R. M. Cicchillo, and F. Hammerschmidt,

, Chem. Soc, vol.133, pp.4236-4239, 2011.

S. Ponaire, C. Zinglé, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Growth Inhibition of Mycobacterium smegmatis by Prodrugs of Deoxyxylulose Phosphate Reducto-Isomerase Inhibitors, Promising Anti-Mycobacterial Agents, Eur. J. Med

. Chem, , vol.51, pp.277-285, 2012.

S. Ghilagaber, W. N. Hunter, and R. Marquez, Enantioselective Synthesis of C3 Fluoro-MEP, Org. Biomol. Chem, vol.5, pp.97-102, 2007.

I. Sprung, L. Carmès, G. M. Watt, and S. L. Flitsch, Synthesis of Novel Acceptor Substrates for the Dolichyl Phosphate Mannose Synthase from Yeast, ChemBioChem, vol.4, pp.319-332, 2003.

W. L. Armarego and C. L. Chai, Purification of Laboratory Chemicals, 2003.

E. De-clercq, Strategies in the Design of Antiviral Drugs, Nat. Rev. Drug Discov, vol.1, pp.13-25, 2002.

J. Balzarini, Metabolism and Mechanism of Antiretroviral Action of Purine and Pyrimidine Derivatives, Pharm. World Sci, vol.16, pp.113-126, 1994.

H. Mitsuya, K. J. Weinhold, P. A. Furman, M. H. St-clair, S. N. Lehrman et al., An Antiviral Agent That Inhibits the Infectivity and Cytopathic Effect of Human T-Lymphotropic Virus Type III/lymphadenopathy-Associated Virus in vitro

, Proc. Natl. Acad. Sci. U. S. A, vol.82, pp.7096-7100, 1985.

G. Valette, A. Pompon, J. L. Girardet, L. Cappellacci, P. Franchetti et al., Decomposition Pathways and in vitro HIV Inhibitory Effects of isoddA Pronucleotides: Toward a Rational Approach for Intracellular Delivery of Nucleoside 5'-Monophosphates

, Med. Chem, vol.39, pp.1981-1990, 1996.

D. Siccardi, M. Gumbleton, Y. Omidi, and C. Mcguigan, Stereospecific Chemical and Enzymatic Stability of Phosphoramidate Triester Prodrugs of d4T in vitro, Eur. J. Pharm. Sci, vol.22, pp.25-31, 2004.

J. Balzarini, A. Karlsson, S. Aquaro, C. F. Perno, D. Cahard et al., Mechanism of Anti-HIV Action of Masked Alaninyl d4T-MP Derivatives, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.7295-7299, 1996.

C. Mcguigan, H. W. Tsang, D. Cahard, K. Turner, S. Velazquez et al., Phosphoramidate Derivatives of d4T as Inhibitors of HIV: The Effect of Amino Acid Variation, Antiviral Res, vol.35, pp.195-204, 1997.

C. Mcguigan, D. Cahard, H. M. Sheeka, E. De-clercq, and J. Balzarini, Aryl Phosphoramidate Derivatives of d4T Have Improved Anti-HIV Efficacy in Tissue Culture and May Act by the Generation of a Novel Intracellular Metabolite, J. Med

. Chem, , vol.39, pp.1748-1753, 1996.

M. H. Knaggs, C. Mcguigan, S. A. Harris, P. Heshmati, D. Cahard et al., A QSAR Study Investigating the Effect of L-Alanine Ester Variation on the Anti-HIV Activity of Some Phosphoramidate Derivatives of d4T

, Chem. Lett, vol.10, pp.2075-2078, 2000.

C. Mcguigan, D. Cahard, H. M. Sheeka, E. De-clercq, and J. Balzarini, Phosphoramidate Derivatives of d4T with Imroved Anti-HIV Efficacy Retain Full Activity in Thymidine Kinase-Deficient Cells, Bioorg. Med. Chem. Lett, vol.6, pp.1183-1186, 1996.

A. Siddiqui, C. Ballatore, C. Mcguigan, E. De-clercq, and J. Balzarini, The Presence of Substituents on the Aryl Moiety of the Aryl Phosphoramidate Derivative of d4T

, Enhances Anti-HIV Efficacy in Cell Culture: A Structure-Activity Relationship. J

, Med. Chem, vol.42, pp.393-399, 1999.

A. Q. Siddiqui, C. Mcguigan, C. Ballatore, F. Zuccotto, I. H. Gilbert et al., Design and Synthesis of Lipophilic Phosphoramidate d4T-MP Prodrugs Expressing High Potency against HIV in Cell Culture: Structural Determinants for in vitro Activity and QSAR, J. Med. Chem, vol.42, pp.4122-4128, 1999.

J. Balzarini, J. Kruining, O. Wedgwood, C. Pannecouque, S. Aquaro et al.,

, Their Corresponding Aryloxyphosphoramidate Derivatives Markedly Potentiates Their Activity against Human Immunodeficiency Virus and Hepatitis B Virus, vol.410, pp.324-328, 1997.

C. Mcguigan, R. N. Pathirana, N. Mahmood, and A. J. Hay, Aryl Phosphate Derivates of AZT Inhibit HIV Replication in Cells Where the Nucleoside Is Poorly Active

, Med. Chem. Lett, vol.2, pp.701-704, 1992.

C. Mcguigan, R. N. Pathirana, J. Balzarini, and E. De-clercq, Intracellular Delivery of Bioactive AZT Nucleotides by Aryl Phosphate Derivatives of AZT, J. Med. Chem, vol.36, pp.1048-1052, 1993.

P. Perrone, G. M. Luoni, M. R. Kelleher, F. Daverio, A. Angell et al., Application of the Phosphoramidate ProTide Approach to 4'-Azidouridine Confers Sub-Micromolar Potency versus Hepatitis C Virus on an Inactive Nucleoside, J. Med. Chem, vol.50, pp.1840-1849, 2007.

J. E. Starrett, D. R. Tortolani, M. J. Hitchcock, J. C. Martin, and M. M. Mansuri, Synthesis and in vitro Evaluation of a Phosphonate Prodrug: Bis(pivaloylmoethyl) 9-(2-Phos-Phonylmethoxyethyl)adenine, Antiviral Res, vol.19, pp.267-273, 1992.

R. V. Srinivas and A. Fridland, Antiviral Activities of 9-R-2-Phosphonomethoxypropyl Adenine (PMPA) and bis(isopropyloxymethylcarbonyl)PMPA against Various Drug-Resistant Human Immunodeficiency Virus Strains, Antimicrob. Agents Chemother

C. Ballatore, C. Mcguigan, E. De-clercq, and J. Balzarini, Synthesis and Evaluation of Novel Amidate Prodrugs of PMEA and PMPA, Bioorg. Med. Chem. Lett, vol.11, pp.1053-1056, 2001.

L. Sutton, L. Rapport, and B. Lockwood, Glucosamine : Con or Cure ? Nutrition, vol.18, pp.534-536, 2002.

C. Mcguigan, M. Serpi, R. Bibbo, H. Roberts, C. Hughes et al., Phosphate Prodrugs Derived from N-Acetylglucosamine Have Enhanced Chondroprotective Activity in Explant Cultures and Represent a New Lead in Antiosteoarthritis Drug Discovery, J. Med. Chem, vol.51, pp.5807-5812, 2008.

G. F. Ruda, P. E. Wong, V. P. Alibu, S. Norval, K. D. Read et al., Aryl Phosphoramidates of 5-Phospho Erythronohydroxamic Acid, a New Class of Potent Trypanocidal Compounds, J. Med. Chem, vol.53, pp.6071-6078, 2010.

W. Yuan, R. J. Berman, and M. H. Gelb, Synthesis and Evaluation of Phospholipid 2-(Hydroxymethyl)-4-methylphenol

H. , of 2H, m, CH 2 CO), 3.80 (6H, s, 2H, m, ArCH 2 OP), 6.24-6.44 (2H, m, CH Ar(DMP) ), 7.13-7.16 (2H, m, CH Ar(cycloSal) and CH Ar(DMP) ), 7.33 (1H, s, CH Ar(cycloSal), vol.3

, ArCH 2 OP), 32.5 (CH 2 CO), vol.34

(. Ch-ar, 3 (CH Ar(DMP) ), 104.5 (CH Ar(DMP) ), 114.9 (C Ar(DMP) ), 115.2 (C Ar(DMP) ), vol.104

C. H. Hz, C. Ar, and O. P. Ar, 4 (C Ar CH 2 OP), 123.2 (CH Ar(cycloSal) ), 127.4 (CH Ar(cycloSal) ), vol.121

(. Ch-ar, Ar OCH 3 ), 162.0 (C Ar OCH 3 ), 162.4 (C Ar OCH 3 ), C Ar OCH, vol.166, issue.5

. P-nmr, MHz, CDCl, vol.3

. F-nmr,

, OCH 2 DMP), 98.8 (CH Ar(DMP) ), 104.5 (CH Ar(DMP) ), CH Ar(cycloSal) ), vol.64, issue.3

. P-nmr, MHz, CDCl, vol.3

, HRMS (EI) + : m/z calculated for C 20 H 23 BrNO 8 PNa

, 3 -methyl)-? 2 -fluoranyl)-2-oxido-4H-benzo

, The general procedure I was applied to synthesize the compound 218f from alcohol 212 (150 mg, 0.56 mmol). The crude product was purified by automated flash chromatography (EtOAc/cyclohexane, 5 5 ! EtOAc) to give 218f as a colorless oil 149 mg

H. , CDCl 3 ): 2.78-2.91 (2H, m, CH 2 CO), 3.18 (3H, s, NCH 3 ), MHz, vol.3, issue.500

M. 2h and C. H. Ar, ArCH 2 OP), vol.6, pp.45-51

, 3 (d, 2 J C-P = 6.7 Hz, ArCH 2 OP), DMP), 98.8 (CH Ar(DMP) ), 104.7 (CH Ar(DMP) ), vol.64

, CH Ar(cycloSal) ), 123.7 (q, 1 J C-F = 271.1 Hz, C Ar CF 3 ), vol.126

C. Hz and O. P. Ar, Ar OCH 3 ), 162.4 (C Ar OCH 3 ), vol.171, p.1

, ArCH 2 OP) 6.42-6.44 (2H, m, CH Ar(DMP) ), 6.88 (5/10 of 1H, 38 (1H, m, ArCH 2 OP), 5.44-5.50 (1H, m, pp.33-38

C. H. Hz and . Ar, 2H, t, 3 J = 7.5 Hz, CH Ar(cycloSal) ), 7.10 (2H, t, 3 J = 7.5 Hz, CH Ar(cycloSal) ), 7.17 (1H, dd, 3 J = 8.9 Hz, 4 J P-H = 2.0 Hz, CH Ar(DMP) ), 7.28 (2H, m, CH Ar(cycloSal) )

, CH 2 CO), vol.55, pp.32-41

, ArCH 2 OP), 69.3 (d, 2 J C-P = 7.1 Hz, ArCH 2 OP), vol.68

. Hz, OCH 2 DMP), 98.5 (CH Ar(DMP) ), 104.1 (CH Ar(DMP) ), 117.6 (C Ar(DMP) ), vol.71

, 5 (d, 3 J C-P = 10.2 Hz, C Ar CH 2 OP), 120.8 (d, 3 J C-P = 9, vol.120

J. , 1 (d, 2 J C-P = 7.2 Hz, C Ar OP), vol.150, issue.3

. P-nmr, MHz, CDCl, vol.3, issue.9

, HRMS (EI) + : m/z calculated for C 26 H 27 NO 11 P 2 Na

N. , 4-Dimethoxybenzyl)oxy)-N-(6-methyl-2-oxido-4H-benzo

, When general procedure I was applied to synthesize compound 217b from alcohol 211 (200 mg, 0.78 mmol) a byproduct 219b was obtained. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 5:5 ! EtOAc) to give 219b as a colorless oil 92 mg, 38 %) and as a mixture of two diastereoisomers

, EtOAc/ petroleum ether, vol.7

H. , ArCH 2 OP), 5.29 (1H, d, 2 J = 13.9 Hz, 3 J C-P = 8.1 Hz, ArCH 2 OP), 5.38.-5.44 (1H, m, ArCH 2 OP) 6.40-6.42 (2H, m, CH Ar(DMP) ), 6.72-6.79 (3H, m, CH Ar ), 6.88 (5/10 of 1H, d, 3 J = 6.0 Hz, CH Ar(cycloSal) ), 6.90 (5/10 of 1H, d, 3 J = 6.1 Hz, CH Ar(cycloSal) ), 7.00-7.05 (2H, m, CH Ar ), vol.7

, CDCl 3 ): 20.8 (CH 3 Ar), vol.20

, ArCH 2 OP), 69.5 (d, 2 J C-P = 7.1 Hz, ArCH 2 OP), 71.8 (OCH 2 DMP), 98.5 (CH Ar(DMP) ), 104.1 (CH Ar(DMP) ), 117.6 (C Ar(DMP) ), 118.6 (CH Ar C Ar OP), 120.0 (d, 3 J C-P = 10.0 Hz, C Ar CH 2 OP), 120.4 (d, 3 J C-P = 10.1 Hz, C Ar CH 2 OP), C Ar CH, vol.55, issue.3

J. , C Ar OP), vol.148, issue.2

C. Ar, 7 (d, 3 J C-P = 9.1 Hz, C Ar CH 2 OP), 122.1 (d, 3 J C-P = 9, CH Ar(cycloSal) ), 125.2 (CH Ar(cycloSal) ), 129.4 (C Ar Cl), 129.5 (C Ar Cl), vol.120

C. Hz and O. P. Ar, 3 (d, 2 J C-P = 7.8 Hz, C Ar OP), 148.2 (d, 2 J C-P = 6.0 Hz, C Ar OP), C Ar OCH, vol.148, issue.9

. P-nmr, MHz, CDCl, vol.3

, HRMS (EI) + : m/z calculated for C 26 H 25 Cl 2 NO 11 P 2 Na

, ]dioxaphosphinin-2-yl)oxy)-N-((2,4-dimethoxybenzyl)oxy)propanamide (219e) When general procedure I was applied to synthesize compound 217e from alcohol 211 (200 mg, 0.78 mmol) a byproduct 219e was obtained. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 5:5 ! EtOAc/petroleum ether, vol.7

, Rf = 0.34 (EtOAc/ petroleum ether, vol.5

H. , (1H, m, ArCH 2 OP), 5.38-5.45 (1H, m

C. H. Hz and . Ar, 92 (5/10 of 1H, d, 3 J = 8.3 Hz, CH Ar(cycloSal) ) 7.08-7.18 (3H, m, CH Ar(cycloSal) and CH Ar(DMP), vol.6

, CDCl 3 ): 32.8 (d, 3 J C-P = 6.4 Hz, CH 2 CO), vol.55

J. , , vol.63

J. , ArCH 2 OP), 68.7 (d, 2 J C-P = 7.3 Hz, ArCH 2 OP), vol.68

;. Ch-ar, ;. Ch-ar, and . Ar, Ar(DMP) ), 117.2 (C Ar Br), 117.3 (C Ar Br), 120.6 (CH Ar C Ar OP), CH Ar C Ar OP), vol.98, issue.6

C. Hz and O. P. Ar, 4 (d, 2 J C-P = 6.7 Hz, C Ar OP), C Ar OCH, vol.149, issue.5

. P-nmr, :3) to give 219e as a colorless oil (59 mg, 15 %) and as a mixture of two diastereoisomers, EtOAc/petroleum ether, 5:5 ! EtOAc/petroleum ether, vol.3

, Rf = 0.90 (EtOAc/ petroleum ether, vol.7

H. , CH Ar(DMP) ), 6.93-6.97 (1H, m, CH Ar ), 7.13-7.16 (1H, m, CH Ar ), vol.7

, CDCl 3 ): 32.9 (d, 3 J C-P = 8.0 Hz, CH 2 CO), vol.55

J. , POCH 2 ), 68.4 (d, 2 J C-P = 6.6 Hz, ArCH 2 OP), Hz, issue.6

, DMP), 98.6 (CH Ar(DMP) ), 104.1 (CH Ar(DMP) ), 117.1 (C Ar(DMP) ), vol.119

, 127. (CH Ar ), vol.122

. P-nmr, MHz, CDCl, vol.3

. F-nmr, MHz, CDCl, vol.3

, HRMS (EI) + : m/z calculated for C 28 H 25 F 6 NO 11 P 2 Na

N. , 4-Dimethoxybenzyl)oxy)-N-(6-methoxy-2-oxido-4H-benzo

, When general procedure I was applied to synthesize compound 217g from alcohol 211 (175 mg, 0.69 mmol) a byproduct 219g was obtained. The crude product was purified by automated flash chromatography (EtOAc/petrouleum ether, 3:7 ! EtOAc) to give 219e as a colorless oil, p.12

, %) and as a mixture of two diastereoisomers

(. 2h and M. , /3 of 3H, m, NCHCH 3 *, 1/3 of 3H, m, /2 of 2H, m, CH Ar *, 1/2 of 2H, m, CH Ar ), 7.37 (5H, m, CH Ar(Bn)

, CO 2 CH 3 * and CO 2 CH 3 ), 55.8 (ArOCH 3 * and ArOCH 3 ), Ph), 78.4 (OCH 2 Ph), 114.7 (CH Ar(PMP) ), 121.3 (CH Ar(PMP) ), 128.8 (CH Ar(Bn) ), 129.0 (CH Ar(Bn) ), 129.4 (CH Ar(Bn) ), 129.5 (CH Ar(Bn) ), 129.7 (CH Ar(Bn) ), 134.3 (C Ar ), 144.5 (C Ar ), 156.5 (C Ar OCH 3 ), vol.45

. P-nmr,

, HRMS (EI) + : m/z calculated for C 21 H 27 N 2 O 8 PNa, pp.489-1376

. Methyl, Several purifications by flash chromatography and preparative TLC gave a mixture (31 mg) of the desired compound 240b and a byproduct 251* in a 50:50 ratio respectively, which was determined by NMR spectroscopy

H. , /10 of 2H, bs, CH 3 CO), 2.08 (4/10 of 2H, bs, CH 3 CO), 3.41-3.46 (2H, m, NCH 2 ), 3.68-3.76 (9/15 of 15H, m, OCH 3 *, 6/15 of 15 H, m

. Hz, /10 of 3H, bs, CH 3 CO), 3.67-3.904 (14H, m, OCH 3 and NCH 2 ), 2H, m, CH Ar(DMB) ), 6.76 (2H, m, CH Ar ), 7.05-7.10 (2H, m, CH Ar, vol.3

, CDCl 3 ): 20.4 (CH 3 CO), vol.21

. Hz, OCH 2 DMP), 71.6 (OCH 2 DMP), CH Ar(DMB) ), 104.4 (CH Ar(DMB) ), vol.45

. P-nmr,

, HRMS (EI) + : m/z calculated for C 24 H 34 N 2 O 10 P [M+H] + 541, p.541, 1925.

N. Benzyloxy,

;. Hz, M. 3h, and C. H. Ar,

C. , OCH 2 DMP), 98.8 (CH Ar(DMB) ), 104.2 (CH Ar(DMB) ),104.3 (CH Ar(DMB) ) 114.8 (CH Ar(PMP) ), 116.2 (C Ar(DMB) ), 116.3 (C Ar(DMB) ) 121.3 (CH Ar(PMP) ), 132.8 (CH Ar(DMB) ), 133.0 (CH Ar(DMB) ), 144.3 (C Ar OP), C Ar O CH, vol.50, issue.3

. P-nmr,

, MS (EI) + : m/z calculated for C 23 H 32 N 2 O 10, vol.527, pp.527-544

. Methyl, 4-dimethoxybenzyl)oxy)(methyl)amino)-3-oxopropoxy)(4-methoxyphenoxy)phosphoryl)-L-alaninate (244b), p.3

W. L. Armarego and C. L. Chai, Purification of Laboratory Chemicals, 2003.

Y. Woo, R. P. Fernandes, and P. J. Proteau, Evaluation of Fosmidomycin Analogs as Inhibitors of the Synechocystis sp. PCC6803 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, Bioorg. Med. Chem, vol.14, pp.2375-2385, 2006.

L. Kuntz, D. Tritsch, C. Grosdemange-billiard, A. Hemmerlin, A. Willem et al., Isoprenoid Biosynthesis as a Target for Antibacterial and Antiparasitic Drugs: Phosphonohydroxamic Acids as Inhibitors of Deoxyxylulose Phosphate Reducto-Isomerase, Biochem. J, vol.386, pp.127-135, 2005.

S. Ponaire, C. Zinglé, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Growth Inhibition of Mycobacterium smegmatis by Prodrugs of Deoxyxylulose Phosphate Reducto-Isomerase Inhibitors, Promising Anti-Mycobacterial Agents, Eur. J. Med. Chem, vol.51, pp.277-285, 2012.

M. M. Bradford, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem, vol.72, pp.248-254, 1976.

R. Putra, S. Disch, A. Bravo, J. M. Rohmer, and M. , Distribution of Mevalonate and Glyceraldehyde 3-Phosphate/pyruvate Routes for Isoprenoid Biosynthesis in Some Gram-Negative Bacteria and Mycobacteria, FEMS Microbiol. Lett, vol.164, pp.169-175, 1998.