S. E. Polo and G. Almouzni, Histone metabolic pathways and chromatin assembly factors as proliferation markers, Cancer letters, vol.220, pp.1-9, 2005.

D. Filipescu, E. Szenker, and G. Almouzni, Developmental roles of histone H3 variants and their chaperones, Trends in genetics : TIG, vol.29, pp.630-640, 2013.

V. K. Rakyan, J. Preis, H. D. Morgan, and E. Whitelaw, The marks, mechanisms and memory of epigenetic states in mammals, Biochem J, vol.356, pp.1-10, 2001.

P. J. Skene and S. Henikoff, Histone variants in pluripotency and disease, Development, vol.140, pp.2513-2524, 2013.

S. E. Polo and G. Almouzni, Chromatin assembly: a basic recipe with various flavours. Current opinion in genetics & development, vol.16, pp.104-111, 2006.

E. Luk, Chz1, a nuclear chaperone for histone H2AZ, Molecular cell, vol.25, pp.357-368, 2007.

C. M. Latrick, Molecular basis and specificity of H2A.Z-H2B recognition and deposition by the histone chaperone YL1, Nature structural & molecular biology, vol.23, pp.309-316, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02294249

R. D. Kornberg, Chromatin structure: a repeating unit of histones and DNA, Science, vol.184, pp.868-871, 1974.

K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, vol.389, pp.251-260, 1997.

S. J. Elsasser and S. , Towards a mechanism for histone chaperones, Bba-Gene Regul Mech, vol.1819, pp.211-221, 2012.

A. Obri, ANP32E is a histone chaperone that removes H2A.Z from chromatin, Nature, vol.505, pp.648-653, 2014.

Z. Zhou, NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B, Nature structural & molecular biology, vol.15, pp.868-869, 2008.

S. Lorain, Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA, Molecular and cellular biology, vol.18, pp.5546-5556, 1998.

D. Ray-gallet, HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis, Molecular cell, vol.9, pp.1091-1100, 2002.

D. W. Litchfield, Protein kinase CK2: structure, regulation and role in cellular decisions of life and death, Biochem J, vol.369, pp.1-15, 2003.

T. Barz, K. Ackermann, G. Dubois, R. Eils, and W. Pyerin, Genome-wide expression screens indicate a global role for protein kinase CK2 in chromatin remodeling, J Cell Sci, vol.116, pp.1563-1577, 2003.

N. Assrir, O. Filhol, F. Galisson, and M. Lipinski, HIRIP3 is a nuclear phosphoprotein interacting with and phosphorylated by the serine-threonine kinase CK2, Biological chemistry, vol.388, pp.391-398, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00170840

A. Y. Wang, M. J. Aristizabal, C. Ryan, N. J. Krogan, and M. S. Kobor, Key functional regions in the histone variant H2A.Z C-terminal docking domain, Molecular and cellular biology, vol.31, pp.3871-3884, 2011.

M. E. Calvert, Phosphorylation by casein kinase 2 regulates Nap1 localization and function, Molecular and cellular biology, vol.28, pp.1313-1325, 2008.

R. D. Kornberg and Y. Lorch, Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome, Cell, vol.98, pp.285-294, 1999.

G. Arents, R. W. Burlingame, B. C. Wang, W. E. Love, and E. N. Moudrianakis, The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix, Proceedings of the National Academy of Sciences of the United States of America, vol.88, pp.10148-10152, 1991.

C. L. Woodcock, A. I. Skoultchi, and Y. Fan, Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 14, pp.17-25, 2006.

W. F. Marzluff and R. J. Duronio, Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences, Current opinion in cell biology, vol.14, pp.692-699, 2002.

M. L. Whitfield, Stem-loop binding protein, the protein that binds the 3' end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms, Molecular and cellular biology, vol.20, pp.4188-4198, 2000.

A. Gaspar-maia, MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency, Nature communications, vol.4, p.1565, 2013.

S. Nakanishi, A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation, Nature structural & molecular biology, vol.15, pp.881-888, 2008.

J. T. Finch, Structure of nucleosome core particles of chromatin, Nature, vol.269, pp.29-36, 1977.

C. A. Davey, D. F. Sargent, K. Luger, A. W. Maeder, and T. J. Richmond, Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution, Journal of molecular biology, vol.319, pp.386-394, 2002.

D. Angelov, The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling, Molecular cell, vol.11, pp.1033-1041, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00023762

T. Gautier, Histone variant H2ABbd confers lower stability to the nucleosome, EMBO reports, vol.5, pp.715-720, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00335082

J. T. Finch and A. Klug, Solenoidal model for superstructure in chromatin, Proceedings of the National Academy of Sciences of the United States of America, vol.73, pp.1897-1901, 1976.

A. L. Olins and D. E. Olins, Spheroid chromatin units (v bodies), Science, vol.183, pp.330-332, 1974.

P. J. Robinson and D. Rhodes, Structure of the '30 nm' chromatin fibre: a key role for the linker histone, Current opinion in structural biology, vol.16, pp.336-343, 2006.

A. Routh, S. Sandin, and D. Rhodes, Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure, Proceedings of the National Academy of Sciences of the United States of America 105, pp.8872-8877, 2008.

S. A. Grigoryev, G. Arya, S. Correll, C. L. Woodcock, and T. Schlick, Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.13317-13322, 2009.

M. Shogren-knaak, Histone H4-K16 acetylation controls chromatin structure and protein interactions, Science, vol.311, pp.844-847, 2006.

A. Hamiche, P. Schultz, V. Ramakrishnan, P. Oudet, and A. Prunell, Linker histonedependent DNA structure in linear mononucleosomes, Journal of molecular biology, vol.257, pp.30-42, 1996.

C. L. Woodcock, L. L. Frado, and J. B. Rattner, The higher-order structure of chromatin: evidence for a helical ribbon arrangement, The Journal of cell biology, vol.99, pp.42-52, 1984.

T. Cremer and C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nature reviews. Genetics, vol.2, pp.292-301, 2001.

T. Sexton, Three-dimensional folding and functional organization principles of the Drosophila genome, Cell, vol.148, pp.458-472, 2012.

G. Felsenfeld and M. Groudine, Controlling the double helix, Nature, vol.421, pp.448-453, 2003.

R. A. Horowitz, D. A. Agard, J. W. Sedat, and C. L. Woodcock, The threedimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon, The Journal of cell biology, vol.125, pp.1-10, 1994.

R. A. Horowitz, A. J. Koster, J. Walz, and C. L. Woodcock, Automated electron microscope tomography of frozen-hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers, Journal of structural biology, vol.120, pp.353-362, 1997.

K. Maeshima, S. Ide, K. Hibino, and M. Sasai, Liquid-like behavior of chromatin. Current opinion in genetics & development, vol.37, pp.36-45, 2016.

M. A. Ricci, C. Manzo, M. F. Garcia-parajo, M. Lakadamyali, and M. P. Cosma, Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo, Cell, vol.160, pp.1145-1158, 2015.

K. Maeshima, R. Imai, S. Tamura, and T. Nozaki, Chromatin as dynamic 10-nm fibers, Chromosoma, vol.123, pp.225-237, 2014.

C. Kizilyaprak, D. Spehner, D. Devys, and P. Schultz, In vivo chromatin organization of mouse rod photoreceptors correlates with histone modifications, PloS one, vol.5, p.11039, 2010.

J. R. Dixon, Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, vol.485, pp.376-380, 2012.

F. Ciabrelli and G. Cavalli, Chromatin-driven behavior of topologically associating domains, Journal of molecular biology, vol.427, pp.608-625, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01132921

M. Cremer, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 9, pp.541-567, 2001.

W. A. Bickmore and B. Van-steensel, Genome architecture: domain organization of interphase chromosomes, Cell, vol.152, pp.1270-1284, 2013.

S. J. Mcbryant, V. H. Adams, and J. C. Hansen, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 14, pp.39-51, 2006.

A. Bulut-karslioglu, A transcription factor-based mechanism for mouse heterochromatin formation, Nature structural & molecular biology, vol.19, pp.1023-1030, 2012.

G. J. Filion, Systematic protein location mapping reveals five principal chromatin types in Drosophila cells, Cell, vol.143, pp.212-224, 2010.

C. L. Peterson and M. A. Laniel, Histones and histone modifications, Current biology : CB, vol.14, pp.546-551, 2004.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell research, vol.21, pp.381-395, 2011.

A. Eberharter and P. B. Becker, Histone acetylation: a switch between repressive and permissive chromatin, EMBO reports, vol.3, pp.224-229, 2002.

R. U. Protacio, G. Li, P. T. Lowary, and J. Widom, Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome, Molecular and cellular biology, vol.20, pp.8866-8878, 2000.

S. Mujtaba, L. Zeng, and M. M. Zhou, Structure and acetyl-lysine recognition of the bromodomain, Oncogene, vol.26, pp.5521-5527, 2007.

J. S. Lee, E. Smith, and A. Shilatifard, The language of histone crosstalk, Cell, vol.142, pp.682-685, 2010.

X. Ling, T. A. Harkness, M. C. Schultz, G. Fisher-adams, and M. Grunstein, Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation, Genes & development, vol.10, pp.686-699, 1996.

C. R. Adams and R. T. Kamakaka, Chromatin assembly: biochemical identities and genetic redundancy, pp.185-190, 1999.

D. Rossetto, N. Avvakumov, and J. Cote, Histone phosphorylation: a chromatin modification involved in diverse nuclear events, Epigenetics, vol.7, pp.1098-1108, 2012.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J Biol Chem, vol.273, pp.5858-5868, 1998.

W. L. Cheung, Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase, Cell, vol.113, pp.507-517, 2003.

T. Banerjee and D. Chakravarti, A peek into the complex realm of histone phosphorylation, Molecular and cellular biology, vol.31, pp.4858-4873, 2011.

A. Sawicka and C. Seiser, Histone H3 phosphorylation -a versatile chromatin modification for different occasions, Biochimie, vol.94, pp.2193-2201, 2012.

D. J. Patel and Z. Wang, Readout of epigenetic modifications, Annual review of biochemistry, vol.82, pp.81-118, 2013.

I. G. Cowell, Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals, Chromosoma, vol.111, pp.22-36, 2002.

A. J. Bannister, R. Schneider, and T. Kouzarides, Histone methylation: dynamic or static?, Cell, vol.109, pp.801-806, 2002.

Y. Shi, Histone demethylation mediated by the nuclear amine oxidase homolog LSD1, Cell, vol.119, pp.941-953, 2004.

J. S. Seeler and A. Dejean, Nuclear and unclear functions of SUMO, Nature reviews. Molecular cell biology, vol.4, pp.690-699, 2003.

B. D. Strahl and C. D. Allis, The language of covalent histone modifications, Nature, vol.403, pp.41-45, 2000.

V. Pande, Understanding the Complexity of Epigenetic Target Space, Journal of medicinal chemistry, vol.59, pp.1299-1307, 2016.

K. J. Falkenberg and R. W. Johnstone, Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders, Nature reviews. Drug discovery, vol.13, pp.673-691, 2014.

K. Zhang, J. S. Siino, P. R. Jones, P. M. Yau, and E. M. Bradbury, A mass spectrometric "Western blot" to evaluate the correlations between histone methylation and histone acetylation, Proteomics, vol.4, pp.3765-3775, 2004.

S. D. Taverna, Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs, Molecular cell, vol.24, pp.785-796, 2006.

D. Hyllus, PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation, Genes & development, vol.21, pp.3369-3380, 2007.

C. M. Weber and S. Henikoff, Histone variants: dynamic punctuation in transcription

, Genes & development, vol.28, pp.672-682, 2014.

K. A. Haushalter and J. T. Kadonaga, Chromatin assembly by DNA-translocating motors, Nature reviews. Molecular cell biology, vol.4, pp.613-620, 2003.

K. Ahmad and S. Henikoff, The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly, Molecular cell, vol.9, pp.1191-1200, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00782360

Y. Mito, J. G. Henikoff, and S. Henikoff, Genome-scale profiling of histone H3.3 replacement patterns, Nature genetics, vol.37, pp.1090-1097, 2005.

P. Chen, H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin, Genes & development, vol.27, pp.2109-2124, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02442206

P. Drane, K. Ouararhni, A. Depaux, M. Shuaib, and A. Hamiche, The deathassociated protein DAXX is a novel histone chaperone involved in the replicationindependent deposition of H3.3, Genes & development, vol.24, pp.1253-1265, 2010.

H. P. Voon and L. H. Wong, New players in heterochromatin silencing: histone variant H3.3 and the ATRX/DAXX chaperone, Nucleic acids research, vol.44, pp.1496-1501, 2016.

P. B. Talbert and S. Henikoff, Histone variants--ancient wrap artists of the epigenome, Nature reviews. Molecular cell biology, vol.11, pp.264-275, 2010.

H. S. Malik and S. Henikoff, Phylogenomics of the nucleosome, Nature structural biology, vol.10, pp.882-891, 2003.

I. H. Ismail and M. J. Hendzel, The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environmental and molecular mutagenesis 49, pp.73-82, 2008.

C. Bonisch and S. B. Hake, Histone H2A variants in nucleosomes and chromatin: more or less stable?, Nucleic acids research, vol.40, pp.10719-10741, 2012.

I. Maze, K. M. Noh, A. A. Soshnev, and C. D. Allis, Every amino acid matters: essential contributions of histone variants to mammalian development and disease, Nature reviews. Genetics, vol.15, pp.259-271, 2014.

R. K. Suto, M. J. Clarkson, D. J. Tremethick, and K. Luger, Crystal structure of a nucleosome core particle containing the variant histone H2A, Z. Nature structural biology, vol.7, pp.1121-1124, 2000.

D. W. Abbott, V. S. Ivanova, X. Wang, W. M. Bonner, and J. Ausio, Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation, J Biol Chem, vol.276, pp.41945-41949, 2001.

S. V. Kumar, P. A. Wigge, and . H2a, Z-containing nucleosomes mediate the thermosensory response in Arabidopsis, Cell, vol.140, pp.136-147, 2010.

Y. J. Park, P. N. Dyer, D. J. Tremethick, and K. Luger, A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome, J Biol Chem, vol.279, pp.24274-24282, 2004.

B. Biterge and R. Schneider, Histone variants: key players of chromatin, Cell and tissue research, vol.356, pp.457-466, 2014.

R. M. Raisner, Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin, Cell, vol.123, pp.233-248, 2005.

C. Jin, H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosomefree regions' of active promoters and other regulatory regions, Nature genetics, vol.41, pp.941-945, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01292426

M. Nekrasov, Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics, Nature structural & molecular biology, vol.19, pp.1076-1083, 2012.

M. D. Meneghini, M. Wu, and H. D. Madhani, Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin, Cell, vol.112, pp.725-736, 2003.

M. P. Creyghton, H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment, Cell, vol.135, pp.649-661, 2008.

D. Rangasamy, L. Berven, P. Ridgway, and D. J. Tremethick, Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development, EMBO J, vol.22, pp.1599-1607, 2003.

W. H. Wu, Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange, Nature structural & molecular biology, vol.12, pp.1064-1071, 2005.

G. Mizuguchi, ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex, Science, vol.303, pp.343-348, 2004.

T. Kusch, Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions, Science, vol.306, pp.2084-2087, 2004.

D. D. Ruhl, Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes, Biochemistry, vol.45, pp.5671-5677, 2006.

M. Papamichos-chronakis, S. Watanabe, O. J. Rando, and C. L. Peterson, Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity, Cell, vol.144, pp.200-213, 2011.

S. K. Mahadevaiah, Recombinational DNA double-strand breaks in mice precede synapsis, Nature genetics, vol.27, pp.271-276, 2001.

A. Celeste, H2AX haploinsufficiency modifies genomic stability and tumor susceptibility, Cell, vol.114, pp.371-383, 2003.

A. Celeste, Genomic instability in mice lacking histone H2AX, Science, vol.296, pp.922-927, 2002.

R. Gonzalez-romero, J. Mendez, J. Ausio, and J. M. Eirin-lopez, Quickly evolving histones, nucleosome stability and chromatin folding: all about histone H2A, Bbd. Gene, vol.413, pp.1-7, 2008.

B. P. Chadwick and H. F. Willard, A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome, The Journal of cell biology, vol.152, pp.375-384, 2001.

C. Costanzi and J. R. Pehrson, Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals, Nature, vol.393, pp.599-601, 1998.

C. Richler, S. K. Dhara, and J. Wahrman, Histone macroH2A1.2 is concentrated in the XY compartment of mammalian male meiotic nuclei, Cytogenetics and cell genetics, vol.89, pp.118-120, 2000.

F. Mueller-planitz, H. Klinker, and P. B. Becker, Nucleosome sliding mechanisms: new twists in a looped history, Nature structural & molecular biology, vol.20, pp.1026-1032, 2013.

A. Flaus and T. Owen-hughes, Mechanisms for ATP-dependent chromatin remodelling: the means to the end, The FEBS journal, vol.278, pp.3579-3595, 2011.

J. A. Eisen, K. S. Sweder, and P. C. Hanawalt, Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions, Nucleic acids research, vol.23, pp.2715-2723, 1995.

K. Bouazoune, R. E. Kingston, and . Assembly, , vol.2, p.1270, 2013.

A. Flaus and T. Owen-hughes, Mechanisms for ATP-dependent chromatin remodelling. Current opinion in genetics & development 11, pp.148-154, 2001.

L. Tang, E. Nogales, and C. Ciferri, Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription, Progress in biophysics and molecular biology, vol.102, pp.122-128, 2010.

M. Vignali, A. H. Hassan, K. E. Neely, and J. L. Workman, ATP-dependent chromatin-remodeling complexes, Molecular and cellular biology, vol.20, pp.1899-1910, 2000.

G. Langst and P. B. Becker, Nucleosome mobilization and positioning by ISWIcontaining chromatin-remodeling factors, J Cell Sci, vol.114, pp.2561-2568, 2001.

R. Strohner, NoRC--a novel member of mammalian ISWI-containing chromatin remodeling machines, EMBO J, vol.20, pp.4892-4900, 2001.

M. Tyagi, N. Imam, K. Verma, and A. K. Patel, Chromatin remodelers: We are the drivers!! Nucleus, vol.7, pp.388-404, 2016.

X. Shen, G. Mizuguchi, A. Hamiche, and C. Wu, A chromatin remodelling complex involved in transcription and DNA processing, Nature, vol.406, pp.541-544, 2000.

H. Boeger, J. Griesenbeck, J. S. Strattan, and R. D. Kornberg, Removal of promoter nucleosomes by disassembly rather than sliding in vivo, Molecular cell, vol.14, pp.667-673, 2004.

C. R. Brown, C. Mao, E. Falkovskaia, J. K. Law, and H. Boeger, In vivo role for the chromatin-remodeling enzyme SWI/SNF in the removal of promoter nucleosomes by disassembly rather than sliding, J Biol Chem, vol.286, pp.40556-40565, 2011.

M. Radman-livaja and O. J. Rando, Nucleosome positioning: how is it established, and why does it matter?, Developmental biology, vol.339, pp.258-266, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02193591

S. J. Petesch and J. T. Lis, Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci, Cell, vol.134, pp.74-84, 2008.

M. A. Schwabish and K. Struhl, Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II, Molecular and cellular biology, vol.24, pp.10111-10117, 2004.

O. I. Kulaeva, D. A. Gaykalova, and V. M. Studitsky, Transcription through chromatin by RNA polymerase II: histone displacement and exchange, Mutation research, vol.618, pp.116-129, 2007.

M. T. Khuong, J. Fei, H. Ishii, and J. T. Kadonaga, Prenucleosomes and Active Chromatin, Cold Spring Harbor symposia on quantitative biology, vol.80, pp.65-72, 2015.

S. E. Torigoe, A. Patel, M. T. Khuong, G. D. Bowman, and J. T. Kadonaga, ATPdependent chromatin assembly is functionally distinct from chromatin remodeling, p.863, 2013.

T. Ito, ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly, Genes & development, vol.13, pp.1529-1539, 1999.

A. Lusser and J. T. Kadonaga, Chromatin remodeling by ATP-dependent molecular machines, BioEssays : news and reviews in molecular, cellular and developmental biology, vol.25, pp.1192-1200, 2003.

D. V. Fyodorov and J. T. Kadonaga, The many faces of chromatin remodeling: SWItching beyond transcription, Cell, vol.106, pp.523-525, 2001.

G. J. Narlikar, H. Y. Fan, and R. E. Kingston, Cooperation between complexes that regulate chromatin structure and transcription, Cell, vol.108, pp.475-487, 2002.

R. E. Kingston and G. J. Narlikar, ATP-dependent remodeling and acetylation as regulators of chromatin fluidity, Genes & development, vol.13, pp.2339-2352, 1999.

J. R. Guyon, G. J. Narlikar, E. K. Sullivan, and R. E. Kingston, Stability of a human SWI-SNF remodeled nucleosomal array, Molecular and cellular biology, vol.21, pp.1132-1144, 2001.

G. J. Narlikar, R. Sundaramoorthy, and T. Owen-hughes, Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes, Cell, vol.154, pp.490-503, 2013.

D. F. Corona, ISWI is an ATP-dependent nucleosome remodeling factor, Molecular cell, vol.3, pp.239-245, 1999.

D. V. Fyodorov and J. T. Kadonaga, Dynamics of ATP-dependent chromatin assembly by ACF, Nature, vol.418, pp.897-900, 2002.

T. Ito, M. Bulger, M. J. Pazin, R. Kobayashi, and J. T. Kadonaga, ACF, an ISWIcontaining and ATP-utilizing chromatin assembly and remodeling factor, Cell, vol.90, pp.145-155, 1997.

A. Lusser, D. L. Urwin, and J. T. Kadonaga, Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly, Nature structural & molecular biology, vol.12, pp.160-166, 2005.

A. Eberharter, Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling, EMBO J, vol.20, pp.3781-3788, 2001.

V. Alexiadis, P. D. Varga-weisz, E. Bonte, P. B. Becker, and C. Gruss, In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication, EMBO J, vol.17, pp.3428-3438, 1998.

A. Hamiche, R. Sandaltzopoulos, D. A. Gdula, and C. Wu, ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF, Cell, vol.97, pp.833-842, 1999.

T. Tsukiyama and C. Wu, Purification and properties of an ATP-dependent nucleosome remodeling factor, Cell, vol.83, pp.1011-1020, 1995.

A. Loyola, Functional analysis of the subunits of the chromatin assembly factor RSF, Molecular and cellular biology, vol.23, pp.6759-6768, 2003.

A. Loyola, G. Leroy, Y. H. Wang, and D. Reinberg, Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription, Genes & development, vol.15, pp.2837-2851, 2001.

N. Collins, An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin, Nature genetics, vol.32, pp.627-632, 2002.

J. W. Landry, Chromatin remodeling complex NURF regulates thymocyte maturation, Genes & development, vol.25, pp.275-286, 2011.

A. V. Emelyanov, Identification and characterization of ToRC, a novel ISWIcontaining ATP-dependent chromatin assembly complex, Genes & development, vol.26, pp.603-614, 2012.

B. Bartholomew, ISWI chromatin remodeling: one primary actor or a coordinated effort?, Current opinion in structural biology, vol.24, pp.150-155, 2014.

W. Wang, Diversity and specialization of mammalian SWI/SNF complexes, Genes & development, vol.10, pp.2117-2130, 1996.

H. Nguyen, Epigenetic regulation by BAF (mSWI/SNF) chromatin remodeling complexes is indispensable for embryonic development, Cell cycle, vol.15, pp.1317-1324, 2016.

J. Krosl, A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations, Blood, vol.116, pp.1678-1684, 2010.

V. Krasteva, The BAF53a subunit of SWI/SNF-like BAF complexes is essential for hemopoietic stem cell function, Blood, vol.120, pp.4720-4732, 2012.

N. Liu, C. L. Peterson, and J. J. Hayes, SWI/SNF-and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes, Molecular and cellular biology, vol.31, pp.4165-4175, 2011.

Y. Lorch, M. Zhang, and R. D. Kornberg, Histone octamer transfer by a chromatinremodeling complex, Cell, vol.96, pp.389-392, 1999.

B. Chai, J. Huang, B. R. Cairns, and B. C. Laurent, Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair

, Genes & development, vol.19, pp.1656-1661, 2005.

J. A. Martens and F. Winston, Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Current opinion in genetics & development, vol.13, pp.136-142, 2003.

J. Huang, J. M. Hsu, and B. C. Laurent, The RSC nucleosome-remodeling complex is required for Cohesin's association with chromosome arms, Molecular cell, vol.13, pp.739-750, 2004.

M. L. Angus-hill, A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control, Molecular cell, vol.7, pp.741-751, 2001.

H. Kwon, A. N. Imbalzano, P. A. Khavari, R. E. Kingston, and M. R. Green, Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex, Nature, vol.370, pp.477-481, 1994.

G. Schnitzler, S. Sif, and R. E. Kingston, Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state, Cell, vol.94, pp.17-27, 1998.

C. L. Peterson and J. L. Workman, Promoter targeting and chromatin remodeling by the SWI/SNF complex. Current opinion in genetics & development, vol.10, pp.187-192, 2000.

Y. Lorch, B. Maier-davis, and R. D. Kornberg, Chromatin remodeling by nucleosome disassembly in vitro, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.3090-3093, 2006.

J. A. Martens and F. Winston, Evidence that Swi/Snf directly represses transcription in S. cerevisiae, Genes & development, vol.16, pp.2231-2236, 2002.

E. Battaglioli, REST repression of neuronal genes requires components of the hSWI.SNF complex, J Biol Chem, vol.277, pp.41038-41045, 2002.

S. Sif, A. J. Saurin, A. N. Imbalzano, and R. E. Kingston, Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes, Genes & development, vol.15, pp.603-618, 2001.

D. Lee, H. Sohn, G. V. Kalpana, and J. Choe, Interaction of E1 and hSNF5 proteins stimulates replication of human papillomavirus DNA, Nature, vol.399, pp.487-491, 1999.

C. G. Marfella and A. N. Imbalzano, The Chd family of chromatin remodelers, Mutation research, vol.618, pp.30-40, 2007.

L. Ho and G. R. Crabtree, Chromatin remodelling during development, Nature, vol.463, pp.474-484, 2010.

M. S. Kim, N. G. Chung, M. R. Kang, N. J. Yoo, and S. H. Lee, Genetic and expressional alterations of CHD genes in gastric and colorectal cancers, Histopathology, vol.58, pp.660-668, 2011.

J. R. Shingleton and M. T. Hemann, The Chromatin Regulator CHD8 Is a Context-Dependent Mediator of Cell Survival in Murine Hematopoietic Malignancies, PloS one, vol.10, p.143275, 2015.

V. Kolla, T. Zhuang, M. Higashi, K. Naraparaju, and G. M. Brodeur, Role of CHD5 in human cancers: 10 years later, Cancer research, vol.74, pp.652-658, 2014.

D. G. Stokes, K. D. Tartof, and R. P. Perry, CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.7137-7142, 1996.

A. Y. Konev, CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo, Science, vol.317, pp.1087-1090, 2007.

S. M. Roberts and F. Winston, Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes, Genetics, vol.147, pp.451-465, 1997.

M. G. Pray-grant, J. A. Daniel, D. Schieltz, J. R. Yates, and P. A. Grant, Chd1 chromodomain links histone H3 methylation with SAGA-and SLIK-dependent acetylation, Nature, vol.433, pp.434-438, 2005.

V. Kolla, The tumour suppressor CHD5 forms a NuRD-type chromatin remodelling complex, Biochem J, vol.468, pp.345-352, 2015.

H. B. Wang and Y. Zhang, Mi2, an auto-antigen for dermatomyositis, is an ATPdependent nucleosome remodeling factor, Nucleic acids research, vol.29, pp.2517-2521, 2001.

Y. Zhang, G. Leroy, H. P. Seelig, W. S. Lane, and D. Reinberg, The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities, Cell, vol.95, pp.279-289, 1998.

M. Murawska, dCHD3, a novel ATP-dependent chromatin remodeler associated with sites of active transcription, Molecular and cellular biology, vol.28, pp.2745-2757, 2008.

Y. Bao and X. Shen, INO80 subfamily of chromatin remodeling complexes, Mutation research, vol.618, pp.18-29, 2007.

H. Van-attikum, O. Fritsch, and S. M. Gasser, Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks, EMBO J, vol.26, pp.4113-4125, 2007.

X. Shen, R. Ranallo, E. Choi, and C. Wu, Involvement of actin-related proteins in ATP-dependent chromatin remodeling, Molecular cell, vol.12, pp.147-155, 2003.

R. C. Conaway and J. W. Conaway, The INO80 chromatin remodeling complex in transcription, replication and repair, Trends in biochemical sciences, vol.34, pp.71-77, 2009.

H. Van-attikum, O. Fritsch, B. Hohn, and S. M. Gasser, Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair, Cell, vol.119, pp.777-788, 2004.

S. Watanabe and C. L. Peterson, The INO80 family of chromatin-remodeling enzymes: regulators of histone variant dynamics, Cold Spring Harbor symposia on quantitative biology, vol.75, pp.35-42, 2010.

M. C. Keogh, The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4, Genes & development, vol.20, pp.660-665, 2006.

V. Q. Nguyen, Molecular architecture of the ATP-dependent chromatinremodeling complex SWR1, Cell, vol.154, pp.1220-1231, 2013.

B. Li, M. Carey, and J. L. Workman, The role of chromatin during transcription, Cell, vol.128, pp.707-719, 2007.

C. M. Green and G. Almouzni, When repair meets chromatin. First in series on chromatin dynamics, EMBO reports, vol.3, pp.28-33, 2002.

H. Tagami, D. Ray-gallet, G. Almouzni, and Y. Nakatani, Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis, Cell, vol.116, pp.51-61, 2004.

D. Ray-gallet, Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity, Molecular cell, vol.44, pp.928-941, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743096

A. Sakai, B. E. Schwartz, S. Goldstein, and K. Ahmad, Transcriptional and developmental functions of the H3.3 histone variant in Drosophila, Current biology : CB, vol.19, pp.1816-1820, 2009.

P. H. Gaillard, Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I, Cell, vol.86, pp.887-896, 1996.

S. E. Polo and G. Almouzni, Chromatin dynamics after DNA damage: The legacy of the access-repair-restore model, DNA repair, vol.36, pp.114-121, 2015.

J. G. Moggs, A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage, Molecular and cellular biology, vol.20, pp.1206-1218, 2000.

S. Adam, S. E. Polo, and G. Almouzni, Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA, Cell, vol.155, pp.94-106, 2013.

C. Dinant, Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage, Molecular cell, vol.51, pp.469-479, 2013.

C. Alabert, Two distinct modes for propagation of histone PTMs across the cell cycle, Genes & development, vol.29, pp.585-590, 2015.

T. Ito, J. K. Tyler, and J. T. Kadonaga, Chromatin assembly factors: a dual function in nucleosome formation and mobilization? Genes to cells : devoted to molecular & cellular mechanisms 2, pp.593-600, 1997.

K. Straube, J. S. Blackwell, . Jr, and L. F. Pemberton, Nap1 and Chz1 have separate Htz1 nuclear import and assembly functions, Traffic, vol.11, pp.185-197, 2010.

P. T. Reilly, Generation and characterization of the Anp32e-deficient mouse, PloS one, vol.5, p.13597, 2010.

Z. Yu, J. Liu, W. M. Deng, and R. Jiao, Histone chaperone CAF-1: essential roles in multi-cellular organism development. Cellular and molecular life sciences : CMLS 72, pp.327-337, 2015.

S. Smith and B. Stillman, Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro, Cell, vol.58, pp.15-25, 1989.

T. Krude, Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei, Experimental cell research, vol.220, pp.304-311, 1995.

K. Shibahara and B. Stillman, Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin, Cell, vol.96, pp.575-585, 1999.

H. Huang, Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability, J Cell Sci, vol.123, pp.2853-2861, 2010.

J. P. Quivy, A CAF-1 dependent pool of HP1 during heterochromatin duplication, EMBO J, vol.23, pp.3516-3526, 2004.

J. K. Tyler, The RCAF complex mediates chromatin assembly during DNA replication and repair, Nature, vol.402, pp.555-560, 1999.

W. Rocha and A. Verreault, Clothing up DNA for all seasons: Histone chaperones and nucleosome assembly pathways, FEBS letters, vol.582, 1938.

L. Y. Kadyrova, E. Blanko, and F. A. Kadyrov, Human CAF-1-dependent nucleosome assembly in a defined system, Cell cycle, vol.12, pp.3286-3297, 2013.

A. Groth, Regulation of replication fork progression through histone supply and demand, Science, vol.318, 1928.

A. Emili, D. M. Schieltz, J. R. Yates, and L. H. Hartwell, Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1, Molecular cell, vol.7, pp.13-20, 2001.

A. D. Goldberg, Distinct factors control histone variant H3.3 localization at specific genomic regions, Cell, vol.140, pp.678-691, 2010.

R. Zhang, Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA, Developmental cell, vol.8, pp.19-30, 2005.

T. S. Rai, Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex, Molecular and cellular biology, vol.31, pp.4107-4118, 2011.

J. I. Schneiderman, G. A. Orsi, K. T. Hughes, B. Loppin, and K. Ahmad, Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant, Proceedings of the National Academy of Sciences of the United States of America, vol.109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00782360

E. J. Neer, C. J. Schmidt, R. Nambudripad, and T. F. Smith, The Ancient Regulatory-Protein Family of Wd-Repeat Proteins, vol.371, pp.812-812, 1994.

Y. Xue, The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.10635-10640, 2003.

E. Delbarre, K. Ivanauskiene, T. Kuntziger, and P. Collas, DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin, Genome research, vol.23, pp.440-451, 2013.

J. Zlatanova, C. Seebart, and M. Tomschik, Nap1: taking a closer look at a juggler protein of extraordinary skills, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.21, pp.1294-1310, 2007.

T. Ito, M. Bulger, R. Kobayashi, and J. T. Kadonaga, Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays, Molecular and cellular biology, vol.16, pp.3112-3124, 1996.

C. Aguilar-gurrieri, Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly, EMBO J, vol.35, pp.1465-1482, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01406353

X. Chen, Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus, Molecular and cellular biology, vol.36, pp.1287-1296, 2016.

G. A. Mcquibban, C. N. Commisso-cappelli, and P. N. Lewis, Assembly, remodeling, and histone binding capabilities of yeast nucleosome assembly protein 1, J Biol Chem, vol.273, pp.6582-6590, 1998.

A. J. Andrews, X. Chen, A. Zevin, L. A. Stargell, and K. Luger, The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions, Molecular cell, vol.37, pp.834-842, 2010.

K. Shintomi, Nucleosome assembly protein-1 is a linker histone chaperone in Xenopus eggs, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.8210-8215, 2005.

N. Mosammaparast, B. C. Del-rosario, and L. F. Pemberton, Modulation of histone deposition by the karyopherin kap114, Molecular and cellular biology, vol.25, pp.1764-1778, 2005.

R. Belotserkovskaya, FACT facilitates transcription-dependent nucleosome alteration, Science, vol.301, pp.1090-1093, 2003.

G. Orphanides, W. H. Wu, W. S. Lane, M. Hampsey, and D. Reinberg, The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins, Nature, vol.400, pp.284-288, 1999.

S. Mahapatra, P. S. Dewari, A. Bhardwaj, and P. Bhargava, Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes, Nucleic acids research, vol.39, pp.4023-4034, 2011.

K. Heo, FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16, Molecular cell, vol.30, pp.86-97, 2008.

O. Gursoy-yuzugullu, M. K. Ayrapetov, and B. D. Price, Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.7507-7512, 2015.

J. K. Tyler, Chromatin assembly. Cooperation between histone chaperones and ATPdependent nucleosome remodeling machines, European journal of biochemistry, vol.269, pp.2268-2274, 2002.

S. E. Torigoe, D. L. Urwin, H. Ishii, D. E. Smith, and J. T. Kadonaga, Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF, Molecular cell, vol.43, pp.638-648, 2011.

L. Chang, Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells, Biochemistry, vol.36, pp.469-480, 1997.

J. K. Tyler, Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors, Molecular and cellular biology, vol.21, pp.6574-6584, 2001.

R. J. Burgess and Z. Zhang, Histone chaperones in nucleosome assembly and human disease, Nature structural & molecular biology, vol.20, pp.14-22, 2013.

A. T. Annunziato and R. L. Seale, Histone deacetylation is required for the maturation of newly replicated chromatin, J Biol Chem, vol.258, pp.12675-12684, 1983.

P. M. Brownlee, C. Meisenberg, and J. A. Downs, The SWI/SNF chromatin remodelling complex: Its role in maintaining genome stability and preventing tumourigenesis, DNA repair, vol.32, pp.127-133, 2015.

Z. Q. Liu and P. C. Yang, Construction of pET-32 alpha (+) Vector for Protein Expression and Purification, North American journal of medical sciences, vol.4, pp.651-655, 2012.

A. Froger and J. E. Hall, Transformation of plasmid DNA into E. coli using the heat shock method, J Vis Exp, vol.253, 2007.

M. Serrano, A. W. Lin, M. E. Mccurrach, D. Beach, and S. W. Lowe, Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a, Cell, vol.88, pp.593-602, 1997.

R. M. Fox, C. D. Hanlon, and D. J. Andrew, The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity, The Journal of cell biology, vol.191, pp.479-492, 2010.

S. M. Abmayr, T. Yao, T. Parmely, and J. L. Workman, Preparation of nuclear and cytoplasmic extracts from mammalian cells, Curr Protoc Pharmacol Chapter, vol.12, 2006.

T. Mahmood and P. C. Yang, Western blot: technique, theory, and trouble shooting, North American journal of medical sciences, vol.4, pp.429-434, 2012.

C. L. White, R. K. Suto, and K. Luger, Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions, EMBO J, vol.20, pp.5207-5218, 2001.

A. Hamiche, J. G. Kang, C. Dennis, H. Xiao, and C. Wu, Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.14316-14321, 2001.

N. Assrir, O. Filhol, F. Galisson, and M. Lipinski, HIRIP3 is a nuclear phosphoprotein interacting with and phosphorylated by the serine-threonine kinase CK2, Biological chemistry, vol.388, pp.391-398, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00170840

C. C. Chou and A. H. Wang, Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry, Molecular bioSystems, vol.11, pp.2144-2151, 2015.

D. M. Keller, A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1, Molecular cell, vol.7, pp.283-292, 2001.

P. Mao, A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT, Nucleic acids research, vol.44, pp.9142-9152, 2016.

H. Basnet, Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation, Nature, vol.516, pp.267-271, 2014.

M. A. Monroy, SNF2-related CBP activator protein (SRCAP) functions as a coactivator of steroid receptor-mediated transcription through synergistic interactions with CARM-1 and GRIP-1, Molecular endocrinology, vol.17, pp.2519-2528, 2003.

H. Szerlong, The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases, Nature structural & molecular biology, vol.15, pp.469-476, 2008.

L. Aravind and D. Landsman, AT-hook motifs identified in a wide variety of DNAbinding proteins, Nucleic acids research, vol.26, pp.4413-4421, 1998.

M. M. Wong, L. K. Cox, and J. C. Chrivia, The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters, J Biol Chem, vol.282, pp.26132-26139, 2007.

Y. Cai, The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes, J Biol Chem, vol.280, pp.13665-13670, 2005.

M. Kanemaki, TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a, J Biol Chem, vol.274, pp.22437-22444, 1999.

R. Queval, C. Papin, M. Dalvai, K. Bystricky, and O. Humbert, Reptin and Pontin oligomerization and activity are modulated through histone H3 N-terminal tail interaction, J Biol Chem, vol.289, pp.33999-34012, 2014.

P. I. Hanson and S. W. Whiteheart, AAA+ proteins: have engine, will work, Nature reviews. Molecular cell biology, vol.6, pp.519-529, 2005.

Z. O. Jonsson, S. Jha, J. A. Wohlschlegel, and A. Dutta, Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex, Molecular cell, vol.16, pp.465-477, 2004.

L. A. Boyer and C. L. Peterson, Actin-related proteins (Arps): conformational switches for chromatin-remodeling machines?, BioEssays : news and reviews in molecular, cellular and developmental biology, vol.22, pp.666-672, 2000.

A. P. Smith, Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator, Plant physiology, vol.152, pp.217-225, 2010.

R. B. Deal, C. N. Topp, E. C. Mckinney, and R. B. Meagher, Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A, Z. The Plant cell, vol.19, pp.74-83, 2007.

J. M. Schulze, A. Y. Wang, and M. S. Kobor, YEATS domain proteins: a diverse family with many links to chromatin modification and transcription, Biochemistry and cell biology = Biochimie et biologie cellulaire, vol.87, pp.65-75, 2009.

K. Zimmermann, Targeted disruption of the GAS41 gene encoding a putative transcription factor indicates that GAS41 is essential for cell viability, J Biol Chem, vol.277, pp.18626-18631, 2002.

S. Heisel, N. C. Habel, N. Schuetz, A. Ruggieri, and E. Meese, The YEATS family member GAS41 interacts with the general transcription factor TFIIF, BMC molecular biology, vol.11, 2010.

X. Ding, GAS41 interacts with transcription factor AP-2beta and stimulates AP-2beta-mediated transactivation, Nucleic acids research, vol.34, pp.2570-2578, 2006.

A. Goto, H. Fukuyama, J. L. Imler, and J. A. Hoffmann, The chromatin regulator DMAP1 modulates activity of the nuclear factor B (NF-B) transcription factor Relish in the Drosophila innate immune response, J Biol Chem, vol.289, pp.20470-20476, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02310183

J. Choi, K. Heo, and W. An, Cooperative action of TIP48 and TIP49 in H2A.Z exchange catalyzed by acetylation of nucleosomal H2A, Nucleic acids research, vol.37, pp.5993-6007, 2009.

S. Jha, E. Shibata, and A. Dutta, Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage, Molecular and cellular biology, vol.28, pp.2690-2700, 2008.

N. Nano and W. A. Houry, Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes, Philosophical transactions of the Royal Society of London. Series B, Biological sciences 368, 2013.

C. M. Latrick, M. Marek, K. Ouararhni, C. Papin, I. Stoll et al., Molecular basis and specificity of H2A.Z-H2B recognition and deposition by the histone chaperone YL1
URL : https://hal.archives-ouvertes.fr/hal-02294249

, Nat Struct Mol Biol, vol.23, issue.4, pp.309-325, 2016.

M. Ignatyeva, M. Shuaib, and A. Hamiche, , 2017.

, Identification and characterization of HIRIP3 as a novel histone H2A chaperone

M. Ignatyeva and A. Hamiche, , 2017.

, Cryo-EM structure of SRCAP complex functional domain -in preparation

, 2 List of conferences "From Functional Genomics to Systems biology" conference, EMBL Heidelberg, pp.12-15, 2016.

M. Ignatyeva, Abstracts book of EMBO conference 'From Functional Genomics to Systems biology, p.188, 2016.

, PUBLICATION PRINT-OUT Identification et caractérisation de HIRIP3 comme nouveau chaperon d'histone H2A

, Résumé Le génome des cellules eucaryotes est empaqueté dans la chromatine, dont l'établissement et la maintenance nécessitent des processus d'assemblage et de remodelage. Ce travail de thèse a été consacré à la caractérisation de deux facteurs de la machinerie d'assemblage de la chromatine

, Nous voulions vérifier si HIRIP3 est une chaperon d'histone par elle-même. Pour commencer, nous avons décrit l'interaction de HIRIP3 avec les histones in vivo. Ensuite, nous avons étudié la spécificité structurale de cette interaction in vitro. Nous avons caractérisé HIRIP3 comme une nouvelle chaperon d'histone H2A qui utilise le motif CHZ pour sa fonction, Le premier facteur étudié dans ce travail était HIRIP3, un homologue mammifère de la levure H2A.Z chaperon Chz1

, Nous avons cherché à décoder son réseau d'interaction et à décrire ses sous-complexes. Nous avons reconstitué le complexe de base YL1, SRCAP, TIP49A, TIP49B et H2A.Z / H2B en utilisant le système d'expression chez baculovirus

, Mots clés : Epigénétique, chromatine, chaperon d'histone