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Abstract

Gaél Beck

Scalable Clustering Applying Local
Accretions

Accrétions Locales appliquées au
Clustering Scalable et Distribué

This thesis focuses on methods allowing to tackle complexity problem of
specific algorithms in order to deal with Big Data. It presents well known algorithms
and new ones from various machine learning fields (unsupervised and supervised
learning), which use modern algorithms as the Locality Sensitive Hashing to
decrease efficiently the algorithmic complexity.

In the first part, we study the problem of scalable clustering algorithm based
on Mean Shift algorithm for continuous features. We propose a new design for
the Mean Shift clustering using locality sensitive hashing and distributed system.
Its variation for categorical features is also proposed based on binary coding and
Hamming distance.

In the second part, we introduce scalable Clusterwise method, which is a com-
bination of clustering algorithm and PLS regression. The issue is to find clusters
of entities such that the overall sum of squared errors from regressions performed
over these clusters is minimized, where each cluster may have a different variance.
We improve its time duration and scalability by applying clustering before the
regression task. We investigate also in this part of the thesis a feature selection
field. We present two efficient distributed algorithms based on Rough Set Theory
for large-scale data pre-processing under the Spark framework. The first approach
(Sp-RST) splits the given dataset into partitions with smaller numbers of features
which are then processed in parallel. The second proposition LSH-dRST use
locality sensitive hashing as clustering method to determine appropriate partitions
of the feature set.

In the last part, we propose to share as an open source project. This project
titled Clustering4Ever offers the possibility to anyone to read the source code and
test the different algorithms either via notebooks or calling directly the API. The
design enables the generation of algorithms working for many types of data.

Keywords : Clustering, LSH, Mean Shift, Scalability, Distributed Systems



Résumeé

Cette thése porte sur les méthodes dédiées a la manipulation des données
massives. Nous présentons de nouveaux algorithmes dans le domaine de 'ap-
prentissage automatique en utilisant des techniques de hashage tel que le Locality
Sensitive Hashing (LSH) pour permettre un passage a I'échelle des algorithmes
en réduisant leur complexité.

Dans la premiére partie, nous étudions le probléeme du passage a I'échelle
d’algorithmes de clustering inspirés du Mean Shift pour les données vectorielles
continues. Nous proposons un nouvel algorithme utilisant un systéme de hachage
(LSH) tout en bénéficiant du récent paradigme MapReduce appliqué aux systemes
distribués. Nous présentons également la variante de I'algorithme de clustering
pour les données catégorielles en utilisant le codage binaire et la distance de
Hamming.

Dans la deuxieme partie, nous introduisons une amélioration du Clusterwise,
qui est une combinaison de I'algorithme de clustering et de la régression. Nous
proposons une amélioration de sa complexité en temps d’exécution en appliquant
le clustering avant une tache de régression PLS. Dans cette partie, nous avons
étudié le probléme de passage a I'échelle dans le domaine de la sélection de
variables. Nous présentons deux algorithmes distribués efficaces baseés sur la
théorie des ensembles pour le prétraitement de données a grande échelle avec le
framework Spark.

Dans la derniere partie, nous proposons de partager sous forme d’un projet
open source les travaux réalisés. Ce projet intitulé Clustering4Ever offre la possi-
bilité d’acceder au code source et de tester les différents algorithmes.

Mots clés : Clustering, LSH, Mean Shift, Scalabilité, Systéemes distribués
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Chapter 1

Introduction

1.1 Context

In our digital era the amount of data has increased exponentially in the last few
decades. In the same time many algorithms have been devised to solve a wide
range of problems covering various topics such as unsupervised and supervised
learning. Dataset size causes serious scalabality problems and exceeds the com-
plexity threshold of many algorithms. To overcome these issues, some heuristics
have to be developed to handle what is refereed to Big Data. Most of the contribu-
tions achieved in this thesis are focused on scalability. The axes addressed in this
thesis are indicated in cyan on Figure 1.1.

Due to the exponential increase of the size of datasets collected to tackle
increasingly complex scientific challenges, scalable versions of machine learning
methods have become critical. The complexity of machine learning implies that im-
provements in distributed hardware are insufficient on their own to provide scalable
machine learning. In order to optimally exploit the hardware, their mathematical
foundations must also be re-formulated with scalability as a priority. Furthermore,
existing programming paradigms for dealing with parallelism, such as MapReduce
[74] and Message Passing Interface (MPI) [25], have been demonstrated to be the
best practical choices for implementing these algorithms. MapReduce allows an
unexperienced programmer to develop parallel programs and create a program
capable of using computers in a cloud. Indeed the MapReduce paradigm has
become popular since data are stored on a distributed file system, which offers
data replication, as well as for its ability to execute computations locally on each
data node.

The machine learning world is vast and can be divided in different subfields
presented in Figure 1.1, we will focus here on two major learning problematics
which are unsupervised and supervised learning. Unsupervised learning consist
in treating data without any idea about its nature, it often relies on the concept
of distance. Two of the most well known unsupervised learning categories are
dimensions reduction and clustering. Dimensions reduction objective as its name
suggest it is to diminish the dimensionality of a dataset whilst keeping maximum
useful information. It is often linked to the curse of dimensionality because
it enables to switch from a high dimensional space where most distance are
ineffective to a space with much less dimensions which enhance usual applications.
One of the most famous technique in this area is the Principal Component Analysis.
Clustering consist to assign a cluster membership to unlabeled candidate points
where the number and location of these clusters are unknown. Usually clusters are
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1.1. Context 3

formed from a process which minimizes the dissimilarities inside the clusters and
which maximizes the dissimilarities between clusters. Given a set of observations
X = {x,x,,...,x,} and a pairwise dissimilarity measure d(.,.), the goal of the
clustering problem is to find a partitioning IT = {C}, ..., Cy} of X such that :

Vi€ [M],Vx,, x, € Ci,V¥x, € C; with je[K]\i,

d(x,,x,) <d(x,x,)

and
d(x,, x,) <d(x,,x,)

Even the formal definition can be overwritten depending on what we consider
as a "good" clustering. Imagine for example two close spherical clusters, a small
one and a big one. In these conditions the closest pair of points between the
two clusters can be less distant than the pair of points farthest from each other
within the same cluster, including one of the preceding points. When observations
are distributed over a network, clustering algorithms follow the general framework
depicted in Figure 1.2 [56, 114, 85, 108].

Data

(1) Partitio/ l \

@) Looal @ @

oo %
(3) Global | ® “e .'
b

Clustering

(4) Refinement

Figure 1.2: The general framework of most parallel and distributed
clustering algorithms [108].

1. Partition. Distribution and partitioning of data take place over machines.

2. Local Clustering. The clustering algorithm is applied on each machine’s
data independently.

3. Global Clustering. Previous clustering results are aggregated into a global
clustering.

4. Refinement of Local Clusters. Eventually global clustering results can be
used to refine the local clusters.
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For comprehensive reviews of clustering, [64, 103] present interesting aspects
of it. In supervised learning, algorithms learn from labeled data. It consists in
learning on data which is divided in two parts. The first one is is the observations
described by a set of features. The second is the target information (labels), which
drive the learning process. Depending on the case, the second part of data can
have different nature. In predictive issues, the objective is to find the missing
label of a new object knowing only its raw data through a model learned with a
training set, which has the target part (labels). Two categories exist in this area,
classification where the feature to predict is a categorical value and regression
where it is a continuous value. Other prediction problems exist where the target
takes more than one value as we will see in Chapter 5. Reinforcement learning is
the third big field of machine learning with supervised and unsupervised learning.
It consists of algorithms that optimize a score using the concept of reward.

1.2 Experimental tools

During the experimentation process, we used different hardware and software
tools. The hardware part concerned a laptop with an Intel Xeon E3-1535M v6 for
small datasets. Scala was the selected programming language to implement our
algorithms, which are distributed with the Apache Spark framework. Distributed
experiments were operated on the Grid5000 testbed which is a French national
large-scale and versatile platform. On this testbed, we used dual 8 core Intel
Xeon E5-2630v3 CPUs and 128 GB memory to test the performance of our
contributions.

Scala

Scala is a strong typed multi-paradigm programming language born in 2004, it
has the advantage to support both object oriented and functional programming.
One good point of functional programming is enabling the immutability of objects,
which provides a strong guarantee of integrity. Compiled programs are run on the
Java Virtual Machine (JVM). Thus we can call any optimized Java methods.

Two of the most common methods on Scala collections, map and reduce

If we take a look to the Scala collection hierarchy, we have GenTraversable, which
is a trait gathering two of the most used collection methods, map and reduce.
These two functions have the following signatures:

Listing 1 map function

abstract def map[B](f: (A) => B): Traversable[B]

e map: The map function will work on a collection[A] and will return a collec-
tion[B] by applying a function f : A — B on each element of the collection.



1.2. Experimental tools 5

Listing 2 reduce function

abstract def reduce[Al >: A](op: (Al, Al) => Al): Al

Listing 3 map basic examples

val 11 = List(0®, 1, 2)

def f(i: Int): Int =i + 1

val 12: List[Int] = 1ll.map(f) // return List(l, 2, 3)
// Using an anonymous function

val 13: List[Int] = 1l.map(_ + 1) // return List(1, 2, 3)

12 == 13 // return true

e reduce: The reduce function is also called on a collection[A] and return a
single element of type A by applying a function op : (A1,A1) — Al on each
collection’s element. Thus, reapplying this process iteratively with previous
results until getting only one element of type A. An important property is
that the function op has to be associative because as it is specified in the
documentation, the order in which operations are performed on elements is
unspecified and may be nondeterministic. The A1 >: A authorize the reduce
to focus on specific information present in parent class of A, we can for
example imagine a class B2 with two properties b1 and b2 which inherit from
B1 which has only information 1. We could desire to reduce only 41 without
being preoccupied by b2, in that case we can imagine op : (B1, Bl) — Bl.

Listing 4 reduce basic examples

val 11 = List(0, 1, 2)
def f(a: Int, b: Int): Int = a + b
val sl: Int = 1ll.reduce(f) // return 3

// Using an anonymous function with 2 arguments
val s2: Int = 1l.reduce(_ + _) // return 3

s2 == s3 // true

Apache Spark

Apache Spark is originally a Scala framework for Big Data, it allows to spread
and operate on large datasets where items are gathered into partitions which
are distributed over the cluster of machines. It is important to notice that the
whole execution process is resilient and fault-tolerent. A key concept in Spark is
the resilient distributed dataset (RDD) which is a read-only collection of objects
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partitioned across a group of machines which can be rebuilt if necessary from the
hierarchy of previous RDD operations. Therefore if a single partition is lost, it can
be rebuilt by relaunching computation thanks to the lineage of operations. This last
is extracted from the directed acyclic graph (DAG) which is built dynamically. The
preceding approach has the advantage to enable fault tolerance. Most of the Map
and Reduce operations will be performed on RDDs even if other pure Scala Map
and Reduce operations are executed inside each Spark partition. We implement
our algorithm using Scala because it is Spark’s native language. It allows us to
benefit from last advances whilst keeping best performances compared to other
language such as Python. As pure Scala collections, Spark has followed the same
pattern for its distributed collection API. Thus the Spark map and reduce follow
same signatures to obtain the same results but on distributed collections.

A key concept of Spark resides in its partitioning logic. A partition is the
smallest part of a distributed collection. Thus a dataset is decomposed into many
partitions, which have to be defined properly by user depending on use cases.
Once defined, each node or machine of the Spark cluster will have some partitions
depending on its capacity. One strength of Spark is to treat its partitions lazily
throughout its executors. An executor is an entity which has a defined amount of
resources such as memory and cores. Once the DAG(Directed Acyclic Graph)
of tasks is generated, Spark’s executors will execute tasks applying functions
partition by partition in a sequential manner. If a partition is lost, fault tolerance
will enable to relaunch specific tasks on a new partition.

1.3 Thesis organization and main contributions

In this thesis, multiple contributions are presented. Before presenting them,
chapter 2 introduces major concepts and ideas linked to clustering and other
interesting aspects of machine learning.

Chapter 3 will focus on unsupervised algorithms with algorithm gravitating
around Mean Shift algorithm for continuous data. We propose a new design for
the Mean Shift clustering algorithm to significantly diminish its complexity from
quadratic to linear. Knowing that the most time consuming part of the Mean Shift
algorithm was the gradient ascent, we applied on it random projection based on
the locality sensitive hashing. We also prove empirically that as a preprocessing
step, this algorithm enhances other clustering algorithms. lts variation for scalar
data will be presented in chapter 4. The scalar Mean Shift can be applied on
binary data by replacing computation of the mean by the median center.

In chapter 5, we will introduce a Clusterwise, which is a clustering problem
intertwined with regression. The issue is to find clusters of entities such that the
overall sum of squared errors from regressions performed over these clusters
is minimized, where each cluster may have a different variance. We improve its
time duration and scalability by applying clustering before the regression task.
Thus we form micro clusters which enhance the algorithm ability to deal with
larger datasets. We combine the Clusterwise with the PLS regression to allow
regressions simultaneously on multiple goals. In chapter 6 a collaborative work
about Rough Set feature selection is presented with the introduction of a meta
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heuristic on it which can be applied on the classic Rough Set feature selection but
also on any heuristic on it. We then proposed a distributed implementation of the
algorithm. Applications of contributions in the company Kameleoon is presented in
chapter 7. We present also Clustering4Ever which is the open source project born
during the thesis. The last chapter 8 will conclude the thesis with final collaboration

and various perspectives.
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Chapter 2

State of the art

2.1 Definitions

Throughout the literature, authors use several words to describe the same concept.
Thus, record, object, observation, data point, tuple, and item are used to describe
an elementary unit of information. Most of the time data is represented in a high
dimensional space so the terms, variable, feature, dimension, or attribute are
used to refer to a part of an observation. Lets denote a dataset X as a set of
observations X = {x,xa,...,x,}, where x; = {x], x7,..., x/}T.

Distances and similarities are often in the center of the clustering process.
We need to choose them wisely if we wish to obtain proper results. Similarity
describes how two objects or clusters are similar between them, the higher the
score is, the more similar the two inputs are. On the other side the dissimilarity or
distance describes the opposite, thus the higher the obtained score is the more
the two objects will be different. The most common example is the euclidean
distance defined as follows:

d
d(xi, %) = 4| D (¥ = x)?
i=1

where x| = {x],x7,...,xY}T and x, = {x},x3,...,x4}7. There exist variants of the
euclidean distance. The weighted euclidean distance which gives a user the ability
to weight features. The Minkowski distance is considered as a generalization of
Manhattan and Euclidean distances, it is expressed as follow :

1
d »
d(x1,%)) = [Z I} - xgv’)
i=1

Centers and prototypes are two common concepts used to describe a specific
individual within a cluster, which is considered as the best representative regarding
the corresponding metric. Under euclidean distance it can be the center of the
sphere. Other times it can be the median or the real or theoretical point minimising
distance to all others. Three commonly used terms in this thesis are mean, median
and mode, which are represented on Figure 2.1. First the Mean works only in
continuous space with any number of dimensions and is mean = ZT‘X Median
works on any ordered space and it divides sorted observations in two equal size
parts. Mode is a point representing highest density regions inside an ensemble.
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Figure 2.1: Mode, Median, and Mean

2.1.1 Local and distributed algorithms

We consider as local clustering algorithms those which are running on a local
environment — a single machine — even if it is really powerful. On the other side of
local clustering algorithms, distributed clustering algorithms are designed to deal
with multiple machines interconnected through a network to form what is called
a cluster, we will express them in the following as cluster of machines to avoid
confusion with clusters which are obtained by application of clustering algorithms.

Shuffling is an important concept to build efficient distributed systems. It
refers to the exchange of data from some machine to others through the network.
Sometimes shuffling is inevitable, often it happens that the design of algorithms or
architectures can be optimized to minimise data shuffling. The reason why shuffle
has to be minimized is because the network can represent a bottleneck for some
applications.

Space partitioning means to divide the exploration space into a number of non-
overlaping regions. It is a key point for rendering complex algorithms applicable
on Big Data.

Scalability defines the ability of algorithms to compute massive amount of
data in a reasonable duration proportionally to the size of data. But this notion is
not documented well enough and often depends on user goals. We will define
here what we can call a pure scalable algorithm for a specific hyper parameter x
as the ones which have a complexity with an upper bound O(k.x) where k € R*.
Other scalable algorithms that we will define as pseudo scalable are the sub
quadratic ones upper bounded by O(x?), some examples are the O(x.log(x)) or
O(+/x.x) complexities. All other algorithms with quadratic complexity or more are
not scalable at all.

It is important to notice that complexity does not take into account which hyper
parameter has an important complexity or not. Then many algorithms can be
linear with the number of data but quadratic or more on other hyper parameters
as the number of dimensions, it is for example the case with the PCA with a cubic
complexity over its dimensions’ input which prevents any practical applications with
data sets with more than 10000 dimensions. This is a bit questionable considering
that its goal is to reduce dimensionality.
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Speed versus scalability. Let recall that being quadratic does not always mean
being slower, a classical trick is to use quadratic sorting algorithm rather than
pseudo scalable one on specific and small data sets which gives better perfor-
mances. Of course when the data set size increases they become irrelevant.

2.2 Data preprocessing

Because there is a gap between raw and learning data, it is important to treat
incoming data accordingly with its nature by extracting maximum meaningful
information whilst keeping the inner structure of original data. A major step to
obtain usable data is preprocessing using projection techniques, feature selection,
clustering algorithms. A common problem in machine learning is the curse of
dimensionality, which prevents usage of the majority of distances, this is why
dimension reduction techniques are developed. There are different forms of
reduction techniques such as feature selection, which select the best features
on which an algorithm is applied. It has the advantage to keep the meaning of
dimensions unlike dimension projections which reduce dimensions by projecting
them on a lower dimensional space loosing content readability. Feature selection
can also remove noisy dimensions which can diminish performances if they are
present. More explanations are given in Chapter 6.

The Principal Component Analysis is a projection technique, which can be
used as a dimension reduction technique allowing to extract a reduced space from
areal dataset. It takes one parameter D € N which is the number of dimensions on
which we project the original space. As [65] describes it, there are two commonly
used definitions of PCA:

e It can be defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the orthogonal projection of the data
onto a lower dimensional linear space, known as the principal subspace,
such that the variance of the projected data is maximized (Hotelling, 1933).

e |t can be defined as the linear projection that maximizes the average projec-
tion cost, defined as the mean squared distance between the data points
and their projections (Pearson, 1901).

Complexity is in O(d? n + d?) so even if it is linear with the number of data, it
growths fast with the number of dimensions.

One of the most recent non-linear projection approaches is UMAP [128], which
stands for Uniform Manifold Approximation and Projection is a novel manifold
learning technique for dimension reduction. UMAP is a theoretical framework
based in Riemannian geometry and algebraic topology. It allows to reduce di-
mensions in an unsupervised or supervised manner with a sub quadratic time
complexity for both the number of data points and the number of dimensions.

2.3 Clustering algorithms

In this section we will essentially focus on algorithms which have scalable equiv-
alents. A fundamental question for those who desire to build efficient clustering
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algorithm can be as simple as what is a good clustering. First of all, we have to
clearly define the goal on which our clustering will give insights. Then define which
distance best fits with the problem without forgetting to select the right clustering
model.

There are multiple models of clustering exposed on Figure 2.2 each of them is
specialized for a specific task. To find which model best fits our use case is an
important challenge, the following list exposes main model types with their most
prominent algorithms.

2.3.1 K-means like (K-Centers)

K-Centers is a generic algorithm, which has been studied under many names
depending on its application domain. The most famous are the K-Means [19], K-
Median, K-Modes, and K-Prototypes. The generic definition of this algorithm is as
follows: for a given number of clusters K, find a space partitioning where clusters
are formed by the belonging to their closest centers, also called prototypes. In
order to reach this goal, two elements have to be well defined. The first one,
as often in clustering algorithms, the definition of a dissimilarity measure for the
studied space in order to know distance from points to centers. The second is
the center concept. K-Means defines it as the mean in an euclidean space, and
as the median center for the K-Median, and the majority vote for the K-Modes
with the hamming distance when data is binary. Some of these algorithms are
described in detail below.

2.3.1.1 K-Means

K-Means is probably the most well known clustering algorithm which has two key
aspects, its simplicity and its rapidity. It belongs to the category of partitioning
clustering algorithms. K-means finds K classes S = 54,5, ..., Sk from a set X of
n observations x;, by minimizing the following cost function:

k
arg min Z Z Ix — will?
§ 51 xes;

where w; is the center of cluster i (prototype). The famous technique to
minimize the cost function is an iterative refinement technique. It starts with the
defined K center. The most naive technique is to select them randomly or to pick
K data points from the training dataset. Other sophisticated initializations exist as
the K-Means++ one [67]. The basic iteration has two phases:

e The assignment phase: assign to each data point the label of its closest
mean using Euclidean distance

e The update: update the value of prototype by computing the mean of the
generated cluster from assignment step.

K-Means is the most known clustering algorithm which works on R, it dis-
covers elliptic clusters.The parameter K defines the number of searched clusters.
It is a scalable algorithm with Linear time complexity in O(ktnd) ( k = K is the
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number of clusters, r ~ 100 is the maximum number of iterations, n is the number
of data points, and d the number of dimensions). A snippet of source code of a
generalization of K-Means, the K-Centers, is presented briefly with a tail recursion
implementation.

Algorithm 1 K-Means algorithms
Input: X, K, iter,,.., €
Output: K centroids
1: Generate K random centroid
Initialize stopping condition loop KHaveConverged, i
KHaveConverged = false
i=1
while i < iter,,,, && !KHaveConverged do
Associate each point of X to its nearest centroid neighbors
Update centroid by associating them the mean among all its assigned
points

7. if for all centroids, D(w\ ,wk) < e then
8: KHaveConverged = true
9: i+=1

2.3.1.2 K-Modes

K-Modes [30] is the binary equivalent of K-Means (x € {0, 1}¢). The algorithms
differ in two aspects: the basic metric used, which is the Hamming distance and it
replaces centers with median center that corresponds to the majority vote in order
to minimize the following cost function:

arg min i Z H(x,w;)
S

i=1 xe§;

k

arg min Z Z Ix — wy|

S 21 xes;

It is in linear time complexity with O(k t n d), where
e k = K is the number of clusters

e t ~ 100 is the maximum number of iterations

e nis the number of data points

e d is the number of dimensions
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Algorithm 2 K-Modes algorithms
Input: X, K, iter,,,, €
Output: LabelizedData, K centroids
1: Generate K random centroid
Inialize stoping condition loop KHaveConverged, i
KHaveConverged = false
i=1
while i < iter,,,, && 'KHaveConverged do
Associate each vector x of X to its nearest centroid neighbors
Update centroid by associating them the median center among all its
assigned points

7: iffor all centroids, Ht(wX' ,wX) < e then
8: KHaveConverged = true
9: i+=1

2.3.1.3 K-Prototypes

K-Prototypes is the combinations of K-Means & K-Modes. It works on mixed
data, and uses a mixed distance to compute distance from points to center. As
for updating the centers, it takes both previous algorithms: computation of the
mean for the continuous part and of the majority vote for the binary part (median
center). It is, in linear time complexity in O(ktnd) ( k = K is the number of
clusters, t ~ 100 is the maximum number of iterations, and » is the number of data
points).

Algorithm 3 K-Prototypes algorithms
Input: X, K, iter,,,, €
Output: LabelizedData, K centroids
Generate K random centroids
Converged « false
i—1
while i < iter,,, and Converged = false do
Associate each vector x of X to its nearest centroid
Update prototypes by associating them the "center" among all its assigned
points for binary data and the gravity center for continuous data

o aR w2

7: if for all prototypes, DwX' ,w)) < € then
8: KHaveConverged = true
9: i+=1

2.3.2 K-means++

The authors of [67] proposed a specific way of choosing the initial prototypes
for the K-means algorithm. Let dist(x) denote the shortest distance from a data
point x to the defined closest prototype. The k-means++ method is described
in Algorithm 4. The main idea in the K-means++ algorithm is to choose the
centers (prototypes) one by one in a controlled fashion, where the current set of
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chosen prototypes will stochastically bias the choice of the next prototype. The
central drawback of the K-means++ initialization from a scalability point of view is
its inherent sequential nature: the choice of the next prototype depends on the
current set of prototypes [93].

Algorithm 4 k-means++
1: Take one prototype w.,, chosen uniformly at random from the set of data, X
2: Take a new prototype w,,, choosing x € X with probability %

3: Repeat Step 2 until we have taken k clusters altogether

4: Proceed as with the standard K-means method (Algorithm 1)

2.3.3 Self Organizing Maps

Proposed by Kohonen [35] the SOM algorithm is a type of artificial neural network
for unsupervised learning. It is able to create spatially organized representations
of data inputs. Starting from the high-dimensional input space, SOM produces
a low-dimensional representation in a discrete space which is generally called
network or map presented in Figure 2.3. A neighborhood function is used to
preserve the topological properties of the input space, it forms a topological map
where close objects are gathered and dissimilar ones are stretched apart. Like
most artificial neural networks [32], SOM has a two-fold objective:

1. Adjusting map: using input data the topological map is built. A map
is composed of nodes arranged in a predefined manner. Usually, the
dimensionality of the network is one or two, its topology may differ depending
on the needs. A prototype, w,, of dimension corresponding to input data is
associated with each network node.

2. Mapping (quantization): assign input data into a non-linear, discrete map.
The aim of vector quantization is to assign a data point to a prototype which
minimizes pairwise distance respecting a neighborhood function in order to
preserve data topology. Then similar input data points will fall into neighbor
network nodes.

The first step is to initialize a discrete topological map of size p x g = k. For
agrid C = {cy, ..., cx} where Vi € [1,k], c;’s are network nodes. G is associated
with prototype space W = {wy,..,wi} where Vi € [1,k],w; are the prototypes
corresponding to network nodes ¢;. For each pair of network nodes ¢, and ¢,
in C, their mutual influence is expressed with the function K7 (8(c,, ;) as in
Equation (2.1). Many functions can be used, a common one is the Gaussian
function.

—8(ca.cp)
K'(S(carcp)) =€~ 7 (2.1)
Here, T stands for the temperature which decreases iteratively to control the depth
of the neighborhood influence for a given cell:

T = Tm(;" )”7,1 (2.2)

max
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Figure 2.3: SOM principles: mapping and quantization

Ni.r is the number of iterations, and d(c,, ¢;) represents the shortest distance
between the pair of network nodes c,, ¢;.

Due to the use of K function, every network node moves, according to the
neighborhood function, along the same direction towards the learning data during
training step and similar points tend to be assigned to adjacent network nodes
[42]. Two versions of the SOM algorithm are mainly exploited, the stochastic and
the batch ones, both aim to minimize the cost function presented in equation 2.3.

n k
Rsom(@, W) = ) > K (6(¢(x), c))lk; = wi (2.3)

i=1 j=I

where ¢(x;) is the assignment function which returns the network node to which x;
is assigned:
¢(x;) = arg Anllink”xi - VVj||2 (2.4)
J:

.....

The learning steps are very close to the K-means ones:

1. Initialization step: initialize the discrete structure with network nodes and
the grid topology to finally initialize prototypes.

2. Assignment step: attribute points to their nearest prototype. This process
guarantees that the cost function R(¢, W) is minimized with respect to
the assignment function ¢ presuming that prototype vectors are constant.
Moreover, this step binds data to network nodes.

3. Update step: re-compute the prototype vectors. Prototypes and their
neighborhood shift towards the assigned data whilst the map approximates
the data distribution. This includes minimizing the cost function R(¢, W)
with respect to the prototypes vectors.
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Batch SOM

In batch version, the prototypes are updated according to the following equation:

W = Y1 K (e, ) T X
X KT (G(e, ),

(2.5)

where n, is the number of data assigned to cluster r. This formula is obtained
by fixing ¢ and minimizing R with respect to ‘W. The assignment function in the
batch version is calculated according to the following equation:

¢(x;) = arg jgllink 7<T(5(Xi, Wj))”Xi - Wj||2 (2.6)

.....

Algorithm 5 Batch SOM version

1: Initialize k prototypes and ‘W,

2: while stopping criteria have not been fulfilled do

3 fori=1—-ndo

4: Find the best match unit to the current selected input data according to
Equation (2.6) cyxy) = cox) Y {Xi} //PuUt x; into cluster ¢(x;)

5: for j=1— kdo

6: Update prototype vectors according to Equation (2.5)

Stochastic SOM

In the stochastic version, each iteration consists of presenting the SOM map with
a randomly selected data point. The best match unit (the nearest node) as well as
its neighbors move toward the input point (see Figure 2.3).

Unlike the batch version, the stochastic version uses the gradient descent
method in order to update prototypes:

w.o= Wi — 'K (0(c, copnn)) (W = x;) (2.7)

where u' is an adaptation parameter, called "the learning rate" which decreases
with time 7.

Algorithm 6 Stochastic SOM version

1: Initialize k prototypes and ‘W

2: while stopping criteria have not been fulfilled do

3: fori=1—-ndo

4: Find the best match unit to the current selected input data according to

Equation (2.4)

for all ¢, is a neighbor of ¢(x;) (including ¢(x;) itself) do

6: Update the nodes in the neighborhood of ¢(x;) according to Equa-
tion (2.7) (including the node ¢(x;) itself) by pulling them closer to the input
data

@
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2.3.4 Neural Gas

Neural Gas (NG) [24] is inspired by the SOM. While the SOM map dimensionality
must be chosen a priori, depending on the data distribution, the topological network
of neural gas may have a different arrangement. Neural Gas is a more flexible
network capable of quantizing topological data and learning the similarity among
the input data without defining a network topology. Unlike SOM, the adaptation
strength in Neural Gas is constant over time and only the best match prototype
and its direct topological neighbors are adapted.

Given a network of k clusters C = {cy, ..., c;} associated with k prototypes
W = {wy,...,w.}, they are adapted independently of any topological arrangement
of the network nodes within the network. Instead, the adaptation step is affected
by the topological arrangement within the input space. For each data point x; is
selected, prototypes will be ajusted by distortions D(x;, c;) = |[x;—w,[|,Vj=1,... k.
The resulting adaptation rule can be described as a "winner takes most" instead of
a "winner takes all" rule [23]. The winner network node denoted by j, is determined
by the assignment function

Jo = ¢(x;) = arg jgllink |Ix; — Wj||2~ (2.8)
An edge that connects the adjacent network node, denoted by j;, to the win-
ner node j, which is then stored in a matrix S representing the neighborhood
relationships among the input data:

S = 1 if a connection exists between c; and ¢; (Vi, j=1,...,k,i # j)
Y71 0 otherwise

When an observation is selected, the prototypes move toward it by adjusting
the distortion D(x;, ¢;,), controlled by a neighborhood function K”. In [23], this
function is fixed, e.g. K7 = exp"/T where knn; is the number of neighborhood
network nodes of ¢;. This directly affects the adaptation step for w; which is
determined by:

W= Wi — e KT (8(c), con))(Xi — W)) (2.9)

To capture the topological relations between the prototypes, each time an observa-
tion is presented, the connection between j, and j, is incremented by one. Each
connection is associated with an "age" variable. Only the connection between j,
and j, is reset, the other connections of j, age, i.e. their age increment. When the
age of a connection exceeds a specific lifetime Max,,,, it is removed. The way to
update the age of the connections is to increase with each incoming input object
learnt. Finally, Neural Gas can be summarized by the Algorithm 7.

In this algorithm, stopping criteria can be either: a number of iterations and a
threshold for the quantization error.

2.3.5 Hierarchical clustering

All approches based on hierarchical clustering are divided into two families: As-
cending (agglomerative) and descending (divisive). The divisive version starts
with the whole observation as a single cluster, which is divided iteratively into
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Algorithm 7 Neural Gas
1: Initialize k prototypes and set all S;; to zero
2: forall x; € X do
3 Determine the sequence (cj,, cj,,-..,c;, ,) such that

lIxi = Wil < lIxi = W[l < ... < Ixi = wi )l

wj, is the best match prototype, i.e., the nearest prototype; wj, is the second
nearest prototype to x;
forall ¢; with S; ;== 1 do
Perform an adaptation step for the prototypes according to Equa-
tion (2.9)

a bk

6: if Sj()sjl == 0 then

7: Create a topological connection between c;, and cj,, i.e., S, ;, = 1

8: Set age for this connection, i.e., agej, j, =0

9:  forallc; with S;, ;==1do

10: Increase the age of all connections of j, by one, i.e., age;, ; = agej, j+1
11: if agej, j > Max,, then

12: Remove all connections of j, which exceeded their age, i.e., S;,; =

clusters with the largest variance until K clusters are obtained. At the opposite,
the agglomerative approach [3], considers each observation as individual clusters
and are iteratively merged until K clusters are formed. In both cases, a central
question is: how to define the distance between two clusters and observations ?
Many solutions have been proposed such as complete, single and mean linkage
clustering.

These clustering methods are also called hierarchical clustering because they
provide a hierarchy of clusters. Despite interesting aspects, these algorithms have
some drawbacks. The complexity is O(2"~") for divisive algorithms and O(n?) for
agglomerative; both cases prevent any big data applications. Moreover these
algorithms suffer from sensibility to outliers which can lead to unwanted additional
clusters or merging between proper clusters.

Algorithm 8 Agglomerative hierarchical algorithms
Input: X, K, iter,,.., €
Output: ¢(X), K centroids
Step 1 Consider each input element as a singleton cluster.
Step 2 For each pair of clusters ¢y, ¢, calculate their distance d(w,,,w.,)
Step 3 Merge the pair of clusters that take the smallest distance depending
linkage.
Step 4 Continue the step 2, until the termination criterion is satisfied.
Step 5 The termination criterion most commonly used is a threshold of the
distance value
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2.3.6 DBScan

Density-based clustering has the ability to discover arbitrary-shape clusters and
to handle noise [109]. In density-based clustering methods, clusters are formed
based on the dense areas that are separated by sparse areas. DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [27] is one of the most
well-known density-based clustering algorithms. The density of each observation
is defined based on the number of observations close to that particular point
called the point’s neighborhood. The dense neighborhood is defined based on two
user-specified parameters: the radius () of the neighborhood (e-neighborhood),
and the number of the objects in the neighborhood (MinPts).

DBSCAN starts by randomly selecting a point and checking whether the
e-neighborhood of the point contains at least MinPts observations. If not, it is
considered as a noise point, otherwise it is considered as a core point and a
new cluster is created. DBSCAN iteratively adds the data points, which do not
belong to any cluster and are directly density reachable from the core points of
a new cluster. If the new cluster can no longer be expanded, the new cluster
is completed. In order to find the next cluster, DBSCAN randomly selects the
unvisited data points and the clustering process continues until all the points are
visited and no new observation is added to any cluster.

The complexity is O(n*) due to similarity matrix constructions. It works on any
metric space.

Algorithm 9 DBScan algorithms
1: procedure DBScan(X, &, min,y)
2 Cc=0
3 for each unvisited point P € X do
4: mark P as visited
5: spherePoints = regionQuery(P, €)
6:
7
8

if sizeof(spherePoints) < min,,, then
ignore P
: else
9: C = next cluster
10: EXPANDCLUSTER(P, spherePoints, C, g, min, )

11: procedure expANDCLUSTER(P, spherePoints, C, &, min, )
12: add P to cluster C
13: for eachpointPrinspherePoints do

14: if Psis not visited then

15: Mark Pr as visited

16: spherePoints’ = REGIONQUERY(P7, €)

17: if sizeor(spherePointsr) >= min,,, then

18: spherePoints = spherePoints U spherePoints’
19: if P is not yet member of any cluster then

20: add Pr to cluster C

21: procedure REGIONQUERY(P, g)
22: return all points within the n-dimensional sphere centered at P
23: with radius ¢ (including P)
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2.3.7 Mean Shift

Mean Shift clustering belongs to the class of modal clustering methods where
the arbitrarily shaped clusters are defined in terms of the basins of attraction to
the local modes of the data density, created by the density gradient ascent paths.
Most studies on the Mean Shift clustering have focused on kernel [80] versions,
e.g. [78, 73, 117, 115]. The latter authors compared Gaussian, Cauchy and
generalized Epanechnikov kernels to study the behaviour of tuning parameters of
Mean Shift clustering. Mean-shift algorithm and its variants consist in two major
steps as described in Algorithm 10. The first one is the density gradient ascent,
it is generally the most computationally intensive. This gradient ascent can be
computed in different ways. In the traditional characterization of the Mean Shift,
their gradient ascent paths are computed from successive iterations of kernel
applications on each data point with following recurrent equations:

xu+l — f(xu)

NOR (=D

f(x) = Z h

S5 K=

where K is the kernel with bandwidth # and K’ = % is its derivative.

Mean Shift algorithms takes its name from the meanshift vector f(x) — x,
which is the averaging of point shifts. As we will present in Chapter 3, there are
alternative methods to achieve the gradient ascent such as nearest neighbors.

The second step is the actual clustering where we use results from the first
step to assign cluster labels to the original data points. Traditionally the model is
obtained by computing modes, which gather point inside the bandwidth.

X;
2 l
B

Algorithm 10 Mean Shift principle

Input: points {x,...,x,},

Output: cluster label {¢(x),...,&(x,)}
Step 1: Density gradient ascent;

Step 2: Cluster labeling;

2.3.8 Gaussian Mixture EM

Gaussian Mixture can be seen as a generalization of the K-Means where centers
are not only described as the mean of a cluster but by a combination of the mean
and the standard deviation of its elements over the mean.

The Gaussian Mixtures belongs to distribution-based clustering algorithms.
The reason lies as follow. Let’s suppose that we have a d dimensional continuous
dataset X = {x, x», ..., x,,} where x; are observations of a d dimensional random
variable x. The assumption behind this is that observations do not come from
a single component, or cluster but from multiple ones [63]. The problem is to
estimate component’s parameters so that they fit optimally the data. Predicting
these parameters and the belonging of these points to each component produces
a clustering. Another problem is to find the number of components; model based
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methods have been proposed in that sense [31]. Imagine now that the number
of components K is defined, each cluster can be represented by a parametric
distribution 6, which is often called component distribution and the whole data
set can be modeled by a mixture of them. This component distribution, which is
similar to a probability density function p, of a specific point x, takes the following
form:

K
p(xa) = Z 7P (Xn6)
k=1

where 6, are sets of parameters associated to kth component and n; are the
mixing probabilities, or weights. p(x,|6;) is the component distribution. In order
to stay in a correct probability world 0 < 7, < 1 and Z,’le m, = 1. The most well
know mixture models is the Gaussian one in which we replace the component
distribution p(x;|6;) by

K
sl o) = ) N, o)
k=1
where N is the Normal or Gaussian law parameterized by u, the d dimensional
mean vector, and o the d x d covariance matrix. In order to define 6, one of the
most popular methods is to use the expectation maximization algorithm.

Expectation Maximization (EM) algorithm The Expectation Maximization (EM)
algorithm [12, 71] is a generic approach to maximum likelihood when the user
is faced with incomplete data. The overall likelihood of the training data is its
probability to be drawn from a given mixture model.

n k
Vi, 0) = [ | D 70,0x5.0)) (2.10)

i=1 j=1

where ¢ ;(x;; ;) represents the probability density. By introducing the log-likelihood,
the Equation (2.10) can be rewritten as follows:

n k
L1, %30 = > log( ) migixisay) (2.11)

i=1 j=1

Log-likelihood plays the role of an objective function, which gives rise to the EM
method. EM is a two-step iterative optimization:

e The Step E estimates probabilities ¢;(x;; @;), which is equivalent to a soft
reassignment.

e The Step M finds an approximation to a mixture model, given current soft
assignments.

The following process leads to finding mixture model parameters that maximize
log-likelihood. It continues until log-likelihood convergence is complete. In [104,
95], the authors have proposed an estimation of probability distribution over a
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data set which is distributed into subsets located on the nodes of a distributed
system. More precisely, the global distribution is estimated by aggregating local
distributions which are modelled as a Gaussian mixture. The Gaussian Mixtures
algorithm has the following properties:

works on R

One main parameter K which defines the number of searched clusters
e Linear time complexity in n but quadratic in d, O(k t n d?)

— k = K is the number of clusters

— t ~ 100 is the maximum number of iterations
— n is the number of data points

— d is the number of dimensions

Scalable for d < 1000

2.4 Distributed algorithms

Due to the interest in the MapReduce framework, some studies have used it for
scaling clustering algorithms. As examples, we can cite the implementation of the
K-means and EM algorithm in MapReduce [85, 69, 90]. Currently, more and more
libraries have emerged offering MapReduce-based implementations of machine
learning algorithms. MLIib' is Spark’s well known machine learning library. It
consists of common learning algorithms and utilities, including classification,
regression, clustering, collaborative filtering, dimensionality reduction, as well as
lower-level optimization primitives and higher-level pipeline APIs.

2.4.1 K-Means

K-Means is probably one of the easiest algorithms to pass at scale thanks to
its O(n) time complexity and independence of most of its computations. The
authors in [85] proposed a parallel and distributed implementation of k-means
in MapReduce. The proposed algorithm, called PKMeans, is implemented using
Hadoop? to make the clustering method applicable to large scale data. Let’s
say we have N machines (nodes) and each of them has a part X; of the dataset
X. Each computation of the assignation step is independent, which means that
each machine N; will be able to compute point assignation to its closest prototype
c; for all its data without requiring other information from N,.; machine at the
exception of prototypes. It is the distributed map step. The map function is shown
in Algorithm 11.

As for the prototype update, it requires shuffling but it is under control because
of computation of mean is a commutative operation. It means that it can happen
in any order. A reduce operation is used where keys are the cluster keys obtained

"http://spark.apache.org/docs/latest/mllib-guide.html
2http ://lucene.apache.org/hadoop/
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Algorithm 11 map(key, value)
Input: Global variable clusters, the offset key, the point value
Result: < key’, value’ > pair, where the key’ is the index of the closest cluster
and value’ is a string representing point (features)
Construct the data-point instance from value
minDist = Double.MAX_VALUE
index = —1
for each cluster c; e C do
dist = ComputeDistance(instance, c;)
if dist < minDist then
minDist = dist
index =1
Take index as key’
Construct value’ as a string describing features (different dimensions)
output < key’, value’ > pair

TRV XNl b 2

—_

from map step. For each key the sum (reduce) of vectors is done on each machine.
Thus partial result vectors (maximum K x N) are sent to the master node through
network, where they are summed up and finally divided by their cluster cardinality
to obtain K updated prototypes.The reduce function is shown in Algorithm 12.

Algorithm 12 reduce(key, V)
Input:key is the index of the cluster, V is the list of the partial sums from
different host
Result: < key’,value’ > pair, where the key’ is the index of the cluster and
value’ is a string representing a new cluster prototype
1: Initialize one array record with the sum of value of each dimensions of the
points assigned to the same cluster, e.g. the points in the list V
2: Initialize a counter NUM as 0 to record the cardinality, which is the number of
points in the same cluster
for each value v € V do
Construct the point instance from v
Add the values of different dimensions of instance to the array
NUM = NUM + num
Divide the entries of the array by NUM to provide the new cluster’s prototype
Take key as key’
Construct value’ as a string comprise the cluster’s prototype
output < key’, value’ > pair

QO N R

—_

K-Modes

K-Modes follows same the rules as K-Means replacing mean computation by
majority vote rules and using Hamming distance instead of the euclidian distance,
as exposed in the local version of K-Modes 2.3.1.2.
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K-Prototypes

K-Prototypes follows the same rules as K-Means and K-Modes. The mean and
majority vote are respectively used for continuous and binary data, then operations
can be distributed easily.

2.4.2 Self Organizing Maps

A distributed version of Self Organizing Maps was introduced in [113]. The way it
is distributed is close to the K-Means; we can imagine the K prototypes replaced
by as many prototype nodes in the grid. The pseudocode of [113] version is as
follows.

1. Initialize the prototypes
2. Map: For each point x; € X

(a) Assign x; to its nearest cluster using the Euclidean distance, dist =
ComputeDistance(X;, c;)

(b) Compute the numerator and the denominator of the expression (2.5)
for each cluster ¢

MapNumerator, = KT (6(c, p(X;)))X;
MapDenominator. = K" (6(c, $(x;)))
3. Reduce: Update the prototypes of all clusters by summing up the output of

the Map tasks
>.c MapNumerator,

W, =

- 212
> MapDenominator, (2.12)

2.4.3 DBScan

Many distributed variants [110, 112, 87, 99, 121] have been proposed. A common
approach is to divide the space into a grid, and apply a local version of DBScan in
each cell. Thus, it gathers cells which works well in low dimension but it becomes
exponentially more expensive with the increase of dimensions due to growing
number of neighbors cells, increasing the necessary merging steps to compute.
The representatives provided in each cell are merged in the global clustering step,
a single-machine density-based clustering algorithm. Then the global clusters are
sent back to all client nodes, which relabel all observations located on their site
independently of each other.

In [110] the authors propose a MapReduce version (MR-DBSCAN) in which
all critical sub-procedures are fully parallelized. The MR-DBSCAN algorithm
consists of three stages: data partitioning, local clustering, and global merging.
The first stage divides the whole dataset into smaller partitions according to spatial
proximity. In the second stage, each patrtition is clustered independently. Then the
partial clustering results are aggregated in the last stage to generate the global
clusters. Experiments on large datasets confirm the scalability and efficiency of
MR-DBSCAN.
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2.4.4 PatchWork

PatchWork [123] is a distributed density clustering algorithm with linear compu-
tational complexity and linear horizontal scalability. It has desirable properties.
It offers natural protection against outliers and noise, it can automatically detect
the number of clusters, and it provides arbitrary cluster shapes. The main idea
is to divide space with hypercube with edge of size ¢, = {1, &5,...,&4}. Thus, a
cell is a hypercube in the D-dimensional feature space. A cell has a list of points
that it contains and a reference to the cluster it belongs to. g, is a user-defined
parameter that determines the cell size.

For each point, the map function returns the assigned tuple cell as key and 1
as value.

The collection of tuples (cell-id(x),1) is then shuffled using cell-id as key, and
reduced using a sum operator. The output of the reduction step is a collection of
tuples (cell-id,density). Cells with less than the minPts, user defined threshold,
can be considered as a unique noisy cluster.

The collection of filtered cells is sorted by decreasing density. It creates a
first cluster ¢ with the first cell. Neighbor cells ¢; are explored, and expand the
current cluster if their density is sufficient, according to the formula: Density(c;) >
Density(c) = Ratio. This step is repeated until all cells are processed.

One of the limits of this algorithm is the fact it may only work on low dimen-
sional space, because in high dimensional space, the number of cells increase
exponentially preventing any scalable applications. In addition, like all density
clustering algorithms, the choice of the parameter £ can impact the performance
of the algorithm.

2.5 Conclusion

Many clustering algorithms have been proposed and make dealing with very large
data a challenging task. The MapReduce paradigm has met with a resounding
success in this era of Data Science due to, amongst others, its simplicity. The chal-
lenge in scaling clustering algorithm is not only to use the MapReduce paradigm
but also to decompose the problem in small functions, the map and reduce func-
tions. In the next chapter, we begin with the heart of this thesis, that focuses
on the Mean Shift clustering algorithm, which combines both an unsupervised
preprocessing approach, the gradient ascent and clustering algorithms applied
after it. We also propose the use of random projection to decompose the problem
for scaling the clustering algorithm.
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Chapter 3

Mean Shift Like on continuous data

3.1 Introduction

Mean Shift clustering is a generalization of the k-means clustering which computes
arbitrarily shaped clusters as defined as the basins of attraction to the local modes
created by the density gradient ascent paths. Despite its potential, the Mean Shift
approach is a computationally expensive method for unsupervised learning [6,
7, 26]. In this chapter we present improvements on many Mean Shift clustering
aspects.

First of them is about density derivatives which are crucial components for
statistical unsupervised learning based on density gradient ascent known as Mean
Shift clustering. We will introduce nearest neighbour estimators of the general
order derivatives of the probability density function and establish their squared
error consistency, and most importantly for data analysis, an automatic, single
pass normal scale or ‘rule of thumb’ selector of the number of nearest neighbours.

Nearest neighbour estimators of the probability density function were intro-
duced in the seminal papers [2, 15] and have been widely used since due to their
ease of implementation and interpretation. Derivatives of the density function are
important quantities to analyse as they provide supplementary information about
the data set, which is not revealed by the density function on its own. Estimators
of the first derivative (gradient) have been considered [7], whereas higher order
derivatives have not yet been considered. We set up a framework for nearest
neighbour estimators for the general r-th order derivatives of multivariate density
functions. This is achieved by following recent work in kernel estimators of density
derivatives [106] and by exploiting the connection between nearest neighbour and
variable kernel estimators [22]. Whilst variable kernel estimators of the density
gradient [51, 41] are mathematically similar to their nearest neighbour analogues
above, the key difference is that the former suffer from the data sparsity in higher
dimensions whereas the latter do not. Modifications of kernel estimators have
been proposed to overcome the data sparsity problem via reduced set density
estimators [75, 52], though these authors did not consider the extension to density
derivatives. We do not pursue this extension as we focus on nearest neighbour
estimators.

Furthermore, current Mean Shift clustering algorithms contain computational
bottlenecks with both kernel and nearest neighbor approaches: the former is due
to the exact evaluation of the kernel function, and the latter due to the exact nearest
neighbor searches. We propose a new algorithm NNGA®*, which resolves the
computational inefficiencies of the nearest neighbor Mean Shift by using Locality
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Sensitive Hashing (LSH) [33, 54, 77] for approximate nearest neighbor searches
to replace the exact nearest neighbor calculations in the density gradient ascent
and in the cluster labeling stages. Compared to kernel approaches to Mean
Shift clustering, which are O(n*) where n is the size of the dataset, our nearest
neighbors approach enables a scalable implementation of the gradient ascent and
cluster labeling which are both O(n).

Moreover, existing programming paradigms for dealing with parallelism, such
as MapReduce [74] and Message Passing Interface (MPI) [25], have been demon-
strated the best practical choices for implementing these clustering algorithms.
MapReduce paradigm becomes popular and suited for data already stored on
a distributed file system, which offers data replication, as well as the ability to
execute computations, locally on each data node. Thus, we implement this ap-
proximate nearest neighbour Mean Shift clustering algorithm on a distributed
Apache Spark/Scala framework [102], which allows us to carry out clustering on
Big datasets.

3.2 Density derivative estimation

The nearest neighbour estimator of a density function, as introduced by [2] and
elaborated by [15], is

Fes k) = 1/[n6 ) (x)] Z K((x = X)/6u)(x)) (3.1)
i=1

where x = (xq,...,x4), X; = (Xi1,...,Xy), and X4, ..., X, are a d-variate random
sample drawn from a common density f. Eq. (3.1) is the mathematically most
general form of a nearest neighbour density estimator as the kernel K can be any
symmetric multivariate density function. The mathematical analysis of nearest
neighbour estimators is simplified if we recast them as variable kernel estimators
[22]. A variable multivariate kernel estimator f with a variable bandwidth matrix
function H(x) of the density is

feesH@) = n” HE)? D KHEE)™ - X)),

i=1

and of the r-th density derivative is
D" f(x; H(x))

= n” H@)| " 2HEx) ) Z D K(H(x)™"*(x - X)))

i=1

where the differentiation of K with respect to x is carried out keeping H(x) constant,
and that the dependence on x is only reinstated after differentiation, employing an
approach similar to [7]. The ®r superscript indicates an r-fold Kronecker product,
thus the r-th derivative D* is organised as a d’-vector arising from an r-fold
Kronecker product of the differential operator D = [(0/dx,), ..., (0/dx,)], see [28].
The connection between nearest neighbour and variable kernel estimators [2, 15]
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appears when H(x) = 5, (x)*I,. This implies that the nearest neighbour estimator
of the r-th derivative of f follows as

D" f(x; k) = 1750 (¥) " ) DK Sy (x) ™! (x = Xi). (3.2)
i=1
Writing nearest neighbour estimators in this form in Eq. (3.2) greatly facilitates the
task for optimal selection of the number of nearest neighbours.

The most common criterion utilised for optimal smoothing is the asymptotic
mean integrated squared error (AMISE), which is the leading asymptotic term
of the integral of the mean squared error between the target quantity and the
estimator. We start with the AMISE of the fixed bandwidth kernel estimator
D® f(-+H), i.e., AMISE [D* f(-; H)[{1 +o(1)} = [,, E[D® f(x; H)—D® f(x)]* dx, as
established by [89, Theorem 2]. This can be rewritten as

AMISE [D®* f(-;H)] = n 'H|™/? tr((H™")*' R(D® K))
+ (=1) 1ma (K3, (vec Iy ® vec H®)

where R(D*K) = [, D*K(x)D*K(x)" dx, and my(K)I; = [,, xx"K(x)dx and
Wares = foa DPO f00) f(x) dx.

Replacing H by H(x) = 54 (x)*1, results in a random quantity, so we compute
its expectation to derive an AMISE-like quantity for the nearest neighbour density
derivative estimator D® f(-; k),

A[D¥ f(x; k)]
= E{AMISE [D¥ (:; 64y (x)*1a)]}
— tr(R(D®rK))[Vof(x)](d+2r)/dn2r/dk—(d+2r)/d
+ (=1) §ma (K, (vec 1) "2 v f ()] 4k (3.3)

where vy = 1’T'((d + 2)/d) is the hyper-volume of the unit d-ball.

As the first term is the integrated variance and the second term is the integrated
squared bias of D® f, the role of k in a bias-variance trade-off is established in
Eq. (3.3). So A[D®' f(x; k)] is a suitable basis for an optimality criterion. We obtain
in Theorem 1 a closed form expression of

ka, = f {argmin A[D®’f(x;k)]} dx
R4 k>0

which serves as an optimal number of the nearest neighbours.

Theorem 1. An optimal number of the nearest neighbours for D® f is ks, =
C,n@r+H/d+2r+4) \where

(d +2r) r(R(DK)) ~ |Hd+2red
(= 1yma(K)*y],  ,(vecI)20+)

When K = f = ¢, where ¢ is the standard normal density, this yields the
normal scale selector

Cr = VO[

4 d/(d+2r+4)
] P 2rH )

ks, = [—
NS =V T o+ 2
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This kys, is closely related to the normal scale bandwidth selector [4/(d + 2r +
D)3/ (@+2r+4) y=2/W@+2r+9]  for the kernel estimator D®” £ in [89, Theorem 6].

Figure 3.1 illustrates the importance of selecting a suitable value of k. The
contours of the target density gradient (» = 1) of the standard normal bivariate
density is in Figure 3.1(a). The nearest neighbour estimate with the normal scale
selector k = kns,; = 505 in Figure 3.1(b) produces a similar structure as the target
contours. If a much smaller k = 50 is utilised, the resulting estimate in Figure 3.1(c)
is considered to be undersmoothed as it is too noisy. If a much larger k = 1000 is
utilised, the resulting estimate in Figure 3.1(d) is considered to be oversmoothed
as it displays insufficient detail. The kernel utilised is the Epanechnikov kernel
K(x) = [(d +2)/2vo)I(1 = x"x)1{||x]| < D}

The pioneering work of [6, 2] established the oracle local and global mean
squared error optimal selectors for density estimators, though these authors did
not consider data-based selectors. Perhaps [16] is the first to consider automatic
data-based selection for nearest neighbour estimators, in the context of cross
validation for regression. Authors who have proposed cross validation selectors
for density estimation include [88, 97]. The latter authors [97] also suggest a
grid based search for k. We observe that these are multiple passes methods.
In contrast, we propose an efficient, single pass fully automatic selector for the
nearest neighbour estimator of a general order r of the density derivative in
Theorem 1.

3.2.1 Nearest neighbor Mean Shift clustering for continuous
data

The Mean Shift clustering proceeds in an indirect manner based on local gradients
of the data density, and without imposing an ellipsoidal shape to clusters or that
the number of clusters be known, as is the case for k-means clustering. For a
candidate point x, the theoretical Mean Shift recurrence relation is

ADf(x))
flx))

for a given positive-definite matrix A, for j > 1 and x, = x. The output from
Equation (3.4) is the sequence {x,} o which follows the density gradient ascent
Df to a local mode of the density function f.

To derive the formula for the nearest neighbor Mean Shift for a random sample
Xi,..., X, drawn from a common density f, we replace the density f and density
gradient D f by their nearest neighbor estimates

Xjv1 =X+ (34)

A | —d n M
Jx3 k) = n" 64y (x) ; Ok (%)
Df(x,k)—fl 6(k)(x) ; 5(k)(x))

where K is a kernel function and 6,(x) as the k-th nearest neighbor distance to
x, i.e. o) (x) is the k-th order statistic of the Euclidean distances |lx — X;|, ..., [lx —
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(a) Bivariate standard (b) NN gradient estimate
normal density gradient k = kns1 = 505
(c) NN gradient estimate (d) NN gradient estimate
k =50 k = 1000

9

Figure 3.1: Effect of the choice of k for nearest neighbour density
gradient estimates for an n = 1000 random sample from the bivari-
ate standard normal density. (a) Contours of the target bivariate
standard normal density gradient. (b) Nearest neighbour density
gradient estimate with k = kng,1 = 505. (c) Nearest neighbour den-
sity gradient estimate with £ = 50. (d) Nearest neighbour density
gradient estimate with & = 1000.

X.,|l. These nearest neighbor estimators were introduced by [2] and elaborated by
[6, 7] for the Mean Shift. These authors established that the beta family kernels
are computationally efficient for estimating f and Df for continuous data. The
uniform kernel is the most widely known member of this beta family, and it is
defined as

K(x) = v;'1{x € B4(0, 1)}
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where B,(x, r) is the d-dimensional hyper-ball centered at x with radius r and v,
is the hyper-volume of the unit d-dimensional hyper-ball B,;(0, 1). The summation
counts the number of data points which fall inside B,(x, 6 (x)), which is equal to
k from the definition of d,(x) as the k-th nearest neighbour distance to x. The
nearest neighbour density estimator in Eq. (3.1) becomes

flxsly=n" Z X € By(x, §0(0))} = k/[vondp(x)’]

The nearest neighbour estimator in Eq. (3.2) for the density gradient becomes

Dfxik) = foxs k= ZXI (X; € By(x, 60 ()} -

k)( )2
N d+?2
= fss [% x,-e;m X; - x]

where k-nn(x) = {X; : X; € By(x,04)(x))} is the set of the k nearest neighbours to
x, when using the first order beta kernel K(x;1) = [(d + 2)/2vy)](1 — xTx)1{x €
B4(0, 1)} is the Epanechnikov (or quadratic) kernel, with derivative DK(x; 1) =
—[(d + 2)/vo]x 1{x € B,;(0, 1)}.

Replacing Df(x)/f(x) by its estimator Df(x;k)/f(x;k) in Eqg. (3.4) and the
choice A = (d + 2)"'§4(x)L,, the nearest neighbor Mean Shift becomes

1
xj+1:% Z X (3.5)

X;ek-nn(x;)

This nearest neighbor Mean Shift has a simple interpretation since in the Mean
Shift recurrence relation, the next iterate x ;. is the sample mean of the k nearest
neighbors of the current iterate x;. On the other hand, as these iterations calculate
the sample mean, the Mean Shift is not directly applicable to binary data. The
gradient ascent paths towards the local modes produced by Eq. (3.5) form the
basis of Algorithm 13, our nearest neighbor Mean Shift gradient ascent (NNGA).

The inputs to the NNGA are the data sample X, ..., X, and the candidate
points xi, ..., x,,, which we want to cluster (these can be the same as Xi,..., X,,
but this is not required); and the tuning parameters: the number of nearest
neighbors k, the tolerance under which subsequent iterations in the Mean Shift
update are considered to be convergent g, the maximum number of iterations

]max-
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Algorithm 13 NNGA — Nearest Neighbor Gradient Ascent with exact k-nn

Input: {X,,..., X, },{x1,...,xu},k, €1, Jmax
Output: {x},...,x}}
1: Compute similarity matrix and sort each row
2: for:=1tomdo
3: J=0;x00 1= x4,
/* Search for k-nn based on similarity matrix */
x¢1 := mean of k-nni(x,)
while [|x; i1, x¢jll > €1 OF j < jmax dO
ji=j+1
X¢ j+1 := mean of k-nni(x, ;)

@ N a s

X, 1= Xy j

The classical version of the NNGA introduced in Algorithm 13 requires, for
each candidate point that we compute, the distance to all other data points, from
which the mean of the k nearest neighbors is set to be the current prototype.
The algorithm associates this prototype with the original candidate points. We
repeat this step until the prototype moves less than a threshold &, or whenever
the algorithm have reached j,. iterations.

The complexity for the exact nearest neighbors search of a single point is
nlog(n). Applied to every data point multiple times, this complexity increases to
n*jmax log(n), preventing its application on massive datasets.

3.2.2 Approximate nearest neighbors search for density gra-
dient ascent

One promising algorithmic complexity reduction approach relies on computing
approximate nearest neighbors rather than exact neighbors. Among the tech-
nigques that can be used, Locality Sensitive Hashing (LSH), was introduced in
[33, 54]. Many hashing algorithms have been proposed in literature [37, 98, 84],
and among these LSH is considered as the most representative and popular one.
LSH is presented as a probabilistic similarity-preserving dimensionality reduction
method, and based on the adopted distances and similarities, including /, distance
[55], angular distance [47], Hamming distance [34], Jaccard coefficient [29], etc.,
different types of LSH can be designed; which also depends on the types of the
used data [37]. Many variants are developed based on these basic LSH families
such as Spectral hashing [79] Kernelized spectral hashing [86], and independent
component analysis (ICA) Hashing [91]. These methods aim at learning the hash
functions for better fitting the data distribution [116].

In this thesis we are based on LSH presented on [33, 54] which is a proba-
bilistic method based on a random scalar projection of multivariate data point x
defined below:

L(x;v) = (Z"x + U)/v

where Z ~ N(0,1,) is a standard d-variate normal random variable and U ~
Unif(0, v) is a uniform random variable on [0, v), v > 0. The LSH is parametrized
by the number of buckets M, in the hash table. In our context, we propose to set
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v = 1, and without loss of generality L; = L(X;; 1). These scalar projections are
sorted into their order statistics L, < --- < L(,), and their range is divided into M,
par‘[ition intervals of width w = (L(n) - L(l))/Ml where Ij = [L(l) + W(] -1, L(l) + W]],
Vje{j=1,...,M;}. The hash value of x is the index of the interval in which
L(x; 1) falls

H(x) = jI{L(x; 1) € I}}

where 1{-} is the indicator function. To search for approximate nearest neighbors,
the reservoir of potential nearest neighbors is set to the bucket which contains the
hash value. This reservoir is enlarged if necessary by concatenating the adjacent
buckets. The approximate k nearest neighbors of x are the k nearest neighbors
only drawn from the reduced reservoir R(x) defined as below:

k-nn(x) = {X; € R(x) : [lx — Xi|| < 5 (x)},

where 6,(x) is the kth nearest neighbor distance to x. The approximation error
in the nearest neighbors to x induced by searching in R(x) rather than the full
dataset is probabilistically controlled [77]. Our improvement to the classical LSH
is based on the following observations:

e it takes into account the properties of the local data space more accurately.
Rather than looking exclusively in the bucket where the prototype lies, we
also look in the adjacent buckets on both sides. The main advantage of
this is to take into account the case where a prototype is at the border of
a bucket and so some of its k nearest neighbors mostly likely fall into the
adjacent buckets. This is especially important for high values of k. It is
computationally more expensive but the cost can be controlled for a fixed
bucket size. The memory cost is increased by a factor of 3 per partition due
to copying the adjacent layers into the active one.

The LSH method partitions the data space into buckets of approximately k
nearest neighbors, which are delimited by parallel hyperplanes. In practice,
the LSH controls the number of neighboring buckets to two, except for the
edge buckets which have only one neighbor bucket. This is in contrast
to cell based buckets, where the number of neighbor buckets increases
exponentially with the number of dimensions. Figure 3.2 illustrates the LSH
buckets of approximate nearest neighbors on 2D (Aggregation) and 3D
(GolfBall) data examples: the orientation of hyperplanes depends on the
random projections utilized to construct the buckets.

e it adds the possibility of allowing the prototype to change buckets during its
gradient ascent. In this case, we look for its k, nearest neighbors in order to
place the prototype within the most representative bucket using a majority
voting process. Thus a prototype can pass through multiple buckets before
converging to its final position, as illustrated in Figure 3.3.

Algorithm 14 describes the NNGA*, an approximate nearest neighbor search
using LSH with the hash function H. The inputs are the data sample Xi,..., X,,
the candidate points x4, ..., x,,, and the tuning parameters: the number of nearest
neighbors k; and the number of buckets in the hash table M. In line 1, the hash
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(a) Aggregation with M = 6 buckets. (b) GolfBall with M| = 6 buckets.

Figure 3.2: LSH buckets for the Aggregation and GolfBall datasets.

KNN Gradient KNN Gradient
LSH Ascent Ascent

projection o((n/My)21og((n/My)) O((n/M4)2.log((n/My))

e

X " >
| N /
—_—
.:

Fusion of
nearest buckets

Mooving point to
best group of buckets
Figure 3.3: Passage of a prototype through different LSH buckets
during the gradient ascent; n is the number of data points and M is
the number of buckets.

table is created by applying the LSH to the data values X, ..., X,. In lines 2—6,
for each candidate point x,, the approximate k; nearest neighbors k-nn(x,) are
computed from within the reservoir R(x;).

Figure 3.4 illustrates the effect of including adjacent buckets in NNGA* versus
nearest neighbour gradient ascent without adjacent buckets on the Aggregation
dataset. For k; = 20 without adjacent buckets, in Figure 3.4a, then we observe
that the data are artificially forced to follow the hyperplanes which delimit the
different buckets. Figure 3.4b shows our algorithmic improvement with adding one
layer of adjacent buckets where the underlying structure of data is maintained.
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Algorithm 14 NNGA* — Approximate Nearest Neighbors Gradient Ascent with
LSH and adjacent buckets
Input: {X,,..., X}, {x1,...,x,}, ki, My
Output: {k-nn(x), ..., k-nn(x,,)}
/* Create hash table with M, buckets */
1: fori:=1tondo H; := H(X));
/* Search for approx nn in adjacent buckets */
for {:=1tomdo
R(x;) =1{X;: H;=H(xp),i €{l,...,n}}
while card(R(x,)) < k; do
R(x;) := R(x;) U neighbor bucket;
k-nn(x;) := k-nn from R(x;) to x;;
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(a) Aggregation after NNGA* with number (b) Aggregation after NNGA* with number
of nearest neighbors k; = 20, without adja- of nearest neighbors k; = 20, with adjacent
cent buckets. buckets.

Figure 3.4: NNGA™" without and with adjacent buckets for the Ag-
gregation dataset.

Whilst the use of the LSH to reduce the complexity of kernel Mean Shift clus-
tering was already proposed in [92], these authors did not quantify the reduction
in complexity. The complexity of our NNGA™ is reduced to 0((Mil)2 log(Mi])) per
bucket with M, buckets, and so the total complexity is 0((Mil)2 log(Mil)) for all buck-
ets. Because of this segmentation of the original data space into M, sub-spaces,
the complexity is inversely proportional to the number of buckets. The trade-off
is that the data points in each bucket have to be sufficiently representative of the
local properties of the original space. Thus the number of buckets M, is a crucial
tuning parameter. Despite this, there are no optimal methods for selecting the
number of buckets [101]. Consequently, we will examine empirical choices of the
number of buckets in the sequel.
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3.2.3 Cluster labeling: e-proximity

NNGA* carries out the gradient ascent on the data points until they have converged
to their prototypes. The question is then how to assign cluster labels to the data
points. A first solution is to assign the same cluster to all points sharing the
same prototype. As observed in Figure 3.4b, even with a prior good choice of
ki, there are (possibly) hundreds of generated prototypes, so assigning a label
to each point according to its closest prototype is not effective because it can
generate too many clusters. Applying the density gradient ascent NNGA™ leads to
a converged dataset with increased inter-cluster distances and decreased intra-
cluster distances as compared to the original dataset. In order to further exploit
this property, we propose a new proximity-based approach where points which
are under a threshold € > 0 from each other are considered to belong to the same
cluster.

Algorithm 15 illustrates e-proximity cluster labeling. It consists in exploring the
similarity matrix S which is defined as a map whose objects IDs are the keys and
whose pairs (object IDs, distances) are the values. We initialize the process by
taking the first object of S and cluster with it every point whose distance is less
than e. We then apply this exploration process by iteratively adding the k, nearest
neighbors of these added points until this process terminates. During the process
we remove the explored points from S to avoid repeated calculations. Once the
first cluster is generated, we take another object from outside this first cluster from
the reduced similarity matrix S and repeat the above cluster formation, until all
objects are assigned to a cluster label.

In order to apply this algorithm, we have to build the similarity matrix which has
a O(n?) time complexity, preventing any Big Data application. A scalable version
consists of applying this algorithm in each LSH partition, and merging each bucket
its right or left adjacent bucket to maintain the bucket order.

Once this step is completed, we apply a MapPartitions procedure to check if
two clusters of two different buckets share at least 1 pair of points which are less
than ¢ apart, then these two clusters are considered to form a single cluster. We
obtain a dataset which chains common clusters between partitions: all chained
clusters are assigned with the same label by generating an undirected graph
where each connected subgraph represents a cluster. The search for connected
components in a graph is a common problem which can be solved in linear time in
the number of vertices.

It is important to bound the number of data points in each bucket because
the scalable version of e-proximity clustering and the check for cluster merging
between two buckets have quadratic complexity in this size. Empirically we advise
to set the number of buckets M, in order to have around 500 to 2000 data points
in each bucket.

A notable problem still remains with the choice of the main tuning parameter
e. We set it to be the average of distance from each point to their k nearest
neighbors. We compute it as an approximate value in using LSH procedure in
order to maintain the scalability property.
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Algorithm 15 ¢-proximity labeling
Input: {x,...,x,},S, &
Output: {C(x;),...,c(x,)}
needToVisit « Set(S.head)
cp < 0
clusters « Map.empty[Int, Set[Int]]
clusters += (cyp, needToVisit)
while S has elements do
I* p. is the current point of needToVisit */
6: for each p. in needToVisit do
/* Add all points under € to needToVisit */

gk wn 2

7: needToVisitUpdated « {p € S, dist(p, p.) < &}
/* Remove explored point from the similarity matrix */

8: S -=p.
/* Update points to explore on next iterations */

9: needToVisit <« needToVisitUpdated

10: if neetToVisit is empty then

11: Crp += 1

12: needToVisit « Set(S.head)
/* Create a new entry in the clusters map */

13: clusters += (cyp, needToVisit)

14: else
/* Add new points to cluster cyp */

15: clusters(cyp) += needToVisit

3.3 Experiments

Our experiments are carried out on the Grid’5000 testbed which is the French
national testbed for computer science research. We use a dedicated Spark Linux
image optimized for Grid’5000 where Apache Spark is deployed on top of Spark in
Standalone mode. Apache Spark is a fast general purpose distributed computing
system based on a master-slaves architecture. Only the deployment of the image
is automatized. We manually reserve the nodes and provide the Spark cluster
with our code to execute the different experiments on a 2 x 8 core Intel Xeon
E5-2630v3 CPUs and 128 Gb RAM setup.

A key concept in Spark is the resilient distributed dataset (RDD) which is a
read-only collection of objects partitioned across a group of machines which can
be rebuilt if necessary from the hierarchy of previous RDD operations. Most of
the Map and Reduce operations will be performed on RDDs even if other pure
Scala Map and Reduce operations are executed inside each Spark partition. We
implement our algorithm in Scala because it is the Spark’s native language and
thus allows for good performance.

We use a range from 2 to high dimensional datasets with different sizes, as
summarized in Table 3.1 [61, 119]. To ensure the comparability of the results
across these different datasets, all algorithms are carried out on the normalized
version of the datasets: x; = (x; — xI"") /(X" — x™") where x; is the ith component
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of x, and x™", x™** are respectively the ith marginal minimum and maximum values.
We repeat each experiment ten times for robustness.

Dataset n d N
R15 600 2 15
Aggregation 788 2 7
Sizes5 1000 2 4
EngyTime 4096 2 2
Banana 4811 2 2
S3 5000 2 15
Disk6000 6000 2 2
Unbalance 6500 2 8
DS1 9153 2 14
Hepta 212 3 7
Hyperplane 100000 10 5
CovTypel0 581012 10 7

ScalabiltyDS 140000000 10

Table 3.1: Experimental datasets. n is the dataset size, d is the
data dimension, N is the number of clusters.

3.3.1 Comparison of NNGA* with k-means and DBScan

In this section, we compare NNGA* (Algorithm 14) with e-proximity labeling (Algo-
rithm 15) to k-means [94] and DBScan [111] presented in previous chapter. Table
3.2 shows the optimal combinations of tuning parameters used in the comparison
between the gradient ascent (NNGA™) with e-proximity, k-means, DBScan and
e-proximity. These optimal combinations are obtained by grid searches over a
range of values of each parameter.

To evaluate the quality of the clustering, we use both the Normalized Mutual
Information (NMI) [59] and the Rand index [81], as displayed in Table 3.3. The
bold values are the highest value within each row. The value of each measure
lies between 0 and 1. A higher value indicates better clustering results. The
conclusions from both of these indices are similar for all datasets, except for
the large datasets Hyperplan n = 100000 and CovType10 n = 581012. NNGA*
with e-proximity achieves the highest clustering accuraries for 7 out of the 12
experimental datasets. For those datasets where it is not the best performing,
it is close behind, with the only possible exception for Disk6000, whose nested
clusters are difficult for NNGA™ to detect accurately.

3.3.2 Effect of tuning parameters on clustering accuracy and
execution time
Table 3.4 illustrates clustering quality results with NMI, Rand and time duration

exclusively on DS1 dataset. We present three rows, for three parameters &, M,,
and k;, on which for each of them we fix two parameters and change the third one.
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Dataset NNGA* k-means DBScan
with e-proximity

Aggregation ki =50,M, =8, =30 k=17 g =0.05, minPts = 8
Banana ki =40,M, =8, =01 k=2 e=0.02,minPts =3
Disk6000 ki =100,M; = 8,51 =0.02 k=17 e =0.02,minPts = 4
DSH1 ki =50,M, =8,g =30 k=14 &=0.03, minPts = 25
EngyTime ki =200,M; =8,& =50 k=2 e =0.1,minPts = 100
Hepta ki =20,M; =4, =10 k=17 e =0.1, minPts = 10
R15 ki =20,M;, =8,1 =5 k=15 &=0.05minPts = 25
S3 ki =40,M, =8,& =15 k=15 &=0.05 minPts = 50
Sizesb ki =20,M; =8,61 =5 k=4 g =0.08, minPts = 8
Unbalance ki =40,M, = 8,&; = 80 k=8 g =0.05,minPts = 20
Hyperplane  k; =50, M, = 100,&; =5 k=5 g =0.05, minPts = 8
CovTypel0  k; =50, M, = 500,¢&, =20 k=5 g =0.05,minPts = 8

Table 3.2: Optimal tuning parameter choices for clustering compar-
isons. k; is the number of nearest neighbors in the gradient ascent,
M is the number of buckets in the LSH, &; is the distance threshold
for the e-proximity labeling, bold values are manually settled €, nor-
mal ones correspond to approximate average value of its "e; value”
k nearest neighbors distance, for NNGA* with e-proximity; k is the
number of clusters for k-means; ¢ is the radius of the hypersphere
and minPts is the minimum of number of data points for DBScan.

As expected from the algorithm design the only parameter which influences
strongly experiences duration is the number of buckets M, used for the LSH.
The larger M, is the faster one algorithm run becomes. It is due to quadratic
complexity operations that remain in each bucket as well as for gradient ascent
for local e-proximity. Increasing the buckets number will decrease number of
elements per bucket and then greatly decrease needed computation time per
bucket. Concerning link with accuracy scores, they stay relatively stable for Rand
and NMI.

We observe that specific combinations of parameters of &, and k; perform
better than others in Table 3.4. Higher values of k; will result in the fusion of
closest clusters into bigger ones while smaller values will smooth clusters shapes.
g-proximity clustering algorithm will precisely give results depending of how main
parameter g is settled. Smaller &, values will provide much more clusters because
less points tend to be closer from each others with a small &, value. At the opposite
bigger &, values will generate less clusters with more points. It is decisive on
some indices as the NMI. Too many discovered clusters compared to ground truth
classes number will drastically reduce this index score even if there is a belonging
logic with original classes, fortunately the Rand index suggests that there is a
consistency with the original labeling.

3.3.3 NNGAT" as a data-shrinkage method

As shown in Figure 3.5, our version of the nearest neighbors gradient ascent
NNGA™ results in shrinking the data points toward their local modes. DS1 after
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Dataset NNGA™* k-means DBScan
with e-proximity
Aggregation NMI 0.97 £0.02 0.83+0.02 098 + 0.00
Rand 0.98 + 0.02 0.91+0.01 0.99 +0.00
Banana NMI 1.00 + 0.00 031 +£0.00 1.00=+0.00
Rand 1.00 = 0.00 0.70 £0.00 1.00 =0.00
Disk6000 NMI 0.32 +0.00 0.00+0.00 1.00=+0.00
Rand 0.34 + 0.00 0.50+0.00 1.00=0.00
DSH1 NMI 0.03 +£0.01 0.75+0.01 0.94+0.00
Rand 0.80 +0.01 0.86 +0.00 0.98 =0.00
EngyTime NMI 0.85 +£0.08 098 +0.00 0.75+0.00
Rand 0.93 +0.05 1.00 =0.00 0.90 +=0.00
Hepta NMI 0.97 +£0.04 098 +0.03 0.83+0.00
Rand 0.98 + 0.04 0.99+0.02 0.94+0.00
R15 NMI 0.91 +£0.02 096 +0.02 0.99+0.00
Rand 0.98 + 0.00 099 +0.01 1.00=0.00
S3 NMI 0.74 + 0.00 0.78+0.01 0.42+0.00
Rand 0.96 + 0.00 096 +0.00 0.52+0.00
Sizesb5 NMI 0.89 + 0.01 0.81 +0.12 0.80 +0.00
Rand 0.97 + 0.00 0.88+0.13 097 +0.00
Unbalance  NMI 0.98 + 0.01 094 +0.05 0.99=+0.00
Rand 1.00 = 0.00 0.97+0.03 1.00+0.00
Hyperplane  NMI 0.04 + 0.00 0.01 £0.00 one cluster
Rand 0.31 + 0.00 0.62 + 0.00 only
Covlype10 NMI 0.09 +0.01 0.07 £0.006 dataset is
Rand 0.56 +0.04 0.59 + 0.00 too massive

Table 3.3: NMI and Rand clustering quality indices for the cluster
labeling on the experimental datasets for NNGA™* with &-proximity
labeling, k-means and DBScan. The bold entries indicate the best
results within each row, and + entries are the standard deviations
over 10 trials.
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DS1 M, =12,& =30 ki =10 ki =50 ki =200
NMI 0.0078 + 0.0003 0.0315 +0.0016 0.0206 + 0.0021
Rand 0.7268 = 0.0146  0.8190 + 0.0007 0.8129 + 0.0029
Execution time (s) 81.1+£2.3 84.2+6.5 76.5+2.9
k1:50,81:30 M1:8 M1:12 M2:20
NMI 0.0240 + 0.0016  0.0315 +0.0016 0.0183 = 0.0020
Rand 0.8039 + 0.0024 0.8190 + 0.0007 0.7932 + 0.0041
Execution time (s) 1334 +£4.2 84.2 +£6.5 439+2.0
k1:50,M1:12 81:5 81:30 82:100
NMI 0.1085 + 0.0017 0.0315 +0.0016 0.0034 + 0.0002
Rand 0.8283 = 0.0001 0.8190 + 0.0007 0.7078 = 0.0006
Execution time (s) 78.3+3.6 84.2+6.5 76.5+2.7

Table 3.4: NMI and Rand clustering quality indices and execution
times for NNGA* with e-proximity labeling for the DS1 dataset. k;
is the number of nearest neighbors in the gradient ascent, M; is
the number of buckets in the LSH, &, is the distance threshold for
the e-proximity labeling. The bold entries indicate the best accuracy
results, and + entries are the standard deviations over 10 trials.

NNGA* (with k; = 50 nearest neighbors) presents a more compact version than
its original version, maintaining the underlying data structures whilst increasing
empty space between clusters; likewise for the Hepta dataset.

Being a data shrinkage method, this implies that we can apply NNGA* before
we apply other clustering algorithms. Figure 3.6a shows an application of k-means
on Sizes5 dataset with k = 4 clusters without NNGA*. Even if the number of
clusters in the k-means on the left is the correct number, these four clusters do not
match so closely the original clusters (NMI=0.81, Rand=0.88). Figure 3.6b shows
the k-means cluster labeling results applied on NNGA* output with k; = 20. We
observe that these clusters are more similar to the original clusters (NMI=0.89,
Rand=0.95) than with k-means only.

DBScan cluster labeling collates points more efficiently after NNGA* is applied
than without NNGA*, as shown in Figure 3.7. NNGA™ is an efficient way to attach
noisy points to their closest cluster. Furthermore, NNGA™ facilitates more robust
choices for the DBScan parameters, since it increases the local density which
improves the detection of smaller clusters. The NMI and Rand increase after the
NNGA* data shrinkage.

3.3.4 \Visual evaluation with image segmentation

A resurgence in interest in the variant of the Mean Shift algorithm is due to its
application to image segmentation [51] where an image is transformed into a
color space in which clusters correspond to segmented regions in the original
image. The 3-dimensional L*u*v* color space [45, Eqgs. 3.5-8a—f] is a common
choice. Since an image is a 2-dimensional array of pixels, let (x, y) be the row and
column index of a pixel. The spatial and color (range) information of a pixel can be
concatenated into a 5-dimensional vector (x, y, L*, u*,v*) in the joint spatial-range
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(a) DS1 (b) DS1 after NNGA* with number of
nearest neighbors k; = 50

o

(c) Hepta (d) Hepta after NNGA* with number of
nearest neighbors k; = 20

Figure 3.5: Data shrinkage after nearest neighbor gradient ascent
NNGA* on the DS1 and Hepta datasets.

domain. An image segmentation algorithm based on the kernel Mean Shift was
introduced in [48] which we adapt for use with NNGA™.

Our test image is image #36 from the colour training set from the Berkeley
Segmentation Dataset and Benchmark'. Figure 3.8 shows the original RGB
481x321 pixels JPEG image. The tuning parameters for the NNGA* are k; = 60,
Jmax = 15, We compute the NNGA*-M,; with M; = 200, 400, 1000 buckets.

For the NNGA*-200 and NNGA*-400 in Figures 3.9b and 3.9d where we
approximate nearest neighbours with respectively M, = 200 and M; = 400
buckets, some finer details are visible, such as the podia. For NNGA-200 and
NNGA-400 in Figures 3.9a and 3.9c, the green background color bleeds into the
starfish arms. For NNGA-1000 in Figure 3.9e, the starfish is not visible anymore.

'http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds
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(a) Sizesb after k-means (k = 4) (b) Sizes5 after k-means (k = 4) with
NNGA™* (number of nearest neighbors
ki = 20)

Figure 3.6: k-means cluster labeling on the Sizes5 dataset without
and with NNGA™ data shrinkage.

(a) EngyTime after DBScan with param- (b) EngyTime after DBScan with param-
eters #minPts=22, #<=0.07 eters #minPts=22, #£=0.07 after NNGA™*
(number of nearest neighbors k; = 200)

Figure 3.7: DBSCan cluster labeling on the Sizes5 dataset without
and with NNGA™ data shrinkage.
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Figure 3.8: Original picture #36.

However, by taking more neighbor layers (NNGA*-1000 p = 2) in Figure 3.9f the
starfish shape is being delimited from the background.

The Berkeley Segmentation Dataset and Benchmark provides human expert
segmentations of their images for comparisons. Figure 3.10a,b depict two edge
detections made by Users #1109 and #1119. User #1109 focuses on segmenting
the shape of the starfish, whilst ignoring the detail of the podia, whereas User
#1119 concentrates on segmenting the individual podia in the foreground. We
focus on the NNGA*-200 (Figure 3.9b), which segmentation is closer to User
#1119. Whilst this automatic edge detection (Figure 3.10d) in its current state
remains too fragmented to be useful for a visual analysis, we anticipate that further
application of statistical and image analyses will be able to improve it.

We observe from Figures 3.9 that M; = 200 buckets is a suitable empirical
choice and so we apply it to further images from the Berkeley image database
as in Figure 3.11. We apply also the NNGA* on a picture of 5 millions pixels
(taken by ourselves) compared to 150 thousand pixels of Berkeley’s pictures.
We increase the number of buckets accordingly with the size of the picture to
reach approximately 1000 data points per bucket. The image shows a good
segmentation between the leafs and the rest of the picture. We distinguish the
trunk from the background foliage too without difficulty showing the effectiveness
of the algorithm even with big image.

3.3.5 Evaluation of scalability
3.3.5.1 Density gradient ascent

As the data are distributed over all buckets or Spark partitions, this allows for
efficient computations in the local environment of a data point. Figure 3.12a shows
that the execution time gradually decreases as the number of slaves increases for
a dataset of fixed size. In Figure 3.12b, for a fixed number of slaves, if we maintain
the constant number of elements per bucket, the execution time grows linearly
with the size of the dataset. This indicates that the number of nearest neighbors &,
needs to be constrained. The number of layers p indicates the adjacent buckets
in the LSH which can be searched to find nearest neighbors: p =0 means that no
adjacent buckets, p = 1 means the immediately adjacent buckets to the left and
right, p = 2 means that second order adjacent buckets further away etc.
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~ (a) NNGA-200 ~ (b) NNGA™-200 (p=1)

(c) NNGA-400

()

Figure 3.9: Colour image segmentation using in the left NNGA and
in the right NNGA™ with M; = 200,400 and 1000 buckets.
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(a) User #1109 (b) User #1119

N

(c) NNGA*-200

Figure 3.10: Edge detection of segmented images. (a,b) Two
human experts: users #1109 and #1119. (c) NNGA*-200. (d)
NNGA*-200 with automatic detection.

Since we have an 0((Mil)2 log(37-)) complexity per bucket for NNGA*, a suitable
value for the number of buckets M, is to keep the MLI ratio approximately equal to
a constant C. Then the time complexity of NNGA* reduces to O(nC log(C)). The
scalability is demonstrated by the decrease in execution time with the number of
slaves and a linear increase of execution time with the dataset size, reaching 140
million data points (the ScalabilityDS dataset) which is infeasible for the original
quadratic algorithm.

3.3.5.2 LSH buckets and neighbor layers

For a fixed number of neighbor layers, we observe in Figure 3.13a that the
execution time rapidly decreases and then slows down to reach a plateau, as
the number of buckets increases. The observed plateau is due to the quadratic
complexity of the NNGA*: more buckets leads to fewer data points within each
bucket and so the execution times can quickly reach the minimal plateau after
a sufficiently large number of buckets. We also studied the influence of the
number of neighbors layers p on the execution time. Whilst NNGA* has quadratic
time complexity in each bucket, if we select an appropriate number of nearest
neighbors &y, then we are able to control the execution time of NNGA* to be linear
with respect to the number of neighbors layers p, as illustrated in Figure 3.13b.
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(a) Picture #91 (b) NNGA™-200 (p=1)

(6) Picture #81 (f) NNGA*-200 (p=1)

Figure 3.11: Further examples of segmented images with
NNGA*-200.
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Figure 3.12: (a) Execution times for NNGA™* with respect to the
number of slaves. (b) Execution times for NNGA* with respect to

the dataset size n.
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Figure 3.13: (a) Execution times for NNGA™* with respect to the
number of buckets (M;). (b) Execution times for NNGA™ with respect
to the number of adjacent layers (p).

e-proximity cluster labeling

Concerning e-proximity cluster labeling, similar remarks as for the gradient ascent
apply here. As Figure 3.14 follows same decrease in the execution time as for the
gradient ascent as a function of the number of slaves and data points, we can be
confident in the scalability of our approach.
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(a) Dataset size n = 1000000, #buckets M| = (b) Dataset size n varies, #buckets M;
1000, #slaves varies, #layers p = 1. n/1000, #slaves = 8, #layers p = 1.

Figure 3.14: (a) Execution times for e-proximity cluster labeling with
respect to the number of slaves. (b) Execution times for e-proximity
cluster labeling with respect to the dataset size n.

3.4 Conclusion

We have introduced a framework for the mathematical analysis of nearest neigh-
bour estimators of the density function and its derivatives, allowing us to exhibit an
automatic, single pass, normal scale selector for the optimal number of nearest
neighbours. We apply these results for the density gradient to the Mean Shift for
unsupervised learning. Our proposed automatic nearest neighbour Mean Shift
clustering NNGA gave good empirical performance for discovering the number,
location and shape of non-ellipsoidal clusters for multivariate data analysis and
image segmentation. Moreover we have added practical improvements to the
standard nearest neighbors gradient ascent used in Mean Shift algorithm. Two of
them are based on new usages of Locality Sensitivity Hashing for approximate
nearest neighbors during the nearest neighbors gradient ascent (NNGA™*), and
also during cluster labeling (e-proximity). The last one is an efficient and scal-
able implementation of our ideas on a distributed computing ecosystem based
on Spark/Scala. We demonstrated that these improvements greatly decrease
the execution time whilst maintaining a suitable quality of clustering. We have
also shown that using our NNGA* algorithm, as a pre-processing step in other
clustering methods, can improve quality metric evaluations. These improvements
open the opportunity to apply our Mean Shift model for Big Data clustering.

Along this chapter, the continuous space has been studied through some
algorithms, but it is not the only space on which users would discover insights
about their data. We will present in next chapter a new version of modal clustering
dealing with binary data and using Hamming distance.
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Chapter 4

Mean Shift Like on Binary Data

4.1 Introduction

We describe in this chapter the theory and practice behind a new modal clustering
method for binary data. Our approach (BinNNMS) is based on the nearest
neighbor median shift. The median shift is an extension of the well-known mean
shift, which was designed for continuous data, to handle binary data. Clustering
is an important step in the exploratory phase of data analysis, and it becomes
more difficult when applied to binary or mixed data. Binary data occupy a special
place in many application fields: behavioral and social research, survey analysis,
document clustering, and inference on binary images.

A popular clustering algorithm for binary data is the k-modes [30], and it is
similar to the k-means clustering [4] wherein the modes are used instead of the
means for the prototypes of the clusters. Other clustering algorithms have been
developed using a matching dissimilarity measure for categorical points instead of
Euclidean distance [66], and a frequency-based method to update modes in the
clustering process [40].

We focus here on the mean shift clustering presented in the previous chapter.
As explained in in previous chapter, due to its reliance on mean computations,
mean shift is not suited to be applied to binary data. Our contribution in this
chapter is the presentation of a modified mean shift clustering which is adapted to
binary data. It is untitled Nearest Neighbor Median Shift clustering for binary data
(BINNNMS). We demonstrate that BInNNMS can discover accurately the location
of clusters in binary data with theoretical and experimental analyses. The main
novelty is that the cluster prototypes are updated via iterations on the majority vote
of their nearest neighbors. We demonstrate that this majority vote corresponds to
the median of the nearest neighbors with respect to the Hamming distance [1, 36].

4.2 Nearest neighbor median shift clustering for bi-
nary data

A categorical feature, which has a finite (usually small) number of possible values,
can be represented by a binary vector, i.e. a vector which is composed solely of
zeroes and ones. These categorical features can either be ordinal (which have
an implicit order) or can be nominal (no order exists). Table 4.1 presents the two
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main types of the coding for a categorical feature into a binary vector, additive and
disjunctive, for an example of 3-class categorical feature.

Class | Additive coding | Disjunctive coding
1 100 100
2 110 010
3 111 001

Table 4.1: Additive and disjunctive coding for a 3-class categorical
feature.

The usual Euclidean distance is not adapted to measuring the dissimilar-
ities between binary vectors. A popular alternative is the Hamming distance
H. The Hamming distance between two binary vectors x; = (x4,...,x14) and
X2 = (Xa1,..., X2a), X; €{0,1}, j € 1,2, is defined as:

d
H(xi,x5) = Z lx1; — X2
j=1
=d- (x1 - xz)T(xl - X2). (41)

Equation (4.1) measures the number of mismatches between the two vectors x;
and x,: as the inner product (x; — x,)"(x; — x;,) counts the number of elements
which agree in both x; and x,, then d — (x; — x,) " (x; — x;,) counts the number of
disagreements.

The Hamming distance is the basis from which we define the median center
of a set of observations X = {X|,...,X,},X; € {0,1}4,i = 1,...,n. Importantly
the median center of the set of binary vectors, as a measure of the centrality of
the values, remains a binary vector, unlike the mean vector which can take on
intermediate values. The median center of X is a point w = (wy,...,w,) which
minimizes the inertia of X, i.e.

w = argmin 7 (x) (4.2)
xe{0,1}¢

where

n n d
I(x) = ) mHXx) = ) > ml(x))
i=1 i=1 j=1

and x; are the weights and
I(Xj) = |Xij - Xj|-

Each component w; of w minimizes 7 (x;).

In the case where all the weights are setto 1, r; = 1,i =1,...,n, the w; can
be easily computed since it is the most common value in the observations of the
Jj-th feature. This is denoted as maj(X), the component-wise majority vote winner
among the data points. Hence the median center is the majority vote, w = maj(X).

If we minimize the cost function in Equation (4.2) using the dynamic clusters
[9] then this leads to the k-modes clustering. Like the k-means algorithm, the
k-modes operates in two steps: (a) an assignment step which assigns each
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candidate point x to the nearest cluster with respect to the Hamming distance,
and (b) an optimization step which computes the median center as the majority
vote. These two steps are executed iteratively until the value of 7 (x) converges.

Now we show how the median center can be utilized to define a new modal
clustering for binary data based on the mean shift paradigm. In Section 3.2.1,
the beta family kernels were used in the mean shift for continuous data. The
most commonly used smoothing kernel, introduced by [8], for binary data is the
Aitchison and Aitken kernel:

Ki(x) = 27551 = )", x € {0, 1%

Observe that the exponent for A is the Hamming distance of x. The tuning
parameter % < A < 1 controls the spread of the probability mass around the
origin 0. For 4 = 1/2, then K, »(x) = (1/2)?, which assigns a constant probability
to all points x, regardless of its distance from 0. For 2 = 1, K (x) = 1{x = 0},
which assigns all the probability mass to 0. For intermediate values of A, we have
intermediate assignment between points and uniform probability mass.

Using K, the corresponding kernel density estimate is

Fes ) =n! Z Ald=G=X)Tx=XD1 (] _ gylr=X)T x=X], (4.3)
i=1

Since the gradient of the kernel K, is DK (x) = 2xlog((1 — 1)/ 1)K ,(x), the density
gradient estimate is

D fi(x; 1) = 21og(A/(1 = )" [ N XK X)—x Y Kylx - Xi)]. (4.4)
i=1 i=1

To progress in our development of a nearest neighbor median shift for binary
data, we focus on the point mass kernel K;(x) = 1{x = 0}. In order to ensure that
it is amenable for the median shift, we modify K; with two main changes:

1. K, is multiplied by the indicator function 1{x € B,(0, 1)}

2. the indicator function 1{x = 0}, which places the point mass at the center 0,
is replaced by an indicator that places it on maj(B,(0, 1)), where maj(B,(0, 1))
is the majority vote winner/median center of the data points X1, ..., X,, inside
of B,4(0, 1).

This second modification results in an asymmetric kernel as the point mass is
no longer always placed in the centre of the unit ball. This modified, asymmetric
kernel L is

L(x) = 1{x = maj(B,4(0, 1))}1{x € B,4(0, 1)}.

Since L is not directly differentiable, we define its derivative indirectly via DK,
and the convention that log(4/(1-4)) = 1forA = 1. As DKﬂ(x)|A=1 = 2xK;(x) then
analogously we define DL(x) = 2xL(x). To obtain the corresponding estimators,
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we substitute L, DL for K, DK in f, D in Equations (4.3)—(4.4) to obtain f,Df:

fes k) = n' 6y ()™ Z L((x — X;)/6(x))

i=1
D) = 250, | D XL = X/o00 () = x ), L& = X/d00 )|
i=1 i=1
(4.5)

To obtain a nearest neighbor mean shift recurrence relation for binary data, we
substitute f,Df for f,Df is Equation (3.4). For these estimators, the appropriate
choice of A = 164 (x)L;. Then we have

Xy = X; S (x) Df(x;3 k)
: ] 2 f(xj; k)
_ Zim Xil((x) = X3) /S (x)))

Y L((xj — X)) /6y (x))

We can simplify this ratio if we observe that the scaled kernel is

L((x — X;)/6(x)) = H{Xmaj(B,(x, 64 (%))} - H{X; € By(x, 64 (x))};

and that B,(x, 64 (x)) comprises the k nearest neighbors of x, then 1{X; €
By(x,04(x))} = 1{X; € k-nn(x)}. If m is the number of nearest neighbors of x;
which coincide with the majority vote, then

ZX,-ek-nn(xj) X {X; = maj(k'nn(xj))}
ZX,—ek-nn(xj) 1{X; = maj(k-nn(x;))}
m - maj(k-nn(x;))

Xjy1 =

m

maj(k-nn(x;)). (4.6)

Therefore in the median shift recurrence relation in Equation (4.6), the next iterate
x;.1 is the median center of the k nearest neighbors of the current iterate x;.
Thus, once the binary gradient ascent has terminated, the converged point can
be decoded using Table 4.1, allowing for its unambiguous symbolic interpretation.
The gradient ascent paths towards the local modes produced by Equation (4.6)
form the basis of Algorithm 16, our nearest neighbor median shift clustering for
binary data method (BinNNMS).

The inputs to BInNNMS are the data sample X, ..., X, and the candidate
points x, ..., x, which we wish to cluster (these can be the same as Xj,..., X,
but this is not required); and the tuning parameters: the number of nearest
neighbors k; used in BGA task, the maximum number of iterations iter.x, and the
tolerance under which two cluster centres are considered forming a single cluster
e. The outputs are the cluster labels of the candidate points {c(x;), ..., c(x,,)}.

The aim of the e-proximity cluster labeling step is to gather all points which
are under a threshold . In order to apply this method we have to build the
Hamming similarity matrix which has a O(n?*) time complexity. We initialize the
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process by taking the first point and cluster with it all points whose distance is
less than . Thus we apply this iterative exploration process by adding the nearest
neighbors. Once the first cluster is generated, we take another point from the
reduced similarity matrix and repeat the process, until all points are assigned
a cluster label. A notable problem still remains with the choice of main tuning
parameter £: we set it to be the average of distance from each point to their
nearest neighbors.

Algorithm 16 BinNNMS — Nearest neighbor median shift clustering for binary
data

Input: {(X1,..., X,L{x1, ..., xu} ki, ko, iterpax

Output: {c(x)),...,c(x,)}

/* BGA task: compute binary gradient ascent paths */

1: for£:=1tomdo

2: ji= 0; Xeo 1= Xy,

3: Xe1 = maj(k-nnkl (x&o));

4: while j < j.x do

5: ji=j+1;

6: Xej+l *= maj(k—nnkl (x,[,j));
7: X, = X¢

/* e-proximity cluster labeling task: create clusters by merging near final
iterates*/

8: for(;,{, :=1tomdo

if H(x;,x;) < eky) then c(x} ) := c(x});

©

4.3 Experiments

In this section, we present an experimental comparison of the BInNNMS to the
k-modes clustering (as outlined in Section 4.2). Table 4.2 lists the details of the
dataset obtained from the UCI Machine learning repository [125]. The Zoo data
set contains n = 101 animals described with 16 categorical features: 15 of the
variables are binary and one is numeric with 6 possible values. Each animal is
labelled 1 to 7 according to its class. Using disjunctive coding for the categorical
variable with 6 possible values, the data set consists of a 101 x 21 binary data
matrix. The Digits data concerns a dataset consisting of the handwritten numerals
(“0"="9”) extracted from a collection of Dutch utility maps. There are 200 samples
of each digit so there is a total of n = 2000 samples. As each sample is a
15 x 16 binary pixel image, the dataset consisted of a 2000 x 240 binary data
matrix. The Spect dataset describes the cardiac diagnoses from Single Proton
Emission Computed Tomography (SPECT) images. Each patient is classified
into two categories: normal and abnormal; there are n = 267 samples which are
described by 22 binary features.

The Car dataset contains examples with the structural information of the vehicle
is removed. Each instance is classified into 4 classes. This database is highly
unbalanced since the distribution of the classes is (70.02%, 22.22%, 3.99%, 3.76%).
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Dataset [size (n) |#features (d)|#classes (M)
Zoo 101 26 7
Digits | 2000 240 10
Spect | 267 22 2

Soybean| 307 97 18
Car 1728 15 4

Table 4.2: Overview of experimental datasets.

The Soybean data is about 19 classes, but only the first 15 have been justified as
it appears that the last four classes are not well-defined. There are 35 categorical
attributes, with both nominal and ordinal features.

4.3.1 Comparison of the k-modes and the BinNNMS

To evaluate the clustering quality, we compare the known cluster labels in Table 4.2
to the estimated cluster labels from BinNNMS and k-modes. For comparability, the
k-modes clustering is also based on the binary median center from Equation (4.2).
Values of the Adjusted Rand Index (ARAND) [18] and the normalized mutual infor-
mation (NMI) [50] close to one indicate highly matched cluster labels, and values
close to zero for the NMI (less than zero for the ARAND) indicate mismatched
cluster labels.

Table 4.3 reports the results in terms of the NMI and ARAND after 10 runs of
the BinNNMS and k-modes. Unlike BInNNMS, the k-modes clustering requires
an a priori number k of clusters, then we set k to be whichever value between the
target number of classes from Table 4.2, or the number of clusters obtained from
the BinNNMS clustering gives the highest clustering accuracy. The BinNNMS,
apart from the Car dataset, outperforms the k-modes algorithm on Zoo, Digits,
Spect, and Soybean datasets. Upon further investigation for the Car dataset,
recall that the distribution of the cluster labels is highly unbalanced which leads
the BINNNMS giving a single class (i.e. no clustering). These unbalanced clusters
also translate into low values of the NMI and ARAND for the k-modes clustering.

4.3.2 Comparison of the tuning parameters for the BinNNMS

Figure 4.1 presents the evolution of the NMI and ARAND scores as a function
of the tuning parameters k; (in binary gradient ascent BGA task) and k, (in the
cluster labeling task) for the Digits, Zoo, Soybean, and Spect datasets. The blue
dots (k; = 0) correspond to the application of the cluster labeling task without the
gradient ascent. These cases tend to have poor cluster quality values compared
to when k; is non-zero. Otherwise, that various values of k; and &, give the highest
cluster label accuracy. This indicates that the optimal combination of these tuning
parameters remains an open and challenging task.
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NMI

Dataset k-modes k BinNNMS
Digits 0.360 + 0.011 |40 0.880 + 0.000
Zoo 0.789 £0.023 | 8 | 0.945 + 0.000
Soybean| 0.556 + 0.000 (40| 0.743 + 0.000
Spect 0.135 £ 0.000 |47 0.145 = 0.000
Car 0.039 + 0.019 | 4 | Single class
ARAND
Dataset k-modes k BinNNMS
Digits 0.166 = 0.021 40| 0.876 + 0.000
Z00 0.675+0.032 | 8 | 0.904 + 0.000
Soybean| 0.178 + 0.000 (40| 0.331 + 0.000
Spect —0.009 £ 0.055| 2 |-0.019 + 0.000
Car 0.016 + 0.039 | 4 | Single class

Table 4.3: Comparison of clustering quality indices (NMI and
ARAND) for k-modes and BinNNMS. The bold value indicates the
most accurate clustering for the dataset.

4.3.3 Comparison of the quantization errors

An important and widely used measure of resolution, the quantization error, is
computed based on Hamming distances between the data points and the cluster
prototypes:

1 M
Error = — Z Z H(x;,wn) (4.7)
n
m=1 ijCm
where {Cy,...,Cy} is the set of M clusters, x is a point assigned to cluster C,,,,

and w,, is the prototype.median center of cluster C,,,.

The right hand column in Figure 4.2 shows the evolution of the quantization
errors for the BInNNMS with different values of k; with respect to the target cluster
prototypes. As the quantization errors decrease this implies that the data points
converge toward their cluster prototypes, and that the decreasing intra-cluster
distance further facilitates the clustering process. Thus at the end of the training
phase, the data points converge towards their local mode. In comparison with the
ARAND scores in Table 4.3, the magnitude of the decrease in the quantization
errors is inversely proportional to the cluster quality indices. That is, the largest
decrease for the Digits dataset implies that BInNNMS clustering achieves here the
highest ARAND score.

If we run the labeling phase during the BGA phase for a fixed k; then we
compute the intermediate prototypes w,, of the clusters C,, during the binary
gradient ascent BGA task. Since BinNNMS provides clusters as the basins of
attraction to the local median created by the binary gradient ascent paths, the left
column of Figure 4.2 shows the quantization error with respect to the intermediate
median centers/prototypes. In this case we compute at each iteration 7 modes
for Zoo dataset, 10 modes for the Digits, 18 modes for Soybean and 2 modes
for Spect datasets using ground truth. These quantization errors decrease to an
asymptote for all datasets as the iteration number increases.
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Visual comparison

Figure 4.3 shows the cluster prototypes provided by k-modes and BinNNMS,
displayed as 15 x 16 binary pixel images. For the k-modes image, the cluster
prototype for the “4” digit has been incorrectly associated with the “9” cluster. On
the other hand, the BiInNNMS image correctly identifies all ten digits from “0” to
“9”.

4.4 Conclusion

In this chapter, we have proposed a new and efficient modal clustering method
for binary data. We introduced a mathematical analysis of the nearest neighbor
estimators for binary data. This was then combined with the Aitchison and Aitken
kernel in order to generalize the traditional mean shift clustering to the median shift
clustering for binary data (BinNNMS). Experimental evaluation for a number of
experimental datasets demonstrated that the BinNNMS outperformed the k-modes
clustering in terms of visual criteria, as well as quantitative clustering quality
criteria such as the adjusted Rand index, the normalized mutual information and
the quantization error. In the next chapter we will present other approaches. It is
the combination of supervised and unsupervised models.
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Figure 4.1: Evolution of the cluster quality indices (NMI and
ARAND) as functions of the k; and &, tuning parameters for the
BinNNMS for the Digits, Zoo, Soybean and Spect datasets.
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Figure 4.2: Evolution of quantization errors as a function of the k;
and k; tuning parameters in BInNNMS for the Digits, Zoo, Soybean
and Spect datasets. Left. Quantization errors between the data
points and the target prototypes. Right. Quantization errors between
the data points and the intermediate median centers in the BGA
task and the cluster prototypes.
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Chapter 5

Clusterwise: Clustering and Partial
least squares regression

5.1 Introduction

In modern data analysis, many problems belong to the regression family which
consists of explaining one or more variables (known as the response) with respect
to other observed variables (known as the explanatory variables). Many types
of regression models exist to solve specific problems. A widely used regression
method is Multivariate Linear Regression (MLR) where many explanatory vari-
ables are linked to a specific response variable by a parametric linear model [44].
MLR is most suited to problems where the number of observations is larger than
the number of explanatory variables. On the other hand, when the number of
explanatory variables is larger (e.g. high dimensional data), then there tends to
be important colinearities between them which implies that MLR is not effective.
Partial least squares regression (PLS) is a linear regression model with latent fea-
tures for high-dimensional data [17, 21]. Standard PLS defines new components
by maximizing the covariance between components from two different blocks of
variables (data matrix X and its response matrix Y). In addition, standard PLS
does not require any distributional assumptions for the error distributions, since
they do not need to be normal with parametric distributions.

Applying PLS to massive high-dimensional data is problematic because the
data processing is computationally expensive. This has limited large-scale applica-
tions of PLS in practice. To reduce the computational burden, researchers usually
apply a specific model design, such as the Clusterwise PLS [127, 17, 21]. In this
chapter, we address a Clusterwise problem where the response variables y are
explained by the explanatory variables x, organized into clusters. The statistical
model which results from simultaneously treating all observations (i.e. a single
macro-cluster) may be of low prediction quality. To overcome this problem we use
two nested levels of clustering (i.e. macro- and micro- clusters) as illustrate in
Figure 5.1 and compute one model per macro-cluster based on a micro-batch
strategy where micro-clusters are shifted from one macro-cluster to another.

A standard approach to obtain clusters within a regression framework is
Clusterwise regression (which is also known as typological regression) [20, 14].
Clusterwise regression assumes that there is an underlying clustering structure
of the observations and that each cluster can be revealed by the fit of a specific
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Figure 5.1: Micro and macro clusters

regression model based on micro-clusters. More formally, Clusterwise regres-
sion simultaneously looks for a partition of the observations into clusters which
minimizes the overall sum of squared error. For Clusterwise methods, a crucial
component is to describe the local relationships between the variables measured
on the observations within the same cluster. This is handled in this chapter by
micro-batch approaches.

5.2 Related works

Existing Clusterwise methods seek clusters within a regression framework while
simultaneously minimizing the sum of squared error computed over all the clusters.
These methods can be viewed as extensions of the K-means clustering from
unsupervised learning to the regression set-up. As in standard regression, ordinary
least squares or maximum likelihood estimation can be used to get the quality
of the regression coefficients. These K-means like algorithms, based on a least
square error criterion, have been proposed by [5, 10]. A multivariate regression
for heterogeneous data which takes into account both the between- and the
within-cluster variability has also been proposed [118].

To detect categorical differences in underlying regression models on the other
hand, Spath [14] developed Clusterwise Regression (CR) which clusters the data
points based on the underlying regression model. Related methods exist within the
mixture and latent class framework [20]. Other related methods are the principal
component regression (PCR) [11] and partial least square regression (PLS) [62,
57] which have also been proposed to deal with multicolinearity, small sample
size, or large number of variables. Specifically, PLS reduces the explanatory
variables to those which are as maximally related (in terms of squared covariance)
as possible to the objective function.

In the framework of component-based path-modeling methods, several Cluster-
wise methods have been applied in the marketing field (for an early review, refer to
[76]). In [46] the authors propose the widely-used finite-mixture PLS (FIMIX-PLS)
which assumes multivariate normally distributed data. In [70], fuzzy Clusterwise
generalized structured component analysis (FCGSCA) is proposed. In [83] the
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authors propose REBUS-PLS which came from the hierarchical clustering based
on a similarity measure defined from the residuals coming from the same models.
[124] proposed PLS-IRRS which identifies homogeneous clusters that have similar
residual values.

In the field of multigroup analysis where the groups of observations are known
a priori Clusterwise simultaneous component analysis (CW-SCA) seeks clusters
among groups of observations rather than among observations [96]. It is worth
noting that likelihood-based methods are relevant for data exploration or modeling
but are unable to be utilized for prediction as dependent values are needed to
compute the likelihood.

5.3 Partial Least Square (PLS)

We use the common notation where scalars are defined as italic lower case (x,y),
vectors are in bold lower case (x,y) and matrices as bold upper case (X, Y).

PLS regression is a technique that generalizes and combines features from
principal component analysis and multiple regression. Let X = {x;,...xy} be N
vector observations x; = (x;1,...,x;,) € RP, described by the vector response
variables Y = {yi,...,y,} where y;, = (yi, ..., yi,) € R?. Each pair of explanatory
and response variables in the model is denoted by the concatenated vector
z; = (x;;y;)- The matrices Y and X are assumed to be pre-whitened (i.e., the sum
of each variable is zero and its norm is one). The superscript T denotes the matrix
transpose operation, e.g. X’ and I the identity matrix.

PLS regression is particularly well-suited when the matrix of explanatory vari-
ables X has more features p than observations, and when there is multicollinearity
among the X values. The goal of PLS regression is to predict Y from X and to
describe their common structure. When Y is a vector and X is sufficiently regular,
this goal could be accomplished using ordinary multiple regression. PLS solves
the problem that arises when the number of observations (N) is much lower than
the number of variables (p).

PLS regression performs a simultaneous decomposition of X and Y with the
constraint that these components capture as much as possible of the covariance
between X and Y. More formally, X and Y are decomposed as follows:

X=TP" +E. xx= Y t;pi;+en (5.1)

J=1
,

Y =UQ" +F, yin = ) tijGu; + fin (5.2)

=

where T and U are the r-dimensional latent representations of X and Y of size of
N x r, P and Q are the loading matrices with size of p x rand ¢ x r, E and F are
the residual matrices. Thus PLS implements the following optimization problem:

(p, @) = argmaxy_q-; cov(T, U)

where p, q are columns of the P, Q respectively
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Once the decomposition of the X and Y is carried out, we can continue with
computing the regression coefficients. The latter are defined as the minimizers of
the residual error

argming||Y — XB|*

where B is a p by ¢ regression coefficient matrix. Suppose there is a linear
relationship such that
U=TD+H

where D is an r x r diagonal matrix, then
Y=TC" +F

where CT = DQ” and F* = HQ” + F. Based on the previous expressions, the
response matrix is expressed as

Y = XP(P'P)"'CT + F'EP(P'P)"'CT.
The PLS regression coefficient is thus
B =P®P'P)'C?

For the brevity, we have discussed the PLS where the variables form a single
macro-cluster. When the data consist of non-homogeneous macro-clusters, it
is necessary to decompose the regression according to these macro-clusters,
for example, using the Clusterwise techniques described in Section 5.2. These
techniques have many bottlenecks as the scalability for a large number of obser-
vations and variables. One of the main objectives of contribution in this chapter is
to integrate the micro-batch processing into the Clusterwise PLS to resolve these
scalability issues.

5.4 New model: Micro-Batch Clusterwise PLS

Our proposed approach mb-CW-PLS (micro-batch Clusterwise Partial Least
Squares) has the following properties:

e Nested clustering: we combine the PLS with two levels of clustering (macro-
and micro-clustering) and micro-batch optimization approaches to create
a new Clusterwise method that can find the underlying structure of the
observations and provide each macro-cluster of observations with its own
set of regression coefficients.

e Micro-Batch processing (divide and conquer strategies): rather than move a
single observation from a macro-cluster to another to calculate the regres-
sion models in a cross validation approach, we move an entire micro-cluster
of points, which we call the micro-cluster shift. These micro-clusters are
computed using the k-means clustering, where k is set as the ratio of dataset
size to the desired micro-cluster size.
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e Scalability: we use a distributed framework based on Apache Spark/Scala
to accelerate the initialization process and to compute the regression mod-
els. For each cross validation, we distribute initializations over the slave
processes. Each slave selects the optimal initialization and submits it to
the master process, which in turns selects the optimal one among all the
results received from the slaves. This decreases execution times inversely
proportional to the number of slaves.

e Usability: the Spark/Scala implementation requires the configuration of
a small number of hyper parameters, and can be utilized in a distributed
system or even on a stand-alone terminal with minimal effort, which enlarges
the scope of usability of the PLS.

Mathematical details

We assume that the N observations are clustered into K micro-clusters (or buck-
ets), C = {Cy,...,Cy,...,Ck} where C, = {x;, ¢(x;) = k}. Denote ¢ as the assign-
ment function defined as follows : ¢ : x; € R? — {1,...,k,..., K} (eg. euclidean
distance). The partition C of the micro-clusters is carried as an initialization before
running the PLS models. This step can be done using clustering approaches such
as k-means.

Denote a second partition level # = {Py, ..., P, ..., Pg} of the micro-clusters
set C into G macro-clusters (and K < G). Therefore G is the number of regres-
sion models that will be considered (PLS, ..., PLS,, ..., PLS ). The second level
assignment function @ is defined as: @ : {Cy,...,Cy,...,Ck} = {1,...,g,...,G}.

We introduce Micro-Bach Clusterwise PLS methods (mb-CW-PLS) by assum-
ing two phases of clustering: in the first level the N observations are clustered in
K fixed micro-clusters, and in the second level, the K micro-clusters are grouped
into G macro-clusters where each macro-cluster has a specific PLS regression
model. Therefore the mb-CW-PLS algorithm searches for an optimal partition of
the K micro-clusters into G macro-clusters as well as the corresponding set of re-
gression coefficient matrices (B4, ..., Bs) that minimize the overall error described
in Equation 5.3:

G
LP.B) = Y > IV, - XB,IP

g=1 x;€P;

G
=3 > DIy = xblIP (5.3)

gZ] CkEPg x;€Cy,

where Xg and Y, denote the data matrices of the gth macro-cluster respectively
of Xand Y.

The classical Clusterwise PLS does not provide estimators in reasonable time
for large N. Based on the traditional sequential algorithm, each observation x;
is assigned to its optimal cluster and the overall error is updated whenever one
observation switches cluster.

In order to overcome this problem and to ensure that the error decreases mono-
tonically at each iteration of the algorithm, we propose to use a new sequential
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micro-batch algorithm. Each micro-cluster C; is assigned to its optimal macro-
cluster P, and the overall error is updated whenever a micro-cluster switches to a
different macro-cluster.

Therefore the main idea, instead of moving a single observation x; from its
original macro-cluster to other macro-clusters, we move the entire micro-cluster
C which contains x; and then re-compute the regression model.

Starting with an initial partition of macro-clusters

PO = (P, ..., PV}, the algorithm constructs iteratively a sequence (P¥, BY)}, s >
0, in the following way:

e Foreach g e {l...,G}, P¥ is given by the least square estimators of the
PLS regression using the points of the macro-cluster P,.

e Given (P, BY"), then for each macro-cluster
Pye(P....Pg)

PO = (X0, X)) 1Y - XiBYJP

81

<|IY; = XBOI2, Vg # ga). (5.4)

The resulting B¢+ are the PLS estimators using the data partitioned by
PEtD The sequence {(PY, B¥)},s is such that

L(P(s), B(s)) > L(P(s+1), B(S+l)), Vs >0
and so it is convergent.

e Repeat above step for all micro-clusters C; which are re-assigned to their
optimal macro-cluster P,. This guarantees that the overall error decreases
monotonically at each change in assignment.

The mb-CW-PLS algorithm finds simultaneously an optimal partition of the
fixed K micro-clusters (buckets) into

P ={P, ...,Pg, . Pgl, Pg ={Cs, D(Cy) = g and

Vx; € Cy ¢(x;) = k} and the regression models associated to each macro-
cluster g. Finally the best cross-validated try is selected based on the Root Mean
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Squared Error (RMSE) [58] score. This metric evaluates the prediction accuracy
of the fitted regression,

SN G = yi)?
N

RMSE =

where y; is the predicted value, y; the true value and N the number of data points.
This method is summarized in the Algorithm 17.

Algorithm 17 mb-CW-PLS Clusterwise algorithm

1: procedure Crusterwise(X, G, CV, INIT)

/I Generate the cross validated dataset
2: uaYX; =X

/I These steps are distributed over nodes
3: fori:=1to CVdo
4. Xcurr = Ugjlxn
5: forj:=11to INIT do
// Generate randomly filled classes

6: ué?:ng = Xeurr
7: Choose randomly x where x € Xcurr
8: for u := 1 to G do Apply PLS, on X, with x € X,
9: for u :=1to G do Apply PLS, on X, with x ¢ X,
10: Choose the class b with the best regression score (least error)
11: Add x to X,
12: Select the best initialization b-init
13: Apply corresponding model on the test set

14: Select the best model among CV through RMSE

5.5 Experiments

In order to get an efficient distributed implementations, we decided to apply the
Clusterwise logic through Spark framework. As explained previously in order to
apply a regression in the fastest way, data should be inside the machine which
performs linked operations.

Then rather than to distribute pieces of data through nodes in order to avoid
shuffling, we put the entire dataset on each node using the sc.broadcast(dataset)
function. Once this step is done, we distribute simultaneously every initializations
which correspond to CV x INIT homogeneously over nodes. It allows each node
to perform sequentially their % Clusterwise initializations, via a mapParti-
tions function where the number of Spark partitions is CV x INIT. The Map
part achieved we aggregateByKey obtained results where the Key is a Cross-
Validation index. We decided to use the non-parametric k-nearest neighbors
method to assign observations to their closest macro-cluster P, in order to apply
the associated PLS,. Finally, based on RMSE scores, the best model is selected

over Cross-Validations.
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Dataset n X size, p | Y size, g
Yacht Hydrodynamics | 308 6 1
Forest Fire 517 10 1

Concrete Compressive

Strengtﬁ 1030 8 1
Wine Quality Red 1599 11 1
Wine Quality White | 4898 11 1
SimData 400 10 3

Table 5.1: Overview of data sets.

5.5.1 Prediction accuracy vs micro-cluster sizes

In contrast to the regular PLS regression, micro-batch Clusterwise PLS provides
G regression models corresponding to G macro-clusters. The iterative cross
validation process is as follows: macro clusters are initiated by assigning them
randomly each point, for standard Clusterwise, or each micro-cluster C; for micro-
batch Clusterwise. Then the PLS is applied to each macro-cluster, once it is
achieved, one observation or one micro-cluster C; is moved inside all other macro-
clusters P, in order to compute new PLS regressions. Therefore we run one
regression per macro-cluster with and without a specific observation or micro-
cluster given 2 x G regressions. Once least squares have been compared over all
combinations, the point or the micro-cluster C;. is assigned to the macro-cluster
P, which yields the minimal error. For our experiments different datasets listed in
Table 5.1 of various sizes have been used. Most of them came from UCI repository
[107].

The evolution of the RMSE in Table 5.3 with the value of micro-cluster size
N, shows that we can efficiently decrease the RMSE with our approach (mb-CW-
PLS). We observe a property of Clusterwise methods that increasing number of
macro-clusters G reduces the RMSE score. On the other hand, a lower G allows
to use larger values of N;. In Table 5.3, N/A entry indicates that we cannot execute
the algorithms under these conditions due to risk of generate empty class which
will falsify quality of results. First we seek for the optimal number of macro-clusters
G, then we search for the optimal size of the micro-clusters (buckets) N;. The first
performance criterion is the Root Mean Square Error of prediction as evaluated
with a ten-fold cross-validation procedure. Not surprisingly, mb-CW-PLS always
improves the Root Mean Square Error (RMSE) of prediction while taking into
account the cluster size N;.

We observe a property of Clusterwise methods that an increasing number of
macro-clusters G reduces the RMSE score. On the other hand, a lower G allows
to use larger values of N;. In Table 5.3, N/A entry indicates that the choice of
tuning parameters does not lead to a well-defined solution e.g. if we set high value
of N, we could inconveniently moving every micro-cluster in a macro-cluster to
other macro-clusters. However every macro-cluster has to be present in order
to compare score of the different generated models. If this happened, then we
re-tried with a different initialization, but a threshold of the number of attempts is
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fixed before considering tuning parameters ill-posed. The number of clusters K
in the k-means clustering is K = N/N,, the number of cross validation classes is
CV = 10, the number of initializations is INIT = 20 and the number of k nearest
neighbors for PLS model assignation is 20. Note that for N, = 1 is equivalent to
the standard CW-PLS.

Figure 5.2 illustrates results with the three output dimensions Y from SimData
dataset. We observe that the predicted values (in red) are closer to the true values
(in blue) for the mb-CW-PLS than with CW-PLS. The corresponding RMSE is
referenced in Table 5.3.

CW-PLS mb-CW-PLS

Figure 5.2: Comparison of Clusterwise regression CW-PLS vs mb-
CW-PLS for SimData 's Y. True responses are in blue and predicted
one are in red

5.5.2 Comparison to existing regression methods

To compare our PLS and mb-CW-PLS regressions to other regression methods,
we took the experimental data sets with a single response variable (g = 1). We
then fit models for the OLS, Ridge regression, LASSO and Random Forest using
code from the Smile library (https://haifengl.github.io/smile/). 500 replicates of
90% random sampled are taken as training data, then the RMSE based on the
remaining 10% test data is computed.

The RMSEs are shown in Table 5.2. We observe that PLS provides at least as
well as the OLS, Ridge regression and the LASSO, and less well than the Random
Forest for the Forest Fire, Concrete Data, Yacht Hydrodynamics and Wine Quality
Red. The proposed mb-CW-PLS outperforms these methods, in some cases by a
substantial margin, in terms of the RMSE. Furthermore, for the SimData which
has 3 response variables (¢ = 3), the PLS and mb-CW-PLS are able to produce
results, whereas the other regressions cannot provide results.


https://haifengl.github.io/smile/
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. Concrete Yacht Wine .
Regression | Forest . . Sim
method Fire Compressive Hydro- Quality Data
Strength dynamics Red
0.730 0.626 0.597 0.803
OLS +0.415 +0.000 +0.007 | +0.003 N/A
Ridge 0.729 0.626 0.596 0.803 N/A
regression | +0.415 +0.000 +0.007 | +0.003
0.729 0.626 0.594 0.803
LASSO +0.416 +0.000 +0.007 | +0.003 N/A
Random 0.715 0.373 0.289 0.750 N/A
Forest +0.362 +0.001 +0.008 | +0.002
PLS 0.720 0.649 0.594 0.808 0.223
+0.419 +0.000 +0.007 | +0.002 | +0.158
mb-CW-PLS | 0.899 0.00006 0.226 0.003 0.016
G=6 +0.328 +0.00000 +0.039 | +0.000 | +0.000

Table 5.2: Comparison of the different regression methods. The first
row indicates the mean RMSE followed by the standard deviation.
N/A entry indicates that we cannot execute the algorithms under
these conditions

5.5.3 Comparison of prediction accuracy and execution times

Table 5.3 shows the RMSE scores and the execution times for CW-PLS and
mb-CW-PLS. Let recall that CW-PLS is equivalent to mb-CW-PLS with N, = 1.
Figure 5.4a illustrates some of these results indicating that the higher we set G the
better can be our results with a smaller standard deviation. This result is partially
intuitive in that sense that the more specialized cluster we build, the more effective
will be model built on them. The counter part of this strategy is a risk of overfitting.

For most datasets, mb-CW-PLS presents similar RMSE scores to classical
CW-PLS ones. Indeed execution times is much faster as Figure 5.3c highlights it,
especially on bigger datasets. The micro-batch processing which produces the
micro-clusters allows these decreases in execution time without sacrificing too
much of the prediction accuracy as it is exposed on Figure 5.4b-5.4c. In some
cases as with the Wine Quality Red dataset, we even observe better results. An
interesting thing holds in the modest RMSE evolutions over different N, values for
N, > 1.

5.5.4 Scalability

The results obtained in Table 5.3 were carried out in a local environment (i.e. a
stand-alone terminal). We now examine the performance of mb-CW-PLS in a
true distributed computing set-up. To execute these experiments, we used the
Grid5000 [105] infrastructure which is one of the biggest French’s laboratories
clusters. We used a set-up with two times 8 core Intel Xeon E5-2630v3 or two
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mb-CW-PLS | mb-CW-PLS
Dataset cw-pLs | MOCWPLS | mb-CWPLS |y Ni =
Ny =5 N, = 10
customl custom?2
Forest Fire 0.06625 0.07771 0.08627 +g'gﬁgg . :)(30(2)30577278
G=4 +0.0132 +0.00843 +0.00952 495 51
6 slaves INTEL 26.3s 16.6s 15.68 N - 15 Ne = 20
B R R o
yerody +4.0E-4 +37E-4 | 000138 | T =
G=2 15.6s 13.2s 12.8s 13.3s 13.2s
6 slaves INTEL ) ’ ’ N, =15 N, =20
s | 000w | omwe | oows | LS| 0002
yarody +4.1E-4 +8.2E-4 +0.00146 *o -
G=4 15.0s 13.1s 13.1s 12.9s 12.8s
6 slaves INTEL ’ ’ ’ N, =15 Ny =20
H drggc:;mics 0.00146 0.01227 0.01233 A
yarody +5.0E-5 +8.9E-4 +6.7E-4 N/A
G=6 32.5s 28.2s 29.2s Nie=15
8 slaves AMD ’ ' ’
Wine
Quality 0.01269 0.0099 | oooss2 | oporl | 9900
Red +4.8E-4 +1.0E-4 +1.0E-5 “631s “50.95
G=4 522.1s 141.6s 93.5s N " 50 N - 0
8 slaves AMD k= k=
Wine
Quality Not finished |  0.05567 0.05545 0.05489 0.05481
; +3.9E-4 +2 5E-4
White after 5h +3.4E-4 +4.0E-5
. 1059.2s 587.3s
G=4 of computation 3878.7s 2032.0s N, =20 N, = 40
8 slaves AMD k= k=
Concrete
Compressive 5.0E-5 5.0E-5 5.0E-5 5;00E(-)5
Strength +0.0 +0.0 +0.0 3_7 és N/A
G=4 126.9s 51.9s 41.9s N =15
8 slaves AMD k=
Sim Data 0.02203 0.10793 0.10281 361(?(?;;9
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N, =15
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G=3 +0.00105 +0.00473 +0.00611 8.7 N/A
8 slaves AMD 38.3s 30.0s 29.8s )
Ny =15
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G=4 +0.00156 +0.00688 +0.00497 T 30.0s N/A
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N, =15
Sim Data 0.02951 0.0909 0.0894 +g'%%6
G=5 +0.00233 +0.00376 +0.00572 Tai7 N/A
8 slaves AMD 42.7s 30.5s 30.5s :
N, =15
Sim Data 0.02317 0.09274 0.07298 fdo()?;:fs
G=6 +8.4E-4 +0.0058 +0.00552 By N/A
8 slaves AMD 36.0s 29.7s 32.0s N ” 15
=
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times 12 cores AMD Opteron 6164 HE CPUs and 128 Gb RAM per node.

Table 5.4 presents the average time spent for four runs executing a full Cluster-
wise workflow, which consists to train and test models to select the best one. Total
init CV x Init corresponds to the total number of initializations made. Figure 5.3a
shows that the execution times decreases efficiently with the number of nodes.

# total init | local | 2 slaves | 4 slaves | 6 slaves | 8 slaves
260 276.6 170.3 114.6 107.4 93.9
500 509.7 | 303.6 191.2 162.7 146.7

Table 5.4: Comparison of execution times with different number
of initializations and slave processes for the Yacht Hydrodynamics
using Intel setup.

In order to maximize efficiency, we recommend to have 2-3 times more Spark
partitions than the total number of cores among every nodes. This approach is not
optimal if we have a large data set with few initializations as we do not utilize fully
the distributed computational power of Spark. We can also observe that when the
number of core nodes is exceeded by the number of initializations, the growth in
execution time is almost linear with respect to the number of initializations. As our
distributed set-up consists of nodes with 32 cores, a reduction in execution time is
observed when the number of initializations is higher than 32.

Figure 5.3b shows the linearity of the problem with the increase of the number
of initializations with a set-up of 8 slave nodes. This results illustrate that initializa-
tions are well distributed among nodes which allows an efficient computations of
the algorithm.

5.6 Conclusion

This work presents a new Clusterwise PLS regression algorithm, which brings
multiple improvements. First, the micro-batch processing facilitates a drastic
reduction in execution times, keeping the same magnitude of prediction accuracy.
Second, the distributed implementation enables the test with a large number of
initializations in order to find the optimal cross-validated model. One key aspect of
the algorithm is the number of regressions needed for one complete run which is
2XGXCVXINIT XN ~ 1000x N leading to a quadratic time complexity. Our micro-
cluster approach reduces exclusively the number of regressions from N to ﬁk but
we still compute PLS on the whole dataset preventing better time performance.
In our future works we will examine methods to decrease the execution time and
also to increase prediction quality. Unfortunately, an inevitable bottleneck is the
impossibility to decrease the inner complexity of a regression and Clusterwise
strategy is very regression greedy.

We have seen that combining supervised and unsupervised learning can lead
to better result but often the quality of results does not depend exclusively on the
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learning algorithms but on the features composing the training data set. Selecting
them wisely becomes a challenge by itself which deserves in depth studies.
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Chapter 6

Distributed Features Selection

6.1 Introduction

The use of Rough Set Theory (RST) [72, 100] for feature selection is one ap-
proach that has proved successful and more efficient in comparison to a variety of
state-of-the-art feature selection methods [82]. However, despite being a powerful
feature selection technique, most of the traditional rough set based algorithms are
sequential algorithms, computationally expensive and can only deal with small
datasets. The computational intensive nature of RST and its incapacity to deal
with high dimensional data arise from the necessity to generate all the possi-
ble combinations of features at once, process them in turn to finally select the
most relevant set. However, as the number of features is increasing this task
becomes challenging and this is where the RST inadequacy arises [53]. It is quite
unmanageable to generate the set of all possible feature combinations due to
hardware and memory constraints. Thus, in this chapter, we present two novel
efficient distributed rough set based algorithms, named Sp-RST and LSH-dRST,
for large-scale data pre-processing. The first approach is based solely on the
MapReduce paradigm and the distributed system. The second proposed solution
LSH-dRST, is based on the Locality Sensitive Hashing (LSH) [37] as presented in
chapter 3.

With the aim of choosing the most relevant and pertinent subset of features, a
variety of dimensionality reduction techniques were proposed within the Apache
Spark framework' to deal with big data in a distributed way. Among these are sev-
eral feature extraction methods such as nn-gram, Principal Component Analysis,
Discrete Cosine Transform, etc., and very few feature selection techniques which
are the VectorSlicer, the RFormula and the ChiSgSelector. To further expand this
restricted research, i.e., the development of feature selection parallel methods,
lately, some other feature selection techniques were proposed which are based
on evolutionary algorithms? [120]. These include a generic implementation of
greedy information theoretic feature selection methods®, and an improved imple-
mentation of the classical minimum Redundancy and Maximum Relevance feature
selection method [60]. This implementation includes several optimizations such as
cache marginal probabilities, accumulation of redundancy (greedy approach) and
a data-access by columns®. However, most of these techniques suffer from some

'https://spark.apache.org/docs/2.2.0/ml-features.html
2https://github.com/triguero/MR-EFS
3https://github.com/sramirez/spark-infotheoretic-feature-selection
*https://github.com/sramirez/fast-mRMR
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limitations as they involve the user for parameterization, require noise levels to be
specified, rank features leaving the user to choose its own subset, require the user
to state how many features are to be chosen, or they must supply a threshold that
determines when the algorithm should terminate. All of these require the user to
make a decision based on its own (possibly faulty) judgment. To overcome these
shortcomings, the need for a filter method that does not require any additional
information to function properly seems essential. Rough Set Theory (RST) can be
used as such a technique [82].

The use of RST for feature selection has proved more efficient in comparison
to a variety of state-of-the-art feature selection methods [82]. Over the past years,
RST has become a topic of great interest to researchers and has been applied to
many domains such as in classification [43], and clustering [49]. This success is
due to many aspects of the theory among them the possibility to analyze the facts
hidden in data, it does not require any additional information about the data and it
is able to find a minimal knowledge representation [39]. This is achieved by making
use of the granularity structure of the provided data only. Although RST has been
widely used as a powerful filter feature selection technique, most of the traditional
rough set based algorithms are sequential algorithms, computationally expensive
and can only deal with non-large data sets. The prohibitive complexity of RST
comes from the search for an optimal feature subset through the competing of an
exponential number of candidate subsets. Although it is an exhaustive method,
this is quite impractical for big data as it becomes unmanageable to generate the
set of all possible feature combinations.

6.2 Rough Sets for Feature Selection

6.2.1 Basic concepts

In RST, an information table is defined as a tuple T = (U, A) where U and A are
two finite, non-empty sets, U the universe of primitive objects and A the set of
attributes. Each attribute or feature a € A is associated with a set V, of its value,
called the domain of a. We may partition the attribute set A into two subsets C
and D, called condition and decision attributes, respectively.

Let P c A be a subset of attributes. The indiscernibility relation, denoted by
IND(P), is the central concept to RST and it is an equivalence relation which is
defined as:

IND(P) = {(x,y) €e U X U : Va € P,a(x) = a(y)},

where a(x) denotes the value of feature a of object x. If (x,y) € IND(P), x and y
are said to be indiscernible with respect to P.

The family of all equivalence classes of IND(P), referring to a partition of U
determined by P, is denoted by U/IND(P). Each element in U/IND(P) is a set
of indiscernible objects with respect to P. The equivalence classes U/IND(C)
and U/IND(D) are called condition and decision classes, respectively. For any
concept X € U and attribute subset R C A, X could be approximated by the
R-lower approximation and R-upper approximation using the knowledge of R. The
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lower approximation of X is the set of objects of U that are surely in X, defined as:
R(X)=|_JIE € U/IND®R) : E € X).

The upper approximation of X is the set of objects of U that are possibly in X,
defined as: _
R(X) = U{E e U/INDRR): ENX # 0}.

The concept defining the set of objects that can possibly, but not certainly, be
classified in a specific way is called the boundary region which is defined as:

BNDg(X) = R(X) — R(X).

If the boundary region is empty, that is R(X) = R(X), concept X is said to be
R-definable; otherwise X is a rough set with respect to R. The positive region
of decision classes U/IND(D) with respect to condition attributes C is denoted
by POS .(D) where POS .(D) = UE(X). The positive region POS .(D) is a set of
objects of U that can be classified with certainty to classes U/IND(D) employing
attributes of C.

Based on the positive region, the dependency of attributes is defined as:

|[POS c(c;)|
|U|

measuring the degree k of the dependency of an attribute ¢; on a set of attributes
C.

k=vy(C,c)=

6.2.2 Reduction process

Based on these basics, RST defines two important concepts for feature selection
which are the Core and the Reduct. In RST, a subset R C C is said to be a D-reduct
of C if ¥(C,R) = y(C) and there is no R’ c R such that y(C,R’) = y(C, R). In other
words, the Reduct is the minimal set of selected attributes preserving the same
dependency degree as the whole set of attributes. Meanwhile, RST may generate
a set of reducts, RED?}(C), from the given information table. In this case, any
reduct from RED‘;(C) can be chosen to replace the initial information table. The
second concept, the Core, is the set of attributes that are contained by all reducts,
defined as:
COREp(C) = (| REDp(C);

where REDp(C) is the D-reduct of C.

Specifically, the Core is the set of attributes that cannot be removed from the
information system without causing collapse of the equivalence-class structure.
This means that all attributes present in the Core are indispensable.

6.3 Version based on distributed system

6.3.1 General Model Formalization

Sp-RST creates a Resilient Distributed Dataset (RDD) and formalizes it as a
given information table defined as Txpp, where U = {xi, ..., xy} is the universe,
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the conditional attribute set is C = {c;,...,cy} and the decision attribute D =
{di,...,dy} corresponds to the class (label) of each Trpp sample. The conditional
attribute set C presents the pool from where the most convenient features will be
selected.

In order to make our algorithm scalable with the high number of features, we
partition the given Tkpp into m data blocks based on splits from the conditional
attribute set C defined as:

i=1

where r € {1,...,V}. Each Tgpp,, is constructed based on r random features
selected from C, where

VTRDD(,-) : ﬂ{cr} = ﬂ TRDD(,->-
i=1

To ensure scalability, rather than applying Sp-RST to Trpp including the whole
C set, the distributed algorithm will be applied to every single Trpp,,. At the end
all the intermediate results will be gathered from the different m partitions. In such
a way, we can guarantee that Sp-RST can be applied to a computable number
of features and hence solving the standard RST computational inefficiencies.
Algorithm 18 highlights the pseudo-code of our proposed Sp-RST solution.

Algorithm 18 Sp-RST

Inputs: Txpp the information table
m number of partitions
N the number of iterations
Output: Reduct
1: Calculate IND(D)
2: for eachiterationn € [1,...,N] do
3 Generate Trpp,, based on the m partitions
4 for each Trpp,, partition, i € [1,...,m] do
5: Generate AllComb(Cr)
6:
7
8
9

Calculate IND(AlICombc,))
Calculate DEP(AlICombc,))
Select DEP,,,,(AllCombc,))
; Filter DEP,,,,(AllCombc,))
10: Filter NbF s (DEP,,4(AllComb(c,)))

11: end for

12:  for each Tkpp, output do

13: Reduct,, = U, RED,, (C,)
14: end for

15: end for

16: Reduct = ﬂg’:l Reduct,,
17: return (Reduct)
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In order to further guarantee the Sp-RST performance while avoiding any
significant information loss, we apply the algorithm N times on the Txpp m data
blocks. More precisely, through all the iterations, the algorithm will first generate
the m random Trpp, as previously explained. Then, for each partition the dis-
tributed Sp-RST tasks, Algorithm 18 line 5 to 10, will be executed.

As seen in Algorithm 18, line 1 presenting the first Sp-RST task is executed
before the iteration loop. This is because this task deals with the calculation of the
indiscernibility relation of the decision class IND(D) and is independent from the
m generated partitions as the result depends on the data items class and not on
the features. After the iteration loop, line 12, the output of each partition is either a
single reduct RED;, (C,) or a family of reducts RED{D)(C,).

Based on the RST preliminaries, any reduct of REDI'.TD)(C,) can be used to rep-
resent the Trpp,, information table. Consequently, if Sp-RST generates only one
reduct, for a specific Trpp,, block, then the output of this feature selection phase
is the set of the RED,,, (C,) features. These features reflect the most informative
ones among the C, attributes resulting a new reduced Trpp,,, Trop,,(RED), Which
preserves nearly the same data quality as its corresponding Txpp,,(C,) that is
based on the whole feature set C,.

On the other hand, if Sp-RST generates a family of reducts then the algorithm
randomly selects one reduct among REleD)(Cr) to represent the corresponding
Trpp,,- This random choice is justified by the same priority of all the reducts in
RED{D)(C,). At this stage, each i data block has its output RED; , (C,) referring to
the selected features. However, since each Trpp,, is based on distinct features
and with respect to Trpp = ULZ,(C-)Trpp,, @ union of the generated selected
features is required to represent the initial Txpp; Algorithm 18, line 12 to 14. As
previously mentioned, the process of applying Sp-RST will iterate N times gener-
ating N Reduct,,. Thus, at the end an intersection of all the obtained Reduct,, is
needed. By removing irrelevant and redundant features, Sp-RST can reduce the
dimensionality of the data from Tkpp(C) to Trpp(Reduct).

6.3.2 Distributed Algorithmic Sp-RST Details

The algorithm goes through 7 main jobs in order to generate the final sought
Reduct. First, Sp-RST has to compute the indiscernibility relation for the decision
class D ={d,,...,dy}; defined as IND(D): IND(d;). More precisely, Sp-RST will
calculate the indiscernibility relation for every decision class d; by gathering the
same Trpp data items, which are defined in the universe U = {x,..., x5} and
which belong to the same class d;. To do so, Sp-RST processes a aggregateByKey
operation where the decision label d; defines the key and the Typp data items
identifiers id; of x;, define the values (see Algorithm 19).

Once the IND(D) is calculated and within a specific partition, Sp-RST creates
all the possible combinations of the C. set of feature; AllCombc,,. The third Sp-
RST job deals with the indiscernibility relation computation for every previously
generated combination. As presented in Algorithm 20, Sp-RST aims at grouping
all the data items identifiers id; sharing the same specific combination of features
extracted from AllComb,. In order to achieve this, we use the aggregateByKey
spark operation where the combination of features defines the key and the id; as



90 Chapter 6. Distributed Features Selection

Algorithm 19 Calculate IND(D)
Input: Trpp
Output: IND(D) : Array[Array[x;]]
1: IND(d;) = data.map{case(id;, vector, d;) => (d;, id;)}
.aggregateByKey(ArrayBuf fer.empty[Long])(adde, merge)
2: IND(d;).map{case(d;, x;) => x;}.collect

value.

Algorithm 20 Calculate IND(AIICombc,))

Inputs: TRDD[: AllCOWLb(Cr)
Output: IND(AlICombc,)) : Array|Arraylid;]]

1: IND(AlICombc,)) = data.map {case(id;, vector,d;) => ((AllComb,), vector),
id;)}.aggregateByKey(ArrayBuf fer. empty[Long])(adder, merger)

2: IND(AlICombc,)).map{case(ListValues,id;) => id;}.collect

Then, the dependency degrees y(C,, AllCombc,,) of each feature combination
are computed. To do so, the calculated indiscernibility relations IND(D) and
IND(AllIComb,)) as well as the set of all feature combinations AllComb,, are
required. The task is to first test if the intersection of every IND(d;) with each
IND(AlICombc,)) keeps all the latter elements; referring to the lower approxima-
tion. If so then a score which is equal to the length of IND(AlICombc,)) is given,
zero otherwise.

As this process is made in a distributed way where each machine is dealing
with some feature combinations, a first sum operation of the IND(d;) scores is
operated followed by a second sum operation to record all the IND(D) scores;
referring to the dependency degrees y(C,, AllCombc,,). The output of this step
is the set of dependency degrees y(C,, AllComb,)) of the feature combinations
AllComb c,, and their associated sizes S izeuucoms,,,)- At this stage, Sp-RST looks
for the maximum dependency value among all y(C,, AllComb,)) using the max
function operated on the given RDD. The output MaxDependency reflects in one
hand the dependency of the whole feature set (C,) representing the Txpp, and on
the other hand the dependency of all the possible feature combinations satisfying
the constraint y(C,, AllComb,)) = y(C,). MaxDependency is the baseline value
for feature selection.

Once the MaxDependency is generated, Sp-RST keeps the set of all combina-
tions having the same dependency degrees as MaxDependency; y(C,, AllCombc,))
MaxDependency. This is achieved by applying a filter function. In fact, at this
stage Sp-RST removes in each computation level the unnecessary features that
may affect negatively the performance of any learning algorithm.

Finally and based on the output of the previous step, Sp-RST keeps the set of
combinations having the minimum number of features, S izeucoms,,,), OY applying
a filter operation and by satisfying the full reduct constraints discussed in Sec-
tion 6.2; y(C,, AllComb,) = y(C,) while there is no AllComb/(Cr) C AllComb,

such that y(C,,AllComb;Cr)) = y(C,, AllComb,). Each combination satisfying
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this condition is considered as a viable minimum reduct set. The attributes of the
reduct set describe all concepts in the original training dataset Txzpp, .

6.4 Version based on distributed system and fea-
tures partitioning

To perform feature selection in the context of big data, Sp-RST partitions the
feature search space in a random way where each partition holds a random set
of features. Each partition is dealt with separately in the distributed environment
that at the end of the feature selection process all the selected features from
each partition are gathered together to generate the final reduced set of features.
Eventually, in such implementation design, it is very likely that similar features will
belong to different partitions and hence a cut in data dependency will occur. It is
very important to highlight that data dependency is a key issue in a distributed
environment and in parallel computing. Nevertheless, based on the Sp-RST
architecture, data dependency will not be assured as the algorithm uses an
arbitrary procedure in partitioning the feature search space.

The second proposed solution, dubbed LSH-dRST, uses LSH presented in
chapter 3, Section 3.2.2, which maps similar data instances based on their feature
values into the same bucket in low dimensional cases as clustering, and based
on this process, LSH-dRST uses the generated buckets to partition the feature
search space in a more reliable way and hence guaranteeing data dependency
and a lower computational cost.

6.4.1 General Model Formalization

Technically, to deal with high dimensional data sets and to make use of the LSH
technique, within a distributed environment, we first generate the appropriate
buckets based on LSH, map them into partitions, partition the entire rough set
feature selection process into elementary tasks, each executed independently
on each generated bucket, and then conquer the intermediate results to finally
acquire the ultimate output; the reduct set.

As in the previous approach, we may formalize the latter as a given information
table defined as Trpp, Where universe U = {x,, ..., xy} is the set of data items, the
conditional attribute set C = {cy, ..., cy} contains every single feature of the Trpp
information table and the decision attribute D of our learning problem corresponds
to the class (label) of each Txpp sample and is defined as D = {d,...,dw}. The
conditional attribute set C presents the pool from where the most convenient
features will be selected.

In order to make our algorithm scalable with the high number of features and
with respect to data dependency, we partition the given Tgpp information table into
B data blocks based on the B generated LSH buckets. The buckets are splits from
the conditional attribute set C and each bucket covers a specific feature space
enclosing all similar and close instances based on their feature values.

Hence, Trpp = Uf:l(ch)TRDD(h); where h € {1,...,V}. his a value generated
by LSH referring to the number of features per bucket that will be considered to



92 Chapter 6. Distributed Features Selection

Algorithm 21 LSH-dRST
Inputs: Txpp: information table with D as decision class, K: number of nearest

neighbors, B: number of buckets
Output: Reduct

1: Generate the B LSH buckets

2: Calculate IND(D)

3: for each Txpp,, where b € [1,...,B] do

4: Generate the set S sub-information tables CI based on K

5: for each CIl(K) where s e [1,...,5]do

6: Generate AllCOWLb([(), Calculate IND(AZZCOmb([())

7: Calculate DEP(AlIComb ), Select DEP,,,,(AllComb )

8: Filter DEP,,,,(AllComby)), Filter NbF,,;,( DEP,,,,(AllComby)))
9: end for
10: end for

—_
—_

. for each TRDD([,) do

12: for each CI,(K) output do
13: Reduct = \Jr_, | J>_, RED;
14: end for

15: end for

16: return (Reduct)

create each Trpp,, data block; and is equal to the size of the feature space C
divided by B.

Once the buckets are defined, each Trpp, is divided into S automatically
created sub-information tables CI based on the K nearest neighbors approach;
where K refers to the number of features per sub-information table and on which
LSH-dRST will be applied. Hence, Trpp,,, = Uf,:l Cly(K); where § = C,/K.

To ensure scalability, rather than applying LSH-dRST to Typp including the
whole conditional feature set C the distributed algorithm will be applied to every
single CIl,(K), where s € {1,...,5}, that at the end all the intermediate results will
be gathered from the different C/ sub-information tables of every Txpp,, partition.
In such a way, we can guarantee that LSH-dRST can be applied to a computable
number of features while preserving data dependency and hence solving the
standard distributed RST limitations. Algorithm 21 highlights the pseudo-code of
our proposed LSH-dRST solution.

More precisely, the algorithm will first generate the B partitions using LSH,
Trop,, While preserving data dependency as previously highlighted. Then, for
each partition, the CI sub-information table will be created in a way that the K
nearest neighbors from any data point within the Trpp,, feature search space
form a sub-information table CI(K) (Algorithm 21, line 4). Through all the S
Cl sub-information tables, the distributed LSH-dRST tasks, line 5 to 9, will be
executed.

As seen in Algorithm 21, line 2 is executed out of the Trpp,, and the CI(K)
iteration loops. The main reason for this implementation is that this task deals with
the calculation of the indiscernibility relation of the decision class IND(D). This
task is independent from the B generated partitions as the result depends on the
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data items class and not on the features. Out from the iteration loops, line 10, the
output of each CI(K) is either a single reduct RED;,, (K) or a family of reducts
REDf(D)(K). Based on the RST preliminaries previously mentioned in Section 6.2,
any reduct of REDQD)(K) can be used to represent the CI,(K) sub-information
table.

Consequently, if LSH-dRST generates only one reduct, for a specific CI(K)
sub-information table, then the output of this feature selection phase is the set of
the RED;,,, (K) features. These features reflect the most informative ones among
the K attributes of CI (K) resulting a new reduced CI(K), CI,(RED), which pre-
serves nearly the same data quality as its corresponding CI,(K) which is based
on the whole feature set K.

On the other hand, if LSH-dRST generates a family of reducts then the algo-
rithm randomly selects one reduct among REDQ »,(K) to represent the correspond-
ing Cl4(K). This random choice is argued by the same priority of all the reducts
in REDSF(D)(K). In other words, any reduct included in REDf(D)(K) can be used to
replace the K attributes of CI(K). At this stage, each CI; sub-information table
has its output RED;, (K) referring to the selected features. However, since each
Cl is based on distinct features within different Tzpp,, feature search spaces and
with respect to Trpp,, = Ule CIl,(K) a union of the generated selected features
is required to represent the initial Txpp; defined as Reduct = |, |5, RED;
(Algorithm 21, line 11 to 15).

By removing irrelevant and redundant features, LSH-dRST can reduce the
dimensionality of the data from Tkpp(C) to Trpp(Reduct). In what follows, we will

elucidate the different LSH-dRST elementary distributed tasks.

6.4.2 Distributed Algorithmic LSH-dRST Details

As previously highlighted, the elementary feature selection LSH-dRST distributed
tasks will be executed on every CI,(K) sub-information table defined by its K
features along the Tkpp,, partitions; except for task 2 in Algorithm 21 dealing with
IND(D). The algorithm goes through 10 main jobs in order to generate the final
sought Reduct.

The first step, is to apply LSH to generate the B buckets based on a hash table.
To do so, LSH-dRST creates the hash table based on a set of random vectors
following a Gaussian distribution (referred as the H family of hash functions).
The constructed hash table is based on the size of the features of Tzpp. After
that, the algorithm maps the Trpp to work on each partition separately and on
each partition it applies a projection for each vector based on the set of the Txpp
mapped feature vectors. As a result the buckets are automatically created; each
with a specific index (referred as a hash code). Finally, LSH-dRST performs a sort
action to order the buckets with respect to the given number of buckets B. The
pseudo-code of this distributed task is given in Algorithm 22.

After that, LSH-dRST has to compute the indiscernibility relation for the de-
cision class D = {d,...,dy}; defined as IND(D): IND(d;). More precisely,
LSH-dRST will calculate the indiscernibility relation for every decision class
d; by gathering the same Typp data items which are defined in the universe
U = {x1,...,xy} and which belong to the same class d;. To do so, LSH-dRST
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Algorithm 22 Generate Buckets(B)

Inputs: Trpp, B

Output: Trpp,,

Generate the hash table based on the Txpp feature size
Map the Trpp

Apply the LSH projection for each vector

Sort the buckets by B

R

processes a aggregateByKey® operation where the decision label d; defines the
key and the Trpp data items identifiers id; of x;, define the values. The set of gath-
ered data items is only kept as it represents IND(D): IND(d;). The pseudo-code
related to this distributed job is highlighted in Algorithm 19.

At its third step, LSH-dRST has to generate the set S of the CI(K) sub-
information tables based on the number of features K. Let us recall at this stage
that LSH gathered all the similar features already within a same specific bucket.
On these similar attributes, a further partitioning is required to generate the sub-
information tables that can be handled by the LSH-dRST algorithm.

As mentioned in Section 6.2, the standard rough set theory has to generate all
the combinations of features at once, process them in turn to finally generate the
reduct. As it is infeasible to generate all the combinations of features within the big
data context, then the distributed LSH-dRST will operate on the sub-information
tables constructed on K number of features; where K is a manageable size that
can be handled by the algorithm. Therefore and to achieve this distributed task, for
every bucket Txpp,,, LSH-dRST performs a mapPartitionsWithIndex® operation
using the buckets indexes; the already generated hash codes in Algorithm 22.
Then, the later result is mapped, where on each partition, the K nearest features
to a randomly chosen attribute within the same Trpp,, hash code, are selected to
form a sub-information table. The pseudo-code related to this distributed job is
highlighted in Algorithm 23.

Algorithm 23 Generate CI(K)

Inputs: Trpp,,, K
Outputs: S, CI(K)

1: Perform a mapPartitionsWithIndex on every Trpp,, using its index

2: Map the result of step (1)
Perform a KNN by looking for the K nearest features within a randomly selected
attribute within each Trpp,,

3: Generate the set § of the CI(K) sub-information tables

Once the set S of the CI(K) sub-information tables is generated for all the
Trpp,,,» LSH-dRST has to perform feature selection for each single C/,(K). To do

5https://spark.apache.org/docs/®.7.2/api/core/spark/PairRDDFunctions.html

Shttps://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.
html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.
ClassTag)


https://spark.apache.org/docs/0.7.2/api/core/spark/PairRDDFunctions.html
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)
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so, first, the algorithm has to create all the possible combinations of the K set of
features, AllComb x,, using the flatMap’ spark function as shown in Algorithm 24.

Algorithm 24 Generate AllComb

Input: K
Output: AlIComb g,
1: AllComb, = K. flatMap(K.combinations) .drop(1)

Then, the fifth LSH-dRST job deals with the indiscernibility relation computation
for every previously generated combination. As presented in Algorithm 25, LSH-
dRST aims at grouping all the data items identifiers id; sharing the same specific
combination of features extracted from AllComb . In order to achieve this, we use
the aggregateByKey spark operation where the combination of features defines
the key and the id; mapped as value.

Algorithm 25 Calculate IND(AlIComb k)

Inputs: Cl(K), AllComb
Output: IND(AlIComb ) : Array[Arraylid,]]
1: IND(AllComb(K)) =
Map the CI (K) sub-information table
Perfom a aggregate ByKey operation based on (AllComb ,, id;)
2: Map the result of step (1) to keep id; as follows:
IND(AlICombk)).map{case(ListValues, id;) => id;}.collect

At this phase, LSH-dRST prepares the set of features that will be selected
in the coming steps. In Algorithm 26, the dependency degrees y(K, AllComb )
of each feature combination are computed. The calculated indiscernibility rela-
tions IND(D) and IND(AlIComb,) as well as the set of all feature combinations
AllComb, are required. The taskis to test, first, if the intersection of every IND(d;)
with each IND(AlIComb,) keeps all the latter elements; referring to the lower
approximation. If so then a score which is equal to the length of IND(AlIComb k)
is given, zero otherwise. As this process is made in a distributed way where each
machine is dealing with some feature combinations, a first sum operation of the
IND(d;) scores is operated followed by a second sum operation to record all the
IND(D) scores; referring to the dependency degrees y(K, AllComby)).

The output of this step is the set of dependency degrees y(K, AllComb k)
of the feature combinations AllCombx, and their associated sizes S izeiucomb)-
Then, LSH-dRST looks for the maximum dependency value DEP,,,(AllCombx))
among all y(K, AllComb k) using the max function operated on the given RDD. The
output MaxDependency reflects in one hand the dependency of the whole feature
set K representing the CI(K) and on the other hand the dependency of all the
possible feature combinations satisfying the constraint y(K, AllComb ) = y(K).
MaxDependency is the baseline value for feature selection.

Once the MaxDependency is generated, LSH-dRST keeps the set of all
combinations having the same dependency degrees as MaxDependency; i.e.,

“https://spark.apache.org/docs/latest/rdd-programming-guide.html
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Algorithm 26 Generate DEP(AlIComb )

Inputs: AllComb,, IND(D), IND(AIIComb )
Outputs: y(K, AllComb)), S izeucomb )

1: for i:= AllComb(K) do

2 for j:=IND(D) do

3 for v := IND(AlIComb,) do

4: if j.intersect(v).length == v.length then v.length
5

6

7

else 0
Reduce(_ + )

Reduce(_ + )

Algorithm 27 Select DEP,,,,(AllComb )

Input: RDD[A”COI’}’ZZ’)(K), Size(Aucomb(K)), ’)/(K, AllComb(K))]
Output: MaxDependency
1: RDD.max()(Ordering[Int].on(_._3))._3

Y(K,AllComb ) = MaxDependency. This is achieved by applying a filter func-
tion. In fact, at this stage LSH-dRST removes in each computation level the
unnecessary features that may affect negatively the performance of any learning
algorithm.

Algorithm 28 Filter DEP,,,.(AllComb k)

Inputs: RDD[A/IComb ), S izeaucomby): YK, AllCombx,)], MaxDependency
Output: FiItered-RDD[AllComb(K), Size(AllCOmb(K)), y(K,AllComb(K))]
1: RDD.filter(_._3 == maxDependancy)

Finally and based on the output of the previous step, LSH-dRST keeps the
set of combinations having the minimum number of features, Sizewuucomp ), BY
applying a filter operation (NbF ,;,( DEP,,,,(AllComb,))) and by satisfying the full
reduct constraints discussed in Section 6.2; y(K, AllComb,) = y(K) while there
is no AllComb;K) C AllComb , such that 7(K,AllComb;K)) = y(K, AllComb ).

Each combination satisfying this condition is considered as a viable minimum
reduct set. The attributes of the reduct set describe all concepts in the sub-
information table C/,(K).

6.5 Experiments

6.5.1 Benchmark

To demonstrate the effectiveness of our proposed approach we chose the Amazon
Commerce reviews data set from the UCI machine learning repository [68] as
it was the dataset with the largest number of features that still had a sufficiently
large number of data items. This data set was derived from customer reviews
on the Amazon commerce website by identifying a set of most active users and
with the goal to perform authorship identification. The database includes 1500
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Algorithm 29 Filter NbF,;,(DEP,,,(AllComby))

Input: RDD[AIZComb(K), SiZe(AllComb(K))a y(K,AllComb(K))]

Output: Filtered—RDD[AllComb(K), Size(AHC(,mb(K)), y(K,AllComb(K))]
1: minNbF := RDD.min()(Ordering[Int].on(_._2))._ 2
2: RDD.filter(_._2 == minNbF)

data items described through 10 000 features (linguistic style such punctuation,
length of words, sentences, etc.) and 50 distinct classes (authors). Instances are
identically distributed across the different classes, i. e., for each class there are 30
items.

The analysis focuses on the scalability of the algorithm that allows it to solve
the standard rough set feature selection inadequacy to be applied to Big Data. To
do so, we will evaluate the performance using the speedup, sizeup and scaleup
criteria introduced in [38]. For the evaluation of Random Forest as classifier, we
use the standard set based performance measures which are the the classification
error and measures presented in appendix.

Speedup Analysis We keep the size of the data set constant (where size is
measured by the number of features, i.e., 10 000 features in our case) and increase
the number of nodes. The speedup of a system with m nodes:

Speedup(m) = runtime on one node
P pim) = runtime on m nodes

Scaleup Analysis The scaleup evaluates the ability to increase the number of
nodes and the size of the data set simultaneously:

runtime for data set of size s on 1 node
Scaleup(m) = _ .
runtime for data set of size s - m on m nodes

Sizeup Analysis

The sizeup keeps the number of nodes constant and measures how much the
execution time increases as the data set is increased by a factor of m:

) runtime for data set of size m - s
Sizeup(m) = . . .
runtime for baseline data set of size s

6.5.2 Sp-RST analysis

The main aim of our experimentation is to demonstrate how our proposed approach
Sp-RST speeds up the execution time for large data sets without introducing too
much information loss. We investigate different parameters of Sp-RST and an-
alyze how these affect execution time and stability of the feature selection. We
then show that the improvement in performance does not decrease the feature
selection ability by using a Random Forest classifier on the original dataset and
the reduced datasets produced by Sp-RST.
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Figure 6.1: Speedup for different numbers of nodes and partitions.

We use the Random Forest implementation provided in the Mlib/Spark frame-
work, with the following parameters: maxDepth=6, numTrees=300, featureSubset-
Strategy="all’ and impurity="gini’. The algorithm automatically identifies categorical
features and indexes them. Preliminary results revealed that a maximum of 10
features per partition is the limit that can be processed by Sp-RST. We therefore
perform experiments for 1000, 1200, 1250, 1330, 1500, 2000 and 2500 partitions
in Algorithm 18.

We run all settings on 1, 4, 8, 16, and 32 nodes on Grid5000. For the purpose
of this study we set the number of iterations in Algorithm 18 to 10 (based on
preliminary experiments). We will evaluate the performance of Sp-RST using the
speedup and sizeup criteria.

Speedup

We first consider the speedup of Sp-RST. We keep the size of the dataset constant
(where size is measured by the number of features in each partition) and increase
the number of nodes. We plot the average time needed to run a single iteration
within Algorithm 18 (over the 10 iterations executed) and the respective speedups
in Figures 6.1 and 6.2, respectively.

An ideal parallel algorithm has linear speedup, which is, however, difficult to
achieve in practice due to communication cost and the fact that the slowest slave
dominates the total execution time. From Figure 6.1 we see that our method
has a good speedup for settings with fewer partitions. The more the size of the
database, i. e., the number of attributes per partition, increases, the closer the
speedup gets to linear. This can be explained by the fact that fewer partitions
imply that each partition has more features. As discussed previously the execution
time grows exponentially in the number of features and thus, using more nodes
is more beneficial in cases with many features. We obtain good speedup if the
number of features per partition is between 7 and 10 (1000 to 1330 partitions), but
for 4 or 5 features (2000 and 2500 partitions, respectively) the speedup quickly
stagnates. This observation is also supported by the execution times (Figure 6.2).
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Figure 6.2: Average execution times for a single iteration of Algo-
rithm 18 and for different numbers of nodes and partitions.

For few partitions the execution time quickly decreases with increasing number of
nodes while for many partitions we observe hardly any improvement.

Sizeup

We use Sp-RST with 2500 partitions as baseline as this is the smallest dataset in
our experiments and calculate the m values for the other settings based on the
number of features per partition. We then plot the sizeup in Figure 6.3. We see
that the sizeup of Sp-RST grows very quickly as m increases, but gets better as
the number of nodes increases. Recall that we define the size of the database
as the number of features per partition. Thus, this behavior was expected due
to the runtime properties of Sp-RST previously discussed. We conjecture that
using the classic definition of size as the number of features in the whole database
would yield a good sizeup, i. e., that our method is able to process large datasets
efficiently while keeping the number of nodes constant and increasing the size of
the data.

Together with the above discussion of the speedup, we see that there is some
trade-off between the number of partitions and the number of nodes used. If only
few nodes are available, it may be advisable to use a larger number of partitions
to reduce execution times while the number of partitions becomes less important
if a high degree of parallelization can be afforded. It should be noted that using a
larger number of partitions has the potential to increase information loss during
the data-preprocessing step. Our following experimentation and analysis shows
that this, however, is not the case.

Classification Error With and Without Sp-RST

To validate the suitability of our method with respect to classification, we investigate
the influence of Sp-RST on the classification error of the Random Forest classifier.
We present results of 100 independent runs on the original dataset with 10 000
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Figure 6.3: Sizeup for different numbers of nodes and values of m.

features and the datasets derived by Sp-RST with different numbers of partitions
in Table 6.1. While the overall error seems high, it should be noted that the used
database contains 50 distinct classes. Thus, a naive baseline classifier making
random guesses would have a classification error of 98%, which is significantly
higher than for our approach.

The median error of Random Forest on the original dataset is larger than the
corresponding value for all Sp-RST settings. Considering averages, only 1000
partitions and 2000 partitions are slightly higher than Random Forest without
Sp-RST. We perform statistical tests as described previously and find that the error
difference by Sp-RST with 1330, 1500, and 2500 partitions is statistically significant
at confidence level 0.05 while for the other settings no statistically significant
difference could be found. We, therefore, conclude that Sp-RST introduces no
significant information loss as results are at least comparable.
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6.5.3 LSH-dRST analysis

The main aim of our experimentation is to demonstrate that our proposed approach
LSH-dRST preserves data dependency within the same generated buckets and
within the distributed environment. We will show that by using a more intelligent
partitioning of the universe, via the use of LSH, a more reliable process of gathering
similar data instances based on their feature values can be reached; and hence
better classification results can be obtained. Indeed, we will show that LSH-dRST
is not only scalable but also more reliable for feature selection; making it more
relevant to big data pre-processing.

We, therefore, investigate different parameters of LSH-dRST and analyze
how these affect execution time and stability of the feature selection; hence
data dependency. We then show that the improvement in performance does not
decrease the feature selection ability by using a Random Forest classifier on the
original data set, the reduced data sets produced by LSH-dRST and some other
feature selection techniques as described below. We use the scikit-learn Random
Forest implementation® with the following parameters: n_estimators = 1000,
n_jobs = —1, and oob_score = True. A Stratified 10-Folds cross-validator® is used
for all our conducted experiments.

Based on the conducted experiments in Sp-RST Section, a maximum of 10
features per sub-information table CI is used that can be processed by LSH-
dRST. We therefore perform experiments for 2, 5, 10, 25 and 50 buckets (B), in
Algorithm 21, each comprising sub-information tables of 4, 5, 8 and 10 features
(F); where F refers to the K parameter in Algorithm 21. For instance, for bucket
(B = 2) and for a number of 4 features (F = 4) per sub-information table the
algorithm generates 1250 CI. We run all settings on 1, 2, 4, 8, and 16 nodes
on the Grid5000 testbed'® which is a French national large-scale and versatile
platform.

Our analysis first focuses on the scalability of the algorithm. We evaluate
the performance of LSH-dRST using the speedup, sizeup, and scaleup criteria
introduced in previous section and define the combined runtime for LSH and dRST
as the execution time of our method.

We perform model evaluation using a Random Forest classifier to evaluate
the quality of our feature selection and compare it with other common techniques,
namely the Sum Squares Ratio as implemented in Smile'" as well as Information
Gain, Gain Ratio and Chi Squared as provided in Weka 3.6.15'%. For the Sum
Squares Ratio, we set the number of features to be selected to a value comparable
with LSH-dRST, i.e., the average number of features selected for each parameter
setting of F. All other methods were run with ‘Ranker’ as search method and a
threshold of 0. We determine the sets of features selected by these methods and

8http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

9http ://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
StratifiedKFold.html

Ohttps://www.grid5000. fr/mediawiki/index.php/Grid5000 : Home

"https://haifengl.github.io/smile/feature.html

"?https://www.cs.waikato.ac.nz/~ml/weka: classes ChiSquaredAttributeEval, GainRa-
tioAttributeEval, InfoGainAttributeEval


http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
https://haifengl.github.io/smile/feature.html
https://www.cs.waikato.ac.nz/~ml/weka
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then perform 10 runs of the above Random Forest implementation on the new
feature set. We use the standard measures which are the precision, the recall,
the accuracy and the F1 score defined in appendix to report our results.

LSH-dRST makes use of randomisation in several places, e.g., LSH uses
random projections, the construction of the sub-information tables starts with a
randomly selected feature, and we select one reduct among the generated family
of reducts randomly. For this reason, we always perform multiple runs of the
algorithm and report appropriate statistics.

Speedup

We plot the speedup in Figure 6.4 and see that the speedup for most param-
eter settings is very similar. However, setting F = 8 improves the speedup
considerably—independently of the setting for B (where B =5 and B = 10 yield
the best overall results). Overall, we conclude that the number of buckets does
not have a significant influence on the speedup, but the number of sub-information
tables F does. The latter is expected since the execution time grows exponentially
in the number of features and thus, using more nodes is more beneficial in cases
with many features.

It is therefore somewhat surprising that F = 10 does not exhibit a larger
speedup. Note that an ideal parallel algorithm has linear speedup, which is, how-
ever, difficult to achieve in practice due to startup and communication cost as well
as interference and skew.

© — Parameters
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Figure 6.4: LSH-dRS. Speedup for Amazon with 10 000 features
for 16 nodes.

Sizeup Analysis

To measure the sizeup we have created smaller databases by selecting random
features from the original Amazon 10000 database. We use 1000 features as a
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Figure 6.5: LSH-dRS. Sizeup for Amazon with 10 000 features for
16 nodes.

baseline and consider 2000, 4 000, 6 000, 8 000, and 10 000 features, respectively.
We plot the sizeup for 16 nodes (the largest number of nodes we consider) in
Figure 6.5 and see that our method has sub-linear sizeup for most parameter
settings, i. e., for a 10-times larger data set it requires less than 10 times more
time.

The only two exceptions are F =4 and F = 5 (i. e., small numbers of features)
with only two buckets (B = 2). Looking closer into our results we can observe that
for some parameter settings the LSH part of LSH-dRST is more time-consuming
than the rough set part, but for others it is less time-consuming.

Scaleup Analysis

We use the sub-data sets previously described with 1 000 features as a baseline
and plot the results in Figure 6.6. It should be noted that a scaleup of 1 implies
linear scaleup, which similarly to linear speedup is difficult to achieve. Our scaleup
is clearly smaller than 1 for all parameter settings, but fluctuates between 0.2 and
0.4 for most settings and 8 nodes, including the ones that exhibit the best speedup.
The best scaleup is achieved for F = 5 and large values for B.

Comparison with Other Feature Selection Methods

We show the results of 10 runs of random forest on the different reduced data
sets in Figures 6.7 and 6.8. We observe that LSH-dRST outperforms the Chi
Squared, Information Gain and Gain Ratio selection methods and has comparable
performance to the other methods. Moreover, we see that the classification
result is quite stable with respect to the parameter settings in LSH-dRST. This is
observed for all evaluation metrics, i.e., accuracy, recall, precision, and F1 score.
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Figure 6.6: LSH-dRS. Scaleup.

6.6 Conclusion

We have presented here two novel efficient distributed algorithms based on Rough
Set Theory for large-scale data pre-processing under the Spark framework. To
reduce the computational effort of the rough set computations, the first approach
(Sp-RST) splits the given dataset into partitions with smaller numbers of features
which are then processed in parallel. The second proposition LSH-dRST use
locality sensitive hashing as clustering method to determine appropriate partitions
of the feature set. This second approach improves (Sp-RST) method, which use
random partitions.

We have demonstrated its effectiveness using the Amazon Commerce reviews
data set from the UCI machine learning repository, a dataset with 10 000 features
and 1500 data items equally spread over 50 classes. A detailed experimentation
reveals that our proposed Sp-RST method achieves a good speedup, but in order
to also achieve good sizeup a large number of partitions is necessary.

The experiments demonstrate also that LSH-dRST scales well in terms of
three commonly used evaluation criteria: speedup, sizeup, and scaleup. We
investigate different parameter settings and show that LSH-dRST is robust with
respect to the number of buckets used in LSH while there is a clear trade-off
between quality of the feature selection and speedup with respect to the second
parameter (the number of features in each sub-information table). Configured
appropriately the mean accuracy achieved by a random forest classifier on the
reduced data sets is better than for the unreduced data set and comparable to the
results obtained by Sp-RST, however, LSH-dRST exhibits a much smaller variance
in the feature selection process and thus, is considered more reliable.

Based on the conducted experiments and results, we can clearly see the
benefit and impact of using the locality sensitive hashing as clustering method in
our proposed solution as it partitions the high dimensional feature search space in
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a more reliable and intelligent way and hence guaranteeing data dependency in
the distributed environment, and ensuring a lower computational cost.
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Chapter 7

Applications and Open Source

7.1 Kameleoon

Kameleoon is an A/B testing and personalization company which offers to its
customers the ability to know which version of their websites performs the best
giving specific goals as reach a gender dedicated section or click on the buy button.
The objective of most websites is to propose the best navigating experience in
order to maximise goals realization, which goes from coming back to the website
to buy something passing from subscribing to the last newsletter.

In order to help with these issues, Kameleoon started to propose A/B Testing
then personalization solutions. A/B Testing enables to test which version (A or
B) of a web-page performs better for a specific objective, after having exposed a
sufficient number of visitors to both A and B, the client knows which one performs
best and can then implement this variation as the default version of their website.
Personalization, on the other hand, proposes to offer a specific experience, such
as a dedicated theme, to users sharing commons attributes. The idea is that if the
users feel more comfortable with their navigating experience they will have greater
chance of converting goals.

Describing visits

A web visitor can be discretized as a succession of elementary units that are called
events. There exists a wide variety of events. Some contain static anonymous
user data such as OS or browser information, others represent user interactions
with the website such as clicks or scrolls. When zooming out, the concatenation
of events of a specific visitor over a short time period will form the concept of visit.

Predicting future behaviours

A major objective of the company is to be able to predict, with sufficient accuracy
and as early as possible, the probability that a visit will convert to a specific goal.
This allows the client to trigger pre-defined strategies such as exposing the visitor
to a specific personalization (an alternate version of a page for example), in order
to increase the visit’s conversion probability.
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Observing past behaviours

Another interesting aspect is the ability to have a view at specific moments of
distributions of visitor features. Clustering is the application which fits with this
objective.

7.2 Data, Preprocessing and vectorization

At its lowest granularity level, information is composed of what we call "events".
These events contain a variety of information, ranging from anonymous user
navigation information, such as browser version, to user actions such as clicking
the "purchase" button. The nature of the data is varied, containing such features
as integers, scalar, booleans and categorical data. We are confronted, as often in
the industry, with a mixed data space.

We have also an object called the visit, which is the aggregation of all events
referring to a visitor from their arrival on the website until 30 minutes of inactivity.
It is with this object that we will interact.

We have to transform our raw data, from the visit, into a suitable vector
fitting with metric associate space. It is what we call the vectorization process.
Most of the problem resides here, because it exists a combinatorial number of
possibilities with the number of usable features. Moreover, depending on the
clustering algorithms we use, only specific vector types can be employed.

Binary vector

We have essentially one hot encoded all categorical data. We also have partition-
ated numerical values, i.e. defining a category for various consecutive ranges of
numerical data. For integer values such as number of pages seen and number of
previous visits, we decide to employ an additive coding described in chapter 4.

Scalar vector

We have few continuous data, so we choose to use binary vectors and apply
dimension reduction techniques such as PCA, and UMAP[128].

Visual interpretation

Again comparing different techniques depends on interpretations, despite that
fact we propose few visualisations between PCA and UMAP reduction dimension
techniques. Let precise that these two dimensions reduction techniques have
been applied on one hot encoded datasets.

We have tried many feature combinations to obtain what in our opinion is the
best result we had with the PCA on Figure 7.1, which is two parallel plane where
red points are the ones which do not convert a specific goal and blue points are
those that convert. As observed on Figure 7.1 two clusters have approximately the
same ratio of converted points compared to non converted ones. Unfortunately
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this kind of data representation does not give any useful information because
both clusters have an average converted rate close to the average one and even
if a K-Means set with two clusters will give a good partitioning. It will have no
exploitable value.

On the other side, results given by UMAP on Figure 7.2 are much more in-
teresting. The Hamming distance has been used thanks to UMAP ability to use
any metric. We can observe many elliptic clusters with diverse concentrations
of converted points (in blue). A nice clustering application will be to isolate each
cluster where some of them have a null converted rate when others have good
ones. A K-Means could work but we need to look into the visualisation to set the
right number of clusters. Moreover we should set the initialisation properly.

For this case the e-proximity from chapter 3 works better by finding automati-
cally the right number of clusters as exposed on Figure 7.3 with an ¢ set to 5%
of the average distance between points (5% represent a good starting point in
our various experiments). The clusters of same khaki colors are a visualization
trade off because the visualization tool does not have enough colors to show each
clusters.

7.3 Enhance visits understanding

One objective in the company was to determine visit properties giving the best in-
sights on specifics goals. To achieve this, one strategy was to exhaustively explore
every feature combination. Unfortunately due to the combinatorial complexity of
exploring every feature combination, this was rapidly limited to exploring restricted
feature space in order to make the task feasible.

An interesting proposed technique is to combine clustering with decision
trees or random forest. The first step consists in applying a clustering algorithm
to partition the space into regions with various common properties. The most
interesting aspect being that the standard deviation of the conversion rate per
cluster is high, thus indicating the presence of clusters with conversion rates
significantly higher or lower than the average conversion rate.

Once the clustering is obtained, a decision tree, or a random forest, is applied
with clusters as objective classes. The resulting tree gives us various combinations
of features modalities leading to specific clusters. Each branch representing a
combination of feature modalities, which tends to fall in a cluster which converts
worse, the same, or better than the average conversion rate. Once all these
combinations that we called segment are gathered, we have to check exhaustively
if they belong to each visit given final results.

This workflow allows to select a restricted number of segments, enabling to
explore many goals rather than only one when there are too many segments.
Moreover by controlling the depth of decision trees we can choose the upper
bound of features composing a segment knowing that usually segments bigger
than size four are more complicated to interpret than others.

Applying this combination of clustering and decision trees allows us to discover
interesting segments as well in size as in conversion rate with some correct size



116

Chapter 7. Applications and Open Source

a0

-
-
* * * -
- »
@ * » ‘4
- * ?x - -
= - -
. s %’.:
* - - -
»
“ -
i *
L3

as

*
E ]
N
* Ed
»
L ]
- * - e
. w o .
L3 - £ ]
L £
. w7
- - -
»
“ -
*
F L "
-

Figure 7.3: e-proximity on UMAP

as



7.4. Enhance predictive model accuracy with clustering 117

segment. This segment has a conversion rate 50% higher than the average
conversion rate as well as segments with very low conversion rate.

7.4 Enhance predictive model accuracy with clus-
tering

One rising question could be how can clustering help in a supervised problem ?
One answer to that question resides in the fact that a clustering provides specific
latent information over data. This information is linked to the nature of the algorithm
applied and can eventually help the supervised process.

Experiments consisted in applying a clustering on starting visits composed
essentially of static features (the ones always coming with regular users). The
clustering results (labels) are encoded and added to the other features. Then the
model is trained and tested on split datasets.

The used supervised technique is the logistic regression. We tried to represent
the new clustering features under different forms, as an integer and others, which
gives better performance with the accuracy even if these results are not enough
significant to be considered interesting.
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7.5 Clustering4Ever, an Open Source Project

During this thesis, we were often confronted to many papers without access to
the source code and without enough implementation details in order to implement
properly the proposed algorithms. Thus, for reproducibility we decided to share as
an easy to use open source project the source code of different algorithms. This
project untitled Clustering4Ever offers the possibility to anyone to read source
code and test different algorithms either via notebooks as Spark-Notebook' or
calling directly the API's methods by adding two lines in the typical configuration
file (build.sbt) of their scala/java project. The design allows to generate algorithms
working for many types of data (continuous, binary and mixed data). Therefore
someone desiring to conceive a new algorithm will have the possibility to write
a generic implementation using dedicated trait, similar to Java Interface, where
depending algorithm operations, could work on any data type through final specific
implementations.

During the process other members of the laboratory join the project to enhance
the API with various advises and algorithms. This work is passed from a personal
objective to a collective one which increased both quality and fun developing it.

Clustering algorithms
e Jenks Natural Breaks
e K-Centers
— K-Means, K-Modes, K-Prototypes
e Tensor Biclustering

— Folding-Spectral, Unfolding-Spectral, Thresholding Sum Of Squared
Trajectory Length, Thresholding Individuals Trajectory Length, Recur-
sive Biclustering, Multiple Biclustering

e Self Organizing Maps
e G-Stream

e PatchWork

e Random Local Area
e Clusterwise

e g-proximity

e DBSCAN
Thttp://spark-notebook.io/



https://github.com/TugdualSarazin/spark-clustering
https://github.com/Spark-clustering-notebook/G-stream
https://github.com/crim-ca/patchwork
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Dimensions Reduction And Selection algorithms
e Dimensions Reduction

- PCA
- UMAP

e Dimensions Selection

— Sp-RST

Clustering indices
e Internal Indices

— Davies Bouldin
— Ball Hall

e External Indices

— Multiple Classification

» Mutual Information, Normalized Mutual Information
« Purity

« Accuracy, Precision, Recall, fBeta, f1, RAND, ARAND, Matthews
correlation coefficient, CzekanowskiDice, RogersTanimoto, FolkesMal-
lows, Jaccard, Kulcztnski, McNemar, RusselRao, SokalSneath1,
SokalSneath2

— Binary Classification
« Accuracy, Precision, Recall, fBeta, f1

7.6 Conclusion

A major objective of Kameleoon company is to be able to predict, with sufficient
accuracy and as early as possible, the probability that a visit will convert to a
specific goal. In this chapter we have proposed some experiments and typical
applications in the company. We also had the opportunity to make all our algo-
rithms available in open source. We have also provided an easy-to-use API. The
CA4E project currently brings together all doctoral students interested in its big data
technology and several contributors.
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Chapter 8

Conclusion and Perspectives

8.1 Research work achieved during the thesis

The main aim of this thesis was to allow scalability of algorithms around clustering
problematic. Mean Shift clustering is a generalization of the k-means clustering
which computes arbitrarily shaped clusters defined as the basins of attraction
to the local modes created by the density gradient ascent paths. Despite its
potential, the Mean Shift approach is a computationally expensive method for
unsupervised learning. Thus, we introduce two contributions aiming to provide
clustering algorithms with a linear time complexity, as opposed to the quadratic
time complexity for the exact Mean Shift clustering. Firstly we propose a scalable
procedure to approximate the density gradient ascent. Secondly, our proposed
scalable cluster labeling technique is presented. It is a DBScan derivative with the
g-epsilon proximity clustering algorithm. Both propositions are based on Locality
Sensitive Hashing (LSH) to approximate nearest neighbors.

Afterwards, in the third contribution, we describe the theory and practice behind
a new modal clustering method (mean-shift-like) for binary data. Our approach
(BINNNMS) is based on the nearest neighbor median shift. The median shift is an
extension of the well-known mean shift, which was designed for continuous data,
to handle binary data. We demonstrate that BInNNMS can accurately discover
the location of clusters in binary data.

In this thesis, we propose contributions done in a collaborative context. We
revisit Clusterwise methods for regression. When applied to massive data, they
either have prohibitive computational costs or produce models that are difficult
to interpret. We introduce a new implementation Micro-Batch Clusterwise Partial
LeastSquares (mb-CW-PLS), which consists of two main improvements: (a) a
scalable and distributed computational framework and (b) a micro-batch Cluster-
wise regression using micro-clusters. The last contributions, we propose new
distributed versions of RST (Rough Set Theory). The first approach (Sp-RST)
splits the given dataset into partitions with smaller numbers of features which are
then processed in parallel. The second approach is based on distributed system
and on Locality Sensitive Hashing (LSH used as clustering method), named LSH-
dRST, for big data pre-processing. LSH-dRST uses LSH to match similar features
into the same bucket and maps the generated buckets into partitions on which
Sp-RST is applied on.

Towards the end, we propose to share as an open source project, because
reproducibility is an important objective of science experiments. This project titled
Clustering4Ever offers the possibility for anyone to read the source code and test
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the different algorithms either via notebooks or calling directly the API's. The
design enables the generation of algorithms working for many types of data from
continuous to binary or any other kind of data.

This thesis was funded by Kameloon as a CIFRE grant. We presented re-
search work and also implementations at the company. We also presented the
performance of the various algorithms we proposed.

8.2 Perspectives

Several perspectives can be considered as a result of this thesis:

e Future work includes exploring the utility of NNGA* for clustering algorithms
with very high dimensional datasets as this is one of the most important
advantages of nearest neighbor methods over kernel and other dense
methods, different dissimilarity measure on the e-proximity clustering and
different hashing methods [116, 129] other than the simple hashing we have
utilized. We aim also to extend the Median-shift algorithm. In [122] authors
present the median computation in near linear time which seems to be a
good manner to deal with massive datasets. We also consider extending the
Mean Shift to mixed data. Thus, we wish to extend this scalable algorithm
to address mixed and streaming data.

¢ Another aspect we would like to pursue is the combination of supervised
and unsupervised methods for classification, more specifically clusterwise
or typological regression. The proposed Clusterwise design has enabled
to moderately increase its speed and its usage on bigger dataset, whilst
keeping satisfying results. Another improvement will be to transform it in a
more generic way to enable any regression or classification models.

e The other area of research we want to develop is the visualization of large
amounts of data. A lot of research has been done on the extraction of
relevant parameters to be visualized using clustering. Indeed, this is an
increasingly important problem as the amount of information continues to
grow up. Many visualization techniques need to be rethought to handle
huge data. One of the objectives of this research axis is to propose new
approaches that make it possible to use visual information on a density zone
using the algorithms described above in order to visualize continuous or cat-
egorical data. We have worked with Duong Tarn on a specific visualization
aspect, which is the kernel density estimation [126]. It works for 2D points,
but we are planning to extend it to higher dimensional spaces.


http://www.mvstat.net/tduong/

123

Part IV

Appendices






125

Appendix A

Evaluation metrics

A.0.1 Internal clustering indices
We are focusing here on most known internal indices. Some interesting indices
are cited in this cran-r repository.
A.0.1.1 Davies-Bouldin
The most famous one is the Davies-Bouldin index [13], which is grossly the ratio
between intra-cluster distance, ie distance from cluster points to their centroid,
and extra-cluster distance, ie distance between centroids.
Important properties

e linear complexity in n, scalable for decent k values

e quadratic complexity in k, scalable for k ~< 10000

o fit well with elliptic clustering

A.0.1.2 Silhouette

The silhouette index provides how similar point is close to its own cluster compared
to others clusters. The range of values is within [—1, 1], that high values represent
clusters where points are deeply linked to them whilst being dissimilar from others
clusters.The silhouette can be calculated with any distance metric. Unfortunately
the time complexity of this index is O(n?).

A.0.2 External clustering indices

External indices require two partitions of labels in order to return a score, the
first one is the ground truth, the other is either the result of a clustering or the
predictions from a classification algorithm.

A.0.2.1 Mutual Information (MI)

In information theory, the mutual information measure mutual dependencies be-
tween two random variable. It describe the quantity of information which can


https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf
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1] 0
1] TP | TN
0|FN | FP

Table A.1: Confusion matrix

be obtained about one random variable by observing the other. It's general
formulation for continuous random variable is as follow:

p(x,y)
I(X;Y) = 1
%0 = ffp(x ) Og(p( )p@))dXdy’

It is non negative: I(X;Y) > 0 and symetric I(X;Y) = I(Y; X)

Normalized Mutual Information: It exist different normalized version of mutual
information two of the most popular are

vy - JGY)
VHCOH(Y)
and
I(X;Y)
NMI =

max(H(X), H(Y)) -

A.0.2.2 Contingency matrix for binary classification

Contingency matrix is a tool, which enable to know how two labeled partitions
are linked. It represent essentially four items which are true positive (TP) when
ground truth and prediction are equal to the realized objective. True negative
(TN) when both value present the unrealized objective. False positive (FP) when
ground truth indicate a negative example and model predict a positive one. Finally
false negative will occur when ground truth indicates negative outcome and model
predict a positive output. It exist two main version of this matrix which are the
binary classes one and the multi-classes, both can be compute in O(n) which

Binary classification: It is a 2 X 2 matrix containing as shown on table A.1
results of prediction knowing the the ground truth.

Multi class classification: Multi class contingency matrix is a generalisation
of binary matrix for any number of classes knowing that they can differ between
ground truth and prediction.

X\Y Y » ... Y Sums

X ng nipo ... R a

X, nyr Ny ... Ny ap

Xr Ny Ny oo Ny ay
Sums | by by, ... by
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The matrix is used to determined for previous values using following rules.

s r'_ n;
TP+FP = Z(Zf—zl J)
i=1

TP+ FN = Z (ZJ=21 nij)
i=1

TP = ; JZ‘ (”2:/)

FP=TP+FP—-TP
FN=TP+FN—TP
_ S r nl] _ _ ~
TNA-Z;EQ(Z) TP—FP—FN
=l j=

From there, many external indices exists defined from these four values as Rogers
Tanimoto A.0.2.4 , Jaccard A.0.2.4, RAND A.0.2.4 and many others.

A.0.2.3 Binary class classification

Recall: It represents the True Positive Rate

TP TP

TPR= — = —————
P TP+FN

Precision: it exposes the Positive Predictive Value

TP

PPV = —
TP+ FP

Fz measure: Fz measure average both precision and recall into a single mea-
sure.

PPV -TPR
Fw%20+ﬁa(ﬂLPPV+THJ

A.0.2.4 Multi-class classification

RAND: The RAND index is a measure of similarity between two clustering

a+b _ atb

giving values between [0, 1] R = —=— = B
2

Adjusted RAND It use the contingency matrix as follow

Index Expected Index
—_——

Adjuste/d-lzﬂD Index Z (nzlj) - [Z (Zl) Z (sz )]/(;)

ARI Y /

AR ARSEPELE

J

Max Index Expected Index
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TP
TP+ FN) = (FP+TP)

FolkesMallows =

Jaccard: The Jaccard coefficient measures similarity between two finite
clustering. It is defined as the intersection of sets size divided by the size of
sample sets union.

TP _JAnB| |A N B
TP+FN+FP |AUB| |Al+|Bl-|ANB

Jaccard =

Rogers-Tanimoto: The Rogers-Tanimoto clustering index came from the
comemberships of the observations where comembership is defined as the pairs
of observations that are put into same cluster.

TP+TN

TP+ Q2+ (FN + FP)) + TN

RogersTanimoto =

Measure by label: Label sets L is defined as follows:
L = {ZO’Kb L $€M—l}
knowing that
Yo.¥1i,....¥nv1 EL
are the estimate classes and

o 1 ifx=0,
o(x) = )
0 otherwise.

be a modified 4 function. With theses tool we can define multi class classifications
measures.

Recall: Before define a global recall score, we have to set a recall by label
with the one versus all strategy.

TP YY'6@—0-6yi—¢

TPR(K):—:ZZ_O (1371’\ ) (y )
P 2izo 0(yi = 0)

Then we can average the whole results into a weighted recall

1 5.
TPR, =+ D e, TPRO)- ZO: S(yi—0)

Precision: The process for precision is the same by defining precision by
label

TP 35 60i-0-54i-0
TP+FP 3083 -0
Then obtain a weighted precision.

PPV(() =

1 .
PPV, = — ZM PPV(¢) - ZO 5(y: — )
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Fz measure: F-measure follow the same pattern with the f-measure by label

_ » [ PPV(l) - TPR(()
F(B,¢) = (1 +p ) (ﬁz - PPV () + TPR({)
To finally get a weighted F-measure

1 .
FuB) = D, FB.O- ZO 8y; - 0)

Accuracy ACC = 2o = LyN 15 —y)

TP+FP — N

A.0.3 Regressions evaluation metrics

This subsection highlight some of principal regression metrics for supervised
learning because of Chapter 5 which present a combination of clustering and
supervised learning

A.0.3.1 Mean Absolute Error (MAE)

Mean absolute error is a measure defining difference between two continuous
variables. It is the mean of the difference between the true value (y) and its
estimate (y)

2iet Vi — il _ it leil
n n

MAE =

A.0.3.2 Root Mean Square Error (RMSE)

RMSE also measures the average magnitude of the error. It is the square root of
the average of squared differences between prediction and observation.

N (% _y.)2
RMSE — Z[:l (y]\l] yl)

Similarities and differences between MAE and RMSE As MAE, RMSE ex-
presses prediction error in variable of interest unit. The two metrics are defined
on R* and do not take into account errors directions, the lower is the value the
better is the score. Because errors are squared before they are averaged, the
RMSE gives higher weight to large errors which could be useful if users desire to
penalise use case with large errors.
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Appendix B

Technical details about Map/Reduce

In a synthetic way, some technical details

Transformations are operations that could be chained without triggering any
computation. A simple way to distinguish transformations from actions is to look at
the definitions of methods. Those that return an RDD, Dataframe, and a Dataset
are transformations, others that return a non distributed object are actions.

map The map method is the most basic transformation on RDD which transform
an RDD[A] toward and RDD[B] by applying a function f: A — B on each element
of type A from the RDD on which map is applied.

Listing 5 map function definition

def map[B](f: (A) => B): RDD[B]

reduce The reduce method is one of the basic action which as its Scala equiva-
lent reduces a collection of A to an unique element of type A. Each Spark partition
will apply a reduce on its iterator of data, then processed partitions are sent to the
master node in order to be reduced on it.

Listing 6 reduce function definition

def reduce(op: (Al, Al) => Al): Al

fold The fold method is a generalisation of reduce also present in scala, its
specificity resides in an extra argument witch is the neutral element associated to
the reduce operation.

ByKey operations Many operations in Spark are ByKey ones, they all are
transformations working on Key-Value RDD which apply specific operations on all
elements sharing keys which are equal to return a new Key-Value RDD with as
elements as distinct Key. We suppose here that we are working with a Key-Value
RDD[(K, V)].
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reduceByKey is a reduce which is applied on each element sharing same
keys. Its definition is as follow :

Listing 7 reduceByKey function definition

def reduceByKey(func: (V, V) => V): RDD[(K, V)]

foldByKey s a fold applied on each element sharing same keys. The defini-
tion of foldByKey is as follows :

Listing 8 foldByKey function definition

def foldByKey(zeroValue: V) (func: (V, V) => V): RDD[(K, V)]

aggregateByKey gathers elements sharing same keys into a single partition
in a tuple Key-U where U is the type of the aggregate. The definition is as follows :

Listing 9 aggregateByKey function definition

def aggregateByKey[U](zeroValue: U) (seqOp: (U, V) => U, combOp: (U, U) =>
< U)(implicit arg®: ClassTag[U]): RDD[(K, U)]

combineByKey is the most general operation which will transform each
value into a new value type then combine obtained values into a new one of the
same type, it can take the role as well as a aggregateByKey as a reduceByKey or
a foldByKey. lts definition is as follows :
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Listing 10 combineByKey function definition

def combineByKey[C] (createCombiner: (V) => C, mergeValue: (C, V) => C,
- mergeCombiners: (C, C) => CO): RDD[(K, O]

Listing 11 K-Centers spark heart using tail recursion

protected final def obtainCenters[0, Cz[Y, Z <: GVector[Z]] <:
— Clusterizable[Y, Z, Cz]](data: RDD[Cz[O, V]]) (implicit ct:
— ClassTag[Cz[0, V]]): immutable.HashMap[Int, V] = {

data.persist(persistancelLVL)

val unSortedCenters = if(customCenters.isEmpty)
— kmppInitializationRDD(data.map(_.v), k, metric) else customCenters
val centers = mutable.ArrayBuffer(unSortedCenters.toSeq:_*).sortBy(_._1)

@annotation.tailrec
def go(cpt: Int, haveAllCentersConverged: Boolean, centers:
— mutable.ArrayBuffer[(Int, V)]): mutable.ArrayBuffer[(Int, V)] = {
val preUpdatedCenters = mutable.ArrayBuffer(
data.map( cz => (obtainNearestCenterID(cz.v, centers, metric),
- Ccz.v) )
.reduceByKeyLocally{ case (vl, v2) =>
< ClusterBasicOperations.obtainCenter(Seq(vl, v2), metric) }
.toArray
:_*).sortBy(_._1)
val alignedOldCenters = preUpdatedCenters.map{ case (oldClusterID,
- _) => centers(oldClusterID) }
val updatedCenters = preUpdatedCenters.zipWithIndex.map{ case
< ((oldClusterID, center), newClusterID) => (newClusterID,
- center) }
val shiftingEnough = areCentersNotMovingEnough(updatedCenters,
— alignedOldCenters, minShift, metric)
if(cpt < maxIterations && !shiftingEnough) {
go(cpt + 1, shiftingEnough, updatedCenters)
b
else {
updatedCenters
}
}
immutable.HashMap(go(®, false, centers):_*)
}
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Listing 12 K-Centers heart using tail recursion

@annotation.tailrec
def go(cpt: Int, haveAllCentersConverged: Boolean, centers:
< mutable.ArrayBuffer[(Int, V)]): mutable.ArrayBuffer[(Int, V)] = {
val preUpdatedCenters = mutable.ArrayBuffer(
data.groupBy( cz => obtainNearestCenterID(cz.v, centers, metric) )
.map{ case (clusterID, aggregate) =>
(
clusterID,
ClusterBasicOperations.obtainCenter(aggregate.map(_.v), metric)
)
}.seq.toSeq
:_*).sortBy(_._1)
val alignedOldCenters = preUpdatedCenters.map{ case (oldClusterID, _) =>
— centers(oldClusterID) }
val updatedCenters = preUpdatedCenters.zipWithIndex.map{ case
— ((oldClusterID, center), newClusterID) => (newClusterID, center) }
val shiftingEnough = areCentersNotMovingEnough(updatedCenters,
— alignedOldCenters, minShift, metric)
if(cpt < maxIterations && !shiftingEnough) {
go(cpt + 1, shiftingEnough, updatedCenters)
}
else {
updatedCenters
h
}
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