É. Larousse and . Encyclopédie, Larousse en ligne -circulation sanguine

J. E. Deanfield, J. P. Halcox, and T. J. Rabelink, Endothelial Function and Dysfunction: Testing and Clinical Relevance », Circulation, vol.115, pp.1285-1295, 2007.

J. Plutzky, The vascular biology of atherosclerosis, vol.115, pp.55-61, 2003.

R. F. Furchgott and P. M. Vanhoutte, « Endothelium-derived relaxing and contracting factors. », FASEB J, vol.3, issue.9, pp.2007-2018, 1989.

M. Elbaz, J. Arnal, . Dysfonction, ». Et-atherosclérose, and R. Cardiologiques, , p.2006

J. W. Han, « Vessel Wall-Embedded Dendritic Cells Induce T-Cell Autoreactivity and Initiate Vascular Inflammation », Circ. Res, vol.102, issue.5, pp.546-553, 2008.

K. R. Stenmark, « The Adventitia: Essential Regulator of Vascular Wall Structure and Function, Annu. Rev. Physiol, vol.75, pp.23-47, 2013.

F. Numano and . Vasa, Int. J. Cardiol, vol.75, pp.1-8, 2000.

K. R. Stenmark, E. Gerasimovskaya, R. A. Nemenoff, and M. Das, Hypoxic activation of adventitial fibroblasts: role in vascular remodeling, vol.122, pp.326-334, 2002.

J. M. Sorrell, A. I. Caplan, and . Fibroblasts, Int. Rev. Cell Mol. Biol, vol.276, pp.161-214, 2009.

R. S. Smith, T. J. Smith, T. M. Blieden, and R. P. Phipps, « Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. », Am. J. Pathol, vol.151, issue.2, pp.317-322, 1997.

E. Arciniegas, M. G. Frid, I. S. Douglas, and K. R. Stenmark, « Perspectives on endothelial-tomesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension, Am. J. Physiol. -Lung Cell. Mol. Physiol, vol.293, issue.1, pp.1-8, 2007.

S. Potenta, E. Zeisberg, and R. Kalluri, « The role of endothelial-to-mesenchymal transition in cancer progression », Br. J. Cancer, vol.99, issue.9, pp.1375-1379, 2008.

D. J. Prockop, « Marrow stromal cells as stem cells for nonhematopoietic tissues, Science, vol.276, pp.71-74, 1997.

M. Ogawa, A. C. Larue, and C. J. Drake, Hematopoietic origin of fibroblasts/myofibroblasts: its pathophysiologic implications, vol.108, pp.2893-2896, 2006.

A. J. Friedenstein, « Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method, Exp. Hematol, vol.2, issue.2, pp.83-92, 1974.

H. W. Farber and J. Loscalzo, « Pulmonary Arterial Hypertension, N. Engl. J. Med, vol.351, pp.1655-1665, 2004.

N. Galiè, ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), Intern? », Eur. Respir. J, pp.1032-2015, 2015.

S. Miyamoto, « Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing, Am. J. Respir. Crit. Care Med, vol.161, issue.2, pp.487-492, 2000.

N. Galiè, « Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT) », Eur, Heart J, vol.30, pp.2493-2537, 2009.

G. Simonneau, « Updated clinical classification of pulmonary hypertension, J. Am. Coll. Cardiol, vol.62, pp.34-41

M. D. Mcgoon, « Pulmonary arterial hypertension: epidemiology and registries, J. Am. Coll. Cardiol, vol.62, pp.51-59

M. Humbert, « Pulmonary arterial hypertension in France: results from a national registry, Am. J. Respir. Crit. Care Med, vol.173, issue.9, pp.1023-1030, 2006.

F. Perros, M. Humbert, and S. Cohen-kaminsky, Hypertension artérielle pulmonaire -Un parfum d'auto-immunité », médecine/sciences, vol.29, pp.607-616

M. R. Nicolls, L. Taraseviciene-stewart, P. R. Rai, D. B. Badesch, and N. F. Voelkel, Autoimmunity and pulmonary hypertension: a perspective », Eur. Respir. J, vol.26, issue.6, pp.1110-1118, 2005.

R. Savai, « Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med, vol.186, issue.9, pp.897-908, 2012.

M. L. Ormiston, « Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension, Circulation, vol.126, issue.9, pp.1099-1109

M. Humbert, « Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension, Am. J. Respir. Crit. Care Med, vol.151, issue.5, pp.1628-1631, 1995.

E. Soon, « Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension, Circulation, vol.122, issue.9, pp.920-927, 2010.

T. Itoh, « Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension, Respirol. Carlton Vic, vol.11, issue.2, pp.158-163, 2006.

J. Cracowski, « Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension, Eur. Respir. J, vol.43, issue.3, pp.915-917, 2014.

M. K. Steiner, O. L. Syrkina, N. Kolliputi, E. J. Mark, C. A. Hales et al., « Interleukin-6 overexpression induces pulmonary hypertension », Circ. Res, vol.104, issue.2, pp.236-244, 2009.

S. M. Golembeski, J. West, Y. Tada, and K. A. Fagan, « Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice, Chest, vol.128, issue.6, pp.572-573, 2005.

M. Miyata, F. Sakuma, A. Yoshimura, H. Ishikawa, T. Nishimaki et al., « Pulmonary hypertension in rats. 2. Role of interleukin-6 », Int. Arch. Allergy Immunol, vol.108, issue.3, pp.287-291, 1995.

L. Savale, « Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice », Respir. Res, vol.10, issue.1, p.6, 2009.

S. S. Sobin and P. C. Chen, Ultrastructural changes in the pulmonary arterioles in acute hypoxic pulmonary hypertension in the rat, High Alt. Med. Biol, vol.1, issue.4, pp.311-322, 2000.

P. Dorfmüller, « Chemokine RANTES in severe pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med, vol.165, issue.4, pp.534-539, 2002.

K. Balabanian, « CX(3)C chemokine fractalkine in pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med, vol.165, issue.10, pp.1419-1425, 2002.

P. Fraticelli, CX3CL1) as an amplification circuit of polarized Th1 responses, J. Clin. Invest, vol.107, issue.9, pp.1173-1181, 2001.

C. A. Haskell, M. D. Cleary, and I. F. Charo, « Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction, J. Biol. Chem, vol.274, pp.10053-10058, 1999.

D. Moatti, « Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease, Blood, vol.97, issue.7, pp.1925-1928, 2001.

D. H. Mcdermott, « Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis », Circ. Res, vol.89, issue.5, pp.401-407, 2001.

F. Perros, « Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension, Eur. Respir. J, vol.29, issue.5, pp.937-943, 2007.

R. M. Tuder, « Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension, J. Am. Coll. Cardiol, vol.62, 2013.

K. R. Stenmark, N. J. Davie, J. T. Reeves, M. G. Frid, and . Hypoxia, J. Appl. Physiol. Bethesda Md, vol.98, issue.2, pp.715-721, 1985.

E. Okamoto, « Perivascular inflammation after balloon angioplasty of porcine coronary arteries, Circulation, vol.104, pp.2228-2235, 2001.

M. G. Frid, « Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage », Am. J. Pathol, vol.168, issue.2, pp.659-669, 2006.

M. Li, « Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension, J. Immunol. Baltim. Md, vol.187, issue.5, pp.2711-2722, 1950.

J. Wang, « Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-?1 signaling pathway, Lab. Investig. J. Tech. Methods Pathol, vol.96, issue.9, p.1035, 2016.

D. R. Dantzker and J. S. Bower, « Pulmonary vascular tone improves VA/Q matching in obliterative pulmonary hypertension, J. Appl. Physiol, vol.51, issue.3, pp.607-613, 1981.

S. Duong-quy, « Hypertension pulmonaire : de la physiopathologie moléculaire aux anomalies hémodynamiques, Rev. Mal. Respir, vol.29, issue.8, pp.956-970, 2012.

U. S. Euler and G. Liljestrand, « Observations on the Pulmonary Arterial Blood Pressure in the Cat », Acta Physiol. Scand, vol.12, issue.4, pp.301-320

M. Ozaki, C. Marshall, Y. Amaki, and B. E. Marshall, « Role of wall tension in hypoxic responses of isolated rat pulmonary arteries », Am. J. Physiol, vol.275, pp.1069-1077, 1998.

T. K. Jeffery and N. W. Morrell, « Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension, Prog. Cardiovasc. Dis, vol.45, issue.3, pp.173-202, 2002.

P. Hervé, « Increased plasma serotonin in primary pulmonary hypertension, Am. J. Med, vol.99, issue.3, pp.249-254, 1995.

S. Eddahibi, « Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: critical role for serotonin-induced smooth muscle hyperplasia, Circulation, vol.113, pp.1857-1864, 2006.

M. Izikki, « Tryptophan hydroxylase 1 knockout and tryptophan hydroxylase 2 polymorphism: effects on hypoxic pulmonary hypertension in mice, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.293, issue.4, pp.1045-1052, 2007.

M. R. Maclean, G. Sweeney, M. Baird, K. M. Mcculloch, M. Houslay et al., « 5-Hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteries from control and pulmonary hypertensive rats », Br. J. Pharmacol, vol.119, issue.5, pp.917-930, 1996.

E. D. Willers, « Serotonin transporter polymorphisms in familial and idiopathic pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med, vol.173, issue.7, pp.798-802, 2006.

L. Rodat-despoix, H. Crevel, R. Marthan, J. Savineau, and C. Guibert, « Heterogeneity in 5-HTinduced contractile and proliferative responses in rat pulmonary arterial bed, vol.45, pp.181-192, 2008.

L. Rodat-despoix, « Signalling pathways involved in the contractile response to 5-HT in the human pulmonary artery, Eur. Respir. J, vol.34, issue.6, pp.1338-1347, 2009.

D. N. Cornfield, T. Stevens, I. F. Mcmurtry, S. H. Abman, and D. M. Rodman, « Acute hypoxia increases cytosolic calcium in fetal pulmonary artery smooth muscle cells », Am. J. Physiol, vol.265, issue.1, pp.53-56, 1993.

L. A. Shimoda, J. S. Sham, and J. T. Sylvester, Altered pulmonary vasoreactivity in the chronically hypoxic lung, vol.49, pp.549-560, 2000.

L. A. Shimoda, J. T. Sylvester, and J. S. Sham, « Mobilization of intracellular Ca(2+) by endothelin-1 in rat intrapulmonary arterial smooth muscle cells », Am. J. Physiol. Lung Cell. Mol. Physiol, vol.278, issue.1, pp.157-164, 2000.

S. Bonnet, A. Belus, J. M. Hyvelin, E. Roux, R. Marthan et al., Effect of chronic hypoxia on agonist-induced tone and calcium signaling in rat pulmonary artery, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.281, issue.1, pp.193-201, 2001.

J. Wang, M. Juhaszova, L. J. Rubin, and X. J. Yuan, « Hypoxia inhibits gene expression of voltagegated K+ channel alpha subunits in pulmonary artery smooth muscle cells, J. Clin. Invest, vol.100, issue.9, pp.2347-2353, 1997.

X. J. Yuan, « Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes », Circ. Res, vol.77, issue.2, pp.370-378, 1995.

X. J. Yuan, M. L. Tod, L. J. Rubin, and M. P. Blaustein, Hypoxic and metabolic regulation of voltage-gated K+ channels in rat pulmonary artery smooth muscle cells, Exp. Physiol, vol.80, issue.5, pp.803-813, 1995.

C. Guibert, R. Marthan, and J. Savineau, « 5-HT induces an arachidonic acid-sensitive calcium influx in rat small intrapulmonary artery », Am. J. Physiol. Lung Cell. Mol. Physiol, vol.286, issue.6, pp.1228-1236, 2004.

L. Rodat, J. Savineau, R. Marthan, and C. Guibert, Effect of chronic hypoxia on voltageindependent calcium influx activated by 5-HT in rat intrapulmonary arteries, vol.454, pp.41-51, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02439623

T. Ducret, C. Guibert, R. Marthan, and J. Savineau, « Serotonin-induced activation of TRPV4-like current in rat intrapulmonary arterial smooth muscle cells, Cell Calcium, vol.43, issue.4, pp.315-323, 2008.

B. R. Broughton, B. R. Walker, and T. C. Resta, « Chronic hypoxia induces Rho kinasedependent myogenic tone in small pulmonary arteries, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.294, issue.4, pp.797-806, 2008.

T. Ducret, J. E. Arrouchi, A. Courtois, J. Quignard, R. Marthan et al., « Stretchactivated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats, Cell Calcium, vol.48, issue.5, pp.251-259, 2010.

D. Montani, « Pulmonary arterial hypertension », Orphanet J. Rare Dis, vol.8, p.97, 2013.

B. Meyrick and L. Reid, « Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall. », Am. J. Pathol, vol.96, issue.1, pp.51-70, 1979.

B. O. Meyrick and L. M. Reid, Uptake of 3H-thymidine by the cells of the pulmonary circulation and alveolar walls », Am. J. Pathol, vol.106, issue.1, pp.84-94, 1982.

D. Langleben, J. L. Szarek, J. T. Coflesky, R. C. Jones, L. M. Reid et al., Altered artery mechanics and structure in monocrotaline pulmonary hypertension, J. Appl. Physiol. Bethesda Md, vol.65, issue.5, pp.2326-2331, 1985.

E. C. Orton, S. M. Larue, B. Ensley, and K. Stenmark, « Bromodeoxyuridine labeling and DNA content of pulmonary arterial medial cells from hypoxia-exposed and nonexposed healthy calves », Am. J. Vet. Res, vol.53, issue.10, 1925.

I. Chazova, J. E. Loyd, V. S. Zhdanov, J. H. Newman, Y. Belenkov et al., « Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension, Am. J. Pathol, vol.146, issue.2, pp.389-397, 1995.

J. K. Belknap, E. C. Orton, B. Ensley, A. Tucker, and K. R. Stenmark, Hypoxia increases bromodeoxyuridine labeling indices in bovine neonatal pulmonary arteries, vol.16, pp.366-371, 1997.

K. R. Stenmark, N. Davie, M. Frid, E. Gerasimovskaya, and M. Das, Role of the adventitia in pulmonary vascular remodeling, vol.21, pp.134-145, 2006.

V. V. Mclaughlin, S. J. Shah, R. Souza, and E. M. Humbert, « Management of pulmonary arterial hypertension, J. Am. Coll. Cardiol, vol.65, pp.1976-1997, 2015.

S. D. Lee, K. R. Shroyer, N. E. Markham, C. D. Cool, N. F. Voelkel et al., « Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension, J. Clin. Invest, vol.101, issue.5, pp.927-934, 1998.

E. Weitzenblum, A. Chaouat, and R. Kessler, « Pulmonary hypertension in chronic obstructive pulmonary disease, Pneumonol. Alergol. Pol, vol.81, issue.4, pp.390-398, 2013.

B. Meyrick and L. Reid, « The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study, Lab. Investig. J. Tech. Methods Pathol, vol.38, issue.2, pp.188-200, 1978.

A. Q. Sheikh, J. K. Lighthouse, and D. M. Greif, « Recapitulation of developing artery muscularization in pulmonary hypertension, Cell Rep, vol.6, issue.5, pp.809-817, 2014.

F. Perros, « Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med, vol.178, issue.1, pp.81-88, 2008.

S. L. Lee, W. W. Wang, J. J. Lanzillo, and B. L. Fanburg, « Serotonin produces both hyperplasia and hypertrophy of bovine pulmonary artery smooth muscle cells in culture, Am. J. Physiol, vol.266, issue.1, pp.46-52, 1994.

Y. Liu, Y. J. Suzuki, R. M. Day, and B. L. Fanburg, « Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin », Circ. Res, vol.95, issue.6, pp.579-586, 2004.

S. L. Lee, W. W. Wang, G. A. Finlay, and B. L. Fanburg, « Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion », Am. J. Physiol, vol.277, issue.2, pp.282-291, 1999.

C. Chen, « Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-?1/Smad3-mediated fibrotic responses through 5-HT(2A) receptors », Mol. Cell. Biochem, vol.397, issue.2, pp.267-276, 2014.

M. Das, E. C. Dempsey, D. Bouchey, M. E. Reyland, and K. R. Stenmark, « Chronic hypoxia induces exaggerated growth responses in pulmonary artery adventitial fibroblasts: potential contribution of specific protein kinase c isozymes, Am. J. Respir. Cell Mol. Biol, vol.22, issue.1, pp.15-25, 2000.

M. Das, D. M. Bouchey, M. J. Moore, D. C. Hopkins, R. A. Nemenoff et al., « Hypoxia-induced proliferative response of vascular adventitial fibroblasts is dependent on g protein-mediated activation of mitogen-activated protein kinases, J. Biol. Chem, vol.276, pp.15631-15640, 2001.

M. Das, E. C. Dempsey, J. T. Reeves, and K. R. Stenmark, « Selective expansion of fibroblast subpopulations from pulmonary artery adventitia in response to hypoxia, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.282, issue.5, pp.976-986, 2002.

J. M. Goffin, P. Pittet, G. Csucs, J. W. Lussi, J. Meister et al., « Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers, J. Cell Biol, vol.172, issue.2, pp.259-268, 2006.

B. S. Brooke, S. K. Karnik, and D. Y. Li, « Extracellular matrix in vascular morphogenesis and disease: structure versus signal, Trends Cell Biol, vol.13, issue.1, pp.51-56, 2003.

A. G. Durmowicz, E. C. Orton, and K. R. Stenmark, « Progressive loss of vasodilator responsive component of pulmonary hypertension in neonatal calves exposed to 4,570 m », Am. J. Physiol, vol.265, pp.2175-2183, 1993.

S. Sartore, « Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant », Circ. Res, vol.89, pp.1111-1121, 2001.

J. Herget, J. Novotna, J. Bibova, V. Povysilova, M. Vankova et al., « Metalloproteinase inhibition by Batimastat attenuates pulmonary hypertension in chronically hypoxic rats, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.285, issue.1, pp.199-208, 2003.

A. Vieillard-baron, « Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer limits monocrotaline-induced pulmonary vascular remodeling in rats, Gene Ther, vol.14, issue.9, pp.861-869, 2003.

P. R. Brauer, « MMPs--role in cardiovascular development and disease, Front. Biosci. J. Virtual Libr, vol.11, pp.447-478, 2006.

W. Mitzner and E. M. Wagner, « Vascular remodeling in the circulations of the lung, J. Appl. Physiol. Bethesda Md, vol.97, issue.5, 1985.

D. Montani, « C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med, vol.184, issue.1, pp.116-123, 2011.

N. J. Davie, « Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells », Am. J. Physiol. Lung Cell. Mol. Physiol, vol.286, issue.4, pp.668-678, 2004.

N. J. Davie, « Pulmonary artery adventitial fibroblasts cooperate with vasa vasorum endothelial cells to regulate vasa vasorum neovascularization: a process mediated by hypoxia and endothelin-1 », Am. J. Pathol, vol.168, issue.6, pp.1793-1807, 2006.

R. Adams and E. F. Rogers, The Structure of Monocrotaline, the Alkaloid in Crotalaria Spectabilis and Crotalaria Retusa. I », J. Am. Chem. Soc, vol.61, issue.10, pp.2815-2819, 1939.

J. E. Estep, M. W. Lamé, D. Morin, A. D. Jones, D. W. Wilson et al., « [14C]monocrotaline kinetics and metabolism in the rat, Drug Metab. Dispos. Biol. Fate Chem, vol.19, issue.1, pp.135-139, 1991.

R. Schoental and M. A. Head, « Pathological changes in rats as a result of treatment with monocrotaline », Br. J. Cancer, vol.9, issue.1, pp.229-237, 1955.

K. S. Hilliker, T. G. Bell, and R. A. Roth, « Pneumotoxicity and thrombocytopenia after single injection of monocrotaline », Am. J. Physiol. -Heart Circ. Physiol, vol.242, issue.4, pp.573-579, 1982.

B. L. Copple, P. E. Ganey, and R. A. Roth, « Liver inflammation during monocrotaline hepatotoxicity, Toxicology, vol.190, issue.3, pp.155-169, 2003.

M. A. Hammad, M. S. Abdel-bakky, L. A. Walker, and M. K. Ashfaq, « Oxidized low-density lipoprotein and tissue factor are involved in monocrotaline/lipopolysaccharide-induced hepatotoxicity, Arch. Toxicol, vol.85, issue.9, pp.1079-1089, 2011.

J. M. Kay, P. Harris, and E. D. Heath, « Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds, Thorax, vol.22, issue.2, pp.176-179, 1967.

J. G. Gomez-arroyo, « The monocrotaline model of pulmonary hypertension in perspective, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.302, issue.4, pp.363-369

G. Maarman, S. Lecour, G. Butrous, F. Thienemann, and K. Sliwa, « A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet?, Pulm. Circ, vol.3, issue.4, pp.739-756, 2013.

R. C. Baybutt, « Effects on cytokines and histology by treatment with the ACE inhibitor captopril and the antioxidant retinoic acid in the monocrotaline model of experimentally induced lung fibrosis », Curr. Pharm. Des, vol.13, issue.13, pp.1327-1333, 2007.

F. Seta, M. Rahmani, P. V. Turner, and C. D. Funk, « Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline, PloS One, vol.6, issue.8, p.23439, 2011.

J. M. Aliotta, « Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline-treated mice », Cardiovasc. Res, vol.100, issue.3, pp.354-362

L. Li, C. Wei, I. Kim, Y. Janssen-heininger, and E. S. Gupta, « Inhibition of nuclear factor-?B in the lungs prevents monocrotaline-induced pulmonary hypertension in mice, Hypertens. Dallas Tex, vol.63, issue.6, pp.1260-1269, 1979.

B. O. Meyrick and E. A. Perkett, « The sequence of cellular and hemodynamic changes of chronic pulmonary hypertension induced by hypoxia and other stimuli », Am. Rev. Respir. Dis, vol.140, issue.5, pp.1486-1489, 1989.

D. L. Burke, « Sustained hypoxia promotes the development of a pulmonary arteryspecific chronic inflammatory microenvironment », Am. J. Physiol. Lung Cell. Mol. Physiol, vol.297, issue.2, pp.238-250, 2009.

D. Heath, « The rat is a poor animal model for the study of human pulmonary hypertension, Cardioscience, vol.3, issue.1, pp.1-6, 1992.

N. F. Voelkel and R. M. Tuder, « Hypoxia-induced pulmonary vascular remodeling: a model for what human disease?, J. Clin. Invest, vol.106, issue.6, pp.733-738, 2000.

A. Tucker, K. J. Greenlees, M. L. Wright, and N. Migally, « Altered vascular responsiveness in isolated perfused lungs from aging rats, Exp. Lung Res, vol.3, issue.1, pp.29-35, 1982.

T. Sugita, « Abnormal alveolar cells in monocrotaline induced pulmonary hypertension, Exp. Lung Res, vol.5, issue.3, pp.201-215, 1983.

P. S. Tofovic, X. Zhang, and G. Petrusevska, « Progesterone inhibits vascular remodeling and attenuates monocrotaline-induced pulmonary hypertension in estrogen-deficient rats, Prilozi, vol.30, issue.1, pp.25-44, 2009.

Y. N. Martin and C. M. Pabelick, « Sex differences in the pulmonary circulation: implications for pulmonary hypertension, Am. J. Physiol. Heart Circ. Physiol, vol.306, issue.9, pp.1253-1264, 2014.

Y. Morimatsu, « Development and characterization of an animal model of severe pulmonary arterial hypertension, J. Vasc. Res, vol.49, issue.1, pp.33-42, 2012.

F. Coste, « Chronic hypoxia aggravates monocrotaline-induced pulmonary arterial hypertension: a rodent relevant model to the human severe form of the disease », Respir. Res, vol.18, issue.1, p.47, 2017.

L. Taraseviciene-stewart, « Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension », FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.15, issue.2, pp.427-438, 2001.

K. R. Stenmark, B. Meyrick, N. Galie, W. J. Mooi, and I. F. Mcmurtry, « Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure », Am. J. Physiol. Lung Cell. Mol. Physiol, vol.297, issue.6, pp.1013-1032, 2009.

M. R. Nicolls, « New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis, Pulm. Circ, vol.2, issue.4, pp.434-442, 2012.

S. H. Vitali, « The Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: long-term follow-up, Pulm. Circ, vol.4, pp.619-629, 2014.

D. Chu, « A new animal model for pulmonary hypertension based on the overexpression of a single gene, Ann. Thorac. Surg, vol.77, issue.1, pp.449-456, 2004.

C. Guignabert, « Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension », Circ. Res, vol.98, issue.10, pp.1323-1330, 2006.

K. Sato, « Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat, Am. Rev. Respir. Dis, vol.145, pp.793-797, 1992.

M. R. Maclean and Y. Dempsie, Serotonin and pulmonary hypertension-from bench to bedside?, Curr. Opin. Pharmacol, vol.9, issue.3, pp.281-286, 2009.

F. C. Morin, Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb », Pediatr. Res, vol.25, issue.3, pp.245-250, 1989.

J. A. Mcqueston, J. P. Kinsella, D. D. Ivy, I. F. Mcmurtry, and S. H. Abman, « Chronic pulmonary hypertension in utero impairs endothelium-dependent vasodilation », Am. J. Physiol, vol.268, issue.2, pp.288-294, 1995.

D. A. Jones, C. W. Benjamin, and D. A. Linseman, « Activation of thromboxane and prostacyclin receptors elicits opposing effects on vascular smooth muscle cell growth and mitogenactivated protein kinase signaling cascades, Mol. Pharmacol, vol.48, issue.5, pp.890-896, 1995.

T. Pulido, « Macitentan and morbidity and mortality in pulmonary arterial hypertension, N. Engl. J. Med, vol.369, issue.9, pp.809-818, 2013.

O. Pauvert, C. Lugnier, T. Keravis, R. Marthan, E. Rousseau et al., « Effect of sildenafil on cyclic nucleotide phosphodiesterase activity, vascular tone and calcium signaling in rat pulmonary artery », Br. J. Pharmacol, vol.139, issue.3, pp.513-522, 2003.

H. Ghofrani, G. Simonneau, and L. J. Rubin, et Authors of CHEST-1 and PATENT-1, « Riociguat for pulmonary hypertension, N. Engl. J. Med, vol.369, issue.23, p.2268, 2013.

S. Eddahibi, « Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension, J. Clin. Invest, vol.108, issue.8, pp.1141-1150, 2001.

E. Marcos, « Serotonin-Induced Smooth Muscle Hyperplasia in Various Forms of Human Pulmonary Hypertension », Circ. Res, vol.94, issue.9, pp.1263-1270, 2004.

S. Eddahibi and S. Adnot, Rev. Mal. Respir, vol.23, issue.2, pp.4-45, 2006.

J. Hu, Q. Xu, C. Mctiernan, Y. Lai, D. Osei-hwedieh et al., « Novel Targets of Drug Treatment for Pulmonary Hypertension », Am. J. Cardiovasc. Drugs Drugs Devices Interv, vol.15, issue.4, pp.225-234, 2015.

M. Humbert, « Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era, Circulation, vol.122, issue.2, pp.156-163

S. S. Smaili, The role of calcium stores in apoptosis and autophagy, vol.13, pp.252-265, 2013.

S. Györke and D. Terentyev, « Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease », Cardiovasc. Res, vol.77, issue.2, pp.245-255, 2008.

D. Dahan, T. Ducret, J. Quignard, R. Marthan, J. Savineau et al., « Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats », Am. J. Physiol. Lung Cell. Mol. Physiol, vol.303, issue.9, pp.824-833, 2012.

M. Falcke, J. L. Hudson, P. Camacho, and J. D. Lechleiter, « Impact of mitochondrial Ca2+ cycling on pattern formation and stability », Biophys. J, vol.77, issue.1, pp.37-44, 1999.

T. E. Gunter and D. R. Pfeiffer, « Mechanisms by which mitochondria transport calcium », Am. J. Physiol, vol.258, pp.755-786, 1990.

A. Menteyne, «. Le-naadp, and U. Synthese-», , p.136

D. A. Eisner and W. J. Lederer, « Na-Ca exchange: stoichiometry and electrogenicity », Am. J. Physiol, vol.248, pp.189-202, 1985.

H. Hsu, « Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis, Sci. Rep, vol.7, 2017.

F. J. Ramires, Y. Sun, and K. T. Weber, « Myocardial fibrosis associated with aldosterone or angiotensin II administration: attenuation by calcium channel blockade, J. Mol. Cell. Cardiol, vol.30, issue.3, pp.475-483, 1998.

C. Ji, B. Yang, S. Huang, J. Huang, and B. Cheng, « Salubrinal protects human skin fibroblasts against UVB-induced cell death by blocking endoplasmic reticulum (ER) stress and regulating calcium homeostasis, Biochem. Biophys. Res. Commun, vol.493, issue.4, pp.1371-1376, 2017.

C. L. Bowman, P. A. Gottlieb, T. M. Suchyna, Y. K. Murphy, and F. Sachs, Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology, vol.49, pp.249-270, 2007.

C. Guibert, T. Ducret, and J. Savineau, « Voltage-independent calcium influx in smooth muscle, Prog. Biophys. Mol. Biol, vol.98, issue.1, pp.10-23, 2008.

J. Kim, « A TRPV family ion channel required for hearing in Drosophila, Nature, vol.424, pp.81-84, 2003.

D. P. Corey, New TRP channels in hearing and mechanosensation, vol.39, pp.585-588, 2003.

B. Coste, « Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels, Science, vol.330, pp.55-60, 2010.

L. Volkers, Y. Mechioukhi, and B. Coste, « Piezo channels: from structure to function, Pflugers Arch, vol.467, issue.1, pp.95-99, 2015.

S. N. Bagriantsev, E. O. Gracheva, and P. G. Gallagher, « Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes, J. Biol. Chem, vol.289, pp.31673-31681, 2014.

D. J. Cosens and A. Manning, Nature, vol.224, pp.285-287, 1969.

S. F. Pedersen, G. Owsianik, B. Nilius, and «. Trp, Cell Calcium, vol.38, pp.233-252, 2005.

C. Huang, « The transient receptor potential superfamily of ion channels, J. Am. Soc. Nephrol. JASN, vol.15, issue.7, pp.1690-1699, 2004.

G. Owsianik, K. Talavera, and T. Voets, Nilius, « Permeation and selectivity of TRP channels », Annu. Rev. Physiol, vol.68, pp.685-717, 2006.

T. Voets, A. Janssens, G. Droogmans, and B. Nilius, « Outer pore architecture of a Ca2+-selective TRP channel, J. Biol. Chem, vol.279, pp.15223-15230, 2004.

M. Mulier, J. Vriens, and T. Voets, TRP channel pores and local calcium signals, vol.66, pp.19-24, 2017.

D. E. Clapham, « TRP channels as cellular sensors, Nature, vol.426, pp.517-524, 2003.

C. Ferrandiz-huertas, S. Mathivanan, C. J. Wolf, I. Devesa, and A. Ferrer-montiel, « Trafficking of ThermoTRP Channels », Membranes, vol.4, pp.525-564, 2014.

A. Dietrich, M. Mederos-y-schnitzler, J. Emmel, H. Kalwa, T. Hofmann et al., « Nlinked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity, J. Biol. Chem, vol.278, pp.47842-47852, 2003.

D. G. Welsh, A. D. Morielli, M. T. Nelson, and J. E. Brayden, « Transient receptor potential channels regulate myogenic tone of resistance arteries », Circ. Res, vol.90, issue.3, pp.248-250, 2002.

R. G. O'neil and S. Heller, « The mechanosensitive nature of TRPV channels, Pflugers Arch, vol.451, issue.1, pp.193-203, 2005.

K. S. Kindt, « Caenorhabditis elegans TRPA-1 functions in mechanosensation, Nat. Neurosci, vol.10, issue.5, pp.568-577, 2007.

R. Sharif-naeini, « TRP channels and mechanosensory transduction: insights into the arterial myogenic response, Pflugers Arch, vol.456, issue.3, pp.529-540, 2008.

R. Inoue, Z. Jian, and Y. Kawarabayashi, « Mechanosensitive TRP channels in cardiovascular pathophysiology, vol.123, pp.371-385, 2009.

J. Du, X. Ma, B. Shen, Y. Huang, L. Birnbaumer et al., « TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel », FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.28, issue.11, pp.4677-4685, 2014.

W. Liedtke and J. M. Friedman, « Abnormal osmotic regulation in trpv4-/-mice », Proc. Natl. Acad. Sci. U. S. A, vol.100, issue.23, pp.13698-13703, 2003.

M. Arniges, J. M. Fernández-fernández, N. Albrecht, M. Schaefer, and M. A. Valverde, « Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking, J. Biol. Chem, vol.281, issue.3, pp.1580-1586, 2006.

W. Everaerts, B. Nilius, and G. Owsianik, « The vanilloid transient receptor potential channel TRPV4: from structure to disease, Prog. Biophys. Mol. Biol, vol.103, issue.1, pp.2-17, 2010.

I. M. Lorenzo, W. Liedtke, M. J. Sanderson, and M. A. Valverde, « TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.12611-12616, 2008.

W. Tian, « Renal expression of osmotically responsive cation channel TRPV4 is restricted to water-impermeant nephron segments, Am. J. Physiol. Renal Physiol, vol.287, issue.1, pp.17-24, 2004.

B. Nilius, J. Vriens, J. Prenen, G. Droogmans, and T. Voets, TRPV4 calcium entry channel: a paradigm for gating diversity, vol.286, pp.195-205, 2004.

W. Liedtke, « Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor, Cell, vol.103, issue.3, pp.525-535, 2000.

N. Hellwig, N. Albrecht, C. Harteneck, G. Schultz, and M. Schaefer, « Homo-and heteromeric assembly of TRPV channel subunits, J Cell Sci, vol.118, issue.5, pp.917-928, 2005.

R. Strotmann, G. Schultz, and T. D. Plant, « Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site, J. Biol. Chem, vol.278, pp.26541-26549, 2003.

N. García-sanz, « Identification of a Tetramerization Domain in the C Terminus of the Vanilloid Receptor, J. Neurosci, vol.24, issue.23, pp.5307-5314, 2004.

J. Vriens, H. Watanabe, A. Janssens, G. Droogmans, T. Voets et al., « Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4, Proc. Natl. Acad. Sci. U. S. A, vol.101, issue.1, pp.396-401, 2004.

P. K. Randhawa and A. S. Jaggi, « TRPV4 channels: physiological and pathological role in cardiovascular system, Basic Res. Cardiol, vol.110, issue.6, p.54, 2015.

R. Strotmann, C. Harteneck, K. Nunnenmacher, G. Schultz, and T. D. Plant, « OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity, Nat. Cell Biol, vol.2, issue.10, pp.695-702, 2000.

T. D. Plant, R. Strotmann, and «. Trpv4, A Multifunctional Nonselective Cation Channel with Complex Regulation, TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, 2007.

A. Mizuno, N. Matsumoto, M. Imai, and M. Suzuki, « Impaired osmotic sensation in mice lacking TRPV4 », Am. J. Physiol. Cell Physiol, vol.285, issue.1, pp.96-101, 2003.

J. Vriens, « Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium », Circ. Res, vol.97, issue.9, pp.908-915, 2005.

E. K. Hoffmann, I. H. Lambert, and S. F. Pedersen, « Physiology of cell volume regulation in vertebrates, Physiol. Rev, vol.89, issue.1, pp.193-277, 2009.

W. G. Darby, M. S. Grace, S. Baratchi, and P. Mcintyre, « Modulation of TRPV4 by diverse mechanisms », Int. J. Biochem. Cell Biol, vol.78, pp.217-228, 2016.

W. Liedtke, D. M. Tobin, C. I. Bargmann, and J. M. Friedman, « Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans, Proc. Natl. Acad. Sci. U. S. A, vol.100, issue.2, pp.14531-14536, 2003.

S. Baratchi, « Examination of the role of transient receptor potential vanilloid type 4 in endothelial responses to shear forces, Biomicrofluidics, vol.8, p.44117, 2014.

S. Baratchi, J. G. Almazi, W. Darby, F. J. Tovar-lopez, A. Mitchell et al., « Shear stress mediates exocytosis of functional TRPV4 channels in endothelial cells, Cell. Mol. Life Sci. CMLS, vol.73, issue.3, pp.649-666, 2016.

V. Hartmannsgruber, « Arterial response to shear stress critically depends on endothelial TRPV4 expression, PloS One, vol.2, issue.9, p.827, 2007.

C. Goswami, J. Kuhn, P. A. Heppenstall, and T. Hucho, « Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells, PloS One, vol.5, issue.7, p.11654

N. M. Goldenberg, L. Wang, H. Ranke, W. Liedtke, A. Tabuchi et al., « TRPV4 Is Required for Hypoxic Pulmonary Vasoconstriction, Anesthesiology, vol.122, issue.6, pp.1338-1348, 2015.

S. Goedicke-fritz, Evidence for functional and dynamic microcompartmentation of Cav

/. Trpv4/k(ca, caveolae of endothelial cells, vol.94, pp.391-400, 2015.

D. W. Haack, J. H. Abel, and R. S. Jaenke, « Effects of hypoxia on the distribution of calcium in arterial smooth muscle cells of rats and swine, Cell Tissue Res, vol.157, issue.1, pp.125-140, 1975.

N. L. Boyd, « Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells, Am. J. Physiol. Heart Circ. Physiol, vol.285, issue.3, pp.1113-1122, 2003.

V. Rizzo, C. Morton, N. Depaola, J. E. Schnitzer, and P. F. Davies, « Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro », Am. J. Physiol. Heart Circ. Physiol, vol.285, issue.4, pp.1720-1729, 2003.

J. Yu, « Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels, J. Clin. Invest, vol.116, issue.5, pp.1284-1291, 2006.

L. Kozera, E. White, and S. Calaghan, « Caveolae act as membrane reserves which limit mechanosensitive I(Cl,swell) channel activation during swelling in the rat ventricular myocyte, PloS One, vol.4, 2009.

R. G. Parton and M. A. Del-pozo, « Caveolae as plasma membrane sensors, protectors and organizers, Nat. Rev. Mol. Cell Biol, vol.14, issue.2, pp.98-112, 2013.

A. D. Güler, H. Lee, T. Iida, I. Shimizu, M. Tominaga et al., « Heat-evoked activation of the ion channel, TRPV4 », J. Neurosci. Off. J. Soc. Neurosci, vol.22, pp.6408-6414, 2002.

H. Watanabe, J. Vriens, S. H. Suh, C. D. Benham, G. Droogmans et al., « Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells, J. Biol. Chem, vol.277, pp.47044-47051, 2002.

K. S. Thorneloe, 4-Dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a Novel and Potent Transient Receptor Potential Vanilloid 4 Channel Agonist Induces Urinary Bladder Contraction and Hyperactivity: Part I », J. Pharmacol. Exp. Ther, vol.326, issue.2, pp.432-442, 2008.

H. Watanabe, J. Vriens, A. Janssens, R. Wondergem, G. Droogmans et al., « Modulation of TRPV4 gating by intra-and extracellular Ca2+, Cell Calcium, vol.33, pp.489-495, 2003.

X. Yang, M. Lin, L. S. Mcintosh, and J. S. Sham, « Functional expression of transient receptor potential melastatin-and vanilloid-related channels in pulmonary arterial and aortic smooth muscle », Am. J. Physiol. Lung Cell. Mol. Physiol, vol.290, issue.6, pp.1267-1276, 2006.

S. V. Sukumaran, « TRPV4 channel activation leads to endothelium-dependent relaxation mediated by nitric oxide and endothelium-derived hyperpolarizing factor in rat pulmonary artery », Pharmacol. Res, vol.78, pp.18-27, 2013.

X. Yang, « Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension », Am. J. Physiol. Lung Cell. Mol. Physiol, vol.302, issue.6, pp.555-568, 2012.

E. Martin, « Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells, Pflugers Arch, vol.464, issue.3, pp.261-272, 2012.

T. Parpaite, Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells, vol.468, pp.111-130, 2016.

Y. Xia, « TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension », Am. J. Physiol. Cell Physiol, vol.305, issue.7, pp.704-715, 2013.

S. A. Mendoza, « TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress, Am. J. Physiol. Heart Circ. Physiol, vol.298, issue.2, pp.466-476

S. K. Sonkusare, « Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function, Science, vol.336, pp.597-601, 2012.

P. Bagher, T. Beleznai, Y. Kansui, R. Mitchell, C. J. Garland et al., « Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.18174-18179, 2012.

C. Marziano, K. Hong, E. L. Cope, M. I. Kotlikoff, B. E. Isakson et al., « Nitric Oxide-Dependent Feedback Loop Regulates Transient Receptor Potential Vanilloid 4 (TRPV4) Channel Cooperativity and Endothelial Function in Small Pulmonary Arteries, J. Am. Heart Assoc, vol.6, 2017.

N. Hatano, Y. Itoh, and K. Muraki, « Cardiac fibroblasts have functional TRPV4 activated by 4alpha-phorbol 12, Life Sci, vol.85, pp.808-814, 2009.

M. Rahman, S. Mukherjee, W. Sheng, B. Nilius, and L. J. Janssen, « Electrophysiological characterization of voltage-dependent calcium currents and TRPV4 currents in human pulmonary fibroblasts, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.310, issue.7, pp.603-614, 2016.

F. Gombedza, « Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.31, issue.4, pp.1556-1570, 2017.

S. Sharma, « TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation, Am. J. Physiol. Cell Physiol, vol.312, issue.5, pp.562-572, 2017.

L. Zhan and J. Li, The role of TRPV4 in fibrosis, 2017.

R. K. Adapala, « TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals, J. Mol. Cell. Cardiol, vol.54, pp.45-52, 2013.

C. K. Thodeti, S. Paruchuri, and J. G. Meszaros, « A TRP to cardiac fibroblast differentiation, Channels Austin Tex, vol.7, issue.3, pp.211-214, 2013.

S. O. Rahaman, « TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice, J. Clin. Invest, vol.124, pp.5225-5238, 2014.

G. Marsboom, « Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension, Mol. Biol. Cell, vol.28, issue.9, pp.1177-1185, 2017.

G. Gilbert, T. Ducret, J. Savineau, R. Marthan, and J. Quignard, « Caveolae are involved in mechanotransduction during pulmonary hypertension », Am. J. Physiol.-Lung Cell. Mol. Physiol, vol.310, issue.11, pp.1078-1087, 2016.

M. Billaud, D. Dahan, R. Marthan, J. Savineau, and C. Guibert, « Role of the gap junctions in the contractile response to agonists in pulmonary artery from two rat models of pulmonary hypertension », Respir. Res, vol.12, p.30, 2011.

S. Wu, « Ca2+ entry via alpha1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.297, issue.4, pp.650-657, 2009.

L. Qin, « Pulmonary hypertension is ameliorated in mice deficient in thrombinactivatable fibrinolysis inhibitor, J. Thromb. Haemost. JTH, vol.8, issue.4, pp.808-816

M. Y. Kochukov, « Tumor necrosis factor-alpha (TNF-alpha) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes, Mol. Pain, vol.5, p.49, 2009.

K. Suresh, « Reactive oxygen species induced Ca2+ influx via TRPV4 and microvascular endothelial dysfunction in the SU5416/hypoxia model of pulmonary arterial hypertension, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.314, issue.5, pp.893-907, 2018.

H. Watanabe, « Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives, J. Biol. Chem, vol.277, pp.13569-13577, 2002.

X. Chai, D. Sun, Q. Han, L. Yi, Y. Wu et al., « Hypoxia induces pulmonary arterial fibroblast proliferation, migration, differentiation and vascular remodeling via the PI3K/Akt/p70S6K signaling pathway », Int. J. Mol. Med, vol.41, issue.5, pp.2461-2472, 2018.

G. Li, S. J. Chen, S. Oparil, Y. F. Chen, and J. A. Thompson, « Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries, Circulation, vol.101, pp.1362-1365, 2000.

S. A. Barman and D. Fulton, Adventitial Fibroblast Nox4 Expression and ROS Signaling in Pulmonary Arterial Hypertension, Adv. Exp. Med. Biol, vol.967, pp.1-11, 2017.

D. J. Fulton, « Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension, Antioxid. Basel Switz, vol.6, issue.3, 2017.

A. J. Ridley, « Cell migration: integrating signals from front to back, Science, vol.302, pp.1704-1709, 2003.

R. Ramadass, D. Becker, M. Jendrach, and J. Bereiter-hahn, Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4-microfilament interactions, vol.463, pp.27-36, 2007.

L. Piao, W. Ho, and Y. E. Earm, « Actin filaments regulate the stretch sensitivity of largeconductance, Ca2+-activated K+ channels in coronary artery smooth muscle cells, Pflugers Arch, vol.446, issue.5, pp.523-528, 2003.

S. Mrkonjid, « TRPV4 participates in the establishment of trailing adhesions and directional persistence of migrating cells, Pflugers Arch, vol.467, issue.10, pp.2107-2119, 2015.

X. M. Wang, TIMP-1, and collagen expression in rats with pulmonary hypertension, Effects of angiotensin II intervention on MMP-2, MMP-9, vol.14, pp.1707-1717, 2015.

C. Schumann, « Circulating biomarkers of tissue remodelling in pulmonary hypertension, Biomark. Biochem. Indic. Expo. Response Susceptibility Chem, vol.15, issue.6, pp.523-532, 2010.

Z. Safdar, « Circulating collagen biomarkers as indicators of disease severity in pulmonary arterial hypertension, JACC Heart Fail, vol.2, issue.4, pp.412-421, 2014.

V. , « Plasma MMP2/TIMP4 Ratio at Follow-up Assessment Predicts Disease Progression of Idiopathic Pulmonary Arterial Hypertension, vol.195, pp.489-496, 2017.

Y. Shi, S. Patel, R. Niculescu, W. Chung, P. Desrochers et al., « Role of matrix metalloproteinases and their tissue inhibitors in the regulation of coronary cell migration, Arterioscler. Thromb. Vasc. Biol, vol.19, issue.5, pp.1150-1155, 1999.

P. C. Villalta, P. Rocic, and M. I. Townsley, Role of MMP2 and MMP9 in TRPV4-induced lung injury, vol.307, pp.652-659, 2014.

A. Vieillard-baron, « Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer or doxycycline aggravates pulmonary hypertension in rats », Circ. Res, vol.87, issue.5, pp.418-425, 2000.

S. Zucker, D. Pei, J. Cao, and C. Lopez-otin, Membrane type-matrix metalloproteinases (MT-MMP), vol.54, pp.1-74, 2003.

M. Toth, I. Chvyrkova, M. M. Bernardo, S. Hernandez-barrantes, and E. R. Fridman, « Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes », Biochem. Biophys. Res. Commun, vol.308, issue.2, pp.386-395, 2003.

Y. Seomun, J. Kim, and C. Joo, « MMP-14 mediated MMP-9 expression is involved in TGF-beta1-induced keratinocyte migration, J. Cell. Biochem, vol.104, issue.3, pp.934-941, 2008.

E. S. Clark, A. S. Whigham, W. G. Yarbrough, and A. M. Weaver, « Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia, Cancer Res, vol.67, issue.9, pp.4227-4235, 2007.

N. Bildyug, « Matrix metalloproteinases: an emerging role in regulation of actin microfilament system, Biomol. Concepts, vol.7, pp.321-329, 2016.

J. Wang, H. Chen, A. Seth, and C. A. Mcculloch, « Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts, Am. J. Physiol. Heart Circ. Physiol, vol.285, issue.5, pp.1871-1881, 2003.

G. Serini, « The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1, J. Cell Biol, vol.142, issue.3, pp.873-881, 1998.

A. Desmoulière, C. Chaponnier, and G. Gabbiani, « Tissue repair, contraction, and the myofibroblast », Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc, vol.13, issue.1, pp.7-12, 2005.

A. F. Muro, « An essential role for fibronectin extra type III domain A in pulmonary fibrosis, Am. J. Respir. Crit. Care Med, vol.177, issue.6, pp.638-645, 2008.

M. Leiss, K. Beckmann, A. Girós, M. Costell, and R. Fässler, « The role of integrin binding sites in fibronectin matrix assembly in vivo, Curr. Opin. Cell Biol, vol.20, issue.5, pp.502-507, 2008.

M. Kohan, A. F. Muro, E. S. White, and N. Berkman, « EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling », FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.24, issue.11, pp.4503-4512, 2010.

J. Malmström, « Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus, Mol. Cell. Proteomics MCP, vol.3, issue.5, pp.466-477, 2004.

W. Tan, K. Madhavan, K. S. Hunter, D. Park, and K. R. Stenmark, Vascular stiffening in pulmonary hypertension: cause or consequence? (2013 Grover Conference series), vol.4, pp.560-580, 2014.

Y. Hu, Z. Liu, D. Jiao, T. Ma, C. Wang et al., « [The effect of RhoA/Rho kinase signal pathway on TGF-beta1-induced phenotypic differentiation of human dermal fibroblasts] », Zhonghua Zheng Xing Wai Ke Za Zhi Zhonghua Zhengxing Waike Zazhi Chin, J. Plast. Surg, vol.27, issue.5, pp.376-380, 2011.

Y. Zhou, « Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis, J. Clin. Invest, vol.123, issue.3, pp.1096-1108, 2013.

K. Schram, R. Ganguly, E. K. No, X. Fang, F. S. Thong et al., « Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration, Endocrinology, vol.152, issue.5, pp.2037-2047, 2011.

E. Ispanovic, D. Serio, and T. L. Haas, « Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation », Am. J. Physiol. Cell Physiol, vol.295, issue.3, pp.600-610, 2008.

L. Cussac, N. Pillai, P. Robillard, J. Quignard, C. Guibert et al.,

T. Savineau and . Ducret, TRPV4-induced structural changes in the adventitia of intrapulmonary artery, vol.22

L. Cussac, N. Pillai, P. Robillard, J. Quignard, C. Guibert et al.,

T. Savineau and . Ducret, TRPV4-induced structural changes in the adventitia of intrapulmonary artery. Young Scientist Symposium (YSS), vol.33600, 2017.

L. Cussac, N. Pillai, P. Robillard, J. Quignard, C. Guibert et al.,

T. Savineau and . Ducret, Journée scientifique de l'école doctorale des sciences de la vie et de la santé de Bordeaux, 2017.

L. Cussac, P. Robillard, T. Parpaite, J. Savineau, C. Guibert et al., Characterization and functionality of TRPV4 channels in rat intrapulmonary artery adventitial fibroblasts, pp.14-2016

L. Cussac, P. Robillard, T. Parpaite, J. Savineau, C. Guibert et al., Characterization and functionality of TRPV4 channels in rat intrapulmonary artery adventitial fibroblasts, 2016.

, Young Scientist Symposium, vol.33600, 2014.

, Organisation de la journée des jeunes chercheurs à l'Institut européenne de Chimie Biologie (IECB)