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Chapter 1

Introduction

The light scattering is omnipresent in our daily life, in the industrial processes and in
many domains of scientific research. For instance, the wavelength dependence of the
light extinction in the atmosphere permits to understand why the sky is blue and the
sun looks red at sunrise and sunset [1]. The dispersion of the refractive index of water
and the refraction of the light in water droplets can be used to explain the disposition
of the colors in the rainbows [2]. The on-line control of the diameter of an optical fiber
can be realized by simply measuring its scattering properties. We can also have access
to the temperature, the sizes and the velocities of droplets in combustion chambers
via the signals of light scattered by these droplets, etc. These understandings and the
realizations are possible only when the relation between the morphological and material
properties of the scatterers and its scattering properties is established. That is just the
role of the light scattering theories and the models.

The scientists have been working on this subject for centuries and have developed
various theories and models which can be classified into three categories. The first is
the rigorous theories which are the exact solutions of the Maxwell equations, such as
the Lorenz-Mie theory (LMT) [3, 4] and its generalizations (GLMT) [5, 6]. They are
applicable only to particles of simple shapes [7], i.e. the shape of the scatterer must
correspond to a mathematical coordinate system (sphere [8], spheroid [9], ellipsoid,
circular [10] and elliptical infinite cylinder [11], ...). Though these theories are very
limited in the shape of the scatterer, their results serve usually as reference to validate
other models and methods. However, except for the homogeneous or stratified sphere
and the circular infinite cylinder [12], the calculable size of these theories is often limited
to some tens of wavelengths [7, 13] due to the problem of numerical calculation of the
involved special functions.

The second category is the numerical methods, which solve the scattering problems nu-
merically with help of the powerful computation resources. For example, T-Matrix [14,
15] solves the electromagnetic scattering using a transformation matrix. Sanamzadeh
et al present a solution to a dielectric layered medium with random rough interfaces.
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14 CHAPTER 1. INTRODUCTION

Martin [16] developed a new method for calculating T-matrix of two aspheric obstacles.
The T-matrix can also be applied to the calculation of radiation forces. Reference [17]
discusses the change of non-radial radiation pressure under the interaction of differ-
ent chemical composition and spatial arrangement of grain with sunshine. The discrete
dipole approximation (DDA) [18, 19, 20] and the finite-difference time-domain (FDTD)
[21, 22, 23] can predict the scattering of particles of complex shapes. Yukin, for instance,
developed ADDA [24, 20] to speed up the DDA code. But in general, the size of the
particles can be calculated with the numerical methods is very limited, it does not
exceed few and to a few a hundred wavelengths.

The last category is the approximate models which can be applied to deal with the
scattering of particles of irregular shape, but their precision is often not sufficient. As
an example, Rayleigh model [25, 26] is a good approximate model for the particles of
size much smaller than the wavelength, i.e. a ≪ λ with a the radius of the particle
and λ the wavelength. It predicts that the extinction factor of very small particle is
proportional to 1/λ4, i.e. the extinction of the red light through the atmosphere is much
smaller than the blue one, which answers the question the colors about the sky and
the sunset. Conversely, the Geometrical Optics (GO) can only deal with the scattering
of large particles of dimension much larger than the incident wavelength, i.e. a ≫ λ.
Van de Hulst [27] firstly considered the Geometrical optics approximation (GOA) for
the scattering of a spherical particle illustrated by a plane wave in detail, which in-
cludes the light intensity, phases and two sets of focal lines of optics rays. Extension of
geometrical-optics approximation to on-axis Gaussian beam scattering by a spherical
particle [28] or a spheroidal particle with end-on incidence [29]. The light scattering
of large air bubbles by Geometrical optics approximation is investigated with the rel-
ative refractive index smaller than 1 by taking the total reflection into consideration
[30]. For this case, Hovenac and Lock [31] proposed that the particle diameter needs
to be an order of magnitude larger than the wavelength. GOA is employed for the
light scattering by absorbing spherical particles [32], considering spherical particles of
different absorption properties. The agreement of scattered light with GOA and LMT
is better for larger particles than smaller particles. In addition, the calculation speed of
the GOA is independent of the particle size while that of LMT becomes slow with the
particle size increasing, which presented GOA is more efficient than LMT for particles.
In addtion, GOA has been developed to analyze the scattering of irregular particles.
A geometrical-optics approach is also used to deal with the scattering of nonuniform
glass microbeads illuminated by on-axis Gaussian beam and comparison of the inten-
sity distributions has been obtained by GOA and GLMT [33]. Using the lognormal
statistics to generate particles of various random shapes, Ray optics approximation is
devoted to the light scattering of Gaussian random particles [34]. Generating randomly
shaped particles by cutting an auxiliary random field by a hyperplane, the relation of
scattering matrix elements for irregular shaped particles with scattering angle in the
GOA is discussed, the differences of which between the indicatrices at infinity and at
a close distance noticeably depend on both the particle shape and the distance [35].
Nevertheless, the precision of the geometrical optics is very limited and it is very dif-
ficult to take into account the divergence/convergence of a wave on the surface of the
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particle.

In conclusion, none of the aforementioned theories, models or methods can deal with
the light scattering of large non-spherical particles with precision. But in practice,
we encounter often particles of irregular shapes, such as raindrops in nature, ligament
in the atomization or liquid jets in the motor injection. In order to overcome this
bottleneck problem, the Vectorial Complex Ray Model (VCRM) [36, 37, 38] for the light
scattering by large particles of smooth surface and arbitrary shape has been developed.
In this model, all waves are considered as bundles of vectorial complex rays with five
parameters: amplitude, phase, direction of propagation, polarization and wavefront
curvature. The ray direction and the wave divergence/convergence after each interaction
of the wave with a dioptric surface as well as the phase shifts of each ray are determined
by the vector Snell law and the wavefront equation according to the curvatures of the
surfaces. The total scattered field is the superposition of the complex amplitudes of all
orders of the rays emergent from the object. Thanks to this simple representation of
shaped waves, this model is very suitable for the description of the interaction of an
arbitrary wave with an object of smooth surface but complex shape. The application of
the model to the scattering of a plane wave by an ellipsoidal particle has been validated
numerically [39] and experimentally [40] in the cases a plane of symmetric scattering
problems.

In order to extend the applications of the model, we develop algorithms for three
dimension objects. VCRM permits to calculate the complex amplitude of each ray but
to obtain the total scattering field we must count the contribution of all rays arriving
at the same angle. This needs a 2D interpolation of irregular data which is a very
difficult and costly task. To get over this obstacle, a statistic version of VCRM, called
here after Statistic Vectorial Complex Ray Model (SVCRM), has been proposed and
coded by Professor Claude Rozé, in which the total scattered intensity is calculated
statistically by summation of the intensity of all rays/photons arriving in boxes in
given direction [41]. The scattering patterns simulated by SVCRM agree well with the
skeletons of the images obtained experimentally and scattering mechanisms of different
orders are identified.

Nevertheless, in the initial version of SVCRM, the interference was not considered.
So it cannot predict the fine structure in the scattering patterns. In order to make a
complete simulation of the light scattering with SVCRM, the phase of each ray must
be counted and the complex amplitude of the scattered field has to be calculated. This is
the main objective of this thesis.

As an example of applications to demonstrate the power of the VCRM/SVCRM, we
choose to study the scattering of a water droplet. In one hand, it is easy to be obtained,
its property is stable and its surface is naturally smooth. On the other hand, its applica-
tion is very broad. For instance, the electric charge of spherical water droplets is evalu-
ated for various droplet radii in [42]. The effect of a dense surrounding medium between
two approaching charged droplets was studied and the water droplets of precise volume
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inside the dielectric medium can be controlled by changing the electrical forces through
adjusting electrical conductivity and obtained by experiments and simulations in [43].
In experiment [44], the effects of electrical conductivity on electrospraying modes and
its produced droplets are investigated. The dynamic aspects of droplet behavior under
various ambient conditions are described in [45], such as charged droplets, instabil-
ity of droplets, evaporation of a single droplet, droplet generation, etc. The highly
heterogeneous and unstable temperature and velocity fields of the gas-vapor mixture
were observed, and the aerodynamics of the evaporating droplets and the transverse
and transverse dimensions of the heat trace lines were determined in [46]. The effect
of overheated random Si Nanowires on impacting water droplets is presented and the
effects of the surface temperature and impact velocity on the droplet behavior are also
presented in [47]. The dynamic process of single water droplets striking the hot oil sur-
face at the temperature range of 205◦C to 260◦C is presented in [48]. The behavior of
evaporated water droplets on lubricated-impregnated nano-structural surfaces (LINS)
was studied experimentally in [49]. The dynamics of non-axis symmetric evaporating
droplet with metallic inclusions heated in a high-temperature gas flow is studied in
[50]. The impact and freezing process of water droplets was studied experimentally and
numerically in [51]. The heating and evaporation of suspended water droplets in a hot
air flow are described in [52].

More specifically, we will apply in this thesis our developed model and algorithm to
the scattering of the pendent droplets obtained experimentally. Its shape is sufficiently
irregular, not as a sphere, a spheroid or an ellipsoid whose surface can be described with
a simple mathematical function. The quality of the droplet images and the scattering
patterns are sufficiently good for numerical simulation and comparison. The scattering
diagrams in three dimension are also very rich in information to be explored.

Finally, we would note that the four terms may be used for the light according to the
context: light, wave, ray or photon:

• light is very general, used when we talk about light scattering, interaction of light
with particle, etc.;

• wave emphasizes the wave effect, for wavefront, propagation of (light/electromagnetic)
wave, divergence or convergence of a wave;

• ray is used in GO, VCRM also in SVCRM. In GO, a ray has four properties:
direction, amplitude, polarization state and phase. But it has one more property
- wavefront curvature in VCRM and SVCRM.

• photon is used only in SVCRM, which has the same properties as ray (geomet-
rical and not its quantum sense).

Therefore, we may talk about the curvature of a ray or a photon, that means just the
wavefront curvature of the wave that is described by the ray or the photon.
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The rest of the thesis is organized as follows.

1. Chapter two recalls firstly some fundamentals of Geometrical Optics(GO), in-
cluding the Snell-Descartes laws and Fresnel coefficients. We then describe how
to deal with the scattering of a homogeneous sphere in the framework of GO. The
scattering diagrams calculated by GO are compared with the Lorenz-Mie Theory
(LMT) to examine the limitation of the GO that is becoming overwhelmingly
complex to deal with the scattering of non-spherical particle.

2. Chapter three presents the general principle of the Vectorial Complex Ray Model
(VCRM). After that, the Statistic Vectorial Complex Ray Model (SVCRM) is
described in detail, for example, how to calculate the complex amplitude of the
ray, the total scattered intensity with and without interferences, which is the
theoretical guidance for numerical simulation in Chapter 5.

3. Chapter four is devoted to the generation of the pendent droplets and the mathe-
matical description of their profiles. The experimental images of the droplets and
their scattering patterns are provided which serve to the numerical simulation in
Chapter 5.

4. Chapter five compiles the numerical simulation of the scattering patterns of the
pendent droplets under different conditions. These results have been analysed
and compared with the experimentally recorded scattering patterns to verify the
proposed model SVCRM and investigate the scattering mechanism of a pendent
droplet. The effect of detection steps, the number of emitted photons, the size
of droplets as well as the incident area of photons on the intensity distribution
around the rainbow angle are discussed.

5. Chapter six shows the conclusions and perspectives of this work.
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Chapter 2

Fundamentals of Geometrical
Optics

Geometrical Optics (GO) is an approximate method allowing describing the propaga-
tion and interaction of light with particles when the light wavelength λ is much smaller
than the dimension of the particles. In this case, the light wave is modelled as rays
(pencil of light). The wave effects of the light are then ignored. The essential advantage
of the GO is its simplicity and flexibility in dealing with the formation of image and
the interaction of light with objects, especially when their shapes are not regular.

The Statistic Vectorial Complex Ray Model (SVCRM), an extension of the Vectorial
Complex Ray Model (VCRM), developed in this thesis is fundamentally based on the
geometrical optics. Therefore, we will recall the fundamentals of GO in this first chapter
for two purposes: to define the notations used in next chapters and to introduce
the understanding and analysis of the scattering mechanics.

In the field of theoretical and numerical research on the interaction of light with parti-
cles, the scattering of the plane wave by a spherical particle (or a circular cylinder) is
the only case we can deal fully with the classical GO. It will be recalled in this chapter
to help us to understand the newly developed SVCRM. Some numerical results will be
presented also because they will be used later on for the validation of SVCRM in the
following chapters.

2.1 Basis of Geometrical Optics

When light travels from one medium to another of different refractive index, reflection
and refraction of the light occur. The propagation direction of the light may be deviated.
The amplitudes and the phases of the reflected and the transmitted waves change. We
recall the Snell-Descartes laws and the Fresnel formulas to describe the relations between

19
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these parameters and the properties of the media. Numerical results are also given to
illustrate the variation of them with the refractive index, the incident angle and the
polarization state of the incident wave.

2.1.1 Snell-Descartes laws

Snell-Descartes laws [53] describe the relationship between the directions of the reflected
ray and the refracted ray with that of the incident ray when light passes through a
interface between two media. The Snell-Descartes laws state also that the incident ray,
the reflected ray and the refracted ray are all in the incidence plane which is defined
by the incident ray and the normal of the surface. They can be expressed with the
following two equations:

θr = θi (2.1)
mi sin θi = mt sin θt (2.2)

where θi, θr and θt are respectively the angles of the incident ray, the reflected ray and
the refracted ray relative to the normal of the interface of the two media, as shown in
Fig. 2.1. mi and mt are the refractive indices of the first (incident) and the second
(transmitted) media.

Usually, to simplify the notation, we use the relative refractive index m defined as the
ratio of the refractive indices of the two media:

m =
mt

mi

(2.3)

Then the refraction angle θt can be given by:

sin θt =
1

m
sin θi =

1

m

√

1− cos2 θi (2.4)

When the light passes from an optically denser medium to a optically light less dense
medium, i.e. m < 1, the quantity sin θi/m may be bigger than one. In this case, total
reflection occurs. The limit of the incident angle at which total reflection occurs is
called critical angle θC and given by:

θC = arcsin(m) (2.5)

That means all rays with incident angle θi ⩾ arcsin(m) are totally reflected.

2.1.2 Fresnel coefficients

When a wave is incident on an interface plane between two media, a part of the energy
is reflected and the other part is transmitted. The amplitudes of the reflected wave and
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the refracted wave with that of the incident wave are given by the Fresnel formulas [53].

Consider an incident wave of electric field E decomposed in two components, one
perpendicular to the incident plane E

(i)
⊥ and the other one parallel to the incident plane

E
(i)
∥ (see Fig. 2.1).
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Figure 2.1: Directions and electric vectors of the rays used in Snell laws and Fresnel
formulas.

We define the ratios of the electric amplitudes of the reflected wave and the transmitted
wave to that of the incident wave by

rX =
E

(r)
X

E
(i)
X

tX =
E

(t)
X

E
(i)
X

(2.6)

where X =⊥ or ∥ stands for the polarization state of the wave. These ratios are called
Fresnel coefficients and given by the Fresnel formulas for the perpendicular polarization:

r⊥ =
E

(r)
⊥

E
(i)
⊥

=
cos θi −m cos θt
cos θi +m cos θt

t⊥ =
E

(t)
⊥

E
(i)
⊥

=
2 cos θi

cos θi +mcos θt

(2.7)
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and for the parallel polarization:

r∥ =
E

(r)
∥

E
(i)
∥

=
cos θt −m cos θi
cos θt +m cos θi

t∥ =
E

(t)
∥

E
(i)
∥

=
2 cos θi

cos θt +m cos θi

(2.8)

It should be noted that when the total reflection occurs, sin θi > m and cos θt becomes
a complex numbers. In this case, the Fresnel coefficients for the total reflection can be
expressed as [53]:

r⊥ =
cos θi − i

√

sin2 θi −m2

cos θi + i
√

sin2 θi −m2

r∥ =
i
√

sin2 θi −m2 −m2 cos θi

i
√

sin2 θi −m2 +m2 cos θi

(2.9)

These two coefficients are complex numbers.

We would note also that the reflection coefficients may also be negative. In both cases:
the reflection coefficients negative or complex, the reflected wave experiences a phase
jump on reflection. This phase shift σF,X can be calculated by the argument of the
reflection coefficient:

σF,X = arg(rX) (2.10)

In the case of parallel polarization, the reflection coefficient r∥ is zero when cos θt =
m cos θi. This special angle of incidence is called Brewster’s angle and is given by:

θB = arctan(m) (2.11)

At this angle, the reflected light is perfectly polarized in the perpendicular direction to
the incident plane if the incident light is unpolarized. This property is widely used in
optical devices.

2.1.3 Reflectivity and transmissivity

When a wave of light or a bundle of rays arrives on the interface between two media,
the incident light generally splits two parts: one is the reflected light and the other
the transmitted light. The cross section of the refracted bundle of rays is usually
different from that of the incident bundle of rays due to the deviation of the propagation
direction. We derive in the following the reflectivity and transmissivity which are the
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Figure 2.2: Energy flux of light during the reflection and the refraction with an oblique
incidence

ratios of the reflected and transmitted energy flux to the incident one as function of the
Fresnel coefficients.

Consider a bundle of rays illuminating an area A on the surface (Fig. 2.2). For a plane
wave, the intensity of light being I = ||E × H|| =

√

ε0/µ0mE2
0/2 for non-magnetic-

dielectric medium (here, ε0 is the vacuum permittivity and µ0 is the vacuum magnetic
permeability, m indicates the refractive index in the medium). The energy flux of the
incident light, the reflected light and refracted light on the area are respectively

J (i) =
1

2

√

ε0
µ0

miE
(i)2

0 cos θi, (2.12)

J (r) =
1

2

√

ε0
µ0

miE
(r)2

0 cos θr, (2.13)

J (t) =
1

2

√

ε0
µ0

mtE
(t)2

0 cos θt. (2.14)

The reflectivity RX and the transmissivity TX are given by

RX =
J (r)

J (i)
=

mi cos θr
mi cos θi

∣

∣

∣

∣

∣

E
(r)
X

E
(i)
X

∣

∣

∣

∣

∣

2

=
cos θr
cos θi

|rX |
2

TX =
J (t)

J (i)
=

mt cos θt
mi cos θi

∣

∣

∣

∣

∣

E
(t)
X

E
(i)
X

∣

∣

∣

∣

∣

2

=
mt cos θt
mi cos θi

|tX |
2

(2.15)
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Because θr = θi and mt/mi = m, Eq. (2.15) can be expressed as:

RX = | rX |2

TX = 1−RX =
m cos θt
cos θi

| tX |2
(2.16)

The above derivation is based on the energy balance on the illuminated area and we
have naturally TX + RX = 1. The transmissivity is not equal to the square of the
amplitude ratio of the transmitted wave to the incident wave because the cross section
of the transmitted wave is different from those of the incident and reflected waves.

2.1.4 Numerical results and discussions

In this part, numerical results on the Fresnel coefficients, the phase shifts, and the
transmissivity and the reflectivity are presented as function of incident angle for different
refractive indices with the simulated step of number 300. This investigation provides a
concrete understanding of the properties of reflected wave and transmitted wave, and
this will be very helpful for the analysis in the following chapters.

The variation of the four Fresnel coefficients are shown in Fig. 2.3 as function of the
incident angle for two relative refractive indices, one larger than unit and the other less
than 1.

We find that when light passes from an optically looser medium to a denser one (the
relative index greater than 1, Fig. 2.3(a)), the two Fresnel coefficients of the transmitted
light (red and blue curves) are always positive whatever the state of polarization, the
Fresnel coefficient of reflection is always negative for the perpendicular polarization,
while that of reflection for parallel polarization is positive when the incident angle is
less than the Brewster angle (θB = 53.12◦ for m = 1.333), and negative when the
incident angle is greater than the Brewster angle. This means that the phase of the
reflected wave experiences a jump π when the incident angle passes the Brewster angle.

When the light passes from an optically denser medium to a looser one (the relative
index less than 1, Fig. 2.3(b)), if the incident angle is greater than the critical angle
(θC = 48.59◦ for m = 0.75), the Fresnel coefficients of reflection (r⊥ and r∥) are equal
to unit and those of refraction (t⊥ and t∥) are zero, so the total reflection occurs. When
the incident angle is less than the critical angle, the variation of the Fresnel coefficients
are similar to those in the case m > 1. However, it is worth to note that the two
Fresnel coefficients of refraction are both greater than 1 and the Fresnel coefficient of
reflection for the parallel polarization passes from negative to positive at the Brewster
angle (θB = 36.87◦) in the inverse sense to that for m > 1.

The phase shift due to the reflection or refraction can be deduced from the Fresnel
coefficient according to Eq. (2.10). The variation of this phase shift as function of
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index m = 1.333 and 0.75.
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incident angle is given in Fig. 2.4 for the two values of refractive index. When the
relative refractive index is greater than 1, there is no phase shift for the refracted wave
whatever the polarization. The phase shift is also 0 for the perpendicularly polarized
reflected wave, while the phase of the reflected wave undergoes a phase jump at Brewster
angle.

When the relative refractive index is less than 1, the phase shift is much more compli-
cated. When the incident angle is less than the critical angle, there is no phase shift for
the refracted wave and the reflected wave in perpendicular polarization. The reflected
wave in parallel polarization experiences a phase jump equal to π at the Brewster angle.
The phase shift varies continuously when the incident angle is greater than the critical
angle, i.e. in the total reflection case, the phase shift decreases from 0 at critical angle
to −π/2 for refracted wave and to −π for reflected wave at θi = 90◦.

Finally, we show in Fig. 2.5 the reflectivity and the transmissivity as function of incident
angle with also two values of relative refractive index, one greater than unit and the
other less than 1. We note simply that the curves for the relative index less than 1
is similar to that for the case m > 1 but compressed to the region of incident angle
between 0 and the critical angle. The reflectivity for the perpendicular polarization
increases monotonically to 1 at 90◦ for m > 1 and at critical angle for m < 1, while
the reflectivity for parallel polarization decreases until 0 at Brewster angle and then
increases until 1.

The above analysis provides us a general view about the properties of the reflected
wave and the refracted wave as function of incident angle, the state of polarization
of the incident wave and the relative refractive index, especially the amplitudes and
the phase shifts of the reflected and the refracted waves as well as the reflectivity and
transmissivity. On this basis, we will investigate the scattering of a large homogeneous
sphere with GO in the following section.

2.2 Geometrical optics for scattering of a sphere

In Geometrical optics, the divergence and the convergence of the wave on the surface of
the particle is usually not taken into account. However, when dealing with the scattering
of light by a sphere, we can not only deduce the four properties of each ray from the
fundamental laws given in the previous section, but also obtain an analytical expression
of a factor describing the divergence and convergence of a wave on the particle surface
and the phase shift due to the focal lines.

This section consists of two parts. First, we will give a general description of how to
deal with the scattering problem in the framework of GO, and then some numerical
results will be exemplified. The advantages and the limit as well as its precision will be
investigated by comparison with Lorenz-Mie theory.
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Figure 2.5: Reflectivity and transmissivity as function of incident angle θi for two
relative relative refractive indice.
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2.2.1 Description of the method

Consider a plane wave of wavelength λ propagating along z axis which illuminates a
sphere of real refractive index mt and radius a. The trajectory of a ray is given in
Fig. 2.6. Its interaction position on the sphere is characterized by an angle θi and its
distance from the axis z, which is a cos τ , where τ is the complementary angle of θi, i.e.
angle between the particle surface and the incident ray. Each time a ray interacts with
the particle surface, it is split in two parts: the reflected ray and the refracted ray. We
call emergent ray of order p,the ray which exits from the particle after p+1 interactions
with the particle surface. Thus, the rays experience a specular reflection on the outer
surface of the particle are of order p = 0, the rays exiting after two refractions are of
order p = 1, etc.
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θτ

τ

τ

Incident Ray

Reference Ray

θ d
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im
t

m

z

’

t

’
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Figure 2.6: Schema of light interaction with a large sphere according to Geometrical
optics

Owing to the symmetry of the sphere, the angle of any emergent rays with respect to
the normal of the particle surface is constant and equal to the incident angle θi. The
angle between any ray in the particle and the normal of the surface is also constant
and equal to the refraction angle θt. Similarly, τ ′ is the complementary angle of the
refraction angle1. The relation between the incident angle and the refraction angle, or
equivalently the relation between the angles τ and τ ′ is given by the Snell-Descartes
law Eq. (2.2):

cos τ ′ =
1

m
cos τ (2.17)

1For convenience we use in this section the angles τ and τ ′ instead of θi and θt as in the literature
on the subject[Van de hulst1981] [3].
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Direction of emergent rays

Since the angles of all the emergent rays with respect to the particle surface are constant
and the angles of all the rays in the particle make the same angle with the particle surface
also, the deviation angle of any emergent ray can be given analytically as function of
the incident angle and the refraction angle. For example, the deviation angle θ0 of
the externally reflected ray (p = 0) with respect to the incident direction is 2τ in
counterclockwise sense. For the refracted ray, there is a 2τ ′ deviation angle in clockwise
sense for each interaction. The deviation angle θp of the emergent ray of order p is
therefore:

θp = 2 (τ − pτ ′) (2.18)

However, the scattering light is generally observed in the range of [0◦, 360◦]. Partic-
ularly, for the scattering of plane wave by a sphere, the scattering angle is usually
given in the interval [0◦, 180◦] owe to the symmetry of the problem. In this case, the
scattering angle of a ray of order p can be expressed as [3]:

θsp = 2qp (τ − pτ ′) + 2kpπ (2.19)

where kp is a integer, which stands for the times that the emergent ray crosses the z
axis, and qp is +1 or −1.

The differentiation of the scattering angle with respect to τ gives

dθsp
dτ

= 2

(

1− p
tan τ

tan τ ′

)

(2.20)

When the derivative is zero, the scattering angle reaches an extreme value which cor-
responds to the geometrical rainbow angle θOG:

θGO(m, p) = 2

∣

∣

∣

∣

∣

∣

arctan





√

m2 − 1

p2 −m2



− p arctan



p

√

m2 − 1

p2 −m2



+ qπ

∣

∣

∣

∣

∣

∣

(2.21)

where q is a integer to be chosen so that θOG ∈ [0, π]. Eq. (2.20) will also be used to
calculate the divergence factor.

Amplitudes of emergent rays

The amplitude of an emergent ray is affected by two factors:

εX,p due to reflection and transmission on the particle surface: this factor depends on
the polarization state and the order of the rays. It is always less than 1.



2.2. GEOMETRICAL OPTICS FOR SCATTERING OF A SPHERE 31

Dp due to divergence and convergence of the wave: the amplitude of the emergent
wave may be greater or smaller than the incident one depending on the curvature
of the particle surface – concave or convex at different interaction points.

The amplitude ratios of the reflected and the transmitted waves to the incident wave
at each interaction are given by the Fresnel formulas2:

r⊥ =
sin τ −m sin τ ′

sin τ +m sin τ ′

r∥ =
m sin τ − sin τ ′

m sin τ + sin τ ′

(2.22)

Since the angles τ and τ ′ are constants for all order rays in the scattering of plane
wave by a sphere, the amplitude ratio of the emergent rays of order p can be given by
these two constant coefficients r⊥ and r∥. For example, for the rays of order p = 0, the
amplitude ratio of the reflected wave to the incident one is directly the Fresnel coefficient
of reflection rX . The rays of order p = 1 experience two refractions (transmissions),
so the amplitude ratio is given by t2X = 1 − r2X . In general, the rays of order p ≥ 1
experience two refractions (transmissions) and p−1 reflections on the internal surface of
the particle for which the Fresnel coefficient is −rX calculated by Eq. (2.22). Therefore,
the amplitude ratio of an emergent ray of order p to the incident ray is given by

εX,p =

{

rX for p = 0,
(−rX)

p−1 (1− r2X
)

for p > 0.
(2.23)

where, rX is the Fresnel coefficients of reflection for polarization X =⊥, ∥ given in Eq.
(2.22).

When a wave arrives on a curved surface, its wavefront will be changed, i.e. converged
or diverged, according to the curvature of the surface. Therefore, the amplitude of
the emergent wave per unit surface will increase or decrease. This variation can be
described by the divergence factor, which can be derived analytically by the balance of
energy for the scattering of a plane wave by a sphere.

Consider a finite pencil of light illuminating the sphere. Let I0 denote the intensity of
the incident light. The illuminated area can be expressed as function of angle increments
dφ and dτ such that dS = a cos τdφ · adτ = a2 cos τdτdφ. The flux of energy in this
pencil is therefore I0 sin τdS = I0a

2 sin τ cos τdτdφ. After successive interactions with
the particle surface, this energy flux in area dS spreads into a solid angle sin θspdθspdφ,
i.e., over an area dSs = r2 sin θspdθspdφ at a large distance r from the sphere. If we

2These two formulas are the same as those given in section 2.1 but as function of the complementary
angles of the incident and refraction angles. The two complementary angles are preferred in the study
of the scattering of a plane wave by a sphere, since it simplifies the notation, especially for the deviation
angle.
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neglect the energy loss due to absorption and suppose that the intensity of scattered
wave of order p at angle θsp is Ix(p, θsp) we will have I0 sin τdS · ε2X = IX(p, θsp)dSs i.e.

IX(p, θsp) =
ε2XI0a

2 cos τ sin τdτdφ

r2 sin θspdθspdφ

=
a2

r2
I0ε

2
XDs

(2.24)

where Ds is called the divergence factor of the wave defined by

Ds =
sin τ cos τ

sin θsp

∣

∣

∣

∣

dθsp
dτ

∣

∣

∣

∣

=
sin 2τ

4 sin θsp

∣

∣

∣

∣

1− p
tan τ

tan τ ′

∣

∣

∣

∣

(2.25)

according to the Eq. (2.20). Then, the divergence factor of the rays of order p can be
expressed by the incident θi and refraction angles θt:

Ds =
sin 2θi

4 sin θsp

(

p
cos θi
cos θt

− 1

) (2.26)

For the rays of low orders, sin θsp can be further expressed as function of the incident
θi and refraction angles θt in simple form. For example, the divergence factor of order
p = 0 is:

Ds0 =
sin 2θi

4 sin (π − 2θi)
=

1

4
(2.27)

since the scattering angle θsp = π − 2θi.

Similarly, we can obtain the divergence factor for order p = 1:

Ds1 =
sin 2θi

4 sin [2 (θt − θi)]
·

m cos θt
cos θi −m cos θt

(2.28)

and for order p = 2:

Ds2 =
sin 2θi

4 sin [2 (θt − θi)− π]
·

m cos θt
2 cos θi −m cos θt

= −
sin 2θi

4 sin [2 (θt − θi)]
·

m cos θt
2 cos θi −m cos θt

(2.29)

These analytical expressions are useful to check our code and the divergence factor in
VCRM.
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Phase of emergent rays

When the incident wave is a plane wave, its phase is constant. The phase shift of a ray
during the interaction with the particle is caused by three facts [3]:

• σP : phase shift due to the optical path,

• σF : phase shift due to reflection and refraction, which can be calculated from the
Fresnel coefficients,

• σf : phase shift due to the focal lines.

The phase of an emergent ray is given by

σp = σP + σF + σf (2.30)

Thanks to the symmetry of the sphere, all the three phase shifts can be expressed
analytically as function of the incident angle and the parameters of the sphere.

1. Phase shift due to Fresnel coefficients σF :
This phase shift can be calculated directly by Eq. (2.10). The variation of the
phase shift as function of the incident angle has been investigated in the first
section in this chapter for the relative reflective index smaller or greater than
unity.
In our case of plane wave scattering by a sphere, the total reflection can never
occur on the internal surface. The Fresnel coefficients can never be complicated
and the phase shift due to the Fresnel coefficient is given according to Eq. (2.23)
by

σF = arg(εX,p) =

{

arg(rX) for p = 0,
(p− 1) arg(−rX) for p > 0.

(2.31)

2. Phase shift due to optical path σP :
The phase shift σP of a ray induced by the optical path is calculated by:

σP =
2π

λ
∆L (2.32)

where ∆L is the difference of the optical path of the emergent ray and the reference
ray, which is a ray would arrive at the particle center in the same direction as
the incident ray and would go out in the same direction as the emergent ray as if
there is no particle.
The specularly reflected ray by the external surface of the sphere (p = 0) in
Fig. 2.6 has a shorter path than the reference ray ∆L0 = 2a sin τ and leads to
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a positive phase shift σP = 2π/λ · 2a sin τ . The optical path of the refracted ray
of order p ≥ 1 is longer than that of the reference ray. Therefore, it leads to a
negative phase shift. The distance of two adjacent interaction points of the ray
with the sphere surface is 2a sin τ ′. Therefore, the optical path difference of an
emergent ray of order p to its corresponding reference ray is 2a(sin τ−2pm sin τ ′).
The phase shift σP due to the optical path difference for the rays of order p is:

σP =
2π

λ
2a(sin τ − 2pm sin τ ′) = 2α(sin τ − 2pm sin τ ′) (2.33)

where α = 2πa/λ is the size parameter of the particle and λ the wavelength of
the incident wave in the surrounding medium.

3. Phase shifts due to focal lines/points σf :
According to Van de Hulst[3], the phase of wave advances by π/2 when it passes
through a focal line. Thus, it is necessary to count the number of focal lines and
focal points encountered along the entire path (a focal point is two perpendicular
focal lines located at the same point). It is found that the rays pass p− (1− s)/2
focal points, which are the intersection point of two adjacent rays in scattering
plane, and −2kp + (1− qp)/2 focal lines that are the intersection points of a ray
with the central optical axis. The integers p, kp and qp are defined in Eq. (2.19)
and s = +1 or −1 denotes the sign of the derivative dθd/dτ . So the total phase
shift due to the focal lines σf is given by:

σf =
π

2

(

p− 2kp +
s− qp

2

)

(2.34)

Finally, the total phase shift of an emergent ray of order p relative to the reference ray
is given by

σp = σF + 2α(sin τ − 2pm sin τ ′) +
π

2

(

p− 2kp +
s− qp

2

)

(2.35)

where σF is given by Eq. (2.31). This Eq. (2.35) will be used in Eq. (2.36) to calculate
the complex amplitudes of the emergent rays.

Scattering intensity

The incident wave being coherent, the emergent rays arriving at the same position
or in the direction may interfere. Because we are interested in the scattering in far
field, all the emergent rays in the same direction (θ, φ) will interfere. The amplitude
of the resultant field should be calculated therefore by the summation of the complex
amplitudes of all the emergent rays in the same direction.
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The amplitude and the phase of each emergent ray have been calculated above. The
complex amplitude of a ray is then given by

ÃX,i(θ, φ) = αAX,0 | εX,i |
√

Dspe
iσX,i (2.36)

where AX,0 stands for the amplitude of the incident wave with the polarization state X:
Index i denotes the ith ray arriving in the direction (θ, φ). It should be noted that not
all orders of rays arrive in all the directions and the rays from the same order may reach
the same direction several times. On the other hand, the scattered wave is spherical in
far field, so the factor 1/(r)2 in Eq. (2.24) is suppressed as a convention.

In a given direction (θ, φ), the total complex amplitude is calculated by the summation
of the complex amplitudes of all rays arriving at the same angle:

ÃX(θ, φ) =
∞
∑

i=0

ÃX,i(θ, φ) (2.37)

The total intensity is therefore

I(θ, φ) = | Ã⊥(θ, φ) |
2
+ | Ã∥(θ, φ) |

2 (2.38)

Numerical simulation of the scattering diagrams of a plane wave by a sphere will be
presented in the next subsection and compared to the results of the Lorenz-Mie theory
in order to evaluate the accuracy and the applicability of the geometrical optics in the
light scattering.

2.2.2 Simulation results and discussions

The method of GO on the scattering of a plane wave by a spherical particle will be
applied to calculate the scattering diagrams in this section. We suppose that the ab-
sorption inside the particle is negligible, so the relative refractive index is real. In this
section, the number of ray is 500.

We present first in Fig. 2.7 the ray tracing in and out of a sphere. For clarity, only
the above half of the sphere is illuminated (in cyan color). The reflected rays (p = 0
in green) spread in all directions. The refracted rays (p = 1 in red) are confined in
the forward directions and experience a focal point outside of the particle (passing by
the symmetric axis) and the rays far from the axis may have a focal line inside the
particle. The rays of second order p = 2 (in blue) and third order p = 3 (in dark green)
have each of them a extreme deviation angle, about 138◦ for p = 2 and 127◦ for p = 3,
where the scattered intensity predicted by GO tends to infinity. These are the so called
geometrical rainbow angles.

Then the intensity of the emergent rays of different orders as well as the total scattered
intensity calculated by GO are shown in Fig. 2.8. The minimum value of the order of



36 CHAPTER 2. FUNDAMENTALS OF GEOMETRICAL OPTICS

Symetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axisSymetric axis

Figure 2.7: Ray tracing by GO for a sphere (m = 1.333) illuminated by a plane wave.
For clarity, only the above half of the sphere is considered with p = 3.

ray is 0 and the maximum value of that is 4. The interference is taken into account
for the total intensity but not for the individual orders. The intensity of the individual
order is determined by the two factors: the Fresnel coefficients and the divergence
factor. For example, the intensity of the rays of order p = 0 decreases monotonically as
function of scattering angle for the perpendicular polarization but tends to zero at 74◦

for the parallel polarization the later corresponds to the Brewster angle θB = 53.12◦

because the scattering angle is related to the incident angle by θs = 2τ = 2(90◦ − θi)
for p = 0. Similarly, the minimum intensity for the parallel polarization in the other
orders are all due to the Brewster angle.

At the same time we observe that all the peaks are located at the same angles for the
two polarization. These are due to the divergence factor, which are independent of the
polarization and can be predicted by the formulas given in the previous section.

To evaluate the accuracy of the GO, we will compare the scattered intensities calculated
by the GO and the LMT for a particle of radius illuminated by a plane wave. For a
complete comparison, the diffraction must be taken into account. This can be done
by considering the sphere as a opaque disk of the same section. The amplitude of the
diffracted field is given by

Ad(θ) = α
J1(αθ)

αθ
(2.39)

where, J1 is the first-order Bessel function of the first kind. Ad(θ) is added into Eq.
(2.37) The scattered diagrams calculated by the two methods for a particle of a large
particle (a = 100 µm, m = 1.333) are given in Fig. 2.9. The minimum value of the
order of ray is 0 and the maximum value of that is 12 in scattered intensity with GO.
We find that the agreement is very satisfactory in general. However, a discrepancy
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Figure 2.8: Scattered intensity of each order of rays and the total intensity (plane wave
λ = 0.6328 µm, sphere: m = 1.333 and a = 100 µm).
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is clearly visible near the rainbow angles and around 90◦, especially for the parallel
polarization.

We would note also that the first and the second rainbows are less remarkable for the
parallel polarization than for the perpendicular polarization. This can be explained by
the fact that minimum reflection at Brewster angle is near the rainbow angles, notably
for the first rainbow (cf. Fig. 2.9 (b)).

To examine the lower limit of the GO, we compare in Fig. 2.10 the scattering diagrams
calculated by the GO and LMT for a particle of radius 20 µm. The order of the ray,
the refractive index of the particle and the wavelength are the same as in Fig. 2.9. The
discrepancy is evidently more important but the agreement is not so bad. If we focus
our attention to the structure of the first rainbow for the perpendicular polarization
out of the Alexander region, the fine structure of the GO is in very good agreement
with that of the LMT. This is important for the refractometry of rainbow.

2.3 Conclusion

In this chapter, some fundamentals of geometrical optics are recalled. The formulation
of the classic geometrical optics (GO) for the light scattering of a plane wave by a sphere
is presented in details. Then, the ray tracing and the scattered intensity of individual
order of ray are given to understand the mechanism of the light scattering. By the
comparison of the scattering diagrams calculated by GO with LMT, we have shown
that the GO permits to deal with the scattering of large particles (diameter larger than
about 50 times the wavelength) and the accuracy is sufficiently good in general if the
size of the sphere is large enough. In certain cases (depending on the polarization state,
scattering region ...), the accuracy may be almost perfect or not good enough.

However, the formalism of GO for the scattering of a sphere can not be extended to
a non-spherical particle. For an irregularly shaped particle, the incident angle (so the
refraction angle) and the curvature of the particle surface change at each interaction.
The Fresnel coefficients are to be calculated at each interaction point. And especially,
it is very difficult to take into account the divergence/convergence of a wave on the
particle surface.

The new models presented in the next chapter: Vectorial Complex Ray Model(VCRM)
and Statistic Vectorial Complex Ray Model(SVCRM), are aimed to overcome this dif-
ficulty. It will be used latter for the scattering of a plane wave by a pendent droplet in
three dimensions in chapter 5.
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Figure 2.9: Scattering diagrams simulated by GO for a sphere (m = 1.333 and a =
100 µm) by a plane wave of wavelength λ = 0.6328 µm with various polarization states
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Figure 2.10: Scattering diagrams simulated by GO for a sphere (m = 1.333 and a =
20 µm) by a plane wave of wavelength λ = 0.6328 µm with various polarization states



Chapter 3

Vectorial Complex Ray Model and
Statistic Vectorial Complex Ray
Model

We have shown in the previous chapter that the Geometrical optics (GO) can predict
the scattering of plane wave by a large sphere. But it is very difficult or impossible
to extent to the scattering of the particles that have no circular or spherical symmetry
because the divergence factor and the phase shift due to the focal lines cannot be
calculated analytically. In fact, there is no parameter in the classical GO to describe
the divergence or convergence of a wave. In order to solve this problem, the Vectorial
Complex Ray Model (VCRM)[36, 54, 55] has been developed in our laboratory, in which
the wave front curvature is introduced to describe this wave property. Furthermore, the
rays in VCRM are expressed in vectors, which facilitates considerably the calculation.

The VCRM has been validated numerically [39] and experimentally [40] in the case of
scattering of a plane wave by an ellipsoidal particle in a symmetric plane. In principle,
VCRM can be applied to the scattering of a particle of any shape with smooth surface,
if the function describing the particle surface is derivable to the second order so that
the curvature exists. And it is not difficult to calculate the complex amplitude of each
emergent ray. The problem is that the directions of the emergent rays are not regularly
distributed along the scattering angles (θ, φ). To calculate the complex amplitude of the
total scattered field at a given direction, we must know the complex amplitude of each
ray arriving in that direction. This can be realized by a two dimension interpolation
from a irregular distributed data, even if it is not an easy task.

To get over this obstacle, we develop an alternative algorithm for scattering of the
three-dimensional non-spherical particles. Instead of the calculation of the complex
amplitude in a given direction, we count statistically the complex amplitude of all
the emergent rays in a small box, this algorithm is called hereafter Statistic Vectorial
Complex Ray Model (SVCRM) [41].

41
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In this chapter, we will present firstly the principle of VCRM, and then give a detailed
description of the SVCRM.

3.1 Vectorial Complex Ray Model

In VCRM, all waves are described by bundles of rays where each ray is characterized
by its propagation direction k̂, its polarization X, its phase σp, its amplitude AX,p as
well as its wave front curvature matrix Q [36, 56].

3.1.1 Directions of rays and Fresnel formulas

The propagation direction of a ray is described by its wave vector. It is much more
convenient for the numerical calculation for the scattering of particles of any shape
since only four basic operations are necessary to determine the directions of reflected
and refracted rays, and the Fresnel coefficients.

The Snell-Descartes law is written in vector form in VCRM [36]:

(k′ − k)× n̂ = 0 (3.1)

where k
′ and k are respectively the wave vectors before and after interaction of the ray

with the particle surface, and n̂ is the normal of the surface.

In fact, Eq. (3.1) reveals simply that the tangent component of the wave vector on the
interface of a particle is continuous [38]. This means that the Snell-Descartes law can
be written explicitly as:

k′
τ = kτ (3.2)

where the subscript τ indicates the tangent component of the vector. So Eq. (3.2) can
be further expressed as

k(i)
τ = k(r)

τ = k(t)
τ (3.3)

The normal component of the wave vector [38], which is not continuous, can be obtained
simply by

k(r)
n = −

√

k(r)2 − k
(i)
τ

2

k(t)
n =

√

k(t)2 − k
(i)
τ

2
(3.4)

where k
(r)
n is the normal component of the reflected wave vector, the minus sign means

that the normal component of the reflected ray is in the opposite direction of the
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incident ray. k(t)
n is the normal component of the refracted wave vector. The propagation

directions of the emerging rays [57] are given by:

k
(r) = k(r)

τ τ̂ + k(r)
n n̂

k
(t) = k(t)

τ τ̂ + k(t)
n n̂

(3.5)

To be convenient and consistent with VCRM, the Fresnel formulas are written as func-
tions of the normal components of the wave vectors of the incident, the reflected and
the refracted waves [58]:

r∥ =
m2k

(i)
n − k

(r)
n

m2k
(i)
n + k

(r)
n

r⊥ =
k
(i)
n − k

(r)
n

k
(i)
n + k

(r)
n

t∥ =
2mk

(i)
n

m2k
(i)
n + k

(t)
n

t⊥ =
2k

(i)
n

k
(i)
n + k

(t)
n

(3.6)

with k
(r)
n = k

(i)
n = k

(i) · n̂ = k0 cos θi, k(t)
n = k

(t) · n̂ = mk0 cos θt. Here, θi is the incident
angle and θt the refraction angle.

When the tangent component of the incident wave vector is greater than the wave
number of the refracted wave (when a ray goes from an optically denser medium to an
optically looser medium), the total reflection occurs. In this case, the normal component
of the wave becomes a pure imaginary number if the two media are both transparent.
The Fresnel reflection coefficients can be written as [59]

r∥ =
m2k

(i)
n − i

√

k
(i)
τ

2
− k(r)2

m2k
(i)
n + i

√

k
(i)
τ

2
− k(r)2

r⊥ =
k
(i)
n − i

√

k
(i)
τ

2
− k(r)2

k
(i)
n + i

√

k
(i)
τ

2
− k(r)2

(3.7)

They become complex numbers. The phase shifts of the rays due to the reflection and
refraction vary with the incident angle of the rays.

3.1.2 Wave front equation

When a wave propagates, it can be diverging, converging or plane. Two curvatures
along on the final directions can be associated with this wave. When a wave interacts
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with a particle, the reflected/refracted wave will be converged or diverged according to
the curvature of the particle surface. To describe this property, the wave front curvature
is introduced in VCRM as a new property of a ray [36, 55, 54].

Incident wave

t1

t2

s2

s1
wave front

Dioptry interfacewave front

k’

Q C

k
Q’

Figure 3.1: Schematic diagram of the wave fronts of the waves before and after inter-
action and the dioptry particle surface

In terms of mathematics, the structure of any smooth surface in the vicinity of a given
point can be described by a 2 × 2 matrix [56]. The curvature matrix of a surface is
defined as follows. Let t1 and t2 be an orthonormal basis of the tangent plane at a
surface point. n is the normal vector at the surface point. t is any direction in the
tangent plane: t = α1t1 + α2t2, the curvature along t is the second derivative of the
curve x(t) in the plane (n, t). The curvature matrix is

Q =





κ11 κ12

κ21 κ22



 (3.8)

defined by

κp(t) =





α1

α2





T 



κ11 κ12

κ21 κ22









α1

α2



 (3.9)

If t1 and t2 are the principal directions, Q is diagonal. Definition of wave curvature is
similar, by using wave front instead of the surface.

Considering an arbitrary wave whose wave front curvature at the incident point is
described by the curvature matrix Q in the basis (t1, t2), the curvature matrix of
the dioptric surface C in basis (s1, s2) and the curvature matrix of the refraction or
reflection wave Q′ in basis (t′1, t

′
2), the evolution of the wave front curvature at each

interaction point can be described by the wave front equation [36]:

(k′ − k) · nC = k′Θ
′TQ′Θ′ − kΘTQΘ (3.10)



3.1. VECTORIAL COMPLEX RAY MODEL 45

where n is the normal of the dioptric surface, k and k
′ are the wave vectors of the rays

before and after interaction, k and k′ are the corresponding wave numbers. The index
T denotes the transposition of the matrix. In addition, Θ and Θ′ are the projection
matrices of the basis (t1, t2) and (t′1, t

′
2) on the basis (s1, s2) respectively, which can

be expressed as:

Θ =





s1 · t1 s1 · t2

s2 · t1 s2 · t2





Θ′ =





s1 · t
′
1 s1 · t

′
2

s2 · t
′
1 s2 · t

′
2





(3.11)

When (t1, t2) and (t′1, t
′
2) are the principal curvature directions of the wave front before

and after interaction and (s1, s2) are the principal curvature directions of the dioptric
surface, the corresponding curvature matrix is diagonal.

If the scattering takes place in a symmetric plane and one of the principal direction of
the incident wave front as well as those of the reflected and refracted waves are in the
direction perpendicular to the symmetric plane, the matrices Q, Q′ and C are diagonal
and may be written as:

Q =







1

R1

0

0
1

R2







Q′ =







1

R′
1

0

0
1

R′
2







C =







1

ρ1
0

0
1

ρ2







(3.12)

where R1, R2 and R′
1, R′

2 are the principal curvature radii of the wave front before and
after interaction and ρ1, ρ2 are the principal curvature radii of the particle surface at
the interaction point.

Supposed that s2 and t2 are in the incident plane. It means s1·t1 = 1 and s2·t2 = cos θi.
Similar relations can be applied to the refracted wave. The wave front equation (3.10)
is simplified to two scalar equations. The relation between the curvature radii in the
plane perpendicular to the incident plane is given by:

k′

R′
1

=
k

R1

+
k′
n − kn
ρ1

(3.13)
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and the relation of the curvature radii in the incident plane is expressed as:

k′
n
2

k′R′
2

=
k2
n

R2

+
k′
n − kn
ρ2

(3.14)

It is important to note that if ρ1 is not infinite the wave front curvature in the direction
perpendicular to the scattering plane evolves also at each interaction with the particle
surface.

3.1.3 Amplitude of a ray

The amplitude of a ray may change during the propagation due to the convergence and
divergence of the waves. In the scattering of a plane wave by a sphere, the divergence
factor has been obtained analytically to describe the variation of the amplitude of the
ray. In the framework of VCRM, the divergence factor can be calculated step by step
according to the wave front curvature for particle of any shape [58].

Ray F1 F2

SA

SB

R1

R2

R’1

R’2

α
1

α
2

Figure 3.2: Variation of pencil cross section

Consider a wave propagating from point A to point B (Fig. 3.2). Suppose that two
orthogonal focal lines are F1 and F2. Then the curvature radii at A and B corresponding
to F1 are, respectively, R′

1 and R1 and the curvature radii at A and B relative to F2 are,
respectively, R′

2 and R2. The relation between the intensities at points A and B along a
ray can be deduced from the energy conservation, i.e. the energy flux passing through
the surface SA = R′

1α1R
′
2α2 is equal to that through the surface SB = R1α1R2α2.

That is IAR′
1α1R

′
2α2 = IBR1α1R2α2. Consequently we obtain the relation between the

intensities at A and B:
IB
IA

=

∣

∣

∣

∣

R′
1R

′
2

R1R2

∣

∣

∣

∣

(3.15)

which indicates that the ratio of the intensities at two successive points A and B
is proportional to ratio of their Gauss curvature (the product of the two principal
curvatures) of the wave front.

Now, we consider the variation of the intensity in the scattering of a particle. The
intensity of the reflected wave by the external surface (the first interaction) is the
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product of the intensity of the incident wave I0 and the reflectivity | rX,0 |
2. The two

radii of the reflected wave front at the reflection point are noted by R′
10 and R′

20, and
those of the reflected wave at distance r are (r−R′

10) and (r−R′
20). Then the scattered

intensity at distance r can be expressed as:

I(r) = I0| rX,0 |
2

∣

∣

∣

∣

R′
10R

′
20

(r −R′
10) (r −R′

20)

∣

∣

∣

∣

(3.16)

Similarly, the intensity of the scattered light of order p = 1 can be calculated by:

I(r) = I0| tX,0tX,1 |

∣

∣

∣

∣

R′
10R

′
20

R11R21

·
R′

11R
′
21

(r −R′
11) (r −R′

21)

∣

∣

∣

∣

(3.17)

where tX,0 and tX,1 are the Fresnel coefficients of refraction for the order p = 0 and
p = 1.

Generally, the two curvature radii of the incident wave front at qth interaction point
are noted by R1q and R2q. R′

1q and R′
2q are the corresponding curvature radii of the

refracted ray. Then, the intensity of the emergent ray after q interactions with the
particle surface can be expressed as:

I(r) = I0| εX,p |
2 | Dv | (3.18)

where p = q − 1, Dv is the divergence factor defined by

Dv =
R′

10R
′
20

R11R21

·
R′

11R
′
21

R12R22

· · ·
R′

1pR
′
2p

(r −R′
1p)(r −R′

2p)
(3.19)

εX,p is the amplitude ratio of the pth order ray and the incident ray for polarization X
and given as function of the Fresnel coefficients by:

εX,p =











rX,0 p = 0

tX,0t
′
X,p

p−1
∏

n=1

rX,n p ≥ 1
(3.20)

It should be noted that the reflection coefficient rX,0 is for the first external reflection
while the rX,n is for the internal reflection.

In our study, we are interested only in the scattering in far field. The term (r −
R′

1p)(r−R′
2p) in Eq. (3.19) tends to r2 in far field and often omitted in the calculation

of scattering diagrams and we note Dv = Dv/r
2. Thus, the complex amplitude of an

emergent ray of order p with X polarization is calculated by
ÃX,p =

√

| Dv |A0,X | εX,p | e
iσX,p (3.21)

where the divergence factor Dv is given by:

Dv =
R′

10R
′
20

R11R21

·
R′

11R
′
21

R12R22

· · ·R′
1pR

′
2p (3.22)

The calculation of the phase σX,p will be discussed in the following section.
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3.1.4 Phase of a ray

The phase of rays plays a critical role in counting the wave effect in the light scattering
diagrams by taking the interference phenomenon into consideration, such as the fringes
in the (rain)bows of each order or the interference structure near different kinds of
caustics. The phase σ of a ray in VCRM is easy to count.
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Figure 3.3: Schematic diagram of interactions between a ray and an irregular particle.

The phase of an emergent ray consists of four parts:

• Phase of the incident ray σX,0

The first part concerns the phase of the incident wave, which is determined by the
properties of the incident wave. In the scattering of a plane wave by a pendent
droplet, the phase of the incident rays is constant and we take σX,0 = 0 in the
calculation.

• Phase shifts induced by Fresnel coefficients σF,X,p

The phase shift due to the reflection/refraction is calculated directly according
to the Fresnel coefficient as described in the previous chapter. For a transparent
particle, if no total reflection occurs, only a phase shift π is to be added to the
reflected ray for the perpendicular polarization at any incident angle and for the
parallel polarization if the incident angle is larger than the Brewster angle. There
is no phase shift for the refracted ray whatever the polarization state. When the
total reflection occurs, the phase shifts of the reflection/refraction ray depend on
the incident angle and to be calculated by Eq. (2.10) to both polarizations.
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• Phase shift due to optical path σP,p

The phase shift due to the optical path is computed directly according to the
optical path relative to a reference ray arriving at the center of the particle in
the same direction as the incident ray and outgoing in the same direction as the
emergent ray.
Let rq and k̂q be respectively the position vector of qth interaction point of the
ray with the particle surface and the normalized wave vector of the emergent ray
from that point, the phase due to the optical path of a ray after q interactions
with the particle is given by

σP,p = −k0

(

k̂i · r1 − k̂q · rq

)

− kp

p
∑

q=1

k̂q−1 · (rq − rq−1) (3.23)

where k̂i is the normalized wave vector of the incident ray. The first part in this
equation is the phase shift of the due to the path difference outside of the particle
and the second part is the total optical path inside the particle.

• Phase shift due to focal lines/points
As for the phase shift due to the focal lines, it is easy to be calculated in VCRM,
because we need only to count the number of the changes of the signs of the
wave front curvature radii Nf during its successive interactions of a ray with the
particle surface until emergent to infinite. The phase shift due to focal lines is
then

σf =
π

2
·Nf (3.24)

This phase shift is dependent of the polarization state of the incident wave.

Finally, the phase of a X polarized ray of order p can be expressed as:

σX,p = σX,0 + σF,X,p + σP,p + σf,p (3.25)

This is essential to predict the interference of the scattered wave when the particle is
illuminated by a coherent light.

3.1.5 Scattering intensity

Knowing the amplitude and the phase of each emergent ray, we can calculate the
complex amplitude of each emergent ray in the same manner as in the GO for the
scattering of a plane wave by a sphere, i.e.

ÃX,i(θ, φ) = AX,0 | εX,i |
√

| Dv |e
iσX,i (3.26)
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where AX,0 stands for the amplitude of the incident wave with the polarization state
X. The index i denotes the ith ray arriving in the direction (θ, φ). It should be noted
that Dsp is replaced by Dv and there is no size parameter in Eq. (3.26) (compared to
Eq. (2.37), since we cannot define precisely a size parameter for a particle of arbitrary
shape and the dimension of the particle is included already in the divergence factor.
The remarks after Eq. (2.37) concerning (1) the number of rays, (2) the prefactor
1/(kr)2, (3) calculation of the total complex amplitude in a given direction and (4) the
total scattered intensity for spherical particle are valid also for an arbitrarily shaped
particle in VCRM.

As stated at the beginning of this chapter, it is very difficulty to calculate the total
complex amplitude at a given direction according to Eq. (2.37) since a two dimension
interpolation on irregular data is necessary. The Statistic Vectorial Complex Ray Model
permits to get around this obstacle and will be presented in details in the following
section.

3.2 Statistic Vectorial Complex Ray Model

In the Statistic Vectorial Complex Ray Model (SVCRM), the light wave is presented
by photons having the same properties of rays in VCRM [41]. It is more vividly to
represent the physical properties in statistics by inducing the concept of photons. The
phase of each photon is calculated in the same manner as in VCRM. The ratio of
the amplitude of the scattered wave to the incident one due to the reflection and the
refraction, i.e. the factor εX , is calculated step by step according to Eq. (3.20), while
the variation of the amplitude of the scattered wave due to divergence and convergence
by the curvature of the particle surface will not be calculated by the divergence factor
but taken into account by the number of photons arriving in a collection unit. The
calculation of the wave front is still necessary to count the phase shift due to the focal
lines.

3.2.1 Four coordinate bases

In the scattering of light by a particle of arbitrary shape, the direction of the incident
plane, the polarization state of a wave, the principal directions of the particle surface
and those of the wave front change at each interaction. To describe these properties we
need to define four basis, i.e. four normalized orthogonal basis at a given interaction
point.

We note the normal of the particle surface at a given interaction point by n̂, which is
oriented from the incident medium to the medium where the transmission takes place.
The incidence plane is the plane defined by the propagation direction of the incident
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wave k
(i) and the normal to the surface n̂. Then, four basis will be introduced, and

the propagation directions of the reflected/refracted waves and the polarization states
will be expressed in these basis.
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Figure 3.4: Definition of the direction of various components in Snell-Descartes Laws

• Basis of particle surface
First, we define the unit vector ê

(s)
j perpendicular to the incidence plane, which

can be expressed by the wave vector of the incident wave k̂
(i) and the normal to

the particle surface n̂:

ê
(s)
j =

n̂× k̂
(i)

∥

∥

∥n̂× k̂(i)

∥

∥

∥

(3.27)

Then the unit vector ê(s)
i parallel to the incident plane and perpendicular to ê

(s)
j

is given by:

ê
(s)
i =

ê
(s)
j × n̂

∥

∥

∥ê
(s)
j × n̂

∥

∥

∥

(3.28)

So the basis of the particle surface is defined by (ê
(s)
i , ê

(s)
j , n̂).

• Basis of incident rays
Then, the basis of the incident ray is defined according to the normalized wave
vector of the incident wave k̂

(i) and the normal of the incident plane ê
(s)
j , but

noted here by ê
(i)
j for convenience. The third basis vector is defined by

ê
(i)
i =

ê
(i)
j × k̂

(i)

∥

∥

∥
ê
(i)
j × k̂(i)

∥

∥

∥

(3.29)
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The basis of incident ray is therefore (ê
(i)
i , ê

(i)
j , k̂(i)).

• Basis of reflected rays
Similarly, the basis of the reflected ray is defined according to the normalized
wave vector of reflected ray k̂

(r) and the normal of the incident plane ê
(s)
j , also

noted by ê
(r)
j for convenience. The third basis vector is defined by

ê
(r)
i =

ê
(r)
j × k̂

(r)

∥

∥

∥
ê
(r)
j × k̂(r)

∥

∥

∥

(3.30)

The basis of the reflected ray is then (ê
(r)
i , ê

(r)
j , k̂(r)).

• Basis of refracted rays
Finally, the basis of the refracted ray (ê

(t)
i , ê

(t)
j ,k(t)) is defined in the same man-

ner, where ê
(t)
j = ê

(s)
j and

ê
(t)
i =

ê
(t)
j × k

(t)

∥

∥

∥ê
(t)
j × k

(t)
∥

∥

∥

(3.31)

These four basis will be used in the following calculation.

3.2.2 Curvature matrix

In general, at an interaction point of a ray with the particle surface, the curvature matrix
of the dioptric surface C, the wave front curvature matrix of the incident wave Q(i),
the reflected wave Q(r) and the refracted Q(t) are not diagonal and can be expressed
by 2× 2 matrices, respectively, as:

C =





κ
(s)
ii κ

(s)
ij

κ
(s)
ij κ

(s)
jj





Q(i) =





κ
(i)
ii κ

(i)
ij

κ
(i)
ij κ

(i)
jj





Q(r) =





κ
(r)
ii κ

(r)
ij

κ
(r)
ij κ

(r)
jj





Q(t) =





κ
(t)
ii κ

(t)
ij

κ
(t)′

ij κ
(t)
jj





(3.32)
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A curvature matrix is diagonal when it is given in its principal direction basis. The
two elements in the diagonal are the two curvatures and their inverses are the two
curvature radii. That means to find the curvature radii, the four curvature matrices
in Eqs. (3.32) must be diagonalized. In that case, the four curvature matrices can be
expressed, respectively, as:

C =





κ
(s)
1 0

0 κ
(s)
2





Q(i) =





κ
(i)
1 0

0 κ
(i)
2





Q(r) =





κ
(r)
1 0

0 κ
(r)
2





Q(t) =





κ
(t)
1 0

0 κ
(t)
2





(3.33)

Because the principal directions of the incident wave, of the surface, of the reflected
wave and of the transmitted wave are not the same, a reference basis must be chosen
to calculate the curvature evolution at surface interaction. We choose to define the ray
by its two curvature κ

(i)
1 and κ

(i)
2 in its principal directions.

We choose also to compute the wave curvature evolution (Eq. (3.10)) in the basis of the
incident plane (ê

(i)
i , ê

(i)
j , k̂(i)). A rotation matrix is then used to computed C and Q is

this reference basis. Q
′ is then obtained for the reflected and the transmitted wave, as

shown in Fig. 3.5.

Then, the two curvature radii R1, R2 of an emergent wave at a given interaction point
can be calculated when their corresponding principal curvatures are known. The cur-
vature radii R′

1, R
′
2 of the incident wave at the next interaction point can be deduced

from the distance l between the two successive points and these two curvature radii:
R′

1 = R1 − l (3.34)
R′

2 = R2 − l (3.35)

The curvature matrix of the incident wave at the new point obtained in such way is
diagonal and expressed in its principal directions. After that, a series of matrix rotation
start again, which are used to deal with the interaction between the incident ray and
the object in the new incident plane.

Therefore, the mutual transformation between the matrices in Eq. (3.32) and those in
Eq. (3.33) is a crucial operation in SVCRM and detailed discussion of matrix rotation
is given in Appendix B.
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Figure 3.5: Conversion of matrices between different bases

3.2.3 Projection matrix

In order to establish the relation of waves and the particle surface, projection matrices
of the incident wave Θ(i) with basis (ê

(i)
i , ê

(i)
j ) and the reflection wave Θ(r) with basis

(ê
(r)
i , ê

(r)
j ) or the refraction wave Θ(t) with basis (ê(t)

i , ê
(t)
j ) on the particle surface with

basis (ê
(s)
i , ê

(s)
j ) are considered in incident plane respectively:

Θ =





ê
(i)
i · ê

(s)
i ê

(i)
i · ê

(s)
j

ê
(i)
j · ê

(s)
i ê

(i)
j · ê

(s)
j



 =





cos θi 0

0 1





Θ(r) =





ê
(r)
i · ê

(s)
i ê

(r)
i · ê

(s)
j

ê
(r)
j · ê

(s)
i ê

(r)
j · ê

(s)
j



 =





cos θr 0

0 1





Θ(t) =





ê
(t)
i · ê

(s)
i ê

(t)
i · ê

(s)
j

ê
(t)
j · ê

(s)
i ê

(t)
j · ê

(s)
j



 =





cos θt 0

0 1





(3.36)

3.2.4 Wave front equation

The relation between the wave front curvatures of the wave before and after interaction
with the particle surface, i.e. the incident wave and the reflected/refracted wave is
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given in VCRM by the wave front equation (Eq. (3.10)). We describe here in details
how to determine the wave front curvature of the wave after the interaction according
to the properties of the incident wave and that of the particle surface.

• Reflected ray
The wave front equation (3.10) for the reflected ray can be rewritten as

k(r)Θ(r)TQ(r)Θ(r) = k(i)Θ(i)TQ(i)Θ(i) +
(

k(r) cos θr − k(i) cos θi
)

C (3.37)

We know k(r) = k(i) and according to the Snell-Descartes law, we have θr = π−θi
and cos θr = cos(π − θi) = − cos θi. Eq. (3.37) can then be simplified to:

k(r)Θ(r)TQ(r)Θ(r) = k(i)Θ(i)TQ(i)Θ(i) − 2k(i) cos θiC (3.38)

which can be written explicitly as




κ
(r)
ii cos2 θi −κ

(r)
ij cos θi

−κ
(r)
ij cos θi κ

(r)
jj



 =





κ
(i)
ii cos2 θi κ

(i)
ij cos θi

κ
(i)
ij cos θi κ

(i)
jj





− 2 cos θi





κ
(s)
ii κ

(s)
ij

κ
(s)
ij κ

(s)
jj





(3.39)

Consequently, the curvature matrix of the reflected wave front Q(r) can be cal-
culated according to the properties of particle surface and the wave front of the
incident wave:

Q(r) =





κ
(r)
ii κ

(r)
ij

κ
(r)
ij κ

(r)
jj



 (3.40)

with


















κ
(r)
ii = κ

(i)
ii −

2

cos θi
κ
(s)
ii

κ
(r)
ij = −κ

(i)
ij + 2κ

(s)
ii

κ
(r)
jj = κ

(i)
jj − 2 cos θiκ

(s)
jj

(3.41)

In order to obtain the curvature radii and the principal directions of the wave
front of the reflected ray, we need to diagonalize the matrix Q(r) by looking for a
rotation matrix P−1

r with a rotation angle δr:

P−1
r =





cos δr − sin δr

sin δr cos δr



 (3.42)
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such that PrQ
(r)P−1

r is diagonal, i.e.

PrQ
(r)P−1

r =





cos δr sin δr

− sin δr cos δr









κ
(r)
ii κ

(r)
ij

κ
(r)
ij κ

(r)
jj









cos δr − sin δr

sin δr cos δr





=





κ
(r)
11 κ

(r)
12

κ
(r)
21 κ

(r)
22



 =





κ
(r)
1 0

0 κ
(r)
2





(3.43)

with

κ
(r)
11 = κ

(r)
ii cos2 δr + 2κ

(r)
ij sin δr cos δr + κ

(r)
jj sin2 δr = κ

(r)
1 (3.44)

κ
(r)
12 = κ

(r)
21 = (κ

(r)
jj − κ

(r)
ii ) sin δr cos δr + κ

(r)
ij (cos

2 δr − sin2 δr) = 0 (3.45)
κ
(r)
22 = (κ

(r)
jj − κ

(r)
ii ) sin δr cos δr + κ

(r)
ij (cos

2 δr − sin2 δr) = κ
(r)
2 (3.46)

The condition in Eq. (3.45) may be satisfied in three cases:

1. κ
(r)
ii = κ

(r)
jj and κ

(r)
ij = 0: i, j are the two principal directions of the wave front

of the reflected wave. In this case, κ(r)
1 = κ

(r)
2 = κ

(r)
ii = κ

(r)
jj and ê

(r)
1 = ê

(r)
i ,

ê
(r)
2 = ê

(r)
j .

2. κ
(r)
ii = κ

(r)
jj and κ

(r)
ij ̸= 0: in this case if cos2 δr − sin2 δr = cos 2δr = 0, i.e.

δr = ±
π

4
the matrix is diagonal.

3. κ
(r)
ii − κ

(r)
jj ̸= 0: we can find from Eq. (3.45) that when

tan 2δr =
2κ

(r)
ij

κ
(r)
ii − κ

(r)
jj

(3.47)

κ12 = κ21 = 0. The rotation angle δr is then given by:

δr =
1

2
arctan

2κ
(r)
ij

κ
(r)
ii − κ

(r)
jj

(3.48)

Thus, the principal curvatures of the reflected wave are calculated with the ro-
tation angle δr found above according to Eqs. (3.44) and (3.46). The principale
directions are given by

κ
(r)
1 = κ

(r)
11 = κ

(r)
ii cos2 δr + 2κ

(r)
ij sin δr cos δr + κ

(r)
jj sin2 δr

κ
(r)
2 = κ

(r)
11 = κ

(r)
ii sin2 δr − 2κ

(r)
ij sin δr cos δr + κ

(r)
jj cos2 δr

(3.49)

and the corresponding directions of the unit vectors are:

ê
(r)
1 = cos δrê

(r)
i + sin δrê

(r)
j

ê
(r)
2 = − sin δrê

(r)
i + cos δrê

(r)
j

(3.50)
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The two components of the amplitudes A
(r)
1 , A(r)

2 in the new coordinate system
(ê

(r)
1 , ê

(r)
2 ) can be expressed by the two components of the amplitudes A

(r)
i , A(r)

j

in the coordinate system (ê
(r)
i , ê

(r)
j ):

A
(r)
1 = cos δrA

(r)
i + sin δrA

(r)
j

A
(r)
2 = − sin δrA

(r)
i + cos δrA

(r)
j

(3.51)

• Refracted ray
For refracted ray, the wave front Eq. (3.10) can be rewritten as:

k(t)Θ(t)TQ(t)Θ(t) = k(i)Θ(i)TQ(i)Θ(i) +
(

k
(t) cos θt − k

(i) cos θi
)

C (3.52)

Because of k(i)/k(t) = n(i)/n(t) = 1/m, the Eq. (3.52) can be simplified to:

Θ(t)TQ(t)Θ(t) =
1

m
Θ(i)TQ(i)Θ(i) + (cos θt −

1

m
cos θi)C (3.53)

which can be expressed explicitly as
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
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(s)
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(s)
ij κ

(s)
jj


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(3.54)

Let γ = cos θt −
1

m
cos θi, we can obtain the curvature matrix of the transmitted

wave:

Q(t) =





κ
(t)
ii κ

(t)
ij

κ
(t)
ij κ

(t)
jj



 (3.55)

with

κ
(t)
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1

m

cos2 θi
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κ
(i)
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κ
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κ
(t)
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κ
(i)
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γ

cos θt
κ
(s)
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κ
(t)
jj =

1

m
κ
(i)
jj + γκ

(s)
jj

(3.56)

An operation similar as for the reflected ray has to be done to diagonalize the
matrix Q(t). Let the rotation matrix be Pt with a rotation angle δt:

Pt =





cos δt − sin δt

sin δt cos δt



 (3.57)
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and
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
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with

κ
(t)
11 = κ

(t)
ii cos2 δt + 2κ

(t)
ij sin δt cos δt + κ

(t)
jj sin

2 δt = κ
(t)
1 (3.59)

κ
(t)
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(t)
21 (κ

(t)
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(t)
ij (cos

2 δt − sin2 δt) = 0 (3.60)
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(t)
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(t)
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(t)
jj cos

2 δt = κ
(t)
2 (3.61)

Similar to the reflected ray, the curvature matrix of the refracted ray is diagonal-
ized by a rotation angle δt given bellow:

δt =






















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±
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(t)
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(3.62)

Finally, the principal curvatures of the refracted wave are calculated by
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(t)
ii cos2 δt + 2κ

(t)
ij sin δt cos δt + κ

(t)
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2 δt

κ
(t)
2 = κ

(t)
ii sin2 δt − 2κ

(t)
ij sin δt cos δt + κ

(t)
jj cos

2 δt
(3.63)

and the corresponding principal directions of the wave front of the refracted wave
are given by:

ê
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1 = cos δtê

(t)
i + sin δtê

(t)
j

ê
(t)
2 = − sin δtê

(t)
i + cos δtê

(t)
j

(3.64)

In this new coordinate system, the two components of the amplitude A
(t)
1 , A

(t)
2 in

coordinate system (ê
(t)
1 , ê

(t)
2 ) , can be expressed by the two components of the

amplitudes A
(t)
i , A

(t)
j in coordinate system (ê

(t)
i , ê

(t)
j ) according to:

A
(t)
1 = cos δtA

(t)
i + sin δtA

(t)
j

A
(t)
2 = − sin δtA

(t)
i + cos δtA

(t)
j

(3.65)

Therefore, at a given interaction point of a ray with the particle surface, we know the
curvature matrix of the particle surface, and the curvature of the incident wave front,
the wave front of the reflected and the refracted waves can be obtained according to
the wave front equation by the procedure described above.
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3.2.5 Phase of a ray

The phases of the rays play a critical role in the study of interference phenomenon. In
SVCRM, three kinds of phase shift are considered in the scattering of the plane wave
by particle.

1. Phase shift due to reflection

This can be calculated directly from the Fresnel coefficients (seen the previous section).

2. Phase shift due to optical path

i

θ t

θ

p = 1

M0
M1

2

L1

M

d

d1

2

L
2

C

Incident Ray

p = 0

Reference Ray
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i t

p = 2

O

m m

Figure 3.6: Path of a light ray through a non-spherical particle

The optical path is computed in respect to a reference, which arrives at the point OC

(not necessarily the center of the particle) in the same direction as the incident ray and
goes out in the same directions as the emergent ray as if there is no particle. Fig. 3.6
presents the trajectory of a ray that interacts with a non-spherical particle. The optical
path of the emergent ray of order p = 2 is given by

∆L2 = m(l1 + l2)− (d1 + d2) (3.66)
where

d1 =
−−−−→
M0OC · k̂(i)

d2 =
−−−−→
OCM2 · k̂

(t)
(3.67)
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In general, let li be the distance between two successive points of ith and (i + 1)th

interactions of a ray with the particle surface, the optical path of the ray of order p can
be calculated by

∆Lp = m

p
∑

i=1

li − (d1 + dp) (3.68)

where dp is
dp =

−−−−→
OCMp · k̂

(t) (3.69)

The phase shift induced by optical path is therefore given by

σP,p =
2π

λ
∆Lp (3.70)

3. Phase shift due to focal lines/points

At the passage of any focal line the phase advances by π/2, thus we must count the
number of focal lines (a focal point is a crossing of two focal lines at the same point)
encountered along the entire path. To this end, we use the following convention for the
sign of the wave front curvature (or radius):

If the focal line is before the interaction point M , the curvature radius is negative in
Fig. 3.7(a), else it is positive in Fig. 3.7 (b). According to this convention, we can
obtain the number of the focal lines of a ray during its interaction with the particle
surface by counting the changes of sign of the curvature radii. For example, in the case
shown in Fig. 3.7(c), the sign of the curvature radius R at M is positive while the
curvature radius R′ at the point M ′ is negative, so the signs of curvature radii change
between the two successive interactions. For the case shown in Fig. 3.7(d). the two
curvatures radii R and R′ respectively at M and M ′ are both positive, so no sign change
of the curvature radii. The relation of the curvature radii of the wave front between
two successive interactions can be expressed as :

R′ = R− l (3.71)

where l = MM
′ is the distance between the two points.

The method described above permits to count the number of focal lines inside the
particle step by step according to the sign changes of the curvature radii of the wave
front between two successive interactions. It is possible that the focal lines are located
outside of the particle. They must also be counted since we are interested the scattered
wave in far field (infinitely far from the particle). Known that the total number of focal
lines of a ray pass through, the phase shift due to the focal lines is calculated with Eq.
(3.24)

Finally, the total phase shifts of a emergent ray of order p is calculated by

σX,p = σF,X,p + σP,p + σf,p (3.72)
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Figure 3.7: Definition of the signs of the curvature radii



62 CHAPTER 3. VCRM and SVCRM

The initial phase of a plane wave is constant, it does place role in the calculation.

3.2.6 Calculation of scattered intensity

In SVCRM, the light source, plane wave in our study, is simulated by a homogenously
distributed photons and the total scattered intensity in a given direction is calculated by
the summation of the contribution of all the photons arriving in a small region ∆θ ·∆φ
in that direction. Here the photons are equivalent to the rays in VCRM and have
the same properties – phase and amplitude. However, the complex amplitude of each
photon is calculated in a little different manner and given by the following equation:

ÃX,p = A0,X | εX,p | e
iσX,p (3.73)

The density of the photons is related to the property of the divergence or convergence
of the emergent wave, so the divergence factor Dv in the VCRM (cf Eq. (3.21)) is not
included in the calculation of the complex amplitude of a photon.

In Eq. (3.73), X stands for the polarization state relative to the last incident plane.
To calculate the summation of the complex amplitudes of all the photons, we need to
express them in the scattering plane – plane defined by the direction of the incident
wave and the observation point. Let ê⊥ and ê∥ be the unit vectors perpendicular and
parallel to the scattering plane, the two components of the amplitude of a photon can
then be expressed in this basis by

Ã∥,p = Ãi,pêi,p · ê∥ + Ãj,pêj,p · ê∥

Ã⊥,p = Ãi,pêi,p · ê⊥ + Ãj,pêj,p · ê⊥

(3.74)

The two components of the total complex amplitudes in a given detection direction can
be calculated therefore

Ã∥ =
N
∑

i=0

∞
∑

p=0

Ã∥,p

Ã⊥ =
N
∑

i=0

∞
∑

p=0

Ã⊥,p

(3.75)

here, N is the number of photons and the p is the order of ray.

Let the collection box be defined by two angle steps ∆θ and ∆φ. The scattered intensity
is the total energy flux collected by the box divided by the solid angle of the box ∆Ω:

∆Ω = ∆θ ·∆φ · sin θ (3.76)
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The energy flux with interference is calculated statistically by the total complex am-
plitudes of each ray of all orders in given direction. The intensity with interference in
a given direction can be calculated:

I(θ, φ) =
Ã∥ · Ã

∗
∥ + Ã⊥ · Ã∗

⊥

∆Ω
(3.77)

It should be noted that we deal with the scattering of large particle by using the
SVCRM. Since the phase of the photons varies very rapidly as function of the direction
(θ, φ), the collection box must be sufficiently small such that the phase of the photons
coming from the same order are almost constant. This problem will be examined in
details in the next chapter.

If the light source is incoherent, we need to calculated the total intensity without
interference, i.e. only the summation of the intensity of each photon

Ino =

N
∑

i=0

∞
∑

p=0

(

Ã∥,p · Ã
∗
∥,p + Ã⊥,p · Ã

∗
⊥,p

)

∆Ω
(3.78)

In this calculation, the collection box may be much larger than that for the calculation
with interference by using Eq. (3.77)

3.3 Conclusion

In this chapter, the Vectorial Complex Ray Model has been presented. In order to
get over the obstacle of the two dimension interpolation of irregularly distributed data,
Statistic Vectorial Complex Ray Model is also introduced for the light scattering of large
three-dimensional irregular particles. In this method, the light source is simulated by
large number of photons and the total scattered intensity is calculated by the summation
of the complex amplitudes of all photons arriving in a small collection box in a given
direction. The SVCRM will be applied in the next chapter to simulate the scattering
of a plane by a pendent droplet of water.
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Chapter 4

Pendent droplet and its scattering
patterns

To apply the Statistic Vectorial Complex Ray Model (SVCRM) to the scattering of a
non-spherical particle, we must provide a description of the particle surface. In this
thesis, we choose the pendent droplet for four reasons:

1. Its shape is sufficiently irregular, compared to a sphere, a spheroid or an ellipsoid
whose surface can be described with simple mathematical function.

2. It is easy to obtain experimentally and stable. This is important to get high
quality image and the scattering pattern to compare with numerical simulations.

3. The scattering diagrams in three dimension are very rich in information. Thus,
this is a challenging case.

4. It is encountered in many applications related, for example, to research of evap-
oration, measurement of the surface tension, etc.

In this chapter, we will present our experimental setup to generate a pendent droplet,
to register the particle image and the scattering patterns simultaneously. Then we give
a detailed description of the procedure to extract the profile of the droplet and to obtain
a mathematical function of the surface. These results will be used in the next chapter
for the numerical simulation of the scattering diagrams of the pendent droplets.

4.1 Generation of a droplet

The SVCRM can deal with the scattering of a particle of any shape with smooth
surface. The particle surface can be given by a mathematical function or obtained from

65
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experimental image. A liquid droplet is ideal because its surface is naturally smooth
and its shape depends on the condition of generation. For the pendent droplet we can
register the particle image, extract its profile by image processing and to obtain an
empiric function of the surface by using the Least Squares Fitting-Polynomial (LSFP).

We present firstly the experimental setup of scattering by droplet in order to obtain
the profile of the pendent droplet and its scattering patterns.

4.1.1 Experimental setup

The experimental setup [59] is built up in the laboratory (Fig. 4.1), to permit to register
the droplet image and scattering pattern simultaneously. The schematic of the system
is shown in Fig. 4.2.

Figure 4.1: Experimental setup systems

The system is composed of a high quality He-Ne laser emitting a beam of diameter
w0 = 0.7 mm at wavelength λ = 0.6328 µm of red color (He-Ne JDSU Laser, Model
1145P, class 3B) followed by a polarizer and a half-wave plate. The latter is used to
control the polarized state and direction of the beam emitted by the laser. Then, the
inclinations of two mirrors can be adjusted to reflect the beam so that it illuminates
the pendent droplet. After that, a beam expander is used to enlarge the diameter of
the beam (Here, it will be multiplied by a factor of 20). This beam expander is followed
by a slit-shaped diaphragm to have a rectangular shaped beam that can illuminates a
part of the pendent droplet. Two convergent lenses of focal length of 300 mm for L1
and 200 mm for L2 are installed to achieve a so-called 4f system, which is used here
to attenuate the diffraction phenomenon created by the slit diaphragm.
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The system was built up for both the scattering of a water droplet and a liquid jet
(generated with a circular tube of different diameters under pressure of 1 to 10 bars).
To stabilize the flow, a large tank (10 litres) is used. We would note that it is very
delicate to obtain a very stable droplet with a wanted form. The shape of the pendent
droplet generated with this system can be adjusted easily but is not very stable. So the
synchronization of the camera for the particle image and that for the scattering pattern
is necessary.

The profile of the drop is recorded by Camera A, a CCD camera JAI 10−bit model
TM−4200CL resolution 2048 × 2048 pixels. The scattering pattern is registered by
Camera B, A HAMAMATSU 14−bit model C9100−02 CDD camera with a resolution
of 1000× 1000 pixels. A white screen is used to obtain the scattering pattern. The two
cameras are connected to a BNC pulse generator synchronizer to simultaneously record
images by both cameras.

Figure 4.2: Schematic diagram of the experimental setup systems

4.1.2 Typical scattering patterns

Four scattering patterns of a pendent droplet near the first order and the second order
rainbows are shown in Fig. 4.3. We find that at the very beginning of falling, the droplet
is almost spherical (Fig. 4.3a, top left) and the scattering pattern is similar to that of
a sphere, i.e. the fringes in the first order and the second order rainbows are almost
parallel. When the droplet becomes larger, also longer (Fig. 4.3b, top right) the fringes
in the second order rainbow are clearly distorted. If the droplet continues to grow
(Fig. 4.3c, bottom left) the second order rainbow is more distorted and its intensity
is evidently stronger than the first order rainbow. When the droplet sufficiently large
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a b

c d

Figure 4.3: Experimental images of four pendent droplets and their scattering pat-
terns around the rainbow angles with a perpendicularly polarized plane wave (λ =
0.6328 µm). Detection angle in horizontal direction is about [70◦, 170◦] and that in
vertical direction is about [−40◦, 40◦].
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and long (Fig.4.3d, bottom right) the second order rainbow is completely twisted and
its intensity is dominant. If we observe attentively we can find that the shape of the
first order rainbow evolve also when the morphology of the droplet changes, but the
variation is much less visible [60]. And the heights and radii of these four droplets will
be given in the following section of this chapter.

Thanks to the 4f system we can illuminate only a horizontal zone of the droplet and
observe the corresponding scattering pattern in order to identify the contribution of
the origin of the scattering [61]. The top part of Fig. 4.4 illustrates the total scattering
patterns can be composed with the contribution of the scattering patterns from eight
horizontal zones. The two pairs of figures in the lower part of Fig. 4.4 show individual
scattering patterns of the zone 5 and zone 6.

The scattering pattern in the forward direction is shown in Fig. 4.5 for a droplet
relatively long [62]. The clear spot in the figure is the spot of the incident light, i.e.
exact forward direction at 0◦. We find two straight bright lines in the above part and
an arc at the bottom. If we zoom on these bright lines or arc, we observe surprisingly
very clear fringes, which are similar to those in the rainbow patterns. The origin of
these phenomena is curious and worth to be examined.

4.2 Description of droplet contour

In order to obtain a mathematical function to describe the profile of the droplet from
the experimentally registered images, we need first to extract the contour of the image
and then to fit the data to obtain an empirical function.

4.2.1 Contour of a droplet

The code of Claude Rozé will be used to extract the profile data of a image, which
reads a series of experimental images and store the successive contours of droplets.

We take the droplet of Fig. 4.3d as an example. The droplet being symmetric, half
of its profile is sufficient. It is extracted from the experimental image and is given in
Cartesian coordinate systems (y, z), as shown in Fig.4.6.

The pendent droplet is assumed to be axis-symmetric around vertical axis z. A polar
coordinate system is chosen in the following to describe the droplet profile (θ, r(θ)).
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Figure 4.4: Scattering pattern (zones) of a pendent droplet with a perpendicularly
polarized plane wave (λ = 0.6328 µm). Detection angle in horizontal direction is about
[110◦, 150◦] and that in vertical direction is about [−20◦, 20◦].
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Figure 4.5: Forward scattering pattern of a pendent droplet with a perpendicularly
polarized plane wave (λ = 0.6328 µm). Detection angle in horizontal direction and in
vertical direction are both about [−30◦, 30◦].
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Figure 4.6: Half of the pendent droplet profile in Cartesian coordinate system.
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4.2.2 Fitting contour of droplets

To obtain a mathematical function to describe the profile of the droplet surface in a
polar coordinate system, we choose a center (yC , zC) at (0, zC). The choice of zC is
somewhat arbitrary but a good choice will make the function more stable. Let M(y, z)
the Cartesian coordinates of a point on the droplet surface. Then its polar coordinates
are:

r(θ) =
√

y2 + (z − zC)2

θ = arccos
z − zC
r(θ)

(4.1)

where r(θ) is the distance between the center of the droplet to the point M on the
contour of droplet and θ is the angle of r(θ) relative to the negative direction of the
z−axis.

The droplet profile extracted from the image re(θ) is given in the polar coordinate sys-
tem in Fig.4.7 (black curve). It is not so smooth because of the experimental and nu-
merical noise. In order to obtain a smooth curve, a Least Squares Fitting—Polynomial
is applied.

Suppose that the profile r(θ) is expressed in a polynomial function:

r(θ) = a0 + a1θ + a2θ
2 + · · ·+ akθ

k + · · ·+ anθ
n =

N
∑

k=0

akθ
k (4.2)

Then, the coefficients of the polynomial akθ
k can be determined by minimizing the

object function in a least square sense:

∆ =
i=Ne
∑

i=1

[r(θi)− re(θi)]
2 (4.3)

where Ne are the total number of point of the experimental data re(θi). And the fitted
curved is obtained with a least square method (detail information seen in Appendix A).

By our experience, we find that a 10th order polynomial is good enough to meet our
acquirement. The fitted curved is shown in Fig. 4.7 (the red curve).

We apply the same procedure to three other experimental images of droplets in Fig.
4.3. The contours extracted from the experimental images of the four droplets are
shown in Fig. 4.8 in Cartesian coordinate system.

For each droplet, a 10th degree polynomial is used for r(θ), the coefficients are deter-
mined by the least-square fitting of the data extracted from the contour of the particle
image. The original and fitted profiles of the four droplets are shown in the polar coor-
dinate system in Fig. 4.9. The coefficients of the polynomials of the four droplets are
given in Tab. 4.1.
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Figure 4.7: Half of the pendent droplet profile before and after fitted by Least Squares
Fitting-Polynomial in polar coordinate system
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Figure 4.8: Contours of four shaped droplets in Cartesian coordinate system
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Figure 4.9: Profiles of four shaped droplets in polar coordinate system

Table 4.1: Coefficients of the 10th degree polynomials for four shaped droplets.

ak

droplet
a b c d

a0 747.61034 746.74061 749.39186 746.30693

a1 0.00000 0.00000 0.00000 0.00000

a2 −300.51350 −600.45388 −394.08289 −335.16810

a3 495.96190 2635.31007 1498.96476 893.25823

a4 −764.50390 −6710.34842 −3468.01254 −1285.61301

a5 789.41741 9924.94844 4699.33362 956.98845

a6 −609.26943 −8995.44061 −3895.36553 −275.10620

a7 416.37338 5091.00818 2012.15253 −73.21056

a8 −216.69211 −1755.25708 −631.88414 77.67261

a9 65.29246 337.17146 110.32663 −21.37277

a10 −8.12220 −27.65446 −8.20556 2.07795
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4.2.3 Three dimensional coordinates of a droplet

In order to intuitively describe the smooth surface of droplets, the profile r(θ) is ex-
pressed in Cartesian coordinate system. If Cartesian coordinates (X,Z) are used (X
in the horizontal direction and Z in the vertical upwards direction) and its origin O is
located at the bottom of the droplet. The fitted droplet profile can be expressed as:

x(r(θ), θ) = r(θ) sin θ

z(r(θ), θ) = zC − r(θ) cos θ
(4.4)

The pendent droplet is assumed to be axisymmetric around vertical axis Z with the
angle ϕ ∈ [−180◦, 180◦] and the angle θ ∈ [0◦, 180◦]. Let r(x, y, z) be any point of the
droplet profile defined by (θ, ϕ, r(θ)). Let plane P ′ = (X ′, Z) with the axis X ′ obtained
by rotation of X around Z of angle ϕ. Point M is on the plane P ′, which can be
expressed in Cartesian coordinates (X, Y, Z):

x(θ, ϕ, r(θ)) = r(θ) sin θ cosϕ

y(θ, ϕ, r(θ)) = r(θ) sin θ sinϕ

z(θ, ϕ, r(θ)) = zC − r(θ) cos θ

(4.5)

Accordingly, any point on the droplet surface can be expressed by Eq. (4.5) in spherical
coordinate system, which can be used to investigate the properties of shaped droplets
and their scattering intensity distributions.

4.3 Interaction of a plane wave with a droplet

The determination of the interaction point of a photon (or ray) with the droplet surface
is an essential task in the calculation of SVCRM. To prepare the numerical simulation
of light scattering of a pendent droplet, we give a detailed description of the procedure
to determine the interaction point of a photon with droplet surface and calculate the
related properties of the droplet surface, such as the curvature radii, the normal of the
surface.

4.3.1 Light source

In SVCRM, all waves are described by large number of photons. The photons are
generated randomly on the surface. Our source is much larger than the size of the
droplet and it is considered as a plane wave in the simulation.
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Figure 4.10: Coordinate system of laser source

The pendent droplet can be more or less long. For the droplet to be entirely illuminated,
the light source is a rectangle disk of two semi-axes adjustable. Suppose that the light
propagate along x axis and the center of the elliptical section is at Os (see Fig. 4.10(a)).

The position of any photon (xs, ys, zs) can be expressed in the source coordinate system:

xs = 0

ys = ayrs [2 rand()− 1]

zs = azrs [2 rand()− 1]

(4.6)

where rand() is a function which generates a homogeneously distributed random num-
ber between 0 and 1. rs is the radius of the round light source, shown in Fig. 4.10(b)(1).
The coefficients ay and az vary according to the shape of the droplet. Fig. 4.10(b)(2)
illustrates the source region with ay = 1 and az > 1 with rs = Re, which is used for the
droplet of the height H greater than the radius of the droplet at the equatorial plane
Re. Fig. 4.10(b)(3) shows the source region with ay = 1 and az < 1, which is used for
the scattering patterns of a partially illuminated droplet. In our simulation, the height
of the pendent droplet H is generally bigger than its radius in the equatorial plane Re,
the value of rs is taken to be equal to Re and ay = 1.

If the center of the source Os located at point (xc, yc, zc) in the droplet coordinate
system, the starting position of a photon in the droplet coordinate system (x0, y0, z0)
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can be calculated by:

x0 = xc + xs

y0 = yc + ys

z0 = zc + zs

(4.7)

The incident plane wave with vertical polarisation can be expressed in the droplet
coordinate system by photons of amplitude components ay = 0 along y axis and az = 1.0

along z axis. The propagation direction k̂ of the incident wave is along x axis. Since
the phase of the plane wave is a constant, the phase of a photon is defined as zero in
our calculation.

4.3.2 Intersection of a ray with droplet surface

In the simulation with SVCRM, an essential task consists of finding the intersection of
a ray with the surface of the droplet: it consists in the solution of the intersection of a
line with a 3D surface.

At first, it is necessary for us to determine the position of the intersection point of a
ray with the droplet surface.

A ray starting from M0(x0, y0, z0) propagating in the direction k̂ is described by a
vector lk̂ (l being the propagation distance along this direction). The droplet surface
is described by a three-dimensional function r(x, y, z). Then, the intersection point
M(x, y, z) of the ray with the droplet surface is the solution of the equation:

r(x0, y0, z0) + lk̂ = r(x, y, z) (4.8)

which can be expressed in the Cartesian coordinate system in scalar form:

x = x0 + lkx

y = y0 + lky

z = z0 + lkz

(4.9)

The intersection point M(x, y, z) belongs to the droplet and is expressed in the spherical
coordinate system by:

x = r(θ) sin θ cosϕ

y = r(θ) sin θ sinϕ

z = zC − r(θ) cos θ

(4.10)
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By inserting Eq. (4.10) into Eq. (4.9), we obtain following relations:

r(θ) sin θ cosϕ = x0 + lkx

r(θ) sin θ sinϕ = y0 + lky
(4.11)

zC − r(θ) cos θ = z0 + lkz (4.12)

The propagation distance l can be extracted from Eq. (4.12):

l =
zC − z0 − r(θ) cos θ

kz
(4.13)

and the angle ϕ can be extracted from Eq.(4.11):

cosϕ =
x0 + lkx
r(θ) sin θ

sinϕ =
y0 + lky
r(θ) sin θ

(4.14)

Because sin2 ϕ+ cos2 ϕ = 1, we can obtain:

(x0 + lkx)
2 + (y0 + lky)

2 = r2(θ) sin2 θ (4.15)

Insertion of Eq. (4.13) into Eq. (4.15) yields

(

x0 +
zC − z0 − r(θ) cos θ

kz
kx

)2

+

(

y0 +
zC − z0 − r(θ) cos θ

kz
ky

)2

= r2(θ) sin2 θ (4.16)

which is

[kzx0 + (zC − z0 − r(θ) cos θ) kx]
2

+ [kzy0 + (zC − z0 − r(θ) cos θ) ky]
2

− k2
zr

2(θ) sin2 θ = 0 (4.17)

The only unknown in this equation is θ which can be solved numerically by a standard
algorithm for a non-linear equation. Once the value of θ of the interaction point is
found, the propagation distance l can be determined by Eq. (4.13). In the case of the
ray parallel to x-axis (the incident rays for example, Eq. (4.15) must be used instead
since ky and kz are zero. Finally, the coordinates of the new interaction point are
calculated by Eq. (4.10).
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Figure 4.11: Definition of the normal vector and principal directions of the pendent
droplet

4.3.3 Curvature of the droplet surface

Next, the curvatures, the principal directions and the normal vector of the droplet
surface at the interaction point are to be calculated.

Firstly, the expressions of the two principal directions and the normal vector of the
droplet surface at the interaction point are derived. The position of any point on the
droplet profile can be defined in polar coordinates by M(θ, r(θ)) (see Eq. (4.4)). The
vector u2 tangent to the particle surface in xz plane (Fig 4.11) is given by:

u
′
2 =











x′(r(θ), θ)

0

z′(r(θ), θ)











(4.18)

Let the curve r(θ) rotates around z−axis of an angle ϕ. The vector u2 is then given
by:

u2 =











x′(r(θ), θ) cosϕ

x′(r(θ), θ) sinϕ

z′(r(θ), θ) sin θ











(4.19)
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its normalized vector ê2 is:
ê2 =

u2

∥u2∥
(4.20)

The normal vector of the particle surface is obtained by a π/2 rotation of u
′
2 in a

clockwise direction and is expressed:

n =











−z′(r(θ), θ) cosϕ

−z′(r(θ), θ) sinϕ

x′(r(θ), θ)











(4.21)

and the normalized vector:
n̂ =

n

∥n∥
(4.22)

And the third unit vector u1 of the base is defined simply by:

û1 = û2 × n̂ (4.23)

which gives:

ê1 =











sinϕ

− cosϕ

0











(4.24)

Now, we derive the curvatures of the droplet surface given in polynomial function. The
two curvatures along the principal direction u1 and u2 will be noted respectively by κ1

and κ2.

The analytical description of the droplet profile in xz plane has been expressed by
Eq. (4.4) in polar coordinate system. The first derivatives of the coordinates x and z
relative to θ are:

dx

dθ
= x′(θ) = r′(θ) sin θ + r(θ) cos θ

dz

dθ
= z′(θ) = −r′(θ) cos θ + r(θ) sin θ

(4.25)

Their second derivatives are:

x′′(θ) = r′′(θ) sin θ + 2r′(θ) cos θ − r(θ) sin θ

z′′(θ) = −r′′(θ) cos θ + 2r′(θ) sin θ + r(θ) cos θ
(4.26)
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Thus, the curvatures of the surface by rotation of a curve at a point can be expressed
as [63]:

κ1 =
−x′′(θ)z′(θ) + x′(θ)z′′(θ)

[x2(θ) + z2(θ)]3/2

κ2 =
z′(θ)/x(θ)

[x2(θ) + z2(θ)]1/2

(4.27)

By the insertion of the expressions of the coordinates x and z given in Eq. (4.4),
their first and second derivatives Eqs. (4.26) and (4.26) into Eq. (4.27), we obtain the
principal curvatures of the droplet:

κ1 =
2r′2(θ) + r2(θ)− r(θ)r′′(θ)

[r′2(θ) + r2(θ)]3/2

κ2 =
1

[r′2(θ) + r2(θ)]1/2

[

1−
r′(θ)

r(θ) tan θ

] (4.28)

Their corresponding principal curvature radii are respectively:

ρ1 =
[r′2(θ) + r2(θ)]

3/2

2r′2(θ) + r2(θ)− r(θ)r′′(θ)

ρ2 =
[r′2(θ) + r2(θ)]

1/2

1− r′(θ)/r(θ) tan θ

(4.29)

The principal directions, the curvatures and the corresponding curvature radii as well
as the normal vector at a interaction point of a ray with the droplet surface are derived.
Thanks to the axis-symmetry of the droplet, the curvatures (equally the curvature radii)
depends only on θ. The dependance of the principal directions and the normal vector
on the azimuth angle ϕ is also very simple - just only the projection functions sinϕ and
cosϕ.

4.4 Equatorial plane

The equatorial plane of a pendent droplet, for example, plays a special role in our sim-
ulation and analysis. The rays on this plane remain always in this plane if the incident
direction is also in this plane. The scattering of the light on or near the equatorial
plane is very similar to a spheroidal particle. These particularities play a critical role
in the validation of our code, and in the analysis of the scattering phenomena.

We have mentioned in the first section of this chapter that the choice of the origin
of the polar coordinate system OC to describe the profile of the droplet is somewhat
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arbitrary. It is therefore not necessarily on the equatorial plane. We will discuss in the
following their relation.

The tangent plane on a point in equatorial plane of the droplet is vertical, i.e. dz/dx =
∞ or dx/dz = 0. According to the expression of the profile in the Cartesian coordinates
Eq. (4.4) and their first derivatives Eq. (4.25), we have:

dx

dz
=

r′(θ) sin θ + r(θ) cos θ

r′(θ) cos θ + r(θ) sin θ
= 0 (4.30)

That is
r′(θ) sin θ + r(θ) cos θ = 0 (4.31)

The solution of Eq. (4.31) θe is the location of the equatorial plane in polar coordinate
system. The position on z axis of the equatorial plane ze is therefore:

ze = zC − r(θe) cos θe (4.32)

4.5 Detection direction

For the description of the profile of the droplet, we have chosen the symmetric axis as
z axis, x axis as the direction of the incident wave and the angle θ toward the negative
direction of the z axis (so that the top of the droplet is at θ = 0). These choices are not
coincident to the conventional definition of the scattering coordinates. So it is necessary
to make clear the relation between different coordinates used in the discussion of the
scattering results.

Here again, the particularity of the equatorial plane will be considered. We want the
forward direction is still the origin of direction angles of observation, i.e. at θd = 0 and
φd = 0 and the z axis is still in the vertical direction and coincident with the droplet
axis. The incident direction is along x axis. So the relation between the angles (θ, ϕ)
and the observation direction angles (θd, φd).

θd =
π

2
− arccos

(

k̂ · ẑ
)

= θ − 90◦

φd = atan2 (ky, kx) = ϕ
(4.33)

The observation is in far field, the origin of the coordinate system (at Oe or OC) does
not influences the definition of the direction angles.

To calculate the summation of all the emergent photons arriving in the same direction
(small box in the SVCRM), the vectorial electric field of each photon should be pro-
jected in the common basis. Here we choose the two conventional directions: e∥ in the
scattering plane and e⊥ perpendicular to the scattering plane, as shown in Fig. 4.12.
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Figure 4.12: Definition of the detection angle used in SVCRM

Finally, we compile in Tab. 4.2 the parameters of the four droplets in Fig. 4.3 de-
scribing by the polynomials with the coefficients in Tab. 4.1. The size of a droplet is
characterized by its height H, its radius Re in the equatorial plane and its two principal
curvature radii on the equatorial plane ρ1, ρ2 (calculated by Eq. (4.29)) as well as the
position of its equatorial plane. These parameters will be used in the next chapter for
the simulation of the scattering patterns.

Table 4.2: Parameters of the four droplets in Fig. 4.3.

parameters

droplet
a b c d

Re(µm) 541.15 589.83 631.45 671.16

H(µm) 989.86 1173.53 1332.83 1707.68

Ze(µm) 592.54 652.42 695.39 774.43

ρ1(µm) 541.15 589.83 631.45 671.16

ρ2(µm) 1634.36 3502.12 3773.51 2815.08

ρ2/ρ1 3.0202 5.9375 5.9759 4.1944

4.6 Conclusion

In this chapter, the droplet profile, shaped waves, intersection of droplet with rays
as well as the detection of outgoing rays expressed in SVCRM are introduced, which
prepare for the simulations in next chapter.
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Chapter 5

Simulation of scattering patterns

The principle and algorithm of the SVCRM have been presented in Chapter 3. The
mathematical functions and parameters describing the profiles of four typical pendent
droplets have been obtained from the experimental images in the last chapter. We will
now simulate the scattering patterns of the pendent droplets with our code of SVCRM.
The results will be compared to the experimental scattering patterns to validate the code
and to investigate the scattering mechanism. Different parameters for the numerical
simulation will be examined.

The initial version of the code SVCRM has been developed by professor Claude Rozé
and is for the simulation of the scattering patterns of an incoherent plane wave by a
pendant droplet. The phase of the rays was not taken into account, so there was no
interference. The light wave is presented by photons having the same properties of rays
in VCRM and the total scattered intensity is calculated statistically by summation of
intensity of all photons arriving in the same box in a given direction.

The main contribution of this thesis is to include the phase of the rays in order to be
able to predict the interference, i.e. the fine structure in the scattering patterns. A
code SVCRM taking into account the phase has been developed in Fortran, which can
be run as a serial or a parallel program on a personal computer or a computing center
according to the compilation options.

The 118 scattering patterns in this chapter have been calculated with this code in the
Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN).
Almost all the results in this chapter have been obtained by parallel calculation with 16
processors and 3 Go memory(maximum memory) for each process with the Myria calcu-
lator, which is an ATOS BULL solution with a power of 419 TFlops Xeon, 327 TFlops
GPU and 27 TFlops Xeon Phi KNL. All the scattering diagrams with SVCRM have
been simulated with a 64−bit Linux operating system (CentOS 7.6) and with Slurm
to submit works under the development environment: Intel 2017 and 2019 compilers,
Gnu 4.8.5 Fortran, C, C++ (OpenMP support), Intel MPI 2017 and 2019 libraries

85
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(MPI-3 support) and Makefiles. For each simulation, the maximum number of photons
is 2×109 (this number is reduced to 107 or 108 for some test cases). The computation
time is about 7 hours for each case.

This chapter is organized as follows:

Firstly, we will give a brief description of the simulation procedure and the parameters
used in the simulation.

Then, preliminary simulations will be done with the developed code in order to detect
the influence of different parameters in the simulation.

We will investigate particularly the influence of the number of emitted photons, the
size of the collection box (i.e. the steps on the detection angles).

Finally, the scattering patterns of the four droplets near the rainbow angles and in
the forward directions will be given and analysed. The scattering patterns of a par-
tially illuminated droplet are also provided which permit to investigate the scattering
mechanism.

5.1 Simulation procedure and parameters

Before the simulation, we give here a brief description of the simulation procedure and
the definition of the parameters used in the simulation.

5.1.1 Simulation procedure

The geometric parameters of the four droplets have been obtained and given in the
previous chapter.

For a given droplet, we chose the size and the center position of the light source and
define the zone of illumination (full or partial). The photons are generated with a
standard random number generator (in Fortran) in simulation and the photons are
supposed distributed homogeneously on the light source area.

All photons propagate along x-axis and interact with the droplet. The amplitude, the
direction, the phase, the polarization and the curvatures of each photon are calculated
step by step with SVCRM. The emergent photons are collected by small boxes ∆θ ·
∆φ · sin θ in far filed in a given direction (θ, φ).

The total scattered intensity are calculated statistically in two manners:
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• without interference: Total scattered intensity is calculated by the summation
of the squares of the amplitude of each photon arriving in the same box (Eq.
(3.78)).

• with interference: The total complex amplitude is calculated by the summation
of the complex amplitude of all the photons arriving in the same box and the total
scattered intensity is the square of the total complex amplitude (Eqs. (3.75) and
(3.77)).

The scattering patterns without interference provide a global intensity distribution per-
mitting identification of the arriving zones of photons while the scattering patterns with
interference give details in the scattering which correspond directly to the scattering
patterns registered in the experiment. All the scattering patterns are presented in level
brightness: red for high intensity and black for weak intensity.

5.1.2 Definition of parameters of the simulations

The parameters of the light source, the geometry of the droplet and the collection
direction used in our simulations are defined as follows and illustrated in Fig. 5.1 :

− The global geometry of the droplet is characterized by its height H and its diam-
eter 2Re. Its relative refractive index m is taken to be 1.333.

− The general coordinate system (O; x, y, z) is used in the calculation of all the
parameters.

− The light source is a circular zone of radius rs. The light propagates in x direction
and the beam center is located at (xc, yc, zc) in the general coordinate system
(O; x, y, z).

− The equatorial plane of the droplet is located at Oe on the z-axis ze.

− The scattered light is observed in the direction defined by (θ, φ) with θ ∈ [−90◦, 90◦]
the angle relative to the horizontal plane and φ ∈ [−180◦, 180◦] the azimuth angle
relative to xz plane. Two unit vectors ê∥ and ê⊥ are used to calculate the two
components of the complex amplitudes (parallel polarization and perpendicular
polarization).

− The total number of photons emitted from the source for one simulation is N .

− The detection steps Cθ = ∆θ and Cφ = ∆φ define the size of the collection
boxes. ∆θ and ∆φ correspond respectively the steps of the two angles (θ and φ)
indicating the scattering direction.

− Order of ray p.
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Figure 5.1: Definition of the coordinate systems used in SVCRM

5.2 Preliminary simulations

We present here the first simulation results which permit to observe the scattering
characteristics of a pendent droplet and to detect the influence of different parameters
which will be examined later in details.

5.2.1 First simulation results

The droplet a and the droplet d (see Fig. 4.3 and Tab. 4.2) are two very typical
droplets: the first is the less deformed (nearly a sphere) and the second is the most
deformed. They will be used to illustrate the typical scattering properties and to test
the code. We will be interested particularly in the intensity distribution around the
rainbow angles because it is the most sensible to the deformation of the particle.

We show in Fig. 5.2 the scattering patterns of the two pendent droplets a and d with
the number of emitted photons N = 4 × 107. The intensity distributions with and
without interference by the same droplet are very similar under the same conditions.
The droplet a is almost spherical and the rainbows are similar to that of a sphere: the
first order rainbow (p = 2) and the second order rainbow (p = 3) are almost parallel
(Fig. 5.2(a) and Fig. 5.2(b)). On the contrary, the two rainbows of the droplet d are
very different, the second order rainbow of the droplet d is completely twisted (Fig.
5.2(c) and Fig. 5.2(d)) while the first order rainbow remains similar to the droplet
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a because the droplet d is much more deformed.

We find that the scattering patterns with interference is stronger than those without
interference. This can be explained by the interference enhancement of rays in terms of
physics and the square of a summation of a series of quantities may be much greater the
summation of the square of individual quantity of the series in terms of mathematics.

Table 5.1: Parameters for the preliminary simulation of the scattering intensities with
and without interference.

Parameters Values

λ(µm) 0.6328

m 1.333

(xc, yc, zc)(µm) (−5000, 0, 0)

zs(µm) [0, H]

ys(µm) [−Re, Re]

θ [−15◦, 15◦]

φ [120◦, 150◦]

(Cφ, Cθ) (0.2◦, 0.2◦)

p 2, 3

N 4× 107 4× 108

Unexpectedly, the interference phenomenon is not visible in the intensity distributions
with interference in Fig. 5.2(b) and Fig. 5.2(d) whether the droplet is similar to a
sphere or not. In the statistical simulation, we think first that may be caused by the
insufficient number of photons. In order to investigate the effect of the number of
emitted photons, we multiply the number of emitted photons by ten, i.e. N = 4× 108

and the results are shown in Fig. 5.3.

By comparing Fig. 5.3(b) and Fig. 5.3(d) to Fig. 5.2(b) and Fig. 5.2(d), we find
that the scattering patterns with interference remain unchanged. We have also done
the calculation with other number of emitted photons. It can be concluded that the
number of emitted photons is not of great importance in this circumstance, notably for
the detection angular steps.

The very possible problem may come from the calculation of the phase since the interfer-
ence is caused just by the phase difference between different photons. We have checked
very carefully the calculation of all kinds of phase shifts involved in the SVCRM. We
found finally that the detection steps (box size) plays a crucial rule in the interference
phenomenon.
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(a) Droplet a without interference. (b) Droplet a with interference.

(c) Droplet d without interference. (d) Droplet d with interference.

Figure 5.2: Scattering patterns of a pendent droplet near rainbow angles simulated
by SVCRM with the parameters in Tab. 5.1 and the number of emitted photons
N = 4× 107.
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(a) Droplet a without interference. (b) Droplet a with interference.

(c) Droplet d without interference. (d) Droplet d with interference.

Figure 5.3: Same parameter as Fig. 5.2 except the number of emitted photons N =
4× 108.
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5.2.2 Influence of detection steps on the interference

To investigate the influence of the detection steps on the interference, we simplify here
the pendent droplet to a sphere of radius Re (Fig. 5.4(a)) and to an ellipsoid of two
semi-axes a, c (Fig. 5.4(b)) which has the same curvature radii in the equatorial plane
as the droplet.

Y

O

Z

H

X

eO

Re

Y

O

H

X

eO

a

 c

Z

(a) (b)

Figure 5.4: Pendent droplet simplified to a sphere or an ellipsoid.

We have calculated the scattering diagrams of the equivalent sphere and ellipsoid by
the software VCRMEll2D for the droplet a and the droplet d. The scattering diagrams
around the rainbow angles of a sphere are shown in Fig. 5.5. In this calculation, to
avoid the high frequency due to the interference between different orders, only the rays
of order p = 2 and 3 are considered. We find that the scattered intensity varies very fast
with the scattering angle φ, especially in the range between 140◦ and 145◦. This can be
used to estimate the angular resolution Cφ. We count the number of the periods and the
angle range δφ; then we can calculate the average period of the oscillation. The average
period obtained in such way is about 0.25◦. That means the phase difference varies 2π
in about each 0.25◦. In the calculation by SVCRM, the phases of the photons arriving
in the same box must be almost constant. That requires that the size of the box must
be much smaller than the angle interval of a period. To satisfy this condition, tenth of
the period is a conventional value in the numerical simulation. With this method, the
detection angle steps are estimated with the sphere is 0.025◦ and given in Tab. 5.2.

To take into account the influence of the shape of the droplet in the determination of the
detection steps, an equivalent ellipsoid has also been considered for the droplet a and
droplet d . The scattering diagrams are also calculated with the software VCRMEll2D
(Fig. (5.6). With the same procedure as above, the detection steps Cφ are found for
the droplet a and droplet d and given in Tab. 5.2.

Comparing the detection steps, the angular resolution Cφ for the simulations of the in-
tensity distributions near the equatorial plane of the droplet a and the droplet d should
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(a) Scattering diagrams of a sphere with the radius of droplet a .
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(b) Scattering diagrams of a sphere with the radius of droplet d .

Figure 5.5: Scattering diagrams of a sphere with the same radius as a pendent droplet
calculated by software VCRMll2D. The figures on the right are just a zoom on the first
order rainbow in the figure on the left.
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(a) Scattering diagrams of an ellipsoid with the semi-axes (a, c) of droplet a .
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(d) Scattering diagrams of an ellipsoid with the semi-axes (a, c) of droplet d .

Figure 5.6: Scattering diagrams of a ellipsoid with the same semi-axes of a pendent
droplet calculated by software VCRMll2D. The figures on the right are just a zoom on
the first order rainbow in the figure on the left.
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be better than 0.02◦. Evidently, the steps of 0.2◦ for θ and φ in Fig. 5.2 and Fig. 5.3
are too large. This explains why the interference is not observed.

Table 5.2: Detection steps of angle φ for the sphere and the ellipsoid simplified from
the droplet a and the droplet d.

Parameters droplet a droplet d

sphere ellipsoid sphere ellipsoid

a(µm) 541.15 541.15 671.16 671.16

c(µm) 541.15 1634.36 671.16 2815.08

c/a 1.0000 3.0202 1.0000 4.1944

Cφ(
◦) 0.025 0.025 0.025 0.0208

φ [140◦, 145◦]

p 2, 3

Once the angular resolution Cφ is determined, the angular resolution Cθ needs to con-
sidered also. For the scattering patterns near the equatorial plane and around the
rainbow angles, the variation of the intensity in θ direction is much slower, especially
for the droplet a and the first order rainbow of the droplet d. The step on θ may be
larger. However, this detection step can not be estimated with the same manner as for
φ since we have no means to calculate the scattering diagrams in this direction.

To determine the angular resolution Cθ, we do directly the simulation of the scattering
patterns with our code SVCRM with different steps on θ. To reduce the calculation
time and focus on the problem, we illuminate the droplet with a rectangular piece of
light: the height of illuminated region is only 10% of the equatorial radius of the droplet.
Tab. 5.3 compiles the simulation parameters.

Fig. 5.7 and Fig. 5.8 show the scattering patterns of the droplet a respectively in
the cases of with and without interference calculated with 4 different steps Cθ =
1.0◦, 0.5◦, 0.2◦ and 0.1◦. We can see that when the interference is not taken into account
(Fig. 5.7), if the step on θ is sufficiently small (Cθ = 0.2◦ and 0.1◦, two images at the
bottom of Fig. 5.7) we can see clearly in the first order rainbow (right part) the return
of the rays. But if the step is too big, Cθ = 1◦ top-left image, the return of the rays
can not be identified.

When the interference is taken into account, even for a large step on θ (Cθ = 1◦ for
example) the fringes in the two rainbows are clearly visible (Fig. 5.8). The refinement
of the resolution on θ improves little the fringes. However, if we examine attentively
the first order rainbow (right part of the images), we do not find fringes near the up
and bottom borders of the first order rainbow, because the rays of order p = 2 arrive
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Figure 5.7: Influence of detection steps on the scattering patterns without interfer-
ence near the equatorial plane of the pendent droplet a with the parameters in Tab.
5.3 with Ze = 592.54.
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Figure 5.8: Same as Fig. 5.7 but with interference.
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Table 5.3: Parameters for the scattering intensity near the equatorial plane of droplet

parameters Values

λ(µm) 0.6328

m 1.333

(xc, yc, zc)(µm) (−5000, 0, Ze)

zs(µm) [−0.05Re, 0.05Re]

ys(µm) [−Re, Re]

θ [−5◦, 5◦]

φ [120◦, 150◦]

Cφ 0.02◦

Cθ 1.0◦ 0.5◦ 0.2◦ 0.1◦

p 2, 3

N 4×108

only once in this region.

We would note also that the height of the first order rainbow is about two times larger
than the second order rainbow. This can be explained by the fact that the rays of order
p = 3 experience one internal reflection more than the rays of order p = 2, so they are
more converged than the rays of the first order rainbow.

The same simulation has been done for the droplet d and the scattering patterns are
shown in Fig. 5.9 and Fig. 5.10, respectively for the case with and without interference.
Similar comments can be done except that the height of the first order rainbow is about
three times larger than the second order rainbow instead of two times for the droplet
a. This can be explained by the fact that the vertical curvature of the droplet d is
smaller (larger curvature radius). The exploitation of the mechanism of scattering
by the decomposition of the scattering patterns in the section 5.4 may help better
understanding.

5.3 Effect of detection steps and number of photons

Now we simulate the scattering patterns in the real experimental condition and compare
them to those obtained by experiment. A plane wave illuminates the whole droplet and
we observe the scattering in the region of the first order and second order rainbows.
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Figure 5.9: Same as Fig. 5.7 but for droplet d .
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Figure 5.10: Same as Fig. 5.9 but with interference.
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The simulations have been done with different detections steps Cθ and Cφ. The simu-
lated scattering patterns for the droplet a and the droplet d are shown in Figs. 5.11-5.14.
In each figure nine images are given for 9 pairs of the detection steps in Tab. 5.4. The
other parameters for the simulation are compiled in Tab. 5.5.

Table 5.4: Various detection steps for the scattering patterns of droplet around the
rainbow angles with the same emitted photons.

Cφ Cθ

0.02◦

0.1◦

0.05◦

0.02◦

0.01◦

0.1◦

0.05◦

0.02◦

0.005◦

0.1◦

0.05◦

0.02◦

Table 5.5: Parameters for the scattering patterns around the rainbow angles with dif-
ferent detection steps.

Parameters Values

λ(µm) 0.6328

m 1.333

(xc, yc, zc)(µm) (−5000, 0, 0)

zs(µm) [0, H]

ys(µm) [−Re, Re]

θ [−15◦, 15◦]

φ [120◦, 150◦]

p 2, 3

N 8×108

By simple comparison of the simulated scattering patterns in these four figures with
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those obtained experimentally (droplets a and d in Fig. 4.3), we find that their skeletons
correspond fairly good. The two-order rainbows of the droplet a are almost parallel and
slightly deformed compared to that of a sphere. The first order rainbow of the droplet
d remains almost the same as the droplet a but its second order rainbow is twisted as
that found in the experiment. However the bright trait going from the center to the
bottom right in the experimental pattern is not found or so remarkable in the simulated
pattern. The reason is to be examined.

If there is no interference, the 9 images in Fig. 5.11 are almost the same. When
the interference is considered (Fig. 5.12), we find that only the vertical part of the
fringes are visible if Cθ (step on θ) is relatively big (0.1◦ in the left column). When
Cθ is sufficiently small (0.05◦ in the middle column), whole fringe patterns are clear.
But when both Cφ and Cθ are small, the fringes are no longer clear (see the image on
bottom right for example). This is because the number of emitted photons in each box
is not sufficient. To support this reasoning, we give a rough estimate on the number
of emitted photons in each box. For a big particle, the great part of scattered light is
concentrated in a small angle in the forward direction. We may suppose that 5% of
photons arrive in the region of the image (30◦×30◦). If the whole droplet is illuminated
with 8×108 photons, the average number of photons in each box is 8×108/9×106 ∼ 5
photons. This is evidently too few.

Similar comments can be made for Figs. 5.13 and 5.14. The rule of the step Cθ is more
remarkable. By comparison of the scattering patterns calculated with Cθ = 0.1◦ and
0.05◦ (left and middle columns in Fig. 5.14), we find that the fringes in the up and
bottom parts of the circle in the second order rainbow are better for a small Cθ.

To examine the effect of the number of emitted photons we show in Fig. 5.15 the
scattering patterns calculated with N = 2× 109. The two images on the right column
are obtained with the same steps (Cφ, Cθ) as the last two images in the bottom of Fig.
5.14. It is clear that the scattering patterns with 2× 109 photons are better than those
simulated with 8× 108 photons.
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Figure 5.11: Scattering patterns without interference of the pendent droplet a with
parameters given in Tab. 5.4 and Re = 541.15 µm, H = 989.86 µm. The 9 images
correspond to the simulation with 9 pairs of detection steps (Cφ, Cθ) given in Tab. 5.4
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Figure 5.12: Same as Fig. 5.11 but with interference.
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Figure 5.13: Same as Fig. 5.11 but for the droplet d with Re = 671.16 µm and
H = 1707.68 µm



106 CHAPTER 5. SIMULATION OF SCATTERING PATTERNS

Figure 5.14: Same as Fig. 5.13 but with interference.
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Figure 5.15: Same parameters as the last images in Fig. 5.14 but the number of emitted
photons is N = 2× 109.
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Finally, to examine the effect of the detection steps and the number of emitted photons,
we reduce proportionally the size of the droplet, i.e. with the same geometry but divide
the height H and the radius Re of the droplet d by 10. The variation of the phase will
be much slower and the fringes will be larger. The simulated scattering patterns with
parameters given in Tab. 5.6 are shown in Fig. 5.16. It is clear that the interference
fringes are much larger and discernable with even larger steps.

Table 5.6: Parameters for the calculation of the scattering patterns of the reduced
droplets.

Parameters

Droplet
a d

Re(µm) 54.115 67.116

H(µm) 98.986 170.768

(Cφ, Cθ) (0.1◦, 0.01◦)

p 2, 3

N 2×109
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Figure 5.16: Scattering patterns of the reduced droplets a (top) and d (bottom) with
the parameters in Tab. 5.6.
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5.4 Decomposition of scattering patterns

To reveal the scattering mechanism and identify the contribution of the rays from
different parts of the droplet, we illuminate the droplet by a thin rectangular top-
hat beam and observe the scattering pattern. In our simulation, the droplets a and
d are divided into 8 horizontal areas. Each area has the same height equal to 1/8 of
the droplet height, i.e. H/8 (Fig. 5.17). The scattering patterns of the two droplets
simulated with the parameters in Tab. 5.7 are shown in Figs. 5.18-5.21.

For the droplet a, the area 5 is the area including the equatorial plane and the equatorial
plane of the droplet d is in the area 4. There is no scattered light in the areas 1 and 2
for the droplet a (in Figs. 5.18 and 5.19) because the light from these regions do not
contribute to the first and the second rainbows. When we move the illuminated area,
the first order rainbow and the second order rainbow move in the opposite direction.
When the illuminated area is relatively far from the equatorial plane (areas 1, 2, 7, and
8 in Figs. 5.20 and 5.21), the scattering patterns of the droplet d is much complicated
than that for the droplet a.

Table 5.7: Parameters for the calculation of the scattering patterns of partially illumi-
nated droplets.

Areas Area i (i = 1− 8)

zc(µm) (2i− 1)H/16

(xc, yc)(µm) (−5000, 0)

zs(µm) [−H/16, H/16]

ys(µm) [−Re, Re]

N 2×109

θ [−15◦, 15◦]

φ [120◦, 150◦]

Cφ 0.02◦
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Figure 5.17: A schematic to show a droplet is illuminated by a rectangular top-hat
beam in 8 different regions.

Finally, we show in Figs. 5.22 and 5.23 the scattering patterns near the rainbow
angles for the four droplets describled in Chapter 4. The simulation is done with the
parameters in Tab. 5.8. These four scattering patterns correspond well those obtained
experimentally (Fig. 4.3).



112 CHAPTER 5. SIMULATION OF SCATTERING PATTERNS

Figure 5.18: Scattering patterns without interference when the droplet a is illu-
minated by a thin rectangular to-hat beam at different. The detection step Cθ = 0.05
and the other parameters are given in Tab. 5.7.
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Figure 5.19: Same as Fig. 5.18 but with interference.
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Figure 5.20: Same as Fig. 5.18 but for droplet d.
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Figure 5.21: Same as Fig.5.18 but with interference.
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Table 5.8: Parameters for the simulation of scattering patterns around the rainbow
angles of the 4 droplets.

Parameters

Droplet
a b c d

Re(µm) 541.15 589.83 631.45 671.16

H(µm) 989.86 1173.53 1332.83 1707.68

λ(µm) 0.6328

m 1.333

(xc, yc, zc)(µm) (−5000, 0, Ze)

zs(µm) [0, H]

ys(µm) [−Re, Re]

θ [−15◦, 15◦]

φ [120◦, 150◦]

(Cφ, Cθ) (0.02◦, 0.02◦)

p 2, 3

N 2×109
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Figure 5.22: Scattering patterns without interference around the rainbow angles of
the 4 droplets with the parameters in Tab. 5.8.
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Figure 5.23: Same as Fig. 5.22 but with interference.
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5.5 Scattering patterns in the forward direction

Now we show in Fig. 5.24 and Fig. 5.25 the scattering patterns of the 4 droplets in the
forward direction simulated with the parameters given in Tab. 5.9. Whether the droplet
is similar to a sphere or not, the intensity distribution without interference (shown in
Fig. 5.24) is continuous along both θ and along φ while that with interference (seen in
Fig. 5.25) is not, maybe it is caused by interference cancellation.

However, we have identified that the curved part in the lower part is due to the first
order rays p = 1. More the droplet is deformed, more the bow is curved.

Furthermore, we observe clearly the Airy-like bows [59] in the curved part. But they
are not visible for 4 droplets in Fig. 5.25 because of the resolution of the image. If we
zoom in the bow of the droplet d, we can see clearly the Airy-like bows (Fig. 5.26).

Table 5.9: Parameters for the calculation of the scattering patterns droplets in the
forward direction.

parameters

droplet
a, b, c, d

θ [−45◦, 45◦]

φ [−45◦, 45◦]

(Cφ, Cθ) (0.05◦, 0.01◦)

p 0, 1

N 2×109

5.6 Conclusion

In this chapter, the scattering patterns under different conditions are analyzed. The
effect of detection steps, number of emitted photons, incident area of the wave as well
as the shapes of droplets on scattered intensity distribution are investigated to valid the
code of SVCRM, which can deal with the scattering problem of large irregular particles
with a smooth surface in three dimensions.



120 CHAPTER 5. SIMULATION OF SCATTERING PATTERNS

Figure 5.24: Scattering patterns without interference in forward direction of the 4
droplets with the parameters in Tab. 5.9.
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Figure 5.25: Scattering patterns with interference in forward direction of the 4
droplets with the parameters in Tab. 5.9.
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Figure 5.26: Scattering patterns without interference (left) and with interference
(right) in the forward direction of the droplet d. The detection region is φ ∈ [−10◦, 10◦]
and θ ∈ [−30◦,−20◦].



Chapter 6

Conclusions and perspectives

This thesis is devoted to the development of the Statistic Vectorial Complex Ray Model
(SVCRM) to investigate the interaction of a light beam with a large particle of any
shape. The simulations have been validated by comparing the results with the scattering
diagram of a pendent droplet by a plane wave in three dimensions. In this chapter,
the conclusions of presented work are summarized and some perspectives in further
research are given.

6.1 Conclusions

The light scattering is omnipresent in our life: such as rainbow, sunset, colorful clouds,
in order to explain optical phenomena in our life, we need to study the relation of
targets characteristics with the properties of the scattered light. In industry, such
as combustion, spray of perfume, spray in motor, in order to measure these processes
accurately, optical metrology is used to retrieve the properties of the scattered light and
those of the scatterers. Thus, it is very important to research the scattering of light by
particles. However, the particles in industry and in our life are irregular. Therefore, it
is more important to study the interaction between light/wave and irregular particles.

Various theories and models that are available for dealing with the light scattering of
light by particles have been well developed in optical metrology. Geometrical Optics
(GO), for example, an approximate method, deals with the interaction of light with
particles when the light wavelength is much smaller than the dimension of the particles.
By comparison of the scattering diagrams calculated by GO with Lorenz-Mie theory
(LMT), we have shown that the GO permits to deal with the scattering of large particles
(diameter larger than about 50 times the wavelength) and the precision is sufficiently
good in general.

However, the formalism of GO for the scattering of a sphere can not be extended to

123
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a non-spherical particle. For an irregularly shaped particle, the incident angle (so the
refraction angle) and the curvature of the particle surface change at each interaction.
The Fresnel coefficients are to be calculated at each interaction point. And especially,
it is very difficult to take into account the divergence/convergence of a wave on the
particle surface.

After a brief recall of the fundamentals of GO for dealing with the light scattering on a
sphere, the general principle of the VRCM is presented to investigate the scattering of
an irregular particle with smooth surface. VRCM introduces new properties attached
to the ray, which allows to obtain the interferences in the scattering diagram. If the
model is very efficient to compute the scattering diagram in 2D, the 3D extension of
VRCM needs complex interpolation and the work is in progress.

In theories, the SVCRM for the scattering by a plane wave is a variant of VCRM, in
which we avoid doing an 2D interpolation by using a statistical approach. In this thesis,
the model has been described in details: Four coordinate basis are defined to depict the
properties of the wave and the particle surface at a given interaction point; Wave front
equation with curvature matrix and projection matrix indicates the relation between the
wave front curvatures of the wave before and after interaction on the particle surface;
The phase of a ray is calculated including initial phase of the ray and its phase shifts
induced by focal lines, optical path and the Fresnel coefficients, which is the crucial
factor to studying the interference phenomenon in the light scattering of a large non-
spherical particle with SVCRM. The analytical expressions of the scattered intensity
with and without interference in a plane wave are derived in SVCRM.

Next, the generation of the pendent droplet by experiment is introduced and some
interesting scattering patterns around the rainbow angles are obtained at the same
time, which are the reference to compare with the simulation results. Conclusions shows
that SVCRM is valid to deal with the scattering of large irregular particles taking the
interference phenomenon into consideration.

Finally, the effect of detection steps, the number of emitted photons, size of droplets
as well as the incident area of photons on the scattered intensity distribution around
the rainbow angle are investigated. We can conclude according to the analysis about
the influencing factors of the intensity distribution: 1. For the light scattering of
a droplet, the intensity distribution without interference can be used to investigate
the scattering mechanism of different order rays or of different incident areas. The
scattering patterns without interference around the rainbow angles is less sensitive to
the number of emitted photons and the detection steps than that with interference; 2.
Contrary to the intensity distribution without interference, the intensity distribution
with interference has a high requirements about the number of emitted photons and the
detection steps. If the detection steps are not suitable, the interference phenomenon is
not obvious or even disappears although the number of emitted photons is extremely
large. With a appropriate set of detection steps, the interference fringes are more clearly
with a larger number of emitted photons; 3. For the scattered intensity distribution
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around the rainbow angles with the same detection steps and the same number of
emitted photons, the larger the particle size, the denser the interference fringes, which
rises from the phase shift induced by optical path.

By the comparison of the scattering diagrams calculated by SVCRM with by exper-
iment, we conclude that the SVCRM is valid to deal with the scattering of the large
irregular particles in three dimensions, which can be used to predict the characteristics
of light scattering around the rainbow angles under different conditions.

6.2 Perspectives

In this thesis, SVCRM has been developed to study the scattering of large irregular
particles by a plane wave taking the interference phenomenon into consideration and the
simulated scattering patterns around the rainbow angles agree well with the skeletons
of the images obtained experimentally.

It is worth mentioning that simulation results in forward direction for the pendent
droplet: the distributions of scattered intensity without interference for different droplets
are all continuous whether it changes with θ or φ. However, the distributions of scat-
tered intensity with interference for different droplets in some detection areas are dis-
continuous. Further effort is required to understand and better explain the scattering
patterns in forward direction.

In addition, the effect of the order of ray, polarization of the plane wave and the
absorption factor on the scattered intensity distribution with SVCRM remain to be
explored and future work will also focus on the scattering of shaped beams by large
irregular particles with SVCRM.

In fact, particle with a smooth surface and with rotational symmetry is one limitation
of SVCRM. An extension of SVCRM is necessary to overcome this obstacle.

Finally, the aim is to have a model which would be able to compute interaction of light
with any large transparent or low absorbing transparent structure: liquid drop, liquid
jet, etc. It opens the way to make the complete simulation of the optical diagnostic
on realistic liquid structure computed by CFD: light source, interaction with liquid
structure, detection. By changing the liquid structure, statistical relations between
detected optical signal and some characteristics of the liquid can be deduced. The
same relations can then be applied on experimental configurations.
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Appendix A

Least Squares Fitting

In SVCRM, the profile of pendent droplet r(θ) is approximated by a polynomial. A
least squares method is used to compute the coefficients of the polynomial.

For general case, let (θi, ri) be the experimental points to be approximated by polyno-
mial r(θ) = a0 + a1θ + a2θ

2 + · · ·+ akθ
k. The residual is given by

R2 =
n

∑

i=1

[

ri −
(

a0 + a1θ + a1θ
2
i + · · ·+ akθ

k
i

)]

(A.1)

The partial derivatives ( again dropping superscripts) are

∂ (R2)

∂a1
= −2

n
∑

i=1

[

ri −
(

a0 + a1θ + a1θ
2
i + · · ·+ akθ

k
i

)]

= 0

∂ (R2)

∂a0
= −2

n
∑

i=1

[

ri −
(

a0 + a1θ + a1θ
2
i + · · ·+ akθ

k
i

)]

θi = 0

And so on. For coefficient ak:

∂ (R2)

∂ak
= −2

n
∑

i=1

[

ri −
(

a0 + a1θ + a1θ
2
i + · · ·+ akθ

k
i

)]

θki = 0

which leads to the system of equations in matrix form:




























n
n
∑

i=1

θi
n
∑

i=1

θ2i · · ·
n
∑

i=1

θki
n
∑

i=1

θi
n
∑

i=1

θ2i
n
∑

i=1

θ3i · · ·
n
∑

i=1

θk+1
i

n
∑

i=1

θ2i
n
∑

i=1

θ3i
n
∑

i=1

θ4i · · ·
n
∑

i=1

θk+2
i

... ... ... ... ...
n
∑

i=1

θki
n
∑

i=1

θk+1
i

n
∑

i=1

θk+2
i · · ·

n
∑

i=1

θ2ki



















































a0

a1

a2
...

ak























=





























n
∑

i=1

ri
n
∑

i=1

θiri
n
∑

i=1

θ2i ri

...
n
∑

i=1

θki ri




























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In fact, the derivative of r(θ) is zero at θ = 0. That is to say r
′

(θ = 0) = 0. If derivative
at x = 0 is zero, then

dr

dθ
= a1 + 2a1θ + · · ·+ kakθ

k−1 = 0

We can deduces that a1 = 0. The system of equations is then:




























n
n
∑

i=1

θi
n
∑

i=1

θ2i · · ·
n
∑

i=1

θki
n
∑

i=1

θ2i
n
∑

i=1

θ3i
n
∑

i=1

θ4i · · ·
n
∑

i=1

θk+2
i

n
∑

i=1

θ3i
n
∑

i=1

θ4i
n
∑

i=1

θ4i · · ·
n
∑

i=1

θk+3
i

... ... ... ... ...
n
∑

i=1

θki
n
∑

i=1

θk+1
i

n
∑

i=1

θk+2
i · · ·

n
∑

i=1

θ2ki



















































a0

a2

a3
...

ak























=





























n
∑

i=1

ri
n
∑

i=1

θiri
n
∑

i=1

θ2i ri

...
n
∑

i=1

θki ri





























which is solved to obtain coefficients a0, a2,· · · , ak.



Appendix B

Conversion of matrices

This thesis is devoted to Statistic Vectorial Complex Ray Model (SVCRM) for plane
wave scattering by a pendent droplet. As given in Chapter 3, we define four normalized
orthogonal bases to describe the properties of rays before and after interaction as well
as the particle surface at a given interaction point. For each interaction point, the
incident plane defined by the propagation vector of the incident ray and the normal to
the particle surface is unique, therefore, the incident planes adjacent to each interaction
point are not in the same plane. For example, the refracted ray at the first interaction
point is also the incident ray at the second interaction point. The reflected ray at the
second interaction point is also the incident ray at the third interaction point. Thus,
it is necessary to discuss the expressions of the curvature matrix in different bases. In
a word, it is a crucial operation that the mutual transformation of curvature matrices
from its principal base to another base in SVCRM.

B.1 From principal base to general base

In this part, we derive the transforming function of curvature matrix from its principal
base to another base at a reference point. Let Q be a curvature matrix defined in the
reference of the principal directions B = (x̂1, x̂2). It is necessarily diagonal. Let us
note it

Q =





k1 0

0 k2



 (B.1)

Let B
′ be the basis B

′

= (x̂
′

1, x̂
′

2), whose axes are defined by :

x̂
′

1 = cos δx̂1 − sin δx̂2

x̂
′

2 = sin δx̂1 + cos δx̂2

(B.2)
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or

x̂1 = cos δx̂
′

1 + sin δx̂
′

2

x̂2 = − sin δx̂
′

1 + cos δx̂
′

2

(B.3)

The rotation angle δ is calculated by






cos δ = x̂1 · x̂
′

1

sin δ = x̂1 · x̂
′

2

(B.4)

The change of coordinates is done by:

x1x̂1 + x2x̂2 = x1

(

cos δx̂
′

1 + sin δx̂
′

2

)

+ x2

(

− sin δx̂
′

1 + cos δx̂
′

2

)

= (x1 cos δ − x2 sin δ) x̂
′

1 + (x1 sin δ + x2 cos δ) x̂
′

2

= x
′

1x̂
′

1 + x
′

2x̂
′

2

(B.5)

Similarly,

x
′

1x̂
′

1 + x
′

2x̂
′

2 = x
′

1 (cos δx̂1 − sin δx̂2) + x
′

2 (sin δx̂1 + cos δx̂2)

=
(

x
′

1 cos δ + x
′

2 sin δ
)

x̂1 +
(

−x
′

1 sin δ + x
′

2 cos δ
)

x̂2

= x1x̂1 + x2x̂2

(B.6)

which defines the matrix P:




x1

x2





B

=

[

cos δ sin δ

− sin δ cos δ

]





x
′

1

x
′

2





B
′

= P





x
′

1

x
′

2





B
′

(B.7)

In other words:
XB = P−1X

B
′ (B.8)

and its inverse P−1





x
′

1

x
′

2





B
′

=

[

cos δ − sin δ

sin δ cos δ

]





x1

x2





B

= P−1





x1

x2





B

(B.9)

In other words:
X

B
′ = P−1XB (B.10)
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Thus, the components of the electric field (E
′

1, E
′

2) are written in the basis B
′ as a

function of their expression (E1, E2) in the basis B:






E
′

1 = cos δE1 − sin δE2

E
′

2 = sin δE1 + cos δE2

(B.11)

Moreover, the matrix Q of curvatures is characteristic of the linear mapping transform-
ing the vector XB and YB:

YB = QBXB (B.12)

The same vector can be represented in basis B
′ :

YB = PX
B

′ (B.13)
and we can deduce that

PY
B

′ = YB = QBXB = QBPX
B

′ (B.14)
and

Y
B

′ = Q
B

′XB
′

= P−1QBPX
B

′ (B.15)

Therefore, Q
B

′ can be expressed as

Q
B

′ = P−1QBP

=





cos δ − sin δ

sin δ cos δ









κ1 0

0 κ2









cos δ sin δ

− sin δ cos δ





=





cos δ − sin δ

sin δ cos δ









κ1 cos δ κ1 sin δ

−κ2 sin δ κ1 cos δ





=





κ1 cos
2 δ + κ2 sin

2 δ (κ1 − κ2) sin δ cos δ

(κ1 − κ2) sin δ cos δ κ1 sin
2 δ + κ2 cos

2 δ





(B.16)

That is to say that the matrix of curvatures in the basis B
′ is written:

Q
B

′ =





κ1 cos
2 δ + κ2 sin

2 δ (κ1 − κ2) sin δ cos δ

(κ1 − κ2) sin δ cos δ κ1 sin
2 δ + κ2 cos

2 δ



 (B.17)

In particular, if κ
(i)
1 and κ

(i)
2 are the radii of curvature of the incident photon in the

proper directions x̂1 and x̂2, The curvature matrix in the incident reference frame
(ê

(i)
i , ê

(i)
j ,k(i)) is :

Q
B

′ =





κ
(i)
ii κ

(i)
ij

κ
(i)
ij κ

(i)
jj



 (B.18)
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with


















κ
(i)
ii = κ

(i)
1 cos2 δ + κ

(i)
2 sin2 δ

κ
(i)
jj = κ

(i)
1 sin2 δ + κ

(i)
2 cos2 δ

κ
(i)
ij =

(

κ
(i)
1 − κ

(i)
2

)

sin δ cos δ

(B.19)

Similarly, let κ
(s)
1 and κ

(s)
2 are the radii of curvature of the particle surface along its

proper directions x
(s)
1 and x

(s)
2 , The curvature matrix in the particle surface reference

frame (ê
(s)
i , ê

(s)
j ,n), with ê

(s)
j = ê

(i)
j , and ê

(s)
i = ê

(s)
j × n. In this case,

Q
B

′ =





κ
(s)
ii κ

(s)
ij

κ
(s)
ij κ

(s)
jj



 . (B.20)

with


















κ
(s)
ii = κ

(s)
1 cos2 δ + κ

(s)
2 sin2 δ

κ
(s)
jj = κ

(s)
1 sin2 δ + κ

(s)
2 cos2 δ

κ
(s)
ij =

(

κ
(s)
1 − κ

(s)
2

)

sin δ cos δ

(B.21)

B.2 Diagonalization of curvature matrices

Consider the matrix Q
B

′ :

Q
B

′ =





κ
(i)
ii κ

(i)
ij

κ
(i)
ij κ

(i)
jj



 . (B.22)

and look for the rotation matrix P−1:

P−1 =





cos δ − sin δ

sin δ cos δ



 . (B.23)
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To diagonalize the matrix Q
′ :

PQ
B

′P−1 =





cos δ sin δ

− sin δ cos δ









κ
(i)
ii κ

(i)
ij

κ
(i)
ij κ

(i)
jj









cos δ − sin δ

sin δ cos δ





=





cos δ sin δ

− sin δ cos δ









κ
(i)
ii cos δ + κ

(i)
ij sin δ −κ

(i)
ii sin δ + κ

(i)
ij cos δ

κ
(i)
ij cos δ + κ

(i)
jj sin δ −κ

(i)
ij sin δ + κ

(i)
jj cos δ





=





κ
(i)
11 κ

(i)
12

κ
(i)
21 κ

(i)
22





=





κ
(i)
1 0

0 κ
(i)
2





(B.24)
with

κ
(i)
11 = κ

(i)
ii cos2 δ + 2κ

(i)
ij sin δ cos δ + κ

(i)
jj sin

2 δ == κ
(i)
1 (B.25)

κ
(i)
12 = (κ

(i)
jj − κ

(i)
ii ) sin δ cos δ + κ

(i)
ij (cos

2 δ − sin12 δ) = 0 (B.26)
κ
(i)
22 = κ

(i)
ii sin2 δ − 2κ

(i)
ij sin δ cos δ + κ

(i)
jj cos

2 δ = κ
(i)
2 (B.27)

In order to obtain the principal curvatures or directions, we need to diagonalize this
matrix, and Non-diagonal components are zero for

tan 2δ =
2κ

(i)
ij

(κ
(i)
ii − κ

(i)
jj )

(B.28)

Then the principal curvatures are






κ
(i)
1 = κ

(i)
ii cos2 δ + 2κ

(i)
ij sin δ cos δ + κ

(i)
jj sin

2 δ

κ
(i)
2 = κ

(i)
ii sin2 δ − 2κ

(i)
ij sin δ cos δ + κ

(i)
jj cos

2 δ
(B.29)

and the corresponding eigenvectors are:
{

x̂1 = cos δx̂
′

1 + sin δx̂
′

2

x̂2 = − sin δx̂
′

1 + cos δx̂
′

2

(B.30)

Then, the components of the electric field (E1, E2) in the basis B can be written as
(E

′

1, E
′

2) in the basis B
′ :

{

E1 = cos δE
′

1 + sin δE
′

2

E2 = − sin δE
′

1 + cos δE
′

2

(B.31)

Note: if κ(i)
ii = κ

(i)
jj , then there are two possibilities:
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a. κ
(i)
ij = 0, then κ

(i)
1 = κ

(i)
2 and in this case, we are already in the principal axes of

curvature.

b. κ
(i)
ij ̸= 0, that is to say cos 2δ = 0. δ = (2k + 1)π/4
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Résumé
Cette thèse est consacrée à la simulation numérique tridimensionnelle de la diffusion

d’une onde plane par une gouttelette pendante à l’aide d’un modèle de Tracé de Rayons
Vectoriels Complexes Statistiques (TRVCS), basé sur modèle de Tracé de Rayons Vec-
toriels Complexes (TRVC)précédemment mis au point par le laboratoire CORIA.

La métrologie optique est largement utilisée dans de nombreux domaines de la
recherche scientifique et non intrusive. De nombreuses techniques de mesure ont été
développées pour caractériser la taille, la température, ... des particules. Mais la plupart
d’entre elles sont limitées aux particules de forme simple en raison de l’absence d’outils
théorique ou numérique permettant de prédire la relation entre la lumière diffusée et
les propriétés des diffuseurs, en particulier pour les grosses particules non sphériques.

Pour surmonter cet obstacle, TRVC a été développé. Dans ce modèle, la courbe
du front d’onde est introduite comme une nouvelle propriété des rayons lumineux. La
divergence et la convergence d’une onde sur la surface courbée de la particule peuvent
être facilement prédites par l’équation du front d’onde. Ainsi, il peut être appliqué à
la diffusion de la lumière par de grosses particules de forme quelconque et de surface
lisse. La TRVC a été validée expérimentalement et numériquement dans les cas de
diffusion dans un plan de diffusion symétrique. Afin de contourner le problème de
l’interpolation 2D avec des données irrégulières, nous proposons un modèle de TRVCS.
Mais le phénomène d’interférence n’est pas pris en compte dans sa version initiale.

Dans cette thèse, la méthode de calcul de la phase due au chemin optique, aux coeffi-
cients de Fresnel et aux lignes focales sont soigneusement étudiés pour une particule non
sphérique dans le cadre de TRVCS. Il est ensuite appliqué à la simulation de la diffusion
en trois dimensions d’une gouttelette pendante. Les figures de diffusion aux alentour
des arcs-en-ciel du premier et du second ordres, dans la direction avant, sont simulées
pour quatre formes typiques de gouttelettes pendantes obtenues expérimentalement.
Les résultats numériques sont en bon accord avec les résultats expérimentaux. Le mé-
canisme de diffusion et la contribution de différents ordres de rayons sont également
étudiés.

Mots-clés: diffusion de lumière, particule non-sphérique, optique géométrique,
Tracé de Rayons Vectoriels Complexes, Tracé de Rayons Vectoriels Complexes Statis-
tiques, goutte pendante



Abstract
This thesis is devoted to the numerical simulation of the scattering of plane wave

by a pendent droplet in three dimensions using the Statistic Vectorial Complex Ray
Model(SVCRM), which is based on the Vectorial Complex Ray Model (VCRM) devel-
oped in the laboratory CORIA.

Optical metrology is widely used in many domains of scientific research due to its
advantages of being fast and non-intrusive. Numerous measurement techniques have
been developed to characterize the size, the temperature, ... of the particles. But most
of them are limited to the particles of simples shape because of the lack of theoretical
model to predict the relation of the scattered light with the properties of the scatterers,
especially for the large non-spherical particle.

To overcome this obstacle, the Vectorial Complex Ray Model (VCRM) has been
developed. In this model, the wave front curvature is introduced as a new property
of light rays. The divergence and the convergence of a wave on the curved surface of
the particle can be described easily by the wave front equation. So it can be applied
to the scattering of light by large particles of any shape with smooth surface. The
VCRM has been validated experimentally and numerically in the cases of scattering in
a symmetric plane of scatterer. In order to get over the problem of 2D interpolation
with irregular data, Statistic Vectorial Complex Ray Model (SVCRM) is proposed. But
the interference phenomena is not considered in its initial version.

In this thesis, the method to count the phase due to the optical path, the Fresnel
coefficients and the focal liens are carefully studied for a non-spherical particle in the
framework of SVCRM. It is then applied to the simulation of the three dimension scat-
tering of a pendent droplet. The scattering patterns around the first and the second
order rainbows, in the forward direction are exampled for four typical shapes of pen-
dent droplets obtained experimentally. The results are found in good agreement with
experimental scattering patterns. The scattering mechanism and the contribution of
different orders of rays are also investigated.

Keywords: light scattering, non-spherical particles, geometrical optics, Vectorial
Complex Ray Model, Statistic Vectorial Complex Ray Model, pendent droplet


