, 63]) that NO can be very efficiently produced by the so called Zel

, 27 eV, it requires highly energetic particles or N2 molecules in a highly excited vibrational state N2(X,v>12) to be effective. This can be obtained in high temperature medium e.g. in combustion systems or in low-pressure plasmas where N2 molecules can be vibrationally excited by electrons without experiencing a high quenching, Since reaction (R6) has a large activation energy of 3, vol.94

. Nevertheless, Moreover the population of the vibrationnally excited levels of nitrogen is not considered in the model, our conditions the temperature remains close to 300K and the quenching rate is large so that reaction (R6) is unlikely

, 27 eV) and is considered to be significant in DBD discharges [63]. Nevertheless, it is found negligible in our conditions due to the very low gas temperature. The activation energy can be brought by electronically excited atoms (N( 2 D) and N( 2 P)) or by electronically excited O2(a) molecules, Reaction (R7) requires a lower activation energy

, To summarize, in our conditions, the main production mechanism of NO molecules is N 2 (A) +

P. No-+-n, For low oxygen concentration (25ppm), the second dominant reaction is the three-body recombination N( 4 S) + O( 3 P) + N 2 ? NO + N 2 whereas it is O( 3 P) + NO 2 ? NO + O 2 for 200 ppm

M. Moisan and J. Pelletier, Physics of collisional plasmas: introduction to high-frequency discharges, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00766269

A. Fridman, A. Chirokov, and A. Gutsol, Non-thermal atmospheric pressure, J. Phys. D. Appl. Phys, vol.38, pp.1-24, 2005.

F. Massines, C. Sarra-bournet, F. Fanelli, N. Naudé, and N. Gherardi, Atmospheric pressure low temperature direct plasma technology: Status and challenges for thin film deposition, Plasma Process. Polym, vol.9, pp.1041-73, 2012.

S. Pankaj and K. Keener, Cold plasma: background, applications and current trends Curr, Opin. Food Sci, vol.16, pp.49-52, 2017.

T. Montie, K. Kelly-wintenberg, R. Roth, and J. , An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials, IEEE Trans. Plasma Sci, vol.28, pp.41-50, 2000.

B. Gadri, R. Roth, J. Montie, T. Kelly-wintenberg, K. Peter et al., Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma, OAUGDP) Surf. Coatings Technol, vol.131, pp.528-569, 2000.

B. Niemira, Cold plasma decontamination of foods, Annu. Rev. Food Sci. Technol, vol.3, pp.125-167, 2012.

J. Van-durme, J. Dewulf, C. Leys, and H. Van-langenhove, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review, Appl. Catal. B Environ, vol.78, pp.324-357, 2008.

R. Morent, D. Geyter, N. Verschuren, J. , D. Clerck et al., Non-thermal plasma treatment of textiles Surf, Coatings Technol, vol.202, pp.3427-3476, 2008.

J. Roth, Applications to nonthermal plasma processing, vol.2, 2001.

F. Massines, N. Gherardi, A. Fornelli, and S. Martin, Atmospheric pressure plasma deposition of thin films by Townsend dielectric barrier discharge Surf, Coatings Technol, vol.200, pp.1855-61, 2005.

O. Levasseur, L. Stafford, N. Gherardi, N. Naudé, V. Blanchard et al., Deposition of hydrophobic functional groups on wood surfaces using atmosphericpressure dielectric barrier discharge in helium-hexamethyldisiloxane gas mixtures, Plasma Process. Polym, vol.9, pp.1168-75, 2012.

S. Starostin, P. Premkumar, M. Creatore, E. Van-veldhuizen, D. Vries et al., On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films Plasma Sources Sci, 2009.

P. Raizer and Y. , Gas Discharge Physics, 1991.

H. Raether, Electron avalanches and breakdown in gases, 1964.

S. Nijdam, F. Van-de-wetering, R. Blanc, E. Van-veldhuizen, and U. Ebert, Probing photo-ionization: Experiments on positive streamers in pure gases and mixtures, J. Phys. D. Appl. Phys, vol.43, 2010.

G. Wormeester, S. Pancheshnyi, A. Luque, S. Nijdam, and U. Ebert, Probing photo-ionization: Simulations of positive streamers in varying N2: O2-mixtures, J. Phys. D. Appl. Phys, vol.43, 2010.

K. Schoenbach, R. Verhappen, T. Tessnow, and F. Peterkin, Microhollow cathode discharges, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol.21, pp.1260-1265, 2003.

T. Deconinck and L. Raja, Modeling of mode transition behavior in argon microhollow cathode discharges, Plasma Process. Polym, vol.6, pp.335-381, 2009.

P. Lukes, M. Clupek, V. Babicky, V. Janda, and P. Sunka, Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor, J. Phys. D. Appl. Phys, vol.38, pp.409-425, 2005.

S. Masuda and H. Nakao, Control of NO/sub x/ by positive and negative pulsed corona discharges, IEEE Trans. Ind. Appl, vol.26, pp.374-83, 1990.

Y. Lee, W. Jung, Y. Choi, J. Oh, S. Jang et al., Application of pulsed corona induced plasma chemical process to an industrial incinerator, Environ. Sci. Technol, vol.37, pp.2563-2570, 2003.

A. Joshi, B. Locke, A. , P. Finney, and W. , Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution, J. Hazard. Mater, vol.41, pp.3-30, 1995.

N. Plaks, G. Ramsey, D. Ensor, and J. Newsome, Control of Volatile Organic Compounds by an ac Energized Ferroelectric Pellet Reactor and a Pulsed Corona Reactor, IEEE Trans. Ind. Appl, vol.28, pp.528-562, 1992.

U. Kogelschatz, B. Eliasson, and W. Egli, Dielectric-barrier discharges. Principle and applications Le, J. Phys. IV, vol.7, pp.4-47, 1997.
URL : https://hal.archives-ouvertes.fr/jpa-00255561

W. Siemens, Ueber die elektrostatische Induction und die Verzögerung des Stroms in, Flaschendrähten Ann. Phys, vol.178, pp.66-122, 1857.

K. Buss, Die elektrodenlose Entladung nach Messung mit dem, Kathodenoszillographen Archiv fur Elektrotechnik, vol.261, issue.5, 1932.

A. Klemenc, H. Hintenberger, and H. Hofer, UBER DEN ENTLADUNSVORGANG IN EINER SIEMENS-OZONROHRE. Ztschr. Elektrochem, vol.43, pp.708-720, 1937.

U. Kogelschatz, Dielectric-barrier Discharges : Their History, Discharge Physics, and Industrial Applications Plasma Chem. Plasma Process, vol.23, pp.1-46, 2003.

R. Bartnikas, Note on ac discharges between metallic-dielectric electrodes in helium, J. Appl. Phys, vol.40, pp.1974-1980, 1969.

F. Massines, N. Gherardi, N. Naudé, and P. Ségur, Glow and Townsend dielectric barrier discharge in various atmosphere Plasma Phys, Control. Fusion, vol.47, 2005.

S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, Stable glow plasma at atmospheric pressure, J. Phys. D. Appl. Phys, vol.21, pp.838-878, 1988.

S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, Appearance of stable glow discharge in air, oxygen and nitrogen at atmospheric pressure using a 50 Hz source, J. Phys. D Appl. Phys, vol.26, pp.889-92, 1993.

F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, and P. Ségur, Experimental study of an atmospheric pressure glow discharge. Application to polymers surface treatment, International Conference on Gas Discharges and their Applications, pp.730-733, 1992.

F. Massines, A. Rabehi, P. Decomps, R. Gadri, . Ben et al., Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier, J. Appl. Phys, vol.83, pp.2950-2957, 1998.

J. Roth, L. , M. Liu, and C. , Experimental generation of a steady-state glow discharge at atmospheric pressure, Proc. IEEE International Conference on Plasma pp, pp.170-171, 1993.

C. Liu and J. Roth, Plasma-Related Characteristics of a Steady-State Glow Discharge At Atmospheric Pressure IEEE Conference Record -Abstracts 1993 IEEE International Conference on Plasma p, p.129, 1993.

F. Massines, N. Gherardi, N. Naudé, and P. Ségur, Recent advances in the understanding of homogeneous dielectric barrier discharges Eur, Phys. J. Appl. Phys, vol.47, p.22805, 2009.

A. Palmer, A physical model on the initiation of atmospheric-pressure glow discharges, Appl. Phys. Lett, vol.25, pp.138-178, 1974.

I. Enache, N. Naudé, J. Cambronne, G. N. Massines, and F. , Electrical model of the atmospheric pressure glow discharge (APGD) in helium, Eur. Phys. Journal-Applied Phys, vol.33, pp.15-21, 2006.

X. Tu, B. Verheyde, S. Corthals, S. Paulussen, and B. Sels, Effect of packing solid material on characteristics of helium dielectric barrier discharge at atmospheric pressure, Phys. Plasmas, vol.18, pp.1-5, 2011.

F. Massines, P. Segur, N. Gherardi, C. Khamphan, and R. A. , Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling Surf, Coatings Technol, pp.720-724, 2003.

N. Osawa and Y. Yoshioka, Generation of low-frequency homogeneous dielectric barrier discharge at atmospheric pressure IEEE Trans, Plasma Sci, vol.40, pp.2-8, 2012.

N. Naudé, A. Belinger, S. Dap, and N. Gherardi, Memory effects in Atmospheric Pressure Townsend Discharges in N2 and air The International Conference on Phenomena in Ionized Gases (ICPIG), 2015.

C. Laurent, C. Tyl, S. Dap, G. N. , and N. , ATR-FTIR Study of Low-Temperature Atmospheric Pressure Plasma Treated Aspergillus Mycelia The 16th International Symposium on High Pressure Low Temperature Plasma Chemistry, pp.2-07, 2018.

F. Massines, P. Ségur, N. Gherardi, C. Kamphan, C. Jimenez et al., Dielectric barrier glow discharges: Science and applications Proc. 16th Int. Symp. Plasma Chemistry pp, pp.22-29, 2003.

N. Gherardi and F. Massines, Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen, IEEE Trans. Plasma Sci, vol.29, pp.536-580, 2001.

C. Tyl, X. Lin, M. Bouzidi, S. Dap, H. Caquineau et al., Investigation of memory effect in atmospheric pressure dielectric barrier discharge in nitrogen with small oxygen or nitric oxide addition, J. Phys. D. Appl. Phys, vol.51, 2018.

C. Kamphan, P. Ségur, F. Massines, M. Bordage, G. N. Cesses et al., Secondary electron emission by nitrogen metastable states in athospheric-pressure glow discharge Proc, The 16th International Symposium on Plasma Chemistry, 2003.

N. Popov, Vibrational kinetics of electronically-excited N2(A 3 ? + u,v) molecules in nitrogen discharge plasma, J. Phys. D. Appl. Phys, vol.46, 2013.

D. Bosan, T. Jovanovic, and D. Krmpotic, The role of neutral metastable N2(A) molecules in the breakdown probability and glow discharge in nitrogen, J. Phys. D. Appl. Phys, vol.30, pp.3096-3104, 1997.

C. Khamphan, Modélisation numérique de décharges contrôlées par barrières diélectriques à la pression atmosphérique, 2004.

C. Cardinaud, M. G. Clergereaux, R. Mottin, and S. , Plasma et son environnement. Plasmas Froids en, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01500928

Y. Golubovskii, V. Maiorov, J. Behnke, and J. Behnke, Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen, J. Phys. D. Appl. Phys, vol.35, pp.751-61, 2002.

R. Brandenburg, V. Maiorov, Y. Golubovskii, H. Wagner, B. J. Behnke et al., Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary regime, J. Phys. D. Appl. Phys, vol.38, pp.2187-97, 2005.

C. Bouzidi, Etude d'une Décharge à Barrière Diélectrique (DBD) homogène dans l'azote à pression atmosphérique : Effet mémoire et Optimisation du transfert de Puissance, 2014.

N. Popov, Associative Ionization Reactions Involving Excited Atoms in Nitrogen Plasma Plasma Phys, Reports, vol.35, pp.436-485, 2009.

G. Dilecce, P. Ambrico, D. Benedictis, and S. , A 3 ? + u) density measurement in a dielectric barrier discharge in N2 and N2 with small O2 admixtures, Plasma Sources Sci. Technol, vol.16, pp.511-533, 20072.

E. Es-sebbar, Étude électrique et analyse par fluorescence induite par laser des décharges de Townsend à la pression atmosphérique dans N2, 2007.

E. Es-sebbar, C. Sarra-bournet, N. Naudé, F. Massines, and N. Gherardi, Absolute nitrogen atom density measurements by two-photon laser-induced fluorescence spectroscopy in atmospheric pressure dielectric barrier discharges of pure nitrogen, J. Appl. Phys, vol.106, 2009.

E. Es-sebbar, G. N. Massines, and F. , Effects of N2O and O2 addition to nitrogen Townsend dielectric barrier discharges at atmospheric pressure on the absolute ground-state atomic nitrogen density, J. Phys. D. Appl. Phys, vol.46, 2013.

N. Naudé, J. Cambronne, G. N. Massines, and F. , Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge, J. Phys. D. Appl. Phys, vol.38, pp.530-538, 2005.

M. Uddi, N. Jiang, I. Adamovich, and W. Lempert, Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence, J. Phys. D Appl. Phys. J. Phys. D Appl. Phys, vol.42, pp.75205-75223, 2009.

A. V. Klochko, J. Lemainque, J. Booth, and S. Starikovskaia, TALIF measurements of oxygen atom density in the afterglow of a capillary nanosecond discharge Plasma Sources Sci, p.24, 2015.

G. Dilecce, M. Vigliotti, and S. Debenedictis, A TALIF calibration method for quantitative oxygen atom density measurement in plasma jets, J. Phys. D, vol.33, p.53, 2000.

M. Koochesfahani and P. Dimotakis, Laser-induced fluorescence measurements of mixed fluid concentrationin a liquid plane shear layer, AIAA J, vol.23, pp.1700-1707, 1985.

Z. Yin, I. V. Adamovich, and . Lempert-w-r, OH radical and temperature measurements during ignition of H 2-air mixtures excited by a repetitively pulsed nanosecond discharge Proc, Combust. Inst, vol.34, pp.3249-58, 2013.

G. Dilecce, L. Martini, P. Tosi, M. Scotoni, D. Benedictis et al., Laser induced fluorescence in atmospheric pressure discharges Plasma Sources Sci, p.24, 2015.

J. Amorim, G. Baravian, and J. Jolly, Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas, J. Phys. D. Appl. Phys, vol.33, 2000.

M. Lee, M. Millin, B. Hanson, and R. , Temperature Measurements in Gases by use of planar laser-induced fluorescence imaging of NO, Appl. Opt, vol.32, pp.5379-96, 1993.

K. Niemi, V. Schulz-von-der-gathen, and H. Dobele, Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation, J. Phys. D. Appl. Phys, vol.34, pp.2330-2335, 2001.

R. Loudon, The Quantum Theory of Light 2nd edn, 1983.

U. Czarnetzki, K. Miyazaki, T. Kajiwara, and K. Muraoka, Comparison of various two-photon excitation 11, 1994.

A. Van-gessel, V. Grootel, S. Bruggeman, and P. , Atomic oxygen TALIF measurements in an atmospheric-pressure microwave plasma jet with in situ xenon calibration Plasma Sci, 2013.

K. Niemi, V. Schulz-von-der-gathen, and H. Döbele, Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RFexcited atmospheric pressure plasma jet, Plasma Sources Sci. Technol, vol.14, pp.375-86, 2005.

A. Goehlich, T. Kawetzki, and H. Döbele, On absolute calibration with xenon of laser diagnostic methods based on two-photon absorption, J. Chem. Phys, vol.108, pp.9362-70, 1998.

G. Tachiev, F. Fischer, and C. , Breit-Pauli energy levels and transition rates for nitrogen-like and oxygen-like sequences, Astronomy&Astrophysics, vol.10, pp.716-739, 2001.

. Chang-r-s-f, H. Horiguchi, and D. Setser, Radiative lifetimes and two-body collisional deactivation rate constants in argon for Kr(4p 5 5p ) and Kr(4p 5 5p ?) states, J. Chem. Phys, vol.73, pp.778-90, 1980.

S. Builder, , 2012.

D. Schröder, S. Burhenn, D. Kirchheim, V. Gathen, and . Der, Enhanced oxygen dissociation in a propagating constricted discharge formed in a self-pulsing atmospheric pressure microplasma jet, J. Phys. D. Appl. Phys, vol.46, p.14, 2013.

N. Naudé, Etude Electrique de la Physique d'une Décharge de Townsend à la Pression Atmosphérique et de son Interaction avec un Générateur, 2005.

D. Tsyganov and S. Pancheshnyi, Simulation of N-atom production in dielectric-barrier discharge in nitrogen at atmospheric pressure Plasma Sources Sci, 2012.

Y. Teramoto, R. Ono, and O. T. , Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence, J. Appl. Phys, vol.111, 2012.

N. Popov, Dissociation of nitrogen in a pulse-periodic dielectric barrier discharge at atmospheric pressure Plasma Phys, Reports, vol.39, pp.420-424, 2013.

G. Stancu, F. Kaddouri, D. Lacoste, and C. Laux, Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF, J. Phys. D. Appl. Phys, vol.43, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00492193

A. Hibber, M. Biemont, and N. Godefroid, E1 transitions of astrophysical interest in neutral oxygen, J. Phys. B At. Mol. Opt. Phys, vol.24, pp.3943-58, 1991.

H. Horiguchi, R. Chang, and D. Setser, Radiative lifetimes and two-body collisional deactivation rate constants in Ar for Xe(5p 5 6p),Xe(5p 5 6p), and Xe(5p 5 7p) states, J. Chem. Phys, vol.75, pp.1207-1225, 1981.

M. Bruce, W. Layne, C. Whitehead, and J. Keto, Radiative lifetimes and collisional deactivation of two-photon excited xenon in argon and xenon, J. Chem. Phys, vol.92, pp.2917-2943, 1990.

R. Saxon and J. Eichler, Theoretical calculation of two-photon absorption cross sections in atomic oxygen, Phys. Rev. A, vol.34, pp.199-206, 1986.

N. Popov, Pulsed nanosecond discharge in air at high specific deposited energy: Fast gas heating and active particle production, Plasma Sources Sci. Technol, vol.25, p.44003, 2016.

J. Luque and D. Crosley, , vol.1, p.19, 1999.

D. Benedictis, S. Ambrico, P. Dilecce, and G. , LIF investigations of O and NO products in air like RF plasma jet, J. Phys. Conf. Ser, p.227, 2010.

A. Van-gessel, B. Hrycak, M. Jasi?ski, J. Mizeraczyk, J. Van-der-mullen et al., Temperature and NO density measurements by LIF and OES on an atmospheric pressure plasma jet, J. Phys. D. Appl. Phys, vol.46, p.12, 2013.

J. Reisel, C. Carter, and N. Laurendeau, REISEL, vol.47, pp.43-54, 1992.

J. Herron, Evaluated Chemical Kinetics Data for Reactions of N ( 2 D), N ( 2 P), and N (A 3 ? + u) in the Gas Phase, J. Phys. Chem. Ref. Data, vol.28, pp.1453-83, 1999.

R. Dorai and M. Kushner, A model for plasma modification of polypropylene using atmospheric pressure discharges, J. Phys. D-Applied Phys, vol.36, pp.666-85, 2003.

I. Kossyi, A. Kostinsky, A. Matveyev, and V. Silakov, Kinetic scheme of the nonequlibrium discharge jn nitrogen-oxygen mixtures, Plasma Sources Sci. Technol, vol.1, pp.207-227, 1992.

J. Greaves and J. Linnett, The recombination of oxygen atoms at surfaces, Trans. Faraday Soc, vol.54, pp.1323-1353, 1958.

, UNAM database, www.lxcat.net, retrieved on, 2017.

L. Viehland and D. Fahey, NO + , and Cl ? in N2 : A measure of inelastic energy loss, J. Chem. Phys, vol.78, issue.3, pp.435-476, 1983.

, Viehland database, www.lxcat.net, retrieved on, 2017.

A. Salmon, N. Popov, G. Stancu, and C. Laux, Quenching rate of N( 2 P) atoms in a nitrogen afterglow at atmospheric pressure, J. Phys. D. Appl. Phys, vol.51, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01866241

G. Hagelaar and L. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol, vol.14, pp.722-755, 2005.

, Biagi database, www.lxcat.net, retrieved on, 2017.

, Morgan database, www.lxcat.net, retrieved on, 2017.

K. Kozlov, R. Brandenburg, H. Wagner, A. Morozov, and P. Michel, Investigation of the filamentary and diffuse mode of barrier discharges in N2 /O2 mixtures at atmospheric pressure by cross-correlation spectroscopy, J. Phys. D. Appl. Phys, vol.38, pp.518-547, 2005.

P. Cosby, Electron-impact dissociation of nitrogen, J. Chem. Phys, vol.98, pp.9544-53, 1993.

J. Herron and D. Green, Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry, Part II. Neutral species reactions Plasma Chem. Plasma Process, vol.21, pp.459-81, 2001.

M. ?imek, Determination of N2(A 3 ? + u) metastable density produced in nitrogen streamers by pulsed positive corona discharge at atmospheric pressure. Experimental verification, Plasma Sources Sci. Technol, vol.12, pp.454-463, 2003.

J. Thomas and F. Kaufman, An Upper Limit on the Formation of NO(X 2 ?r) in the Reactions N2(A 3 ? + u) + O( 3 P) and N2(A 3 ? + u)+ O2(X 3 ? -g) at 298 K, J. Phys. Chem, vol.100, pp.8901-8907, 1996.

C. Pintassilgo, L. , J. Guerra, and V. , Modelling of a N2-O2 flowing afterglow for plasma sterilization, J. Phys. D-Applied Phys, vol.38, pp.417-447, 2005.