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General introduction 

Dielectric barrier discharges (DBD) are a kind of non-equilibrium discharges, in which at least one 

electrode is covered by a dielectric. Operating at atmospheric pressure, the value of the product 

pressure×gas gap distance (𝑝 × 𝑑) is usually high, which results in a discharge characterized by a 

large number of independent streamers generated between the two electrodes. It corresponds to 

the filamentary mode. Nevertheless, under some typical conditions, the discharge can be uniform. 

These conditions can be related to the power supply, the geometry of the discharge cell, the gas 

atmosphere, the dielectrics... This kind of homogeneous discharge is suitable for many applications 

such as thin film deposition or surface treatment. It is thus interesting to understand how to obtain 

such homogeneous discharges in atmospheres containing complexes molecular precursors and/or 

oxidizing gases.  

Two main kinds of homogeneous DBDs can be obtained. One is obtained in noble gas such as helium 

or argon. For these discharges, the most luminescent layer is located close to the cathode and their 

electrical characteristics are very similar to those of a glow discharge obtained at low pressure. These 

discharges are then called Atmospheric Pressure Glow Discharges (APGD). The other type of 

homogeneous discharge is usually obtained in a nitrogen atmosphere. In this case, the luminescent 

layer is located near the anode, and its electrical characteristics are very similar to those of a 

Townsend discharge generated at low pressure. This kind of discharge is named Atmospheric 

Pressure Townsend Discharge (APTD) and constitutes the main interest of the present work.  

To obtain an APTD, it is necessary to decrease the electric field for the breakdown to occur which is 

possible if seed electrons are present in the gas volume. In the case of periodic discharges, these 

seed electrons can originate from the previous discharge: this is the memory effect. It is known from 

previous studies that several mechanisms arising between two successive discharges can participate 

in this memory effect, the relative importance of these different mechanisms being strongly related 

to the experimental conditions. In particular, many experiments put in evidence that a small addition 

of oxidizing gas into nitrogen can greatly enhance this memory effect thus increasing the working 

domain of the discharge. It suggests the occurrence of a phenomenon taking place in the discharge 

volume. A possible candidate is the associative ionization reaction between nitrogen metastable 

atoms N(2P) and oxygen atoms O(3P): N( P2 )  +  O( P3 )  →  NO+  +  e−. In this reaction, the N(2P) atoms 

are formed during the excitation of ground state atoms N(4S) by N2(A) metastable molecules: 

N( S4 )  +  N2(A) →  N( P2 )  + N2(X). The main purpose of the present work is to check the consistency 

of this hypothesis. In this perspective, the most direct method is to determine the absolute densities 

of the involved species, namely N(4S) and O(3P) atoms between two discharges. For this purpose, two 

photon laser induced fluorescence measurements (TALIF) are performed. Moreover, the density of 

NO molecules, which is an efficient quencher of metastable nitrogen species are also determined by 

laser induced fluorescence (LIF) measurements. The obtained results together with a modeling of the 

main chemical mechanisms can then be used to quantify the contribution of the aforementioned 

associative ionization reaction in the memory effect. 

The manuscript is organized as follows: 

Chapter 1 presents general considerations about atmospheric pressure discharges. First, the different 

breakdown mechanisms are described. Then, the more specific case of dielectric barrier discharges is 

considered. The end of this chapter is dedicated to the APTD and to the different mechanisms 

involved in the memory effect. Finally, the aim of the present work is described in details.   
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Chapter 2 starts with the description of the experimental set-up including the vacuum system, the 

configuration of the discharge cell and the electrical system. Then, the general principle of the laser 

induced fluorescence technique is presented and the calibration procedure allowing to obtain 

absolute densities from the measured signals is explained. Finally, the different experimental 

configurations used for the LIF and TALIF measurements are presented. 

Chapters 3, 4 and 5 present the results of the measurements for N(4S), O(3P) and NO(X) respectively 

obtained in different experimental conditions. The effect of the main parameters on the density of 

the different species is discussed. In particular, a careful attention is paid to the influence of the 

oxygen concentration. The main mechanisms involved in the production and destruction of the 

different species are investigated using a model developed in the group. The latter is described in 

Appendix 1.  

Chapter 6 is dedicated to discussions based on the results presented in chapters 3, 4 and 5. In the 

first part, the evolution of the different species densities in the post-discharge region is discussed. In 

the second part, the influence of the aforementioned associative ionization reaction on the memory 

effect is estimated using a model.  

Finally, the main results of the present work are summarized and prospects are proposed for further 

investigations.
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Chapter 1. Literature review and context of this work 

This chapter starts with a general description of plasmas and of the different breakdown mechanisms. 

Then a brief review of the different kind of discharges generated at atmospheric pressure, especially 

dielectric barrier discharges, is provided. After that, the generation of a homogeneous DBD at 

atmospheric pressure is discussed, including “glow discharge” and “Townsend discharge”. Then, the 

mechanisms allowing the generation of a Townsend discharge at atmospheric pressure are 

presented, especially for the necessity of a memory effect between two successive discharges. Finally, 

the main purposes of the present work are described in this context. 

I. Generation of homogeneous discharges at atmospheric pressure and breakdown 

mechanisms 

Plasma is the fourth state of matter, which refers to a quasi-neutral partially or totally ionized gas, 

primarily composed of electrons, ions, photons, as well as atoms and molecules in their fundamental 

or excited states with a net neutral charge.  

If the plasma is at thermodynamic equilibrium, a single temperature can be used to completely 

characterize the system (assuming that the density is known). This is typically the case for the so-

called “hot plasmas” encountered in fusion and astrophysics where the ionization degree approaches 

unity. Laboratory plasmas have typically low ionization degrees and two different kinds of plasmas 

can be distinguished. Usually, at atmospheric pressure, the high electron-neutral collision frequency 

can result in so-called thermal plasmas where the electron temperature is close to the neutral 

temperature. This is typically the case of arc discharges. These plasmas are generally close to the 

local thermodynamic equilibrium (see e.g. [1] for more details). It implies that the gas temperature is 

generally high which can induce several drawbacks regarding specific industrial applications [2]. On 

the opposite, non-thermal plasmas, often called “cold plasmas”, are out of thermodynamic 

equilibrium. The kinetic temperature of heavy species (ions, atoms, molecules…) is lower than the 

electron temperature, and remains sufficiently low to make non-thermal plasmas suitable for 

industrial applications. This kind of plasma is generally obtained in low-pressure conditions. 

Nevertheless, it is possible to obtain non-thermal plasmas at elevated pressure (e.g. atmospheric 

pressure) using appropriate conditions and setup as illustrated in section II and III.  

In non-thermal plasma, most of the electrical input energy is generally spent to the production of 

energetic electrons rather than in gas heating. These energetic electrons can, in turn, produce a large 

number of excited species, free radicals, ions and photons (through excitation and recombination) 

allowing a large variety of plasma applications such as polymer surface treatment, food 

decontamination, pollution control applications, etc. [3–9]. In addition, cold plasma technologies 

have other advantages like high excitation selectivity, high efficiency, low pollution, relatively low 

maintenance requirements, etc. In this frame, non-thermal plasmas generated at atmospheric 

pressure are promising. Indeed, the manufacturing costs can be drastically reduced since there is 

potentially no need to use a vacuum system. Depending on the operating conditions, atmospheric 

cold plasmas can exhibit a filamentary or a homogeneous structure. Filamentary discharges are 

adapted and suitable for many applications [4,10]. Nevertheless, homogeneous discharges are more 

suitable for specific applications such as thin film coatings [3,5,6,11–13]. Consequently, the 

understanding of the mechanisms involved in the obtaining of a homogeneous discharge at 

atmospheric pressure is of primary importance and constitutes the purpose of the present work.  
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To go further, it is necessary to understand the different breakdown mechanisms occurring in 

electrical discharges, which is the aim of the following section. 

I.1. Two main kinds of breakdown mechanism 

Electrical breakdown occurs in a gas when the applied voltage across the gas gap exceeds the 

breakdown voltage. The initially insulating gas then becomes conducting. There are two main 

mechanisms of breakdown whose occurrence mainly depends on the product 𝑝 × 𝑑 where 𝑝 is the 

gas pressure and 𝑑 represents the gas gap value. For relatively low values of 𝑝 × 𝑑, a Townsend 

Breakdown is generally observed whereas for higher values of 𝑝 × 𝑑 (typically above few Torr.cm) a 

streamer breakdown occurs. These two mechanisms are described below [14]. 

I.1.1. Townsend breakdown 

Figure 1-1 shows the mechanism of Townsend breakdown, where the discharge is ignited by a DC 

power supply between two plane electrodes separated by a gap 𝑑. The resulting homogeneous 

electric field is equal to 𝑉 𝑑⁄ . Let us consider an initial condition for which some primary electrons 

present near the cathode are accelerated in the electric field towards the anode. If they have a 

sufficient kinetic energy these accelerated electrons can ionize the gas, then producing more and 

more electrons. The multiplication of electrons along the electric field can be expressed by: 

𝑑𝑛𝑒

𝑑𝑥
= 𝛼𝑛𝑒        (1.1) 

where 𝛼 is the Townsend ionization coefficient, then the total number of electrons should be: 

𝑛𝑒 = 𝑛𝑒0 exp(𝛼𝑑) = 𝑛𝑒0 exp (
𝛼

𝑝
𝑝𝑑)    (1.2) 

where 𝑛𝑒0 is the initial primary density of electron in front of the cathode, and  

𝛼

𝑝
= 𝐴𝑒𝑥𝑝 (−

𝐵𝑝

𝐸
)   (1.3) 

where E is the electric field, A and B are constants related to nature of the gas. 

 
 

Figure 1-1 Townsend breakdown mechanism (adapted from[2]) 
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Thus, in the gap, each electron would create [exp(𝛼𝑑) − 1] positive ions, if we consider that there 

are no losses of electrons due to recombination or attachment onto electronegative species. Then, 

all these positive ions would arrive at the cathode emitting 𝛾 (exp(𝛼𝑑) − 1) electrons by secondary 

electron emission. Here, 𝛾 is the secondary emission coefficient. 

Hence, to sustain the discharge, positive ions produced during the electron avalanche must generate 

at least one electron during the bombardment of the cathode to start a new avalanche, which means: 

𝛾 (exp(𝛼𝑑) − 1) = 1   (1.4) 

Finally, this self-sustained condition is related to the cathode material, the value of 𝑝 × 𝑑 and of 𝐸 𝑝⁄  

i.e. the gas pressure, the gap distance and the electric field. The discharge ignited by Townsend 

breakdown has a uniform appearance. 

I.1.2. Streamer breakdown 

For higher values of 𝑝 × 𝑑, usually higher than a few dozens of Torr.cm, the breakdown develops 

much faster than Townsend breakdown [15]: this is the streamer breakdown. This very fast 

mechanism arises when the multiplication factor exp(𝛼𝑑) exceeds 108. In these conditions, the ion 

and electron densities resulting from a single avalanche are very high. Moreover, this phenomenon 

arises at a very small timescale in such a way that only electrons can move towards the anode 

whereas ions are immobile. This induces space charge electric fields with a magnitude comparable to 

the applied electric field one.  

There exist two different kinds of streamers: the cathode directed streamer (CDS) also called positive 

streamer and the anode directed streamer (ADS) also known as negative streamer. In the case of a 

CDS (see Figure 1-2(1)), the ionizing wave moves in the opposite direction of electrons. For a CDS in 

air, photons originating from the radiative decay of excited species in the primary avalanche create 

seed electrons between the primary avalanche and the cathode. These seeds electrons then induce 

the secondary avalanches, which rapidly converge towards the positive space charge of the primary 

avalanche. Then, new photons are emitted and the process starts again. The photo-ionization 

process due to the ionization of O2 molecules dominates the creation of seed electrons for a CDS in 

air to propagate. Further investigations found that, even in pure nitrogen with very low addition of 

oxygen (<1ppm), the propagation can be obtained with the same velocity as that in air. The 

background ionization was then proposed to create free electrons[16,17]. In conclusion, to realize 

the propagation, the creation of seed electrons is necessary to induce the following avalanche. 

 

Figure 1-2 Breakdown mechanism of a streamer breakdown. Propagation of (1) CDS (2) ADS [14] 

(1) CDS (2) ADS 
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In the case of an ADS (see Figure 1-2(c)), the streamer propagates in the same direction as the 

electron motion i.e. towards the anode. In this case, the photo-ionization creates seed electrons 

between the primary avalanche and the anode, which in turn induce secondary avalanches. The 

photo-ionization phenomenon is not a necessary condition for the negative streamer to propagate 

but it contributes to accelerating its propagation. 

Streamer breakdown leads to the appearance of conducting channels in which the heating of the gas 

can be important. In the case of metallic electrodes, an arc can develop leading to thermal plasma. If 

electrodes are covered by a dielectric material, the charge accumulation onto the dielectrics induces 

a drop of the gas gap voltage leading to the disappearance of the filament, preventing the transition 

to spark. 

II. Generation of a non-thermal plasma at atmospheric pressure 

According to the previous discussion, the high value of the product 𝑝 × 𝑑 for atmospheric pressure 

discharges can easily lead to streamer breakdown and then to the formation of an arc. To avoid the 

transition to a thermal plasma in such conditions, different approaches can be used. In the following, 

three different strategies are briefly presented.   

II.1. Decreasing the value of 𝒑 × 𝒅 

The basic principle of micro-discharges is to reduce the characteristic gas gap in order to recover a 

low value of the product 𝑝 × 𝑑 for high-pressure conditions.  An example of such discharge is the 

Micro Hollow cathode discharge (MHCD) [18]. It is generated in a metal/dielectric/metal sandwich 

structure into which a hole is drilled with a typical gas gap ranging from dozens of µm to hundreds of 

µm. In this configuration, it is possible to obtain different stable regimes depending on the discharge 

current such as Townsend-like discharges, glow discharges or constricted arcing for higher currents 

[19]. 

II.2. Generation of a corona discharge 

The corona discharge is usually ignited near sharp points, generally a pin or a thin wire (one electrode) 

where the electric field is enhanced. Ionization, excitation, and chemical processes mainly occur near 

the sharp electrode where the electric field is high, defining the active volume of the discharge [2]. 

The discharge normally does not extend to the counter electrode. The electric current necessary to 

close the circuit is due to the drift of ions towards the counter electrode in the low electric field. 

According to the polarity of the electrode where the high electric field is located, corona discharges 

can be divided into negative corona discharges (i.e. the high electric field is located near the cathode) 

and positive corona discharges (i.e. the high electric field is located near the anode). The ignition 

mechanisms are actually similar to the Townsend breakdown and positive streamer breakdown 

respectively [2]. 

The power of continuous corona discharges is relatively weak which limits many applications. If we 

increase the amplitude of the high voltage, the transition from corona discharges to sparks or even 

arcs would occur. To prevent this transition, pulsed corona discharges can be used. Indeed, voltage 

pulses in the nanosecond range can be short enough to prevent the transition from streamers to 

sparks and then to maintain a non-thermal plasma. These discharges are used in many practical 

applications such as generation of ozone, water depollution, removal of NOx and SO2 from flue gas, 

etc.[20–24]. 
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II.3. Dielectric barrier discharges 

Besides the narrowing of the gas gap distance and the use of a pulsed corona discharge, another 

approach to prevent the transition to an arc is to add a dielectric barrier between two electrodes. 

This kind of discharge is called dielectric barrier discharge (DBD). 

Figure 1-3 illustrates typical volume DBD configurations. The planar configuration is mainly used for 

surface treatment whereas the cylindrical configuration is suitable for gas treatment and UV 

generation. Other types of DBDs exist such as surface DBD (SDBD) and coplanar discharge, but they 

are beyond the scope of this thesis. 

 

Figure 1-3 Typical DBD configurations [25] 

DBDs were first investigated by Siemens in 1857 and used for ozone generation [26]. First 

observations relate the appearance of amounts of micro-discharges distributed randomly along the 

electrodes, which could ignite and extinguish independently. The first photographs of these micro-

discharges were obtained by K.Buss [27] in 1932. More investigations on the physical nature of DBDs 

were made by Klemenc [28] in 1937. Figure 1-4 shows a simplified diagram of a single micro-

discharge in a DBD with two dielectrics at each electrode and its equivalent circuit. When the 

streamer breakdown occurs, the discharge current increases dramatically and charges accumulate 

onto the dielectric surfaces. As a consequence, the electric filed applied on the gas would decrease 

which induces the extinction of the discharge instead of its transition to an arc. 

 

Figure 1-4 Diagram of a single micro-discharge and the equivalent circuit [29] 

As explained in section I, homogeneous discharges are suitable for many applications, especially for 

surface treatment and thin film deposition. The next section is dedicated to the generation of 

homogeneous DBDs at atmospheric pressure. 
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III. Generation of a homogeneous DBD at atmospheric pressure 

In this section, we present the different homogeneous discharges observed in a DBD configuration. 

Two main kinds of homogeneous DBDs are presented including their electrical and optical 

characteristics, and the mechanisms involved in their generation. Then, we focus on the atmospheric 

pressure Townsend discharge (APTD) and a review of the current knowledge about the memory 

effect allowing obtaining them is provided. Finally, the main purpose of the present work is 

presented. 

III.1. Different kind of homogenous DBD 

The first homogeneous DBD was observed in 1969 by R. Bartnikas in helium [30,31] but the first clear 

evidence of such discharge regime was brought by the group of S. Okazaki in 1988 [32] and was 

called “Atmospheric Pressure Glow Discharge” (APGD). Then, by inserting a fine wire mesh between 

the electrode and the dielectric [33], this group succeed in generating a homogeneous discharge in 

different gas atmospheres, such as air, nitrogen, argon, and oxygen. After that, more and more 

teams started to contribute to the understanding of the mechanisms involved in the formation of 

homogeneous DBD, especially, the team of F.Massine [34,35] and J.R.Roth [36,37]. In parallel to 

these works, industrial applications were developed taking advantage of their uniform feature for 

surface treatment and thin film coating [3,5,6,11–13].  

APGD takes its name from its similarities with the well-known glow discharge at low pressure. It is 

obtained for the sufficiently high value of the discharge current. The ion density in this regime is high 

enough to allow the formation of a cathode fall region characterized by a high space charge electric 

field. 

In nitrogen-based mixtures, another discharge regime was obtained and called “Atmospheric 

Pressure Townsend Discharge” (APTD) [38]. In this regime, the current is lower than in APGD and the 

small charged particles density is not sufficient to efficiently affect the electric field. Due to the 

higher mobility of electrons compared to ions, the electron density is lower than the ion density. 

Consequently, there is no plasma zone in an APTD. 

Both APGD and APTD result from a Townsend breakdown. To obtain a Townsend breakdown at this 

high value of 𝑝 × 𝑑, it must occur for a low electric field value to avoid streamers formation. This is 

possible if a small amount of seed electrons is present just before the breakdown.  

It is interesting to note that homogenous glow discharges can also be obtained starting from 
streamer breakdown [39], but only in the presence of seed electrons. In this case, seed electrons are 
responsible for an increase of the number of primary avalanches and if their density is high enough, it 
limits the space charge electric field, which becomes uniform thus avoiding the convergence of every 
avalanche into a single one. This is the streamer coupling breakdown.  

The above discussion shows that the presence of seed electrons is a necessary condition to obtain a 
uniform DBD. These seeds electrons can be provided by an external source such as photo-ionization 
by a laser [39]. In this case it is called pre-ionization. For periodic discharges, seed electrons can be 
produced by different mechanisms resulting from the previous discharge. In this case, it is called 
memory effect. 

In the next sections, we describe especially the investigation history in our group on the basic 
features of APGD and APTD together with the different mechanisms involved in the memory effect 
which allows a Townsend breakdown to occur.  
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III.2. Atmospheric pressure glow discharge (APGD) 

III.2.1. Basic features of APGD 

The APGD was first obtained in helium as a homogeneous discharge [34]. Figure 1-5(a) shows a 

typical oscillogram of the discharge current and applied voltage of an APGD obtained in helium and 

(b) a similar oscillogram of a filamentary discharge for comparison. The discharge current is 

composed of a single pulse suggesting that the discharge is homogenous. On the contrary, the 

filamentary discharge exhibits several current pulses each one corresponding to one micro-discharge.  

 

Figure 1-5 Current-voltage oscillogram of (a)a homogeneous DBD [40] (b) a filamentary DBD [41] 

Figure 1-6(a) shows a picture of the inter-electrode space of an APGD at the maximum of the 

discharge current. One can clearly see different bright and dark zones corresponding to the typical 

glow discharge structure. The brighter zone near the cathode corresponds to the cathode fall and to 

the negative glow, then a dark zone is observed corresponding to the Faraday dark space whereas 

the bright zone near the anode corresponds to the positive column. This discharge structure can also 

be observed on the numerical results presented in Figure 1-6(b). The electric field is maximum in the 

cathode fall, becomes close to zero in the negative glow and keeps a constant and small value in the 

positive column. The ion density increases dramatically near the cathode to form the cathode fall 

whereas electrons are efficiently repelled. In the rest of the discharge, electron and ion density are 

nearly equal defining a quasi-neutral plasma. 

(a) 
(b) 
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Figure 1-6 (a) Photograph of inter-electrode of an APGD  in helium [42] (b) Spatial evolution of the electric field, the ion, and 
the electron densities of an APGD in helium at the time when the discharge current is maximum [42] 

III.2.2. Memory effect in APGD 

It is now well accepted that the memory effect in APGD is related to Penning ionization process  [38]. 

Penning ionization refers to the interaction between an excited-state atom and a target molecule, 

resulting in its ionization. Let us consider as an example the case of an APGD in helium in presence of 

some impurities such as nitrogen molecules. Due to their long lifetime, metastable helium atoms 

He(23S) can remain in the gas phase between two successive discharges. The energy of these 

metastable atoms (19.8 eV) is higher than the ionization potential of N2 (15.57 eV), a Penning 

ionization process can occur. It leads to the production of seed electrons allowing a Townsend 

breakdown to occur.  

This process is not restricted to helium and APGD can be generated in other noble gases such as 

neon or argon whose respective metastable states have energies of 16.6 and 11.5 eV, in the presence 

of molecular impurities with lower ionization thresholds (e.g. NH3 for argon and N2 for neon).  

III.3. Atmospheric pressure Townsend discharge (APTD) 

III.3.1. Basic features of APTD 

Up to now, APTD has been obtained in nitrogen, oxygen, and helium, and in air at atmospheric 

pressure [38,43–45]. In this work, we will mainly focus on APTD generated in the nitrogen-based 

atmosphere. Figure 1-7(a) shows an oscillogram of such kind of discharge. The discharge current 

presents only one current pulse for each half period of the applied voltage, typical of homogenous 

discharges. The homogeneity of the discharge is confirmed on the picture presented in Figure 1-7(b), 

which represents a short time exposure photograph of the inter-electrode space at the maximum of 

the discharge current. One can clearly see a bright zone located near the anode, which is 

characteristic of the Townsend discharges. To understand this feature, Figure 1-8 represents some 

results of a fluid simulation of an APTD discharge in nitrogen at the maximum discharge current [46], 

namely, the reduced electric field, the main ion density (N4
+), the electron density and the density of 

(a) 

(b) 
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the nitrogen metastable molecule N2(A) which is the dominant one. The electron density increases 

exponentially from the cathode to the anode, as predicted by equations (1.1) and (1.2), but remains 

relatively low with a maximum value about 108 cm-3. The density of N4
+ increases from the anode to 

the cathode up to 2 1010 cm-3, but there is no ion accumulation near the cathode as in APGD. Thus, 

there is no cathode fall formation and the electric field only slightly varies along the gas gap. 

Consequently, the maximum excitation rate occurs near the anode where the electron density is 

maximum explaining the bright zone observed on the photograph presented in Figure 1-7(b). Finally, 

it is interesting to note that the density of N2(A) metastable molecules can reach very high values, the 

maximum density on the order of 1013 cm-3 being obtained on the anode side. We will come back to 

this important point in the following section.  

 

Figure 1-7 (a)Current-voltage oscillogram of a APTD [47](b) Photograph of inter-electrode space of an APTD with a time 
exposure of 10 ns [42].  

 

Figure 1-8 Simulations results showing the spatial evolution of density of ions and electrons, the reduced electrical field 
calculated at the maximum of current in an APTD generated in high purity nitrogen [46] 

In section III.1, we discussed the necessary presence of seed electrons to obtain a Townsend 

breakdown. In the next section, a review of the different mechanisms able to produce seed electrons 

between two successive discharges is presented.  

(a) 

(b) 
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III.3.2. Memory effect in APTD 

Figure 1-9 shows the temporal evolution of the applied voltage and discharge current during the first 

periods of an APTD generated in high purity nitrogen. One can see that the first two discharges are 

filamentary as indicated by a large number of micro-discharges visible on the discharge current. On 

the contrary, the third discharge and the following ones are homogeneous with one single current 

pulse per half-period of the applied voltage. This clearly indicates the building up of a memory effect 

during the first discharge period. 

 

Figure 1-9 Electrical characteristics of the first discharge periods of an APTD in nitrogen [38] 

A marker of this memory effect can be seen on the discharge current of Figure 1-10 where the 

permanent regime is reached. When the gas gap voltage approaches zero, a discharge current is 

present despite the fact that the discharge is extinguished. Moreover, when the gas gap polarity 

reverses, the sign of the discharge current rapidly changes suggesting that electrons, which have a 

high mobility compared to ions, contribute significantly to this current. Consequently, this current 

jump is related to the presence of seed electrons [48] and its magnitude for a given condition is 

related to the strength of the memory effect. Thus, the determination of the current jump allows 

quantifying the memory effect.   

A definition of the current jump is proposed in [48]. It can be defined as the mean value of the 

absolute value of the discharge current when the discharge is turned off, divided by the electrode 

surface (see equation (1.5)). The analysis interval ∆𝑡 is defined by the time between the zero passage 

of the discharge current 𝑡0 and the moment when the time derivative of the discharge current is 

equal to zero. 

𝐼𝑗𝑢𝑚𝑝 =
1

2×∆𝑡×𝑠𝑢𝑟𝑓𝑎𝑐𝑒
∫ |𝐼𝑑(𝑡)|𝑑𝑡

𝑡0+∆𝑡

𝑡0−∆𝑡
    (1.5) 
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Figure 1-10 Oscillogram of an APTD in nitrogen with 25 ppm O2 [48]  

Many studies were devoted to elucidating the mechanisms involved in the production of these seed 

electrons between two successive discharges in different experimental conditions. A brief review of 

these studies is provided in the following. 

III.3.2.1. Role of the N2(A) metastable molecules 

Numerous works performed by Massines et al. [38,49] showed that a significant amount of N2(A) 

metastable molecules is necessary to obtain a Townsend discharge in nitrogen. As shown in Figure 

1-8, the density of N2(A) reaches its maximum value near the anode where the electron density is 

higher. Indeed, the formation of N2(A) results from electron excitation of N2 molecules [50], either 

directly during the reaction e− + N2 → e− + N2(A) or during the deactivation of N2(B) state through 

the reaction N2(B) + N2 → N2(A) + N2 where the production of N2(B) also involves electron excitation. 

When the polarity of the gas gap voltage reverses i.e. when the anode becomes cathode, the latter is 

submitted to a significant N2(A) flux by diffusion inducing secondary emission of electrons [51]. This 

continuous production of seed electrons results in a measurable current corresponding to the 

current jump. As soon as the voltage becomes sufficient, avalanches develop starting from these 

seed electrons and the discharge current rises exponentially. This is the breakdown voltage, which 

diminishes when the amount of seed electrons increases.  

Obviously this process is highly related to the secondary emission coefficient . The latter can be 

greatly enhanced by the electron accumulation onto the dielectric surface during the previous 

discharge i.e. when the electrode is the anode. This mechanism is in good agreement with the 

numerical model developed by Khamphan et al. [52]. Indeed, the author showed that a necessary 

condition to obtain a good description of the discharge behavior was to consider a variable  

coefficient whose value depends on the charge accumulated onto the dielectrics (see Figure 1-11). 

Current jump 
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Figure 1-11 The variation of secondary emission coefficient during the whole period of the conduction current [53] 

III.3.2.2. Spontaneous electron desorption  

The spontaneous electron desorption mechanism was proposed by Golubovskii et al. [54] to explain 

the production of seed electrons leading to the generation of APTD. Nevertheless, this hypothesis 

was excluded later [55] because it was not able to explain the homogeneous to filamentary transition 

observed when a significant amount of efficient quenchers of N2(A) such as NH3 or O2 molecules are 

added into N2. On the contrary, these experimental observations reinforced the hypothesis of an 

important role played by N2(A).   

However, more recent experimental works during which homogeneous Townsend discharges were 

obtained in air or in flowing nitrogen at very low frequency (dozens of Hz), bring a renewed interest 

on this mechanism [43–45]. In these experiments, the density of N2(A) metastable molecules is very 

low or even zero either because of its very high quenching rate by oxygen molecules and their 

dissociation products, or due to the very long off-time between two successive discharges during 

which the whole gaseous medium is renewed. In this case, it is clear that only mechanisms arising at 

the dielectric surfaces can be responsible for the released of seed electrons making spontaneous 

desorption the most probable mechanism. The very small number of seed electrons released by this 

mechanism probably explains why APTDs can only be obtained in air for very low frequency i.e. for a 

smooth rising slope of the applied voltage.  

III.3.2.3. Gas phase mechanisms in N2 with small admixture of oxidizing gases 

1) Highlight of the special discharge behavior of an APTD generated in N2 with small addition of 

oxidizing gases 

We saw previously that in high purity nitrogen, the secondary electron emission induced by N2(A) can 

play a significant role in the memory effect. In the previous section, we explained that the generation 

of APTD in air only involves surface mechanism such as the spontaneous desorption of electrons. 

Nevertheless, the aforementioned mechanisms are unable to explain the experimental behavior 

observed when a small amount of oxidizing gases is added to nitrogen [48,55,56]. 
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Figure 1-12(a) represents the temporal evolution of the discharge current for an APTD in high purity 

N2 and in N2 with an addition of 50 ppm of O2, for the same applied voltage. If one compares the case 

N2+50 ppm O2 to the high purity nitrogen case, one can see that: the discharge ignition occurs earlier, 

the current jump is higher and the amplitude of the discharge current is higher suggesting a higher 

discharge power. Nevertheless, if the amount of injected oxygen is too high, the obtained discharge 

becomes filamentary as indicated on Figure 1-12(b) which represents the discharge current for a 

mixture of N2 with 500 ppm of O2 for the same applied voltage. These observations suggest that a 

mechanism arising in the gas phase enhances the memory effect for small oxygen addition. 

 

Figure 1-12 Comparison of the discharge current for the same condition (Va=12 kVpp, f=2 kHz) in (a) high purity nitrogen and 
N2+50 ppm O2 and (b) N2+500 ppm O2 [56] 

To go further in the investigation of this phenomenon, many optical and electrical measurements 

were performed in our group. The principle of these measurements is described in the following. 

Then, a small review of the main results obtained in these studies and the corresponding discussions 

are presented. 

2) Investigations on the explanation of this phenomenon 

a) Description of the optical emission spectroscopy and electrical measurements 

Optical emission spectroscopy (OES) can bring information regarding the relative density of different 

species of interest. A typical spectrum of APTD in high purity nitrogen is provided in Figure 1-13(a) 

and a magnification of the spectrum in the range 220-290 nm is provided in Figure 1-13(b). Several 

emission bands can be identified on this spectrum such as the N2 second positive system (N2-SPS) and 

Hermann Infrared system (N2-HIR). An interesting point is that the spectrum also exhibits the 

emission bands of oxidizing species such as the NO system or the O(1S)-N2 green band, despite the 

high purity of the nitrogen gas used, indicating that the presence of oxidizing species is unavoidable. 

A possible explanation is that oxygen comes from the interaction between the discharge and the 

alumina plates used as dielectrics.  

(a) (b) 
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Figure 1-13 (a) Optical emission spectrum of APTD in high purity nitrogen (b) magnification of NO(γ) system [48] 

The emission intensity of these bands can be used to estimate the relative densities of the different 

species involved in the formation of the corresponding excited states [48,55,56]. Table 1-1 

summarizes the mechanisms leading to the formation of the different excited states and the 

relations between the emission intensities and the relative densities.    

Table 1-1 Summary of the mechanisms involved in the formation of the excited emitting species 

Emission 
bands 

Mechanisms for the production of the excited state 

N2-HIR N2(A) + N2(A) → N2(C”5Πu) + N2 
NO(γ) NO(X) + N2(A) → NO(A) + N2(X) 

ON2* 
O( P3 ) + N2(A) → O( S1 ) + N2 

O( S1 ) + 2N2 → O( S1 )N2 + N2 

 

To study the evolution of the electrical characteristics of the discharge along the gas flow, a 

dedicated setup was developed during the Ph.D. thesis of Mohamed Cherif Bouzidi [56]. The ground 

electrode was divided into 8 stripes in the gas flow direction, allowing local current measurements. A 

simplified schematic description of the device is shown in Figure 1-14(a). 

b) Experimental investigations in N2/NO mixtures 

A picture of the discharge in the mixture N2+30 ppm NO [48] is depicted in Figure 1-14(a). As can be 

seen, the color of the discharge dramatically changes along the gas flow from violet to green 

suggesting that significant changes in the gas composition take place along the gas flow. The spatial 

evolutions of the main emitted intensities between two successive discharges are depicted Figure 

1-14(b), together with the evolutions of the current jump and discharge surface power. One can see 

that the N2-HIR and O(1S)-N2 emissions increases from the entrance to the exit of the discharge 

indicating an increasing density of N2(A). On the contrary the NO system emission decreases which 

is necessary due to a decrease of the NO concentration since the N2(A) concentration increases. A 

probable explanation is that NO molecules are dissociated through the reaction N( S, P,24 D2 ) +

NO → N2 + O(3P,1 D), thus producing O(3P) atoms which contributes to the increase of the O1S-N2 

emission. The increase of the N2(A) density with the position can be attributed to both the increase 

of the discharge power and the decrease of its overall quenching rate since the NO dissociation 

products such as O(3P) or O2 are less efficient quenchers of N2(A) than NO. 
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 The current jump increases along the gas flow indicating an increase of the memory effect. It is 

interesting to note that it seems to be correlated with the evolution of the N2-HIR and O(1S)-N2 

emissions. 

 

Figure 1-14 (a) Visual aspect of 8 stripes of an APTD; (b) Correlation between the current jump, the surface power and 
N2-HIR, NOγ, O(1S)-N2 emissions as a function of the position of an APTD. Measurement conditions: f=2 kHz, HV=13 kVpp, 

gap=1 mm, concentration of NO = 30 ppm [48] 

c) Experimental investigations in N2/O2 mixtures 

Similar systematic studies were also performed in [48,56] for small oxygen addition into N2. An 

example of the results obtained for 50 ppm of O2 is presented in Figure 1-15(a).  

In this case, the intensities of the N2-HIR, O(1S)-N2 and NO emissions increase along the gas flow 

together with the current jump. The increase of the N2-HIR emission suggests an increase of the N2(A)  

density, which can be explained by an increase of the discharge power. In a Townsend discharge, 

O(3P) atoms are mainly produced during O2 dissociation through the reaction  

N2(A) + O2 → N2 + 2O(3P), rather than by electron impact dissociation because of the low electron 

density compared to the N2(A)  density. Consequently, the increase of the O(1S)-N2 emission probably 

results from both the increase of the N2(A) density and O(3P) density.  Finally, the NO molecules can 

be produced through the reactions: N2(A) + O(3P) → NO + N(2D) and N(2D) + O2 → O(3P) + NO. 

 

Figure 1-15 Correlation between the current jump, the surface power and N2-HIR, NOγ, O(1S)-N2 emissions as a function of (a) 
position of discharge with an addition of oxygen of 50 ppm; (b) concentration of O2 at the gas output on the 8th zone. 

Measurement conditions: f=3 kHz, HV=12 kVpp, gap=1 mm.[48] 

(a) (b) 

(a) (b) 
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Thus, the increase of the NO emission intensity is related to the increase of the N2(A) and NO 

densities. Note that, as for the case of NO addition into N2, the spatial evolution of the current jump 

is strongly correlated to the evolution of the N2-HIR and O(1S)-N2 green band emission intensities. To 

push forward the investigation of these correlations, systematic measurements were performed for 

different oxygen concentrations. The corresponding results are presented in Figure 1-15(b). Some 

interesting observations can be made: 

- the intensity of the N2-HIR emission continuously decreases with the injection of O2 

indicating a decreasing N2(A) density between two successive discharges which can be 

explained by the increase of the quenching rate of N2(A) by oxidizing species. The behavior of 

the current jump and discharge power (described below) is quite different suggesting that 

the secondary electron emission induced by N2(A)  cannot be the only mechanism 

responsible for the memory effect.  

- Up to 50 ppm of O2, both the emission intensities of O(1S)-N2 and NO increases indicating an 

increase of the O(3P) and NO densities since the N2(A)  density decreases. The surface power 

and current jump also increase suggesting an enhanced memory effect.  

- For higher oxygen concentrations, the emission intensities of O(1S)-N2 and NO decrease for 

increasing oxygen concentrations. It can be explained by the decrease of the N2(A) density 

and/or by a decrease of the O(3P) or NO density respectively. Note that the current jump and 

the surface power also decrease.  

These measurements show that the emissions of O(1S)-N2 and N2-HIR are strongly correlated to the 

evolution of the current jump and discharge power. Moreover, this behavior is observed in N2/O2 and 

in N2/NO mixtures. It suggests that O(3P) atoms and N2(A) are involved in the memory effect. The 

mechanism responsible for this phenomenon is likely to occur in the gas phase. A possible candidate 

able to explain the observed behavior is the associative ionization reaction between N(2P) metastable 

atoms and O(3P) atoms [57]: 

N( P2 ) + O( P3 ) → NO+ + e−      (R 1-1) 

where N(2P) atoms are produced through excitation of N(4S) atoms by N2(A) molecules:  

N2(A) + N( S4 ) → N2(X) + N( P2 )     (R 1-2) 

The addition of a small amount of oxidizing gases brings O(3P) atoms in the discharge volume, which 

could promote the rate of the associative ionization reaction thus increasing the memory effect. 

Above a given concentration of oxidizing species, the strong quenching of N2(A) should result in a 

decrease of the associative ionization reaction thus decreasing the memory effect.  

d) Aim of the study 

The aim of the present work is to check the consistency of the previous hypothesis i.e. is the 

associative ionization reaction N( P2 ) + O( P3 ) → NO+ + e− responsible for the increase of the 

memory effect in APTD when a small amount of oxidizing gas is added to N2? To answer this question, 

it is necessary to determine the density of the main species involved in this reaction.  

The density of N2(A) metastable molecules was already determined by Dilecce et al. [58] in very 

similar conditions (APTD in N2 with ppm of O2). They found a maximum density during the discharge 

around 1013 cm-3 with a corresponding quenching rate in the range 3 10-3 – 10-4 s-1 for oxygen 

concentration below 400 ppm.  
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The density of N(4S) and O(3P) can be determined using two photon laser induced fluorescence (TALIF) 
measurements. Then, knowing the density of N2(A), it is possible to estimate the production rate of 
N(2P) atoms due to reaction (R 1-2). To get an accurate estimation of the N(2P) atoms density, it is 
also necessary to estimate its quenching rate, which in turn requires the knowledge of the density of 
the main responsible species such as O2, O(3P) and NO. The density of NO molecules can be obtained 
from laser induced fluorescence measurements (LIF). Such measurements have been performed in 
the group during the Ph.D thesis of Et-touhami Es-Sebbar [59]. For this purpose, a dedicated 
experimental setup was developed and measurements were performed for a wide range of 
experimental conditions in N2 [60] and in the mixtures N2/O2 [61] and N2/N2O [61]. The measured 
N(4S) density was about few 1014 cm-3 in pure nitrogen and decreases when oxidizing gas was injected 
down to few 1013 cm-3. The O(3P) density was estimated to be within the range 1 − 3 × 1014cm−3. NO 
densities as high as 1015cm-3 were determined by LIF, which is extremely high. In N2/O2, the 
corresponding conversion efficiency was estimated around 40% and can reach up to 90% in the 
mixture N2/N2O. With this NO density, the metastable N2(A) would be destructed very efficiently and 
as a consequence one should not observe the N2-HIR emissions, in contradiction which is presented 
on Figure 1-15. Thus, such very high concentrations are poorly probable and need to be confirmed by 
other measurements. Moreover, the dielectric plates used for the DBD cell were made of quartz 
whereas other investigations [48,56] were performed with alumina making hazardous the 
comparison. Indeed, it can have potential consequences since surfaces phenomena related to the 
memory effect can occur and since the dielectric surfaces are suspected to interact with the 
discharge leading to the injection of oxidizing species in the discharge volume as explained above.  

In this work, we present new measurements of N(4S), O(3P) and NO using the TALIF and LIF technique. 
For this purpose, the experimental device was improved. The investigation of the main mechanisms 
responsible for the production and destruction of these species is performed using a 0D model 
developed in the group and briefly presented in the appendix. The measured densities are then used 
as input in a simple model to estimate the density of N(2P) atoms following the aforementioned 
procedure. Then, on the basis of the obtained results, the current jump due to associative ionization 
reactions is estimated and compared to experimental measurements.  
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Chapter 2. Experimental set-up 

This chapter describes in detail the experimental set-up used to measure the absolute density of 

N (2p3 4S3/2), O (2p4 3PJ) and NO(X 2), and the method used to determine the electrical 

characteristics of the Townsend discharge from electrical measurements.  

First, the plasma vessel is described, including the discharge cell and the power supply. Then, we 

present the method used to determine the electrical characteristics of the discharge. The principle of 

the laser induced fluorescence diagnostic is then presented and the calibration procedure is detailed. 

Finally, we describe the system used for laser-induced fluorescence and we detail the measurement 

procedure.  

I. Plasma vessel and pumping system 

The plasma vessel is a vertical metallic cylinder equipped with 3 large Brewster angle observation 

windows dedicated to LIF/TALIF measurements, the volume of the plasma vessel is about 65L.  

 

Figure 2-1 (a) General schema of the plasma vessel and pumping system; (b) side view 

Figure 2-1 shows the general configuration of the plasma vessel and pumping system. The dielectric 

barrier discharge apparatus (discharge cell) is positioned at the center of the vessel. Between each 

experiment, the pressure in the vessel is decreased down to 10-6 mbar using a primary pump (Agilent 

Technologies Rotary Vane Pumps DS602) coupled to a turbo molecular pump (Leybold TURBOVAC 

361). During experiments, the gas (provided by AirLiquid) is injected into the chamber up to 

atmospheric pressure using mass flow controllers (Bronkhorst Hi-TEC). A continuous gas injection is 

necessary during operation in order to maintain a well-controlled atmosphere and the working 

pressure is regulated at 1025 mbar using a diaphragm pump (KNF N035.3 AN.18) connected to a 

microvalve (MKS 0248AC-10000SV). 

I.1. Discharge cell and power supply 

I.1.1. Discharge cell 

Figure 2-2 shows the schema of the discharge cell used for the measurements and photographs are 

presented in Figure 2-3. The DBD has a plane-to-plane configuration, with a dielectric on each side. 

The electrodes are made of silver paint directly deposited on the dielectric plates, which consist of 

635µm thick alumina plates. The wires used to connect the electrodes to the electrical circuit are 

pasted using silver epoxy. Finally, the whole metallic surface of the electrodes is coated by a layer of 
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Araldite in order to avoid arcing. The electrodes have an 18 mm × 22 mm rectangular shape for a 

corresponding area of S=3.96 cm2.   

 

Figure 2-2 Schema of discharge cell and gas flow injection 

In order to obtain a laminar and uniform gas flow, a diffuser is placed between the gas inlet and the 

discharge cell. The gas flow is then guided through the discharge by 4 lateral glass slides. Dielectric 

plates are inserted onto two slits present on each slide in order to ensure a constant space d=2 mm 

between the dielectric plates. On each side, the two slides are separated by 2 mm in order to allow 

the laser beam to cross the discharge. 

In this work, many measurements are performed along the gas flow i.e. at different x positions from 

the entrance of the discharge. For this purpose, the whole discharge cell is moved while the laser 

beam is kept at the same position. More details on the fixation of the discharge cell during the 

movement could be found in Appendix 2. 

 

Figure 2-3 Photograph of the plasma reactor presented the discharge cell 

At this stage it is important to define 𝜏, the mean residence time of the gas along the discharge: 

𝜏 =
𝑥

𝑣
       (2.1) 

where 𝑥 is the position from the discharge entrance and 𝑣 is the mean gas flow velocity. This last 

parameter can be easily calculated using the following relation: 

𝑣 =
𝑄

𝑑×𝐿
       (2.2) 

where 𝑄 is the gas flow rate, 𝑑 is the distance between the two dielectrics (𝑑 =2 mm) and 𝐿 is the 

width of the dielectrics perpendicular to the gas flow i.e. 𝑑 × 𝐿 represents the area crossed by the 

gas flow. 
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I.1.2. Power supply 

Figure 2-4 shows the electrical circuit used in the experiment. First, a function generator is used to 

generate a reference sinusoidal signal. This signal is then amplified by a CREST AUDIO 4801 power 

amplifier. The output of the amplifier is connected in series to the primary winding of a transformer 

provided by the Montoux Company through a resistor Ra = 4 Ω. The secondary winding of the 

transformer is connected in series to the discharge electrodes through a resistor Rm=100  allowing 

the determination of the measured current 𝐼𝑚.   

 

Figure 2-4 Electrical circuit for the power supply of the discharge 

I.2. Determination of the electrical characteristics of the discharge 

I.2.1. Calculation of the gas gap voltage and the discharge current 

To characterize the electrical behavior of the discharge, it is necessary to know the discharge current 

Id, which corresponds to the conduction current i.e. to the current arising from the motion of the 

charged particles (ions and electrons) in the electric field, together with the gas gap voltage Vg, which 

corresponds to the voltage across the gas i.e. to the voltage seen by the charged particles in the 

discharge. These two parameters cannot be measured directly and have to be determined from the 

measurement of the applied voltage Va and the measured current Im using an electrical equivalent 

circuit of the discharge [62] which is presented in Figure 2-5. The applied voltage Va is measured 

using a high voltage probe (Tektronix P6015A) whereas Im is obtained from the measurement of the 

voltage across Rm. Both signals are captured by an oscilloscope (LeCroy WAVESURFER 64Xs-A) 

connected to a computer allowing a direct calculation of the discharge parameters in real time.   

 

Figure 2-5 Equivalent circuit diagram of discharge cell 

The electrical equivalent circuit is presented in Figure 2-5. 𝐶𝑠𝑑 represents the capacitance of the two 

alumina plates and 𝐶𝑔 represents the capacitance of the gaseous gap before the breakdown. The 

applied voltage 𝑉𝑎 can be separated into two components: 𝑉𝑔 and 𝑉𝑠𝑑, where 𝑉𝑔 is the voltage across 

the gas gap and 𝑉𝑠𝑑 is the voltage across the dielectrics. Accordingly, the gas gap voltage 𝑉𝑔 is given 

by:  
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𝑉𝑔(𝑡) =  𝑉𝑎(𝑡) − 𝑉𝑠𝑑(𝑡)     (2.3) 

𝑉𝑠𝑑(𝑡) can be calculated using the following equation: 

𝑉𝑠𝑑(𝑡) =  
1

𝐶𝑠𝑑
∫ 𝐼𝑚(𝑡)𝑑𝑡

𝑡0+𝑡

𝑡0
+ 𝑉𝑠𝑑(𝑡0)    (2.4) 

where the constant 𝑉𝑠𝑑(𝑡0) is adjusted to ensure that no charge accumulate onto the dielectrics over 

a period. 

The equivalent capacitance of the symmetric dielectrics 𝐶𝑠𝑑, is determined by the following equation: 

𝐶𝑠𝑑 =  
𝜀0𝜀𝑟(𝑑𝑖𝑒𝑙)𝑆

2𝑒
     (2.5) 

where 𝑆 is the electrode surface which is equal to the section of the discharge channel in the case of 

homogeneous discharge S=3.96 cm2, 𝑒 is the thickness of an alumina plate (635 µm). The relative 

dielectric constant 𝜀𝑟(𝑑𝑖𝑒𝑙) is 9.8 and the permittivity of vacuum 𝜀0 is 8.85 pF/m. Therefore 𝐶𝑠𝑑 has a 

typical value around 26.8 pF. Knowing the gas gap voltage 𝑉𝑔, it is possible to separate the discharge 

current 𝐼𝑑  from the current due to the capacitive effect of gas: 

𝐼𝑑(𝑡) = 𝐼𝑚(𝑡) − 𝐶𝑔
𝑑𝑉𝑔(𝑡)

𝑑𝑡
    (2.6) 

where 𝐶𝑔 is the equivalent capacitance of the gas before breakdown which is given by equation (2.7): 

𝐶𝑔 =  
𝜀0𝜀𝑟(𝑔𝑎𝑠)𝑆

𝑑
      (2.7) 

where 𝜀𝑟(𝑔𝑎𝑠) ≈ 1 is the relative permittivity of the gas and d=2 mm is the gas gap. Therefore, we 

obtain Cg=1.8 pF. 

Figure 2-6 shows a typical example of the measured current and applied voltage and the 

corresponding discharge current and gas gap voltage obtained using the aforementioned procedure.  

 

Figure 2-6 Example of electrical characteristics: applied voltage (𝑉𝑎), gas gap voltage (𝑉𝑔), measured current (𝐼𝑚) and 

discharge current (𝐼𝑑) in a Townsend discharge. Measurement conditions: HV=17.1 kVpp, f=2 kHz, P=0.9 W/cm2, flow 
rate=1.0 L/min, concentration of O2=0 ppm 

I.2.2. Definition and calculation of the discharge power and of the energy dissipated in the 

discharge 

The instantaneous dissipated discharge power, 𝑝(𝑡), can be calculated using the following expression: 
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𝑝(𝑡) = 𝐼𝑑(𝑡) × 𝑉𝑔(𝑡)     (2.8) 

The mean power dissipated in the discharge is the integration of instantaneous power during a 

period of the excitation voltage: 

𝑃 =
1

𝑇
∫ 𝑝

𝑇

0
(𝑡)𝑑𝑡      (2.9) 

It should be noted that during the experiments, what we used is the surface power density. And in 

the later chapters that show the experimental results, we take also the surface power density. 

𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑃/𝑆      (2.10) 

where 𝑆 is the electrode surface. 

Finally, we define the mean energy 𝐸 dissipated in the discharge at a given position 𝑥 from the 

entrance using equation (2.11). It represents the energy received by a small gas volume a carried out 

by the gas flow along the time. 

  𝐸 = 𝑃𝑣𝑜𝑙𝑢𝑚𝑒 × 𝜏 =
𝑃

𝑑×𝑆
×

𝑥×𝑑×𝐿

𝑄
     (2.11) 

where 𝑃𝑣𝑜𝑙𝑢𝑚𝑒represents the mean volumetric power dissipated in the discharge. 

Table 2-1 summarizes the main parameters used in the measurements, the characteristics of the gas 

and the mass flow controllers used for the injection of each gas.  

Table 2-1 Main experimental conditions, gas and mass flow controllers used in the measurements  

1.Main experimental conditions 

Electrode surface (cm2) 3.96 

Gas gap (mm) 2 

Gas flow velocity (L/min) 0.5-2 

Residence time (ms) 0-45(for the gas flow velocity of 1.0 L/min) 

Concentration of O2 (ppm) 0-200 

Discharge power (W/cm3) <6.0 

Pressure (mbar) 1025 

2. Gas used in the experiments 

Type of gas Purity of gas 

N2 99.9999% 

Air(N2/O2=80/20%) 99.999% 

Mixture of gas(N2/NO=99.9/0.1%) 99.999% 

Kr 99.998% 

Xe 99.998% 

Ar 99.9999% 

3. Mass flow controller used in the experiments 

Mass flow controller for Maximum flow Reference AirLiquid 

N2 10 L/min ALPHAGAZ 2 AZOTE SMART 

Air (used for the injection of O2) 1 mL/min ALPHAGAZ 1 AIR AMARTOP 

Kr/Xe/NO 
4.38/4.22/2.97 

mL/min 
OTO ST 29 (Mélange 

SAPHIR) 

Ar(used to mix with Xe) 10 L/min KR-N48(Gaz Pur GAZ RARES) 
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II. General considerations about laser induced fluorescence 

Before the description of the optical system, we present firstly an overview of the laser induced 

fluorescence diagnostic technique at one (LIF) or two (TALIF) photons. LIF/TALIF is an active 

spectroscopic method widely used to detect and quantify atomic or molecular species present in a 

gaseous medium (flames, plasmas…) or even in a liquid [63–67]. Using this technique in a gas 

discharge offers a mean to detect and quantify species, which do not emit radiations such as atoms 

or molecules in the ground state or in a metastable state. More details can be found in [58,68,69].  

We detail at first the general principle of the LIF/TALIF technique.  Then, we describe the calibration 

method used to determine the absolute densities from the measurements.  

II.1. Principle of laser induced fluorescence 

In this part, a brief presentation of the principle of LIF/TALIF is provided.  

II.1.1. Fluorescence spectroscopy with single-photon excitation (LIF) 

A LIF measurement begins with the excitation of an atom or a molecule in state 1> by resonant 

absorption of a laser photon into a higher state 3>. Subsequently, the excited species de-excite 

during a transition to a lower state 2> by emitting a photon: this is the fluorescence process. The 

detection of the fluorescence signal allows, in appropriate conditions, to get information about the 

population in state 1>. Figure 2-7 represents schematically this process.   

 

Figure 2-7 Photon excitation schema of principle of LIF 

In this study, LIF measurements are performed on NO molecules at atmospheric pressure and 

consequently other competing de-excitation processes are involved: quenching, vibrational energy 

transfer (VET) and rotational energy transfer (RET) [68]. They correspond to collisional processes 

during which the energy of the excited level populated by laser excitation is transferred during a 

collision to the collision partner. These processes can be of great importance especially in our 

conditions since measurements are performed at atmospheric pressure. In this description, we 

neglect other processes such as dissociation and ionization. Note that for sufficiently high laser 

intensity, the stimulated emission can play a significant role in the transition from level 3> to level 

1>. 

II.1.2. Fluorescence spectroscopy with two-photon excitation (TALIF) 

The excitation wavelength of light atoms is located in the VUV spectral range, which is not 

convenient from an experimental point of view. Indeed, laser sources in the VUV range are less 
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available than in the visible range but the most critical point is that oxygen molecules present in the 

air and possibly in the discharge efficiently absorb VUV radiations. To overcome this limitation, the 

excitation is realized by the simultaneous absorption of two photons in the UV range and the 

corresponding technique is called TALIF. Figure 2-8 depicts this principle. Since the two-photon 

excitation is less efficient than the single-photon excitation, it is necessary to focus the laser beam 

using a focusing lens, which increases the incoming flux of photons. 

 

Figure 2-8 Two-photon excitation schema of principle of TALIF 

II.2. Theoretical approach 

In this section, we use a basic approach of the LIF principle based on a “two-level system”.  For a sake 

of clarity, we use the same scheme as presented in Figure 2-7, so that the ground state corresponds 

to level 1> and the excited state to level 3>. Level 2> is not considered in the subsequent 

calculations but is used to recall the reader that the final level corresponding to the detected 

fluorescence can be different from the ground state. 

The intensity of LIF signal is directly proportional to the density n3 of the population in state 3> 

which is itself populated from state 1>: 

𝑆𝐿𝐼𝐹 ∝ 𝐴3−2𝑛3      (2.12) 

Where A3-2 is the Einstein transition probability for spontaneous emission |3>|2>. 

Consequently, one needs to establish the relationship between 𝑛1 and 𝑆𝐿𝐼𝐹 in order to deduce the 

density 𝑛1 of the population in state 1> from the measured LIF signal 𝑆𝐿𝐼𝐹 . It is thus necessary to 

solve the population balance equation for the level 3>.  

The population of level 3> is ruled by the following equation:  

𝑑𝑛3(𝑡)

𝑑𝑡
= (𝑛1 −

𝑔1

𝑔3
𝑛3) 𝜎𝐿𝐼𝐹 (

𝐼0(𝑡)

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
) − 𝑛3(𝑄3 + 𝐴3)    (2.13) 

                                                   1         2                                                3       4   

where  

- term 1 corresponds to the rise of 𝑛3 by laser excitation from level 1>; 

- term 2 corresponds to the stimulated emission from level 3> under laser irradiation; 

- terms 3 and 4 correspond to the decrease of 𝑛3 by collisional de-excitation and spontaneous 

emission respectively; 

- 𝑛1 is the ground-state population; 𝑔1 and 𝑔3 are the statistical weights of the levels |1> and 

|3> respectively; 𝐴3 is the sum of the spontaneous de-excitation probabilities of level |3> 
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towards all the lower levels; 𝑄3 = ∑ 𝑞𝑖𝑝𝑖𝑖  denotes the term of collisional depopulation of 

level|3>, where 𝑞𝑖 and 𝑝𝑖 are the quenching rate constant and the concentration of species 𝑖 

respectively; 𝐼0 is the laser irradiance; 𝜎𝐿𝐼𝐹 is the one-photon absorption cross section. It can 

be expressed using the following relation: 

𝜎𝐿𝐼𝐹 =
𝐵13𝑈𝜈

𝐼0
ℎ𝜈𝑙𝑎𝑠𝑒𝑟

     (2.14) 

where 𝑈𝜈  is the spectral density of laser energy and 𝐵13 is the Einstein coefficient for stimulated 

absorption from level 1> to level 3>. 

To simplify the resolution of equation (2.13), two limiting cases can be considered depending on the 

laser energy.  

II.2.1. Measurements at low laser energy 

For low laser intensity, the stimulated emission corresponding to term 2 in equation (2.13), can be 

neglected compared to spontaneous emission or collisional de-excitation. Moreover, the population 

of level |1> remains close to its equilibrium value during the measurement because it is not strongly 

depopulated: 𝑛1(𝑡) = 𝑛10. Thus equation (2.13) reduces to:    

𝑑𝑛3(𝑡)

𝑑𝑡
= 𝑛10𝜎𝐿𝐼𝐹 (

𝐼0(𝑡)

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
) − 𝑛3(𝑄3 + 𝐴3)                                          (2.15) 

To determine the exact solution 𝑛3(𝑡) of this equation, it is necessary to know precisely the temporal 
behavior of 𝐼0(𝑡). For this reason, many authors considered a simplified solution of this equation, 
assuming a stationary state, which implies that the laser excitation occurs on a time scale greater 
than all the other phenomena. This assumption is not easily verified since laser pulses have typical 
durations lower than 10 nanoseconds.    

Nevertheless, for all the measurements performed in the present work, the LIF signal is integrated 

over the time. Consequently, we are much more interested in the value of ∫ 𝑛3(𝑡)𝑑𝑡
∞

0
 rather than in 

the instantaneous value of 𝑛3(𝑡).  

It is thus possible to avoid the use of the stationary state assumption by integrating equation (2.15) 
over the whole time measurement, which results in the following relation: 

∫
𝑑𝑛3(𝑡)

𝑑𝑡

∞

0
dt = 0 = ∫ (𝑛10𝜎𝐿𝐼𝐹 (

𝐼0(𝑡)

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
) − 𝑛3(𝑄3 + 𝐴3)) 𝑑𝑡

∞

0
  (2.16) 

Indeed, considering that the density of level |3> before the laser pulse and after the measurement is 

zero i.e. 𝑛3(0) = 𝑛3() = 0, the total variation of 𝑛3 is also zero.  

We can thus deduce the integrated density: 

∫ 𝑛3(𝑡)𝑑𝑡
∞

0
=

𝑛10𝜎𝐿𝐼𝐹

ℎ𝜈𝑙𝑎𝑠𝑒𝑟

1

𝑄3+𝐴3
∫ 𝐼0(𝑡)𝑑𝑡

∞

0
=

𝑛10𝜎𝐿𝐼𝐹

𝑠

1

𝑄3+𝐴3
(

𝐸𝐿

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
)  (2.17) 

where ∫ 𝐼0(𝑡)𝑑𝑡
∞

0
= 𝐸𝐿 𝑠⁄    

with 𝑠 is the laser beam section and 𝐸𝐿  the energy delivered by the laser during one pulse.  

The collected LIF signal intensity 𝑆𝐿𝐼𝐹 can thus be expressed as: 
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𝑆𝐿𝐼𝐹 = K𝜎𝐿𝐼𝐹
𝐴32

𝑄3+𝐴3
(

𝐸𝐿

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
) 𝑛10    (2.18) 

where K is a factor that depends on the geometry of the setup which takes into account the solid 

angle and the spectral response of the detection system. In principle, it is possible to directly 

calculate the absolute density 𝑛10 but in practice, the constant K is often difficult to evaluate. To 

overcome this problem, it is possible to calibrate the measurement as explained in section II.3. 

II.2.2. Measurements at high laser energy 

For sufficiently high laser energy, the transition |1> → |3> may saturate during the laser pulse: the 

de-population of level |1> by laser absorption becomes significant as well as the laser induced 

emission rate between levels |3> and |1> which dominates the collisional and spontaneous emission 

rates. Consequently, during the laser pulse levels |1> and |3> are in equilibrium ruled by the laser 

irradiation and 𝑛1 𝑔1⁄ = 𝑛3 𝑔3⁄ . Since 𝑛10 = 𝑛1 + 𝑛3, the population of level |3> can be expressed 

by equation (2.19). 

𝑛3 =
𝑔3

𝑔3+𝑔1
𝑛10     (2.19) 

This relation implicitly assumes that a stationary state is reached during laser excitation. In this 

regime, the population of level |3> does not depend on the quenching rate. The fluorescence signal 

can be easily approximated in saturated regime considering two limiting cases [70]. If the 

fluorescence lifetime is short compared to the laser pulse duration 𝜏, the fluorescence signal 

detected after the end of the laser pulse is negligible and the fluorescence signal can be expressed as:  

𝑆𝐿𝐼𝐹 = 𝐾𝐴32
𝑔3

𝑔3+𝑔1
𝑛10𝜏    (2.20) 

If on the other hand, the fluorescence lifetime is greater than 𝜏, then the detected fluorescence 

signal mainly corresponds to the signal collected after the end of the laser pulse and is then given by: 

𝑆𝐿𝐼𝐹 = 𝐾
𝐴32

𝑄3+𝐴3

𝑔3

𝑔3+𝑔1
𝑛10    (2.21) 

In the saturated regime, the LIF signal does not depend on the laser energy anymore.  

Working in the saturated regime can be interesting because the LIF signal is directly quantitative: it 

does not depend on the laser intensity. Nevertheless, it also presents some disadvantages. It requires 

high laser energy, which can be difficult to obtain and which can induce several drawbacks such as 

photo-dissociation or ionization of the gas.  Moreover, if the laser beam is not homogeneous spatially, 

the saturation may be incomplete. 

II.2.3. TALIF signal 

In the case of two photons laser absorption fluorescence (TALIF) spectroscopy, the TALIF signal in the 

linear regime can be deduced from equation (2.18) under low laser energy by taking the absorption 

of two photons into account [71]: 

𝑆𝑇𝐴𝐿𝐼𝐹 = 𝐾𝐺(2)𝜎𝑇𝐴𝐿𝐼𝐹 (
𝐸𝐿

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
)

2 𝐴32

(𝑄3+𝐴3)
𝑛10    (2.22) 

where 𝜎𝑇𝐴𝐿𝐼𝐹 is the two-photon excitation cross section(unknown), 𝐺(2) is the photon statistic factor 

(equals to 2 for the absorption of two photons from a chaotic radiation field of a laser with no phase 
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correlations [71–73]) and 𝐾  is the experimental factor. As can be seen, the TALIF signal is 

proportional to the square of the laser energy in the linear regime. As for LIF, it saturates at higher 

laser energy.  

II.2.4. Determination of the LIF/TALIF regime 

In this work, measurements are performed in the linear regime. It is thus necessary to determine the 

laser energy 𝐸𝑆𝐴𝑇 at which the transition starts to saturate for each species (N, O or NO) and for each 

experimental condition (discharge power, gas composition, position along the gas flow…). For this 

purpose, preliminary measurements are performed and the LIF/TALIF signal 𝑆𝐿𝐼𝐹/𝑇𝐴𝐿𝐼𝐹  is measured 

for different laser energy 𝐸𝐿. 𝑆𝐿𝐼𝐹/𝑇𝐴𝐿𝐼𝐹 is then plotted as a function of 𝐸𝐿 in log-log scale, as shown 

in Figure 2-9. In the non-saturated regime, 𝑆𝐿𝐼𝐹/𝑇𝐴𝐿𝐼𝐹 exhibits a linear variation with respect to 𝐸𝐿 

with the corresponding slope being 1 for LIF and 2 for TALIF as indicated by equations (2.18) and 

(2.22). 

  

Figure 2-9 Log-log plot of the N atom fluorescence signal as a function of laser energy. Measurement conditions: 
P=0.6 W/cm2, f=2 kHz, HV=15.8 kVpp, position=14 mm, flow rate=1.0 L/min, concentration of O2=0 ppm 

In the subsequent experiments, the laser energy is kept below ESAT. 

II.2.5. Measuring the LIF/TALIF signal 

Figure 2-10 represents the temporal evolution of a LIF signal after one laser pulse. It corresponds to 

photons emitted by laser-excited atoms during their radiative de-excitation. The stiff rise of the signal 

indicates the beginning of laser excitation. After the laser pulse, the LIF signal decreases 

exponentially. This decrease provides a direct picture of the aforementioned de-excitation processes.    

Non-saturated 

regime 

Esaturation 
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Figure 2-10 LIF signal as a function of time for the transition NO(X 2) -> NO (A2∑) in a mixture of 1.8 ppm NO in N2 for a 
total pressure of 1025 mbar. Measurement conditions:  position=14 mm 

In this work, the LIF signal at a given wavelength is obtained after time integration. In order to 

increase the signal to noise ratio, time integrated signals are averaged over typically 500 

measurements. To determine the density of a specie, it is recommended to perform an excitation 

profile of the whole line corresponding to the transition of interest. For this purpose, the laser 

wavelength 𝜆𝐿𝐴𝑆𝐸𝑅 is tuned and the averaged time integrated signal is recorded for each value of 

𝜆𝐿𝐴𝑆𝐸𝑅. Figure 2-11 represents an example of such an excitation profile.  

 

Figure 2-11 Excitation spectrum for the transition NO(X 2) -> NO (A2∑) in a mixture of 1.8 ppm NO in N2 for a total pressure 
of 1025 mbar. Measurement condition: x=14 mm 

The shape of the excitation profile strongly depends on the operating conditions. At low pressure, 

the line profile is essentially Gaussian and results from a convolution of the effective laser line profile 

and the Doppler broadening profile. In this study, measurements are performed at atmospheric 

pressure. In these conditions, the line profile corresponds to a Voigt profile resulting from the 

convolution of Gaussian profiles (laser line profile, Doppler broadening) and Lorentzian profile due to 

the van der Waals broadening [74].  
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II.3. Calibration method: obtaining absolute densities 

As explained in section II.2.1, a calibration procedure is necessary to obtain absolute values of the 

density from LIF/TALIF measurements. Several methods have been developed for this purpose 

[69,75]. For example, absolute densities can be obtained with another diagnostic (e.g. absorption or 

CRDS measurements) in the same conditions as for LIF/TALIF measurements. Rayleigh scattering can 

also be used to calibrate LIF measurements. In this case, the calibration is based on the comparison 

between the LIF signal and the Rayleigh scattering signal obtained in similar conditions (laser energy 

and wavelength, collection system) using a reference gas (usually a noble gas). Nevertheless, this 

method is not applicable to TALIF due to the non-linearity of the process.  

In the present work, the calibration is performed by another method that consists in injecting a 

known concentration of calibrating gas in the vessel. Then LIF/TALIF measurements are performed 

which provides a relation between the LIF/TALIF signal and the specie concentration. Two situations 

are encountered: 

- the probed specie is a stable compound such as NO(X). In this case, the calibrating gas 

injected in the vessel corresponds directly to probed specie.  

- The probed specie is not stable such as N(4S) and O(3P). In this case, the calibrating gas 

corresponds to another specie (generally a noble gas) having an excitation scheme similar to 

the excitation schema of the probed specie.  

II.3.1. Calibration of LIF measurements on NO(X) 

In this case, the calibration is straightforward since NO can be directly injected in the vessel at a 

known concentration. All the details concerning the calibration procedure for NO are reported in 

chapter 5 section II.   

II.3.2. Calibration of TALIF measurements on N(4S) and O(3P) 

In this case, the calibration is performed by injecting a known concentration of noble gas in the 

vessel: the calibrating gas is krypton for N(4S) and xenon for O(3P). This method was proposed by 

Goehlich et al. and Niemi et al. [71,76]. Here, we consider the case of N(4S) and krypton as an 

example to explain the principle of the calibration. Figure 2-12 represents the two excitation 

schemes used for the measurements of N(4S) atoms and their calibration using krypton. As can be 

seen, the excitation wavelengths are very similar. It allows to use the same laser for both 

measurements (dye, optical settings) and then to keep the same experimental arrangement.  
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Figure 2-12 Tow-photon excitation schema of nitrogen and krypton. The level energies are given in cm-1 

The detected fluorescence wavelengths differ about approximately 80 nm from each other and are 

located in the red spectral region. Consequently, the same detector (in this case a photomultiplier 

tube, see section III.1.1) can be used for both measurements but two different interference filters 

have to be placed in front of the photomultiplier tube. 

Using equation (2.22) to express the fluorescence signal for the experiment and the calibration 

allows to obtain the absolute density of ground state atoms 𝑛10:  

𝑛10(𝑋) =
𝐾(𝑐𝑎𝑙𝑖𝑏)

𝐾(𝑋)

(
𝐸𝐿

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
)

2
(𝑐𝑎𝑙𝑖𝑏)

(
𝐸𝐿

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
)

2
(𝑋)

𝐴32
(𝑄3+𝐴3)

(𝑐𝑎𝑙𝑖𝑏)

𝐴32
(𝑄3+𝐴3)

(𝑋)

𝑆𝑇𝐴𝐿𝐼𝐹(𝑋)

𝑆𝑇𝐴𝐿𝐼𝐹(𝑐𝑎𝑙𝑖𝑏)

𝜎𝑇𝐴𝐿𝐼𝐹(𝑐𝑎𝑙𝑖𝑏)

𝜎𝑇𝐴𝐿𝐼𝐹(𝑋)
𝑛10(𝑐𝑎𝑙𝑖𝑏)     (2.23) 

In this equation, the label (𝑋) indicates the parameters involved in the measurement of N(4S) 

whereas the label (𝑐𝑎𝑙𝑖𝑏) refers to the parameters involved in the calibration. The different Einstein 

coefficients are available in the literature. The quenching coefficients can be either calculated using 

the data in the literature or obtained from experimental measurements. The laser energy per pulse 

𝐸𝐿 and the TALIF signal 𝑆𝑇𝐴𝐿𝐼𝐹 are measured. The ratio of the two excitation cross sections is 

available in the literature. Consequently, the only remaining unknown is the ratio 𝐾(𝑐𝑎𝑙𝑖𝑏) 𝐾(𝑋)⁄  

but since the setup is the same for both measurements all the geometric considerations such as the 

solid angle of the detection system or the probed volume cancels each other. Thus this ratio reduces 

to: 

𝐾(𝑐𝑎𝑙𝑖𝑏)

𝐾(𝑋)
=

𝜂𝑐𝑎𝑙𝑖𝑏𝑇𝑐𝑎𝑙𝑖𝑏

𝜂𝑋𝑇𝑋
     (2.24) 

where 𝜂𝑐𝑎𝑙𝑖𝑏/𝑋 represents the quantum efficiency of the photomultiplier tube at the detection 

wavelength and 𝑇𝑐𝑎𝑙𝑖𝑏/𝑋 represents the transmission of the interference filter at the detection 

wavelength for the calibration and the measurement respectively.  

Note that 𝑆𝑇𝐴𝐿𝐼𝐹 corresponds to the TALIF signal integrated over the whole excitation profile (area 

under the curve) and not to its maximum value at the central wavelength [74]. Indeed, if the 

calibration is performed at a different pressure than the measurement itself, which is often the case, 

the different Van der Waals broadening of the lines could result in wrong density estimation (the 

laser line broadening can be considered to be the same since the laser setup is identical for both the 

measurement and the calibration). 
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III. LIF/TALIF setup 

In this section, we describe the optical setup used for the LIF/TALIF measurements.  

III.1. Laser system 

As explained later, LIF and TALIF measurements on N, O and NO require a tunable laser beam in the 

UV range. For this purpose, we use a dye laser (Sirah Cobra-Stretch Dye laser) [77] pumped by a 

Nd:YAG laser (Spectra-Physics Quanta-ray) [77]. 

The Nd-YAG laser is optically pumped by krypton flash lamps and operates in a pulsed mode, with a 

frequency of 10Hz. An external function generator is used to trigger the laser pulses. The original 

1064 nm laser beam is converted into its second harmonic using a KDP crystal resulting in a 532 nm 

laser beam used to pump the dye laser. According to the manufacturer, the temporal width of the 

laser impulsions is around 8 ns.   

Figure 2-13 shows a sketch of the internal structure of the dye laser. It is composed of several stages: 

resonator, pre-amplifier, and amplifier. The resonator is made by an optical arrangement creating a 

closed beam path i.e. a laser cavity. It consists of the output coupler mirror OC, the dye cell DC20, the 

prim expander PE, the grazing-incidence grating G1 and the second grating G2 used to tune the laser 

wavelength. In our configuration, the grating G2 is blazed at 2400 grooves/mm for a corresponding 

resolution of 0.04 cm-1. The DC20 cell is filled with the circulating dye and serves as the amplifier 

media. The 532 nm pump beam is focused by the lens C1 into the dye cell to excite the dye. The light 

emitted by the dye during its de-excitation is spectrally filtered by the cavity and the remaining 

wavelength radiations are trapped in the cavity to produce the new laser beam. In our conditions, 

the used dye produce a beam in the red spectral region.    

The beam created in the laser resonator propagates from the output coupler mirror (OC) to the left 

side, where it first passes three Brewster plates, which do some additional polarization filtering. The 

beam then passes a prism arrangement which turns it by 180° and shifts it upward. Then, the dye 

laser beam passes a second time through the dye cell, which is now used as a pre-amplifier. For the 

pre-amplification process, the dye is pumped by the 532 nm beam focused by lens C2. Finally, a larger 

dye cell (DC40) is used to further increase the laser pulse energy: this is the amplifier.  
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Figure 2-13 Optical set-up of the Cobra-Stretch (G1-grating; G2-mirror/grating used for tuning; PE-prism expander;  DC20-dye 
cell 20mm; DC40-dye cell 40mm(optical); OC-output coupler; L1,L2-telescopic lenses; BP-polarizing Brewster plates with 180° 

turning prism; Mi-mirror for pump beam; Ci-cylindrical lenses; Si-beam shutters) [77]  

To obtain a laser beam in the UV range, it is necessary to divide the obtained wavelength by a factor 

3. As is shown in Figure 2-14, which summarizes the 2 different steps involved in the production of 

the UV laser beam. First, the red laser beam passes through the first conversion unit (FCU1) - a 

doubling crystal made of KDP to generate the second harmonic.  At the exit of the FCU1, the 

remaining fundamental radiation and the second harmonic are combined in the second conversion 

unit (FCU2) (i.e. a BBO crystal) to generate the third harmonic in the UV range. A wavelength 

separation unit is then used to remove the remaining portion of fundamental and second harmonic.  

 

Figure 2-14 Typical configuration of two crystals for the generation of UV laser (adapted from [77]) 

PE 
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The laser is turned on at least one hour before each experiment during which the laser energy per 

pulse increases until it reaches a stationary value indicating that the laser system is in thermal 

equilibrium. Note that the optimum laser energy in the UV range can be obtained only if the angular 

position of the FCUs with respect to the incoming laser beam is optimum, this position being 

temperature dependent. This setting is important because a miss-adjusted FCU can dramatically 

change the laser beam shape. In the standard configuration of the Sirah dye laser, only the first FCU 

is equipped with a temperature stabilization unit. Consequently, we observed during early 

measurements that the position of the second FCU had to be permanently adjusted to compensate 

for the FCU heating under laser irradiation. To solve this problem, the second FCU was also equipped 

with a temperature stabilization unit. We also observed that the UV laser beam was continuously 

shifting during laser operation probably because of the heating of the gratings. For this reason, it is 

important to probe the whole profile during LIF/TALIF measurements instead of only the maximum. 

To limit the increase of the room temperature, the air conditioning is running during experiments to 

maintain a temperature of around 20°C.  

The temporal profile of the laser pulse is an important data when doing LIF/TALIF measurements, 

especially if one wants to determine the temporal decay of the fluorescence signal. One way to 

determine this profile is to perform Rayleigh scattering measurement of the laser beam. For this 

purpose, the laser wavelength was tuned to 225 nm and the vessel was filled with high purity 

nitrogen (see Figure 2-15) up to a pressure of 1013 mbar. The Rayleigh scattering signal was 

measured using the R928 photomultiplier tube (PMT) biased at 1kV and mounted on the 

monochromator centered at the laser wavelength. No amplifier was used at the output of the PMT 

to avoid any distortion of the signal. To ensure that no parasitic reflection is present, a background 

obtained by doing a similar measurement under vacuum condition was subtracted to the scattering 

signal.  The resulting temporal profile depicted in Figure 2-15. We found that the FWHM of the 

profile is 10 ns for a base width around 20 ns. The decay rate after the maximum of the laser pulse 

was estimated considering an exponential fit and a value of 1.9 108 s-1 has been found. 

 

Figure 2-15 Laser pulse as a function of time obtained by Rayleigh scattering. Measurement conditions: 
total pressure=1013 mbar of nitrogen, laser and detection wavelength: 225 nm. 
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III.1.1. Configuration for measurement of N (2p3 4S3/2) and Kr (4p6 1S0) 

The optical setup used to measure the absolute density of N (2p3 4S3/2) by TALIF is presented in Figure 

2-16. The same setup is used for the measurement of Kr (4p6 1S0) during the calibration of the TALIF 

signal. The Nd:YAG laser beam at 532 nm is used to pump the dye composed of a mixture of 

Rhodamine (Rh B/Rh 101) diluted in ethanol with a maximum efficiency around 615 nm, the 

corresponding tuning curve of the dye is shown in Figure 2-17. The grating G2 is adjusted to tune the 

wavelength around 621 nm for the measurement of N atoms and 613 nm for Kr atoms. After tripling, 

wavelengths of 207 nm for the excitation of N atom and 204 nm for Kr atoms are obtained. The laser 

energy per pulse is tuned using a variable attenuator composed of two rotating plates. The first one 

acts as a filter whose transmission depends on the angle between the plate and the laser beam 

whereas the second one is used to compensate for the laser beam deviation.   

Since the two-photon excitation cross section is small, a focusing lens with a focal length of 50 cm is 

used to focus the laser beam at the center of the 2 mm gap of the DBD. In front of the laser beam, a 

laser energy meter (OPHIR P/N 1Z01500) is used to monitor the laser energy in real time. The 

detection of the fluorescence signal is performed at 90°. A 50 cm focal lens is used to focus the 

fluorescence light onto a PMT associated with an interference filter. The fluorescence signal at the 

output of the PMT is then amplified by a homemade 32 dB amplifier and transmitted to a Boxcar 

averager connected to a computer (more details could be found in section III.2). 

 

Figure 2-16 Experimental set-up for the measurement of N (2p3 4S3/2) 

 

Figure 2-17 Tuning curve of pyridine1 used for a pulsed, 532nm pumped laser [77]  

207nm 
reactor 

Laser Nd-YAG diaphragm 

621nm 

Dye laser 

KDP 

PC 

 

PMT+ 
interference 

filter 

Laser 
energy 
meter 

Boxcar 

Focusing  
lens 

le

Variable 
attenuator 

621nm 
310nm 
 

621nm 
310nm 
207nm 

lens 532nm 

BBO 
Wavelength 

separation unit 
 



Chapter 2 Experimental set-up 

42 

 

The characteristics of the interference filter (Andover Corporation Optical Filter) used for TALIF on N 

(P/N: 750FS20-25) and Kr (P/N: 830FS20-25) atoms are given in Table 2-2 and their respective 

transmission curves are presented in Figure 2-18 (a) and (b). 

Table 2-2 Characteristics of the interference filter use for TALIF measurements of N and Kr atom 

Interference filter used for 
TALIF measurement of 

Central wavelength (nm) FWHF (nm) 

N 750 20 

Kr 830 20 

 

  

Figure 2-18 Transmission curve of interference filter used for TALIF measurements of N (a) and Kr (b) atom 

III.1.2. Configuration for measurement of O (2p4 3PJ) and Xe (5p6 1S0)  

The TALIF system for the measurements of O (2p4 3PJ) and the corresponding calibration using Xe (5p6 
1S0), shown in Figure 2-19, is similar to the one presented in section III.1.1, except for the dye and the 

interference filter placed in front of the PMT.  

 

Figure 2-19 Experimental set-up for the measurement of O (2p4 3PJ) 

To generate the excitation wavelengths, which are in the range [224-226] nm, we use pyridine 1 

(commercialized by Exciton under the name LDS 698) diluted in ethanol with a maximum efficiency 

around 692 nm, the corresponding tuning curve of dye is shown in Figure 2-20. The red wavelength is 

then tripled following the same procedure as previously described. It is also possible to use another 

dye, namely Coumarin 2 with peak efficiency around 450 nm which has the advantage to require only 

frequency doubling and thus to provide higher laser energy in the UV range. Nevertheless, the 

lifetime of Coumarin is rather small (generally around a weak). Moreover using Pyridine 1 has the 
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advantage to require only small adjustments of the dye laser and the FCUs since the dye spectral 

region remains in the red.   

 

Figure 2-20 Tuning curve of pyridine1 used for a pulsed, 532 nm pumped laser [77]  

The characteristics of the interference filter used for TALIF on O (Andover Corporation Optical Filter 

P/N: 850FS20-25) and Xe (Edmund 65725) atoms are given in Table 2-3 and their respective 

transmission curves are presented in Figure 2-21.  

Table 2-3 Characteristics of the interference filter use for TALIF measurements of O and Xe atom 

Interference filter used for 
TALIF measurement of 

Central wavelength (nm) FWHF (nm) 

O 850 20 

Xe 830 10 

  

 

Figure 2-21 Transmission curve of interference filter used for TALIF measurements of O (a) and Xe (b) atom 

(a) (b) 
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III.1.3. Configuration for measurement of NO  

The NO is excited from the ground state NO(X 2,v=0) to the excited state NO(A 2,v=0) and the 

corresponding excitation wavelength is around 226 nm. Consequently, the same dye can be used for 

measurements on O and NO. For LIF measurements, there is no need to focus the laser beam. On the 

contrary, it would result in a saturation of the transition. The focusing lens put before entering the 

discharge is then removed.  

The detected fluorescence light corresponds to the transition NO(A 2,v=0)NO(X 2,v=1) around 

235 nm. It is collected perpendicularly to the laser beam and focused by two quartz lenses on the 

entrance slit of a monochromator (Jobin Yvon HR 320). Using a monochromator instead of an 

interference filter allows obtaining a smaller detection bandwidth which is of primary importance for 

the LIF measurements on NO in our condition. Indeed, during preliminary measurements using a 

broad interference filter, a parasitic signal was detected. It was attributed to the fluorescence of the 

alumina plates and/or of the glass slides probably because the laser beam slightly hit them even if it 

was not visible to the naked eyes. The interference filter was then replaced by the monochromator 

and a careful attention was paid to ensure that no parasitic signal remains whereas the whole 

vibrational band of the transition NO(A 2,v=0)NO(X 2,v=1) was captured. For this purpose, the 

detection bandwidth was adjusted by setting the slit widths and the central wavelength was adjusted 

by moving the monochromator grating.  

The rest of the setup is similar to the previous cases. It is depicted in Figure 2-22. 

 

Figure 2-22 Experimental set-up for the measurement of NO(X 2) 

III.2. Acquisition system and boxcar averager 

As mentioned before, the acquisition of the fluorescence signal is performed using a photomultiplier 

tube (Hamamastsu R928). The resulting electrical signal is then amplified and transmitted to a Boxcar. 

The operating principle of a Boxcar is based on the charge of an RC circuit. For each laser shot, the 

signal is integrated over a time period corresponding to the Boxcar integration gate and then 

averaged over a large number of measurements. The result is displayed and treated by a computer. 

Figure 2-23(a) shows an example of the amplified TALIF signal together with the boxcar integration 

gate (200ns duration), captured by an oscilloscope. The noisy baseline of the TALIF signal, which is 

due to electrical perturbations induced by the laser firing is perfectly reproducible and can thus be 

easily removed. Figure 2-23(b) shows the signal delivered by the Boxcar integrated over 500 laser 

shots.  
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Figure 2-23 (a) Evolution of atomic oxygen fluorescence signal and the Boxcar integration gate (b) Acquisition and treatment 
of signal delivered by Boxcar 

III.3. Verification of the operation mode of photomultiplier tube 

When implementing the LIF/TALIF setup, it is necessary to determine the range of supply voltage for 

which the response of the PMT is linear. This is done by measuring the LIF/TALIF signal in real 

experimental conditions for different supply HV of the PMT.  Figure 2-24 presents an example of such 

measurements.  

 

Figure 2-24 LIF signal for the measurement of NO(X 2) with discharge as a function of applied voltage of PMT. 
Measurement conditions: HV=17.1 kVpp, f =2 kHz, P=0.9 W/cm2, flow rate=1.0 L/min, concentration of O2=200 ppm  

As can be seen, the response of the PMT remains linear below approximately 1000 V and 

consequently, the working HV supply of the PMT was fixed at 800 V for the present conditions.    

IV. Synchronization of the laser pulse, discharge and Boxcar 

In this study, we want to perform LIF/TALIF measurements in the discharge for a well-defined time 

during a period of the applied voltage. It is thus necessary to synchronize the laser pulse and the 

boxcar integration gate with the applied voltage. 

(a) (b) 
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For this purpose two function generators are used as shown in Figure 2-25. The first one generates 

the sinusoidal signal S1 in the kHz range, which corresponds to the voltage applied to the discharge 

before amplification. This generator trigs a second one, which generates a square voltage S2 used to 

control the laser firing. The laser pulses can thus be emitted at different times of the discharge by 

tuning the phase difference between S1 and S2. This phase difference is represented in the time 

domain in Figure 2-25 by the time delay d. For each laser shot, a signal is sent from the laser to the 

boxcar to trig the boxcar acquisition. A time delay box can be set on the boxcar to adjust properly the 

boxcar gate around the laser pulse in time, and the width of the boxcar integration gate can be 

adjusted to capture the whole fluorescence signal.  

In this study, most of the measurements are performed between two successive discharges i.e. when 

the polarity of the discharge reverses and the current jump occurs. 

 

Figure 2-25 Chronogram of synchronization signals  

V. Measurement procedure 

Each LIF/TALIF measurement is performed in the same way:  

- For a given excitation (laser) wavelength λL, the time-dependent LIF/TALIF signal S(TA)LIF(λL, EL
(2)

)  

is integrated over time and averaged over typically 500 shots by the boxcar averager.  

- The laser wavelength is then changed away from the resonance but sufficiently close to keep similar 

laser energy to measure the noise signal. The latter takes into account the electrical perturbations, 

the light emitted by the discharge and potentially the light coming from the interaction of the laser 

beam with the alumina or with the glass slides. The noise signal is recorded in the same manner as 

the LIF/TALIF signal i.e. it is integrated over 500 laser shots using the boxcar average. 
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- The corrected LIF/TALIF signal S(TA)LIF
𝑐𝑜𝑟𝑟 (λL, EL

(2)
)  is obtained by subtracting the noise signal to the 

measured signal. To obtain a quantity representative of the density of the probed species i.e. 

independent of the laser energy, the corrected signal has to be divided by the averaged laser energy 

per pulse 〈𝐸𝐿〉 for LIF measurements or by the averaged of the square of the laser energy per pulse 

〈𝐸𝐿
2〉 for TALIF measurements. We then obtain S(TA)LIF

𝑐𝑜𝑟𝑟 (λL). 

- These measurements are repeated by sweeping the laser wavelength to recover the whole 

excitation profile. Finally, the LIF/TALIF signal S(TA)LIF
𝑐𝑜𝑟𝑟  corresponds to the area under the excitation 

profile and can be obtained by integration.  

- The calibration procedure detailed in this chapter is used to obtain an absolute density from 

S(TA)LIF
𝑐𝑜𝑟𝑟 . 
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Chapter 3. TALIF measurements of atomic nitrogen N (2p3 4S3/2) density  

In this chapter, we present the results of TALIF measurements on N (2p3 4S3/2) obtained in 

homogeneous Townsend discharge either in high purity N2 or in the mixture N2/O2. To simplify the 

description, in the following chapters, we replace N (2p3 4S3/2) by N(4S) in most cases, except when we 

need to detail the ground state. First, we present the necessary validation performed before the 

TALIF measurements, the calibration procedure using krypton and we discuss the experimental 

errors. Then, we present the results obtained in high purity N2 and in the mixture N2/O2. Finally, the 

important points of this chapter are summarized. 

I. Validation of TALIF measurements, calibration procedure and experimental errors 

Before doing the measurements, some important verifications have to be performed. They are 

described in this section following the same order. According to the principle of LIF/TALIF explained 

in chapter 2 section II, one have first to find the optical transition of interest by scanning the laser 

wavelength. Then one has to tune the laser energy to determine the domain corresponding to the 

linear fluorescence regime. During the calibration, the same procedure has to be performed. Finally, 

it is necessary to investigate the different sources of error.  

I.1. Validation of TALIF measurements  

The excitation schemes of nitrogen and krypton have already been presented in Figure 2-12. We 

reshow this figure to make the explanation more comprehensive.  

 

Figure 3-1 Tow-photon excitation schema of nitrogen and krypton. The level energies are given in cm-1 

Thus, we start the TALIF measurements with the determination of the excitation wavelengths for the 

specie of interest. Indeed, a shift always exists between the theoretical wavelength and the 

experimental one because the laser is never perfectly spectrally calibrated. Figure 3-2 presents a 

TALIF excitation profile of N(4S). The optimum two-photon absorption wavelength is 206.875 nm for 

N(4S). 

3s 4P1/2,3/2,5/5  

83364.2 
83317.83 
83284.07 

3p 4S3/2  
96750.81 

2x206.65nm 

2p3 4S3/2 
0 

742-746nm 

NITROGEN 

5s’ [1/2]1 

85847.50 

 

5p’ [3/2]2 
97945.97 

2x204.13nm 

4p6 1S0 
0 

826.3nm 

KRYPTON 
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Figure 3-2 Excitation spectrum for the transition N (2p3 4S3/2) -> N (3p 4S3/2) obtained in a Townsend discharge for high 
purity N2. Measurement conditions: P=0.6 W/cm2, f=2 kHz, HV=15.8 kVpp, flow rate=1.0 L/min, x=14 mm  

Once the experimental wavelength has been found, it is necessary to determine the laser energy 

range corresponding to the linear regime. As explained in chapter 2 section II.2.3, the TALIF signal has 

to be proportional to the square of the laser energy in the unsaturated regime. Figure 3-3 shows the 

evolution of the TALIF signal as a function of the laser energy per pulse in the logarithmic scale. As 

can be seen, it remains linear with a corresponding slope of 2 for laser energies below 40 µJ 

indicating that measurements have to be done under this value. For most of the measurements, we 

usually keep the laser energy around 27 µJ i.e. well below the saturation limit but sufficiently high to 

have a substantial fluorescence signal. 

 

Figure 3-3 Log-log plot of the N atom fluorescence signal as a function of laser energy. Measurement conditions:  
P=0.6 W/cm2, f=2 kHz, HV=15.8 kVpp, position=14 mm, flow rate=1.0 L/min, concentration of O2=0 ppm 

Similar validation is also performed for krypton during the calibration. Since krypton gas is very 

expensive, the calibration is performed by injecting a small quantity of krypton. In these conditions, 

the saturation limit is reached for very small laser energy, which is not convenient because of the 

large uncertainty for the measurement of small laser energies. To overcome this limitation we inject 

a mixture of krypton and nitrogen in the vessel. It allows to increase the saturation to larger laser 
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energy thanks to the high quenching rate of krypton by nitrogen. Figure 3-4 shows (a) the excitation 

profile of krypton, and (b) the log-log plot of the Kr fluorescence signal as a function of the laser 

energy. The optimum two-photon absorption wavelength is 204.35 nm for Kr. The measurements are 

performed for a laser energy per pulse around 19 µJ i.e. in the linear regime. 

 

Figure 3-4(a) Excitation spectrum for the transition Kr (4p6 1S0)-> Kr (5p’ [3/2]2) obtained in a mixture of N2/Kr. Measurement 
conditions: p(Kr)=0.13 mbar, p(N2)=195.67 mbar, x=21 mm (b) Log-log plot of the Kr atom fluorescence signal as a function 

of laser energy. Measurement conditions:  p(Kr)=0.013 mbar, p(N2)=195.9 mbar, x=14 mm  

I.2. Calibration procedure  

According to equation (2.23) in section II.3.2, the absolute density of N(4S) atoms can be calculated 

using the following relation:  

𝑛(𝑁) = CF𝑁/𝐾𝑟 ×
𝑆𝑇𝐴𝐿𝐼𝐹(𝑁)

(
𝐸𝐿

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
)

2
(𝑁)

×
(𝑄3+𝐴3)

𝐴32
(𝑁)   (3.1) 

where CF𝑁/𝐾𝑟  is the calibration factor which expression is given by equation (3.2): 

CF𝑁/𝐾𝑟 =
𝜎𝑇𝐴𝐿𝐼𝐹(𝐾𝑟)

𝜎𝑇𝐴𝐿𝐼𝐹(𝑁)
×

𝑇𝐾𝑟𝜂𝐾𝑟

𝑇𝑁𝜂𝑁
× 𝑛 (𝐾𝑟) ×

𝐴32

(𝑄3+𝐴3)
(𝐾𝑟) ×

(
𝐸𝐿

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
)

2
(𝐾𝑟)

𝑆𝑇𝐴𝐿𝐼𝐹(𝐾𝑟)
  (3.2) 

In this equation, 𝑇𝑋 represents the transmission of the interference filters and 𝜂𝑋 is the quantum 

efficiency of the PMT at the fluorescence wavelength. These parameters are given in Table 3-1 for 

the central fluorescence wavelengths of N and Kr.  

Table 3-1 Quantum efficiency of PMT and transmission coefficients of filter for the detection of N and K fluorescence signal 

Species 
 

Experimental parameters 

Quantum efficiency 
of PMT 

Transmission 
coefficient of filters 

N  4.35 0.6 

Kr  1.42 0.6 

 

Niemi et al. [71] have determined the ratio of two-photon excitation cross section: 

𝜎𝑇𝐴𝐿𝐼𝐹(𝐾𝑟)

𝜎𝑇𝐴𝐿𝐼𝐹(𝑁)
= 0.67 

(a) 
(b) 
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𝐴3 represents the overall spontaneous de-excitation probabilities an of the level populated by laser 

absorption to lower levels whereas 𝐴32  refers to the transition of interest. 𝑄3  is the overall 

quenching rate and can be calculated by 𝑄3 = ∑ 𝑛𝑖𝑘𝑞𝑖𝑖  where 𝑛𝑖 is the density of quencher 𝑖 and 𝑘𝑞𝑖
 

the corresponding quenching coefficient. All this data are taken from the literature and given in Table 

3-2. 

Table 3-2 relative parameters involved in the calculation of density of N(4S) 

Parameters N Kr 

𝐴3(107 s-1) 4.156 [78] 3.708 [79] 

𝐴32(107 s-1) 3.714[78] 3.53[79] 

𝑘𝑞(N2) (10-10 cm3/s) 0.41 [71] 3.35[71] 

𝑘𝑞(O2) (10-10 cm3/s) 6.63 [71]  

𝑘𝑞(Kr) (10-10 cm3/s)  1.46 [71] 

 

The value of 𝐴32 for Kr was obtained knowing 𝐴3 and considering the ratio 𝐴32 𝐴3 = 0.953⁄  [3]. 

Note that in principle, it is possible to determine the quenching rates experimentally by measuring 

the decay rate of the fluorescence signal as explained in chapter 2 section II.2.5. Nevertheless, the 

fast decay of TALIF signals at atmospheric pressure, the relatively long laser pulse (see Figure 2-15 in 

section III.1) and the too slow time response of our optical system (PMT and amplifier) make these 

determinations impossible.  

According to the equation (3.2) and knowing the relative parameters, the calibration factor can be 

calculated as soon as the fluorescence signal of Kr is determined. Figure 3-5 represents the evolution 

of the TALIF signal during the calibration and the corresponding calibration factor as a function of the 

position x of the measurement.  

 

Figure 3-5 TALIF signal and calibration coefficient as a function of position and the corresponding TALIF signal 

The measured TALIF signal increases from the entrance to the exit of the discharge cell, which can be 

explained by the increase of the solid angle of the fluorescence detection. The latter is limited by the 

dielectrics of the DBD. This effect is schematically described in Figure 3-6.  The calibration factor is 

inversely proportional to the TALIF signal and consequently, it decreases from the entrance to the 

exit of the discharge cell. 
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Figure 3-6 The influence of solid angle for the detection of TALIF signal along the discharge 

I.3. Influence of the gas temperature 

During the calibration, the gas is at thermal equilibrium at the room temperature. But during the 

experiments, the gas temperature can be higher and a departure from thermal equilibrium is often 

observed in gas discharges. It implies that molecules can have different rotational (𝑇𝑟𝑜𝑡) and 

vibrational temperatures (𝑇𝑣𝑖𝑏). To estimate these temperatures, OES measurements have been 

performed for some various experimental conditions on the 2nd positive system of nitrogen. The 

spectra were then fitted using the SPECAIR© software [80] to obtain values of 𝑇𝑟𝑜𝑡 and 𝑇𝑣𝑖𝑏.  

An example of the OES spectrum corresponding to the results obtained for a concentration of 0ppm 

of O2 is depicted in Figure 3-7. The temperatures determined in the different conditions are given in 

Table 3-3. 

Table 3-3 Rotational and Vibrational temperature determined by OES 

Concentration of O2 
(ppm) 

applied voltage 
(kVpp) 

Discharge power 
(W/cm2) 

353nm 377nm 

Trot=Ttran(K) Tvib(K) Trot=Ttran(K) Tvib(K) 

0 18.1 0.9a 400 1500 394 1500 

25 18.1 1.4a 443 1500 432 1500 

200 18.1 filamentarya 355 1500 345 1500 
a The determination of the temperature was performed with another discharge cell instead of the one used in this work 

HV 

ground 

Solid angle 

                       0                   x(mm)   18 

Gas flow 
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Figure 3-7 OES spectrum of N2 second positive system, measured at different wavelengths: (a) and (c)-357.5 nm; (b) and (d)-
380.5 nm, where (c) and (d) are the zoom of (a) and (b) respectively. Measurement conditions: f=2kHz, HV=18.1k Vpp, 

flow rate=1.0 L/min, concentration of oxygen=0 ppm 

The results indicate that the rotational temperature which is generally assumed to be equal to the 

translational temperature can increase up to Trot=430 K. This is obtained for the measurement 

performed at the highest input power of 1.4 W/cm2. Since most of the measurements performed in 

this work are done for input power lower or equal to this value, Trot=430 K will be considered as an 

upper limit. The vibrational temperature was found to be Tvir=1500 K for every measurement. 

A change in the gas temperature is important because the quenching rate depends on the gas 

temperature T. In most cases, the quenching rate coefficients available in the literature are 

determined at room temperature and have to be corrected if the temperature of the experiment is 

different. In the literature, the quenching rate coefficient 𝑘 is often calculated as the product of the 

cross section 𝜎 by the relative thermal velocity of the colliders (see e.g. [81]): 

𝑘 = 𝜎 ∙ √
8𝑘𝐵𝑇

𝜋𝜇
      (3.3) 

where 𝜇 represents the reduced mass of the colliders and T is the translational temperature. 𝜎 is 

generally considered to be poorly temperature dependent. 

Then, relation (3.3) can be used to calculate the change in the quenching rate coefficient due to 

collider 𝑞 from the room temperature 𝑇0 to a higher temperature 𝑇. The corresponding equation 

writes: 

(b) (a) 

(c) (d) 
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𝑘𝑞(T) = 𝑘𝑞 (𝑇0) × (𝑇 𝑇0⁄ )
1

2     (3.4) 

A change in the gas temperature does not only modify the quenching rate coefficient but also the 

density of the quenchers which can be calculated using the ideal gas low.  

Then, the overall quenching coefficient is given by: 

𝑄3(𝑇) = ∑ 𝜒𝑖 ∙
𝑃

𝑘𝐵𝑇
∙ 𝑘𝑞𝑖(𝑇0𝑖 ) ∙ √

𝑇

𝑇0
    (3.5) 

where 𝜒𝑖  is the mole fraction of quencher 𝑖, P is the working pressure, T is the temperature during 

the experiment,  𝑇0 is the room temperature (300K), 𝑘𝑞𝑖(𝑇0) is the quenching rate coefficient at 

room temperature coming from the literature data. Equation (3.5) indicates that the decrease of the 

quencher’s density when the temperature increases, overcomes the increase in the quenching rate 

coefficient. Thus an increase in the temperature causes the quenching rate to decrease. 

Since in the present work the gas temperature is not systematically measured for every experimental 

condition, the densities determined by LIF/TALIF presented in this work are not corrected for 

temperature effect. Instead, an estimation of the error if one considers a temperature of 300 K 

instead of a temperature of 430 K (which corresponds to the maximum gas temperature measured in 

our conditions) is provided. This error is directly given by the following ratio, where 𝑄3  is 

approximated to be only due to nitrogen molecules: 

(𝑄3 + 𝐴3)430𝐾

(𝑄3 + 𝐴3)300𝐾
= 0.842 

Thus, considering that the gas temperature is 300K in the experiments results in an overestimation of 

the N(4S) density of 15.8%.  

I.4. Experimental errors 

An exact determination of the systematic errors is tricky since a lot of parameters are involved in the 

TALIF measurements. The main contribution comes from the uncertainty of the ratio of the two-

photon absorption cross section  
𝜎𝑇𝐴𝐿𝐼𝐹(𝐾𝑟)

𝜎𝑇𝐴𝐿𝐼𝐹(𝑁)
, which was estimated by Niemi et al. [71] to be 50%. 

Other errors such as the quenching rates or the radiative lifetimes are neglected because their values 

result from numerous studies and reliable measurements.  

The statistical error was estimated to be ±9.1% based on the reproducibility of the measurements. 

The error bars indicated on the results presented in the following correspond to the statistical error.  

II. N (2p3 4S3/2) density in N2 

In this entire chapter, the N(4S) density is measured between two successive discharges except for 

some particular measurements presented in section II.1. Indeed, the aim of this thesis is to study the 

gas phase phenomena related to the memory effect, which takes place between two successive 

discharges. In the present section, the N(4S) density is investigated in APTD generated in high purity 

nitrogen. First, the temporal and spatial evolution of the N(4S) density is studied. Then the influence 

of the discharge power and the gas flow rate are investigated. Finally, the evolution of the N(4S) 

density during the post-discharge is discussed. 
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II.1. Evolution of the N (2p3 4S3/2) density during a period of the applied voltage 

TALIF measurements were performed at a fixed location (x=14 mm) as a function of different instants 

during a discharge period in high purity nitrogen. The choice of this location is justified in the next 

section. The corresponding results are presented in Figure 3-8(a). The measured density varies 

between 3.5 1014 cm-3 and 6.5 1014cm-3. Nevertheless, no correlation can be made when comparing 

the N(4S) density during the first negative half-period and the second positive one.  

Several experimental errors can disturb the measurements e.g. if the laser beam does not pass 

exactly at the center of the discharge gap. Moreover the measurements performed during the 

discharge are more subjected to the noise induced by the light emission from the discharge than 

measurements performed between two discharges.  

Nevertheless, since N(4S) atoms are mainly produced by electron impact dissociation on N2 molecules, 

one could expect a high N(4S) density near the maximum of the discharge current and a low density 

between two discharges. This is not observed experimentally which means that if such behavior of 

the N(4S) density exists, the corresponding density variations remain small compared to experimental 

errors. Numerical investigations performed using the model presented in appendix show a similar 

behavior. An example of the time-varying N(4S) density over a discharge period is presented in Figure 

3-8(b). As can be seen, the variation of the N(4S) density is on the order of 1013 cm-3 which 

corresponds to a variation of 2%. The analysis of the production and destruction rates of N(4S) 

presented in Appendix 1 indicates that these two rates have very similar evolutions explaining the 

quasi-constant N(4S) density. Indeed, when the electron density and the electric field are important, 

the dissociation of N2 molecules produces a large amount of N(4S) atoms. But at the same time, it 

causes a large production of N2(A) metastable molecules which are responsible for a significant 

excitation of N(4S) towards N(2P) and N(2D) states which compensates for the important N(4S) 

production by dissociation. The interested reader can refer to section IV.1.2 in Appendix 1 for the 

detailed analysis.   

 

Figure 3-8 Absolute density of N (2p3 4S3/2) as a function of instant of discharge during a whole period, (a) experimental 
result, (b) simulation result.  Measurement conditions: P=0.9 W/cm2, f=2 kHz, HV=17.1 kVpp, flow rate=1.0 L/min, 

position=14 mm 

II.2. Evolution of the N (2p3 4S3/2) density along the discharge 

In this part, we are interested in the evolution of N(4S) density as a function of the position from the 

entrance of the discharge. Figure 3-9 shows a typical example of the corresponding results. These 

measurements are performed at the stationary state i.e. electrical characteristics are reproducible 

(a) (b) 
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from one discharge period to the other. We can observe an increase of the density along the 

discharge up to 5 mm followed by a plateau.  

  

Figure 3-9 Absolute density of N (2p3 4S3/2) as a function of position. Measurement conditions: P=0.9/cm2, f=2kHz, 
HV=17.1 kVpp, flow rate=1.0 L/min 

In previous works [48,56], we showed that electrical characteristics change along the discharge in a 

Townsend DBD even when a stationary state is reached. It is illustrated by Figure 3-10 which reports 

measurements performed with a segmented electrode [48] to allow independent electrical 

measurements as a function of the position x.  

 

Figure 3-10 Discharge power as a function of the position. Measurement conditions: length of the discharge=3 cm, 
gas gap=2 mm, HV=16.0 kVpp, f=2 kHz, flow rate=4.0 L/min 

As can be seen, the discharge power increases before reaching a constant value. This effect was 

attributed to the progressive establishment of a memory effect i.e. to the production and 

accumulation of active species directly involved in the operation of the discharge. It can be 

metastable species such as N2(A), atoms coming from dissociation of molecules such as atomic 

oxygen or electrons accumulated onto the dielectrics. Note the decrease of the surface power 

density at the end of the discharge should be attributed to the spreading of the discharge.  
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Knowing that, it can be interesting to compare measurements done at different positions in the 

stationary state to measurements performed at a fixed position as a function of time starting from 

discharge ignition, for similar experimental conditions. Figure 3-11 presents an example of such 

comparison in high purity nitrogen. The position/time conversion (black curve) is done knowing the 

gas flow and using equation (2.1) in section I.1.1 . Time-dependent measurements (red curve) are 

done at x=14 mm i.e. close to the end of the plateau where the discharge is fully established. As can 

be seen, both results are quite similar in this condition. Note that this is not necessary true when 

oxygen is introduced in the discharge, as shown and discussed in section III.1.  

  

Figure 3-11 Comparison of the absolute density of N (2p3 4S3/2) as a function of residence time (black curve) and at x=14 mm 
just after the ignition of the discharge for 108 periods (red curve). Measurement conditions: f=2 kHz, HV=18.1 kVpp, flow 

rate=1.0 L/min 

Electrical measurements performed during the first 108 discharges can be used to get a picture of 

the time evolution of the averaged discharge power. For this purpose, the averaged power dissipated 

in the gas is calculated for each successive period of the applied voltage. The corresponding results 

are presented in Figure 3-12. The averaged power increases noticeably during the first 10ms 

following the discharge ignition and then reaches a stationary value.  Note that it does not 

correspond to the power at the position x=14 mm where TALIF measurements are performed but to 

an average power over the whole discharge.  

  

Figure 3-12 Evolution of the average discharge power during the first 108 discharge periods 
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The evolution of N(4S) density can thus be explained by a combination of two phenomena:   

- The power of the discharge increases along the position (time) before reaching a constant value. 

The production of N(4S) atoms is modulated accordingly, a higher discharge power inducing a higher 

N(4S) production rate.   

- At the beginning (space and time) of the discharge, the production rate is larger than the 

destruction rate resulting in an increasing N(4S) density. With the increase of N(4S) density, the 

destruction rate which is directly related to the N(4S) density increases until an equilibrium between 

the production and destruction mechanisms is reached, resulting in the observed plateau.  

To study the mechanism responsible for the production of N(4S), we are interested in the N(4S) 

production for different discharge powers in the next section.  

II.3. N (2p3 4S3/2) density as a function of the discharge power 

Measurements are performed for different discharge powers by changing the frequency or the 

applied voltage. The corresponding results are presented in Figure 3-13. As can be seen, the N(4S) 

density increases when increasing the input power. Moreover, the higher is the input discharge 

power, the stiffer is the rise of the N(4S) density at the entrance of the discharge. For the lowest input 

power, no N(4S) atoms are detected at x=1 mm probably because the discharge is not fully initiated 

at this position because the applied voltage is too low.  

 

Figure 3-13  Absolute density of N (2p3 4S3/2) as a function discharge power. Measurement conditions: flow rate=1.0 L/min 

Figure 3-14(a) presents a summary of the N(4S) density measured for the different discharge powers 

at x=14 mm. We can see that the N(4S) density is directly proportional to the input power, 

independently of the applied frequency or voltage. Figure 3-14(b) represents the corresponding 

simulation results, the density increases slower and slower with the discharge power. And the 

influence of applied voltage is more considerable than that of frequency, as the two last points show, 
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even at a lower discharge power with a higher applied voltage, the density is higher than that at a 

higher discharge power with a higher frequency.   

 

Figure 3-14 Absolute density of N (2p3 4S3/2) as a function of discharge power. (a) experimental result (b) simulation result. 
Measurement conditions: flow rate=1.0 L/min, position=14 mm 

To analyze these results, it is interesting to understand the influence of the applied frequency and 

applied voltage on the discharge power. 

In a Townsend DBD, the gas gap voltage Vg during the discharge is roughly constant in time and is 

related to the breakdown voltage which mainly depends on fundamental parameters such as the 

discharge gap, the nature of the gas, the pressure, the temperature. Thus, it does not vary too much 

when changing the applied frequency or the applied voltage Va. Now, let us discuss the discharge 

current Id on the basis of the equivalent electrical circuit presented in Figure 2-5. Since Vg is roughly 

constant in time, all the current passes through the resistor (which corresponds to the discharge 

current itself). This total current is also the current passing through the dielectrics, which can be 

expressed as 𝐶𝑠𝑑
𝑑𝑉𝑠𝑑(𝑡)

𝑑𝑡
. Considering that the variation of the gas voltage is nearly zero, the gradient 

of Vsd can be considered to be the gradient of Va, then the total current can be expressed as 

 𝐶𝑠𝑑
𝑑𝑉𝑎(𝑡)

𝑑𝑡
 From this expression, one can deduce that increasing the frequency results in an increase 

of the discharge current as long as the discharge is ON. The same conclusion can be drawn when 

increasing the applied voltage. It means that the electron density increases whereas the gas gap 

voltage (and thus the electric field) which remains approximately the same.  

To check the consistency of this hypothesis, the evolutions of the discharge current Id and of the gas 

gap voltage Vg are presented in Figure 3-15(a) and (b) respectively.  

(a) (b) 
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Figure 3-15 The maximum value of (a) discharge current and (b) gas voltage as a function of discharge power 

We can see that in the range of investigated parameters the variation of the maximum of 𝑉𝑔 is 

around 15% whereas the maximum of the discharge current changes by a factor 5. These results are 

in agreement with the previous explanation. 

The slight decrease of the gas gap voltage observed in Figure 3-15(b) for increasing powers indicates 

that the breakdown becomes easier. It can be explained by several phenomena. First of all, the 

increase of the discharge power results in an increase of the gas temperature, which in turn implies a 

decrease in the gas density. During his Ph.D., N.Naudé [82] estimated for an APTD operated in N2 

with a gas gap of 1mm that an increase of the gas temperature from 300 K to 400 K results in a 

decrease of the breakdown voltage of approximately 800V. In our conditions, gas temperatures up to 

430 K have been measured for a surface power of 1.4 W/cm2. Even if the gas gap is 2 mm in our 

conditions, it is reasonable to assume that gas heating significantly contributes to the decrease of the 

breakdown voltage. Moreover, increasing the power can also increase the memory effect, which can 

also contribute to decreasing the breakdown voltage. 

To explain the linear increase of the N(4S) density with the discharge power, it is necessary to discuss 

the production mechanisms of atomic nitrogen. It is well known that N(4S) atoms are mainly 

produced by electron impact dissociation on N2 molecules [83–85]. This process can be direct, as 

described by the following reaction: 

e− + N2 ⟶ N2
∗ ⟶ N(4S) + N(4S, D2 , P2 )    (R 3) 

where N2
∗ represents a rapidly predissociating state [85], or it can be a two-step process as indicated 

by Teramoto et al. [84]: 

e− + N2 ⟶ N2
∗ + e−      (R 4) 

N2
∗ + e ⟶ N + N + e−     (R 5) 

Our experimental results show a linear relation between the input power and the N(4S) density at 

equilibrium (see Figure 3-14(a)), suggesting that, in our conditions, the main nitrogen dissociation 

channel corresponds to the aforementioned one-step process. 

These measurements allow estimating the energy cost of N(4S) atoms production following the 

method described in [85].  

(a) (b) 
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Assuming that N(4S) atoms production is directly related to the discharge power and N(4S) atoms are 

mainly lost by volume recombination onto nitrogen molecules and during their diffusion to the walls 

(see section II.5), the equation ruling the N(4S) density in the steady state is: 

𝑑[N(4S)]

𝑑𝑡
=

𝑃𝑣𝑜𝑙𝑢𝑚𝑒

𝜀𝐶
𝑁 − 2[N(4S)][𝑁2]𝑘𝑁 − [N(4S)]𝑣ℎ𝑒𝑡 = 0   (3.6) 

where 𝑃𝑣𝑜𝑙𝑢𝑚𝑒 is the power density in ev, 𝜀𝐶
𝑁 is the energy cost of N(4S) production, 𝑘𝑁 is the rate 

coefficient for the volume recombination and 𝑣ℎ𝑒𝑡 is the characteristic frequency for heterogeneous 

recombination of N(4S) atoms. 𝑣ℎ𝑒𝑡 can be calculated using the following expression: 

𝑣ℎ𝑒𝑡
−1 = (𝐷𝑁 (

𝜋

𝐿
)

2
)

−1

+ (
𝛾𝑁𝑢

2𝐿
)

−1
    (3.7) 

Here, 𝐷𝑁=0.29 cm2s-1 is the diffusion coefficient, L is the gap length, 𝛾𝑁=3 – 4 10-4 is the coefficient 

for heterogeneous recombination on the alumina surface and 𝑢 is the thermal speed of N(4S)  atoms 

[85]. With these values, we obtain 𝑣ℎ𝑒𝑡=32.26 s-1. 

Considering the previous equations and a gas temperature of 300 K, it is possible to estimate the 

energy cost for N(4S) atoms production. The corresponding results are presented in Figure 3-16 for 

the five different input powers presented in this section.  

 

Figure 3-16 Energy cost 𝜀𝐶
𝑁  of electron impact dissociation of N2 molecule as a function of discharge power 

The energy cost for N(4S) atom production is ranging between 274 eV/atom and 370 eV/atom for a 

corresponding average value of 318 eV/atom, close to the value of 337±35 eV/atom found by N.A. 

Popov [85] on the basis of experimental results obtained by Es. Sebbar et al. [60]. The data obtained 

in this work are thus in good agreement with the previous studies.  

II.4. N (2p3 4S3/2) density as a function of the gas flow rate 

Figure 3-17(a) represents the evolution of absolute density of N(4S) as a function of the position for 

different gas flow rate ranging from 0.5 L/min to 2 L/min while keeping the same discharge power.  
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Figure 3-17 Absolute density of N (2p3 4S3/2) as a function of (a) position from the entrance of discharge (b) residence time 
for different flow rate.  Measurement conditions: P=0.6 W/cm2 f=2kHz, HV=15.2 kVpp for flow rate=0.5 L/min, HV=15.8 kVpp 

for flow rate=1.0 L/min, HV=16.2 kVpp for flow rate=2.0 L/min 

It indicates that whatever the gas flow, the plateau reached by the N(4S) density is similar, around 

4.5 1014cm-3. On the other hand, the higher the gas flow, the slower the increase of the density at the 

beginning of the discharge, because N(4S) atoms are carried away by the gas flow. To check the 

consistency of this hypothesis the same results are presented in Figure 3-17(b) as a function of the 

energy dissipated in the discharge. As can be seen, all the results superimpose with this 

representation. 

Note that in order to keep the discharge power constant, we have to increase the applied voltage 

when increasing the gas flow rate. Indeed, the higher the gas flow, the more the active species 

involved in the memory effect such as N2(A) are blown away, and as a result higher voltage is needed 

to ensure a similar averaged power value.  

II.5. Evolution of the N (2p3 4S3/2) density during the post-discharge 

Measuring the density of the different species during the post-discharge is interesting because it 

offers the possibility to study the main mechanisms involved in their destruction. Figure 3-18 

presents an example of such measurements for N(4S) atoms. The discharge is first initiated for 108 

periods and then switched off. Measurements are performed at the position x=14 mm as a function 

of time 𝜏 after the discharge extinction. The time 𝜏=0 corresponds to the discharge extinction. 

Let us consider that the main loss mechanism for N(4S) atoms are the three-body recombination in 

volume and the diffusion to the walls: 

N(4S) + N(4S) + N2 → N2 + N2(A, B)     k = 8.3 × 10−34 × exp(500 T⁄ ) [85]  (R 6) 

N(4S) → N(4S)wall      k = 32.26 s−1 [85]   (R 7) 

Calculations are performed taking into account these two mechanisms and starting from the initial 

density measured at =0 ms. The corresponding results are depicted in Figure 3-18. 

(a) (b) 
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Figure 3-18 Comparison of the decrease of N (2p3 4S3/2) density during the extinction of discharge. Measurement conditions: 
f=2kHz, HV=18.1kVpp, flow rate=1.0l/min, position=14mm 

Note that the gas flow is set to 1 L/min during the whole experiment in order to keep a stable 

discharge and to limit the contamination of the gas. Consequently, the N(4S) density measured at a 

time 𝜏 actually corresponds to the N(4S) density in a small discharge volume initially (i.e. at =0 ms) 

located at x = 14mm − v ∗ τ and transported by the gas flow at a velocity 𝑣 . It means that 

experimental and numerical results can be compared only if the initial N(4S) density is the same in 

both cases. As can be seen in Figure 3-9, for a gas flow of 1.0 L/min, the plateau N(4S) density starts 

at approximately x=4 mm which means that experimental and numerical results can be compared 

between =0 ms and  ≈25 ms. 

As can be seen, experimental and numerical results are in good qualitative agreement even if losses 

are slightly underestimated in the model. It can be due to an underestimation of the N(4S) losses by 

diffusion or to the unavoidable presence of oxidizing impurities during experiments, which were not 

accounted for in the model. These results confirm that N(4S) losses in post-discharge in pure nitrogen 

are dominated by the diffusion to the walls and the three-body volume recombination on N2 

molecules.  

Figure 3-19 presents the temporal evolution of the corresponding reaction rates. At the beginning of 

the post-discharge, the N(4S) density is rather large and losses are dominated by the 3-body 

recombination, whose reaction rate depends on the square of the N(4S) density. For >20 ms when 

the N(4S) density is lower, losses by diffusion to the walls which are proportional to the N(4S) density 

dominate. 
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Figure 3-19 Temporal evolution of the reaction rates of the main destruction mechanisms for N(4S)  atoms in high purity 
nitrogen: three-body recombination and diffusion to the wall 

II.6. Summary  

In conclusion, the absolute density of N(4S) atoms was determined in high purity nitrogen. Typical 

values of few 1014 cm-3 were found, the maximum measured density being about 7 1014cm-3 for a 

surface discharge power of 1 W/cm2. The influence of the discharge power and gas flow was studied. 

The maximum the discharge power, the maximum the N(4S) density. The averaged energy cost for 

N(4S) atoms production was found to be 318 eV/atoms. N(4S) atoms are produced by direct electron 

impact dissociation onto N2 molecules. The main losses mechanisms of N(4S) were studied during the 

post-discharge. For a short time scale, the three-body recombination dominates whereas losses to 

the dielectric surfaces dominate for a longer time scale.    

III. N (2p3 4S3/2) density in the mixture N2/O2 

In this section, the measurements are carried out in a mixture of N2/O2 for different oxygen 

concentrations. 

III.1. N (2p3 4S3/2) density in the discharge for different oxygen concentration 

Figure 3-20 shows the evolution of the N(4S) density along the discharge for different concentration 

of oxygen (a) keeping the same discharge power and (b) keeping the same applied voltage. For a 

given concentration of oxygen, we can recognize the same trend as for the high purity nitrogen case: 

it increases, reaches a plateau and then decreases in the post-discharge region. Moreover, for a 

given position, the higher the oxygen concentration, the lower the N(4S) density.  
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Figure 3-20  Absolute density of N (2p3 4S3/2) as a function of position from the entrance of discharge with different 
concentration of O2 (a) in keeping the same discharge power around 0.9 W/cm2 by adjusting the applied voltage (b) in 

keeping the same applied voltage at 17.1 kVpp. Measurement conditions: f=2 kHz, flow rate=1.0 L/min. 

A summary of the N(4S) density at x=14mm for both conditions is presented in Figure 3-21, together 

with the evolution of the current jump and the applied voltage (a) or dissipated power (b).  

 

Figure 3-21  (a) Absolute density of N (2p3 4S3/2)(black curve), current jump(blue curve) and applied voltage used to keeping 
the same discharge power around 0.9 W/cm2(red curve) as a function of concentration of O2 (b) Absolute density of N (2p3 
4S3/2)(black curve), current jump(blue curve) and discharge power correspond to the same applied voltage at 17.1 kVpp(red 

curve) as a function of concentration of O2. Measurement conditions: f=2 kHz, flow rate=1.0 L/min 

These results clearly indicate that the density of N(4S) at the plateau decreases for increasing oxygen 

concentration. The calculations performed with the 0D model show a similar behavior. An example 

of numerical results obtained for a set of simulations performed at a constant voltage for different 

oxygen concentrations is presented in Figure 3-22. 

 

(a) (b) 

(a) (b) 
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Figure 3-22 numerical results corresponding to simulations performed for the same conditions of Figure 3-21(b): 
HV=17.1 kVpp, f=2 kHz, flow rate=1.0 L/min 

An analysis of the main destruction mechanisms of N(4S) was performed using the model (see 

Appendix 1 section IV.1.1 for details). When O2 is introduced in the discharge, the main losses are 

due to reactions of N(4S) with oxidizing species. According to the model, the dominant reactions are 

N(4S) + NO → N2 + O(3P,1 D)  and N(4S) + O(3P) + N2 → NO + N2 . Thus, the decrease of the N(4S) 

density for increasing O2 concentration can be ascribed to a larger consumption of N(4S) by oxidizing 

species. The careful examination of the N(4S) density decay in post-discharge presented in section 

III.2 confirms this result.  

The results obtained at constant applied voltage or input power exhibit similar trends. And the N(4S) 

density is always found higher for a given ppm of oxygen when the voltage is kept constant, since the 

discharge power with a constant applied voltage is always higher than 0.9 W/cm2 for small oxygen 

addition. It probably induces a higher production rate of N(4S) atoms.  

It is interesting to note that the evolution of the discharge power and the current jump are quite 

similar. At constant applied voltage, a small addition of oxygen increases the current jump indicating 

that more seed electrons are produced between two successive discharges. Thus, starting from a 

higher electron density for the same multiplication factor exp(αd) results in an increase of the 

discharge current and thus on the dissipated power (see Figure 3-21(b)). Consequently, if one wants 

to keep the same power when oxygen is introduced in the discharge, it is necessary to decrease the 

applied voltage (see Figure 3-21(a)). 

Another interesting point concerns the profile of the N(4S) density for the different oxygen 

concentration and especially the density rise at the entrance of the discharge. Whereas the N(4S) 

density sharply increases for low oxygen concentrations, the density rise is much gradual for a higher 

concentration of oxygen. It can be due to the higher destruction of N(4S) by oxidizing species or to a 

stronger decrease of the discharge power at the discharge entrance for increasing oxygen 

concentration.  

Similarly to the high purity nitrogen case, measurements have been done as a function of time after 

discharge ignition at the position x=14 mm. The corresponding results are depicted in Figure 3-23.  
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Figure 3-23  Absolute density of N (2p3 4S3/2) as a function of time following the ignition of the discharge for different 
concentration of O2. Experimental conditions: HV=18.1 kVpp, f=2 kHz, gas flow=1.0 L/min 

For this set of experiments, the increase of the N(4S) density remains stiff even for high oxygen 

concentrations. Time-dependent measurements performed at x=14 mm imply that the small gas 

volumes carried by the gas flow previously pass through a well-established discharge along 14 mm 

before being probed by TALIF. In the frame of these gas volumes, the discharge power increases 

quickly in time. On the contrary, for measurements performed for different x positions in the 

stationary state, the probable stronger decrease of the power density at the discharge entrance for 

high oxygen concentrations results in a more gradual increase of the N(4S) density.  

In order to quantify the growth of the N(4S) density, the curves [N(4S)]=f(t) were fitted by a function 

of form  f(t) = N( S4 )ss(1 − exp (−t τ⁄ )), where N( S4 )ss represents the N(4S) density at steady 

state, and 𝜏 represents the characteristic growth time. The corresponding results are presented in 

Figure 3-24.  

 

Figure 3-24 Characteristic time for the increase of N (2p3 4S3/2) density as a function of concentration of O2 

It can be seen that the higher the oxygen concentration is; the lower the characteristic time 𝜏 is, i.e. 

the steady state is reached faster. To investigate this phenomenon, numerical calculations have been 

(a) 
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performed using the model presented in Appendix 1 for different oxygen concentrations and a 

constant applied voltage. Note that in these simulations the input power is constant, in good 

agreement with the situation described above for time-dependent measurements. The 

corresponding results are presented in Figure 3-25.  

 

Figure 3-25 Simulation results for the N (2p3 4S3/2) density as a function of time following the ignition of the discharge for 
different concentration of O2. Simulation conditions: HV=18.1 kVpp, f=2 kHz, gas flow=1.0 L/min 

As can be seen, the model is able to reproduce the experimental behavior: as the amount of oxygen 

increases, the stationary value of the N(4S) density is reached faster. It can be directly explained by 

the increase of the N(4S) losses related to oxidizing species: the higher the loss rate, the faster the 

balance between production and destruction is established and the lower the resulting stationary 

density is.  

III.2. N (2p3 4S3/2) density in post-discharge for different oxygen concentration 

The evolution of the N(4S) density in the post-discharge is measured for different oxygen 

concentrations. The employed method is the same as the one used in high purity nitrogen: 

measurements are performed at x=14 mm as a function of time after switching off the discharge. The 

gas flow rate is set to 1.0 L/min and the voltage applied to the discharge before extinction was set to 

18.1 kVpp. The results are presented in Figure 3-26.   

As the O2 concentration increases, the shape of the curve [N(4S)]=f(t) changes. Especially, the slope of 

the curve for short time following discharge extinction is more and more negative. It can be 

explained by the presence of an increasing density of oxidizing species which efficiently react with 

N(4S). Among this species, O(3P) atoms and NO(X) molecules are susceptible to play an important role 

through the reactions N(4S) + O(3P) + N2 → NO + N2  and N(4S) + NO → N2 + O(3P,1 D) . A deeper 

investigation of the N(4S) decay in post-discharge is presented in chapter 6 section II.1. Indeed, it 

requires the knowledge of the O(3P) and NO(X) density to be performed, which are respectively 

presented in chapter 4 and 5.  
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Figure 3-26 Absolute density of N (2p3 4S3/2) as a function of time with different concentration of O2 from the start of 
extinction of discharge. Measurement conditions: f=2 kHz, HV=18.1 kVpp, flow rate=1.0 L/min, position=14 mm 

IV. Conclusion 

In this chapter, we present the results concerning the absolute density of N(4S) in an APTD in N2 and 

in the mixture of N2/O2. The measurements were performed as a function of the position, the gas 

flow, and the discharge power, and as a function of time. Moreover, the decrease of the density 

during the post-discharge was also studied. 

In summary, the density of N(4S) obtained is of the order of few 1014cm-3, the higher the oxygen 

concentration, the lower the N(4S) density. These values are slightly higher than the ones determined 

by Es. Sebbar [60,61] but remain in the same order of magnitude. The statistical error was estimated 

about ±9.11%, and the increase of the gas temperature during the discharge operation with respect 

to the temperature during the calibration can induce an overestimation of the density, which was 

estimated to be 15.8%. 

As a function of the position, the N(4S) increases at the entrance of discharge, then becomes constant, 

and finally decreases in the post-discharge region. 

N(4S) atoms are produced by direct electron impact dissociation of N2 molecules. In high purity 

nitrogen, losses are dominated by three-body recombination onto N2 molecules. Losses by diffusion 

to the walls also play a role and become dominant for the longer timescale. In the mixture N2/O2, the 

losses of N(4S) atoms are mainly due to reactions with oxidizing species i.e. N(4S) + O(3P) + N2 →

NO + N2 and N(4S) + NO → N2 + O(3P,1 D). 
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Chapter 4. TALIF measurements of atomic oxygen O (2p4 3PJ) density 

This chapter is dedicated to the TALIF measurements on O (2p4 3PJ) in homogeneous Townsend 

discharges in the mixture N2/O2. As is mentioned in chapter 3 for N(4S), we will use O(3P) instead of 

O (2p4 3PJ) in most discussions except in some particular discussions which need to detail the ground 

state. First, the method used for the TALIF measurements on O (2p4 3PJ) is described. Then, we 

present the calibration procedure using xenon and we discuss the experimental errors. Finally, the 

results obtained in the mixture N2/O2 are presented and discussed.  

I. Methodology employed for the TALIF measurements on O (2p4 3PJ) 

The excitation scheme of O (2p4 3PJ) is depicted in Figure 4-1.  

 

Figure 4-1 Tow-photon excitation schema of oxygen. The level energies are given in cm-1 

The ground state O (2p4 3PJ) and the excited state O (3p 3PJ’) are divided into three levels with 

different orbital angular momentum quantum numbers, J=2, 1, 0 and J’=1, 2, 0 respectively. Since the 

energy of the upper three levels are very similar and can’t be distinguished during laser excitation 

and fluorescence detection, we consider these three levels as one level. Nevertheless, this 

approximation can’t be done for the ground state which three levels have very different energies. 

Consequently, they have to be individually excited with theoretical excitation wavelengths of 

2×225.792 nm, 2×226.192 nm, and 2 × 226.375 nm respectively. Figure 4-2(a) and (b) show the 

excitation spectrums of O for the J=2 and J=1 levels. Unfortunately, for the level characterized by J=0, 

the corresponding fluorescence intensity is too low to allow a correct and reliable measurement.  
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Figure 4-2 (a) and (b) Excitation spectrum for the transition O (2p4 3P2) -> O (3p 3PJ’) obtained in a Townsend discharge in a 
mixture of 200 ppm O2 Measurement conditions: P=0.9 W/cm2, f=2 kHz, flow rate=1.0 L/min, x=14 mm 

According to the excitation scheme of O (2p4 3PJ) atom and to the above discussion, the total density 

of O (2p4 3PJ) is given by the sum of the three sub-levels, which are populated according to the 

Boltzmann law. Thus, for each level, we can calculate the Boltzmann factor 𝑓𝐽 whose expression is: 

      𝑓𝐽(𝑇) =
(2𝐽+1)𝑒

𝐸𝐽
𝑘𝐵𝑇

∑ (2𝑗+1)𝑒

𝐸𝑗
𝑘𝐵𝑇

𝑗=2.1.0

     (4.1) 

Hence, the total density of O (2p4 3PJ) should be given by: 

𝑛𝑂 = ∑ 𝑛𝐽𝐽 =
𝑛𝐽

𝑓𝐽
     (4.2) 

Considering a gas temperature of T=300K, the Boltzmann factors 𝑓𝐽 are 0.74, 0.21 and 0.05 for 

J=2,1,0 respectively. Figure 4-3 represents an example of TALIF measurements in which the absolute 

densities of the J=2 and J=1 states have been determined as a function of the position in the 

discharge. The total density of the ground state has also been determined following equation (4.2) 

using the densities and Boltzmann factors of the J=1 and J=2 states. As can be seen, a good 

agreement is found between these two different determinations indicating that the considered 

temperature is close to the gas temperature. Note that due to the small energy difference between 

these levels, this method is inaccurate to determine the gas temperature [86]. The smaller 

fluorescence signal of the J=1 level results in a decrease of the signal to noise ratio which in turns 

results in oscillations in the corresponding curve of the overall density. Consequently, the overall O 

(2p4 3PJ) ground state density is determined using equation (4.2) and probing only the J=2 level in this 

work. 

(a) (b) 
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Figure 4-3 Relative density of O (2p4 3PJ) for J=2, 1 respectively, total density calculated by taking the Boltzmann factor fJ into 
account. Measurement conditions: P=0.9 W/cm2, f=2 kHz, HV=17.1 kVpp, position=14 mm, flow rate=1.0 L/min, 

concentration of O2=200 ppm 

As for the measurements of N (4S) density, it is necessary to determine the linear working domain in 

terms of laser energy corresponding to an unsaturated transition. Figure 4-4 shows the TALIF signal 

of O (2p4 3P2) as a function of laser energy in logarithmic coordinate. 

 

Figure 4-4 Log-log plot of the O atom fluorescence signal as a function of laser energy. Measurement conditions:  P=0.9 
W/cm2, f=2 kHz, HV=17.1 kVpp, position=14 mm, flow rate=1.0 L/min, concentration of O2=200 ppm 

As can be seen, the linear regime characterized by a slope of 2 is obtained for a laser energy below 

90µJ. Consequently, the measurements are performed around 75 µJ in order to have a good signal to 

noise ratio.  

II. Calibration of the TALIF signal using xenon 

Measurements of O(3P) are calibrated using xenon which has a very similar excitation scheme. The 

saturation during excitation of Xe at low pressure occurs at a very low laser energy, which cannot be 

measured accurately with our energy meter. Thus during calibration, xenon is diluted in argon (with a 

typical ratio of Xe/Ar about 1:4000) for a typical pressure of 250 mbar. Consequently, the quenching 

rate of Xe increases thus decreasing the saturation energy level to a measurable value of 6 μJ. 
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A typical excitation spectrum of Xe is provided in Figure 4-5(a) whereas the evolution of the TALIF 

signal with respect to the laser energy is presented in Figure 4-5(b).  

  

Figure 4-5 (a) Excitation spectrum for the transition Xe(5p6 1S0)) -> Xe(6p’ [3/2]2) obtained in a mixture of Ar/Xe. (b) Log-log 
plot of the Xe atom fluorescence signal as a function of laser energy. Measurement conditions:  p(Xe)=0.062 mbar, 

p(Ar)=249.54 mbar, x=14 mm 

Nevertheless, increasing the pressure in the vessel induces a serious drawback regarding the TALIF 

measurement and especially the fluorescence detection [64,74]. Indeed, after populating the 

6p’[3/2]2 state by laser excitation, xenon atoms can decay by emitting photons at 834.68 nm which 

corresponds to the fluorescence signal of interest. But the 6p’[3/2]2 state can also be quenched to 

lower levels. Among these levels, the 6p[3/2]2 and 6p[1/2]0 are of primary importance because they 

can experience a radiative decay to the 6s[3/2]2 or 6s[3/2]1 states respectively with corresponding 

wavelengths of 823.16 nm and 828 nm. These wavelengths are closed to the fluorescence 

wavelength of interest and can thus be detected during the measurements. A schematic diagram 

representing the different levels and transitions of interest is presented in Figure 4-6. 

 

Figure 4-6 Tow-photon excitation schema of xenon.  

To avoid this problem, it is recommended to use a very narrow bandpass filter or a monochromator. 

Unfortunately, when the calibration was performed, we only had one interference filter with a 10 nm 

bandwidth centered on 830 nm. Consequently, both the emissions at 828 nm and 834.7 nm were 

collected because the transmission efficiencies Tr of the filter are respectively Tr =59.9% and 

Tr=55.6%. The emission at 823 nm is more efficiently removed due to the low transmission of the 
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filter at this wavelength, Tr=1%. To overcome this problem, we tried to estimate the relative 

proportion of the collected signals at 828 nm and 834.7 nm by analyzing the fluorescence signal with 

a spectrometer. An example of such measurement is depicted in Figure 4-7 together with the 

spectral transmission of the interference filter used in the experiments for comparison. Nevertheless, 

this measurement was performed with a high laser energy of 150 μJ which is well above the energy 

threshold of the saturated regime. Indeed, we did not succeed in measuring the spectrally resolved 

fluorescence signal for a laser energy below 6μJ. Thus, this measurement cannot be used to estimate 

the error during the calibration procedure. Another attempt was made using the monochromator 

used for LIF measurements on NO but again, we did not succeed in measuring the TALIF signal at low 

laser energy. Consequently, the simultaneous detection of the signals at 828nm and 834.7nm 

introduces a non-negligible uncertainty regarding the absolute values of the O(3P) density which is 

difficult to determine.  

 

Figure 4-7 Transmission coefficient of the filter (black one) and the TALIF emission spectra of Xe (red one) 

The calibration factor is then calculated following the method described in equation (3.2). Table 4-1 

summarizes all the parameters taken from literature used in the calculation of the absolute density.  

Table 4-1 Parameters used for the calculation of absolute density of O atom 

parameters O Xe 

𝑇 0.54 0.60 

𝜂 0.93 1.26 

𝜎𝑋𝑒 𝜎𝑂⁄  1.9 [75] 

𝐴32(107 s-1) 3.324 [87] 2.09 [88] 

𝐴3(107 s-1) 3.324 [87] 2.85 [88] 

𝑘𝑞(O2) (10-10 cm3/s) 9.4 [75]  

𝑘𝑞(N2) (10-10 cm3/s) 5.9 [71]  

𝑘𝑞(Xe) (10-10 cm3/s)  3.6 [75] 

𝑘𝑞(Ar) (10-10 cm3/s)  1.8 [89] 

 

It should be noted that, the two-photon absorption cross section 𝜎 is the sum of the excitation from 

one J ground state to the three J’ excited state, and can be considered as equal for all the three J 

level of the ground state, as well as the ratio of cross section according to [90]. Moreover, the gas 

temperature was determined experimentally by OES (see section I.3) and was found to be within the 
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range [300 K;430 K]. Consequently, we consider the quenching coefficients coming from the 

literature and determined at room temperature. The error introduced by this assumption is 

discussed in the next section. According to Niemi et al. [4], the error concerning the value of the ratio 

of two-photon absorption cross section of O and Xe atom is around 20%.  

To obtain the calibration factor, TALIF measurements on xenon were performed at different 

locations along the discharge. Using the data provided in Table 4-1, the calibration factor is then 

obtained within the whole discharge. The corresponding results are presented in Figure 4-8.  

 

Figure 4-8 Calibration coefficient as a function of position 

III. Influence of the gas temperature on TALIF measurements 

In chapter 3 section I.3, we show that the gas temperature can increase during the experiments up to 

430 K. This can affect the quenching rate and the relative populations of the three J levels of O(3P). In 

this section, an estimation of the error due to the temperature is provided. 

The overall O(3P) density n(O) obtained from TALIF measurements is given by the following relation: 

𝑛(𝑂) = CF𝑂/𝑋𝑒 ×
𝑆𝑇𝐴𝐿𝐼𝐹(𝑂)

(
𝐸𝐿

ℎ𝜈𝑙𝑎𝑠𝑒𝑟
)

2
(𝑂)

×
(𝑄3+𝐴3)

𝐴32
(𝑂) ×

1

𝑓2
   (4.3) 

Thus if the gas temperature 𝑇 is different from 𝑇0, the resulting error committed by considering 𝑇0 

instead of 𝑇 is given by the factor 

(𝑄3 + 𝐴3)𝑇

(𝑄3 + 𝐴3)𝑇0

×
𝑓2𝑇0

𝑓2𝑇

 

Assuming that the quenching of excited oxygen atoms is mainly due to nitrogen molecules and 

considering T0=300 K and T=430 K, we obtain 
(Q3+A3)430K

(Q3+A3)300K
= 0.837 and  

f2300K

f2430K

=1.03 indicating that 

the main effect of the temperature is related to the quenching rate. Finally, an increase in the 

temperature up to 430 K during the experiments result in an overestimation of the density of O(3P) 

by 13.8%. 
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IV. Absolute atomic oxygen density in the mixture N2/O2 

In this part, we investigate the evolution of the absolute density of O(3P)  with the variation of oxygen 

concentration, the influence of the discharge power, the creation and the destruction of O(3P) during 

and after the discharge. The error bars shown in the figures are based on the reproducibility of the 

measurements, which is ±15.7% on average, it does not take into account the influence of the gas 

temperature discussed above.  

IV.1. Absolute density of O (2p4 3PJ) as a function of the position in the discharge for various 

oxygen concentration 

Figure 4-9(a) and (b) show the evolution of absolute density of O(3P) as a function of the position in 

the discharge, for different concentrations of O2 ranging between 25 ppm and 200 ppm for a total 

flow rate of 1.0 L/min. Measurements are performed in the stationary state. In this set of 

measurements, the discharge power is kept constant, around 0.9 W/cm2 by adjusting the applied 

voltage. The frequency is 2 kHz.  

 

Figure 4-9 Absolute density of O (2p4 3PJ) as a function of position for different concentration of O2. (a) Concentration of O2 

from 25 ppm to 75 ppm; (b) Concentration of O2 from 100 ppm to 200 ppm. Measurement condition: P=0.9 W/cm2, f=2 kHz, 
flow rate=1.0 L/min. 

Similar experiments performed with a constant applied voltage of 17.1kVpp are presented in Figure 

4-10. 

 

(a) (b) 

(a) (b) 
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Figure 4-10 Absolute density of O (2p4 3PJ) as a function of position for different concentration of O2. (a) Concentration of O2 

from 25 ppm to 75 ppm; (b) Concentration of O2 from 100 ppm to 200 ppm. Measurement condition: HT=17.1 kVpp, f=2 kHz, 
flow rate=1.0 L/min. 

 

The spatial profiles of the O(3P) density present similar features compared to the N(4S) profiles. First 

[O(3P)] increases, reach a plateau and then decreases in post-discharge. As previously explained, this 

behavior can be due to the superimposition of several effects arising in time and space:  

- the discharge power increases from the entry of the discharge to the exit,  

- the gas flow is responsible for the transport of the produced species, 

- the presence of the plateau indicates an equilibrium between the production and the 

destruction of O(3P).  

The maximum O(3P) density measured in our conditions is around 3.5 1014 cm-3. For some conditions, 

the O(3P) profile is different. For example, at 50 ppm and 0.9 W/cm2, the density increases until 

x=5 mm and then decreases and no plateau is observed. It can be due to experimental errors during 

the measurements. For example, a small vertical displacement during the translation of the discharge 

cell can occur. In this case, the laser beam crosses the discharge at different vertical positions. 

Nevertheless, this phenomenon should also occur for other measurements performed at different 

ppm, which is not systematically observed. This particular profile of O(3P) density can also have a 

physical origin. Indeed, the composition of the gas changes along the discharge and the production 

and destruction rates of O(3P) atoms can vary accordingly.  

IV.2. Absolute density of O (2p4 3PJ) as a function of oxygen concentration 

A summary of the O(3P) density measured for the different O2 concentrations at x=14 mm is 

presented in Figure 4-11. Figure 4-11(a) corresponds to measurements performed at 0.9 W/cm2 

whereas Figure 4-11(b) presents the results obtained for a constant applied voltage of 17.1kVpp. The 

measured current jump and applied voltage or discharge power are also presented. To investigate 

the influence of the O2 concentration on the O(3P) density, numerical simulations are performed 

considering a constant applied voltage of 17.1 kVpp and the corresponding results are presented in 

Figure 4-11(c) for comparison. Experimental and numerical results are discussed in the following.  

For both series of experiments, the O(3P) concentration increases from 0 to 100 ppm of oxygen 

whereas for higher O2 concentrations, the O(3P) density is roughly constant. At first sight, it seems 

counterintuitive since O(3P) atoms directly come from the dissociation of oxygen molecules. To 

understand this behavior, it is necessary to have a look at the chemical pathways leading to the 

production of O(3P). Basically, in low-temperature plasma, the energy necessary for O2 dissociation is 

brought either by free electrons or by heavy species in the excited state. In a Townsend discharge for 

low oxygen concentration, the dissociation of O2 molecules by electrons is negligible because of the 

low electron density which maximum value is about 107 cm-3 for an APTD in pure N2 [31]. In the same 

conditions, N2(A) metastable molecules have densities up to 1013 cm-3. Consequently, the O2 

dissociation occurs mainly during their collisions with N2(A) through the reaction N2(A) + O2 → N2 +

O(3P) + O(3P), as indicated by the results of the model (see Appendix 1 section IV.2.1 for the detailed 

analysis). In the numerical results presented in Figure 4-11(c), the O(3P) density shows qualitatively a 

similar behavior: it increases when increasing the O2 concentration but this increase is less and less 

pronounced as the O2 concentration increases. In the simulations, this behavior is directly related to 

the decrease of the N2(A) concentration as indicated in Figure 4-11(c). Indeed when increasing the O2 
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concentration, the quenching rate of N2(A) also increases. Thus it probably limits the dissociation of 

O2 and consequently the production of O(3P).  

 

 

Figure 4-11 Absolute density of O (2p4 3PJ) as a function of concentration of O2. (a) in keeping the same discharge power 
around 0.9 W/cm2 by regulation the applied voltage; (b) in keeping the same applied voltage at 17.1kVpp (c) simulation 

results corresponding to the experimental result of (b). Measurement conditions: f=2 kHz, position=14 mm, flow 
rate=1.0 L/min. 

The production of O(3P) with respect to the input O2 concentration can be described using the 

dissociation degree of molecular oxygen which can be defined by the ratio [O(3P)]/[O2] [91]. The 

corresponding results are presented in Figure 4-12(a) for the measurements performed at x=14 mm.  

(a) (b) 

(c) 
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Figure 4-12 Dissociation degree of O atom in a Townsend discharge: (a) experimental results (b) simulation results obtained 
for a constant applied voltage 

As can be seen, the dissociation degree decreases when increasing the O2 concentration. Numerical 

results presented in Figure 4-12 (b) present the same trend. This decrease is much pronounced for 

the set of experiments performed at the constant voltage.  A possible explanation is that the 

discharge power is higher at the constant voltage for low O2 concentrations as depicted in Figure 

4-11(b). To confirm this hypothesis, it is necessary to perform measurements for different discharge 

powers.   

IV.3. Absolute density of O (2p4 3PJ) as a function of discharge power 

To investigate the effect of the discharge power on the production of O(3P) atoms, experiments are 

performed for 200 ppm of O2 and an applied voltage of 17.1 kVpp. The discharge power is varied from 

0.4 W/cm2 to 2.6 W/cm2 by changing the frequency of the sinusoidal applied voltage from 1.5 kHz to 

4.0 kHz. The corresponding results are presented in Figure 4-13(a). In addition, the evolution of the 

current jump Ijump is also provided. Note that it is not possible to determine Ijump for the two lower 

discharge powers because it is too small. Moreover, at 2.6 W/cm2 (i.e. at 4 kHz), the discharge starts 

to become filamentary, consequently, the corresponding current jump is not shown. Numerical 

results corresponding to simulations performed for the same conditions are presented in Figure 

4-13(b). 
 

 

Figure 4-13 Absolute density of O (2p4 3PJ) as a function of discharge power. (a) experimental results (b)simulation results. 
Measurement condition: HV= 17.1 kVpp, position=14 mm, flow rate=1.0 L/min, concentration of O2=200 ppm 

(a) (b) 

(a) (b) 
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In the range of investigated power, the density of O(3P) is directly proportional to the input power. 

Between 0.4 W/cm2 and 2.6 W/cm2, the O(3P) density increases by a factor 3.8. Numerical results 

presented in Figure 4-13(b) present a similar trend: the O(3P) density increases for increasing 

discharge power. Since in our conditions O(3P) atoms are mainly produced during dissociation of O2 

by N2(A) metastable molecules, it is interesting to discuss the effect of the frequency on the 

production of N2(A). 

The influence of the applied frequency on the discharge parameters was described in chapter 3 

section II.3. We saw that increasing the frequency result in an increase of the electron density 

whereas the gas gap voltage remains roughly the same. Consequently, the production rate of N2(A) 

metastable by electron impact increases due to the higher electron density resulting in a higher 

production of O(3P) atoms. To check the consistency of this hypothesis the evolutions of the 

discharge current Id and of the gas gap voltage Vg are presented in Figure 4-14.  

 

Figure 4-14 The maximum value of gas voltage (black one) and discharge power (red one) as a function of frequency 

The gas gap voltage Vg slightly decreases when increasing the frequency from 6748 V at 1.5 kHz to 

5394 V at 4 kHz. This evolution means that the breakdown is easier for higher frequencies. As 

explained in chapter 3 section II.3 , it can be explained by an increase of the gas temperature 

together with an increase of the memory effect. This last phenomenon is illustrated by the evolution 

of the current jump presented in Figure 4-13. Contrary to the evolution of Vg, the maximum 

discharge current Idmax increases linearly when increasing the frequency from 1.27 mA at 1.5 kHz to 

5.66 mA at 4 kHz in good agreement with the previous discussion. Thus, following the previous 

discussion, increasing the frequency probably results in an increase of the maximum N2(A) density, 

the latter occurring just after the maximum discharge current according to numerical calculations 

(see e.g. Figure A- 3 in Appendix 1). To verify this, the evolution of the maximum N2(A) density and of 

the N2(A) density between two discharges provided by the model are presented in Figure 4-15. One 

can see that the maximum N2(A) density increases when increasing the power, from 7 1013 cm-3 to 9.2 

1013 cm-3 i.e. by a factor 1.3.  
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Figure 4-15 Absolute density of N2(A) as a function of discharge power  

Increasing the frequency also decreases the time period during which the discharge is OFF. During 

this time period, no more N2(A) are produced by electronic excitation and the N2(A) density decays 

due to its quenching by the different species (see e.g. Figure A- 4 in Appendix 1). As a consequence, 

increasing the frequency decreases the time during which N2(A) are quenched and thus considerably 

increases the N2(A) density between two successive discharges. This effect is clearly visible in Figure 

4-15. The N2(A) density between two discharge increases from 2.2 1011 cm-3 to 2.2 1012 cm-3 i.e. 

approximately by a factor 10. To conclude, it is important to consider the averaged N2(A) density, the 

latter increasing when the applied frequency increases (at a constant applied voltage) resulting in a 

higher production of O(3P) atoms.  

Note that, the observed increase of the O(3P) density for increasing discharge power confirms the 

hypothesis proposed in the previous section to explain the higher O(3P) density presented in Figure 

4-12 for measurements performed at the constant voltage. 

IV.4. Evolution of the O (2p4 3PJ) density during a period of the applied voltage 

The previous discussion suggests that the role played by N2(A) metastable molecules is of primary 

importance. Thus, in this section, we are interested in the evolution of the O(3P) density during a 

discharge period to see if O(3P) density is modulated by the variations of the N2(A) density. 

Measurements are performed at x=14 mm for 200 ppm of O2. The corresponding experimental 

results are presented in Figure 4-16(a). The results corresponding to numerical simulations 

performed for the same conditions are presented in Figure 4-16(b) for comparison.  
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Figure 4-16 Absolute density of O (2p4 3PJ) as a function of instant of discharge.(a) experimental result (b) simulation result. 
Measurement condition: P=0.9 W/cm2, HV= 17.1 kVpp, f=2 kHz, position=14 mm, flow rate=1.0 L/min, concentration of 

O2=200 ppm 

The experimental O(3P) density presented in Figure 4-16(a) seems to be uncorrelated to the 

discharge current and exhibits no significant variations. Actually, the measured fluctuations are on 

the order of the experimental standard error.  It means that if the O(3P) density varies, we are not 

able to measure its fluctuation because the experimental precision is too low. Since O(3P) atoms are 

mainly produced by O2 dissociation induced by N2(A), one should expect a modulation of [O (3P)] 

related to the variations of the N2(A) concentration. In [58], Dilecce et al. measured the N2(A) 

concentration in similar conditions. They found that the maximum N2(A) concentration is about 1.25 

1013 cm-3 at 200 ppm of O2 in N2 with a quenching rate about 3 10-4 s-1. If we consider that the 

maximum N2(A) concentration is reached just after the maximum of the discharge current, the N2(A) 

density between two discharges i.e. 0.1 ms later is about 6.2 1011 cm-3. It is thus strongly modulated. 

To understand this behavior, simulations are performed with the 0D model. The same behavior is 

observed on the numerical results presented in Figure 4-16(b). For sake of clarity, the detailed 

analysis of this behavior is presented in Appendix 1 section IV.2.2 and we present here the main 

conclusion of this numerical investigation. The quasi-constant O(3P) density can be attributed to a 

simultaneous modulation of the production and destruction rate of O(3P) atoms, both connected to 

the modulation of the N2(A) density. Indeed, N2(A) play a major role in the production of O(3P) as 

discussed previously, but also in its destruction through the reactions N2(A) + O(3P) → N2 + O(1S) 

and N2(A) + O(3P) → NO + N(2D).  

IV.5.  O (2p4 3PJ) density in post-discharge for different oxygen concentration  

The evolution of the O(3P) density in the post-discharge is measured for different oxygen 

concentrations. For this purpose, measurements are performed at x=14 mm as a function of time 

after switching off the discharge. The gas flow rate is set to 1.0 L/min and the voltage applied to the 

discharge before extinction is set to 18.1 kVpp. The results are presented in Figure 4-17.   

(a) (b) 
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Figure 4-17 Absolute density of N (2p3 4S3/2) as a function of time with different concentration of O2 from the start of 
extinction of discharge. Measurement conditions: f=2 kHz, HV=18.1 kVpp, flow rate=1.0 L/min, position=14 mm 

The decrease of the O(3P) density depends on the density of other species such as N(4S) and NO(X). 

Then, a common study of the densities of N(4S), O(3P) and NO(X) in post-discharge is performed in 

chapter 6 section II.  

V. Conclusion 

Using the TALIF technique, the density of O(3P) was determined under different experimental 

conditions. The three sub-levels of the O(3P) ground state required first to check if their respective 

populations obey the Boltzmann distribution. Then, the experimental errors related to the gas 

temperature and to the interference filter used for the measurements were investigated.  

The measured O(3P) densities were found to be about few 1014 cm-3, with a maximum value of 

4 1014 cm-3. These values are in good qualitative agreement with the ones obtained by Es-Sebbar [59]. 

O(3P) atoms are mainly produced by O2 dissociation induced by N2(A) metastable molecules due to 

the low electron density in APTD.   

The influence of the oxygen concentration on the O(3P) density was studied. For small addition of O2 

(i.e. <100 ppm), the O(3P) concentration increases linearly whereas for higher O2 concentration the 

increase of the O(3P) density was found to be less and less pronounced as the O2 concentration 

increases. The corresponding dissociation degree of O2 decreases as the O2 concentration increases. 

This effect was attributed to the decrease of the N2(A) density for increasing oxygen concentrations, 

N2(A) being efficiently quenched by oxidizing species.  

The influence of the discharge power was also investigated by changing the excitation frequency. It 

was observed that increasing the power results in an increase of the O(3P) density, probably because 

of a higher averaged N2(A) density.  

The O(3P) density was measured at different times during a discharge period. No significant evolution 

was observed despite the probable strong variations of the N2(A) density. Numerical investigations 

show that it is due to a simultaneous modulation of the production and destruction mechanisms of 

O(3P) atoms, both mechanisms being strongly related to the N2(A) concentration.
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Chapter 5. LIF measurements of absolute nitric oxide NO(X2) density  

In this chapter, we present the results of the NO(X2) density measurements by laser-induced 

fluorescence. In the following discussions, we will replace NO (X2) by NO(X) except the discussions 

which are needed to show the detail of the ground state. First, the excitation and detection schemas 

are presented and the LIF method is described. Then, the calibration procedure is described and the 

experimental errors are discussed. Finally, the obtained results are presented.  

I. Methodology employed for the LIF measurements on NO(X2) 

During LIF measurements, NO molecules are excited from the NO(X2,v=0) state to the NO(A2,v=0) 

state where v denotes the vibrational number. The corresponding laser wavelength is around 226 nm. 

The detected fluorescence signal is the full band corresponding to the transition from NO(A2,v=0) to 

NO(X2,v=1) around 236.6 nm as is shown in Figure 5-1. Note that the energy levels of the ground 

state NO(X2) are best described by the Hund’s case (a) and consequently, we use the quantum 

number J to designate the different rotational levels. 

 

Figure 5-1 Excitation schema of NO(X2) 

Choosing an appropriate ro-vibronic transition is important when doing LIF measurements. Ideally, a 

good choice corresponds to a well-isolated line with a high intensity and poorly dependent on the 

temperature.  Figure 5-2 presents a typical example of an experimental excitation spectrum of the 

NO- (0,0) ro-vibronic band. Note that the excitation spectrum of Figure 5-2(b) is obtained with a 

higher spectral resolution than the spectrum of Figure 5-2(a). To identify the different lines 

composing the excitation spectrum, the LIFBASE software is used [92]. Note that the wavelengths 

indicated in Figure 5-2 correspond the experimental wavelengths.  In the following, we will refer to 

these wavelengths. The additional wavelengths sometimes indicated in parentheses correspond to 

the theoretical wavelengths provided by the LIFBASE software in vacuum.    

NO(A2∑) 

226nm 

3 
2 
1 
0 
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Figure 5-2(a) Excitation spectrum of NO(X2)  measured at 14 mm of discharge with  0.9 ppm NO in N2 for a total pressure 

of 1025 mbar  (b) Excitation spectrum of NO(X2)  measured at 14 mm of discharge with  1.8 ppm NO in N2 for a total 
pressure of 1025 mbar. Transition for the detection γ(01) 

Our original choice was to use the P21+Q1 band head of the sub 2 21/2 system indicated by label 

(1) in Figure 5-2(a), because the signal is very high and less sensitive to temperature variations 

according to [93]. Nevertheless, this line is too close to other lines which makes challenging a good 

determination of its area. Consequently, we decided to use a line located around 226.188 

(226.057) nm and labeled (2’) in Figure 5-2(b). Line (2’) corresponds to the first line of the doublet 

indicated by (2) on Figure 5-2(a) and corresponds to the ro-vibronic transitions 

Q21(7.5)+Q12(27.5)+P12(36.5)+R1(7.5)+P2(27.5) where the number in parentheses refers to the 

rotational quantum number J. It offers the advantage to be sufficiently well isolated from other lines 

and remains sufficiently populated at moderate rotational temperature by LIF in our conditions. 

Figure 5-3 presents an example of a LIF excitation profile of this line used for the NO(X) density 

measurements. 

 

Figure 5-3 Excitation spectrum for the transition NO(X2) -> NO (A2∑) in a mixture of 1.8 ppm NO in N2 for a total pressure of 
1025 mbar. Measurement condition: x=14 mm 

Once the rotational line is chosen, it is necessary to determine the laser energy range in which the 

fluorescence signal remains linear with respect to the laser energy. Figure 5-4 presents an example of 

such determination.  

 (2) 

 (1) 

2 23/2 

(a) 

2 21/2 

(2’) 

2 21/2 

(b)  (1) 
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Figure 5-4 Log-log plot of the NO(X2) molecule fluorescence signal as a function of laser energy. Measurement conditions:  
position=14 mm, 0.9 ppm NO in N2 for a total pressure of 1025 mbar 

As can be seen, the onset of the saturation is located around 7-8 µJ. Consequently, measurements 

are performed around 4 µJ during experiments. 

II. Calibration of NO(X2) measurements  

The calibration of LIF measurements is done using experimental conditions as close as possible to the 

conditions of the experiments with discharge ON. The vessel is filled with a mixture of N2 and a small 

amount of NO up to atmospheric pressure.  Then measurements are performed using the excitation 

and detection scheme previously described. During the calibration, the discharge is OFF. This way, 

the quenching coefficient of NO(A2,v=0) remains close to the experimental one since it is dominated 

by N2.   

Calibration measurements are performed for different concentration of NO to check the 

proportionality between the NO concentration and the LIF signal, keeping the same laser energy. 

Results are presented in Figure 5-5.  

 

Figure 5-5 Linearity of the normalized fluorescence signal as a function of normalized NO concentration  
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Measurements are then performed along the discharge cell in order to calculate the calibration 

factor CF for the different positions x. If one assumes a similar temperature during the calibration 

and the measurements, the NO(X) density can be calculated using the following relation: 

[𝑁𝑂] = [𝑁𝑂]𝑐𝑎𝑙𝑖𝑏 ∙
[𝑆𝐿𝐼𝐹/𝐸]

[𝑆𝐿𝐼𝐹/𝐸]𝑐𝑎𝑙𝑖𝑏
    (5.1) 

where [NO] represents the experimental NO(X)  density, E is the laser energy and SLIF the LIF signal, 

during the experiments. The subscript 𝑐𝑎𝑙𝑖𝑏 indicates the values during the calibration. Then, the 

calibration factor reduces to CF = [NO]calib [SLIF/E]calib⁄ . 

The evolution of the calibration factor with respect to the position along the discharge cell is 

presented in Figure 5-6.  

This approach is valid only if the gas temperature is the same during the experiments and the 

calibration. It is thus necessary to estimate the influence of the gas temperature on the calibration 

factor, which is the purpose of the next section. 

 

Figure 5-6 Calibration factor as a function of position 

III. Influence of the gas temperature 

A change in the gas temperature during experiments induces two main drawbacks regarding the 

estimation of the NO(X) density from LIF measurements. First, the quenching coefficients are 

modified. Second, the population of the different rotational and vibrational states of the NO 

molecules can change. The aim of the present section is to estimate the errors relative to these two 

points.  

According to ref [63,94], the LIF signal can be described by equation (5.2): 

    𝑆𝐿𝐼𝐹 =
𝐶𝑜𝑝𝑡𝐸𝑝𝐴

𝑣′=0→𝑣"=1

[∑ 𝐴𝑣′𝑣"+𝑄(𝑃,𝑇𝑟𝑜𝑡)𝑣" ]
∑ (𝑓𝐵𝑖(𝑇𝑟𝑜𝑡)𝐵𝑖𝑔𝑖)[𝑁𝑂(𝑋, 𝑣 = 0)]𝑖    (5.2) 

where 𝐶𝑜𝑝𝑡 is a constant related to the experimental setup and 𝐸𝑝 is the laser energy per pulse. 𝐴 

and 𝐵𝑖  are Einstein coefficients for spontaneous emission and stimulated absorption respectively and 

can be found in ref [95]. 𝑓𝐵𝑖(𝑇𝑟𝑜𝑡) is the equilibrium Boltzmann fraction and 𝑇𝑟𝑜𝑡 is the rotational 

temperature. 𝑄 is the total quenching rate considering all the processes that depopulate the states 
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emitting the fluorescence signal. It depends on the translational temperature, which is considered to 

be equal to the rotational temperature 𝑇𝑟𝑜𝑡. 𝑔𝑖 is the line shape function and corresponds to a 

convolution between the laser and absorption profile. In our conditions, the pressure is similar in the 

measurements and during the calibration. Moreover, the gas temperature does not change too much, 

at most 130 K according to our measurements. As a consequence, the pressure and Doppler 

broadening of the lines can be assumed to be rather similar and the effect of 𝑔𝑖 are assumed to be 

negligible and are not considered in the following. 

The summation in equation (5.2) is performed over all the ro-vibronic transitions probed during the 

measurement.  

The relative populations of the different involved rotational states are taken into account through 

the Boltzmann factor 𝑓𝐵𝑖(𝑇𝑟𝑜𝑡) assuming that they are in equilibrium. Let us consider a ro-vibronic 

transition labeled by 𝑖. It corresponds to the absorption of a laser photon from the level NO(X2, 

J,v=0) to an upper level where J is used to identify the initial rotational level. Consequently, the 

emitted fluorescence signal directly depends on the population of level J, which in turn directly 

depends on 𝑇𝑟𝑜𝑡. The more important the population, the higher the corresponding fluorescence 

signal. The Boltzmann factor is given by equation (5.3) for the NO(X2) ground state [94]. 

    𝑓𝐵(𝐽, 𝑇𝑟𝑜𝑡) =
2𝐽+1

𝑍𝑟𝑜𝑡
𝑒

−
𝐸𝐽

𝑘𝐵𝑇𝑟𝑜𝑡     (5.3) 

where 𝑍𝑟𝑜𝑡  is the rotational partition function and 𝐸𝐽 is the energy of the rotational states in the 

NO(X2,v=0) ground state. 𝐸𝐽is given by: 

𝐸𝐽 = 𝐵𝑣𝐽(𝐽 + 1) + 𝐾𝑒     (5.4) 

where 𝐵𝑣=1.705 cm-1 [94] is the rotational constant for the vibrational state 𝑣 =0 and 𝐾𝑒 is the 

electronic energy of the multiple terms that account for the spin-orbit splitting. In our case, we are 

interested in the 21/2 state, then 𝐾𝑒0. 

The rotational partition function can be calculated using the following equation:  

      𝑍𝑟𝑜𝑡 = ∑ (2𝐽 + 1)𝑒
−

𝐸𝐽

𝑘𝐵𝑇𝑟𝑜𝑡𝐽      (5.5) 

Applying equation (5.2) to the LIF measurement during the calibration and during the experiment 

leads to an improved form of equation (5.1), which takes into account the effect of the rotational 

temperature:       

[𝑁𝑂(𝑋, 𝑣 = 0)]𝑚 = [𝑁𝑂(𝑋, 𝑣 = 0)]𝑐𝑎𝑙𝑖𝑏 ∙
[𝑆𝐿𝐼𝐹/𝐸]𝑚

[𝑆𝐿𝐼𝐹/𝐸]𝑐𝑎𝑙𝑖𝑏
∙

[∑ (𝑓𝐵𝑖𝐵𝑖)𝑖 ]𝑐𝑎𝑙𝑖𝑏

[∑ (𝑓𝐵𝑖𝐵𝑖)𝑖 ]𝑚
∙

𝜏𝑐𝑎𝑙𝑖𝑏

𝜏𝑚
 (5.6) 

                                                                                                                                      CT1              CT2 

where  
τcalib

τm
=

[∑ Av′v"+Q(P,Trot)v" ]m

[∑ Av′v"+Q(P,Trot)v" ]calib
 

In equation (5.6), two corrections terms involving the rotational temperature appear: CT1, which 

accounts for the change in the rotational population and CT2, which accounts for the change in the 

quenching coefficients. In the following, we provide an estimation of CT1 and CT2.  
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III.1. Estimation of CT1 

The rotational temperature was estimated during experiments using the emission of the 2nd positive 

system of N2 as reported in chapter 3 section I.3. The maximum temperature measured was about 

𝑇𝑟𝑜𝑡=430 K, for a discharge power of 1.4 W/cm2. During the calibration, the rotational temperature is 

equal to the room temperature i.e. 𝑇𝑟𝑜𝑡=300 K.  

CT1 can thus be calculated using equations (3.3),(3.4) and (3.5) taking into account all the transitions 

composing the probed line i.e. Q21(7.5), Q12(27.5), P12(36.5), R1(7.5) and P2(27.5). Doing this, we find 

CT1=1.184. It means that neglecting the temperature dependence on the rotational population 

results can lead to an underestimation of the NO(X) density by 18.4%.  

III.2. Estimation of CT2 

The quenching of the excited NO(A,v=0) state can be determined experimentally. Figure 5-7 presents 

an example of the time evolution of the LIF signal during a calibration. In principle, this procedure can 

also be employed during experimental measurements. In practice, it was not done due to the very 

low LIF signal in these conditions. Note that to obtain a significant signal, the laser energy was 

increased beyond the saturation limit but it has no influence on the decay rate after the laser pulse. 

 

Figure 5-7 LIF signal as a function of time for the transition NO(X2) -> NO (A2∑) in a mixture of 1.8 ppm NO in N2 for a total 
pressure of 1025 mbar. Measurement conditions:  position=14 mm 

The exponential can be fitted to extract the characteristic decay time 𝜏𝑐𝑎𝑙𝑖𝑏. We find τcalib=51 ns, 

thus the total decay rate should be A + Qcalib = 1 τcalib⁄ = 1.96 × 107s−1. 

The natural lifetime 𝜏0 =
1

∑ Av′v"v"

= 205 ns of the NO(A,v=0) state can be found in the literature [94]. 

It is used to calculate the quenching coefficient 𝑄 using the relation: 

𝑄𝑐𝑎𝑙𝑖𝑏 =
1

𝜏𝑐𝑎𝑙𝑖𝑏
−

1

𝜏0
     (5.7) 

Applying this method, we find 𝑄𝑐𝑎𝑙𝑖𝑏= 1.47.107 s-1. Some quenching coefficients for NO(A) can be 

found in the literature. The rate coefficients for electronic quenching (also named electronic energy 

transfer – EET) and vibrational energy transfer (VET) are provided in Table 5-1 at room temperature 

and are taken from [94]. Note that the EET corresponds to those of the NO(A,v=0) state whereas the 
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VET corresponds to those of the NO(X,v=1) state since no data are available for NO(A) according to 

the authors.  

Since during the measurements, the full vibrational band is detected, there is no need to take into 

account the rotational energy transfers (RET). 

The data in Table 5-1 can be used to estimate the relative importance of the different species 

involved in the quenching. Despite its moderate quenching rate, N2 molecules are responsible for the 

dominant quenching contribution because of the high N2 density. An estimation of this quenching 

rate using the data provided in Table 5-1 gives QN2
300K = 1.4364 107 s-1. Due to the very low oxygen 

concentration during the experiments the quenching rate by O2 molecules remains small compared 

to N2: QO2
300K = 7.36 105 s-1. Assuming a NO(X) concentration of 1013 cm-3 (see the following results), 

the self-quenching rate of NO(X) is QNO
300K = 2.58 103 s-1 which is also negligible. Finally, the LIF decay 

rate can be estimated. Using the previous calculations and the value of the radiative lifetime of 

NO(A), we obtain A + Qcalib=2 107   s-1, in good agreement with our experimental measurement.  

Table 5-1 Quenching rate coefficient of EET for the NO (A,ʋ=0) and VET for the NO(X,ʋ=1) 

Species 
Quenching rate coefficient 𝑘 

EET (10-16m3s-1) VET(10-18m3s-1) 

N2 0.0037 0.20 

O2 1.51 0.024 

NO 2.49 8.8 

 

According to the description in chapter 3 section I.3, the quenching coefficient 𝑄(𝑇)  at a 

temperature 𝑇 can be expressed by the quenching coefficient 𝑄(𝑇0) at room temperature 𝑇0, as 

indicated by equation (3.4). Assuming that all the quenching is due to N2 and taking into account the 

variation of the gas density with the temperature through the ideal gas law, the quenching 

coefficient at temperature 𝑇 can be written as:  

𝑄𝑁2
𝑇 = 𝑘𝑞(T) × [𝑁2](𝑇) ≈ 𝑘𝑞(T) ×

𝑃

𝑘𝐵𝑇
= 𝑄𝑁2

𝑇0 × (𝑇0 𝑇⁄ )1/2  (5.8) 

The correction term CT2 finally writes: 

𝜏𝑐𝑎𝑙𝑖𝑏

𝜏𝑚
=

[∑ 𝐴𝑣′𝑣"𝑣" +𝑄𝑁2
𝑇 ]

𝑚

[∑ 𝐴𝑣′𝑣"𝑣" +𝑄𝑁2
𝑇0]

𝑐𝑎𝑙𝑖𝑏

=

1

𝜏0
+𝑄𝑁2

300𝐾∙(
𝑇0
𝑇

)
1/2

1

𝜏0
+𝑄𝑁2

300𝐾
   (5.9) 

Considering a maximum temperature of 430 K during the experiments, we obtain CT2 =
τcalib

τm
= 0.876 

which means that taking into account the increase of the gas temperature during the measurements 

results in a decrease of the density of [NO(X, v = 0)]m of 12.4 %.  

Thus, with this approach, the quenching rate decreases when the temperature increases. It is due to 

the dependence in 1/T of the gas density whereas the quenching rate coefficient has the dependence 

on T1/2. In other words, the decrease of the quencher’s density overcomes the increase in the 

quenching rate coefficient.  
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III.3. Influence of the vibrational temperature 

The NO(X) density determined by LIF measurements corresponds to the density of NO molecules in 

the ground state i.e. in the state NO(X,v=0). Nevertheless, this quantity does not necessarily 

correspond to the total NO(X). Indeed, if the vibrational temperature is important, a non-negligible 

fraction of the NO(X) molecules can populate the first vibrational level NO(X,v=1).  

The relative population of the vibrational levels can be calculated using the Boltzmann factor.  Taking 

into account the vibrational distribution, the Boltzmann factor presented in equation (5.3) becomes: 

   𝑓𝐵(𝐽, 𝑣, 𝑇𝑟𝑜𝑡, 𝑇𝑣𝑖𝑏) =
2𝐽+1

𝑍𝑟𝑜𝑡𝑍𝑣𝑖𝑏
∙ 𝑒

−
𝐸𝐽

𝑘𝐵𝑇𝑟𝑜𝑡  ∙ 𝑒
−

𝐸𝑣
𝑘𝐵𝑇𝑣𝑖𝑏    (5.10) 

with 𝑍𝑣𝑖𝑏 is the vibrational partition function given by: 

𝑍𝑣𝑖𝑏 = ∑ 𝑒
−

𝐸𝑣
𝑘𝐵𝑇𝑣𝑖𝑏𝑣      (5.11) 

and 𝐸𝑣 the vibrational energy given by: 

𝐸𝑣 = 𝜔 (𝑣 +
1

2
)     (5.12) 

where ω=1904 cm-1 is the vibrational constant for NO(X) and 𝑣 is the vibrational quantum number. 

The relative population of the NO(X,v=1) level to the ground state NO(X,v=0) can thus be calculated 

as follows: 

       
[𝑁𝑂(𝑋,𝑣=1)] 

[𝑁𝑂(𝑋,𝑣=0)]
=

𝑒
−

𝐸𝑣=1
𝑘𝐵𝑇𝑣𝑖𝑏

𝑒
−

𝐸𝑣=0
𝑘𝐵𝑇𝑣𝑖𝑏

     (5.13) 

During the calibration, the vibrational temperature is equal to the room temperature, leading to 
[NO(X,v=1)] 

[NO(X,v=0)]
= 1.08 × 10−4. The population of the vibrational level v=1 is thus negligible and the total 

NO density thus corresponds to [NO(X, v = 0)]. 

During the experiments, 𝑇𝑣𝑖𝑏 can be substantially higher. A vibrational temperature 𝑇𝑣𝑖𝑏=1500 K has 

been experimentally determined using the 2nd positive system of N2. Using this value, we obtain 
[NO(X,v=1)] 

[NO(X,v=0)]
= 0.16 . Thus, considering that the measured NO(X) density corresponds to the overall 

NO(X) density leads to an underestimation of the total NO(X) density of 16%.  

IV. Other experimental drawbacks 

During experiments, the NO system is spontaneously emitted by the discharge, even between two 

successive discharges because of the presence of N2(A) metastable molecules which produce NO(A) 

during the reaction  NO(X) + N2(A) → NO(A) + N2. To limit the interference with LIF measurements, a 

supplementary measurement is systematically performed by tuning the laser wavelength off 

resonance but at a wavelength remaining close to the excitation wavelength. The measured signal is 

then subtracted to the LIF signal. Nevertheless, some small fluctuations of the discharge and/or of 

the laser are still possible and the accuracy of the measurement is probably affected as well as the 

detection limit. 
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V. Absolute nitric oxygen density in a mixture of N2/O2 

In this part, we present the evolution of the absolute density of NO(X) as a function of the position 

for different concentration of oxygen. Then the influence of the discharge power is investigated. 

Note that the error bars shown in the figures are based on the reproducibility of the measurements, 

which is ±7.1% on average. 

V.1. Absolute density of NO(X2) along the discharge for different oxygen concentration  

Figure 5-8(a) presents the evolution of the NO(X) density for different oxygen concentration as a 

function of the position in the discharge. For this set of measurements, the discharge power is kept 

constant at 0.9 W/cm2 by adjusting the applied voltage and the flow rate is 1.0 L/min. A similar set of 

experiments is performed for a constant applied voltage of 17.1 kVpp. The corresponding results are 

presented in Figure 5-8(b). It should be noted that the electrodes were changed between these two 

sets of experiments. 

 

Figure 5-8 Absolute density of NO(X2) as a function of position for different concentration of O2. (a) in keeping the same 
discharge power around 0.9 W/cm2 by adjusting the applied voltage1 (b) in keeping the same applied voltage at 17.1 kVpp

2. 
Measurement conditions: f=2 kHz, flow rate=1.0 L/min 

1: old electrodes     2: new electrodes 
 

The NO(X) density rapidly increases at the entrance of the discharge and reach values as high as 

7.5 1012 cm-3. For the set of experiments performed at 0.9 W/cm2, the NO(X) density reaches a 

maximum at x=1 mm and then slowly decreases until the end of the discharge at x=18 mm. Then, the 

NO(X) concentration decreases in the post-discharge region. The behavior is slightly different for the 

set of experiments performed at the constant applied voltage and no maximum is observed at the 

beginning of the discharge zone. Such maximum can have a physical origin. For example, it could be 

due to the progressive formation of atomic nitrogen along the discharge, which is known to 

efficiently react with NO molecules. Thus after a rapid increase of the NO(X) density, the later could 

decrease because of its increasing reduction by N(4S). Nevertheless, since this trend is not observed 

for the set of experiments performed at constant applied voltage, this maximum is probably due to 

experimental errors. Among them, a change in the relative position of the laser beam with respect to 

the discharge gap can occur during the displacement of the discharge cell. Moreover, the important 

fluctuations of the NO(X) density observed for some experiments (see e.g. the series performed at 50 

ppm of O2 in Figure 5-8(b)) together with the non-zero value of the NO(X) density before the 

(a) (b) 
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discharge suggest that the measured NO(X) densities are close to the detection limit and that the 

corresponding signal to noise ratio remains low.  

Another interesting point concerns the results obtained for 200 ppm of O2 in N2 if one compares both 

series of experiments. Indeed, the electrical parameters of the discharge are the same in both cases 

since a voltage of 17.1 kVpp corresponds to a power of 0.9 W/cm2. Then, one should measure the 

same NO(X) density, which is not the case. It is probably due to the fact that we change the discharge 

cell between these two sets of experiments. The new position of the laser beam relative to the 

discharge gap is thus not exactly the same and can induce the observed discrepancies. Another 

possible explanation relies on the change in the dielectric surface properties. Indeed, after using it 

for some hours the color of the alumina plate changes from white to brown thus indicating some 

modifications of the surfaces. No changes in the electrical properties of the discharge were observed 

so if changing the surface characteristics modifies the measured NO(X) density, it is probably related 

to the formation of NO molecules onto the surfaces.    

Nevertheless and despite the observed discrepancies, the order of magnitude of the measured NO(X) 

density is the same in all experiments i.e. about few 1012 cm-3. These values are significantly lower 

than those measured during the work of Es-Sebbar [59] who found typical NO(X) densities 

about 1015cm-3. 

V.2. Absolute density of NO(X2) as a function of oxygen concentration 

To study the influence of the O2 concentration on the NO(X) density, dedicated LIF measurements 

are performed at x=14 mm for a different input concentration of oxygen at the constant applied 

power or at the constant applied voltage. The corresponding results are respectively presented in 

Figure 5-9(a) and (b). In addition, numerical results corresponding to simulations performed at 

constant applied voltage are presented in Figure 5-9(c).  

 

(a) (b) 

(c) 
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Figure 5-9 Absolute density of NO(X2) as a function of concentration of O2. (a) in keeping the same discharge power around 
0.9 W/cm2by regulation the applied voltage1; (b) in keeping the same applied voltage at 17.1 kVpp

2. (c) simulation results 
corresponding to the experimental result of (b). Measurement conditions: f=2 kHz, position=14 mm, flow rate=1.0 L/min. 

1: old electrodes     2: new electrodes 

 

For both series of experiments, the NO(X) density increases with the O2 concentration up to 100 ppm 

of O2. For higher O2 concentrations, the NO(X) density remains roughly constant. This behavior looks 

similar to the behavior of the O(3P) density studied in chapter 4 section IV.2. Numerical results show 

a similar behavior despite the significant overestimation of the NO(X) density.  

The main mechanisms involved in the production and destruction of NO(X) have been identified in 

Appendix 1 section IV.3 using the 0D model. It is found that NO is mainly produced through the 

reactions N2(A) + O(3P) → NO + N(2D) and N(4S) + O(3P) + N2 → NO + N2. In the literature [96,97], 

the reaction N(2D,2 P) + O2 → NO + O(3P,1 D)  is also pointed out by several authors to be an 

important source of NO(X) production.  

In the previous chapters, we saw that increasing the O2 concentration results in a monotonous 

decrease of the N(4S) density, whereas the O(3P) density increases linearly up to 100 ppm and then 

remains constant. Moreover, we know from the work of Dilecce et al. [58] that the averaged N2(A) 

concentration in the discharge decreases when increasing the O2 concentration. Knowing that N(2P) 

atoms are efficiently produced through the reaction N2(A) + N(4S) → N2 + N(2P) , the N(2P) 

concentration probably also decreases. All these considerations allow us to suggest the following 

explanation. For O2 concentration below 100 ppm, increasing the oxygen content favors the 

production of O(3P) thus promoting the reactions responsible for the creation of NO(X) molecules. 

For higher O2 concentrations, the decrease of the N2(A) and N(4S) density limits the production of 

O(3P) and as a result the production of NO(X).      

Note that for a given O2 concentration, the NO(X) density measured in the set of experiments 

performed at constant applied voltage (17.1 kV, Figure 5-9(b)) is systematically lower than the 

density measured for the set of experiments performed at constant power (0.9 W/cm2, Figure 5-9(a)) 

despite a higher discharge power. It is thus interesting to know if this trend has a physical origin or if 

it is related to the change of the discharge cell. For this purpose, the influence of the discharge 

power on the NO(X) density is studied in the following. 

V.3. Absolute density of NO(X2) as a function of discharge power 

To investigate the effect of the discharge power on the NO(X) production, LIF measurements are 

performed for different power by changing the frequency of the applied voltage. For this set of 

experiments, the input oxygen concentration is 200 ppm and measurements are performed at 

position x=14 mm. The corresponding results are presented in Figure 5-10(a), together with the 

simulation results presented in Figure 5-10(b). The NO(X) concentration increases when the 

discharge power increases. As previously discussed, NO(X) molecules are produced by the following 

reactions: 

N2(A) + O(3P) → NO + N(2D)     (R 5-1) 

N(4S) + O(3P) + N2 → NO + N2     (R 5-2) 

N(2D,2 P) + O2 → NO + O(3P,1 D)     (R 5-3) 
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In the previous chapters, the influence of the discharge power on the production of N(4S), O(3P) and 

N2(A) have already been discussed. We saw that increasing the power increases the production of 

N2(A) metastable molecules which in turn increases O2 dissociation resulting in the production of 

O(3P) atoms. Moreover, a higher discharge power implies a higher dissociation of N2 molecules by 

electrons and thus a higher density of N(4S) atoms. Consequently, the rate of reactions (R 5-2,3) 

probably increases when increasing the discharge power.  Note that an increased production of N(4S) 

atoms also means a higher reduction rate of NO(X) but according to the experimental results, it 

seems that this higher destruction rate is not sufficient to overcome the higher production rate. 

Consequently, the chemical equilibrium is shifted towards higher density of NO(X) when increasing 

the discharge power and the resulting NO(X) density increases. Numerical results presented in Figure 

5-10(b) are in good agreement with experimental ones despite the larger NO(X) density obtained in 

the simulations. The higher the input power, the higher the NO(X) density.  

 

Figure 5-10 Absolute density of NO(X2) as a function of discharge power. (a) experimental results2 (b) simulation results. 
Measurement conditions: HV= 17.1 kVpp, position=14 mm, flow rate=1.0 L/min, concentration of O2=200 ppm 

2: new electrodes 

 

V.4. NO(X2) density in post-discharge for different oxygen concentration 

The evolution of the NO(X) density in the post-discharge is measured for different oxygen 

concentrations at x=14 mm as a function of time after switching off the discharge. The gas flow rate 

is set to 1.0 L/min and the voltage applied to the discharge before extinction is set to 18.1 kVpp. The 

results are presented in Figure 5-11 and are discussed in chapter 6 together with the evolution of the 

N(4S) and O(3P) density in post-discharge. Note that for the measurements performed at 25 and 

50 ppm, the NO(X) density is on the order of the detection limit and thus poorly reliable. 

(a) 
(b) 
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Figure 5-11 Absolute density of NO(X2) as a function of time with 200 ppm O2 from the start of extinction of discharge. 
Measurement conditions: f=2 kHz, HV=18.1 kVpp, flow rate=1.0 L/min, position=14 mm 

VI. Conclusion 

In this chapter, the density of NO(X) was determined by LIF under different experimental conditions.  

First, the excitation scheme was defined. The excitation scan was performed over a line around 

226.06 nm corresponding to several ro-vibranic transitions from NO(X2,v=0) to NO(A2,v=0): 

Q21(7.5)+Q12(27.5)+P12(36.5)+R1(7.5)+P2(27.5). The detection of the fluorescence signal was set to 

collect the whole NO(A2,v=0) to NO(X2,v=1) vibrational band around 236 nm. The calibration of 

the LIF signal was then performed by injecting a known concentration of NO(X) in N2 at atmospheric 

pressure.  

NO(X) densities about few 1012 cm-3 were measured for a maximum value of around 8 1012 cm-3. 

These values are far below the values determined in rather similar conditions by Es Sebbar [59]. This 

difference can be explained by the use of an inappropriate bandpass filter. Moreover, measurements 

were performed by scanning only the maximum of the transition line instead of scanning the whole 

profile. The influence of the oxygen concentration on the NO(X) density was studied. For small 

addition of O2, the NO(X) concentration increases linearly due to the increase of the O(3P) density. 

For higher O2 concentration (>100 ppm) the NO(X) density was found to be roughly constant. This 

effect was ascribed to the noticeable decrease of the N2(A) and N(4S) densities with increasing O2 

concentration which are both involved in the production of NO(X) molecules.  

Measurements performed as a function of the discharge power showed that the higher is the power, 

the higher is the NO(X) density. It was explained by the simultaneous increase of the N(4S), O(3P) and 

N2(A) densities for higher discharge powers. 
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Chapter 6. Discussion  

In the previous chapters, the density of N(4S), O(3P) and NO(X) have been determined by TALIF and 

LIF measurements in N2/O2 mixtures. This chapter begins with a summary of these experimental 

results. The simultaneous knowledge of these densities in similar experimental conditions allows 

investigating phenomenon involving these three species. The first investigation presented in this 

chapter concerns the evolution of the N(4S), O(3P) and NO(X) densities during the post-discharge 

where each specie is correlated to the others through many chemical reactions. The second study is 

devoted to the quantification of the memory effect due to the associative ionization N(2P) + O(3P) →

NO+ + e−  which is the main purpose of the present work. For this purpose, calculations are 

performed to estimate the density of metastable N(2P) atoms. Then, the associative ionization 

reaction rate can be assessed and the corresponding current jump can be simulated. The obtained 

results are compared to experimental measurements.  

I. Summary of experimental results 

In the previous chapters, the absolute densities of N(4S), O(3P) and NO(X) were determined as a 

function of the position from the entrance of the discharge and of different concentrations of oxygen. 

The measured densities are found to strongly increase along the first millimeters of the discharge 

together with the discharge power whereas only slight density variations attributed to experimental 

errors are observed near the end of the discharge (17 mm and below) for which the discharge power 

reaches a constant value. Consequently, to summarize the results as a function of the oxygen 

concentration, we report the densities measured at x=14 mm.  Figure 6-1 shows the corresponding 

results for measurements performed (a) at a constant discharge power of 0.9 W/cm2 and (b) at a 

constant applied voltage of 17.1 kVpp. 

 

Figure 6-1 Absolute densities of N(4S), O(3P) and NO(X) as a function of concentration of O2 (a) in keeping the same discharge 
power around 0.9 W/cm2 by regulating the applied voltage; (b) in keeping the same applied voltage at 17.1 kVpp. 

Measurement conditions: f=2 kHz, position=14 mm, flow rate=1.0 L/min. 

The evolutions of the different densities were discussed in the corresponding chapters using the 

model presented in Appendix 1. The main mechanisms involved in the production and destruction of 

the different species are summarized in Table 6-1.  

 

(a) (b) 
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Table 6-1 Main mechanisms involved in the production and destruction of species 

Production Destruction 

N(4S) N(4S) 

e + N2 → e + N(4S) + N(2D) In pure nitrogen With the presence of oxygen 

 
N(4S) + N(4S) + N2

→ N2 + N2(A, B) 
N(4S) + NO → N2 + O(3P,1 D) 

 N(4S) ⟶ N(4S)𝑤𝑎𝑙𝑙  
N(4S) + O(3P) + N2

→ NO + N2 
O(3P) O(3P) 

N2(A) + O2 → N2 + 2O(3P) N2(A) + O(3P) → N2 + O(1S) 
 N2(A) + O(3P) → NO + N(2D) 

NO(X) NO(X) 

N2(A) + O(3P) → NO + N(2D)  N(4S) + NO → N2 + O(3P,1 D) 

N(4S) + O(3P) + N2 → NO + N2  

N(2D,2 P) + O2 → O(3P,1 D) + NO  

 

The N(4S) density continuously decreases as the concentration of oxygen increases. It was attributed 

to the increase of its destruction rate by oxidizing species such as NO(X), O(3P) and O2.  

The O(3P) density increases significantly for low oxygen concentrations and then remains 

approximately constant. This effect was attributed to the fact that the increase of the O2 

concentration causes an increase in the quenching rate of N2(A). Since in our conditions, O(3P)) is 

mainly produced by O2 dissociation by N2(A), it probably limits the production of O(3P). 

The evolution of the NO(X) density is quite similar to the one of O(3P) indicating that the production 

of NO(X) is limited for high O2 concentrations. It can be explained by a decrease of the atomic 

nitrogen concentration and by a decrease of the N2(A) density, both species being involved in the 

production of NO(X) molecules.     

The following table gives the maximum density of N(4S), O(3P) and NO(X) for information purpose, 

together with an estimation of the experimental error. 

Table 6-2 Summary of absolute densities and the corresponding estimated errors 

Species 
Maximum 

density 
(cm-3) 

Measured 
error 

Calculated error(related 
to the gas temperature) 

Maximum density 
corrected with the 

calculated error 
(cm-3) 

Other error 

N(4S) 7 × 1014 ±9.1% Overestimation 15.8% 5.9 × 1014  

O(3P) 4 × 1014 ±15.7% Overestimation 13.8% 3.5 × 1014 

Underestimation because 
of the overestimation of 

calibration signal 

NO(X) 
8 × 1012 

(old electrode) 
±7.1% Underestimation 20.3% 9.6 × 1012  

 

II. Investigation of the species densities during the post-discharge  

In this section, we are interested in the temporal evolution of the densities of N(4S), O(3P) and NO(X) 

in the post-discharge. During the post-discharge, no energetic electrons are present which reduces 

the complexity of the chemistry. Then, it offers a convenient way to identify the dominant 

mechanisms responsible for the losses of the different species. Moreover, it allows checking the 
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consistency of the LIF and TALIF measurements because the respective densities of N(4S), O(3P) and 

NO(X) are connected to each other through many chemical reactions.    

As reported in the different chapter dedicated to experimental results, measurements were 

performed for each species at x=14 mm and for different instants after switching off the discharge 

(this instant corresponds to t=0). As previously explained, due to the presence of the gas flow, 

numerical and experimental results can only be compared during a small time period (maximum 25 

ms) following the discharge extinction. Indeed, for longer times, the gas volume probed by LIF/TALIF 

was not exposed to the discharge. Measurements presented in this section were performed for 25, 

50, 100 and 200 ppm of O2 at a constant applied voltage of 18.1 kVpp and for a gas flow rate of 1.0 

L/min. 

Preliminary calculations were performed to identify the main mechanisms involved in the destruction 

of the different species. The corresponding set of reactions, which is presented in Table 6-3, was 

found to be sufficient to reproduce the main trend of experimental results.  

The numerical results presented in this section are obtained using the following method. Calculations 

are initialized considering the density of N(4S), O(3P) and NO(X)  measured at t=0. The density of O2 in 

the calculations is considered to be the input density i.e. O2 dissociation is neglected. Then, the set of 

equations in Table 6-3 is solved. 

Table 6-3 Reactions involved in the destruction of species 

Reaction Rate coefficient (s-1, cm3s-1, cm6s-1) Reference 
Reaction 
number 

N(4S) + O(3P) + N2 → NO + N2 1.76 × 10−31 × T−0.5 [98] (R1) 

O(3P) + O2 + N2 → N2 + O3 6.2 × 10−34 × (300 T⁄ )2 [98] (R2) 

N(4S) + N(4S) + N2 → N2 + N2(A, B) 4.1 × 10−33 [83] (R3) 

N(4S) + NO → N2 + O(3P,1 D) 1.05 × 10−12 × T0.5 [57] (R4) 

O(3P) + O(3P) + N2

→ N2 + O2(X, a, b) 
2.76 × 10−34 × exp(720 T⁄ ) [98] (R5) 

N(4S) → wall 32.26 [85] (R6) 

O(3P) → wall 57.4 This work (R7) 

 

The value of the rate coefficient concerning O(3P) losses onto the wall (57.4 s-1) is obtained using 

equation (3.7) in chapter 3, considering =1.8 10-3 [99] for the recombination coefficient of O(3P) 

onto Al2O3.  

In this calculation, we use the value of T=430 K for the gas temperature as determined 

experimentally form OES measurements on the SPS of N2. Figure 6-2 represents the results obtained 

for: (a) N(4S), (b) O(3P) and (c) NO(X). On each figure, markers indicate the measured values whereas 

straight lines indicate numerical results. The reaction rates are presented in Figure 6-3(a) and (b) for 

25 and 200 ppm respectively.  
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Figure 6-2 Comparison of experimental result and numerical result of the decay of absolute densities  

 

Figure 6-3 Reaction rate with concentration of O2 (a) 25 ppm and (b) 200 ppm 

(a) 25 ppm (b) 200 ppm 
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II.1. Decay of N(4S) during the post-discharge 

The model is able to provide a good description of the experimental results except for the case of 

200 ppm, the calculation underestimates the decay rate (note that it overestimates the decay rate 

for O(3P) and NO(X)). For low O2 concentration, the situation is similar to the high purity nitrogen 

case. The reaction (R3) continue to play the dominant role at the beginning of the post-discharge. 

Then, the losses of N(4S) to the wall dominates. The curve [N(4S)]=f(t) is thus first characterized by a 

pronounced negative slope following the discharge extinction and then by a slightly negative slope 

for longer durations.  

As the input concentration of O2 is increased, reactions involving oxidizing species become important. 

In particular, at the beginning of the post-discharge, the reactions (R1) and (R4) dominate. Then, the 

rapid decrease of [N(4S)], [O(3P)] and [NO(X)] reduces the rate of these reactions and the losses of 

N(4S) are then dominated by losses by diffusion to the walls. Consequently, the initial decrease of 

[N(4S)] is more and more pronounced for increasing O2 concentration whereas the decrease rate for 

longer durations remains the same independently of the O2 concentration. 

II.2. Decay of O(3P) during the post-discharge 

In the case of O(3P), the reactions (R1), (R4) and (R5) are important for short times after discharge 

extinction and then rapidly decrease due to the fast decrease of [N(4S)], [O(3P)] and [NO(X)]. Note 

that (R4) is responsible for O(3P) production and then attenuate the decrease of [O(3P)] due to the 

first two reactions. For longer times and low O2 concentration, O(3P) loss to the wall is the dominant 

mechanism. The contribution of the reaction (R2) regarding O(3P) destruction increases with the 

input O2 concentration and because of the simultaneous increase of [O2] and [O(3P)]. For 100 ppm 

(not shown here) and 200 ppm, it is the main destruction mechanism, followed by the diffusion to 

the wall. 

Note that this simple model overestimates the destruction rate of O(3P) atoms for 200 ppm of O2. A 

possible explanation is that other species such as NO2, which are neglected in this calculation since 

their densities are unknown, can participate in the formation of O(3P) thus reducing the decay rate. 

Among the possible reactions there are N(4S) + NO2 → N2 + O(3P) + O(3P) and N(4S) + NO2 → N2O +

O(3P). Other mechanisms involving N2(A) metastable for example are poorly probable on this time 

scale because of their efficient quenching at atmospheric pressure. 

II.3. Decay of NO(X) during the post-discharge 

For the case of NO(X), the calculations fail to reproduce the experimental behavior. Indeed, even if 

the slope of the calculated curve seems to be in reasonable agreement with the experimental decay 

rate indicating that NO destruction is probably mainly due to its reduction by atomic nitrogen, the 

absolute values of the calculated densities are greater than the measured ones by a factor 

approximately equal to 2.5. In the calculations, the NO density increases at the beginning of the post-

discharge due to the reaction (R1) whereas it is not observed experimentally. It indicates that the 

measured densities of N(4S), O(3P) and NO(X) are not consistent which can be explained by the 

experimental uncertainties.  

Another possibility is that the set of reactions used in the model is incomplete. Other simulations 

performed with a much more complete set of reactions provided similar results. Nevertheless, the 

density of important species such as N2O or NO2 being unknown, it makes difficult to conclude about 

the limitation of the model. 
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To investigate the overestimation of the calculated NO density, let us assume that the experimental 

densities were overestimated by a factor 2.5, and perform additional calculations for which the 

experimental values of [NO] are multiplied by a factor 2.5. The calculations then start from these 

increased initial densities. The corresponding results are presented in Figure 6-4.  

As can be seen, the higher NO(X) density has only a poor influence on the results of N(4S) and O(3P) 

which remain satisfactory whereas a better agreement is obtained between the corrected 

experimental data and the numerical results for the case of NO(X). Unfortunately, the model is still 

unable to provide a satisfactory description of the results obtained for N(4S), O(3P) and NO(X) at 

200 ppm suggesting that some important reactions are missing such as N(4S) + NO2 → NO + NO. 

These results show that experimental uncertainties can explain the observed behavior. Among the 

possible source of experimental uncertainties, one of the most important is related to the calibration 

procedure as discussed in chapters 3, 4 and 5. Nevertheless, calculations show that uncertainties 

regarding the absolute densities remain acceptable. Indeed, changing one of the input densities by 

one order of magnitude or more makes impossible a correct description of the post-discharge for 

N(4S), O(3P) and NO(X). 

 

Figure 6-4 Comparison of the experimental result and numerical result of the decay of absolute densities (with a 
multiplication of 2.5 for the density of NO(X) 
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III. Investigation of the memory effect related to the associative ionization process 

In this section, we discuss the role of the associative ionization reactions in memory effect using the 

experimental results i.e. the density of N(4S), O(3P) and NO(X) determined by laser induced 

fluorescence. A summary of these densities measured at x=14 mm for different O2 concentrations 

and under a similar discharge power of 0.9 W/cm2 has already been provided in Figure 6-1(a). 

The possible role played by associative ionization reactions involving N(2P) metastable atoms (see the 

following reactions) has been introduced in chapter 1. Following [57], two different reactions 

involving N(2P) must be considered:   

N(2P) + N(2P) → N2
+ + e− (R6-1) 

N(2P) + O(3P) → NO+ + e−                                                             (R6-2) 

where N(2P) is created by the reaction: 

     N2(A) + N(4S) → N2 + N(2P)      (R6-3) 

The first one is susceptible to occur even in perfectly pure nitrogen discharges whereas the presence 

of oxygen is required for the second one to occur. Nevertheless, in practice, oxygen impurities are 

always present in the discharges and both reactions are then likely to occur. 

Hence, to verify the role played by associative ionization reactions in the memory effect, it is first 

necessary to determine the absolute density of N2(A) between two discharges. Then based on the 

measured absolute density of N(4S), O(3P) and NO(X), we can calculate the density of N(2P) 

metastable atoms between two discharges. Finally, the reaction rates can be calculated providing the 

density of seed electrons generated by the associative ionization reactions, which allows simulating 

the current jump occurring when the gas gap voltage polarity changes.  

III.1. Determination of the absolute density of N2(A)  

The absolute density of N2(A) molecules has not been determined in the present work. Nevertheless, 

M.C. Bouzidi performed OES measurements of the HIR-system between two discharges during his 

Ph.D. thesis [56] providing a relative estimation of [N2(A)] for various O2 concentrations. The 

corresponding results are presented in Figure 6-5. 

 

Figure 6-5 Relative concentration of N2(A) as a function of concentration of O2 in an APTD 



Chapter 6 Discussion 

104 

 

Dilecce et al. [58] measured the N2(A) density and its quenching rate Q for various low O2 

concentrations and for experimental conditions very similar to ours. Thus, the N2(A) density can be 

estimated using the following method. The maximum N2(A) density in pure nitrogen is 1.7 1013 cm-3 

according to Dilecce et al. and its quenching rate is 2 104 s-1. According to the model presented in 

Figure A- 3 in Appendix 1, the current jump arises when the gas gap voltage cancels i.e. 

approximately 125 s after [N2(A)] reaches its maximum value for a frequency of 2 kHz, which allows 

to estimate the [N2(A)] when the polarity reverses. We find [N2(A)] =1.4 1012 cm-3. Then, the relative 

OES measurements are used to compute the values for the different O2 concentrations. The obtained 

results are presented in Figure 6-6. 

 

Figure 6-6 Calculated absolute density of N2(A) as a function of concentration of O2 in an APTD 

Note that Dilecce et al. measured a maximum value of [N2(A)]=1.25 1013 cm-3 and Q=3 104 s-1 or 

200 ppm of O2 which results in a value of 3 1011 cm-3 after 125 µs (i.e. at the polarity inversion), in 

very good agreement with the values obtained from OES measurements. 

III.2. Determination of absolute density of N(2P) 

To estimate the density of N(2P) atoms between two successive discharges, a simple model is used. 

The production of N(2P) atoms is assumed to be due to the reaction between N(4S) atoms and N2(A) 

molecules. The main quenching reactions of N(2P) atoms are also considered. Note that for the 

quenching rate by O2 molecules we consider the O2 concentration to be equal to the input 

concentration, which results in a slight overestimation. Finally, the associative ionization reactions 

are also considered. The whole set of reactions considered in the model are summarized in Table 6-4. 
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Table 6-4 Reactions considered for the estimation of absolute density of N(2P) 

Reactions Rate constants (cm-3.s-1) References 
Reaction 
number 

Formation of N(2P)  

N2(A) + N(4S) → N2 + N(2P) 4.0 × 10−11 × (300 T⁄ )2/3 [83] (R8) 

Quenching of N(2P)  

N(2P) + N2 → N2 + N(4S) 6 × 10−14/5 × 10−17/2 × 10−18 [83]/ [96]/[57]  (R9) 

N(2P) + N(4S) → N(2D) + N(4S) 6.0 × 10−13 [83] (R10) 

N(2P) + N(4S) → N(4S) + N(4S) 1.8 × 10−12 [57,83] (R11) 

N(2P) + O(3P) → N(2D) + O(3P) 1 × 10−12 [57] (R12) 

N(2P) + NO → O(3P,1 D) + N2 2.9 × 10−11 [57] (R13) 

N(2P) + O2 → O(3P,1 D) + NO 2.5 × 10−12 [57] (R14) 

Associative ionization reactions  

N(2P) + N(2P) → N2
+ + e− 1.5 × 10−11 [57] (R15) 

N(2P) + O(3P) → NO+ + e− 1.5 × 10−11 [57] (R16) 

 

For each concentration of O2, the experimental values of [N(4S)], [O(3P)], [O2] and [NO] are used as 

input together with the value of [N2(A)]. Then the system corresponding to the set of ordinary 

differential equations corresponding to the reactions listed in Table 6-4 is solved until a stationary 

state is reached providing the stationary value of [N(2P)]. The latter is used to estimate the current 

jump following the method described in the next section. 

Note that due to the very high density of nitrogen molecules, a good description of the quenching of 

N(2P) by N2 is of primary importance to obtain reliable results. Nevertheless, 3 very different values 

of this quenching rate can be found in the literature as indicated in Table 6-4. Thus, 3 different sets of 

simulations are performed considering the different reaction rates. The resulting densities of N(2P) 

atoms are depicted in Figure 6-7. It is interesting to note that the density of N(2P) atoms is lower than 

the density of O(3P) atoms. 

 

Figure 6-7 Calculated absolute density of N(2P) as a function of concentration of O2 with different reaction rate of (R9) for a 
constant discharge power of 0.9 W/cm2 
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III.3. Determination of electron density and current jump 

For a given concentration of O2 knowing the densities of N(2P) and O(3P), it is possible to estimate the 

reaction rates of the associative ionization reactions. To simplify the calculations, we consider that 

these densities remain constant in time. 

The experimental gas gap voltage Vg(t) is used as input for the modeling. We focus on a small time 

period surrounding the moment t0 where Vg(t0)=0, as is shown in Figure 6-8. Then the electron and 

ion densities can be calculated assuming that they are continuously produced by the associative 

ionization reactions and lost due to their drift in the small electric field.  

 

Figure 6-8 The small time period and the corresponding gas voltage used for the calculation of current jump. Simulation 
conditions: concentration of O2=100 ppm, HV=15.9 kVpp, f=2 kHz 

The equation ruling the electron density 𝑛𝑒 is therefore: 

𝑑𝑛𝑒

𝑑𝑡
= k9[𝑁(2𝑃)][𝑂(3𝑃)] + k8[𝑁(2𝑃)] 

2
− 𝜇𝑒

|𝑉𝑔(𝑡)|

𝑑2 𝑛𝑒    (6.1) 

where 𝜇𝑒 is the electron mobility taken from[100]. Similarly, the densities of NO+ and N2
+ are 

described by the following equations: 

𝑑[𝑁𝑂+]

𝑑𝑡
= k9[𝑁(2𝑃)][𝑂(3𝑃)] − 𝜇𝑁𝑂+

|𝑉𝑔(𝑡)|

𝑑2 [𝑁𝑂+]    (6.2) 

𝑑[𝑁2
+]

𝑑𝑡
= k8[𝑁(2𝑃)][𝑁(2𝑃)] − 𝜇𝑁2

+
|𝑉𝑔(𝑡)|

𝑑2 [𝑁2
+]    (6.3) 

The ion mobilities are 𝜇𝑁𝑂+=2.5 cm2V-1s-1 [101] and 𝜇𝑁2
+=1.85 cm2V-1s-1 [102] . Note that in our 

conditions, N2
+ ions are known to be efficiently converted into N4

+ ions with typical mobility 𝜇𝑁4
+=2.3 

cm2 V-1s-1 [101]. Nevertheless, due to the small difference between the ion mobility of both ions, it 

has only a very poor incidence on the obtained results.     

Solving these equations provides the time-varying densities of electrons and ions produced by the 

associative ionization reactions. The current generated by the drift of ions and electrons can thus be 

calculated using equation (6.4): 

𝐼𝑗𝑢𝑚𝑝(𝑡) = (𝑛𝑒(𝑡) × 𝜇𝑒(𝑡) + [𝑁2
+](𝑡) × 𝜇𝑁2

+ + [𝑁𝑂+](𝑡) × 𝜇𝑁𝑂+) ×
𝑉𝑔(𝑡)

𝑑
× 𝑒 × 𝑆  (6.4) 
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An example of typical results obtained using the aforementioned procedure is presented in Figure 

6-9(a). An experimental current jump is also provided Figure 6-9(b) for comparison. 

 

Figure 6-9 (a) Calculated current jump. (b) experimental current jump. Conditions: concentration of O2=25 ppm, 
HV = 17.1 kVpp, f=2 kHz, and rate constant of equation (R9) = 2.10-18 cm3s-1 for the calculation. 

The shape of the calculated current jump is in good agreement with experimental measurements i.e. 

the sign inversion of the current arises very quickly suggesting that it involves charged particles with 

a high mobility such as electrons. It is confirmed by the detailed contributions to the total current 

jump presented in Figure 6-9. Nevertheless, ion contribution cannot be neglected because their low 

mobility results in their accumulation in the gas gap increasing the ion density. The higher ion density 

then compensates partly the low ion mobility resulting in a non-negligible ion current.    

III.4. Estimation of the current jump for different oxygen concentration 

Using the aforementioned calculation procedure, the calculated current jump is calculated for 

different oxygen concentrations under the same discharge power of 0.9 W/cm2. The corresponding 

results are presented in Figure 6-10(a), (b) and (c) considering the three different values of the 

reaction rate of (R9). Figure 6-10(d) shows the experimental results obtained in the same conditions 

for comparison. 

The calculated current jumps show a very similar behavior as a function of concentration of O2 

compared to experimental results. It increases as O2 is introduced in the discharge; reach a maximum 

value around 25 ppm of O2 and then decreases for higher O2 concentrations. The values of the 

calculated current jump strongly depend on the quenching rate coefficient used for reaction (R9): the 

lower the rate coefficient, the higher the N(2P) concentration and the higher the resulting current 

jump. Experimentally, the maximum value of the current jump obtained for 25 ppm of O2 is around 

200µA. Then, the better agreement is obtained considering a reaction rate of 5 10-17cm3s-1 for 

reaction (R9). In this case, the calculated current jump is approximately four times greater than the 

experimental value.  

For 0 ppm O2, a current jump can be observed experimentally. It was attributed to the secondary 

electron emission by N2(A) metastable at the surfaces. But, since impurities are always present 

experimentally, the associative ionization reactions (R15) and (R16) can also play a role. Numerically, 

the current jump at 0 ppm when the reaction rate of reaction (R9) is low is found to be greater 

(a) 

(b) 
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compared to experimental results. In this case, it is due to the associative ionization reaction 

involving two N(2P) atoms which seems to indicate that this reaction rate is overestimated. 

 

 

Figure 6-10 Current jump as a function of concentration of O2 under similar discharge power (0.9 W/cm2), (a), (b) and (c): 
calculated results with different reaction rate of (R9), (d): experimental result 

Finally, supplementary calculations have been performed taking into account electron attachment on 

O2 molecules (not shown here). It was found that due to the very low O2 concentration, it has only a 

very poor influence on the results. The influence of the electron-ion recombinations in volume was 

also found negligible. 

The uncertainties related to the modeling and especially to the reaction rate of reaction (R9) make 

difficult to realize an accurate quantitative estimation of the contribution of associative ionization 

reactions to the current jump. Similarly, it is not possible to conclude that such reactions are the only 

process involved in the memory effect in these conditions.  Nevertheless, recent investigations [103] 

provide a new estimation of the rate of reaction (R9) which is 3 10-17cm3s-1 in good agreement with 

the value of 5 10-17cm3s-1 used in this work (see Figure 6-10(b)). The current jump calculated using 

this value is on the same order of magnitude than experimental measurements although greater by a 

factor 4. Note that in experiments, the current jump is not uniform along the discharge; it increases 

from the entrance to the end of the discharge. Consequently, the experimental values are probably 

underestimated.  

To go further and confirm the role of associative ionization reactions, we need to discuss the less 

credibility of other mechanisms related to the creation of seed electrons. The creation of seed 

electrons by secondary electron emission due to the bombardment of N2(A) onto the dielectrics 

should be excluded because an oxygen input necessarily leads to a higher destruction of N2(A). 

However, the metastable N2(A) still plays an important role in plasma chemistry, especially for the 
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formation of O(3P) and N(2P).  The mechanisms for the desorption of electrons from the dielectrics 

have been discussed in [54] in detail. There are three different mechanisms, the first one 

corresponding to secondary electron emission have been excluded in the previous discussion. The 

second one called “thermodesorption” is related to the dielectrics’ temperature.  At thermal 

equilibrium, the dielectric temperature is equal to the gas temperature. According to our 

measurements, the maximum temperature is around 450K, i.e. an increase of 150K compared to the 

ambient temperature. This increase is too weak to result in an increase of thermodesorption of 

electrons from the dielectrics. The third mechanism of electron desorption is caused by the 

vibrationally excited molecules. However, the vibrational temperature determined by the OES 

measurements shows that it remains around 1500K whatever the experimental condition. Hence, 

there is no increase of the vibrational temperature when increasing the injected amount of oxygen, 

which means that an increase of the electron desorption caused by vibrationally excited molecules is 

unlikely. Moreover, it seems unrealistic that the very low injected quantity of oxygen can be able to 

induce a change in the surface characteristics of the dielectrics and thus on its secondary emission 

coefficient. Based on the above discussion, other mechanisms related to the creation of seed 

electrons can be excluded, which confirms the important role of associative ionization reactions on 

the enhanced memory effect in an APTD with low addition of O2 into N2. 

On the basis of the presented results and following the previous discussion, one can conclude that 

associative ionization reactions are good candidates to explain the increase of the current jump with 

very low O2 admixture in nitrogen and thus the enhancement of the memory effect. These 

experimental conditions correspond to a compromise. On one hand, the concentration of O2 is high 

enough to provide a significant amount of O(3P) atoms whose concentration is found higher than 

that of N(2P). On the other hand, it remains low enough to limit the concentration of the resulting 

various oxidizing species, thus to limit the quenching of N2(A) and N(2P). These conditions are thus 

suitable to promote the associative ionization N(2P) + O(3P) → NO+ + e− compared to the reaction 

N(2P) + N(2P) → N2
+ + e− . It explains the increase of the memory effect for small additions of O2 in N2.  

IV. Summary  

This chapter starts with a summary of the experimental values obtained for the densities of N(4S), 

O(3P) and NO(X) as a function of the oxygen concentration.  

Then the comparison of the experimental and simulation results for the decay of the species during 

the post-discharge was performed in order to study the main destruction mechanisms.  

The good agreement for N(4S) indicates that the main destruction reactions for N(4S) are validated. 

For low [O2], N(4S) losses are dominated by the three-body recombination onto N2 molecules as for 

the pure nitrogen case. For higher [O2], N(4S) atoms are mainly destroyed by oxidizing species 

through the reactions N(4S) + O(3P) + N2 → NO + N2 and N(4S) + NO → N2 + O(3P,1 D). Independently 

of the concentration of O2, N(4S) losses are dominated by recombination to the wall for long 

timescale.  

A relatively good agreement is also found for O(3P) for low oxygen concentrations. The main 

reactions responsible for the losses of O(3P) atoms are N(4S) + O(3P) + N2 → NO + N2 and O(3P) +

O(3P) + N2 → N2 + O2(X, a, b) whereas the reduction of NO by N(4S) is responsible for the production 

of O(3P) atoms. For higher concentration of O2 (200 ppm), the calculations overestimate the decay of 

O(3P). A possible explanation is that other species such as NO2 which are not taken into account can 

precipitate to the formation of O(3P) thus reducing the decay rate. 
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The decay of NO molecules during the post-discharge is attributed to its reduction by N(4S) atoms 

whereas NO(X) is produced by the reaction N(4S) + O(3P) + N2 → NO + N2. Nevertheless, the model 

fails to provide a good description of the experimental behavior. Indeed, the aforementioned 

reaction is responsible for a significant increase of the NO(X) density at the very beginning of the 

post-discharge. If one assumes that the main reactions have been taken into account, it suggests a 

possible incompatibility between the experimental N(4S), O(3P) and NO(X) densities. To investigate 

this effect, the experimental NO(X) density was increased by a factor 2.5 and new calculations were 

performed. A better agreement was observed in this last situation, which suggests that experimental 

uncertainties can partly explain the observed discrepancies. Nevertheless, the model is still unable to 

provide a good description of the results obtained for the highest O2 concentration. A possible 

explanation is a role played by other species such as NO2 as suggested above.   

The last part of this chapter is dedicated to the estimation of the current jump due to associative 

ionization reactions for different concentration of O2. For this purpose, the N(2P) metastable atoms 

density between two discharges was calculated using a model and considering the experimental 

values of N(4S), O(3P) and NO(X) together with the N2(A) density determined by Dilecce et al. [58]. 

The results were found to be highly dependent on the value of the quenching rate of N(2P) by N2. 

Recent investigations showed that the value of 5 10-17 cm3s-1 proposed in [96] is the most realistic. 

Using this value, the N(2P) concentration was found to decrease monotonously from ~1013 cm-3 at 0 

ppm of O2 to ~1011 cm-3 at 200 ppm of O2. Knowing the [N(2P)] and [O(3P)], the current jump was 

estimated as a function of the oxygen concentration. The obtained results reproduce qualitatively 

the experimental behavior. The current jump increases up to 800 µA at 25 ppm and then decreases. 

The values of the calculated current jump are four times higher than experimental values. This 

difference may be explained from two aspects. Firstly with a 0D model, the spatial distribution of the 

species is not considered, and this limitation can lead to an overestimation of the calculated current 

jump. Secondly, the experimental values correspond to a current jump averaged over the whole 

discharge and are consequently underestimated, moreover the uncertainties of the absolute 

densities will also influence the calculated results. 

The experimentally observed increase of the memory effect for small additions of O2 in N2 can thus 

be explained by the associative ionization reaction N(2P) + O(3P) → NO+ + e−. These experimental 

conditions correspond to a compromise. The O2 concentration is high enough to provide a significant 

amount of O(3P) atoms and low enough to limit the concentration of oxidizing species responsible for 

the quenching of N2(A) and N(2P). 
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General conclusion and prospects 

The present work concerns the study of atmospheric pressure Townsend discharges (APTD) 

generated in a nitrogen atmosphere with the addition of a small oxygen amount (typically lower than 

200 ppm). Previous studies have shown that the presence of a memory effect between two 

successive discharges is a necessary condition to obtain a homogeneous dielectric barrier discharge. 

In high purity nitrogen in which oxygen is only present as impurities (<10 ppm), the secondary 

electron emission induced by N2(A) metastable molecules at the cathode was demonstrated to be an 

important source of seed electrons between two discharges and thus a major contribution to the 

memory effect. On the other hand, APTD were obtained in air and in very low-frequency discharges 

for which N2(A) is either efficiently quenched by oxidizing species or completely removed between 

two successive discharge by the gas flow. In these conditions, the mechanism of spontaneous 

electron desorption is up to now the best candidate to explain experimental observations. In the 

conditions of the present study i.e. in the mixtures of N2/O2 with oxygen concentrations about a few 

dozens of ppm, many studies have pointed out a strong increase of the memory effect. Recent works 

put in evidence a possible role played by O(3P) atoms and N2(A) and suggested that the associative 

ionization reaction N( P2 )  +  O( P3 )  →  NO+  +  e−  where N(2P) atoms are produced by the 

reaction N( S4 ) +  N2(A) →  N( P2 ) +  N2(X), is likely to significantly contribute to the memory effect. 

The main objective of the present work was to verify this hypothesis. 

For this purpose, the density of N(4S) and O(3P) was measured by two photon absorption laser 

induced fluorescence (TALIF). Moreover, the density of NO molecules, which are an efficient 

quencher of N2(A), was also measured by laser induced fluorescence (LIF). Most of the 

measurements were performed between two successive discharges. The influence of several 

experimental parameters such as the discharge power or the concentration of oxygen on the 

different species densities was investigated. The observed behaviors were discussed with the help of 

a 0D-model. The latter was used to identify the main mechanisms involved in the production and 

destruction of the different species.  

The measured density of N(4S) increases at the entrance of the discharges, then becomes constant 

and finally decreases in the post-discharge region. Typical values of 1014 cm-3 were measured with a 

maximum value of around 7 1014 cm-3 for the higher discharge power. The higher the discharge 

power, the higher the N(4S) density. N(4S) atoms are produced by direct electron impact dissociation 

of N2 molecules. In high purity nitrogen, the losses of N(4S) are mainly due to three-body 

recombination onto N2 molecules. Measurements performed for different times during a discharge 

period showed that the N(4S) density present only very small variations. Similar results were obtained 

numerically, which can be explained by a simultaneous modulation of the production and 

destruction. In the presence of oxygen, the N(4S) density decreases due to a higher destruction by 

oxidizing species. The higher the oxygen concentration, the lower the N(4S) density. Indeed, for 50 

ppm of O2 and above, N(4S) losses are dominated by reactions with oxidizing species. Using the 

model, the main reactions were identified as N(4S) + O(3P) + N2 → NO + N2 and N(4S) + NO → N2 +

O(3P,1 D).  

TALIF measurements on O(3P) atoms indicated densities about few  1014cm-3 with a maximum value 

of 4 1014 cm-3. The evolution of the O(3P) density along the discharge is quite similar to one of N(4S): it 

increases at the entrance of the discharge, reach a plateau and then decreases in the post-discharge. 

Numerical results indicate that the production of O(3P) atoms is mainly due to the dissociation of O2 
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by N2(A) metastable molecules. Measurements of the O(3P) density for different times during a 

discharge period indicate that the O(3P) density remains approximately constant. The same behavior 

was observed numerically and was explained by a simultaneous modulation of the production and 

destruction rates of O(3P), both being strongly related to the N2(A) concentration. Increasing the 

power results in an increase of the O(3P) density which was attributed to a higher production rate of 

N2(A), as confirmed by the model.  The influence of the O2 concentration on the O(3P) density was 

also studied. The higher the O2 concentration, the higher the O(3P) density. Nevertheless, the 

increase of the O(3P) density with respect to the O2 concentration was found to be less pronounced 

for O2 concentration higher than 100 ppm. This was confirmed by the calculation of the O2 

dissociation degree, which continuously decreases for increasing O2 concentration. This effect was 

explained by a higher destruction of N2(A) by oxidizing species.  

The density of NO measured by LIF is about few 1012cm-3 with a maximum value of 8 1012 cm-3. These 

values are well below the ones measured previously in our group i.e. about 1015 cm-3. Some 

uncertainties remain regarding the mechanisms leading to NO production in our conditions. 

According to the numerical investigations, the main production mechanisms of NO are N2(A) +

O(3P) → NO + N(2D) and N(4S) + O(3P) + N2 → NO + N2. Nevertheless, according to the literature, 

the contribution of the first reaction is probably overestimated. Moreover, as pointed out by several 

authors, another important channel for NO production should be the reaction N(2D,2 P) + O2 → NO +

O(3P,1 D).  Finally, the contribution of the associative ionization reaction N( P2 )  +  O( P3 )  →  NO+  +

 e− where NO+ can recombine at the walls to form NO requires further investigations. The NO 

concentration increases when increasing the discharge power. It was explained by the simultaneous 

increase of the N(4S), O(3P) and N2(A) densities. The influence of the oxygen concentration on the NO 

density was investigated. For small addition of O2, the NO concentration increases linearly due to the 

increase of the O(3P) density. For higher O2 concentration (> 100 ppm) the NO density is roughly 

constant. This effect was ascribed to the noticeable decrease of the N2(A) and N(4S) densities with 

increasing O2 concentration which are both involved in the production of NO molecules.  

To verify if the associative ionization reaction N( P2 )  +  O( P3 )  →  NO+  +  e− can be responsible for 

the increase of the memory effect in our conditions, the N(2P) density between two successive 

discharges was estimated using a 0D model. The production rate through the reaction N( S4 ) +

 N2(A) →  N( P2 ) +  N2(X) was calculated using the experimental values of the N(4S) density. The 

density of N2(A) was taken from the literature and from OES measurements previously performed in 

the group. The destruction rate of N(2P) was calculated considering the main quenching reactions 

involving N2, O2, O(3P) and NO, the densities of the two last species being known from the TALIF and 

LIF measurements. Calculations were performed for different oxygen concentrations. The resulting 

N(2P) densities were found to be highly dependent on the reaction rate coefficient of the reaction 

N(2P) + N2 → N2 + N(4S). Considering a value of 5 10-17 cm3s-1, which order of magnitude was 

recently confirmed in the literature, the N(2P) concentration was found to decrease monotonously 

from ~1013 cm-3 at 0 ppm of O2 to ~1011 cm-3 at 200 ppm of O2 for the set of experiments performed 

at a constant applied voltage of 17.1 kV. Knowing the N(2P) and O(3P) densities, the current jump was 

estimated as a function of the oxygen concentration. The obtained results reproduce qualitatively 

the experimental behavior. The current jump increases up to 800 µA at 25 ppm and then decreases 

thus confirming the important role of associative ionization reactions in the memory effect. The 

calculated values are approximately four times higher than experimental values. This difference can 

be explained from the limitation of both 0D model and the experimental uncertainties.  

The experimentally observed increase of the memory effect for small additions of O2 in N2 can thus 

be explained by the associative ionization reactions. These experimental conditions correspond to a 
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compromise. The O2 concentration is high enough to provide a significant amount of O(3P) atoms and 

low enough to limit the concentration of oxidizing species responsible for the quenching of N2(A) and 

N(2P). 

For the future investigations, several prospects can be proposed and a few examples are provided in 

the following.  

First, it is necessary to quantify the uncertainty regarding TALIF measurements on O(3P) atoms due to 

the interference filter used during the calibration. New measurements performed using a 

monochromator to precisely select the detected wavelengths will allow estimating the relative error 

due to the parasitic fluorescence signal and to correct the obtained values.  

Measurements of the N2(A) density using the cavity ring down spectroscopy (CRDS) diagnostic can 

bring more information regarding the kinetics of this key specie in our conditions. It will allow 

extending this kind of study to other gas mixtures (e.g. N2/NO, N2/N2O…) for which no values of the 

N2(A) density have been published in the literature.  

As pointed out by this study, the production of NO molecules in our conditions is not fully 

understood and requires more investigations.  

The possibility to generate homogeneous discharges in air, as reported in the review presented in 

chapter 1 is also of great interest. Even if it is currently admitted that the dominant memory effect in 

these conditions is due to spontaneous electron desorption at the surfaces, measurements of 

important species such as N2(A) or oxidizing species can be interesting.  

One of the main limitations of the 0D model used in this study is its incapability to provide a self-

consistent calculation of the discharge current and thus of the current jump. Indeed the current (and 

thus the electron density) and gas gap voltage are imposed from the experimental measurements.  

Thus, the development of a 1D-model which considers the external electrical circuit and in which the 

only input is the applied voltage could be of great interest and should be performed.  The direct 

comparison of experimental measurements such as the time-varying gas gap voltage and discharge 

current and their numerical values should provide more accurate estimations of the different 

contributions to the memory effect (secondary electron emission, associative ionization reaction…). 
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APPENDIX 1 

In this appendix we describe the 0D model, which was developed in order to identify the main 

mechanisms responsible for the creation and destruction of the measured species, namely N(4S), 

O(3P) and NO(X).  

I. General description of the model  

The general principle of the model is similar to the one proposed by Tsyganov et al. [83] . Since it is a 

0D model, it is not self-consistent. To overcome this limitation we use electrical experimental 

measurements of the applied voltage and total current to calculate the gas gap voltage Vg and the 

discharge current Id, following the method detailed in [62]. These measurements are performed in 

conditions similar to those studied in the simulation (applied voltage, power, and concentration of 

oxygen). Then, the time-varying electron density and the electric field between the dielectric surfaces 

are deduced using equations ((A 1) and ((A 2), assuming that all the discharge current is due to 

electrons. This is a rough approximation since it is well known that in atmospheric pressure 

Townsend discharge (APTD) the ion density can significantly exceeds the electron density [42]. The 

electron mobility used for the calculations are taken from [100,104].  

𝐸(𝑡) =
|𝑉𝑔(𝑡)|

𝑑
       (A 1) 

          𝑛𝑒(𝑡) =
|𝑗𝑑(𝑡)|

𝑒𝜇𝑒(𝐸)𝐸(𝑡)
       (A 2) 

An example showing the electrical characteristics and the calculated reduced electric field and 

electron density is presented in Figure A- 1. 

 

Figure A- 1(a) electrical characteristics of the discharge: applied voltage Va, gas gap voltage Vg, measured current Im and 
discharge current Id. Experimental conditions are: HV=17.1 kVPP, f=2 kHz, flow rate=1.0 L/min, concentration of O2=200 ppm. 

(b) Corresponding calculated reduced electric field and electron density ne 

Another limitation concerns the electron density between two successive discharges, which cannot 

be accurately described because of the singularity in equation ((A 1) when the electric field 

approaches zero. At this moment, the electric field is very low, thus the electrons, which are 

considered in equilibrium with the electric field, have very small energy. Consequently, one can 

expect that it have only a small influence on the reaction rates involving energetic electrons such as 

nitrogen molecular dissociation. But in turns it implies that reactions involving electrons with small 
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energies cannot be accurately described. It is especially the case for attachment reactions on 

oxidizing species. Then, they are not included in the model. 

For each specie 𝑋𝑖  considered in the model, its time varying density [𝑋𝑖] is described by the following 

equation:    

𝑑[𝑋𝑖]

𝑑𝑡
= ∑ 𝑆𝑗𝑗 − ∑ 𝐿𝑘𝑘       (A 3) 

where 𝑆𝑗 correspond to the source terms and 𝐿𝑘 to the loss terms. The summations are performed 

over all the reactions leading to the formation or destruction of specie 𝑋𝑖. 

Considering a typical reaction with label 𝑗 which results in the formation of specie 𝑋𝑖: 

 𝑎𝐴 + 𝑏𝐵 = 𝑐𝐶 + 𝛼𝑗𝑋𝑖       (A 4) 

where 𝑎, 𝑏, 𝑐  and 𝛼𝑗  are the stoechiometric coefficients. The corresponding source term 𝑆𝑗 

(production rate) for specie 𝑋𝑖  writes: 

𝑆𝑗 = 𝛼𝑗[𝐴]𝑎[𝐵]𝑏      (A 5) 

Considering a typical reaction with label 𝑘 which results in the destruction of specie 𝑋𝑖: 

𝑎𝐴 + 𝛼𝑘𝑋𝑖 = 𝑐𝐶 + 𝑑𝐷      (A 6) 

The corresponding loss term 𝐿𝑘 (destruction rate) for specie 𝑋𝑖  writes: 

𝐿𝑘 = 𝛼𝑘[𝐴]𝑎[𝑋𝑖]𝛼𝑘      (A 7) 

The system is then described by a set of 𝑁 ordinary differential equations, where 𝑁 represents the 

number of considered species. 

The reactions considered in the model are given in Table A- 6 for nitrogen-based species, in Table A- 

7 for oxygen-based species and in Table A- 8 for reactions involving both oxygen and nitrogen species. 

Since the discharge atmosphere is mainly composed of nitrogen, the set of reactions for nitrogen 

species including neutral particles in the ground states – N2, N(4S) - and excited states – N2(A,B,a’,C), 

N(2P,2D) -  and ions – N+, N2
+, N3

+, N4
+ - is quite complete. Due to the low oxygen concentration, we 

only focused on neutral oxygen species in the ground states – O2 and O(3P), and excited states – 

O2(a,b), except for the NO+ ion which has to be considered because of its production by the 

associative ionization reaction N(2P) + O(3P) → NO+ + e−. Note that negative ions are neglected. 

Other molecules are only considered in the ground state. Moreover, the different vibrational levels 

of nitrogen molecules are not considered.   

Reaction rates involving the EEDF are obtained using the BOLSIG+ solver [105] using the IST-Lisbon 

database for nitrogen species [104], the Biagi database [106] for molecular oxygen and the Morgan 

database for atomic oxygen [107]. Inverse reactions are also considered for reactions (1-5) in Table 

A- 6 and (43-45) in Table A- 7. Due to the very low concentration of oxygen, the calculations in 

BOLSIG+ are performed in pure nitrogen. The validity of this approximation was checked by 

comparing calculations performed in pure N2 and in N2 with 200 ppm of O2. The resulting EEDF was 

found to be very similar in both cases. Reaction rates related to reactions involving both ions and 

neutrals were calculated considering the effective temperature of the ion-neutral system [83] in 

order to take into account the effect of the ion acceleration in the electric field. The effective 

temperature 𝑇𝑒𝑓𝑓 is then given by: 
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𝑇𝑒𝑓𝑓 = 𝑇𝑔𝑎𝑠 +
𝜋

𝑘𝐵

𝑚𝑖𝑚𝑛

𝑚𝑖+𝑚𝑛
〈𝑣〉2      (A 8) 

with 𝑇𝑔𝑎𝑠 the gas temperature, 𝑚𝑖 and 𝑚𝑛 are the mass of ions and neutral respectively, 𝑘𝐵 is the 

Boltzmann constant and 〈𝑣〉 = 〈𝜇𝑖𝐸〉 is the averaged value of the ion velocity in the electric field. 

For a sake of simplicity, neutral losses by diffusion to the walls are neglected in the model.   

Ions are mainly lost onto the walls due to their motion in the electric field. The corresponding 

evolution of the ion density [Xi
+] is described by equation (A 9): 

𝑑[𝑋𝑖
+](𝑡)

𝑑𝑡
= −

[𝑋𝑖
+]𝜇𝑖𝐸(𝑡)

𝐿𝑔𝑎𝑝
      (A 9) 

where 𝜇𝑖  is the ion mobility of ion i, and 𝐸(𝑡) the electric field value. Since ions mobilities are only 

slightly varying with respect to the reduced electric field, we considered averaged values over an 

excitation period. Data have been taken from [102]. Reaching the wall, ions are considered to 

neutralize instantaneously. These processes are then included in the overall set of reactions 

considering the following reactions in Table A- 1. 

Table A- 1 Reactions of ions involved in the neutralization 

N2
+ → N2

+
wall

→  N2 (R1) 

N+ → N+
wall

→  N( S4 ) (R2) 

N3
+ → N3

+
wall

→  N2 + N( S4 ) (R3) 

N4
+ → N4

+
wall

→  N2 + N2 (R4) 

NO+ → NO+
wall

→  NO (R5) 

with their corresponding constant rate equal to 𝜇𝑖𝐸(𝑡) 𝐿𝑔𝑎𝑝⁄ .  

The model is based on a large number of hypotheses and considers a large number of reactions. 

Moreover, it does not take into account the effect of surfaces, which are of great importance for the 

physics and chemistry of DBD (emission and desorption of electrons, chemical reactions, 

recombination…). For all these reasons, it is unable to give accurate estimations of the species 

densities but rather to provide order of magnitudes. Assuming that reaction rates coming from the 

literature are corrects, it can be used to identify the main chemical mechanisms by calculating the 

averaged reaction rates of all reactions over a period.  

II. Typical examples of numerical results 

The model returns the time varying evolution of the species densities. Figure A- 2 presents the results 

for N(4S), O(3P) and NO for a simulation performed with 25 ppm of O2. The whole results are depicted 

in Figure A- 2(a), whereas Figure A- 2(b) shows the densities between two successive discharges i.e. 

when the gas gap voltage is zero. Note that the post-discharge is not simulated. 
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Figure A- 2  Temporal evolution of absolute density of N(4S), O(3P) and NO(X). (a) during the whole period (b) between two 
discharges. Conditions: HV=17.1 kVPP, f=2 kHz, flow rate=1.0 L/min, concentration of O2=25 ppm 

The density of each species exhibits the same behavior: it increases after the discharge ignition and 

after a sufficiently long period, reaches a stationary state. An interesting point is that, even in the 

stationary state, the time varying density of N(4S) and O(3P) present only very small variations. This 

point is discussed in more details in chapter 3 section II.1 and chapter 4 section IV.4  

It the following sections, several comparisons are made with experimental results. Nevertheless, a 

direct comparison between experimental results obtained as a function of time or position along the 

discharge and time resolved numerical results is hazardous. Indeed, the power input in the discharge 

is constant in the simulation whereas experimentally, the power is lower at the entrance of the 

discharge as explained in chapter 3 section II.2. Thus, most of the comparisons between numerical 

and experimental results are performed in the stationary state and between two successive 

discharges, unless otherwise specified.  

III. Validation of the model  

The results of the model have been compared to various experimental data obtained in the group 

(including the present work) or taken from the literature in order to check its consistency.  

III.1. Optical emission over a half-period of electrical excitation  

One of the most direct ways to validate the temporal dynamic of the model is to compare the optical 

emission of emitting species to those experimentally observed. In the PhD thesis of Mohamed Cherif 

Bouzidi [56] several characteristic emissions have been measured along a period of the applied signal, 

mainly: 

- the second positive system (SPS) of nitrogen  

- the emission of the Herman infrared system of nitrogen (N2-HIR)   

- the emission of the NO system 

- the emission of the O(1S)N2  system 

Experimental conditions were slightly different compared to those used in this work: the inter-

electrode space was 1mm, the gas flow rate was 4 L/min, the applied voltage was 12 kVPP and the 

frequency was 3 kHz. 

(a) (b) 
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The main mechanism involved in the production and destruction of these emitting species are 

summarized in Table A- 9. They have been used in the model to recover the temporal evolution of 

the emitted intensities and to compare them to the experimental ones.  

The obtained results are presented in Figure A- 3 together with the discharge current. Because the 

frequency was fixed to 3 kHz during experiments and 2 kHz for the simulation, the x-axis corresponds 

to a « normalized time » corresponding to the product of the real time by the applied frequency.  

 

Figure A- 3 Temporal evolution of the second positive system (SPS), the NO system, the N2-HIR system and the O(1S)N2  

system for a discharge in N2 with 50 ppm of oxygen. (a) Experimental data and (b) numerical results. 

As can be seen in both cases the SPS intensity follows the evolution of the discharge current, which is 

in agreement with the fact that N2(C) is directly produced by electron impact excitation. The other 

systems are less direct to generate and then reach their maximum emission after the maximum 

discharge current. These maximum appears in the same order for both the experiment and the 

simulation: first the HIR system, which originates from the collision between two metastable N2(A), 

then the NO system produced by a collision between a NO(X) molecule and a N2(A) metastable 

[55,108] and finally the O(1S)N2 system. This last one require first to produce O(1S) which then react 

with two N2 molecules to form O(1S)N2. 

Despite the fact that the time delays between these maximum and the maximum of the current are 

found lower in the simulation than in the experiments which indicates that the dynamic is not 

perfectly reproduced, we consider these results to be qualitatively acceptable.  

III.2. Production and destruction of metastable N2(A) 

It is well known that N2(A) metastable play a crucial role in the physics and chemistry of APTD (see 

e.g.[38]). The results of the model concerning the N2(A) density thus requires a careful attention. 

Figure A- 4 represents the time evolution of the N2(A) density during a half period of the applied 

voltage for 0 ppm and 200 ppm of oxygen in N2. From this figure, two important observations can be 

made. First, the maximum value reached by the N2(A) density is quite similar for both oxygen 

concentrations: 6.4 1013 cm-3 at 0 ppm and 5 1013 cm-3 at 200 ppm. Second, the quenching rate of 

N2(A) is 2.96 104 s-1 at 0 ppm, mainly due to the quenching by N(4S) atoms, N2 molecules and self-

quenching, and increases up to 4 104 s-1 at 200 ppm. Consequently, the minimum density of N2(A) 

between two successive discharges is more than ten times smaller at 200 ppm compared to 0 ppm of 

oxygen. The increase of the N2(A) quenching rate can be explained by the appearance of efficient 
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quenchers as soon as O2 is introduced in the discharge. The main oxidizing species responsible for the 

enhanced quenching of N2(A) are, in order of importance, O(3P), O2 and NO whereas N2O and NO2 

have only a poor influence.   

 

Figure A- 4 Temporal evolution during a half electrical period of the N2(A) density provided by the model for 0 ppm and 200 
ppm of oxygen in N2. HV=17.12 kVPP, f= 2 kHz, flow rate =1.0 L/min. 

Dilecce et al. have measured the absolute concentration of N2(A) in rather similar conditions than 

those exposed here [58]. The maximum N2(A) concentration they found is around 1.7 1013 cm-3 at 0 

ppm and 1.2 1013 cm-3 at 200 ppm of oxygen in N2. Moreover, the quenching rate they determined is 

2 104 s-1 at 0 ppm and around 3 104 s-1 at 200 ppm. We can thus conclude that experimental results of 

Dilecce et al. are in the same order of magnitude in comparison with the results of the model. Thus, 

the latter seems to provide good estimations of the N2(A) dynamics.  

III.3. Optical emission for different oxygen concentration 

Optical emission spectroscopy measurements have been performed in the PhD thesis of Mohamed 

Cherif Bouzidi [56] for various oxygen concentrations ranging from 0 to 400 ppm. We focus here on 

the intensities of the systems O(1S)N2, N2-HIR and NO emitted between two successive discharges. 

Measurements were performed just before the end of the discharge, where the discharge 

characteristics (current, optical emission intensities…) reach constant values. The experimental 

results are presented in Figure A- 5(a). Simulations based on the reactions presented in Table A- 1 

have been performed for oxygen concentrations from 0 to 200 ppm and the corresponding results 

are presented in Figure A- 5(b). All correspond to results obtained in the stationary state and 

between two successive discharges. Numerical results have been normalized to the value at 0 ppm 

for N2-HIR and to the value at 50 ppm for O(1S)N2 and NO in order to allow a direct comparison with 

experimental results.  

As can be seen, the model is able to reproduce the experimental behavior. The emissions of the NO 

and O(1S)N2 systems provided by the model increase from 0 to 25 ppm and then decreases for higher 

oxygen concentrations. Note that experimentally the maximum is found at 50 ppm because no 

measurements were performed at 25 ppm. Moreover, the appearance of the NO and O(1S)N2 
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systems at 0ppm indicate that impurities are always present experimentally, even when only high 

purity nitrogen is injected.   

 The emission of the N2-HIR system from the model is slightly higher at 25 ppm than at 0 ppm and 

then decreases with increasing oxygen concentration. This can be explained by the higher discharge 

power at 25 ppm. Experimentally, since no measurements have been performed at 25 ppm, the 

intensity of the N2-HIR system is found to decrease continuously with increasing oxygen 

concentration.  

These evolutions are the results of two competing phenomena. As we will see later, increasing the 

oxygen concentration results in an increase of the O(3P) and NO(X) concentration. But at the same 

time, the quenching rate of N2(A) continuously increases because of the higher density of oxidizing 

species (see section III.2). Since the emissions of these three systems are strongly related to the N2(A) 

concentration, the quenching of N2(A) seems to be the dominant effect and consequently the 

emitted intensities decrease. Similar conclusions have been drawn in [55].  

 

Figure A- 5 Intensity of O(1S)N2, N2-HIR and NO measured between two successive discharges for various oxygen 
concentrations. (a) Experimental results with conditions: HV=12 kVPP, f=3 kHz, flow rate=4.0 L/min, gas gap=1 mm (b) 

numerical results with conditions: HV=17.1 kVPP, f=2 kHz, flow rate=1.0 L/min, gas gap=2 mm 

IV. Identification of the main mechanisms involved in the production/destruction of 

species of interest 

In this section we are interested in the production and destruction mechanisms of N(4S), O(3P) and 

NO(X) by looking at their respective production and destruction rates averaged over a discharge 

period in the stationary state. The production/destruction rates correspond to the reaction rate 

multiplied by the stoichiometric coefficient referring to the species of interest. 

IV.1. N(4S) atoms 

IV.1.1. Main mechanisms of production and destruction 

IV.1.1.1. Production:  

N(4S) atoms are produced by dissociation of N2 molecules through direct electron impact following 

the reaction: e− + N2 → e− + N(4S) + N(4S,2 D,2 P) 

(a) (b) 
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Cosby [109] indicates that N(4S)+N(2D) is the dominant channel of this reaction which can also leads 

to N(4S)+N(2P) as a minor contribution whereas the channel N(4S)+ N(4S) is considered negligible.  

Thus, only the reaction e− + N2 → e− + N(4S) + N(2D) is considered in the model. Note that even if 

the electron density is quite low in this kind of discharge, the large density of N2 molecules 

compensates this and results in a significant reaction rate.  

Another noticeable source of N(4S) comes from the quenching of N(2P) and N(2D) atoms by nitrogen 

molecules: N2 + N(2P,2 D) → N2 + N(4S) where N(2P) atoms are mainly produced during the excitation 

of N(4S) by N2(A): N2(A) + N(4S) → N2 + N(2P). These two reactions always have a very similar 

reaction rate indicating that they drive the equilibrium between N(4S) and N(2P) densities. The case of 

N(2D) atoms is more complex since they are produced either by the reaction N2(A) + O(3P) → NO +

N(2D) or during N2 dissociation by electrons. 

IV.1.1.2. Destruction: 

As explained previously, in post-discharge in pure nitrogen N(4S) atoms are mainly lost by three-body 

recombination on N2 molecules and by diffusion towards the dielectrics. Inside the discharge, N(4S) is 

efficiently excited by N2(A) to form N(2P). 

As soon as oxygen is introduced into the discharge, N(4S) is mainly destroyed by NO molecules and 

O(3P) atoms. Table A- 2 presents the different destruction rates for 200 ppm of O2 in N2.   

Table A- 2 averaged destruction rates over a period of the applied voltage for the main reactions involved in the destruction 
of N(4S) atoms for 200 ppm of oxygen 

Reaction Destruction rate  (cm−3s−1) 

N(4S) + NO → N2 + O(3P,1 D) 1.19 × 1017 
N2(A) + N(4S) → N2 + N(2P) 9.87 × 1016 

N(4S) + O(3P) + N2 → NO + N2 2.48 × 1016 
N(4S) + NO2 → N2O + O(3P) 2.98 × 1015 

N(4S) + N(4S) + N2 → N2 + N2(A, B) 2.54 × 1015 
N(4S) + NO2 → NO + NO 2.29 × 1015 

 

IV.1.2. Temporal evolution of N(4S) density 

The evolutions of the density of atomic nitrogen in the ground and excited states together with the 

density of N2(A) metastable are depicted in Figure A- 6 for a simulation performed in pure nitrogen. 

As can be seen, the density of N(4S) remains constant. The same behavior is observed experimentally. 

It is surprising because as a first approach, one attempt to observe a fluctuating density with higher 

values when the discharge is one i.e. when electrons efficiently dissociates N2 molecules.  
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Figure A- 6 Temporal evolution of the densities of N(4S), N(2P), N(2D) and N2(A) provided by the model. Conditions: 
HV=17.1 kVpp, f=2 kHz 

To explain this trend, the rates of the main reactions involved in the production and destruction of 

N(4S) atoms are depicted in Figure A- 7(a) and (b) respectively. The dissociation of N2 molecules by 

electron impact is efficient only when the discharge is on i.e. when the electron density and the 

accelerating electric field are high enough. But the major part of N(4S) atoms come from the 

quenching of excited N(2P) (and N(2D)) atoms. This channel is especially important just after the 

extinction of the discharge and then decreases until the next discharge. Concerning the destruction 

mechanisms, the excitation of N(4S) atoms by N2(A) metastable to produce N(2P) (and N(2D)) clearly 

dominates. One important point is that these two dominant channels of creation and destruction are 

strongly related to N2(A) metastable and their rates are directly related to the N2(A) density 

presented in Figure A- 6: they are maximum at t ≈ 0.0526 s  and minimum at t ≈ 0.0528 s . 

Consequently, when the density of N2(A) is high, both the production and the destruction of N(4S) are 

important. On the contrary for low N2(A) concentrations, the production and destruction rates of 

N(4S) are weak. The overall creation and destruction rates of N(4S) are summarized in Figure A- 8. The 

small variations of N(4S) density can thus be attributed to the quasi-equilibrium between the 

production and destruction of N(4S) at each time. 
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Figure A- 7 Main reactions rates involved in (a) the creation of N(4S) (b) the destruction of N(4S) 

 

Figure A- 8 Overall creation and destruction rates of N(4S) 

IV.2. O(3P) atoms 

IV.2.1. Main mechanisms of production and destruction 

IV.2.1.1. Production: 

When O2 is introduced in the discharge, the neutral oxygen chemistry starts with the dissociation of 

molecular oxygen to produce atomic oxygen, which then reacts to form other products such as NO 

for example. O2 dissociation can be induced by direct electron impact or through collision with a 

metastable N2(A) as indicated in Table A- 8. In our conditions, the electron-induced dissociation is 

found negligible compared to the dissociation induced by N2(A). It can be explained by the very low 

mean electron density which is comprised between a few 107 and a few 108 cm-3 in the simulations 

depending on the conditions, compared to the averaged N2(A) density which is around 1012-1013 cm-3.  

(a) (b) 
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With the appearance of NO molecules, their reduction by N(4S) becomes an important channel of 

O(3P) production.  

Another important source of O(3P) comes from the quenching of metastable O(1D) atoms by N2. Note 

that O(1D) mainly comes from the quenching of O(1S) which is itself produced by energy exchange 

between N2(A) and O(3P). O(1S) can also directly lead to a noticeable production of O(3P) through its 

reaction with excited molecular oxygen O2(a) or during its quenching by NO. The main reaction rates 

are given in Table A- 3. 

Table A- 3 Main creation mechanisms for O(3P) atoms at 25 and 200 ppm 

25 ppm 200 ppm 

Reaction 
Production 

rate (cm-3.s-1) 
Reaction 

Production 
rate (cm-3.s-1) 

O(1D) + N2 → O(3P) + N2 1.95 × 1017 O(1D) + N2 → O(3P) + N2 3.06 × 1017 

N(4S) + NO → N2 + O(3P) 3.55 × 1016 N2(A) + O2 → N2 + O(3P) + O(3P) 2.24 × 1017 

N2(A) + O2 → N2 + O(3P)
+ O(3P) 

3 × 1016 N(4S) + NO → N2 + O(3P) 5.93 × 1016 

O(1S) + O2(a) → O(3P) + O2(A) 2.02 × 1016 O(1S) + NO → O(3P) + NO 5.56 × 1016 

O(1S) + O2(a) → 3  O(3P) 1.58 × 1016 O(1S) + O2(a) → O(3P) + O2(A) 3.97 × 1016 

 

IV.2.1.2. Destruction: 

Whatever the concentration of oxygen, the dominant mechanism responsible for the destruction of 

O(3P) is the reaction N2(A) + O(3P) → N2 + O(1S). The reaction N2(A) + O(3P) → NO + N(2D) also plays 

an important role. The other mechanisms involved in the destruction of O(3P) are different 

depending on the oxygen concentration. Higher oxygen concentrations lead to higher concentration 

of NO and NO2 which can react efficiently with oxygen atoms. Other oxidizing species such as O3, NO3, 

N2O4 and N2O5 are produced in too small amount at these low oxygen concentrations (maximum 200 

ppm) to play a significant role in the overall chemistry. The dominant reactions and their 

corresponding destruction rates are given in Table A- 4 for 25 and 200 ppm. 

Table A- 4 Main destruction mechanisms of O(3P) atoms for 25 and 200 ppm 

25 ppm 200 ppm 

Reaction 
Destruction 

rate(cm-3.s-1) 
Reaction 

Destruction 
rate(cm-3.s-1) 

N2(A) + O(3P) → N2 + O(1S) 2.28 × 1017 N2(A) + O(3P) → N2 + O(1S) 3.65 × 1017 

N2(A) + O(3P) → NO + N(2D) 5.31 × 1016 
O(3P) + O(3P) + N2

→ O2(X, a, b)
+ N2 

9.34 × 1016 

N(4S) + O(3P) + N2

→ NO + N2 
1.7 × 1016 N2(A) + O(3P) → NO + N(2D) 8.52 × 1016 

O(3P) + O(3P) + N2

→ O2(X, a, b)
+ N2 

1.7 × 1016 O(3P) + NO + N2 → NO2 + N2 6.42 × 1016 
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O(3P) + NO + N2 → NO2 + N2 1.02 × 1016 O(3P) + NO2 → NO + O2 5.7 × 1016 

O(3P) + NO2 → NO + O2 6.69 × 1015 O(3P) + O2 + N2 → N2 + O3 5.1 × 1016 

O(3P) + O2 + N2 → N2 + O3 2.01 × 1015 N(4S) + O(3P) + N2 → NO + N2 2.48 × 1016 

 

IV.2.2. Temporal evolution of O(3P) density 

The evolution of the O(3P) density obtained for a simulation performed at 200 ppm of O2 is depicted 

in Figure A- 9. As for the case of N(4S), the density of O(3P) appears to be rather constant in time. The 

same behavior is observed experimentally. To understand this, the same approach has been used. 

The main reaction rates for the creation and destruction mechanism of O(3P) are depicted in Figure 

A- 10(a) and (b) respectively. O(3P) atoms are mostly produced through O2 dissociation by N2(A) or by 

the quenching of O(1D) or O(1S) atoms which are themselves produced by N2(A). Thus the creation of 

O(3P)  is strongly related to the N2(A) density. Concerning the destruction of O(3P), it mainly arises 

during collisions between O(3P) and N2(A) to produce O(1S)  or O(1D). Thus, as for the case of N(4S), 

the creation and destruction of O(3P) atoms are mainly ruled by the N2(A) density and consequently 

their rate are close to the equilibrium at each time resulting in a quasi-constant O(3P)  density. Figure 

A- 11 represents the temporal evolution of the overall creation and destruction rates of O(3P). 

 

Figure A- 9 Temporal evolution of the density of O(3P), O(1S), O(1D) and N2(A) obtained from a simulation. Conditions: 
HV=17.1 kVPP, f=2 kHz, concentration of O2=200 ppm 
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Figure A- 10  Main reactions rates involved in (a) the creation of O(3P) atoms and (b) the destruction of O(3P) atoms 

 

Figure A- 11 Overall creation and destruction rates of O(3P) atoms 

(b) 

(a) 
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IV.3. NO(X) molecules 

IV.3.1. Production 

It is well known (see e.g. [63]) that NO can be very efficiently produced by the so called Zel’dovich 

reactions given by : 

N2 + O(3P) → NO + N(4S) (R6) 

N(4S) +  O2 → NO + O(3P) (R7) 

Since reaction (R6) has a large activation energy of 3.27 eV, it requires highly energetic particles or N2 

molecules in a highly excited vibrational state N2(X,v>12) to be effective. This can be obtained in high 

temperature medium e.g. in combustion systems or in low-pressure plasmas where N2 molecules can 

be vibrationally excited by electrons without experiencing a high quenching [94]. Nevertheless, in our 

conditions the temperature remains close to 300K and the quenching rate is large so that reaction 

(R6) is unlikely. Moreover the population of the vibrationnally excited levels of nitrogen is not 

considered in the model, so that this reaction is not taken into account. Finally, only electronically 

excited nitrogen molecules are able to overcome the activation barrier making the reaction N2(A) +

O(3P) → NO + N(2D) dominant in our conditions.  

Reaction (R7) requires a lower activation energy (0.27 eV) and is considered to be significant in DBD 

discharges [63]. Nevertheless, it is found negligible in our conditions due to the very low gas 

temperature. The activation energy can be brought by electronically excited atoms (N(2D) and N(2P)) 

or by electronically excited O2(a) molecules. Herron et al. [110] found that NO is primary formed by 

the reaction N(2D) +  O2 → NO + O(3P). Nevertheless, the results of the model clearly indicate that 

the corresponding rates remain small in our conditions.   

To summarize, in our conditions, the main production mechanism of NO molecules is N2(A) +

O(3P) → NO + N(2D). For low oxygen concentration (25ppm), the second dominant reaction is the 

three-body recombination N(4S) + O(3P) + N2 → NO + N2  whereas it is O(3P) + NO2 → NO + O2  for 

200 ppm. Their respective reaction rates are given in Table A- 4. 

IV.3.2. Destruction 

NO molecules are mainly destroyed during their reduction by N(4S) atoms through the reaction 

N(4S) + NO → N2 + O(3P,1 D). At high oxygen concentration, the reaction O(3P) + NO + N2 → NO2 + N2 

becomes significant but remains slower than NO reduction. 

IV.4. Summary 

Based on the previous analysis, a summary of the main reactions related to the production and 

destruction of N(4S), O(3P) and NO(X) is proposed by Figure A- 12.  



APPENDIX 1 

129 

 

 

Figure A- 12 Main reactions involved in the production and destruction of N(4S), O(3P) and NO(X) 

V. Order of magnitude of the densities of the main species of interest for different 

oxygen concentration 

The aim of this part is to provide order of magnitudes for the density of some species of interest: 

N(4S), O(3P) and NO since they are measured by laser spectroscopy in the present work, O(1S) 

because it is directly related to the O(1S)N2 green band emission measured by OES, N2(A) and N(2P) 

because of their important role in the associative ionization reaction. Figure A- 13 present the results 

provided by the model for different oxygen concentration at a constant applied voltage of 17.1 kVPP. 

Note that the densities presented here correspond to the values obtained at the stationary state and 

between two successive discharges i.e. when the polarity of the gas gap voltage Vg reverses.  
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Figure A- 13 Densities between two successive discharges obtained from the model for different oxygen concentrations. 
Conditions: HV=17.1 kVPP, f=2 kHz 

The density of N(4S) is 4.7 1014 cm-3 in pure nitrogen. It continuously decreases as the oxygen 

concentration increases to reach 1.24 1014 at 200 ppm of O2. It can be explained by a higher 

consumption of N(4S) by NO molecules (see section IV.1). On the other hand, the densities of O(3P) 

and NO increases from 3.5 1014 cm-3 and 1.9 1013 cm-3 at 25 ppm to 8 1014 cm-3 and 5 1013 cm-3 at 200 

ppm respectively.  

It is interesting to note that these evolutions are not directly correlated to the evolution of the 

O(1S)N2 green band and NO system emissions. Indeed, they decrease when the concentration of O2 

increases as indicated in Figure A- 5(a) and (b). It can be explained by the fact that these emissions 

are not only related to the density of species in the ground state but also to the N2(A) concentration 

which is responsible for their excitation. Moreover, these emitting species can also be quenched 

before they emit radiations. Thus one has to be careful when interpreting the data of OES and all the 

aforementioned processes have to be considered [111]. The density of N2(A) decreases from  

2.5 1012 cm-3 at 0 and 25 ppm to 2.2 1011 cm-3 at 200 ppm. Indeed, N2(A) is efficiently destroyed by 

O(3P) atoms, O2, and NO molecules. Consequently, the density of O(1S) also decreases from 6.8 1012 

cm-3 to 3.5 1011 cm-3. Thus in our conditions, it seems that the decrease of the N2(A) density 

overcomes the increase of O(3P) density resulting in a decreasing O(1S) density for higher oxygen 

concentrations. The same conclusions stand for NO(A) and NO(X). Finally, since both the N2(A) and 

N(4S) densities decrease, the density of N(2P) also decreases from 4.2 1010 cm-3 to 1 109 cm-3 between 

0 and 200 ppm. 

The calculated densities of N(4S), O(3P) and NO have similar evolution with respect the input O2 

concentration  compared to experimental measurements presented in chapter 3,4 and 5. The N(4S) 

density continuously decreases as the concentration of O2 increases whereas the densities of O(3P) 

and NO increase. Moreover, this increase is more important for low oxygen concentration than for 

high concentration.  Following the results of the model, it can be ascribed to the decrease of the N2(A) 

concentration as the O2 concentration increases. Indeed, it appears that nitrogen metastable species 

play a very important role in the chemistry of oxidizing species since it is directly involved in the 

formation of O(3P) and NO.  
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Concerning the absolute values of the densities, numerical and experimental results are in good 

agreement for N(4S). Nevertheless, the model overestimate the density of O(3P) by a factor 2-3. The 

discrepancy is even more important concerning the NO densities. The calculated densities are 10 

times higher than experimental values. 

VI. Additional investigations and discussions 

VI.1. Influence of the reaction 𝐍𝟐(𝐀) + 𝐎(𝟑𝐏) → 𝐍𝐎 + 𝐍(𝟐𝐃) on the formation of NO 

In [50,112] the quenching of N2(A) by O(3P) for low vibrational levels of N2(A) was found to lead 
essentially to the formation of O(1S). NO production by this reaction becomes significant only for 
vibrational levels of N2(A) greater than v=3. At atmospheric pressure, the redistribution of N2(A) 
occurs very quickly due to collisions and one can assume that only the vibrational levels v=0,1 are 
significantly populated. To investigate this effect onto the production of NO, calculations were 
performed without the reaction N2(A) + O(3P) → NO + N(2D). Let us consider a simulation performed 
at 25 ppm of O2 for an applied voltage of 17.1 kVpp. For this example, suppressing this reaction results 
in a decrease of the NO density between two successive discharges from 1.7 1013 cm-3 to 5.5 1012 cm-3. 
This is closer to the experimental value of 6 1011 cm-3 but the NO density remains greatly 
overestimated by the model. It shows that the consideration of the reaction N2(A) + O(3P) → NO +

N(2D) alone is not able to fully explain the discrepancies between simulations and experiments.  

VI.2. Influence of the rate coefficient of reaction 𝐍(𝟐𝐏) + 𝐍𝟐 → 𝐍𝟐 + 𝐍(𝟒𝐒,𝟐 𝐃) 

All the simulation results presented in this appendix were obtained considering the reaction N(2P) +

N2 → N2 + N(4S) with the rate 6 10-14 cm3s-1 (see e.g. [83,113]). Nevertheless, this reaction is not 

present in the set of reactions used by many authors. For example, Kossyi et al. [98] or N.A.Popov [57] 

consider that N(2P) atoms are quenched by the following reaction N(2P) + N2 → N2 + N(2D) with the 

small rate 2 10-18 cm3s-1. J. T. Herron [96] consider the same reaction N(2P) + N2 → N2 + N(4S) but 

with a very different rate of 5 10-17 cm3s-1. In recent investigations [103] a rate of 3 10-17 cm3s-1 was 

found, in good agreement with the value proposed by J. T. Herron. Thus, to investigate the effect of 

such reactions, calculations were performed considering these smaller reaction rates and the 

obtained results were found to be substantially different from the present ones. Table A- 5 provides 

a comparison of the results obtained with 25 ppm of O2 and HV=17.1 kVPP, f=2 kHz, considering to 

different rates for the quenching reaction of N(2P). 

Table A- 5 Comparison of the densities obtained between two successive discharges from simulations with different reaction 
rate for the quenching of N(2P) by N2. Conditions: 25 ppm of O2, 17.1 kVpp 

Species 𝑘 = 6.0 × 10−14 cm3s-1 𝑘 = 5.0 × 10−17 cm3s-1 

N(4S) 2 × 1014 𝑐𝑚−3 3.5 × 1013 𝑐𝑚−3 

O(3P) 3.8 × 1014 𝑐𝑚−3 2.1 × 1014 𝑐𝑚−3 

NO(X) 2 × 1013 𝑐𝑚−3 7.5 × 1013 𝑐𝑚−3 

N(2P) 1.7 × 1010 𝑐𝑚−3 6 × 1012 𝑐𝑚−3 

 

As can be seen, the N(2P) density is approximately two orders of magnitude higher for the lower 

quenching rate. Moreover, lowering the rate of this reaction induces a drop of the N(4S) density, 

whereas the NO and O(3P) density increase.  

Deeper investigations revealed what happened. The first consequence is direct: lowering the 

quenching of N(2P) considerably reduces the amount of N(4S) atoms produced by the quenching of 
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N(2P). Second, the rate of the associative ionization reaction N(2P) + O(3P) → NO+ + e− increases 

because of the higher N(2P) density. The neutralization of NO+ ions to the wall produces a large 

amount of NO molecules. Consequently, the reduction of NO by N(2P), N(2P) + NO → O(3P,1 D) + N2, 

becomes very large which results in a higher production of O(3P). As a conclusion, the equilibrium 

between N, O and NO density is shifted towards lower density of N(4S) and higher densities of O and 

NO. Note that these results are in worse agreement with experimental results. The strong 

dependence of the results with the reaction rate for the quenching of N(2P) by N2 is of primary 

importance because the rate of the associative ionization reactions is considerably dependent on the 

amount of N(2P) in the discharge. This point is discussed in details in chapter 6 section III.4. 

Another important consequence of the lowering of the quenching rate of N(2P) by N2 concerns the 

ion density. Indeed, the strong increase of the rates of the associative ionization reactions produces a 

large amount of ions. As a consequence, the total ion density provided by the model increases 

reaching non-realistic values around 1011 cm-3. The maximum of the ion density is reached between 

two successive discharges, i.e. when the electric field is too low to evacuate the ions, contrary to the 

previous situation. This is illustrated in Figure A- 14, which represents the time varying ion density for 

the two sets of simulations presented above.  

 

Figure A- 14 ion density obtained for two different values of the quenching rate of N(2P). Conditions: concentration of 
O2=25 ppm, HV=17.1 kVpp 

It is worthwhile to mention that it is not possible to conclude from these results that the value of 5   

10-17cm3s-1 for the quenching of N(2P) by N2 is incorrect. Indeed, the present model is based on the 

assumption that all the current is due to electrons, which is used to calculate the electron density 

from the experimental value of the discharge current. Taking into account the ion contribution to the 

current in a self-consistent way would considerably reduce the electron density especially in the case 

of high ion densities. A lower electron density would imply a lower excitation and ionization rate thus 

producing more consistent results.  
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Table A- 6 Reactions involving nitrogen species 

Reaction  Rate constant (s-1, cm3s-1, cm6s-1) Reference 

Ionization, excitation and dissociation by electron impact    

𝐞− + 𝐍𝟐 → 𝐞− + 𝐍𝟐(𝐀, 𝐁, 𝐂, 𝐚′)          +inverse (1) from EEDF [83] 

𝐞− + 𝐍𝟐 → 𝐞− + 𝐞− + 𝐍𝟐
+                      +inverse (2) from EEDF [83] 

𝐞− + 𝐍𝟐 → 𝐞− + 𝐞 + 𝐍+ + 𝐍             +inverse (3) from EEDF [83] 

𝐞− + 𝐍𝟐 → 𝐞− + 𝐍(𝟒𝐒) + 𝐍(𝟐𝐃)       +inverse (4) from EEDF [83] 

𝐞− + 𝐍(𝟒𝐒) → 𝐍(𝟐𝐏, 𝐃𝟐 ) + 𝐞−          +inverse (5) from EEDF [21] 

    

Associative ionization    

𝐍𝟐(𝐀) + 𝐍𝟐(𝐚′) → 𝐍𝟒
+ + 𝐞− (6) 4.0 × 10−12 [83] 

𝐍𝟐(𝐚′) + 𝐍𝟐(𝐚′) → 𝐍𝟒
+ + 𝐞− (7) 1.0 × 10−11 [83] 

𝐍(𝟐𝐏) + 𝐍(𝟐𝐏) → 𝐍𝟐
+ + 𝐞− (8) 1.5 × 10−11 [57,98]  

    

Electron-ion recombination    

𝐞− + 𝐀+ + 𝐍𝟐 → 𝐀 + 𝐍𝟐       where      A+=N+,N2
+ (9) 6.0 × 10−27 × (300 Te⁄ )1.5 [98] 

𝐍𝟐
+ + 𝐞− → 𝐍(𝟒𝐒) + 𝐍(𝟒𝐒) (10) 9.0 × 10−8 × (300 Te⁄ )0.39 [83] 

𝐍𝟐
+ + 𝐞− → 𝐍(𝟒𝐒) + 𝐍(𝟐𝐃) (11) 8.1 × 10−8 × (300 Te⁄ )0.39 [83] 

𝐍𝟐
+ + 𝐞− → 𝐍(𝟒𝐒) + 𝐍(𝟐𝐏) (12) 9.0 × 10−9 × (300 Te⁄ )0.39 [83] 

𝐍𝟑
+ + 𝐞− → 𝐍𝟐 + 𝐍(𝟒𝐒) (13) 2.0 × 10−7 × (300 Te⁄ )0.5 [83] 

𝐍𝟒
+ + 𝐞− → 𝐍𝟐 + 𝐍𝟐 (14) 2.3 × 10−6 × (300 Te⁄ )0.53 [83] 

    

Ion conversion    

𝐍+ + 𝐍𝟐 + 𝐍(𝟒𝐒) → 𝐍𝟐
+ + 𝐍𝟐 (15) 1.7 × 10−29 [83] 

𝐍+ + 𝐍𝟐 + 𝐍𝟐 → 𝐍𝟑
+ + 𝐍𝟐 (16) 1.7 × 10−29 × (300 Teff⁄ )2.1 [83] 

𝐍𝟐
+ + 𝐍(𝟒𝐒) → 𝐍+ + 𝐍𝟐 (17) 7.2 × 10−13 × (Teff 300⁄ ) [83] 

𝐍𝟐
+ + 𝐍𝟐 (𝐀) → 𝐍𝟑

+ + 𝐍(𝟒𝐒) (18) 3.0 × 10−10 [83] 

𝐍𝟐
+ + 𝐍𝟐 + 𝐍(𝟒𝐒) → 𝐍𝟑

+ + 𝐍𝟐  (19) 9.0 × 10−30 × exp(400 Teff⁄ ) [83] 

𝐍𝟐
+ + 𝐍𝟐 + 𝐍𝟐 → 𝐍𝟒

+ + 𝐍𝟐  (20) 5.2 × 10−29 × (300 Teff⁄ )2.2 [83] 

𝐍𝟑
+ + 𝐍(𝟒𝐒) → 𝐍𝟐

+ + 𝐍𝟐  (21) 6.6 × 10−11 [83] 

𝐍𝟒
+ + 𝐍(𝟒𝐒) → 𝐍+ + 𝐍𝟐 + 𝐍𝟐  (22) 1.0 × 10−11 [83] 

𝐍𝟒
+ + 𝐍𝟐 → 𝐍𝟐

+ + 𝐍𝟐 + 𝐍𝟐  (23) 2.1 × 10−16 × exp(Teff 121⁄ ) [83] 

    

Excited species conversion    

𝐍𝟐(𝐁) → 𝐍𝟐(𝐀) + 𝐡𝛎 (24) 1.3 × 105 [83] 

𝐍𝟐(𝐂) → 𝐍𝟐(𝐁) + 𝐡𝛎 (25) 2.5 × 107 [83] 

𝐍𝟐(𝐚′) → 𝐍𝟐 + 𝐡𝛎 (26) 1.0 × 102 [83] 

𝐍𝟐(𝐀) + 𝐍(𝟒𝐒) → 𝐍𝟐 + 𝐍(𝟒𝐒) (27) 2.0 × 10−12 [83] 

𝐍𝟐(𝐀) + 𝐍(𝟒𝐒) → 𝐍𝟐 + 𝐍(𝟐𝐏) (28) 4.0 × 10−11 × (300 T⁄ )2/3 [83] 

𝐍𝟐(𝐀) + 𝐍𝟐 → 𝐍𝟐 + 𝐍𝟐 (29) 3.0 × 10−16 [83] 

𝐍𝟐(𝐀) + 𝐍𝟐(𝐀) → 𝐍𝟐 + 𝐍𝟐(𝐁) (30) 3.0 × 10−10 [83] 

𝐍𝟐(𝐀) + 𝐍𝟐(𝐀) → 𝐍𝟐 + 𝐍𝟐(𝐂) (31) 1.5 × 10−10 [83] 

𝐍𝟐(𝐁) + 𝐍𝟐 → 𝐍𝟐 + 𝐍𝟐 (32) 2.0 × 10−12 [83] 

𝐍𝟐(𝐁) + 𝐍𝟐 → 𝐍𝟐(𝐀) + 𝐍𝟐 (33) 3.0 × 10−11 [83] 

𝐍𝟐(𝐂) + 𝐍𝟐 → 𝐍𝟐(𝐚′) + 𝐍𝟐 (34) 1.0 × 10−11 [83] 

𝐍𝟐(𝐚′) + 𝐍𝟐 → 𝐍𝟐(𝐁) + 𝐍𝟐 (35) 1.9 × 10−13 [83]] 

𝐍(𝟐𝐃) + 𝐍𝟐 → 𝐍𝟐 + 𝐍(𝟒𝐒) (36) 2.3 × 10−14 × exp(− 510 T⁄ ) [83] 

𝐍(𝟐𝐏) + 𝐍𝟐 → 𝐍𝟐 + 𝐍(𝟐𝐃) (37) 2.0 × 10−18 [83] 

𝐍(𝟐𝐏) + 𝐍𝟐 → 𝐍𝟐 + 𝐍(𝟒𝐒) (38) 6.0 × 10−14 [83] 

𝐍(𝟐𝐏) + 𝐍(𝟒𝐒) → 𝐍(𝟐𝐃) + 𝐍(𝟒𝐒) (39) 6.0 × 10−13 [83] 

𝐍(𝟐𝐏) + 𝐍(𝟒𝐒) → 𝐍(𝟒𝐒) + 𝐍(𝟒𝐒) (40) 1.8 × 10−12 [83] 

𝐍(𝟒𝐒) + 𝐍(𝟒𝐒) + 𝐍𝟐 → 𝐍𝟐 + 𝐍𝟐(𝐀) (41) 1.7 × 10−33 [83] 

𝐍(𝟒𝐒) + 𝐍(𝟒𝐒) + 𝐍𝟐 → 𝐍𝟐 + 𝐍𝟐(𝐁) (42) 2.4 × 10−33 [83] 
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Table A- 7 Reactions involving oxygen species 

Reaction  Rate constant (s-1, cm3s-1, cm6s-1) Reference 

Excitation and dissociation by electron impact    

𝐎𝟐 + 𝐞− → 𝐎(𝟑𝐏) + 𝐎(𝟑𝐏, 𝐃𝟏 ) + 𝐞−       +inverse (43) from EEDF [108] 

𝐎𝟐 + 𝐞− → 𝐎𝟐(𝐚, 𝐛) + 𝐞−                            +inverse (44) from EEDF [98] 

𝐎(𝟑𝐏) + 𝐞− → 𝐎(𝟏𝐃, 𝐒𝟏 ) + 𝐞−                  +inverse (45) from EEDF [98] 

    

Neutral reactions involving ground state particles    

𝐎(𝟑𝐏) + 𝐎(𝟑𝐏) + 𝐎𝟐 → 𝐎𝟐(𝐗, 𝐚, 𝐛) + 𝐎𝟐 (46) 2.45 × 10−31 × T−0.63 [98] 

𝐎(𝟑𝐏) + 𝐎𝟐 + 𝐎𝟐 → 𝐎𝟑 + 𝐎𝟐 (47) 6.9 × 10−34 × (300 T⁄ )1.25 [98] 

𝐎(𝟑𝐏) + 𝐎𝟑 → 𝐎𝟐 + 𝐎𝟐 (48) 2.0 × 10−11 × exp(−2300 T⁄ ) [98] 

    

Neutral reactions involving electronically excited particles    

𝐎(𝟏𝐒) + 𝐎(𝟑𝐏) → 𝐎(𝟏𝐃) + 𝐎(𝟑𝐏) (49) 5.0 × 10−11 × exp(−301 T⁄ ) [98] 

𝐎(𝟏𝐒) + 𝐎𝟐(𝐚) → 𝟑  𝐎(𝟑𝐏) (50) 3.4 × 10−11 [98] 

𝐎(𝟏𝐒) + 𝐎𝟑 → 𝐎𝟐 + 𝐎𝟐 (51) 2.9 × 10−10 [98] 

𝐎(𝟏𝐒) + 𝐎𝟐(𝐚) → 𝐎(𝟑𝐏) + 𝐎𝟐(𝐀) (52) 1.3 × 10−10 [98] 

𝐎(𝟏𝐒) + 𝐎𝟑 → 𝐎(𝟏𝐃) + 𝐎(𝟑𝐏) + 𝐎𝟐 (53) 2.9 × 10−10 [98] 

𝐎(𝟏𝐒) + 𝐎𝟐 → 𝐎(𝟑𝐏) + 𝐎𝟐 (54) 3.0 × 10−12 × exp(−850 T⁄ ) [98] 

𝐎(𝟏𝐒) + 𝐎𝟐(𝐚) → 𝐎(𝟏𝐃) + 𝐎𝟐(𝐛) (55) 3.6 × 10−11 [98] 

𝐎(𝟏𝐒) + 𝐎𝟐 → 𝐎(𝟏𝐃) + 𝐎𝟐 (56) 1.3 × 10−12 × exp(−850 T⁄ ) [57] 

𝐎(𝟏𝐃) + 𝐎𝟐 → 𝐎(𝟑𝐏) + 𝐎𝟐 (57) 6.4 × 10−12 × exp(67 T⁄ ) [98] 

𝐎(𝟏𝐃) + 𝐎𝟑 → 𝐎𝟐 + 𝐎𝟐 (58) 1.2 × 10−10 [[98] 

𝐎(𝟏𝐃) + 𝐎𝟑 → 𝐎(𝟑𝐏) + 𝐎(𝟑𝐏) + 𝐎𝟐 (59) 1.2 × 10−10 [98] 

𝐎(𝟏𝐃) + 𝐎(𝟑𝐏) → 𝐎(𝟑𝐏) + 𝐎(𝟑𝐏) (60) 8 × 10−12 [57,98] 

𝐎(𝟏𝐃) + 𝐎𝟐 → 𝐎(𝟑𝐏) + 𝐎𝟐(𝐛) (61) 3.2 × 10−11 × exp(67 T⁄ ) [57,98] 

𝐎𝟐(𝐚) + 𝐎𝟑 → 𝐎𝟐 + 𝐎𝟐 + 𝐎(𝟑𝐏) (62) 9.7 × 10−13 × exp(−1564 T⁄ ) [98] 

𝐎𝟐(𝐚) + 𝐎𝟐 → 𝐎𝟐 + 𝐎𝟐 (63) 2.2 × 10−18 × (T 300⁄ )0.8 [98] 

𝐎𝟐(𝐚) + 𝐎(𝟑𝐏) → 𝐎𝟐 + 𝐎(𝟑𝐏) (64) 7 × 10−16 [98] 

𝐎𝟐(𝐛) + 𝐎𝟐 → 𝐎𝟐(𝐚) + 𝐎𝟐 (65) 4.3 × 10−22 × T2.4 × exp(−241 T⁄ ) [98] 

𝐎𝟐(𝐛) + 𝐎(𝟑𝐏) → 𝐎𝟐(𝐚) + 𝐎(𝟑𝐏) (66) 8 × 10−14 [98] 

𝐎𝟐(𝐛) + 𝐎(𝟑𝐏) → 𝐎𝟐 + 𝐎(𝟏𝐃) (67) 3.39 × 10−11 × (300 T⁄ )0.1

× exp(−4201 T⁄ ) 
[98] 

𝐎𝟐(𝐛) + 𝐎𝟑 → 𝐎𝟐 + 𝐎𝟐 + 𝐎(𝟑𝐏) (68) 1.8 × 10−11 [98] 

𝐎𝟐(𝐀) + 𝐎𝟐 → 𝐎𝟐(𝐛) + 𝐎𝟐(𝐛) (69) 2.9 × 10−13 [98] 

𝐎𝟐(𝐀) + 𝐎(𝟑𝐏) → 𝐎𝟐(𝐛) + 𝐎(𝟏𝐃) (70) 9 × 10−12 [98] 

 

Table A- 8 Reactions involving both nitrogen and oxygen species 

Reaction  Rate constant (s-1, cm3s-1, cm6s-1) Reference 

Neutral reactions involving ground state particles    

𝐍(𝟒𝐒) + 𝐎(𝟑𝐏) + 𝐍𝟐 → 𝐍𝐎 + 𝐍𝟐 (71) 1.76 × 10−31 × T−0.5 [98] 

𝐍(𝟒𝐒) + 𝐍𝐎 → 𝐍𝟐 + 𝐎(𝟑𝐏,𝟏 𝐃) (72) 1.05 × 10−12 × T0.5 [57] 

𝐍(𝟒𝐒) + 𝐎𝟐 → 𝐍𝐎 + 𝐎(𝟑𝐏) (73) 1.1 × 10−14 × T × exp(−3150 T⁄ ) [98] 

𝐍(𝟒𝐒) + 𝐍𝐎𝟐 → 𝐍𝟐 + 𝐎(𝟑𝐏) + 𝐎(𝟑𝐏) (74) 9.1 × 10−13 [98] 

𝐍(𝟒𝐒) + 𝐍𝐎𝟐 → 𝐍𝟐𝐎 + 𝐎(𝟑𝐏) (75) 3 × 10−12 [98] 

𝐍(𝟒𝐒) + 𝐍𝐎𝟐 → 𝐍𝐎 + 𝐍𝐎 (76) 2.3 × 10−12 [98] 

𝐍(𝟒𝐒) + 𝐍𝐎𝟐 → 𝐍𝟐 + 𝐎𝟐 (77) 7 × 10−13 [98] 

𝐍(𝟒𝐒) + 𝐎𝟑 → 𝐍𝐎 + 𝐎𝟐 (78) 2 × 10−16 [98] 

𝐎(𝟑𝐏) + 𝐎(𝟑𝐏) + 𝐍𝟐 → 𝐍𝟐 + 𝐎𝟐(𝐗, 𝐚, 𝐛) (79) 2.76 × 10−34 × exp(720 T⁄ ) [98] 

𝐎(𝟑𝐏) + 𝐎𝟐 + 𝐍𝟐 → 𝐍𝟐 + 𝐎𝟑 (80) 6.2 × 10−34 × (300 T⁄ )2 [98] 
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𝐎(𝟑𝐏) + 𝐍𝐎 + 𝐍𝟐 → 𝐍𝐎𝟐 + 𝐍𝟐 (81) 6.51 × 10−32 for T=300K [98] 

𝐎(𝟑𝐏) + 𝐍𝐎𝟐 + 𝐍𝟐 → 𝐍𝐎𝟑 + 𝐍𝟐 (82) 8.49 × 10−32 for T=300K [98] 

𝐎(𝟑𝐏) + 𝐍𝐎𝟐 → 𝐍𝐎 + 𝐎𝟐 (83) 1.13 × 10−11 × (T 1000⁄ )0.18 [98] 

𝐎(𝟑𝐏) + 𝐍𝐎𝟑 → 𝐎𝟐 + 𝐍𝐎𝟐 (84) 1 × 10−11 [98] 

𝐍𝐎 + 𝐎𝟑 → 𝐎𝟐 + 𝐍𝐎𝟐 (85) 4.3 × 10−12 × exp(−1560 T⁄ ) [98] 

𝐍𝐎 + 𝐍𝐎𝟑 → 𝐍𝐎𝟐 + 𝐍𝐎𝟐 (86) 1.7 × 10−11 [98] 

𝐍𝐎𝟐 + 𝐎𝟑 → 𝐎𝟐 + 𝐍𝐎𝟑 (87) 1.2 × 10−13 × exp(−2450 T⁄ ) [98] 

𝐍𝐎𝟐 + 𝐍𝐎𝟑 → 𝐍𝐎 + 𝐎𝟐 + 𝐍𝐎𝟐 (88) 2.3 × 10−13 × exp(−1600 T⁄ ) [98] 

𝐍𝐎𝟐 + 𝐍𝐎𝟐 + 𝐍𝟐 → 𝐍𝟐𝐎𝟒 + 𝐍𝟐 (89) 2.5 × 10−35 [98] 

𝐍𝐎𝟐 + 𝐍𝐎𝟑 + 𝐍𝟐 → 𝐍𝟐𝐎𝟓 + 𝐍𝟐 (90) 2.31 × 10−33 [98] 

𝐍𝐎𝟑 + 𝐍𝐎𝟑 → 𝐎𝟐 + 𝐍𝐎𝟐 + 𝐍𝐎𝟐 (91) 5 × 10−12 × exp(−3000 T⁄ ) [98] 

    

Neutral reactions involving electronically excited particles    

𝐍𝟐(𝐀) + 𝐎𝟐 → 𝐍𝟐 + 𝐎(𝟑𝐏) + 𝐎(𝟑𝐏) (92) 1.7 × 10−12 [57,98] 

𝐍𝟐(𝐀) + 𝐎𝟐 → 𝐍𝟐 + 𝐎𝟐(𝐛) (93) 7.5 × 10−13 [57,98] 

𝐍𝟐(𝐀) + 𝐍𝐎 → 𝐍𝟐 + 𝐍𝐎 (94) 6.4 × 10−11 [57,98] 

𝐍𝟐(𝐀) + 𝐎(𝟑𝐏) → 𝐍𝐎 + 𝐍(𝟐𝐃) (95) 7 × 10−12 [98] 

𝐍𝟐(𝐀) + 𝐎(𝟑𝐏) → 𝐍𝟐 + 𝐎(𝟏𝐒) (96) 3 × 10−11 [57,98] 

𝐍𝟐(𝐀) + 𝐎𝟐 → 𝐍𝟐𝐎 + 𝐎(𝟑𝐏) (97) 7.8 × 10−14 [98] 

𝐍𝟐(𝐀) + 𝐍𝟐𝐎 → 𝐍𝟐 + 𝐍(𝟒𝐒) + 𝐍𝐎 (98) 1 × 10−11 [98] 

𝐍𝟐(𝐀) + 𝐍𝐎𝟐 → 𝐍𝟐 + 𝐍𝐎 + 𝐎(𝟑𝐏) (99) 1.3 × 10−11 [98] 

𝐍𝟐(𝐁) + 𝐍𝐎 → 𝐍𝟐(𝐀) + 𝐍𝐎 (100) 2.4 × 10−10 [98] 

𝐍𝟐(𝐁) + 𝐎𝟐 → 𝐍𝟐 + 𝐎(𝟑𝐏) + 𝐎(𝟑𝐏) (101) 3 × 10−10 [57,98] 

𝐍𝟐(𝐚) + 𝐍𝐎 → 𝐍𝟐 + 𝐍(𝟒𝐒) + 𝐎(𝟑𝐏) (102) 3.6 × 10−10 [98] 

𝐍𝟐(𝐚) + 𝐎𝟐 → 𝐍𝟐 + 𝐎(𝟑𝐏) + 𝐎(𝟏𝐃) (103) 2.8 × 10−11 [57] 

𝐍𝟐(𝐂) + 𝐎𝟐 → 𝐍𝟐 + 𝐎(𝟑𝐏) + 𝐎(𝟏𝐒) (104) 3 × 10−10 [98] 

𝐍(𝟐𝐏) + 𝐎(𝟑𝐏) → 𝐍(𝟐𝐃) + 𝐎(𝟑𝐏) (105) 1 × 10−12 [57] 

𝐍(𝟐𝐏) + 𝐎𝟐 → 𝐎(𝟑𝐏,𝟏 𝐃) + 𝐍𝐎 (106) 2.5 × 10−12 [57] 

𝐍(𝟐𝐏) + 𝐍𝐎 → 𝐎(𝟑𝐏,𝟏 𝐃) + 𝐍𝟐 (107) 2.9 × 10−11 [57] 

𝐍(𝟐𝐃) + 𝐍𝐎 → 𝐎(𝟑𝐏,𝟏 𝐃,𝟏 𝐒) + 𝐍𝐎 (108) 6 × 10−11 [57] 

𝐍(𝟐𝐃) + 𝐎𝟐 → 𝐎(𝟑𝐏) + 𝐍𝐎 (109) 2.4 × 10−12 × exp(−185 T⁄ ) [57] 

𝐍(𝟐𝐃) + 𝐎𝟐 → 𝐎(𝟏𝐃) + 𝐍𝐎 (110) 7.3 × 10−12 × exp(−185 T⁄ ) [57] 

𝐍(𝟐𝐃) + 𝐎(𝟑𝐏) → 𝐍(𝟒𝐒) + 𝐎(𝟑𝐏) (111) 1.4 × 10−12 [57] 

𝐍(𝟐𝐃) + 𝐍𝐎 → 𝐍𝟐𝐎 (112) 6 × 10−11 [98] 

𝐍(𝟐𝐃) + 𝐍𝐎 → 𝐎(𝟑𝐏,𝟏 𝐃,𝟏 𝐒) + 𝐍𝟐 (113) 6 × 10−11 [57] 

𝐍(𝟐𝐃) + 𝐍𝟐𝐎 → 𝐍𝐎 + 𝐍𝟐 (114) 3 × 10−12 [98] 

𝐎(𝟏𝐒) + 𝐍(𝟒𝐒) → 𝐎(𝟑𝐏) + 𝐍(𝟐𝐏) (115) 1 × 10−12 [57] 

𝐎(𝟏𝐒) + 𝐍𝐎 → 𝐎(𝟑𝐏,𝟏 𝐃) + 𝐍𝐎 (116) 5 × 10−10 [98] 

𝐎(𝟏𝐒) + 𝐍𝟐 → 𝐎(𝟏𝐃) + 𝐍𝟐 (117) 5 × 10−17 [57] 

𝐎(𝟏𝐃) + 𝐍𝟐 → 𝐎(𝟑𝐏) + 𝐍𝟐 (118) 1.8 × 10−11 × exp(107 T⁄ ) [57] 

𝐎(𝟏𝐃) + 𝐍𝟐𝐎 → 𝐍𝐎 + 𝐍𝐎 (119) 7.2 × 10−11 [98] 

𝐎(𝟏𝐃) + 𝐍𝟐𝐎 → 𝐍𝟐 + 𝐎𝟐 (120) 4.4 × 10−11 [98] 

𝐎(𝟏𝐃) + 𝐍𝐎 → 𝐍(𝟒𝐒) + 𝐎𝟐 (121) 1.7 × 10−10 [98] 

𝐎(𝟏𝐃) + 𝐍𝟐𝐎 → 𝐎(𝟑𝐏,𝟏 𝐃) + 𝐍𝟐𝐎 (122) 9.4 × 10−12 [98] 

𝐎𝟐(𝐚) + 𝐍(𝟒𝐒) → 𝐍𝐎 + 𝐎(𝟑𝐏) (123) 2 × 10−14 × exp(−600 T⁄ ) [98] 

𝐎𝟐(𝐚) + 𝐍𝟐 → 𝐎𝟐 + 𝐍𝟐 (124) 3 × 10−21 [98] 

𝐎𝟐(𝐚) + 𝐍𝐎 → 𝐎𝟐 + 𝐍𝐎 (125) 2.5 × 10−11 [98] 

𝐎𝟐(𝐛) + 𝐍𝟐 → 𝐎𝟐(𝐚) + 𝐍𝟐 (126) 4.9 × 10−15 × exp(−253 T⁄ ) [98] 

𝐎𝟐(𝐛) + 𝐍𝐎 → 𝐎𝟐(𝐚) + 𝐍𝐎 (127) 4 × 10−14 [98] 

𝐎𝟐(𝐀) + 𝐍𝟐 → 𝐎𝟐(𝐛) + 𝐍𝟐 (128) 3 × 10−13 [98] 

    

Associative ionization    

𝐍(𝟐𝐏) + 𝐎(𝟑𝐏) → 𝐍𝐎+ + 𝐞− (129) 1.5 × 10−11 [57,98] 
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Table A- 9 Reactions involved in the production/destruction of radiative species 

Reaction  Rate constant (s-1, cm3s-1, cm6s-1) Reference 

Production and destruction of NO(A) responsible for the 
emission of the NOγ system 

   

𝐍𝐎(𝐗) + 𝐍𝟐(𝐀) → 𝐍𝐎(𝐀) + 𝐍𝟐  6.4 × 10−11 [57,98] 

𝐍𝐎(𝐀) → 𝐍𝐎(𝐗) + 𝐡𝛎  5 × 106 [113]  

𝐍𝐎(𝐀)+𝐍𝟐 → 𝐍𝐎(𝐗) + 𝐍𝟐  1 × 10−13 [113] 

𝐍𝐎(𝐀)+𝐎𝟐 → 𝐍𝐎(𝐗) + 𝐎𝟐  1.5 × 10−10 [113] 

𝐍𝐎(𝐀) + 𝐍𝐎 → 𝐍𝐎(𝐗) + 𝐍𝐎  2 × 10−10 [113] 

Production and destruction of N2(C”5Πu) responsible for the 
emission of the HIR system 

   

𝐍𝟐(𝐀) + 𝐍𝟐(𝐀) → 𝐍𝟐(𝐂”𝟓𝚷𝐮) + 𝐍𝟐  (8.1 − 9.9) × 10−11 [111] 

𝐍𝟐(𝐂”𝟓𝚷𝐮) → 𝐍𝟐(𝐀′𝟓
𝚺𝐮

+)  + 𝐡𝛎  2.3 × 105 − 2.5 × 107 [111] 

    

Production and destruction of O(1S)N2 responsible for the 
emission of the HIR system 

   

𝐎(𝟏𝐒) + 𝐍𝟐 + 𝐍𝟐 → 𝐎(𝟏𝐒)𝐍𝟐 + 𝐍𝟐  2 × 10−36 [55] 

𝐎(𝟏𝐒)𝐍𝟐 → 𝐎(𝟏𝐃) + 𝐍𝟐 + 𝐡𝛎  1 × 107 [55] 

Production and destruction of N2(C) responsible for the 

emission of the second positive system (SPS)    

𝐞− + 𝐍𝟐 → 𝐞− + 𝐍𝟐(𝐂)  from EEDF [83] 

𝐍𝟐(𝐂) → 𝐍𝟐(𝐁) + 𝐡𝛎  2.5 × 107 [83] 
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APPENDIX 2 

Before performing the measurements, a careful attention was paid to optimize the discharge cell. 

Indeed, with the originating setup, a small displacement of the electrodes was observed during the 

discharge displacement, which results in two drawbacks. First, even a small horizontal or vertical 

displacement of one electrode compared to the other modifies the discharge behavior, which can be 

directly observed on the discharge power. Second, a small displacement of the dielectrics in the 

vertical direction can change the position of the laser beam inside the gas gap, which can deviate 

from the center. To solve this problem, a new design was implemented as shown in Figure A- 15(a) 

and (b). The main components of this design consists in:  

- two electrodes with two holes for each one,  

- two plastic holders both with two holes at the same position of holes in the electrodes,  

- two glass sticks put at the edges of the electrodes used to guide the gas flow and to ensure a gap of  

2mm between the electrodes 

- two metal sticks passing through the holes of the plastic holders and electrodes allowing 

maintaining the two electrodes face-to-face and to avoid the horizontal displacement,  

- two plastic pieces with a form of “E” fixing at the end of the electrodes used to avoid the vertical 

displacement.  

The final design has a sandwich form. The “sandwich” is connected to the displacement system by 

the fastening device. 

 

Figure A- 15 New design for the fixation of two electrodes 

 

 

  

(a) (b) plastic holders 

Upper electrode 
(top view) glass stick  

metal sticks  

plastic pieces 

glass slide  

fastening device  
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