L. ,

, Position de mesures « B

, Position de mesures « A

E. Sources,

R. Tuyaux-de,

P. Turbomoléculaire,

. Fibre-optique,

M. Baratron,

. Sonde-Électrostatique,

, Position matériaux «, vol.1

, Système optique à quatre focales

, Spectromètre d'émission visible

:. Nd and L. Yag,

, Spectromètre d'émission VUV

, Tube d'habillage de la chambre en Pyrex

, Générateur Micro-Ondes à état solide

, La source SCHEME

P. Photomultiplicateur, , 1259.

P. Photomultiplicateur, , 10825.

, Amplificateur Lock-in

, Système d'acquisition du signal, de la ligne

, Vue interne sur le réacteur SCHEME

, Pour la transition BX04, observée de 133,32 nm à 133,88 nm (Fig. IV.61b), de la même façon que BX03, des augmentations sont enregistrées. Quand le tungstène est en place, les transitions P1 et R3 augmentent, respectivement, de 80% et 56%. La moyenne de l'augmentation pour cette transition (BX04) est de 70%. L'effet du tantale est aussi élevé pour cette transition : P1 et R3 croissent respectivement, mais d'une manière moins importante : 8% pour P1 et 9% pour R3. L'augmentation moyenne sur toutes les transitions étaient de 15%

, Ces niveaux vibrationnels même peu élevés. BX03 et BX04 permettent, notamment pour BX04 d'augmenter la section efficace de collision pour la réaction d'attachement dissociatif de 4 ordres de grandeur de 2×10 -21 cm 2 à 3×10 -17 cm 2 pour H2 (v » =4, Ces mesures sont une observation directe des niveaux ro-vibrationnels v » =3 et 4 des molécules excitées, vol.57

. De-plus and . Hassouni, ] la distribution de ces états ro-vibrationnels est équivalente en terme de densité relative Mvib/Mtot entre v » =4 et v » =8 pour le quartz (?H= 0,001)Mvib/Mtot= 10 -6 a.u. seules les surface recombinantes induisent une distribution non-homogène Mvib/Mtot (v » =4) ? 3×10 -4 a.u. et Mvib/Mtot (v » =4)= 10 -5 a.u. Mais ces niveaux sont inférieurs à ceux requis pour l'AD. Cependant, cela nous méne à soupçonner que les densités des molécules à des états rovibrationnels plus élevés (v » ? 4) sont augmentées aussi par la présence du matériau. Toutefois, ces mesures de l'absorption VUV confirment en partie l'effet significatif de la DR sur la surface des matériaux

. Iv, Introduction : Dans le but de déterminer la contribution exacte de chaque matériau dans la production des ions négatifs par la désorption recombinative, il est indispensable de mesurer la densité absolue des molécules ro-vibrationnellement excitées pour chacun d'eux. Le moyen d'y parvenir est l'utilisation d'un faisceau lumineux très énergétique

, au moyen de la fluorescence induite (technique de la LIF) et de la spectroscopie d'absorption dans le VUV, utilisant le faisceau synchrotron. Et, de créer ainsi un cadre de recherche caractéristique de l'absorption, où la densité absolue des molécules rovibrationnellement excitées sera déterminée (Cf. paragraphe III.6). Le second objectif est d'étudier la distribution des molécules qui sont produits par désorption recombinante sur des surfaces de divers matériaux, L'objectif premier de la source SCHEME-II 40 est justement de déterminer les densités absolues

, Ainsi la production des états rovibrationnels 41 . Cette chambre est recouverte par du Pyrex TM , tout comme dans le cas de ROSAE III, toujours dans le but de limiter la désorption recombinative sur la surface du matériau étudié. La nouvelle source SCHEME-II, ainsi conçue, a été installée dans la ligne DESIRS du synchrotron SOLEIL. Et, les résultats obtenus sont identifiés en cette section. IV.12 La détection des atomes d'hydrogène H : Avec la source ROSAE-III, le processus pour la production d'ions négatifs

. Seulement and . Scheme-ii, Sa détection peut être obtenue par la méthode d'un rayonnement monochromatique, centré dans la transition de la Lyman-? à 10.196 eV (121.566 nm), c'est l'expérience que nous avons menée au plateau de Saclay avec la source SCHEME. Mais, malgré l'utilisation d'un système de collecte de la lumière et un amplificateur Lock-in, le signal de fluorescence n'a pas été observé. Cependant, les raies d'absorption des atomes H dans leur état fondamental a été obtenu avec succès

. ___________________________________________________________________________,

, Une description détaillée du réacteur, ainsi que des diagnostics d'absorption et de la fluorescence induite par un

V. I. Références-bibliographique,

J. D. Lawson, Some Criteria for a Power Producing Thermonuclear Reactor, Proc. Phys. Soc. B, vol.70, issue.1, pp.6-10, 1957.

M. Keilhacker, High fusion performance from deuterium-tritium plasmas in JET, Nucl. Fusion, vol.39, issue.2, p.209, 1999.

J. Jacquinot and . Euratom-cea, Recent developments in steady-state physics and technology of tokamaks in Cadarache, Nucl. Fusion, vol.43, issue.12, p.1583, 2003.

A. Simonin, Les sources d'ions négatifs pour le chauffage par injection d'atomes à haute énergie dans les plasmas de fusion, Reflets phys, vol.40, pp.15-17, 2014.

M. Hanada, Development of negative ion sources for the {ITER} neutral beam injector, Fusion Eng. Des, pp.505-509, 2001.

R. S. Hemsworth and T. Inoue, Positive and negative ion sources for magnetic fusion, IEEE Trans. Plasma Sci, vol.33, issue.6, pp.1799-1813, 2005.

A. Chutjian, A. Garscadden, and J. M. Wadehra, Electron attachment to molecules at low electron energies, Phys. Rep, vol.264, issue.6, pp.393-470, 1996.

L. G. Christophorou and J. K. Olthoff, Electron interactions with plasma processing gases: present status and future needs, Appl. Surf. Sci, vol.192, issue.1-4, pp.309-326, 2002.

M. Bacal, Physics aspects of negative ion sources, Nucl. Fusion, vol.46, issue.6, pp.250-259, 2006.

M. Maazouz, H ? formation in the scattering of hydrogen ions on an Al surface, Surf. Sci, vol.364, issue.2, pp.568-574, 1996.

P. Wurz, R. Schletti, and M. R. Aellig, Hydrogen and oxygen negative ion production by surface ionization using diamond surfaces, Surf. Sci, vol.373, issue.1, pp.56-66, 1997.

W. Kraus, Development of large {RF} driven negative ion sources for neutral beam injection, Fusion Eng. Des, pp.491-495, 2003.

M. B. Hopkins and K. N. Mellon, Enhanced production of negative ions in low-pressure hydrogen and deuterium discharges, Phys. Rev. Lett, vol.67, issue.4, pp.449-452, 1991.

E. Stoffels, W. W. Stoffels, and G. M. Kroesen, Plasma chemistry and surface processes of negative ions, Plasma Sources Sci. Technol, vol.10, pp.311-317, 2001.

A. Kono, Negative ions in processing plasmas and their effect on the plasma structure, Appl. Surf. Sci, vol.192, issue.1-4, pp.115-134, 2002.

M. Wada, Formation and destruction processes of negative ions in a bounded plasma, Thin Solid Films, vol.316, issue.1-2, pp.128-133, 1998.

S. R. Walther, K. N. Leung, and W. B. Kunkel, Production of H -ions with addition of cesium or xenon to a hydrogen discharge in a small multicusp ion source, J. Appl. Phys, vol.64, issue.7, pp.3424-3428, 1988.

T. Okuyama and Y. Mori, Cesium catalysis effect of H ? ion production in volume production type of H ? ion source, Rev. Sci. Instrum, vol.63, issue.4, pp.2711-2713, 1992.

R. Middleton, A survey of negative ions from a cesium sputter source, Nucl. Instruments Methods, vol.144, issue.3, pp.373-399, 1977.

R. Middleton, A versatile high intensity negative ion source, Nucl. Instruments Methods Phys. Res, vol.214, issue.2, p.175, 1983.

U. Fantz, Physical performance analysis and progress of the development of the negative ion RF source for the ITER NBI system, Nucl. Fusion, vol.49, issue.12, p.9, 2009.

V. Dudnikov, G. Dudnikova, and J. P. Farrell, Surface plasma source for heavy negative ion production, Rev. Sci. Instrum, vol.73, issue.2, pp.906-909, 2002.

Y. Belchenko, Surface negative ion production in ion sources, Rev. Sci. Instrum, vol.64, issue.6, pp.1385-1393, 1993.
URL : https://hal.archives-ouvertes.fr/jpa-00219227

B. Jackson and D. Lemoine, Eley-Rideal reactions between H atoms on metal and graphite surfaces: The variation of reactivity with substrate, J. Chem. Phys, vol.114, issue.1, p.474, 2001.

X. Sha, B. Jackson, and D. Lemoine, Quantum studies of Eley-Rideal reactions between H atoms on a graphite surface, J. Chem. Phys, vol.116, issue.16, p.7158, 2002.

J. Bentounes, Production des ions négatifs en surface de graphite dans un plasma d'hydrogène et de deutérium, 2008.

P. Sonato, Design of the MITICA neutral beam injector, Proc. 24th IAEA Fusion Energy Conf, International Atomic Energy Agency, 2012.

P. Sonato, Conceptual design of the beam source for the DEMO Neutral Beam Injectors, New J. Phys, vol.18, issue.12, p.125002, 2016.

J. Pamela, A. Bécoulet, D. Borba, J. Boutard, L. Horton et al., Efficiency and availability driven R&D issues for {DEMO}, Fusion Eng. Des, vol.84, issue.2-6, pp.194-204, 2009.

A. Simonin, R{&}D around a photoneutralizer-based NBI system (Siphore) in view of a DEMO Tokamak steady state fusion reactor, Nucl. Fusion, vol.55, issue.12, p.123020, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02381781

J. Bentounes, S. Béchu, F. Biggins, A. Michau, L. Gavilan et al., Effects of the plasma-facing materials on the negative ion H¯ density in an ECR, p.45
URL : https://hal.archives-ouvertes.fr/insu-01806396

). Ghz and . Plasma, Plasma Sources Sci. Technol, vol.27, issue.5, p.55015, 2018.

F. F. Chen, Introduction to plasma physics and controlled fusion, 2011.

H. A. Bethe, Berechnung der Elektronenaffinität des Wasserstoffs, Z. Phys, vol.57, pp.815-821, 1929.

H. Bryant, Fermi National Accelerator Laboratory, p.15, 2013.

T. Andersen, Atomic negative ions: structure, dynamics and collisions, Phys. Rep, vol.394, issue.4-5, pp.157-313, 2004.

Y. I. Belchenko, G. I. Dimov, V. G. Dudnikov, and A. A. Ivanov, Formation of negative ions in a gas discharge, Dokl. Akad, vol.213, issue.6, pp.1283-1288, 1973.

Y. I. Belchenko, G. I. Dimov, and V. G. Dudnikov, A powerful injector of neutrals with a surface-plasma source of negative ions, Nucl. Fusion, vol.14, issue.1, p.113, 1974.

M. Bacal, Proc. Symp. on the Production and Neutralization of Negative Hydrogen Ions and Beams, 1977.

K. S. Woodcock, The Emission of Negative Ions under the Bombardment of Positive Ions, Phys. Rev, vol.38, issue.9, pp.1696-1703, 1931.

D. Riz, Etude expérimentale de sources à fort courant d'ions négatifs D, 1996.

H. Kawano, Experimental methods and techniques for negative-ion production by surface ionization, Part I. Int. J. Mass Spectr. Ion Phys, vol.50, issue.1-2, p.176, 1983.

H. Kawano, Experimental methods and techniques for negative-ion production by surface ionization, Part II. Int. J. Mass Spectr. Ion Phys, vol.50, issue.1-2, pp.33-75, 1983.

H. Kawano, Experimental methods and techniques for negative-ion production by surface ionization, Int. J. Mass Spectr. Ion Phys, vol.50, issue.1-2, pp.77-128, 1983.

H. Andersen and P. Tykesson, A pig sputter source for negative ions, IEEE Trans. Nucl. Sci, vol.22, pp.1632-1636, 1975.

P. Tykesson, H. Andersen, and J. Heinemeir, Further investigations of ANIS (the Aarhus Negative Ion Source), IEEE Trans. Nucl. Sci, issue.23, pp.1104-1108, 1976.

M. Bacal and M. Wada, Negative hydrogen ion production mechanisms, Appl. Phys. Rev, vol.2, issue.2, p.21305, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01551658

C. F. Van-os, W. B. Kunkel, C. Leguijt, and J. Los, Modeling of H? surface conversion sources; binary (H-Ba) and ternary (H-Cs/W) converter arrangements, J. Appl. Phys, vol.70, issue.5, pp.2575-2583, 1991.

L. Schiesko, M. Carrère, J. M. Layet, and G. Cartry, A comparative study of H ? and D ? production on graphite surfaces in H2 and D2 plasmas, Plasma Sources Sci. Technol, vol.19, issue.4, p.45016, 2010.

L. Schiesko, M. Carrère, G. Cartry, and J. M. Layet, H ? production on a graphite surface in a hydrogen plasma, Plasma Sources Sci. Technol, vol.17, issue.3, p.35023, 2008.

P. Kumar, Enhanced negative ion yields on diamond surfaces at elevated temperatures, J. Phys. D. Appl. Phys, vol.44, issue.37, p.372002, 2011.

J. W. Kwan, One-ampere, 80-keV, long pulse H ? source and accelerator, Rev. Sci. Instrum, vol.57, issue.5, pp.831-839, 1986.

W. L. Fite, Production of Negative Ions and Noise in Negative Ion Beams, Phys. Rev, vol.89, issue.2, pp.411-415, 1953.

L. E. Collins and R. H. Gobbett, Extraction of negative hydrogen ions from a duoplasmatron ion source, Nucl. Instruments Methods, vol.35, pp.277-282, 1965.

V. V. Kuchinskii, Opt. Spectrosc, vol.39, p.598, 1975.

M. Bacal, Proc. Symp. on the Production and Neutralization of Negative Hydrogen Ions and Beams, p.95, 1980.

J. M. Wadehra and J. N. Bardsley, Vibrational-and Rotational-State Dependence of Dissociative Attachment in e-H2 Collisions, Phys. Rev. Lett, vol.41, issue.26, pp.1795-1798, 1978.

J. N. Bardsley and J. M. Wadehra, Dissociative attachment and vibrational excitation in lowenergy collisions of electrons with H2 and D2, Phys. Rev. A, vol.20, issue.4, pp.1398-1405, 1979.

M. Allan and S. F. Wong, Effect of Vibrational and Rotational Exictation on Dissociative Attachment in Hydrogen, Phys. Rev. Lett, vol.41, issue.26, pp.1791-1794, 1978.

J. M. Wadehra, Dissociative attachment to rovibrationally excited H2, Phys. Rev. A, vol.29, issue.1, pp.106-110, 1984.

R. Celiberto, R. K. Janev, A. Laricchiuta, M. Capitelli, J. M. Wadehra et al., Cross Section Data for Electron-Impact Inelastic Processes of Vibrationally Excited Molecules of Hydrogen and Its Isotopes, At. Data Nucl. Data Tables, vol.77, pp.161-213, 2001.

R. K. Janev, D. Reiter, and U. Samm, Collision Processes in Low-Temperature Hydrogen Plasmas, 2003.

H. P. Gauyacq, Dissociative attachment in e?-H2 collisions, J. Phys. B At. Mol. Phys, vol.18, pp.1859-72, 1985.

M. Cízek, J. Horácek, and W. Domcke, Nuclear dynamics of the H2-collision complex beyond the local approximation: associative detachment and dissociative attachment to rotationally and vibrationally excited molecules, J. Phys. B At. Mol. Opt. Phys, vol.31, issue.11, pp.2571-2583, 1998.

J. Horá?ek, M. ?í?ek, K. Houfek, P. Koloren?, and W. Domcke, Dissociative electron attachment and vibrational excitation of H2 by low-energy electrons: Calculations based on an improved nonlocal resonance model, Phys. Rev. A, vol.70, issue.5, p.52712, 2004.

M. Capitelli, G. Colonna, and A. D'angola, Fundamental Aspects of Plasma Chemical Physics, 2012.

T. Mosbach, Population dynamics of molecular hydrogen and formation of negative hydrogen ions in a magnetically confined low temperature plasma, Plasma Sources Sci. Technol, vol.14, issue.3, pp.610-622, 2005.

R. K. Janev, Collision Processes in Low-Temperature Hydrogen Plasmas, 2003.

M. J. Eerden, Cross section for the mutual neutralization reaction H2 + + H ? , calculated in a multiple-crossing Landau-Zener approximation, Phys. Rev. A, vol.51, issue.4, pp.3362-3365, 1995.

S. , Étude expérimentale de la production d'ions négatifs H -par des plasmas à la résonance cyclotron électronique, 2016.

J. P. Boeuf, B. Chaudhury, and L. Garrigues, Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter, Phys. Plasmas, vol.19, issue.11, p.113509, 2012.

J. P. Boeuf, J. Claustre, B. Chaudhury, and G. Fubiani, Physics of a magnetic filter for negative ion sources. II. E × B drift through the filter in a real geometry, Phys. Plasmas, vol.19, issue.11, p.113510, 2012.

S. Béchu, Caractérisations électrostatique et optique du fonctionnement de sources plasma micro-onde dipolaires. Application à la production de faisceaux d'électrons et d'ions H¯, 2010.

M. Capitelli, Elementary processes and kinetics of H2 plasmas for different technological applications, Plasma Sources Sci. Technol, vol.11, issue.3, pp.7-25, 2002.

J. Yoon, Cross Sections for Electron Collisions with Hydrogen Molecules, J. Phys. Chem. Ref. Data, vol.37, issue.2, pp.913-931, 2008.

M. Capitelli, Vibrational kinetics, electron dynamics and elementary processes in H2 and D2 plasmas for negative ion production: modelling aspects, Nucl. fusion, vol.46, issue.6, p.260, 2006.

J. R. Hiskes, Cross sections for the vibrational excitation of the H2 X 1?+g(v) levels generated by electron collisional excitation of the higher singlet states, J. Appl. Phys, vol.70, issue.7, pp.3409-3417, 1991.

T. Mosbach, H. M. Katsch, and H. F. Döbele, In situ Diagnostics in Plasmas of Electronic-Ground-State Hydrogen Molecules in High Vibrational and Rotational States by Laser-Induced Fluorescence with Vacuum-Ultraviolet Radiation, Phys. Rev. Lett, vol.85, issue.16, pp.3420-3423, 2000.

D. Pagano, C. Gorse, and M. Capitelli, Modeling Multicusp Negative-Ion Sources, IEEE Trans. Plasma Sci, vol.35, issue.5, pp.1247-1259, 2007.

A. A. Matveyev and V. P. Silakov, Kinetic processes in a highly-ionized non-equilibrium hydrogen plasma, Plasma Sources Sci. Technol, vol.4, issue.4, p.606, 1995.

C. Gorse, M. Capitelli, M. Bacal, J. Bretagne, and A. Laganà, Progress in the non-equilibrium vibrational kinetics of hydrogen in magnetic multicusp H ? ion sources, Chem. Phys, vol.117, issue.2, pp.177-195, 1987.

A. Ichihara, O. Iwamoto, and R. K. Janev, Cross sections for the reaction H + + H2

, ?H + H2 + at low collision energies, J. Phys. B At. Mol. Opt. Phys, vol.33, issue.21, p.4747, 2000.

J. R. Hiskes and A. M. Karo, Analysis of the H2 vibrational distribution in a hydrogen discharge, Appl. Phys. Lett, vol.54, issue.6, p.508, 1989.

M. Bacal, Physics aspects of negative ion sources, Nucl. Fusion, vol.46, issue.6, pp.250-259, 2006.

J. Harris and B. Kasemo, On precursor mechanisms for surface reactions, Surf. Sci, vol.105, issue.2, pp.281-287, 1981.

R. E. Kiel, Electrostatic probe theory for free molecular cylinders, AIAA J, vol.6, issue.4, pp.708-712, 1968.

J. Amorim, J. Loureiro, and D. Schram, Formation of H ? ions via vibrational excited molecules produced from recombinative wall desorption of H atoms in a low-pressure H2 positive column, Chem. Phys. Lett, vol.346, issue.5-6, pp.443-448, 2001.

A. P. , J. K. Gabor, D. C. Faircloth, D. A. Lee, and S. R. Lawrie, Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory "United Kingdom?, Rev. Sci. Instrum, vol.81, issue.02B718, 2010.

J. D. Sherman, W. B. Ingalls, G. Rouleau, and H. Smith, Review of Scaled Penning H-Surface Plasma Source with Slit Emitters for High Duty Factor Linacs, AIP Conf. Proc, vol.642, issue.1, p.288, 2002.

J. W. Kwan, One-ampere, 80-keV, long pulse H ? source and accelerator, Rev. Sci. Instrum, vol.57, issue.5, pp.831-839, 1986.

R. Scrivens, Proton and Ion Sources for High Intensity Accelerators, EPAC2004 Proc, pp.103-107, 2004.

F. Naito, J. Kek, and J. Project, the Jaeri / Kek Joint Project and Its Performance, Proceedings of LINAC2002, pp.566-570, 2002.

K. N. Leung, K. W. Ehlers, and M. Bacal, Extraction of volume-produced H -ions from a multicusp source, Rev. Sci. Instrum, vol.54, issue.1, pp.56-61, 1983.

J. Peters, Internal Versus External Rf Coupling Into a Volume Source, Proceedings of EPAC 2002, pp.1727-1729, 2002.

F. H. Gobin, *. , K. Benmeziane, O. Delferrière, and R. Ferdinand,

, GHz ECR source producing H -ions at CEA/SACLAY, Rapport CEA, 2014.

K. Benmeziane, Étude d'une source ECR d'ions H-pour accélérateurs de forte puissance, 2004.

H. Ludewig, J. Axe, J. Hastings, T. Roser, M. Todosow et al., BNL-AGS complex as a spallation target test-bed, 1996.

, IPNS upgrade: A feasibility study (ANL--95/13), 1995.

P. Karns, D. Bollinger, and A. Sosa, Recent Operation of the FNAL Magnetron H -Ion Source, 2017.

A. Meseck, The Electron Distribution in HERA and the Consequences for the H1 Detector after the Luminosity Upgrade, 2000.

J. Peters, The status of DESY H -sources, Rev.Sci.Instrum, vol.69, p.992, 1998.

F. W. Guy, J. W. Hurd, D. Raparia, K. Saadatmand, and W. A. Whittenberg, SSC radio-frequencyquadrupole beam: comparison of experimental and simulated results, Particle Accelerator Conference 1993. Proceedings of the 1993, vol.4, pp.3130-3132, 1993.

S. Lawrie, Recent H -Diagnostics, Plasma Simulations and 2X Scaled Penning Ion Source Developments at the Rutherford Appleton Laboratory, 17th international conference on ion sources, 2017.

A. Belov, V. N. Zubec, E. S. Nikulin, O. T. Frolov, and V. Yakushev, The INR of RAS proton linac injector beam study, Probl. At. Sci. Technol, pp.44-48, 2012.

J. D. Sherman, W. B. Ingalls, G. Rouleau, and H. Smith, Review of Scaled Penning H-Surface Plasma Source with Slit Emitters for High Duty Factor Linacs, AIP Conf. Proc, vol.642, issue.1, p.288, 2002.

Y. Ishikawa, Studies of condensed matter with a pulsed neutron source (KENS), vol.120, pp.3-14, 2002.

E. G. ,

J. D. Sherman, E. Chacon-golcher, and B. J. ,

M. Geros, E. Jacobson, P. Lara, and J. ,

R. R. Schaller, P. Naffziger, G. Rouleau, S. C. Stevens, and J. , Physical Insights and Test stand Results for the LANSCE H Surface Converter Source, 10th International Symposium on the Production and Neutralization of Negative Ions and Beams, 2004.

J. Komppula, T. Kalvas, H. Koivisto, J. Laulainen, and O. Tarvainen, An Experimental Study of Waveguide Coupled Microwave Heating with Conventional Multicusp Negative Ion Source, vol.1655, 2015.

K. M. Bernd, U. Schweizer, B. Ratzinger, and . Klump, A high intensity 200 mA proton source for the FRANZ-Project (Frankfurt-Neutron-Source at the Stern-Gerlach-Center), Rev. Sci. Instrum, vol.8, issue.2, pp.2-743, 2014.

F. Naito, J. J. Kek, and J. Tsukuba, The JAERI/KEK Joint project and its performence, LINAC, 2002.

A. Lacoste, S. Béchu, J. Pelletier, and Y. , Dispositif de confinement de plasma, 2002.

M. Pichot, A. Durandet, J. Pelletier, Y. Arnal, and L. Vallier, Microwave multipolar plasmas excited by distributed electron cyclotron resonance: Concept and performance, Rev. Sci. Instrum, vol.59, issue.7, pp.1072-1075, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00282399

T. Lagarde and J. Pelletier, Procédé de production de plasmas élémentaires en vue de créer un plasma uniforme pour une surface d'utilisation et dispositif de production d'un tel plasma, vol.99, 1999.

R. Gobin, Two approaches for H -ion production with 2.45 GHz ion sources, Nucl. Fusion, vol.46, issue.6, pp.281-286, 2006.

G. J. Hagelaar, K. Makasheva, L. Garrigues, and J. Boeuf, Modelling of a dipolar microwave plasma sustained by electron cyclotron resonance, J. Phys. D. Appl. Phys, vol.42, issue.19, p.194019, 2009.

S. Béchu, Multi-dipolar microwave plasmas and their application to negative ion production, Phys. Plasmas, vol.20, issue.10, pp.101601-101608, 2013.

M. Bacal, J. A. Ivanov, C. Rouille, P. Svarnas, S. Bechu et al., ECR-Driven Multicusp Volume H -Ion Source, AIP Conf. Proc, vol.763, issue.1, pp.203-213, 2005.

A. A. Ivanov, H? ion production in electron cyclotron resonance driven multicusp volume source, Rev. Sci. Instrum, vol.75, issue.5, pp.1750-1753, 2004.

P. Svarnas, B. M. Annaratone, S. Bechu, J. Pelletier, and M. Bacal, Study of hydrogen plasma in the negative-ion extraction region, Plasma Sources Sci. Technol, vol.18, p.45010, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00410312

W. G. Graham, The kinetics of negative hydrogen ions in discharges, Plasma Sources Sci. Technol, vol.4, issue.2, p.281, 1995.

M. Bacal, Pressure and electron temperature dependence of H ? density in a hydrogen plasma, J. Appl. Phys, vol.52, issue.3, p.1247, 1981.

S. Bechu, D. Lemoine, M. Bacal, A. Bes, and J. Pelletier, Production of H -Ions by Surface Mechanisms in Cs-free Multi-dipolar Microwave Plasma, AIP Conf. Proc, vol.1097, issue.1, pp.74-83, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00336454

S. Bechu, A. Bes, D. Lemoine, J. Pelletier, and M. Bacal, Investigation of H ? production by surface interaction of the plasma generated in 'Camembert III' reactor via distributed electron cyclotron resonance at 2.45 GHz (abstract) a), Rev. Sci. Instrum, vol.79, issue.2, pp.2-505, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00180470

H. Wise and B. J. Wood, Reactive Collisions Between Gas and Surface Atoms, Adv. At. Mol. Phys, vol.3, pp.291-353, 1967.

B. J. Wood and H. Wise, KINETICS OF HYDROGEN ATOM RECOMBINATION ON SURFACES1, J. Phys. Chem, vol.65, issue.11, pp.1976-1983, 1961.

H. M. Mott-smith and I. Langmuir, The Theory of Collectors in Gaseous Discharges, Phys. Rev, vol.28, issue.4, pp.727-763, 1926.

S. Béchu, A. Bès, L. Bonny, and A. Lacoste, Mesures des paramètres électrostatiques d'un plasma par sondes de Langmuir Laboratoire de Physique Subatomique et de Cosmologie, Atelier Diagnostics Plasma -Orléans, 2014.

N. Hershkowitz-;-academic, P. , O. A. , and D. L. Flamm, How Langmuir probes work" in Plasma Diagnostics, vol.1, 1989.

J. E. Allen, R. L. Boyd, and P. Reynolds, The Collection of Positive Ions by a Probe Immersed in a Plasma, Proc. Phys. Soc. Sect. B, vol.70, issue.3, p.297, 1957.

N. Hershkowitz-;-p, O. A. , and D. L. Flamm, Surface Analysis and Interactions" in Plasma Diagnostics, Academic, vol.1, 1989.

F. F. Chen, Plasma Diagnostic Techniques, 1965.

J. D. Swift and M. J. Schwar, Electrical probes for plasma diagnostics

N. York and A. Elsevier, , 1969.

N. Hershkowitz and M. H. Cho, Measurement of plasma potential using collecting and emitting probes, J. Vac. Sci. Technol, vol.6, pp.2054-2059, 1988.

J. Laframboise and J. Rubinstein, Theory of a cylindrical probe in a collisionless magnetoplasma, Phys. Fluids, vol.19, p.181, 1976.

J. Rubinstein and J. G. Laframboise, Theory of a spherical probe in a collisionless magnetoplasma, Phys. Fluids, vol.25, pp.1174-1182, 1982.

K. Popov, P. Tsv, M. Ivanova, J. Dimitrova, T. Kova?i? et al., Langmuir probe measurements of the electron energy distribution function in magnetized gas discharge plasmas, Plasma Sources Sci. Technol, vol.21, issue.2, p.25004, 2012.

M. J. Druyvesteyn, Z. Phys, vol.54, p.790, 1930.

J. E. Allen, A note on the Bohm criterion for electronegative gases, Plasma Sources Sci. Technol, vol.13, issue.1, pp.48-49, 2004.

I. D. Sudit and R. C. Woods, A workstation based Langmuir probe system for low-pressure dc plasmas, Rev. Sci. Instrum, vol.64, issue.9, pp.2440-2448, 1993.

J. G. Laframboise, Theory of spherical and cylindrical langmuir probes in a collisionless, maxwellian plasma at rest, Toronto, UTIAS report N°100, 1966.

F. F. Chen, Chapter 2, Plasma Diagnostic Techniques, 1965.

H. M. Mott-smith and I. Langmuir, The Theory of Collectors in Gaseous Discharges, Phys. Rev, vol.28, issue.4, pp.727-763, 1926.

J. E. Allen, R. L. Boyd, and P. Reynolds, The Collection of Positive Ions by a Probe Immersed in a Plasma, Proc. Phys. Soc. Sect. B, vol.70, issue.3, p.297, 1957.

J. A. Nelder and R. Mead, A simplex for function minimization, Comput. J, vol.7, pp.308-313, 1965.

J. H. Rogers, J. S. De-groot, and D. Q. Hwang, Validating cylindrical Langmuir probe techniques, Rev. Sci. Instrum, vol.63, pp.31-36, 1992.

L. S. Pilling and D. A. Carnegie, Validating experimental and theoretical Langmuir probe analyses, Plasma Sources Sci. Technol, vol.16, pp.570-580, 2007.

M. J. Druyvesteyn, Z. Phys, vol.64, p.697, 1930.

W. P. Tan, Langmuir probe measurement of electron temperature in a Druyvesteyn electron plasma, J. Phys. D. Appl. Phys, vol.6, issue.10, pp.1206-1216, 1973.

J. I. Palop, J. Ballesteros, M. A. Hernández, and R. M. Crespo, Sheath structure in electronegative plasmas, vol.16, p.76, 2007.

F. Magnus and J. T. Gudmundsson, Digital smoothing of the Langmuir probe I-V characteristic, Rev. Sci. Instrum, vol.79, issue.7, p.73503, 2008.

H. C. Hayden, Data smoothing routine', C. Phys, vol.1, pp.74-75, 1987.

C. D. Taylor and D. P. Nicolas, An adaptative data-smoothing routine, Comput. Phys, vol.3, issue.2, pp.63-64, 1989.

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem, vol.36, issue.8, pp.1627-1639, 1964.

J. Taillet, C. R. , and A. Sci, Paris Ser, vol.269, p.52, 1969.

M. Bacal, G. W. Hamilton, A. M. Bruneteau, H. J. Doucet, and J. Taillet, Measurement of H -density in plasma by photodetachment, Rev. Sci. Instrum, vol.50, issue.6, pp.719-721, 1979.
URL : https://hal.archives-ouvertes.fr/jpa-00219379

S. Christ-koch, U. Fantz, M. Berger, and N. Team, Laser photodetachment on a high power, low pressure rf-driven negative hydrogen ion source, Plasma Sources Sci. Technol, vol.18, issue.2, p.25003, 2009.

M. Bacal, Photodetachment diagnostic techniques for measuring negative ion densities and temperatures in plasmas, Rev. Sci. Instrum, vol.71, issue.11, p.182, 2000.

R. Dodd, S. D. You, P. M. Bryant, and J. W. Bradley, Negative ion density measurements in a reactive dc magnetron using the eclipse photodetachment method, Plasma Sources Sci. Technol, vol.19, issue.1, p.15021, 2010.

M. Bacal, G. W. Hamilton, A. M. Bruneteau, H. J. Doucet, and J. Taillet, Measurement of H -density in plasma by photodetachment, Rev. Sci. Instrum, vol.50, issue.6, pp.719-721, 1979.
URL : https://hal.archives-ouvertes.fr/jpa-00219379

M. Bacal and G. W. Hamilton, H ? and D ? Production in Plasmas, Phys. Rev. Lett, vol.42, issue.23, pp.1538-1540, 1979.

M. Bacal, A. M. Bruneteau, and M. Nachman, J. Phys. Lett, vol.42, p.5, 1981.

P. Devynck, Mesure de la densité et de la vitesse des ions H-par photodétachement laser, Rev. Phys. Appl, vol.24, issue.2, pp.207-214, 1989.

U. Fantz and B. Heger, Spectroscopic diagnostics of the vibrational population in the ground state of H2 and D2 molecules, Plasma Phys. Control. Fusion, vol.40, issue.12, p.2023, 1998.

M. Osiac, B. P. Lavrov, and J. Röpcke, Intensity distributions in R and P branches of (0-0) band of the A 1 ?? X 1 ?+ electronic transition of the BH molecule and determination of gas temperature in non-equilibrium plasmas, J. Quant. Spectrosc. Radiat. Transf, vol.74, issue.4, pp.471-491, 2002.

L. Tomasini, A. Rousseau, G. Gousset, and P. Leprince, Spectroscopic temperature measurements in a H2 microwave discharge, J. Phys. D. Appl. Phys, vol.29, issue.4, p.1006, 1996.

S. Iordanova, I. Koleva, and T. Paunska, Hydrogen Degree of Dissociation in a Low Pressure Tandem Plasma Source, Spectrosc. Lett, vol.44, issue.1, pp.8-16, 2011.

J. W. Coburn and M. Chen, Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density, J. Appl. Phys, vol.51, issue.6, pp.3134-3136, 1980.

R. Agostino, F. Cramarossa, and S. Benedictis, Optical emission spectroscopy and actinometry in CCl4-Cl2 radiofrequency discharges, Plasma Chem. Plasma Process, vol.4, issue.3, pp.163-178, 1984.

U. Fantz, Spectroscopy-a powerful diagnostic tool in source development, Nucl. Fusion, vol.46, issue.6, pp.297-306, 2006.

C. G. Parigger, L. D. Swafford, D. M. Surmick, M. J. Witte, A. C. Woods et al., Hydrogen Alpha Self-Absorption Effects in Laser-Induced Air Plasma, J. Phys. Conf. Ser, vol.548, issue.1, p.12043, 2014.

O. Krogh, T. Wicker, and B. Chapman, The role of gas phase reactions, electron impact, and collisional energy transfer processes relevant to plasma etching of polysilicon with H2 and Cl2, J. Vac. Sci. Technol. B, vol.4, issue.6, pp.1292-1300, 1986.

U. Fantz and D. Wünderlich, A novel diagnostic technique for H ? (D ? ) densities in negative hydrogen ion sources, New J. Phys, vol.8, p.301, 2006.

B. P. Lavrov and A. Pipa, Account of the fine structure of hydrogen atom levels in the effective emission cross sections of Balmer lines excited by electron impact in gases and plasma, Opt. Spectrosc, vol.92, issue.5, pp.647-657, 2002.

M. Hayashi, Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century -Argon, 2003.

W. L. Wiese, M. W. Smith, and B. M. Glennon, NSRDS-NBS4 National Standards Reference Data Series, vol.1, 1966.

M. J. Borge and J. Campos, Lifetime of levels belonging to the 3p54p configuration of Ar(I), J. Quant. Spectrosc. Radiat. Transf, vol.24, issue.4, pp.263-268, 1980.

M. J. Wouters, J. Khachan, I. S. Falconer, and B. W. James, Quenching of excited Ar I and H by H2 in a gas discharge, J. Phys. B At. Mol. Opt. Phys, vol.32, p.2869, 1999.

A. Rousseau, A. Granier, G. Gousset, and P. Leprince, Microwave discharge in H2: influence of H-atom density on the power balance, J. Phys. D Appl. Phys, vol.27, p.1412, 1994.

A. Gicquel, M. Chenevier, K. Hassouni, A. Tserepi, and M. Dubus, Validation of actinometry for estimating relative hydrogen atom densities and electron energy evolution in plasma assisted diamond deposition reactors, J. Appl. Phys, vol.83, issue.12, pp.7504-7521, 1998.

M. Capitelli, Fundamental Aspects of Plasma Chemical Physics, 2016.

J. Komppula and O. Tarvainen, VUV diagnostics of electron impact processes in low temperature molecular hydrogen plasma, Plasma Sources Sci. Technol, vol.24, issue.4, p.45008, 2015.

K. Laqua, W. H. Melhuish, and M. Zander, Molecular absorption spectroscopy, ultraviolet and visible (UV/VIS), Pure Appl. Chem, vol.60, issue.9, pp.1449-1460, 1988.

P. Vankan, D. C. Schram, and R. Engeln, Atomic and molecular hydrogen densities in a plasma expansion, Plasma Sources Sci. Technol, vol.14, issue.4, p.744, 2005.

, Description of Desirs line beam

L. Nahon, DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL, J. Synchrotron Radiat, vol.19, issue.4, pp.508-520, 2012.

A. I. Livshits, F. E. Balghiti, and M. Bacal, Dissociation of hydrogen molecules on metal filaments in H-ion sources, Plasma Sources Sci. Technol, vol.3, issue.4, p.465, 1994.

L. C. Delacqua, Modélisation/diagnostics de production de poussières dans un plasma H2 au contact d'une cible C/W, contribution à l'étude des interactions plasma/surface dans les machines de fusion thermonucléaire, 2012.

C. K. Birdsall, Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC, Plasma Sci. IEEE Trans, vol.19, issue.2, pp.65-85, 1991.

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, vol.1, 2005.

J. Delcroix and A. Bers, Physique des plasmas 1. Paris: InterEditions CNRS {é}d, 1994.

B. Jackson and D. Lemoine, Eley-Rideal reactions between H atoms on metal and graphite surfaces: The variation of reactivity with substrate, J. Chem. Phys, vol.114, issue.1, p.474, 2001.

J. M. Ajello, S. K. Srivastava, and Y. L. Yung, \Laboratory studies of UV emissions of H2 by electron impact. The Werner and Lyman-band systems, Physical Review A, vol.25, issue.5, pp.2485-2498, 1073.

K. Hassouni, G. Lombardi, A. Gicquel, M. Capitelli, V. A. Shakhatov et al., Nonequilibrium vibrational excitation of H2 in radiofrequency discharges: A theoretical approach based on coherent anti-Stokes Raman spectroscopy measurements, Phys. Plasmas, vol.12, issue.7, p.73301, 2005.

O. Gabriel, D. C. Schram, and R. Engeln, Formation and relaxation of rovibrationally excited H2 molecules due to plasma-surface interaction, Phys. Rev. E, vol.78, issue.1, p.16407, 2008.

U. Fantz and D. Wünderlich, Franck-Condon factors, transition probabilities, and radiative lifetimes for hydrogen molecules and their isotopomeres, At. Data Nucl. Data Tables, vol.92, issue.6, pp.853-973, 2006.

S. Bechu, S. Aleiferis, J. Bentounes, L. Gavilan, V. A. Shakhatov et al., \Detection of rovibrationally excited molecular hydrogen in the electronic ground state via synchrotron radiation, Applied Physics Letters, vol.111, p.74103, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01616219

, VII. ANNEXES : VII.1 Publications et communications : Articles

J. Bentounes, S. Béchu, F. Biggins, A. Michau, L. Gavilan et al., Effects of the plasma-facing materials on the negative ion H¯ density in an ECR (2.45 GHz) plasma, Plasma Sources Sci. Technol, vol.27, issue.5, p.55015, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01806396

S. Béchu, S. Aleiferis, J. Bentounes, L. Gavilan, V. A. Shakhatov et al., Detection of rovibrationally excited molecular hydrogen in the electronic ground state via synchrotron radiation, Appl. Phys. Lett, vol.111, issue.7, p.74103, 2017.

S. Aleiferis, J. Bentounes, S. Béchu, P. Svarnas, A. Bés et al., Experimental study of H atom recombination on different surfaces in relation to H ? negative ion production, AIP Conf. Proc, vol.1869, issue.1, p.20011, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01367558

J. Bentounes, M. Hassaïne, G. Cartry, and M. Carrére, Génération des ions négatifs en surface dans un plasma d'hydrogène et de deutérium, 2010.

S. Béchu, J. Bentounes, S. Aleiferis, P. Svarnas, V. A. Shakhatov et al., Study of the production of vibrationally excited molecules of hydrogen H2(v") on surfaces by indirect and direct diagnostics, CNRS conférence centre Paul Langevin, 2016.

S. Aleiferis, J. Bentounes, S. Béchu, P. Svarnas, A. Bés et al., Experimental study of H atom recombination on different surfaces in relation to H¯ negative ion production, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01367558

J. Bentounes, M. Hassaïne, G. Cartry, and M. Carrére, Chauffage du réacteur à fusion thermonucléaire ITER par injection de neuters", 10éme congrès de la physique et de ses application, pp.20-22, 2012.

J. Bentounes, M. Hassaïne, G. Cartry, and M. Carrére, Caesium free negative ion sources for neutral beam injectors : a study of negative ion production on graphite surface in hydrogen plasma behaviours during plasma treatment", 10éme congrès de la physique et de ses application, pp.20-22, 2012.

J. Bentounes and M. T. Hassaïne, La spectroscopie à très basse température, Journées scientifiques, université de Mostaganem, pp.25-26, 2011.

J. Bentounes, M. Hassaïne, G. Cartry, and M. Carrére, Production des ions négatifs dans un plasma d'hydrogène, Journées scientifiques, 2010.