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SUMMARY OF THE THESIS 

 

 The histone variant CENP-A epigenetically marks the centromere. The presence of 

CENP-A at the centromeres allows the recruitment of centromeric proteins that constitute 

the platform for functional kinetochores. 

  In human cells, the NH2-terminus of CENP-A and its phosphorylation at serine 7 in 

mitosis has been reported to be crucial for the progression of mitosis. However, no 

phosphorylation of CENP-A in other metazoan species has been described. Here, we show 

that the NH2-terminus of CENP-A, but not its primary sequence, is required for mitosis in 

mouse embryonic fibroblast cells (MEFs). Our data show that the mitotic defects resulting 

from the depletion of the endogenous CENP-A can be rescued when MEFs expressing a 

GFP-CENP-A mutant where the NH2-terminus of CENP-A was swapped with the 

phosphorylatable tail of conventional histone H3. Conversely, no rescue was observed 

when the two phosphorylatable serines in the H3 tail mutant were replaced with alanines. 

Furthermore, a non-phosphorylatable fusion mutant of CENP-A where all seven serines in 

the amino-tail were replaced with alanines, was also unable to rescue the mitotic 

phenotype of CENP-A depleted cells.  

 We also identified that the first three serines of the tail of CENP-A as potential sites 

for phosphorylation. Additionally, we were able to link the phosphorylation of CENP-A 

amino-tail to the proper localization of the key centromeric protein CENP-C. These results 

suggest that mitotic CENP-A phosphorylation is a potentially common event in metazoans 

essential for mitotic progression.  

 In the second par of this work we wanted to unambiguously tie the NH2-terminus 

function of CENP-A to mitosis. To achieve this, we wanted to remove the CENP-A 

amino-tail only during mitosis and we devised a new method called the Hara-kiri approach 

in order to answer the above question in human cells. The removal of the NH2-terminal 

domain of CENP-A using the Hara-kiri approach at the onset of mitosis led to increased 

mitotic defects in cells. Taken collectively these data show that the CENP-A NH2-

terminus is required during mitosis to assure proper cell division. 

Keywords 

chromatin, histone variant, mitosis, phosphorylation, CENP-A 
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RESUME DE LA THESE 

 
 Le variant d’histone CENP-A marque épigénétiquement le centromère. La présence 

de CENP-A au centromère permet le recrutement de protéines centromériques qui 

constituent la plateforme pour l’assemblage de kinétochores fonctionnels. 

            Dans les cellules humaines, l'extrémité amino-terminale de CENP-A ainsi que la 

phosphorylation de la sérine 7, ont été signalées comme étant cruciales pour la progression 

de la mitose. Cependant, aucune phosphorylation de CENP-A dans d'autres espèces de 

métazoaires n'a été décrite. Ici, nous montrons que le domaine NH2-terminal CENP-A, 

mais pas sa séquence primaire, est nécessaire pour la mitose dans les fibroblastes 

embryonnaires de souris (MEFs). Nos données montrent que les défauts mitotiques 

résultant de la déplétion de CENP-A endogène peuvent être restaurés lorsque les MEFs 

expriment un mutant GFP-CENP-A dont l'extrémité NH2-terminal de CENP-A a été 

échangée par la queue phosphorylable de l'histone canonique H3. Inversement, dans ce 

même mutant, lorsque l’on remplace les deux serines phosphorylables par des résidus 

alanines, les défauts mitotiques persistent. En outre, le mutant de fusion non-

phosphorylable de CENP-A, où les sept serines du domaine NH2-terminal ont été 

remplacées par des résidus alanines, a été également incapable de restaurer le phénotype 

mitotique des cellules déplétées en CENP-A endogène.  

 Nous avons également identifié les trois premières sérines de la queue de CENP-A 

comme sites potentiels de phosphorylation. De plus, nos résultats montrent que l’absence 

de phosphorylation du domaine amino-terminal conduit à la délocalisation de la protéine 

centromérique CENP-C. Ces résultats suggèrent que la phosphorylation mitotique de 

CENP-A est un événement potentiellement fréquent chez les métazoaires et essentiel à la 

progression mitotique. 

            Dans la seconde partie de ce travail, nous avons voulu lier sans ambiguïté la 

fonction du domaine NH2-terminal du CENP-A à la mitose. Nous avons conçu une 

nouvelle méthode, appelée approche Hara-kiri, pour pouvoir éliminer le domaine NH2-

terminal seulement pendant la mitose. Ceci afin de répondre à la question ci-dessus dans 

les cellules humaines. L'élimination du domaine NH2-terminal du CENP-A en utilisant 

l'approche Hara-kiri en début de mitose a conduit à une augmentation des défauts 

mitotiques dans les cellules. Prises collectivement, ces données montrent que le domaine 
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NH2-terminal CENP-A est nécessaire pendant la mitose afin d’assurer le bon déroulement 

de la division cellulaire. 

 

Mots-clés 

chromatine, variant d’histone, mitose, phosphorylation, CENP-A 
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PART I  INTRODUCTION 

 

1. Chromatin 

In eukaryotes DNA that is approximately 2m must be packaged in order to fit into a 

nucleus that is only 5 to 10 µm. To achieve this DNA of cells is tightly bound to small 

basic proteins called histones, resulting in a complex nucleoproteic structure known as 

chromatin. 

The term chromatin was first used in 1881 by W. Flemming who had observed the 

presence of thread like structures within the nucleus that had high affinity for dyes and 

thus named these structures “chroma”tin from the Greek word for colour. Three years later 

A. Kossel used for the first time the term histone to describe the basic proteins that 

resulted from acid extraction of nuclei. Nevertheless the discovery of DNA as the source 

of genetic information was to come much later in 1944 (Olins and Olins, 2003).  

  

1.1. The Nucleosome 

The basic unit of chromatin is the nucleosome. The nucleosome core particle (NCP) is 

147bp of approximately 1.65 turns of super-helical DNA wrapped around a histone 

octamer. Linker protein histone H1, binds to the 10 to 90bp long linker DNA located at the 

entry/exit sites of the nucleosome core and the resulting structure is called the nucleosome 

(Luger et al., 1997). 

1.1.1. Histones 

     Histones are small, highly basic proteins found in all eukaryotic cells. They are 

primordial for cell viability and are highly conserved during evolution from yeast to 

humans (Kim et al., 1988). Histones can be grouped into five families: H1, H2A, H2B, H3 

and H4. Histones within the H1 family are called linker histones and differ from core 

histones that constitute the nucleosome core particle.  

     Genes encoding for conventional histones are generally present in multiple copies in 

the genome and are organized in clusters, for example in humans chromosomes 6 contains 

55 histone genes and chromosome 1 contains nine. Similarly in mouse there is a large 

cluster on chromosome 13 with 51 genes and two smaller clusters on chromosome 3 and 

11 (Marzluff et al., 2002). These genes exhibit atypical features for eukaryotic genes, such 

as the absence of introns and the derived mRNAs that end with a stem-loop structure 

instead of a poly-adenylation signal. It is also important to note that their transcription is 
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regulated to ensure that the mRNA levels increase dramatically during the S phase and fall 

sharply as soon as the DNA is replicated, restricting the expression of conventional 

histones to the S phase. In contrast, other subtypes whose expression is not coupled to 

replication are collectively called histone variants (Osley, 1991). 

 

Figure 1.1 Histone families and histone fold interactions. a) Schematic view of the secondary structure of 

the histones illustrating the central histone fold domain. Interaction of the histone-fold regions of the b) 

H2A–H2B dimer and c) H3–H4 dimer with approximately three turns of DNA.  (adopted from Dutnall et al, 

1997) 

 

     Core histones share a common overall structure organized into two domains (Figure 

1.1a): a globular domain that contains the highly conserved histone fold domain and 

unstructured terminal domains, or tails, protruding out of the nucleosome core particle. 

(Arents et al., 1995.) The histone fold domain is an approximately 70 amino acid long 

region that is comprised of one larger central alpha helix (α2) separated by loops on each 

side from smaller alpha helixes (α1 and α3) and enables histone dimerization important 

for nucleosome formation via head to tail interaction of the histone fold domains (Figure 

1.1b).  Histone tails are less structured and poorly conserved domains, they differ in size 
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and presence of random coil elements within the histone families and are highly diverse 

(Figure 1.1a) (Luger et al., 1997; Sandman et al., 1990). 

     Linker histones are the most diverse family of histones, they are very rich in lysine and 

differ from core histones as they lack the histone fold domain. H1 family histones typically 

have a three domain structure: a highly conserved central globular domain (Albig et al., 

1997), a short unstructured amino tail (20aa) and a long lysine rich unstructured carboxy 

terminal domain (100aa)(Hartman et al., 1977). As mentioned before histones H1 bind to 

linker DNA in the nucleosome for stabilization but are also more dynamic within 

chromatin. Partial depletion of H1 is not essential for survival in mice and other organisms 

but plays a crucial role in chromatin state and organization (Khochbin, 2001; Roque et al., 

2005; Misteli et al., 2000; Bustin et al., 2005). Whereas simultaneous depletion of three 

somatic H1 subtypes was lethal in mice (Bednar et al., 2016). 

 

1.1.2. Nucleosome Core Particle and the Chromatosome 

     The nucleosome core particle (NCP) is the crystalized part of the nucleosome that 

protects DNA and hence what remains after nuclease digestion. Histones are assembled in 

pairs of heterodimers H2A-H2B and H3-H4 that interacts with their histone fold domains 

through head to tail hydrophobic interactions. Both H3-H4 dimers assemble by an 

interaction between the histone H3’s α2 and α3 helices, forming a tetramer (H3–H4)2. The 

H2A-H2B dimers then bind to each side of the tetramer and complete the octamer 

formation (Figure 1.2).  Though the highly basic structure of histones renders the octamer 

unstable, stability is obtained by DNA binding or high salt concentration. DNA bends 

around the histone octamer due to charge neutralization of the acidic DNA phosphate 

groups, hydrophobic interactions and by hydrogen bound formation between main-chain 

amide groups and phosphate oxygen atoms (Luger et al., 1997). 

     The chromatosome is the structure that results from histone H1 binding to the NCP. 

Though there’s multiple views on where within the nucleosome H1 binds, the widely 

accepted one is that it binds via its globular domain to the dyad of the nucleosome and its 

lysine rich carboxy-terminal tail interacts with linker DNA from each side of the 

nucleosome (Shaytan et al., 2015; Shaytan et al., 2016). 
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Figure 1.2 Nucleosome assembly: Histone assembly forms the NCP and is proceeded by H1 binding. 

 

1.2. Chromatin Structure and Organization 

1.2.1. Chromatin Higher-order Structures 

    Chromatin in cells can be organized differently depending on the level of compaction. 

The most relaxed conformation is called the nucleosome filament in which the succession 

of nucleosomes connected by linker DNA, forms an 11-nm wide linear structure, 

resembling  “beads on a sting “ (Figure 1.4). This structure is observed under low salt 

conditions by electron microscopy (EM) on both endogenous and reconstituted chromatin. 

However, this primary structure is not initially found to be favored under physiological 

conditions (Thoma et al., 1979; Hansen, 2002; Horowitz-Scherer and Woodcock 2006), in 

fact in the presence of physiological salt concentrations, linear chromatin condenses into a 

helical rearrangement of nucleosomes, stabilized by linker histones and known as 

chromatin secondary structure or the 30-nm fiber (Woodcock and Dimitrov, 2001). 

     Chromatin organization and nucleosome arrangement is difficult to study and remains a 

controversial subject. Early EM studies of native chromatin fibers proposed two models 

for the 30-nm fiber. The one-start helix also known as the solenoid model consists of 

adjacent nucleosomes connected consecutively by bent linker DNA that fallows a helical 

trajectory with 6 to 8 nucleosomes per turn (Widom et al., 1985). The two-start helix 

model is where straight linker DNA connects adjacent nucleosomes and the two 
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nucleosome arrays are assembled in a zig-zag manner as nucleosome cores are helically 

arranged (Woodcock and Ghosh, 2010; Williams et al., 1986). The two-start model is 

divided to two models named the helical ribbon model and the cross-linker model (Figure 

1.3) (Dorgio et al., 2004).   

Figure 1.3 Proposed models for the 30-nm fiber organization. a) one-start solenoidal, b) two-start cross-

linked , and c) two-start helical ribbon. Upper views have the fiber axis running vertically; lower views are 

down the fiber axis. Linker DNA running between cores showed in yellow. (Adopted from Dorigo et al., 

2004) 

 

 

     Further levels of chromatin compaction do exist, the most obvious being the maximum 

level of chromatin compaction achieved by the metaphase chromosome. Examples to 

chromatin tertiary structures are chromatin loops and other higher structures found in both 

metaphase chromosomes and specialized regions of interphase chromosomes, such as gene 

enhancers and insulators (Fraser and Grosveld 1998; Woodcock and Dimitrov 2001; 

Woodcock and Ghosh, 2010). However the lack of definitive information about chromatin 

secondary structure complicates inquiries to bona fide structures above the 30-nm fiber, in 

fact more recent studies suggest a paradigm shift. Small-angle X-ray scattering (SAXS) 

experiments were unable to find repetitive structures beyond the 10-nm fiber in isolated 

nuclei (Joti et al., 2012) or in mitotic chromosomes (Nishino et al., 2012). Cryo-electron 

microscopy studies of interphase (Bouchet-Marquis et al., 2006; Gan et al., 2013) and 

mitotic chromosomes (Eltsov et al., 2008), and electron spectroscopic imaging studies of 

mouse cells (Fussner et al., 2012), observed folded 10-nm fibers but no 30-nm fibers. 

Chromosome conformation capture experiments describe structures within interphase 

chromosomes of varying size (0.1-1Mb in size depending on species), as “topologically 



 12 

associating domains” (TADs) (Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012; 

Dekker et al., 2013; Rao et al., 2014; Eagen et al., 2015). 

     In light of these findings an alternative model has been proposed in which 

chromosomes are assembled through long-range interactions, so large oligomers are not 

assemblies of the 30-nm chromatin fibers, but rather are proposed to be an interdigitated 

polymer-melt like structure deriving from 11-nm nucleosomal arrays (Figure 1.4) 

(Maeshima et al., 2016). 

 

Figure 1.4 Alternative model:  In 1–2 mM Mg2+, the nucleosomal array folds into a folded 30-nm chromatin 

fiber structure. With further increases in Mg2+, the nucleosome arrays assemble into supramolecular 

oligomers rather then the 30-nm chromatin fibers. (adopted from Maeshima et al., 2016) 

 

1.2.2. The Metaphase Chromosome 

     At the beginning of mitosis, chromatin adopts a conformation of maximum compaction 

that is the mitotic chromosome. The typical mitotic chromosome is X-shaped with two 

parallel chromatids held in proximity to each other by cohesins and role of condensin. The 

main functional elements of the chromosome are: the telomeres that protect the DNA at 

the ends of each chromatid and the centromeres, on which the kinetochore forms and 

constitutes the anchoring points for microtubules that mobilize chromatids during mitosis. 

The longest human chromosome is about 10 microns long and a little less than 2 μm wide 

and contains 250Mb of DNA in each chromatid (Marko, 2008). 

     Consistent with the uncertainty that surrounds chromatin higher order structures, the 

structure and the formation of mitotic chromosomes are not well known and widely 

discussed. The existing models can be loosely subdivided into three groups: hierarchical 

models of increasingly thicker coiled or looped fibers, loops-on-a-scaffold models and 

network models, which describe mitotic chromosomes as highly cross-linked gels.  
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     The hierarchical folding type models suggest that the mitotic chromosome results from 

several levels of successive folding of 30 nm chromatin wrapping into thicker fibers which 

in turn are wound in the upper level of fiber subsequently coil to form thicker condensed 

chromatids (Belmont et al., 1987). The structure as strictly ordered hierarchy of increasing 

levels of coiling was criticized for being overly simplistic, the Belmont laboratory showed 

that mitotic chromosomes are folded to varying thickness and as an irregularly condensed 

fiber. They proposed an axial glue model where the chromatin fibers folds hierarchically, 

but without strict order around a longitudinal central axis enriched in codensins (Kireeva et 

al., 2004). 

     The other model is the radial loop/scaffold model, where analysis after histone removal 

from mitotic chromosomes revealed chromatin loops that emanate from a dense axial 

structure of average of ~80 kb and consists of condensins and topoisomerase II. This loop-

axis structure can then coil to further shorten the chromosome (Boy de la Tour et al., 1988; 

Maeshima et al., 2003). 

     The network model was proposed by Poirier and Marko after they performed 

biophysical measurements by stretching chromosomes using micropipettes and applying 

restriction enzymes with different cutting frequencies to chromosomes prior to stretching. 

They observed that chromosomes can return to original length after being stretched up to 

~5 fold and postulated that mitotic chromosomes consist of network or gel in which 

individual chromatin fibers are connected by crosslinking elements, presumably proteins 

distanced by 10 to 20 kb (Poirier et al., 2002a; Poirier et al., 2002b). 

     More recently Job Dekkers lab applied chromosome conformation capture methods, 5C 

and Hi-C to reassess some of these different models. Their findings revealed that contrary 

to interphase chromosomes, mitotic chromosomes don’t reveal any cell type-specific nor 

any locus-specific features and found that metaphase Hi-C data is mostly inconsistent with 

classic hierarchical models. In turn, they describe metaphase organization as a two-stage 

process: linear compaction by consecutive chromatin loops, potentially generated by 

cohesin and condensin complexes, followed by axial compression (Naumova et al., 2013). 

  Chromatin Functional Organization 

Euchromatin and Heterochromatin 

    When interphasic nuclei were observed by electron microscopy, two distinct functional 

states were assigned to chromatin: euchromatin, corresponding to the loose areas 
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associated with active transcription of genes, and heterochromatin, corresponding to 

regions of compact chromatin that is often transcriptionally inactive.  

     Euchromatin regions are relaxed and transcriptionally active during interphase, during 

replication have priority and only get compacted during mitosis. This compaction 

coincides with the cessation of mRNA synthesis during cell division (Santos-Rosa et al., 

2002). 

    Heterochromatin protein HP1 is essential for heterochromatin formation, and 

heterochromatin can be defined by two separate states: constitutive and facultative. 

Constitutive heterochromatin is highly condensed, maintained and is often enriched in 

repetitive, late replicating DNA sequences and is poor in genes, such as those present in 

the centromeric, pericentromeric and subtelomeric regions (Greval et al., 2007). 

    Facultative heterochromatin state is more flexible, decondensation can occur outside of 

the S-phase and these regions can become transcriptionally active. Facultative 

heterochromatin formation is regulated by proteins such as Polycomb-group proteins and 

non-coding RNAs such as Xist. Xist RNA plays an essential role in X chromosome 

inactivation in mammalian females and is a good example of facultative heterochromatin 

function. Another interesting feature of facultative heterochromatin is that it’s capable of 

spreading to neighboring chromatin regions (Hines et al., 2009; Trojer and Reinberg, 

2007; Greval et al., 2007). 

    Heterochromatin is often enriched at the nuclear periphery, this preferential association 

with the nuclear lamina (lamin A, B and C) has been widely documented, these regions are 

called lamina-associated domains (LADs), typically 0.1-1 Mb in size (Figure 1.5) 

(Pickersgill et al., 2006; Guelen et al., 2008; Kind and van Steensel, 2010). 

 

Chromosome Territories 

     Chromosome territories refer to the space occupied by chromosomes during interphase, 

although they don’t have a specific address within cell, large gene-poor chromosomes are 

more likely to located near the nuclear periphery, whereas small gene-rich chromosomes 

are located more internally. Chromosome territories don’t have specific inner 

compartmentalization regarding active genes within the territory, in fact it has been shown 

that in some gene dense regions such as the HOX gene cluster, chromatin loops protrude 

from the territory towards transcription factories (Figure 1.5) (Cremer and Cremer, 2010).  
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Figure 1.5 Schematic representation of the nucleus, different colors mark separate chromosome territories. 

(Adopted from Dekker, 2015) 

 

1.1. Chromatin Dynamics 

     Chromatin organization and structure is important for living cells but the highly 

compact state of chromatin can render the genome relatively inaccessible to protein 

machineries and these structures alone are not sufficient to meet the constantly alternating 

physiological and metabolic needs of eukaryotic organisms. Chromatin must be able to 

alternate freely between structural states and hence should be a highly dynamic structure 

that can reorganize and assure dynamic cellular processes to modulate chromatin structure 

and increase genome availability to regulatory proteins. Orchestrating such dynamics is 

complex, partial or complete remodeling of the nucleosomes allows access to molecular 

machineries of transcription, replication and DNA repair. Three mechanisms ensure this 

dynamism: chromatin modifiers, post-translational modifications of histones and 

incorporation of histone variants. 

 

1.2.3. Chromatin Remodelers 

     Chromatin remodelers alter chromatin state in an ATP dependent manner by moving, 

ejecting, reassembling or restructuring nucleosomes. Based on their domain structures 

there are four families of remodelers: the SWI/SNF family, the ISW1 family, the CHD 

family and the INO80 family. All four families share some basic properties; a high affinity 

for nucleosomes, histone modification recognition sites, DNA dependent ATPase domains 
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capable of undoing DNA/histone interactions and finally domains and/or proteins for 

interaction with other chromatin or transcription factors. (Clapier and Cairns, 2009). 

 

 

Figure 1.6 Different outcomes of chromatin remodeling. Remodelers can move already incorporated histone 

octamers, generating room for additional deposition a) Remodeler activity on a nucleosome array can lead to 

separate outcomes: b) site exposure, where a previously inaccessible site (red) for a DNA-binding protein 

(DBP) is revealed by nucleosome sliding (repositioning), or nucleosome eviction (ejection), or localized 

unwrapping, and c) altered composition, where the actual content of the nucleosome is altered by dimer 

replacement or ejection. (Adopted from Clapier and Cairns, 2009) 

 

    The SWI/SNF (switching defective/sucrose nonfermenting) family remodelers have 

multiple function and activities involving nucleosome sliding and eviction but are not 

implicated in chromatin assembly (Mohrmann and Verrijzer, 2005). The ISWI (imitation 

switch) family remodelers modify nucleosome spacing and assist chromatin assembly 

dually where they can facilitate transcriptional activation or repression. (Corona and 

Tamkun, 2004). The CHD (chromodomain, helicase, DNA binding) family remodelers can 

promote or repress transcription by sliding and ejecting nucleosomes, this variability # may 

come from chromodomain diversity (Marfella et al., 2007). The INO80 (inositol requiring 

80) family remodelers have diverse functions, including #promoting transcriptional 

activation and DNA # repair and histone dimer replacement (Figure 1.6) (Bao and Shen, 

2007). 
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1.2.4. Histone Posttranslational Modifications 

     Histones are the target of a large number of post-translational modifications (PTMs), 

these changes are associated with processes such as transcription, DNA repair or 

chromatin condensation. Modifications of the amino-tails were amongst the first observed 

and more extensively studied.  The presence of one or more modified histones can alter the 

properties of nucleosomes but (Mutskov et al., 1998) it has been postulated that post-

translational modifications of histones exert their effects not so much by altering the 

nucleosome but rather by the recruiting specific proteins. A further step of this model 

assumes that a combination of modifications rather than individual events recruit distinct 

proteins, proposing a sort of "histone code" (Strahl and Allis, 2000). This hypothesis 

remains widely debated, including lack of a clear causal link between post-translational 

modifications and the activation or repression of transcription (Henikoff and Shilatifard, 

2011). 

     Although most previously known histone modifications were on the amino-tails of 

histones, new modifications have been located in the structured core and these 

modifications are on the histone-DNA interphase. These lateral surface modifications may 

in fact alter the free energy of histone-DNA interactions and hence nucleosome mobility 

(Cosgrove et al., 2004, Lawrence et al., 2016).  

Principle Histone Modifications 

Histone Acetylation  

     Histone acetylation is a dynamic process executed by two families of enzymes with 

antagonistic functions, histone acetyltransferases (HATs) catalyze the transfer of an acetyl 

group from acetyl CoA to the ε-amino terminal group of lysine residues, whereas histone 

deacetylases (HDACs) catalyze lysine de-acetylation where acetylated lysines are 

recognized via their bromodomain and are removed (Dhalluin et al., 1999; Jacobson et al., 

2000). 

     There are two classes of HATs: type A HATs, are diverse, localized in the nucleus and 

are involved in histone acetylation within chromatin. Type B HATs are located in the 

cytoplasm and acetylate newly synthesized histones before these histones are deposited 

into chromatin (Sterner and Berger, 2000). Cytoplasmic acetylations can be needed for H4 

deposition such as H4K5 or necessary due potential lack of access to structured domains 

once deposited such as with H4K91 acetylation (Ye et al., 2005). 
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     HDACs are most frequently associated with transcriptional repression, deacetylation 

stabilizes chromatin structure and histone hypoacetylation is associated with repressed 

chromatin state (Grunstein, 1997; Katan-Khaykovich and Struhl, 2002). Histone 

acetylations also play a critical role in apoptosis, DNA repair and VDJ recombination 

(Kouzaride, 2007). 

 

Histone Methylation  

     Histone methylation is the addition of one to three methyl groups on to the side chains 

of lysine and arginine residues. Lysine methylation is catalyzed by histone (lysine) 

methyltransferases (HKMT) and arginine methylation is catalyzed by protein arginine 

methyltransferases (PRMT). Contrary to acetylation and phosphorylation, histone 

methylation does not alter the charge of the histone. Each enzyme generally targets a 

specific residue and the impact of said methylation varies depending on residue that has 

been modified and the overall number of methyl groups transferred on said residue 

(Lachner and Jenuwein 2002; Lachner et al., 2003).  Three lysines, in particular, are 

associated with activation of transcription when they are methylated: H3K4, H3K36 and 

H3K79; conversely, di- and tri-methylation of H3K9 and H3K27 is frequently associated 

with transcriptional repression and is a hallmark of heterochromatin, as they are 

recognized by HP1 and by the polycomb repressive complex respectively (Bannister et al., 

2001). More so, H4K20me1 is associated with active transcription, H4K20me2 with DNA 

damage response and H4K20me3 with transcriptional repression when present at 

promoters (Wang et al., 2008; Botuyan et al., 2006).  

     For a long time it was thought that histone methylation was irreversible, the 

identification of the amine oxidase LSD1 (a.k.a KDM1) (Allis, 2007) as a histone 

demethylase changed this perception (Shi et al., 2004). Currently there are many 

demethylases that have been identified and grouped into six families KDM1 to KDM6. For 

instance, certain demethylases containing the Jumonji catalytic domains, can demethylate 

very stable trimethylated lysines as well as methylated arginines (Cloos et al., 2008). 

 

Histone Phosphorylation   

     Phosphorylation is the addition of a phosphate group on a serine, threonine or tyrosine 

residue. Dedicated kinases transfer the phosphate group from ATP to the hydroxyl group 

of the amino acid side-chain, this introduces a negative charge to the histone. In chromatin, 
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phosphorylation seems to occupy a less prominent place when compared to acetylation or 

methylation. However lately, phosphorylation is being studied and linked to more 

functions (Table 1: Banerjee et al., 2011). Perhaps the most known phosphorylation event 

is that of H3S10 and to a lesser extent that of H3S28, both involved in chromosome 

condensation at the beginning of mitosis, mediated by Aurora kinases. (Hans and 

Dimitrov, 2001). Furthermore, in mammals phosphorylation at S139 of H2A.X, a variant 

of histone H2A, is associated with the repair of double-strand DNA breaks (Rogakou et 

al., 1998).  

 

     Dephosphorylation in turn is the removal of a phosphate group by hydrolysis, it is 

assured by phosphatases. For example, fallowing DNA damage repair, a chromatin-

associated phosphatase, Wip1, dephosphorylates H2A.X at S139 and allowing the cell to 

pass from the cell cycle checkpoint (Macurek et al., 2010). 

TABLE 1. Histone residues that are phosphorylateda

Histone Residue Organism Kinase(s)
Protein(s) recognizing

(bound or released) the
modification

Function(s)

H2A Serine 139
(H2AX)

Mammals ATR, ATM,
DNA-PK,
RSK2, MSK1

DSB-sensing proteins
(MRN, MDC1,
P53BP1), AP1

DNA repair, decreased EGF-mediated
cellular transformation, apoptosis

Tyrosine 142
(H2AX)

Mammals WSTF ND Decision between cell survival and apoptosis

Serine 1 Mammals MSK ND Inhibition of transcription
Threonine 119 Mammals NHK-1, Aurora B PTB domain-containing

protein Fe65
Regulation of chromatin structure and

function during mitosis
Serine 121 Fission yeast Bub1 Shugoshin Maintaining chromosomal homeostasis by

recruiting shugoshin at sister kinetochore
Serine 129 Yeast ATM-related

kinase Mec1 and
Tel1

NuA4, SWR1, INO80,
cohesin

DSB repair

H2B Serine 10 Yeast Ste20 ND Apoptosis
Serine 14 Various

vertebrates
MstI ND Apoptosis

Serine 32 Mammals Protein kinase C ND Possible involvement in apoptosis-related
nucleosomal DNA fragmentation

Serine 33 Drosophila CTK-TAF1 ND Transcriptional regulation
Serine 36 Mammals AMPK ND Direct transcriptional and chromatin

regulatory pathways leading to cellular
response to stress

H3 Threonine 3 Mammals Haspin Survivin Correct localization of the CPC at the
centromere

Threonine 6 Mammals PKCb1 ND Androgen-dependent H3T6 phosphorylation
prevents LSD1-mediated H3K4
demethylation, maintaining hormone-
dependent gene activation

Serine 10 Yeast, mammals Snf1, IpL1 (yeast),
Aurora B
(mammals),
MSK1/2, IKKa,
PKB/Akt, Rsk2,
PIM1

HP1, SRp20, ASF/SF2,
14-3-3

Help in chromosome condensation during
mitosis and meiosis; roles in transcription
of certain genes

Threonine 11 Mammals Chk1, PRK1, Dlk/
Zip kinase

GCN5 Transcriptional activation of certain genes;
probable role at centromeres during
mitosis

Serine 28 Mammals Aurora B, MSK1/2 Polycomb silencing
complex

Help in chromosome condensation during
mitosis and meiosis; roles in transcription
of certain genes

Tyrosine 41 Mammals JAK2 HP1a Role in differentiation related to
hematopoiesis

Threonine 45 Mammals, budding
yeast

Protein kinase C,
S-phase kinase
Cdc7-Dbf4

ND Apoptosis, role in DNA-damaged cells when
the DNA is nicked, replication of DNA

H4 Serine 1 Yeast, mammals CK II ND DNA damage repair, mitosis and chromatin
assembly

Histidines 18
and 75

Mammals Unknown ND Facilitation of DNA replication by
destabilizing histone octamer

a DSB, double-strand break; ND, not determined.
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Ubiquitination and Sumoylation 

     Ubiquitin is a highly conserved eukaryotic protein of 8,6kDa. Ubiquitination is the 

addition of one or more ubiquitin molecules on the ε-amino group of lysine residues. This 

reaction is catalyzed by the combined activity of three enzymes: E1-activating, E2-

conjugating and E3-conjugating enzymes (Hershko et al., 1998). In the cytoplasm, 

ubiquitinated proteins are sent to the proteasome for degradation. Within chromatin, 

ubiquitination of histones does not lead to degradation. For example, mono-ubiquitination 

of histone H2B on K119 is associated with activation and elongation of transcription 

(Vitaliano-Prunier et al., 2008; Pavri et al., 2006) while the mono-ubiquitination of H2A 

on K120 or 123 is implicated in maintaining transcriptional repression by the polycomb 

repressive complex (Wang et al., 2004). Ubiquitination is a reversible event and 

polyubiquitin chains can be removed by specific isopeptidases called deubiquitinases 

(Nijman et al., 2005). 

     Sumoylation is a similar process to ubiquitination where small ubiquitin like modifiers 

(SUMO) of ~12kDa are attached reversibly to lysine residues in a reaction catalyzed again 

by E1, E2 and E3 enzymes. Sumoylated lysines of histones have been reported to be 

subsequently ubiquitinated, acetylated or methylated, suggesting a cross-talk between 

sumoylation and other post-translational modifications (Hendriks et al., 2014). 

 

Other Modifications 

     There is an increasing number of histone modifications being described and studied, 

such as ADP-ribosylation, deamination, propionylation, butyrylation, citrullination and 

crotonylation. These research show that histones are intensely modified both on their 

amino tails and their core domains (Tan et al., 2011). 

 

1.2.5. Histone Variants 

     Histone variants are nonallelic isoforms of conventional histones and are present in all 

eukaryotic organisms. There are variants for all classes of histones, except for H4. Unlike 

canonical histones, the expression of histone variants is not restricted to the S phase but 

may occur throughout the cell cycle. Furthermore the expression of certain subtypes can 

even be restricted to a specific tissues or specific stages of development. 
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     Genes encoding the histone variants are present only in one or two copies and are 

distributed throughout the genome. They all have at least one intron and a poly-

adenylation signal. 

     The differences between histones and their variants can affect the overall stability of the 

nucleosome or the residues of the nucleosome that are exposed. Hence the incorporation of 

histone variants confer distinct structural and functional properties, and thus distinct roles, 

to the nucleosome (Marzluff et al., 2002; Kamakaka and Biggins, 2005). 

 

1.1.1.1. H2A Family Variants 

     The H2A family includes the largest number of variants, including the H2A.Z and 

H2A.X variants, found in most eukaryotes, and H2A.Bbd and macroH2A variants, specific 

to vertebrates. 

 

Histone variant H2A.Z  

      H2A.Z represents approximately 5-10% of total histone H2A and is highly conserved 

through evolution derived from a single origin, (Malik et al., 2003) sharing ~60% 

sequence homology with the canonical H2A. Its removal is lethal in Drosophila (Daal and 

Elgin, 1992) and mouse (Faast et al., 2001). Nucleosomes containing variant H2A.Z 

instead of histone H2A are less stable at the interaction between the H2A.Z/H2B dimer 

and (H3/H4)2 tetramer, hence a less stable nucleosome, which may allow easier access to 

the double helix of DNA (Abbott et al., 2001; Suto et al., 2000).  

     H2A.Z is involved in transcriptional activation and preventing heterochromatin 

formation (Meneghini et al., 2003). H2A.Z is enriched at eukaryotic promoters, 

specifically at the +1 and −1 nucleosomes, flanking the nucleosome free regions associated 

with RNA pol II-transcribed genes and facilitating transcription (Raisner et al., 2005; 

Zhang et al., 2005; Weber et al., 2014). 

     Posttranslational modifications of H2A.Z are also deterrent of its functions. For 

example mono-ubiquitination of H2A.Z is associated with facultative heterochromatin and 

X-inactivation while acetylation correlates with active genes (Sarcinella et al., 2007; 

Millar et al., 2006; Bruce et al., 2005). Genome wide deposition of H2A.Z is diverse, 

dynamic and regulated, in mouse trophoblast stem cells H2A.Z is lost from gene 

promoters and locates to the centromeres during mitosis (Nekrasov et al., 2012). H2A.Z in 

fission yeast is excluded from centromeric chromatin (Ogiyama et al., 2013). Interestingly, 
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even though its role may differ in these organisms, knockdown of H2A.Z leads to defects 

in chromosome segregation in both mice and fission yeast (Rangasamy et al., 2004; Kim et 

al., 2009). 

Histone Variant H2A.X 

     H2A.X amounts up to a quarter of the total amount of histone H2A in the cell and 

possesses a conserved C-terminal tail motif containing a phosphorylatable serine (S139). 

The phosphorylation occurs in response to DNA double-strand breaks, where foci, termed 

γ-H2A.X, appear within ten minutes after cells are exposed to ionizing radiation that 

introduces double strand breaks and disappear gradually within two hours (Rogakou et al., 

1998). H2A.X in its phosphorylated form, γ-H2A.X, is believed to destabilize chromatin 

and impair H1 binding (Downs et al., 2000). It has been called the guardian of the genome 

as it recruits and triggers DNA repair mechanisms and induces chromatin remodeling near 

the break site (Thiriet and Hayes, 2005). However H2A.X is dispensable to the repair 

process since DNA repair was observed in H2AX-deficient cells and animals signaling the 

existence of independent repair pathways (Yuan et al., 2010). 

 

Histone Variant MacroH2A 

     MacroH2A is atypical histone variant, although its amino-terminal domain shares 

~60% similarity with canonical H2A, macroH2A is characterized by a large C-terminal 

extension that can measure up to 200 amino acids in length according to species, called the 

macrodomain. Nucleosomes containing macroH2A are less flexible and more hydrophobic 

(Chakravarthy et al., 2005), their presence in a nucleosome disturbs both the recruitment of 

transcription factors such as NF-kB, nucleosome remodeling by the SWI / SNF complex 

(Angelov et al., 2003) and that histone acetylation necessary for transcription (Doyen et 

al., 2006b). Hence macroH2A is associated with the suppression of transcription and is 

particularly enriched on the inactive X chromosome (Mietton et al., 2009). 

     Phylogenic distribution of macroH2A is not uniform and knock-out of this variant in 

mice isn’t lethal, however knock-out mice do exhibit impaired pre- and postnatal growth in 

addition to male reproductive impairments (Talbert et al., 2012; Pehrson et al., 2014). 

 

Histone Variant H2A.B 

     The histone variant H2A.B, also known as H2A.Bbd is found, contrary to macroH2A, 

to be excluded from the inactive X chromosome (Bbd for Barr-deficient body) and is 
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associated with transcriptionally active chromatin (Chadwick and Willard, 2001). H2A.B 

shares only ~50 % sequence similarity with canonical H2A and has a truncated docking 

domain. H2A.B containing nucleosomes bind only ~120 bp of DNA and are less stable 

than conventional nucleosomes (Bao et al., 2004; Doyen et al., 2006a; Gautier et al., 

2004). H2A.B nucleosomes also lack the small acidic region that forms on the surface of 

the canonical nucleosomes as well as K119 whose ubiquitination is linked to 

transcriptionally inactive regions (Zhou et al., 2007). More recently, H2A.B has also been 

found to localize at DNA replication and repair sites in elongating spermatids (Arimura et 

al., 2013). 

 

1.1.1.2. H2B Family Variants 

     Contrary to the large diversity of H2A variants, few H2B variants have yet been 

identified. The most studied variants are the mammalian TH2B (Testis specific H2B) and 

H2B.FWT. TH2B shares 86% similarity with the canonical H2A and largely replaces 

conventional H2B in spermatocytes in humans, mouse and rats (Churikov et al., 2004). In 

humans, it is expressed throughout spermatogenesis, where it is found in at the telomeres 

(Zalensky et al., 2002). In mice, TH2B directs the final stages of histone to protamine 

transition in male germ cells and reassembles back after fertilization on the male genome 

during protamine to histone exchange (Montellier et al., 2013). 

     H2B.FWT is a surprisingly divergent variant and shares only 45% sequence identity 

with conventional H2B, sequence divergence is most pronounced in the amino-tail on 

account of the 42 amino acid extension of the H2B.FWT tail. The reconstitution of 

nucleosomes in vitro containing this variant showed H2B.FWT does not disturb the 

nucleosome remodeling by SWI / SNF, but its amino tail prevents H2B.FWT contribution 

during mitotic chromosome assembly. H2B.FWT is also associated with telomeric regions 

(Boulard et al., 2006). 

1.1.1.3. H3 Family Variants 

     The H3 family includes two conventional subtypes H3.1 and H3.2, and three variant 

subtypes H3.3, H3.4 (a.k.a H3.t or TH3) and CenH3 (a.k.a CENP-A). With the exception 

of CenH3, all subtypes diverge from one another by only few residues. For instance H3.1 

and H3.2 differ only by one residue.  
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Histone Variant H3.3 

     The histone variant H3.3 diverges from H3.1 by only five residues and from H3.2 by 

four residues. Nucleosomes containing these H3 subtypes are highly similar in structure. 

Intriguingly, H3.3 specific residues are highly conserved and are located on the accessible 

surfaces of the H3/H4 tetramer, including several PTM sites (Melters et al., 2015).  

     In mammals, H3.3 is coded by two genes H3F3A, H3F3B and disruption of either one 

of theses genes causes detrimental effects on development (Couldrey et al., 1999; Bush et 

al., 2013; Szenker et al., 2011). H3.3 has been associated with transcriptionally active 

chromatin (Ahmad and Henikoff, 2002; McKittrick et al, 2004) and is supposed to be a 

hallmark of active genes (Hake and Allis, 2006), although this role has recently been 

challenged given the presence of H3.3 in constitutive heterochromatin regions such as 

telomeres and pericentric chromatin (Szenker et al., 2011; Goldberg et al., 2010).  

     As mentioned before H3S10 and H3S28 phosphorylation are important for 

chromosome condensation at the beginning of mitosis. They first appear in prophase, 

persist until anaphase, and localize to peripheral regions of the condensed DNA. 

Strikingly, H3.3 is phosphorylated on S31 (H3.3 S31P) during mitosis but differs from  

H3S10P and H3S28P, in both timing and location, as it is present only in late 

prometaphase and metaphase (Hake et al., 2005).  

 

Histone Variant H3.4 

     The variant H3.4, diverges from H3.1 by four residues and H3.2 by five residues, it has 

been identified as a testis specific variant. In rats, it represents up to 40% of total histone 

H3 throughout spermatogenesis (Meistrich et al., 1985). In humans, its expression is 

restricted to spermatocytes, where it potentially represents the majority histone H3 (Witt et 

al., 1996). H3.4 nucleosomes appear less stable than conventional nucleosomes, including 

a weaker interaction between the H3.4:H4 tetramer and H2A:H2B dimers. H3.4 has been 

also reported in other tissues, such as the brain and the embryo (Tachiwana et al., 2010). 

 

Histone Variant CenH3 

     The variant CenH3 (CENP-A) is the centromere specific histone variant and is 

considered to be the epigenetic marker of centromeric chromatin. It is the central protein in 

this thesis work and will be thoroughly described in the final chapter of the introduction. 
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2. Mitosis 

 
     In eukaryotes the cell cycle of proliferating cells can be divided into two parts: 

interphase and mitosis. Mitosis is the part of the cell cycle where a eukaryotic cell equally 

divides its duplicated genetic material, resulting in two cells with the same genome. 

However interphase isn’t a stagnate state, it encapsulates specific stages during which both 

cell growth and DNA replication occur in preparation for cell division. Hence the cell 

cycle can be examined in four discrete phases. The M phase of the cycle corresponds to 

mitosis, which is usually followed by cytokinesis. The next phase is the G(ap)1 phase, 

which corresponds to the interval “gap” between mitosis and DNA replication where the 

cell is metabolically active and grows continuously.  G1 is followed by the S(ynthesis) 

phase corresponding to DNA replication. The S phase is followed by the G2 phase, during 

which cell growth and protein synthesis continues in preparation for mitosis (Cooper GM 

(2000). "Chapter 14: The Eukaryotic Cell Cycle". The cell: a molecular approach.). 

 

2.1. Stages of Mitosis 

     Mitosis is divided into five phases and starts with prophase (Figure 2.1a), during which 

the interphase chromatin condenses to form individualized chromosomes and transcription 

is widely paused (Kadauke et al, 2013). Animal cells contain a pair of centrosomes 

responsible for microtubule nucleation and anchoring. During prophase each centrosome 

migrates to the poles of the cell, forming a bridge of spindle fibers (Eddé et al., B.1990). 

     The next stage is prometaphase (Figure 2.1b), the nuclear membrane disintegrates and 

the chromosomes that are now fully condensed migrate towards the cells equatorial plane. 

This movement is called congression. Kinetochore microtubules emerging from the 

centrosomes attach to the kinetochores and spindle microtubules move the chromosomes 

toward the center of the cell. The chromosomes align on the metaphase plate in metaphase 

(Figure 2.1c), during which the cell ensures the correct orientation and bipolar attachment 

of each chromosome to the mitotic spindle.  

     Metaphase is then followed by anaphase (Figure 2.1d), where the sister chromatid 

cohesion is broken and each chromatid pulled towards the opposing poles of the cell. 

    In telophase (Figure 2.1e) the migration of chromatids is completed and the nuclear 

envelope reforms while microtubules of the mitotic spindle dissociate and chromatin 

decondensation occurs. Alongside telophase, the division of the cytoplasm called 

cytokinesis takes place (Figure 2.1f). A contractile ring forms and tightens gradually and 
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leads to the near total separation of the two daughter cells. The disappearance remaining 

small dense structure, called the residual body marks the end of cell division.  

 

 

Figure 2.1 Stages of mitosis. a) Prophase: chromosomes condense and the nuclear membrane disappears.   

b) Prometaphase: chromosome capture by microtubules. c) Metaphase: Alignment of chromosomes on the 

metaphase plate. d) Anaphase: sister chromatids separate and migrate towards the poles. e) Telophase: 

chromosomes decondensation and nuclear membrane reformation. f) Cytokinesis: division of the cytoplasm. 

(by Marina Ruiz Villarreal) 

 

 

2.2. Regulation of Mitosis 

     Ensuring proper progression of mitosis is exceptionally important as errors during cell 

division can have devastating consequences for the cell. Transcriptional arrest during 

mitosis mandates that all effectors and enzymes are readily available in the cell, thus 

activation of molecular pathways depend on protein turnover and posttranslational 

modifications. Two mechanisms ensure this control. The first is removal of effectors by 

proteolysis when their function is no longer needed, and the second is phosphorylation that 

serves as molecular on and off switch for many enzymes. Hence mitotic kinases play a 

central role in controlling mitosis. 

 

Principle Kinases  

     This section only covers the role of these kinases during mitosis and does not envelope 

functions during the rest of the cell cycle. 

 

CDK Family Kinases  

     Cyclin Dependent Kinases (CDKs) are among the most important conductors of the cell 

cycle. During mitosis, the predominant kinase family is Cdk1, of the twenty Cdks that 

have been identified in humans, Cdk1 is the only one that is essential for the cell cycle in 

all eukaryotic cells (Malumbres et al., 2009). Expressed during G2 phase, Cdk1 is 

phosphorylated on Tyr15 by Wee1 kinase and becomes inactive (Parker et al., 1992). 

Cdc25 phosphatase dephosphorylates Cdk1 and Cdk1 association with cyclin B allows the 
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activation of the kinase and triggers mitotic entry (Ferguson et al., 2005; Nilsson and 

Hoffmann, 2000). 

     The cyclinB/Cdk1 complex targets multiple proteins. The phosphorylation of lamins 

causes them to dissociate and depolymerize resulting in disintegration of the nuclear 

envelope. The phosphorylation of condensins induces chromosome condensation (Heald et 

al., 1990). Other targets include microtubule and kinesin-related proteins, promoting the 

assembly of the mitotic spindle and cohesins, located on chromosome arms (Kimura et al., 

1998). Finally, during the transition from metaphase to anaphase, degradation of cyclin B 

initiated by the ubiquitin ligase anaphase promoting complex/cyclosome (APC/C), opens 

the way for completion of mitosis (Murray, 2004). 

 

PLK family kinases 

     The polo-like kinases (PLK) are conserved serine/threonine kinases involved in the 

regulation of cell cycle progression through G2 and mitosis. Expressed during G2 phase, 

they are initially distributed throughout the cell but later localize from prophase to 

metaphase to the centrosomes and kinetochores. (Glover et al., 1998)  

PLK1 mediates mitotic entry, both by direct activation of the cyclin B/Cdk1 complex and 

by phosphorylation of Cdc25c, which promotes its nuclear localization (Roshak et al., 

2000). At the centrosomes, it promotes the recruitment of γ-tubulin by phosphorylating 

Asp, enabling centrosome maturation and microtubule nucleation (Petronczki et al., 2008). 

On the kinetochore, it contributes to recruitment of NDC80 complex involved in bipolar 

spindle formation (Wong and Fang, 2005). Finally, PLK1 participates in the metaphase to 

anaphase transition, either by directly phosphorylating the APC/C subunits (Golan et al., 

2002) or by promoting the degradation of one of its inhibitors, Emi1.   

 

NRK family kinases  

     NIMA (never in mitosis A) kinases have been identified in Aspergillus nidulans in a 

screen for cell cycle mutants. NIMA mutants remained arrested in G2 phase without ever 

entering into mitosis and acquired the name never in mitosis A. NIMA homologues are 

NRK family or NIMA-related kinases (O'Connell et al., 2003).  

     In vertebrates, the most likely functional homologue is the NEK2 kinase, essentially 

important in the maturation and separation of centrosomes and bipolar spindle formation. 

NEK2 controls centrosome separation (essential for the formation of bipolar spindles) by 
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phosphorylating proteins, such as Nap1, resulting in their displacement from the 

centrosomes (Bahe et al., 2005). It also regulates kinetochore microtubule attachment 

stability in mitosis via phosphorylation of NDC80 (Chen et al., 2002).  

 

Aurora family kinases 

     Part of the serine/threonine kinases, Aurora kinase was first identified in Drosophila in 

a screening for defective chromosome segregation. Although in yeast one gene encodes for 

Aurora kinase, the family includes three members in mammals, Aurora A, Aurora B, and 

C. Aurora C has more limited expression and plays an important role during meiosis (Tang 

et al., 2006) and early embryonic development (Fernandez-Miranda et al., 2011; Schindler 

et al., 2012). Aurora A and B are involved in somatic mitosis and share some common 

characteristics: they are both expressed in G2 and M phases and their activation depends 

on their association with specific cofactors coupled to auto-phosphorylation. Lastly, they 

are both degraded at end of mitosis by APC/C dependent ubiquitination  (Lindon et al., 

2016).  

      Aurora A mainly localizes at centrosomes and mitotic spindle poles throughout 

mitosis, assisting in centrosome maturation and separation, microtubule dynamics, and 

bipolar spindle assembly (Barr and Gergely, 2007). In contrast, Aurora B localizes at 

centromeres and chromosomes in early mitosis and locates to the spindle 

midzone/midbody during mitotic exit (Figure 2.2) (Adams et al., 2001; Schumacher et al., 

1998).  

Figure 2.2 Aurora kinase dynamics throughout mitosis (adopted from Lindon et al., 2016) 

Aurora A  

      Aurora A contributes to mitotic entry and maturation of centrosomes. It initially 

displays a cytoplasmic localization, where it forms a complex with its cofactor Bora. The 

complex Aurora A/Bora in turn phosphorylates PLK1 (Macůrek et al., 2008; Seki et al., 
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2008), which promotes mitotic entry (by PLK1 action on the complex cyclin B / Cdk1) 

and the phosphorylation and degradation of Bora. Aurora A then associates with another 

cofactor TPX2 (Chan et al., 2008) and the complex can locate to the centrosome (Figure 

2.2). There, it allows the recruitment of pericentriolar material (PCM) (Hannak et al., 

2001) and the mobilization of microtubule-associated proteins (Dutertre et al., 2002). It 

also phosphorylates the centrosomic fraction of Cdc25, maintaining the local activation of 

the cyclinB/Cdk1 (Dutertre et al., 2004). 

 More recent studies suggest also Aurora A involvement in cytokinesis by insuring the 

stability of astral microtubules and central spindle robustness (Lioutas and Vernos 2013; 

Reboutier et al., 2013). 

 

Aurora B  

      Aurora B is a member of chromosomal passenger complex (CPC), a set of proteins 

characterized by their location profile during mitosis. This complex, in particular the 

protein INCENP (inner centromere protein), allows both the complete auto-activation of 

the kinase but also its proper localization. Aurora B associates with chromosome arms in 

prophase, where it participates in chromatin condensation by phosphorylating condensins 

and histone H3 at serine 10 (Giet and Glover, 2001; Lipp et al., 2007). It also assists in 

cohesin removal along chromosome arms, together with PLK1 (Giménez-Abián et al., 

2004). During prometaphase and metaphase, Aurora B localizes to centromeres and 

oversees the attachment of microtubules to kinetochores by destabilizing incorrect 

attachments (Shang et al., 2003; Liu and Lampson, 2009; Tanaka et al., 2002; Lampson et 

al., 2004; Cimini et al., 2006; Knowlton et al., 2006; Lampson and Cheeseman, 2011) and 

activating the spindle assembly checkpoint (SAC). During telophase, Aurora B is located 

on the spindle midzone for required disassembly (Buvelot et al., 2003). Lastly during 

cytokinesis, it is located at the residual body where it contributes to the formation of the 

contractile ring (Figure 2.2) (Minoshima et al., 2003).  

 More recently a control mechanism involving Aurora B activity gradient has been 

proposed as a regulator of late mitosis. Complete separation of chromosomes and their 

arrival to the spindle poles is necessary for DNA decondensation and complete nuclear 

envelope reformation (NER).  At the spindle midzone as chromosomes migrate to opposite 

poles, the lack of accessible substrates to become dephosphorylated by phosphatases 

ultimately drives mitotic exit. In this regard Aurora B phosphorylation gradient at the 
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spindle midzone would allow for the spatial regulation of several substrates involved in 

chromosome (de)condensation and NER, such as histone H3 (Hsu et al., 2000; Neurohr et 

al., 2011). DNA decondensation and NER are inhibited on lagging chromosomes/ 

chromatin bridges as a chance for possible reintegration (Afonso et al., 2014; Karg et al., 

2015). This indicates a potential surveillance mechanism or “chromosome separation 

checkpoint” that controls the extent of anaphase chromosome separation before 

completion of telophase (Maiato et al., 2015). 

 

2.3. The mitotic spindle 

2.3.1. Microtubules 

      The mitotic spindle is composed of microtubules, a cylindrical structure formed by the 

association of thirteen protofilaments each composed of α- and β-tubulin heterodimers 

(Nogales, 2001). Microtubules are polarized structures, the plus end only exposes             

α-tubulin and the minus end only exposes β- tubulin molecules. The protofilaments are of 

parallel orientation so the overall structure also maintains polarity.  

     Microtubules are highly dynamic structures, their length varies by constant addition or 

removal of tubulin dimers at the polymer ends and microtubule polymerization alternates 

between slow and rapid depolymerization phases according to the local concentration of 

tubulin dimers (Desai and Mitchison, 1997). At a given end, the authorization of 

polymerization rate and frequency of depolymerization determine whether the microtubule 

is in growth or shrinkage. Each end may exhibit different dynamic properties, which gives 

the microtubule the opportunity to grow or shrink in a particular direction. When the 

dynamic properties of the two ends are such that one end is growing as the opposite end 

decreases as the tubulin dimers seem to “treadmill” over the microtubules to the other end, 

microtubule length remains constant (Margolis and Wilson, 1998). 

 

2.3.2. Centrosomes 

      The centrosome is the major microtubule organizing center of the cell. It is duplicated 

during S phase and the resulting two centrosomes define the poles of the cell and hence 

that of the mitotic spindle during mitosis (Urbani and Stearns, 1999). Centrosomes consist 

of a pair of centrioles (themselves an assembly of nine microtubule triplets) surrounded by 

pericentriolar material (PCM).  
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     A major component of PCM is the γ-tubulin ring complex (γ-TuRC) that nucleates 

microtubules (Zheng et al., 1995). During mitosis the nucleation capacity of the 

centrosome is increased by the recruitment of larger amounts of γ-TuRC (Khodjakov and 

Rieder, 1999, Piehl et al., 2004). This allows a rapid increase in the number of 

microtubules issued from the centrosome and thus the formation of the future mitotic 

spindle. However, the centrosome is not strictly necessary in this process, and a functional 

mitotic spindle can form in the absence of centrosomes (Mahoney et al., 2006). The 

centrosome also has an important role in cell cycle regulation (Doxsey et al., 2005). 

 

2.3.3. The kinetochore 

      The kinetochore is a protein complex transiently associated with centromeres during 

mitosis. Spindle microtubules attach to chromosomes through kinetochores. 

     When observed by electron microscopy, the kinetochore has a structure revealing three 

layers: the inner kinetochore which is very closely associated with chromatin, the outer 

kinetochore, a thick region of 50 to 60 nm that interfaces with microtubules and central 

kinetochore, an electron sparse region between the inner and outer layers. A network of 

fibers, the fibrous ring is associated with the external surface of the kinetochore (McEwen 

et al., 2007). 

     The simplest kinetochore is that of Sacharromyces cerevisiae, it consists of about sixty 

proteins and contains only a single anchoring site for microtubule attachment (McAinsh et 

al., 2003; Westermann et al., 2007). Out of five of the main complexes in S. cerevisiae 

(CBF3, Ndc80, Mtw1, Spc105 and Dam) three of them, Ndc80, Mtw1 (called MIS12 in 

humans) and Spc105 (Knl1 humans) are conserved in higher eukaryotes (Musacchio and 

Salmon, 2007; Cheeseman and Desai, 2008; Welburn and Cheeseman, 2008). 

Kinetochores of higher eukaryotes are bulkier and each bind numerous microtubules (15 to 

20 microtubules for the human kinetochore) and are formed of a repetition of the 

elementary module found in yeast (Joglekar et al., 2008). The constitutive centromere 

associated network (CCAN) is also conserved in all eukaryotes and is supposed to be the 

foundation on which the rest of the kinetochore proteins are assembled. Contrary to the 

other members of the kinetochore those of the CCAN are permanently associated to the 

centromeres and are not transitional like the rest of the kinetochore. 

     The elementary functional module kinetochore is the Knl1-MIS12-Ndc80 network 

(KMN), a 10-subunit supercomplex consisting of the three conserved complexes Ndc80, 
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Mtw1/MIS12 and Spc105/Knl1 (Cheeseman et al., 2006). In this network, the complex 

Ndc80 directly interacts with microtubules, with increasing affinity when combined with 

Mtw1/MIS12 and Spc105/Knl1 complexes (Figure 2.3). The 4-subunit Ndc80 complex 

forms an elongated structure with two globular heads at each end, separated by a long 

super-coiled region (Ciferri et al., 2007). One end of the cylinder, composed of globular 

regions Ndc80 and Nuf2, directly binds microtubules (Cheeseman et al., 2006; Wei et al., 

2007); the other end composed of globular regions Spc24 and SPC25 (Wei et al., 2006), is 

associated with the inner kinetochore (Figure 2.3b). Each microtubule is bound to the 

kinetochore by several KMN complexes (Joglekar et al., 2006). 

 

 

Figure 2.3 a) Schematic representation of the centromere b) Schematic view of the main interactions of the 

KMN network (adopted from Pesenti et al., 2016) 

 

     The Mis12 complex interacts directly with the inner kinetochore via CENP-C (part of 

the CCAN). The interactions with the Ndc80 complex and with the 2-subunit Knl1 

complex take place on adjacent binding sites at the opposite end of the Mis12 complex. 

They involve short linear motifs of the Nsl1 and Dsn1 subunits of the Mis12 complex, 

which engage RWD (RING finger, WD repeat, DEAD-like helicases) domains of the 

Ndc80 complex and the Knl1 complex (Pesenti et al., 2016).  

 

2.4. Chromosome dynamics during mitosis 

2.4.1. Microtubule Attachment 

     All chromosome movement during mitosis requires attachment to the mitotic spindle. 

Microtubules that attach to the kinetochore form K-fibers, these microtubules are oriented 

with their plus ends to the kinetochore and their minus ends to the centrosome. 
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     Two models postulate how chromosomes are attached to microtubules of the mitotic 

spindle during prometaphase, though they are not mutually exclusive. The main model 

"search and capture" (McIntosh et al., 2002) suggests that microtubules emitted from 

centrosomes explore space in all directions until they contact a kinetochore. Microtubules 

that have established contact stabilize while the rest is depolymerized. This mechanism is 

enabled in particular by increasing the nucleation of microtubules at the centrosomes, the 

increased recruitment of γ-tubulin and the action of Aurora A (Khodjakov and Rieder, 

1999; Brittle and Ohkura, 2005). The search and capture mechanism is not relevant to 

spindle assembly in cells lacking centrosomes, which include higher plants and some 

animal oocytes but surprisingly studies have shown that animal cells in the absence of 

centrosomes can still form functional spindles (Hinchcliffe et al., 2001). 

     The model of "self-assembly" proposes that microtubules are formed in the immediate 

vicinity of chromatin, independent of centrosomes. A part of them at least are suspended 

by the kinetochores and oriented parallel to form a K-fiber (McKim and Hawley, 1995). 

This model could explain the formation of a mitotic spindle function observed in the 

absence of centrosomes (Mahoney et al., 2006). 

 

2.4.2. Congression 

    Congression is the process by which, as the name indicates, chromosomes congregate to 

the metaphase plate in prometaphase. One of the major forces responsible for these 

movements comes from the depolymerization of positive ends of microtubules associated 

with the kinetochore when the shortening of the resulting K-fiber causes chromosomes to 

be pulled towards the corresponding pole. On the opposite kinetochore, there is  

polymerization of positive ends of microtubules and elongation of the K-fiber, but this 

phenomenon is not strong enough to "push" the chromosome to the metaphase plate 

(Khodjakov and Rieder, 1996). So the movement towards the metaphase plate is not direct, 

chromosomes oscillate back and forth until polymerization rate stabilizes as microtubules 

on opposite sides reach equal length and chromosomes are aligned at the metaphase plate. 

     Another mechanism contributing to the congression is the lateral displacement of 

chromosomes along an already formed K-fiber. The sliding of chromosomes by laterally 

attached kinetochores is mediated by the minus-end-directed motor dynein (Yang et al., 

2007) or the plus-end-directed kinesin CENP-E (Kapoor et al., 2006; Kim et al., 2010) 

along with polar ejection forces (PEFs) exerted mainly by the chromokinesin Kid. 
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Chromokinesins are microtubule plus-end-directed motor proteins present on the 

chromosome arms harboring both chromatin- and microtubule-binding domains. As a 

consequence of their motor activities, chromokinesins move chromosomes away from the 

poles by generating random polar ejection forces (PEFs). Lateral movements allow 

congression of the not yet bioriented chromosome and promote bi-orientation by 

mobilizing the chromosome to the metaphase plate and therefore to the microtubules 

emitted by the opposite pole (Iemura and Tanaka, 2015).  

2.4.3. Segregation  

     Segregation of chromatids to spindle poles and hence to future daughter cells during 

anaphase is the result of two separate movements called anaphase A and B. During 

anaphase A chromatids migrate towards the poles facing them. During anaphase B the 

poles themselves migrate in opposite directions. The contribution of each movement to 

segregation of chromatids varies between cell types and species and their timing are not 

mutually exclusive. 

 

Anaphase A 

    The movement of the chromatids toward the poles during anaphase A is the result of 

two main mechanisms: microtubule depolymerization and the activity of motor proteins in 

the kinetochore. 

     The depolimerization of microtubules at their positive end at the kinetochore causes the 

shortening of K-fibers and the traction pulls the chromatids towards the poles (Gorbsky et 

al. 1987; Gorbsky et al., 1988). The same effect can also be obtained by depolymerization 

to the negative end (on the side of the centrosome) coupled with polymerization of the 

positive end, granted that the rate of depolymerization surpasses the rate of polymerization 

(Khodjakov and Kapoor, 2005; Kwok and Kapoor, 2007). 

     Several motor proteins appear to be involved in the movement of chromosomes 

towards the poles, although the exact role of each of them remains unclear. One of the first 

identified is dynein, found associated with kinetochores during anaphase and exhibiting 

motor activity directed towards the negative end (Pfarr et al., 1990; Steuer et al., 1990) 

suggested to deliver proteins promoting depolymerization at the poles (Gaetz and Kapoor, 

2004). Other proteins include members of the kinesin-13 family that catalyse microtubule 

depolymerisation by bending tubulins at microtubule ends (Desai et al., 1997; Ganem and 

Compton, 2004). 
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Anaphase B 

     The central spindle forms between segregating chromosomes by microtubules that have 

not attached to kinetochores but have continued to expend form the central spindle; an 

array of antiparallel microtubules from opposite sides that are bundled at their overlapping 

plus ends. Molecular motors are recruited to zone between the overlapping ends and 

generate forces that push the opposing ends of the central spindle further apart. This 

“expension” of the central spindle contributes to the movements of the centrosomes and 

further separates the poles (Brust-Mascher and Scholey, 2002; Brust-Mascher et al., 2004; 

Zhu et al., 2005). In addition, the central spindle is required for the final step of 

cytokinesis, cell separation or abscission (Glotzer et al., 2009). Astral microtubules that are 

not part of the mitotic spindle and link centrosomes to the cell cortex, also contribute to the 

migration of centrosomes (Rosenblatt, 2005). 

2.4.4. Spindle Assembly Checkpoint 

     The main goal of mitosis is to accurately separate sister chromatids, when mitosis is 

observed by live-microscopy the cell appears to briefly halt movement during metaphase. 

This halt is quite misleading since there is considerable molecular activity during this time. 

The spindle assembly checkpoint (SAC) is an important control mechanism to prevent the 

cell from entering anaphase precociously before chromosomes are properly attached to the 

mitotic spindle. Proper attachment is amphitelic attachment (Figure 2.4); the kinetochore 

of each chromatid is attached to K-fibers from the centrosome facing it. Other possible 

types of attachments are: monotelic attachment, where only on of the two kinetochores is 

attached; syntelic attachment, where the both kinetochores are linked to the same 

centrosome; and merotelic attachment, where one kinetochore is linked to two 

centrosomes (Figure 2.4). In the presence of unattached or incorrectly attached 

chromosomes, SAC delays the transition from metaphase to anaphase until the attachments 

are corrected (Maiato et al., 2004). 

 

Metaphase to Anaphase Transition 

     The major effector of the metaphase to anaphase transition is the APC/C-Cdc20 

complex. It has an E3 ubiquitin ligase activity directed especially against securin, a 

stoichiometric inhibitor of separase. Once securin is degraded, separase is no longer 

inhibited and can degrade SMC3, a protein member of the cohesin complex that holds 

together sister chromatids (Haering and Nasmyth, 2003). The destruction of SMC3 allows 
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separation of sister chromatids and entry into anaphase. Cohesin connects the sister 

chromatids along their entire length, from S phase until mitosis. In yeast, all cohesin is 

maintained until the metaphase to anaphase transition. However, in animal cells the vast 

bulk of cohesin rings along chromosome arms is removed from DNA in prophase and 

prometaphase by WapI and centromeric cohesin is protected. This results in the separation 

of chromosome arms, but not centromeres resulting in the classical X shape of mitotic 

chromosomes (Haarhuis et al., 2014). Another target of the APC/C-Cdc20 is cyclin B1, 

whose degradation signals the end of the activity of the cyclin B1-Cdk1 complex and 

promotes mitotic exit. 

 

Figure 2.4 Different anchoring configurations between chromosomes and the mitotic spindle (adopted from 

Maiato et al, 2004). 

SAC Activation 

     The presence of an incorrectly attached kinetochore activates the mitotic spindle 

checkpoint (Figure 2.4). SAC is inactivated once all kinetochores are properly attached 

(Rieder et al., 1994). 

     SAC activation prevents APC/C ubiquitin ligase from recognizing cyclin B and securin 

by catalysing the incorporation of the APC/C co-activator, CDC20, into the Mitotic 

Checkpoint Complex (MCC). MCC is composed of proteins Mad2, BubR1, BUB3 and 

Cdc20 where Mad2 and BubR1 inhibit Cdc20 by binding to substrate and APC/C 

recognition motifs (Chao et al., 2012; Han et al., 2013). In the absence of attachment to 

microtubules, the kinetochore acts as a catalytic site that promotes the formation of MCC 

(Howell et al., 2004; Shah et al., 2004) in particular by allowing the recruitment Mad2 and 
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conformation change, allowing its association with Cdc20 (Musacchio and Salmon, 2007). 

Once the kinetochores are attached, the components of the checkpoint are evacuated by 

motor proteins, ending MCC production and thus lifting the APC/C inhibition. 

 

Detection of Incorrect Attachments 

     Monotelic and syntelic attachments (Figure 2.4) result in loss of spindle tension 

between the two kinetochores of the same chromosome (Kelly and Funabiki, 2009). The 

lack of kinetochores being stretched outwards from opposite sides trigger SAC activation. 

Merotelic attachments generate kinetochore tension, however they don’t always activate 

the spindle checkpoint (Maresca et al., 2010). In the absence of sufficient tension, the 

Aurora B kinase that is localized at the centromeres during metaphase destabilizes the 

interactions between the kinetochore and microtubules. Aurora B may act by directly 

phosphorylating members KMN network, reducing their affinity for microtubules 

(Welburn et al., 2010). It can also phosphorylate mitotic centromere-associated kinesin 

(MCAK), challenging its microtubule activity (Knowlton et al., 2006). The overall effect 

of Aurora B activity is the breaking of incorrect attachments; it does not activate SAC 

directly. The proposed model for Aurora B activity depends on its distance from its 

substrates at the outer kinetochore, the force exerted on bi-oriented kinetochores separates 

the Aurora B gradient at the inner centromere from its outer kinetochore substrates, 

making Aurora B less able to access these substrates. Though CPC has been found 

enriched at merotelic attachments, these kinetochores are deformed and stretched 

compared to bi-oriented kinetochores, perhaps sufficient or homogenous extension can’t 

take place and thus substrate availability for Aurora B is compromised and SAC is not 

always activated (Lampson and Cheeseman, 2011). 
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3. Centromeric Chromatin 

 

     The centromere is a highly differentiated chromosomal structure that governs the 

assembly of the kinetochore and allows the equal distribution of the genetic material. 

There are essentially two types of centromeres: those of monocentric chromosomes, which 

contain a single regionally localized centromere that generally appears as a constriction on 

the mitotic chromosome; and those of holocentric chromosomes where the centromere is 

distributed over the entire length of the chromosome. Most eukaryotes have monocentric 

chromosomes with the exception of some nematodes, insects and plants. The rest of this 

chapter will focus on monocentric chromosomes. 

  

Figure 3.1 Centromere organization in different eukaryotes (blue for centromeric and red for 

pericentromeric chromatin). CDE, Centromere DNA element; cnt, central core; imr, innermost repeats ; otr, 

outer repeats ; Tel, telomeric DNA. (by Damien Goutte-Gattat) 

 
3.1. Centromere Determination 

     Centromeric DNA is highly divergent between species in terms of length as well as 

sequence conservation (Sullivan et al., 2001). Centromeres may be point centromeres, 

found in some budding yeast including S. cerevisiae that contain short DNA sequences or 

regional centromeres that contain kilo- to megabases of DNA (Pluta et al., 1995).             

S. cerevisiae has the simplest centromeres that include a 125bp sequence containing three 

conserved functional elements CDEI, II and III (Figure 3.1). S. pombe centromeres consist 

of regions of 40 to 100 kb containing a single central sequence of 4 to 5 kb flanked by 

repeat sequences. In Drosophila, the only centromere characterized at the DNA sequence 

corresponds to a 420kb region, containing tandem repeats of satellite DNA interrupted by 

transposable elements. In Mus musculus the centromere core is composed of minor 
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satellite arrays containing homogenous 120 bp repeats flanked by less ordered ~234 bp 

major satellite repeats. In humans, the centromeres span multiple megabases and consist of 

170 bp repetitions of α-satellite DNA (Figure 3.1).  

 The absence of homology between centromeric sequences and the high diversity of 

satellite repeats amongst species suggest that centromere identity can’t simply depend on 

DNA. Multiple studies show that centromeric DNA is neither necessary nor sufficient to 

support the function of the centromere with the exception of point centromeres. Functional 

centromeres can form on non-repetitive euchromatic areas offering no similarity with 

centromeric regions (Marshall et al., 2008) and the mere presence of centromeric type 

DNA doesn’t lead to a functional centromere (Karpen and Allshire 1997). In fact dicentric 

chromosomes that have acquired a second centromere by chromosome fusion will 

functionally inactivate one of the two centromeres (Earnshaw et al., 1985; Sato et al., 

2012).  Hence centromere identity depends on chromatin properties rather than sequence 

and is defined epigenetically. Unlike the DNA sequence, the chromatin associated with 

centromeres has relatively well conserved features in eukaryotes. 

 

3.2. Centromeric Chromatin Structure 

     Centromeric chromatin was initially considered to be 

heterochromatin, however centromeric chromatin is a unique 

and specialized type of chromatin distinct from 

heterochromatin as well as from euchromatin. Centromeric 

chromatin in all eukaryotes is characterized by the presence 

of the histone variant CENP-A (CenH3), which is believed 

to be the epigenetic mark responsible for determining 

centromere identity. 

 Before the resolution of the CENP-A nucleosome 

structure in 2011, several models had been proposed for 

CENP-A nucleosomes (Figure 3.2). The octosome model, 

where the CENP-A nucleosome is on octamer resembling 

H3 nucleosomes, the hemisome model where the 

nucleosome is a tetramer consisting of a single copy of the 

four histones H2A, H2B, CENP -A and H4 (Furuyama and 

Henikoff, 2009) and the compact nucleosome model where 
Figure 3.2 Possible models for 

CENP-A nucleosome 

formation. 
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the interface between two CENP-A molecules is rotated compared to the H3-H3 leading to 

an overall more compact nucleosome structure (Sekulic et al, 2010). Additionally. the 

hexasome model in yeast, where the nucleosome is composed of two copies of histones H4 

and CENP-A, and two copies of the CENP-A chaperone HJURP (Mizuguchi et al., 2007) 

and finally, the tetrasome model consisting of two dimeric CENP-A-H4s (Williams et al., 

2009). 

     After the resolution of CENP-A nucleosome structure, models other than the octosome 

model has been proposed to represent intermediate stages of maturation CENP-A 

nucleosomes. 

    CENP-A nucleosomes are octosomes that are not compact (Tachiwana et al., 2011a) and 

have a structure globally similar to that of H3 nucleosomes. However, unlike the canonical 

H3 nucleosome, only the central 121 base pairs of the nucleosomal DNA are tightly bound 

to the histone octamer, instead of 147 base pairs in the H3 nucleosome. This indicats that 

thirteen base pairs at each end of the nucleosomal DNA are disordered, furthermore this 

region contains the CENP-B box where the centromeric protein B (CENP-B) binds (Figure 

3.3c). The CENP-B box is the only known centromere sequence conserved between 

primates and rodents.  

 

 

Figure 3.3 Structure of centromeric chromatin. a) Linear layout of centromeric and pericentromeric 

chromatin. b) Spatial organization of centromeric chromatin upon condensation of chromosomes in mitosis. 

(by Damien Goutte-Gattat) c) Crystal structure of the centromeric CENP-A nucleosome as resolved by 

Tachiwana et al. (2011). 

 

     Centromeric chromatin organization consists of alternating regions containing CENP-A 

nucleosomes and regions containing conventional nucleosomes (Figure 3.2a) and each of 
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these regions extend over about 15 to 40kb (Blower et al., 2002). During condensation 

necessary to achieve the mitotic chromosome, these regions of the nucleofilament form a 

higher order structure so that all the CENP-A nucleosomes are exposed at the surface of 

centromere whereas conventional nucleosomes are placed at the inner centromere (Figure 

3.2b). Additionally, H3 nucleosomes that are a part of centromeric chromatin are 

dimethylated on lysine 4 of H3 (H3K4me2) but are also hypoacetylated (Sullivan and 

Karpen, 2004). 

     The region of chromatin located on either side of the centromeric chromatin containing 

CENP-A nucleosomes is the pericentromeric chromatin. It differs epigenetically from 

centromeric chromatin and shows typical marks of heterochromatin, including the 

methylation of H3 lysine 9 associated with the presence of the protein HP1 (Sullivan and 

Karpen, 2004). In addition, pericentromeric chromatin is enriched in histone variant 

H2A.Z (Figure 3.3a, b)(Greaves et al., 2007). Furthermore H2A.Z is targeted to the 

centromeres before cells enter mitosis in a transcription independent manner, indicating a 

role in centromere organization (Nekrasov et al., 2012; Boyarchuk et al., 2014). 

 

3.3. Centromeric Chromatin and Transcription 

     It has long been assumed that centromeric chromatin was heterochromatin and thus was 

not transcribed. However, more and more centromeric trascripts are being identified 

suggesting that the transcription of DNA underlying to the centromeric chromatin is 

possible. Centromeric transcripts have already been detected in budding yeast, Drosophila, 

mammals and plants (Rosic et al., 2014; Ohkuni et al., 2011; Bouzinba-Segard et al., 2006; 

Neumann et al., 2007), encoding genes that can reside and be expressed in centromeric 

regions (Yan et al., 2006; Saffery et al., 2003). Transcription from centromeric chromatin 

influences CENP- A loading in yeast, flies and a 1.3 kb long α-satellite transcript co-

immunoprecipitates the soluble CENP-A pre-assembly complex that contains the CENP-A 

chaperon HJURP in humans. Furthermore, the knock-down of α-satellite RNA leads to 

altered Aurora B activity and an increase of H3S10 phosphorylation. Mounting evidence is 

showing that centromeric transcription and transcripts are emerging players in centromere 

regulation (Rošić et al., 2016).  
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3.4. The Centromeric Histone Variant CENP-A 

3.4.1. Structure and Conservation 

     Centromeric protein A (CENP-A) is a histone variant of the H3 family. It exists in all 

eukaryotes under various names; Cse4p in S. cerevisiae, CNP1 in S. pombe, CID in 

Drosophila melanogaster and CENP-A refers to the mammalian homologues. The name 

CenH3 (Centromeric H3) has been proposed to designate this protein uniformly regardless 

of species. 

 CENP-A shares the overall structure of canonical core histones and is composed of 

two distinct domains, a carboxy-terminal globular domain and an unstructured amino-

terminal domain or tail. The globular domain of CENP-A is conserved amongst species 

and has 62% of sequence similarity with the corresponding domain of histone H3 and has 

a major role in the incorporation of CENP-A into the nucleosome. This is assured by a 

specific domain called the CENP-A Targeting Domain (CATD), that is composed of the 

second α-helice and the L1 loop of CENP-A (Black et al., 2008). The CATD also allows 

tighter binding of CENP-A to H4, conferring a conformational rigidity to the nucleosome. 

The CENP-A specific histone chaperone HJURP has been shown to interact with this 

domain and regulate centromeric chromatin assembly (Shuaib et al., 2010). As opposed to 

the globular domain, the amino-terminal domain of CENP-A is highly divergent and 

unstructured and will be discussed in more detail in a later section. This distinction 

between the two domains is also reflected upon comparing different CenH3 proteins 

between species (Figure 3.4). 

     The importance of the globular domain of CENP-A appeared very early, as it is needed 

for specific centromeric localization of the protein (Sullivan et al., 1994). The essential 

part of the functions of CENP-A has subsequently been reduced to a shorter domain, the 

CENP-A targeting domain (CATD) consisting only of the L1 loop and α2 helix of histone-

fold domain (Figure 3.5a) (Black et al., 2004). Crystallographic data highlights in 

particular the importance of two residues located in the L1 loop that make the CENP-A L1 

loop longer than that of H3 and for this reason the CENP-A L1 loop protrudes out from the 

surface of the nucleosome (Tachiwana et al., 2011a).  
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Figure 3.4 Alignment of CenH3 sequences in multiple species. 

 

 The CATD contains the binding site for CENP-A chaperone HJURP (Foltz et al., 

2009; Shuaib et al., 2010). The CATD also confers the CENP-A/H4 tetramer a more rigid 

conformation then the H3/H4 tetramer (Black et al., 2007a), allowing the targeting CENP-

A to centromeric chromatin. Additionally the α-N helix of CENP-A is implicated in 

conferring flexibility to the DNA ends of the CENP-A nucleosome, when substituted with 

the α-N helix of H3, the nucleosome rigidifies and enables H1 binding (Roulland et al., 

2016). The carboxy-terminal tail of CENP-A makes extensive contacts with CENP-C the 

key component of the CCAN. 

 

3.4.2. Maintenance of CENP-A at the Centromeres 

     DNA is replicated during each cycle hence the overall histone load would be diluted by 

half if new histones were not loaded onto the nascent DNA. For conventional histones, 

deposition is S phase dependent (Osley, 1991) so this is not the case. However CENP-A 

deposition is not dependent on the S phase and CENP-A is not expressed during this phase 

(Shelby et al., 1997). Since the presence of CENP-A in centromeric chromatin is required 

for centromere function and maintenance, the correct deposition of new CENP-A into 

centromeric chromatin is crucial. Thus it is no surprise that CENP-A deposition is a 

complex process with many steps that requires a compulsory passage through mitosis in 
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metazoans (Jansen et al., 2007). 

     During replication of the centromeric DNA, CENP-A nucleosomes are distributed 

evenly between the two nascent DNA molecules, how the gaps are filled is still not well 

understood. It has been thought that gaps that remain are either left empty or more likely 

occupied by conventional nucleosomes containing histone H3. A 2011 study showed that 

H3.3 nucleosomes fill the gaps left by CENP-A during S phase and act as a placeholder 

until G2 phase or until mitotic exit, till the new CENP-A is deposited (Figure 3.5b) 

(Dunleavy et al., 2011). During G2 phase, CENP-A starts to be expressed and newly 

synthesized CENP-A proteins are taken in charge by the specific chaperone, HJURP 

however HJURP doesn’t locate to the centromeres till early G1 (Shuaib et al., 2010; 

Dunleavy et al., 2009; Foltz et al., 2009). 

     In addition to HJURP, CENP­A deposition in G1 requires the three subunit MIS18 

complex, composed of MIS18α, MIS18β and MIS18­binding protein1 (M18BP1). 

Intriguingly, in Drosophila, the functions of the MIS18 complex and HJURP are  

combined into a single molecule, Chromosome alignment defect 1 (Cal1) (Chen et al., 

2014). 

     M18BP1 interacts with CENP­C and since CENP­C binds directly to CENP­A 

nucleosomes, this ensures that the MIS18 complex and HJURP target preexisting 

centromeres for the incorporation of CENP­A (Dambacher et al, 2012; McKinley et al., 

2014). Once CENP­A is incorporated at centromeres, CENP­C, the RSF (remodelling and 

spacing factor) complex and MgcRacGAP (male germ cell Rac GTPase­activating protein) 

assure centromeric maintenance (Figure 3.5b) (Falk et al., 2015; Perpelescu et al., 2009; 

Lagana et al., 2010). 

     The presence of transcriptionally permissive marks and the absence of heterochromatin 

in the centromere are also important for CENP­A deposition. Chromatin remodelers 

associated with active transcription including RSF1, FACT (facilitates chromatin 

transcription), chromodomain helicase DNA­binding protein1 (CHD1), 

retinoblastoma­binding protein p46 (RBAP46) and RBAP48 facilitate new CENP­A 

deposition by assuring the necessary transcriptionally permissive centromere core or by 

directly participating in remodelling centromeric chromatin (McKinley and Cheeseman, 

2016). 

     The finely tuned deposition of CENP­A relies heavily on phosphorylation by CDKs 

(Figure 3.5c). For instance in Drosophila, cyclin A degradation is crucial for CENP­A 
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deposition (Mellone et al, 2011). In human cells, M18BP1 phosphorylation by CDKs 

reduce its centromeric localization (Silva et al., 2012) and prevents MIS18α and MIS18β 

recruitment outside G1 (McKinley et al., 2014). Additionally, HJURP localizes to the 

centromeres outside of G1 phase when CDKs are inhibited or if HJURP is non 

phosphorylatable (Muller et al., 2014). 

     In addition to temporal regulation by CDKs, CENP­A deposition is regulated locally 

and requires a licensing step by PLK1 (Figure 3.5c). PLK1 is required for CENP-A 

deposition downstream of CENP-C localization but upstream of MIS18α recruitment.  It 

binds to and phosphorylates the MIS18 complex to promote MIS18 complex localization 

to license CENP­A deposition at the centromere. Thus, CENP-A deposition is regulated by 

a two­step mechanism; CDKs prevent CENP‐A deposition outside of the G1 phase by 

inhibiting MIS18 complex localization and assembly as well as HJURP recruitment and 

PLK1 binds to the MIS18 complex to promote CENP‐A deposition at centromeres during 

G1 (McKinaly et al., 2014). 

 Contrary to metazoans, in S. pombe CNP1 deposition occurs during the S and G2 

phases (Takayama et al., 2008). The chaperone SIM3 binds newly synthesized CNP1 and 

delivers it to a second chaperone Sim1 (counterpart HJURP and SCM3). The direct 

interaction between Mis16-Mis18 complex (counterparts RbAp46 / 48 and Mis18α / β) 

and Sim1 is necessary for CNP1 deposition (Mellone et al., 2009; Williams et al., 2009). 

 

3.4.1. CENP-A and Kinetochore Assembly 

     Though kinetochore function is highly conserved, kinetochore composition is more 

diverse as kinetochore proteins seem to have undergone recurrent evolutionary turn over.       

Even amongst lineages that have similar kinetochore composition, individual function and 

essentiality of proteins can be different (Drinnenberg et al., 2016). Centromeric chromatin 

containing CENP-A is the platform on which kinetochore proteins assemble, in the 

absence of CENP-A there is no kinetochore formation (Blower and Karpen, 2001).  

CENP-A overexpression results in ectopic CENP-A localization that in turn leads to 

incorrect localization of at least part of the kinetochore proteins (Van Hooser et al., 2001). 

CENP-A is at least partially responsible for recruiting the centromeric CCAN complex, 

which represents the interface between centromeric chromatin and the inner kinetochore 

(Cheeseman and Desai, 2008).  
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Figure 3.5 Specialization and propagation of CENP- A a) Human CENP‐A primary and secondary structure, 

showing conservation with histone H3 b) Changes in CENP‐A chromatin during the cell cycle c) Model for 

the two‐step regulation of CENP‐A deposition (Adopted from McKinley et al, 2016) 

 

 In humans, the CCAN can be subdivided into two sub-complexes according to their 

relationship with CENP-A nucleosomes. The first is the CENP-A nucleosome-associated 

complex (CENP-ANAC), composed of CENP-C, CENP-H, CENP-M, CENP-N, CENP-T 

and CENP-U that interacts directly with CENP-A nucleosomes. The second is the CENP-

A distal complex (DAC) composed of CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, 

CENP-R and CENP-S that interact with members of CENP- ANAC (Foltz et al., 2006).  

     The CCAN proteins can also be combined into five sub-complexes: CENP­C, the 

CENP­L­N complex, the CENP­H­I­K­M complex, the CENP­O­P­Q­U­R complex and 

the CENP­T­W­S­X complex (McKinley et al., 2016). 

     CENP-A nucleosomes are recognized by CENP-C and CENP-N (Carroll et al., 2010). 

The two proteins recognize different elements of the CENP-A nucleosome. CENP-C 

specifically recognizes a short C-terminal peptide (LEEGLG) of CENP-A, which is 
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enough to locate CENP-C on the centromere, while CENP-N recognizes the CATD 

(Carroll et al., 2009). CENP-C and CENP-N are likely to associate simultaneously and 

independently with the CENP-A nucleosome, where they can recruit other members of the 

CCAN (Carroll et al., 2010). Several CCAN proteins bind directly to DNA, including 

CENP­C (Sugimoto et al., 1994) and the CENP­T­W­S­X complex. Members of the 

CENP­T­W­S­X complex contain histone­fold domains and assemble a structure similar to 

that of canonical nucleosomes that can wrap DNA, protecting ~100 bp region from 

nuclease digestion (Nishino et al., 2012). However DNA binding is not sufficient for the 

centromeric localization of the CENP­T­W­S­X complex and also requires contact with 

the CCAN (Nishino et al., 2012; McKinley et al., 2015).  

     Two parallel but non­redundant pathways are assured by CENP­C and CENP­T for the 

recruitment of the KMN network (Nishino et al., 2013; Przewloka et al., 2011). The forced 

incorporation of CENP-C and CENP-T is sufficient to assemble a functional ectopic 

kinetochore, regardless of CENP-A presence (Gascoigne et al., 2011a). CCAN interactions 

are regulated so to only assemble full kinetochore during mitosis. For instance, 

phosphorylation by AuroraB kinase promotes interactions between CENP­C and the 

MIS12 complex during mitosis (Gascoigne and Cheeseman, 2013). 

      In addition to their roles in kinetochore assembly, as it was mentioned in the previous 

chapter, CCAN proteins play a role in resisting the forces generated by spindle 

microtubules as well as regulating CENP-A deposition. It is worthy to underline the key 

importance of CENP-C in the CCAN and the kinetochore as it interacts directly with the 

CENP-A nucleosome as well as with centromeric chromatin. The proper localization of 

CENP-C is essential for the assembly of other CCAN proteins and it links the centromeres 

with the microtubule binding interface of kinetochores. CENP-C is also important for 

correct CENP-A deposition (Klare et al., 2015; Dambacher et al., 2012; McKinley and 

Cheeseman, 2016; Falk et al., 2015). 

 

3.4.2. Other Functions of CENP-A 

     There have been reports about CENP-A function outside of its cell cycle dependent 

centromeric function. In senescent cells CENP-A levels in centromeric chromatin are 

drastically reduced (Maehara et al., 2010). This reduction is accompanied by centromeric 

chromatin acquiring a heterochromatin state resulting in a progressive loss of centromeric 

function. Furthermore, suppression of CENP-A expression is capable of inducing 

senescence in a p53-dependent manner. The level of CENP-A was also found diminishing 
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with age in human pancreatic cells as it becomes almost undetectable after 30 years (Lee et 

al., 2010). These observations suggest a role for CENP-A in aging.  

     It has also been reported that CENP-A is recruited to the DNA double-stranded breaks 

(Zeitlin et al., 2009), proposing possible involvement of CENP-A in DNA repair. In 

Drosophila, CHRAC14 an essential component of the Drosophila DNA damage response 

can interact with CID (CENP-A) and prevent inappropriate CID incorporation at sites of 

damaged chromatin (Mathew et al., 2014). 

 

3.4.3. CENP-A and Pathology  

     Chromosomal aneuploidy and genome instability are common hallmarks of cancer. 

CENP-As key role in kinetochore assembly suggests direct involvement of CENP-A in the 

development of certain tumors. Indeed, CENP-A is overexpressed and found on non-

centromeric regions in colorectal and breast cancers as well as in hepatocellular carcinoma 

and lung adenocarcinoma (Vardabasso et al., 2014; Tomonaga et al., 2003). 

Overexpression of CENP-A and segregation defects that result could be a mechanism by 

which the loss of the retinoblastoma protein creates a favorable genomic instability in 

tumor development (Amato et al., 2009). A study of testicular germ cell tumors identified 

CENP-A as one of the main markers of this type of cancer, with an increased expression 

by a factor of 20 compared to healthy testicular tissue (Biermann et al., 2007). Recent 

translational work has shown that CENP-A is elevated in tumor cells compared to normal, 

in particular in primary human colorectal cancer tissues (Tomonaga et al., 2003). Increased 

expression of CENP-A is associated with higher-grade cancers and increased invasiveness 

(Ma et al., 2003). Consequently, CENP-A has been included in predictive genetic profiles 

in breast cancer (Sotiriou et al., 2006). These observations suggest that elevated CENP-A 

may be correlated with poorer patient outcomes. CENP-A may also provide unique 

prognostic and predictive information in estrogen receptor (ER)-positive breast cancer 

(McGovern et al., 2012).  

     CENP-A is also involved in autoimmune pathologies as the centromere is targeted by 

autoantibodies. In fact the first human centromeric proteins were identified with 

autoantibodies from patients with CREST syndrome, a form of systemic sclerosis (Palmer 

et al., 1987). These autoantibodies could disrupt the proper functioning of the centromere, 

explaining aneuploidy observed in these pathologies (Jabs et al., 1993).  
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3.4.4. The Amino-terminal Domain of CENP-A 

     CENP-A differs from histone H3 mainly by its NH2-terminus. Though the globular 

domain of CENP-A is very important in centromeric function, several reports also point to 

the amino-terminal domain, however the main function of this domain remains unclear. 

NH2-terminal tail is present in all species and is highly divergent, both in length and 

sequence while the globular domain is conserved (Figure 3.4) and has received little 

attention. Several studies, however, suggest that this domain can play an important role. 

     In S. cerevisiae, an essential function has been attributed to a part of the NH2-terminal 

domain of Cse4p, called the essential NH2-terminal domain (END). This domain is 

necessary for chromosome segregation and assembly (Chen et al., 2000), moreover its 

absence is lethal (Morey et al., 2004). In Drosophila, an arginine-rich motif in the NH2-

terminal domain of CID is involved in recruiting BubR1, a key protein of the mitotic 

spindle checkpoint (Torras-Llort et al., 2010) and this pattern appears relatively preserved 

in CID counterparts. In humans, CENP-A overexpression and the resulting 

misincorporation of CENP-A at non-centromeric regions, assembles a subset of 

centromere-kinetochore components, including CENP-C, hSMC1, and HZwint-1 by a 

mechanism that requires the CENP-A amino-terminal tail. (Van Hooser et al, 2001).  

     More recent work has proposed diverse functions for the amino-tail using rescue 

experiments with chimeric protein mutants. In human diploid cells it was shown that 

kinetochore assembly requires along with the CATD domain of CENP-A either the amino- 

or the carboxy-terminal tail by stabilizing CENP-B binding to human centromeres or direct 

recruitment of CENP-C, respectively. The same study found that in fission yeast the 

CATD and the amino-terminal domain were both necessary for centromere function 

(Fachinetti et al., 2013). Additionally, Cnp1 amino-terminus mutants were shown to be 

viable but exhibited elevated levels of chromosome loss and centromere inactivation. 

Amino-terminus mutants had reduced levels of CENP-T branch of the CCAN but not that 

of CENP-C (Folco et al., 2015).  

     A separate study in U2OS cells revealed that in early stages of centromere 

establishment both tails of CENP-A are required along with the CATD domain. 

Additionally, amino-tail plays a CENP-B independent role in centromere establishment 

and indirectly stabilizes CENP-C binding, thereby directly or indirectly promoting CENP-

T recruitment (Logsdon et al., 2015). 
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     The constraints on the sequence of the N-terminal domain seem low, which is 

consistent with the absence of conservation. In humans, CENP-A is phosphorylated on 

serine 7 during prophase and prometaphase (Zeitlin et al., 2001b). Phosphorylation is 

transient and is no longer detectable from telophase on. It appears to be mediated by 

Aurora A in prophase and Aurora B in prometaphase (Kunitoku et al., 2003). It is 

necessary for proper chromosome congression and segregation as well as for the 

completion of cytokinesis (Zeitlin et al., 2001a). A separate study in HeLa cells showed 

that the mitotic phosphorylation of human CENP-A is required for kinetochore function 

(Goutte-Gattat et al., 2013) as the absence of amino-tail phosphorylation resulted in an 

increase chromosome segregation defects and partial loss of CENP-C from the 

centromeres. The same study showed that the mitotic phosphorylation of human CENP-A 

is required for kinetochore function. The absence of amino-tail phosphorylation resulted in 

partial loss of CENP-C from the centromeres. Direct interactions between the 

phosphorylated form of CENP-A and 14-3-3 proteins as well as between 14-3-3 proteins 

and CENP-C were also demonstrated which suggests that the indirect interaction with the 

amino-tail that stabilizes CENP-C can be through the 14-3-3 proteins. The serine located 

at position 7 in the primary sequence of CENP-A that is phosphorylated is not conserved 

in other species. In addition, no phosphorylation of the amino-terminal tail of CENP-A 

from other metazoan was reported. This raises the question whether the reported data on 

the mitotic function of human CENP-A phosphorylation can be generalized or if it is 

restricted to human cells only (Goutte-Gattat et al, 2013). 
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4. Objectives 

The function of the amino-terminal domain of CENP-A and its interactions remains 

unclear. The purpose of this thesis will be to investigate the role of this domain during 

mitosis. In this study we would like to further our understanding by addressing the 

following questions: 

 

Is the N-terminal domain of CENP-A necessary for successful mitosis?  

As mentioned in the last chapter of the introduction, there has been multiple studies that 

implicate the NH2-terminal domain of CENP-A in mitosis and genome stability. However 

there is conflicting opinion about its overall importance and its function. We would like to 

unambiguously tie its function to mitosis by removing the CENP-A tail only during 

mitosis but no techniques are currently available to achieve this. During this thesis work, 

we have devised a new method that we call the “Hara-kiri” approach in order to answer the 

above question in human HeLa cells. 

 

Is the phosphorylation of CENP-A involved in its mitotic function? 

It has been shown that the amino-terminal tail of CENP-A is phosphorylated in mitosis at 

S7 in human cells and that this phosphorylation is important for successful mitosis but S7 

is not conserved in other species. In addition, no phosphorylation of the amino-terminal 

tail of CENP-A from other metazoan was reported. This raises the question whether the 

reported data on the mitotic function of human CENP-A phosphorylation can be 

generalized or whether it is restricted only to human cells. Mouse CENP-A amino-tail has 

multiple serine residues, we aim to assess the role of phosphorylation of CENP -A amino-

tail in mouse. 
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PART II 

5. Materials and Methods 

5.1. Plasmid constructions 

PCR amplifications 

     All PCR amplifications were done in 50 µl of final volume using 100 ng of template 

DNA, 200 nM of each primer, 200 µM of dNTPs, 2.6 units of High Fidelity Taq 

polymerase (Roche™) and 5 µl of 10× PCR buffer. The program used is as follows: an 

initiation step at 94 °C (2 minutes) followed by 35 cycles consisting of a denaturation step 

at 94 °C (30 seconds), an annealing step at 55 °C (30 seconds) and an elongation step at 

72 °C (1 minute/ kb); the program ends with a final elongation step of 72 °C (5 minutes). 

PCR products were then deposited on 1 % agarose gel and purified using the Wizard PCR 

& Gel Clean Up System (Promega™). 

Vector constructions 

Mouse CENP-A NH2-terminal domain constructs for MEF cells 

     The synthesis of the sequences of mouse CENP-A, H3-CENP-A, H3SA-CENP-A, SA-

CENP-A and S15.16.22A-CENP-A was done by Eurofins. The construct H3-CENP-A was 

obtained by replacing the first 35 amino acids of the CENP-A amino tail with the first 42 

amino acids of that of histone H3.1. H3SA-CENP-A is the same as H3-CENP-A construct 

except for S10 and S28 mutated to alanine. The construct SA-CENP-A has all 7 serine 

residues in the mouse CENP-A amino tail mutated into alanines while S15.16.22A-CENP-

A has only the first three serine residues. These constructs were cloned directly into 

pCLMFG-HA-GFP vector previously modified from the #12341 Plasmid bought from 

Addgene. 

Mouse RFP-CENP-C constructs for MEF cells 

     Mouse RFP-C2-CENP-C sequence was courtesy of the Cheeseman lab and was cloned 

into the pQCXIH vector purchased from Clonetech. 

Hara-kiri constructs for HeLa cells 

     Three different constructs were used for this project. The first construct pBABE-GFP-

Katana-nCENPA, expresses a fusion protein consisting of the GFP reporter gene, the 

Katana protease, and the silent-resistant CENP-A containing the Katana target site after 

residue 15. This vector was constructed via the PCR amplification of Katana-nCENPA 

sequence from a pre-existing pcDNA3.1-Katana-nCENPA vector in our lab. The reaction 

was carried out using the following primers: EcoRI-Katana, 5’-gaa ttc ATG GCG CCC 
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ATC ACG GC-3’ and SalI-CENPA, 5’-gtc gac tta GCC CAG ACC TTC TTC CAG-3’ 

(restriction sites and stop codon in lowercase). The PCR product was T/A-cloned into an 

intermediate pGEM-T Easy vector (Promega™), then into a pre-existing pBABE-GFP 

vector between EcoRI and SalI restriction sites. 

    The second construction was similar to the first but contained a Katana protease 

carrying a point mutation on Ser139. This mutation affects the catalytic triad of the 

protease and is thus supposed to produce an inactive, “dead” protease. Our lab was in 

possession of a plasmid in which site-directed mutagenesis had already been performed. 

From this plasmid we amplified the dead form of Katana that we will call “KatanaD”. The 

PCR reaction was carried out using the following primers: HindIII-Katana, 5’-aag ctt ATG 

GCG CCC ATC ACG GCG TAC G-3’ and BamHI-SPC-Katana, 5’-gga tcc cgt agc agg 

gac tct cga tgt cgc tgg aac acg aga TCT CAT GGT TGT CTC TAG G-3’ (restriction sites 

and spacer sequence—to facilitate bending—in lowercase). The PCR product was T/A-

cloned into a pGEM-T Easy intermediate vector and then subcloned into the previously 

mentioned pcDNA3.1-Katana-nCENPA so to replace the functional Katana. Once the 

pcDNA3.1-KatanaD-nCENPA vector was confirmed we transferred the KatanaD-

nCENPA fusion to the pBABE-GFP vector using the same strategy as before. The third 

construct, pBABE-GFP-Katana-nnnCENPA contains two additional cleavage sites at the 

NH2-terminal domain of CENP-A and the sequence synthesis was done by Eurofins. Then 

the nnnCENP-A sequence was cloned into the pBABE-GFP-Katana-nCENPA so to 

replace the nCENP-A. 

 

5.2. Cell lines 

      Cells were maintained in standard DMEM media containing 10% (vol/vol) FBS, 1% 

penicillin and streptomycin, and 1% glutamine at 37 °C in a 5% (vol/vol) CO2 atmosphere. 

HeLa cell synchronizations were performed by double thymidine blocking using 2mM of 

thymidine (T9250 SIGMA). The first block was done for 18 hours fallowed by 9 hours 

release and 18 hours of second blocking. Cells released after the second block entered 

mitosis 8 hours later. 

 

HeLa cell lines 

     HeLa cell lines stably expressing the Hara-kiri constructs were obtained by retroviral 

infection with murine leukemia virus (Moloney murine leukemia virus, MMLV) produced 

by amphotropic Phoenix packaging cells (Swift et al. Al., 2001). The ΦNX-ampho cells 
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were transfected into 10 cm dishes with 6 μg of DNA and 10 μl of Lipofectamine 2000 

(Invitrogen) according to the suppliers’ recommendations. The cells were then incubated at 

37 ° C for two days. 

     The target HeLa cells were seeded at 30% confluence in 10 cm dishes. Two days after 

transfection of the ΦNX-ampho cells, their medium was collected and replaced with 10 ml 

of fresh medium. The viral supernatant was centrifuged for 5 minutes at 1200 rpm and 

then filtered through a 0.45 μm filter. For each target cell box, 5 ml of viral supernatant 

was mixed with 5 ml of fresh medium and 8 μg / ml of polybrene (Sigma Aldrich). The 

culture medium of the target cells was then replaced by this viral solution and the cells 

were replaced in the incubator. The infection was repeated three times in two days 

approximately every 12 hours. The day after the last infection, the target cells were seeded 

in new dishes and incubated in the presence of 3 μg / ml of puromycin. 

CENP-A KI-cKO Mouse Lines 

 

     The CENP-A cKO/KI mouse line was established by using standard mouse genetic 

approaches. In this line, the CENP-A gene was replaced by a double tagged FLAG-HA-

CENP-A fusion. The targeting vector of the generated cKO/ KI FLAG-HA tagged CENP-

Aflox/flox mice flanked exon 1 of the murine CENP-A gene with LoxP recombination 

sites.  

MEF Cell Lines  

     MEFs were isolated and cultured from day 14,5 embryos of the CENP-A cKO/KI mice 

and were immortalized via SV40 infection. Cells were cultivated in DMEM high glucose 

(4.5 g/l) and 10 % fetal bovine serum and 1% penicillin and streptomycin at 37 °C and 5 % 

CO2. 

     CRE recombinase expression for CENP-A knock-out was assured by MSCV CreERT2 

(Addgene #22776) retroviral infection fallowed by 2μM (Z)-4-Hydroxytamoxifen (Sigma-

Aldrich) treatment or by adenovirus infection (Ad-CMV-iCre, Vector Biolabs, 

Philadelphia, PA).  

     All cell lines resulting from infections with the GFP-CENP-A tail constructs were then 

FACSed (BD FACS Aria Cell Sorting System) to obtain cell lines with homogenous 

expression of the exogenous CENP-A at near endogenous expression level. MEFs infected 

with RFP-CENP-C constructs were subjected to clonal selection. 
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5.3. Immunocytochemistry and quantification of mitotic defects 

     Cells were fixed with 4% formalin solution (Sigma-Aldrich) for 20 minutes at 37 °C 

then washed 3 times with PBS. Cells were then permeabilized with 0.02 % Triton for 3 

minutes. The coverslips were then successively incubated for an hour at 37 °C with 

primary anti-lamin (1:1000, Santa Cruz biotechnology) and secondary anti-goat Cy3 

(1:300, SantaCruz) antibodies or with CREST anti-centromere auto-antibody (1:1000, 

Immunovision HCT0100) and the anti-human IgG coupled with Alexa594 (1:300, 

Invitrogen A11014) secondary antibody. Each incubation was followed by three 5-

minute wash steps with PBS; DNA was stained in the presence of 1.5 μg of Hoechst 

33342. The slides were later observed and imaged using a Zeiss Axiovision 

epifluorescence microscope with Plan-Apochromat 63x objective. GFP, cyanine-3, and 

Hoechst 33342 were used as fluorochromes. Images were acquired with a Zeiss Axiocam 

camera piloted with the Zeiss Axiovision software.  

     The rate of defects was calculated from a sample of 200 ± 25 mitotic cells for mitotic 

defects and 400 ± 25 nuclei for nuclear defects for MEF cells. The rate of defects for HeLa 

cells was calculated from a sample of 150 ± 25 cells per mitotic phase. Experiments were 

performed in triplicate and error bars indicate standard error of mean. 

 

5.4. Nuclear isolations and immunoblotting 

     Cells were pelleted then resuspended in 250 μl of Buffer B (NaCl 15 mM, Tris HCl pH 

7.5 15 mM, KCl 60 mM, sucrose 11 %, EDTA 2 mM, EGTA 0.5 mM, DTT 1 mM, 

spermine 0.2 mM, spermidine 0.65 mM, PMSF 0.5 mM). Next 250 μl of Lysis Buffer 

(Buffer B with 4 % NP-40) was added and the suspension was incubated 5 minutes on ice. 

The cell lysate was then successively centrifuged twice at 13,200 rpm for 5 minutes. After 

each centrifugation, the pellet was resuspended respectively in: 250 μl of Buffer D (Buffer 

B without EDTA and EGTA) and finally 150 μl of PBS with 1x Laemmli buffer. Samples 

where then sonicated at 200 J/W.s and used for immunoblotting. Samples were incubated 

at 100 °C for 10 minutes prior to electrophoresis on acrylamide gel in denaturing 

conditions (SDS-PAGE), then transferred onto a PVDF membrane. 

     The membrane was saturated using a blocking buffer (PBS 1×, 5 % milk, 0.3 % Tween) 

for 45 minutes, then successively incubated for 1 hour at room temperature with the 

primary, then with the secondary antibody. Incubations were followed by four 5-minute 

wash steps (once with PBS 1×, twice with PBS 1×, 0.4 M NaCl, 0.5 % Triton, and last 
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with PBS 1×, 0.4 M NaCl). Finally the membrane was prepared for revelation using the 

ECL Plus system (GE Healthcare). 

     The primary antibody used for HeLa extracts was an anti-CENP-A (Epitomics 1745-

1) diluted 500× in PBS 1×, 10 % FBS, 0.2 % Tween; the secondary antibody was an anti-

rabbit IgG coupled to peroxydase (GE Healthcare 934V) diluted 5,000× in PBS 1×, 1 % 

milk, 0.02 % Tween. The primary antibody used for MEF extracts was an anti-HA 

(Abcam, ab9110) diluted 500× in PBS 1×, 10 % FBS, 0.2 % Tween; the secondary 

antibody was an anti-rabbit IgG coupled to peroxydase (GE Healthcare 934V) diluted 

5,000× in PBS 1×, 1 % milk, 0.02 % Tween. 

 

5.5. HeLa transfection and siRNA experiments 

     HeLa cells were cultivated in DMEM high glucose (4.5 g/l) and 10 % fetal bovine 

serum. Cultures were maintained at 37 °C and 5 % CO2. Transfections were done in 6 well 

plates at 50 to 80 % of confluence. Each well was transfected with 4 µg of DNA using 

10 µl of Lipofectamine transfection reagent (Invitrogen™), according to the supplier’s 

instructions. RNA interference by siRNA was done in 6 well plates on cells seeded at 200 

000 cells/well one day prior to tranfection. Each well was transfected with 50 pmol of 

RNAi using 7,5 µl of Lipofectamine RNAi MAX reagent (Invitrogen™), according to the 

supplier’s instructions. 

 

5.6. Live microscopy  

     Live imaging of the cells was done using a Zeiss LSM510 Confocor II Combi 

microscope with Argon laser and using LSM510 - FCS v.4.2 software. 
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PART III 

6. Results 

6.1. The phosphorylation of the NH2-terminus of mouse CENP-A is essential for 

mitotic progression 
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Summary 

 CENP-A is a histone variant that replaces histone H3 at the centromeres and marks 

them epigenetically. In human cells, the NH2-terminus of CENP-A and its phosphorylation 

at serine 7 in mitosis has been reported to be crucial for the progression of mitosis. No 

phosphorylation of CENP-A in other metazoan species has been described.  Here we show 

that the NH2-terminus of CENP-A, but not its primary sequence and length, is required for 

mitosis in mouse embryonic cells (MEFs). Our data show that the mitotic defects resulting 

from the depletion of the endogenous CENP-A can be rescued when MEFs expressing a 

GFP-CENP-A mutant where the NH2-terminus of CENP-A was swapped with the 

phosphorylatable tail of conventional histone H3. Conversely, no rescue was observed 

when the two phosphorylatable serines in the H3 tail mutant were replaced with alanines. 

Furthermore, a non-phosphorylatable fusion mutant of CENP-A where all seven serines in 

the amino-tail were replaced with alanines, was also unable to rescue the mitotic 

phenotype of CENP-A depleted cells. We also identify the first three serines (S15, S16 and 

S22) of the tail of CENP-A as potential sites for phosphorylation. Taken together, our 

results suggest that mitotic CENP-A phosphorylation is a common event in metazoan, 

which is essential for mitotic progression.  

 

 

Introduction 

 Each cell, in addition to the core histones, expresses histone variants (van Holde, 

1988). All histones, except H4, possess histone variants. Histone variants are non-allelic 

forms of conventional histones, they are expressed from distinct genes and exhibit strong 
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similarity to conventional histones (van Holde, 1988). Incorporation of histone variants 

into the nucleosome confers novel structural and functional properties to chromatin. 

Histone variants are key epigenetic factors involved in essentially all nuclear processes 

under both normal and pathological conditions (Boulard et al., 2007). For example, the 

histone variants macroH2A and H2A.Bbd, which belong to the H2A family, are implicated 

in transcriptional regulation (Angelov et al., 2003; Doyen et al., 2006a&b), while the 

histone variant H2B.FWT (from the H2B family) is likely involved in mitotic chromosome 

assembly (Boulard et al., 2006). Histone variants are also emerging players in cancer 

biology (Vardabasso et al., 2014). 

 

 The histone variant CENP-A replaces histone H3 at the centromeres and 

epigenetically marks the centromeres (Palmer et al., 1989; Palmer et al., 1990; Earnshaw 

et al., 1985). The CENP-A nucleosome exhibits distinct structure with highly flexible 

nucleosomal DNA ends (Tachiwana et al., 2011a; Roulland et al., 2016). This particular 

feature of the CENP-A nucleosome is required for assembly of active kinetochores as well 

as for mitotic fidelity (Roulland et al., 2016). The constitutive centromere-associated 

network (CCAN) consisting of 16 proteins (CENPs) is assembled onto CENP-A 

chromatin. CENP-C, a member of CCAN, is a protein with platform functions, required 

for operational kinetochore specification and spindle attachment (Perpelescu et al., 2011). 

 

 The amino-terminus of CENP-A is phosphorylated at serine 7 in mitosis in human 

cells (Zeitlin et al., 2001; Goutte-Gattat et al., 2013). The available data reveal that this 

mitotic phosphorylation of human CENP-A is required for kinetochore function. Mitotic 

CENP-A nucleosomal complexes contain CENP-C and phospho-binding 14-3-3 proteins. 

Direct interactions between the phosphorylated form of CENP-A and 14-3-3 proteins as 

well as between 14-3-3 proteins and CENP-C were demonstrated. The reported data 

revealed that 14-3-3 proteins are likely to act as “bridges,” linking phosphorylated CENP-

A and CENP-C, which are necessary for the assembly and maintenance of active 

kinetochores (Goutte-Gattat et al., 2013). 

 

 The amino-terminal tail of CENP-A, in contrast to its structured (histone fold) 

domain, is highly variable between different species. The serine at position 7 present in 

human CENP-A, is not conserved amongst species. In addition, no phosphorylation of the 
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amino-terminal tail of CENP-A from other metazoan has been reported. This raises the 

question whether the reported data on the mitotic function of human CENP-A 

phosphorylation can be generalized or if it is restricted for human cells only.  

 Here we have analyzed the mitotic function of the CENP-A amino-terminus in MEF 

cells prepared from mouse embryos. Our data revealed that the phosphorylation of the tail 

of mouse CENP-A, but not its length nor its amino acid sequence, is required, for mitotic 

fidelity, as in the case for the human CENP-A. Since the amino-termini of CENP-A of 

distinct metazoan species contain one or more serines, we speculate that this could be a 

common evolutionary preserved mechanism that is required for chromosome segregation.  

 

Results 

The fusion of the amino-terminus of conventional histone H3 with the globular 

domain of CENP-A rescues the CENP-A depletion phenotype in MEF cells. 

 To analyze the role of the amino-tail of mouse CENP-A and its phosphorylation in 

mitosis we established conditional homozygous knockout/knockin (cKO/KI) mouse cell 

lines, where the endogenous CENP-A was replaced with a HA-FLAG-tagged CENP-A 

(Roulland et al., 2016). Using these mice we derived mouse embryonic fibroblasts (MEF), 

which, after immortalization, were infected with constructs expressing a tamoxifen 

inducible Cre-ERT2 recombinase and GFP-CENP-A (Figure 1a). Treatment with 

tamoxifen of these cells resulted in complete excision of the two CENP-A alleles and 

depletion of essentially all protein 6 days post-treatment (Figure 1c, d). The absence of 

CENP-A in control cells resulted, as expected and in agreement with the available data 

(Regnier et al., 2005; Roulland et al., 2016), in strong defects in both mitosis and 

interphase, including chromosome misalignments, chromosome bridges and micronuclei 

(Figure 1b, e, f). Quantification of the data showed that the ectopic expression of the GFP-

CENP-A was sufficient to rescue this phenotype (Figure 1b, e, f). 

 In human HeLa cells, a swapped fusion of the tail of conventional H3 with the histone 

fold of human CENP-A was able to replace efficiently the endogenous CENP-A and 

rescue the mitotic phenotype resulting from its depletion (Goutte-Gattat et al., 2013). To 

test whether this is also the case in mouse cells, the immortalized MEFs were infected with 

both Cre-ERT2 recombinase and GFP-CENP-A mutant (GFP-H3-CENP-A, Figure 2a) 
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consisting of the tail of histone H3 fused to the histone fold of mouse CENP-A (Figure 2b, 

c).  

Figure 1. The replacement in MEFs of WT CENP-A by GFP-CENP-A at the centromere rescues the 

strong mitotic and nuclear defects caused by CENP-A depletion. (A) Schematics of the establishment of 

stable MEF cell lines and induction of CENP-A depletion. (B) Cell-cycle visualization of the effects of 

CENP-A depletion (8 days after the treatment with tamoxifen) in the indicated MEF lines. The first row 

shows the control CENP-A (Flox/Flox) MEFs before tamoxifen treatment, second row after. Western blots 

showing the HA-GFP-CENP-A fusion and endogenous HA-CENP-A in (C) control CENP-A (Flox/Flox) 

MEFs and (D) stable CENP-A (Flox/ Flox) MEFs expressing HA-GFP-CENP-A at different days after 

tamoxifen treatment. Quantification of the mitotic (E) and nuclear (F) defects in cell lines upon depletion of 

CENP-A, 8 days after tamoxifen treatment. The data are means and SEM from three different experiments. 

  This mouse fusion was able, as in the case of HeLa cells (Goutte-Gattat et al., 2013), 

to rescue the phenotype resulting from the depletion of CENP-A in MEF cells after six 

days of tamoxifen treatment (Figure 2c, f, g). Since the tail of H3 varies in primary 

sequence and in length compared to the tails of both human and mouse CENP-A (Figure 
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2b), this reveals that neither one of these two features of the CENP-A NH2-terminus is 

determinant of CENP-A function.  

Figure 2. The replacement in MEFs of WT CENP-A by the swapped H3SA-CENP-A at the centromere 

results in strong mitotic and nuclear defects while H3-CENP-A rescues the phenotype. Schematics of 

(A) the experimental model (B) CENP-A swap constructs (C) Cell-cycle visualization of the effects of 

CENP-A depletion (8 days after the treatment with tamoxifen) in the indicated MEF lines. Western blots 

showing the HA-GFP-CENP-A fusions and endogenous HA-CENP-A in stable CENP-A (Flox/ Flox) MEFs 

expressing (D) HA-GFP-H3-CENP-A (E) HA-GFP-H3SA-CENP-A at different days after tamoxifen 

treatment. Quantification of the (F) mitotic and (G) nuclear defects in cell lines upon depletion of CENP-A, 

8 days after tamoxifen treatment. The data are means and SEM from three different experiments. 
 

The phosphorylation of the tail of CENP-A is essential for its mitotic function in 

MEFs 

 A non-phosphorylatable swapped fusion of the tail of conventional H3 (where the two 

mitotic phorphorytable serines 10 and 28, were substituted with alanines) with the globular 

domain of CENP-A was described to be unable to rescue CENP-A depletion phenotype in 
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HeLa cells (Goutte-Gattat et al., 2013). Our experiments reveal that this is also true for 

MEF cells. Indeed, CENP-A depleted MEFs upon 8 days of treatment with tamoxifen 

(Figure 2e), stably expressing non-phosphorytable mouse swapped CENP-A mutant (GFP-

H3SA-CENP-A, Figure 2b), showed numerous mitotic and interphase defects (Figure 2c), 

comparable in amount to those of CENP-A depleted MEFs (Figure 2f, g compare with 

Figure 1e, f). Thus, the phosphorylation per se, and not the length of the CENP-A tail or 

its primary sequence, should be essential for mitotic progression. 

Figure 3. The replacement in MEFs of WT CENP-A by the non-phosphorylatable SA-CENP-A and 

S15.16.22A-CENP-A mutants at the centromere results in strong mitotic and nuclear defects. 

Schematics of (A) the experimental model (B) non-phosphorylatable CENP-A constructs (C) Cell-cycle 

visualization of the effects of CENP-A depletion (6 days after AdenoCRE infection) in the indicated MEF 

lines. Western blots showing the HA-GFP-CENP-A fusions and endogenous HA-CENP-A in stable CENP-

A (Flox/ Flox) MEFs expressing (D) HA-GFP-SA-CENP-A (E) HA-GFP-S15.16.22A-CENP-A at different 

days after AdenoCRE infection. Quantification of the (F) mitotic and (G) nuclear defects in cell lines upon 

depletion of CENP-A, 6 days after AdenoCRE infection. The data are means and SEM from three different 

experiments. 
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 If this is the case, then a non-phosphorylatable CENP-A tail mutant should be unable 

to function as the native protein and will be unable to rescue the CENP-A depleted MEF’s 

phenotype. The tail of mouse CENP-A contains seven serines along its length (Figure 3b). 

We constructed a GFP-CENP-A mutant (GFP-SA-CENP-A), where all 7 serines were 

substituted to alanines (Figure 3b) and established stable MEF lines expressing it. After 

depletion of endogenous CENP-A upon AdenoCre recombinase infection (Figure 3d, e), 

the cell phenotype was analyzed. As seen (Figure 3c, f, g), the non-phosphorylatable GFP-

SA-CENP-A mutant was unable to rescue the MEF phenotype and these cells behaved 

mitotically as the CENP-A depleted MEFs (Figure 3c, f, g). We thus conclude that mitotic 

phosphorylation of mouse CENP-A is required for mitotis. 

 We next sought to determine the potentially phosphorylatable serine(s) of the CENP-

A tail, which is responsible for the mitotic function. To address this we used a mutant 

(GFP-S15.16.22A-CENP-A) where the first three serines (S15, S16 and S22, Figure 3b) 

were substituted with alanines and established stable MEFs (Figure a). This mutant 

behaved exactly as the GFP-SA-CENP-A mutant with all seven serines mutated to 

alanines, i.e. no rescue was observed in the stable CENP-A depleted cells expressing this 

mutant (Figure 3 c, d, f, g). These data reveal that the phosphorylation of S15, S16 or S22, 

in combination or alone, is necessary for proper mitotic progression. 

The phosphorylation of mouse CENP-A is required for CENP-C localization at 

centromeres. 

 In human cells, the localization of the kinetochore platform protein CENP-C is 

dependent on CENP-A phosphorylation. Bearing in mind the high similarity of the role of 

CENP-A phosphorylation in mouse and in human cells, one should expect the same 

behavior of mouse CENP-C. We addressed this question in a series of experiments where 

we used CENP-A depleted MEFs stably expressing RFP-CENP-C fusion with either one 

of the studied mutants (Figure 4a). RFP-CENP-C continued to colocalize with GFP-H3-

CENP-A at centromeres in cells depleted of CENP-A. In contrast, the amount of RFP-

CENP-C was significantly reduced at centromeres in cells expressing either one of the 

three non-phohphorylatable mutants (GFP-H3SA-CENP-A, GFP-SA-CENP-A, or GFP-

SA-CENP-A) upon CENP-A depletion (Figure 4b, c). These results show, that the 

phosphorylation of CENP-A is required, as in HeLa cells, for the cetromeric localization 

of CENP-C.  
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Figure 4. The incorporation of non-phosphorylatable mutants into the centromeres affects the 

localization of CENP-C in CENP-A depleted MEFs (A) Schematics of the experimental model (B) 

Localization of RFP-CENP-C in MEFs stably expressing GFP-H3-CENP-A after CENP-A depletion (first 

row) and GFP-H3SA-CENP-A before (second row) and after CENP-A depletion (last row) (C) Localization 

of RFP-CENP-C in MEFs stably expressing GFP-SA-CENP-A before (first row) and after CENP-A 

depletion (second row) and GFP-S15.16.22A-CENP-A before (third row) and after CENP-A depletion (last 

row) (D) Western blots showing the HA-GFP-CENP-A fusions and endogenous HA-CENP-A in stable 

CENP-A (Flox/ Flox) MEFs expressing RFP-CENP-C before and after AdenoCRE infection. 

Discussion 

 The mitotic phosphorylation of CENP-A tail at serine 7 was reported only in human 

cells (Zeitlin et al., 2001; Goutte-Gattat et al., 2013). The available data showed, however, 

that this phosphorylation is an important event and it is required for proper chromosome 

segregation and mitotic progression (Goutte-Gattat et al., 2013).  This suggests that mitotic 

phosphorylation of the CENP-A amino-tail should be observed in other metazoans and 

that it could have a role similar to that in human cells. Here we have tested this hypothesis.  
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 Since no specific antibodies against mouse CENP-A and its potentially 

phosphorylated mitotic form(s) existed, we have used an indirect approach. We first 

showed that the non-phosphorylatable swapped mutant GFP-H3SA-CENP-A, in contrast 

to its phosphorytable form GFP-H3-CENP-A, has lost, as in HeLa cells, its capacity to 

rescue the mitotic phenotype of MEFs depleted of endogenous CENP-A.  Since the tail of 

H3 is distinct in both length and sequence from that of CENP-A, these results strongly 

suggest that: (i) neither the length nor the primary amino-acid sequence of the amino-

terminus of CENP-A is crucial for its function in mitosis, and (ii) the mere 

phosphorylation of CENP-A amino-tail is essential for its mitotic function. In agreement 

with this claim, we found that the non-phosphorylatable GFP-SA-CENP-A mutant 

behaved as the non-phosphorylatable swapped mutant GFP-H3SA-CENP-A and was 

unable to rescue the mitotic phenotype of cells depleted of CENP-A. Our data further 

identified among the seven serines present in the CENP-A tail, the first three of them, 

namely S15, S16 and S22, as potential sites for phosphorylation, since the mutant GFP-

S15.16.22A (where these three serines were substututed with alanines) behaved as the 

completely non-phosphorylatable GFP-SA-CENP-A and was unable to rescue the mitotic 

defects of MEFs depleted of CENP-A. In addition, the expression of either GFP-

S15.16.22A or GFP-SA-CENP-A in CENP-A depleted MEF’s did not lead, in contrast to 

the phosphorylatable counterparts, to the rescue of the centromeric localization of     

CENP-C.  

 In summary, our data reveals that the mouse CENP-A, as human CENP-A, appears to 

be phosphorylated during mitosis. This phosphorylation plays an essential function in 

chromosome segregation. We speculate that mouse mitotically phosphorylated CENP-A 

is, as in HeLa cells, a target for the phosphobinding proteins 14-3-3 that could act as 

specific mitotic “bridges,” linking phosphorylated CENP-A and CENP-C necessary for 

mitotic progression (Goutte-Gattat et al., 2013). The 14-3-3 proteins would recognize and 

bind to an accessible phosphate group in the CENP-A tail and thus, no specific position of 

the phosphorylatable serine should be required. This could explain the raison why the tails 

of the CENP-A from different species contain serines, located at different positions. We 

speculate that the first serine(s) within the tails of the CENP-A proteins in metazoan would 

be, due to their higher accessibility, phosphorylated at the onset of mitosis. 
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Materials and Methods 

CENP-A KI-cKO Mouse Line The CENP-A cKO/KI mouse line was established by using 

standard mouse genetic approaches. In this line, the CENP-A gene was replaced by a 

double tagged FLAG-HA-CENP-A fusion. The targeting vector of the generated cKO/ KI 

FLAG-HA tagged CENP-Aflox/flox mice flanked exon 1 of the murine CENP-A gene 

with LoxP recombination sites.  

 

MEF Cell Lines MEFs were isolated and cultured from day 14,5 embryos of the CENP-A 

cKO/KI mice and were immortalized via SV40 infection. Cells were cultivated in DMEM 

high glucose (4.5 g/l) and 10 % fetal bovine serum and 1% penicillin and streptomycin at 

37 °C and 5 % CO2.     

 CRE recombinase expression for CENP-A knock-out was assured by MSCV 

CreERT2 (Addgene #22776) retroviral infection fallowed by 2μM (Z)-4-

Hydroxytamoxifen (Sigma-Aldrich) treatment or by adenovirus infection (Ad-CMV-iCre, 

Vector Biolabs, Philadelphia, PA). 

 The construct H3-CENP-A was obtained by replacing the first 35 amino acids of the 

CENP-A amino tail with the first 42 amino acids of that of histone H3.1. H3SA-CENP-A 

is the same as H3-CENP-A construct except for S10 and S28 mutated to alanine. The 

construct SA-CENP-A has all seven serine residues in the mouse CENP-A amino tail 

mutated into alanines while S15.16.22A-CENP-A has only the first three serine residues. 

All CENP-A constructs were fused at the amino terminus with HA-GFP and then cloned 

into retroviral pCLMFG vector. All cell lines resulting from these infections were FACSed 

(BD FACS Aria Cell Sorting System) to obtain cell lines with homogenous expression of 

the exogenous CENP-A at near endogenous expression level. 

 CENP-C sequence was fused at the amino terminus with RFP and then cloned into 

pQCXIH vector (Clontech). MEF cKO cells were initially infected with CENP-C then 

these cells were infected with the GFP-CENP-A constructs. 

 

Immunocytochemistry Cells were fixed with 4% formalin solution (Sigma-Aldrich) for 20 

minutes at 37 °C then washed 3 times with PBS. Cells were then permeabilized with 0.02 

% Triton for 3 minutes. The coverslips were then successively incubated for an hour at 37 

°C with primary anti-lamin (1:1000, Santa Cruz biotechnology) and secondary anti-goat 
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Cy3 (1:300, SantaCruz) antibodies. DNA was stained in the presence of 1.5 μg of Hoechst 

33342.  

 The slides were later observed and imaged using a Zeiss Axiovision epifluorescence 

microscope with Plan-Apochromat 63× objective. GFP, cyanine-3, and Hoechst 33342 

were used as fluorochromes. Images were acquired with a Zeiss Axiocam camera piloted 

with the Zeiss Axiovision software. 

 The rate of defects was calculated from a sample of 200 ± 25 mitotic cells for mitotic 

defects and 400 ± 25 nuclei for nuclear defects. 

 

Nuclear Isolation for Immunoblotting Cells were pelleted then resuspended in 250 μl of 

Buffer B (NaCl 15 mM, Tris HCl pH 7.5 15 mM, KCl 60 mM, sucrose 11 %, EDTA 2 

mM, EGTA 0.5 mM, DTT 1 mM, spermine 0.2 mM, spermidine 0.65 mM, PMSF 0.5 

mM). Next 250 μl of Lysis Buffer (Buffer B with 4 % NP-40) was added and the 

suspension was incubated 5 minutes on ice. The cell lysate was then successively 

centrifugated twice at 13,200 rpm for 5 minutes. After each centrifugation, the pellet was 

resuspended respectively in: 250 μl of Buffer D (Buffer B without EDTA and EGTA) and 

finally 150 μl of PBS 1× with 1× Laemmli buffer. Samples where then sonicated at 200 

J/W.s and used for immunoblotting. 
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6.2. Investigating the function of the amino-terminal domain of CENP-A during 

mitosis using the “Hara-kiri” approach 

 We have shown that the CENP-A amino-terminus plays a major function in mitosis 

by its ability to be phosphorylated, but the data is indirect. To unambiguously tie this 

function to mitosis, it is necessary to remove the CENP-A tail only during mitosis but no 

techniques are currently available to achieve this. 

 We have devised a new method that we call the “Hara-kiri” approach in order to 

answer the above question in human HeLa cells, where the amino terminal domain has 

been shown to be important for proper chromosome segregation (Goutte-Gattat et al, 

2013). In this approach, we fuse to CENP-A a specific protease we named “Katana” and 

we insert within the amino-tail of CENP-A the target cleavage site of the Katana protease 

(Figure 6.1). The cleavage site is specifically recognized by the Katana protease and does 

not naturally exist in the human proteome. Once synthesized, we expect this fusion protein 

to be cleaved by its own proteolytic activity, thus resulting with CENP-A protein lacking 

the amino-terminus. The activity of the Katana protease can be delayed by cultivating cells 

in the presence of a specific, reversible inhibitor, thereby allowing us to control the time 

that the NH
2
-tail should be cleaved (Figure 6.1).  

 We can thus apply the hara-kiri approach to synchronized cells grown in presence of 

the inhibitor. Then, by removing the inhibitor prior to mitotic entry, we should be able to 

eliminate the NH
2
-tail and detect whether mitotic defects occur as a direct result of the 

absence of the amino-terminus of CENP-A.  

 One concern while studying the effects of tailless CENP-A is that it’s a recessive 

mutant, as long as wild type CENP-A is expressed in cells, no phenotype deriving from the 

expression of the tailless mutant will appear. To overcome this, endogenous CENP-A 

expression will be knocked down by siRNA. The CENP-A sequence that we have chosen 

for the Hara-kiri approach is a silent resistant sequence so it will not be affected by the 

siRNA mediated silencing. 
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Expression and cleavage of the Katana fusion proteins 

 Initially we needed to verify whether the Katana fusion proteins could be expressed in 

cells and determine if the self-cleavage of the protein was possible. For this HeLa cells 

were transfected using both dead and active Katana vectors and grown for 54 hours post-

transfection. Then we performed nuclear extractions on the transfected cells followed by 

Western blot analysis using an anti-CENP-A antibody directed against the C-terminal 

domain of CENP-A. 

 Non-transfected cells were used as a control. We detected endogenous CENP-A in 

both nuclear (Figure 6.2, lane 1) and cytoplasmic extracts (lane 2). The nuclear extract was 

more enriched as expected since CENP-A is a nuclear protein. In cells transfected with the 

dead Katana vector, a 65 kDa band was detectable in both the nuclear and the cytoplasmic 

extracts. This band was at the expected size for the whole GFP-KatanaD-nCENP-A fusion 

protein (lanes 3 and 4), confirming that the fusion could in fact be expressed in cells. 

 In cells transfected with the active Katana vector we detected a 15 kDa band, just 

below the endogenous CENP-A; this corresponds to the expected size of the C-terminal 

fragment of the cleaved CENP-A and allows us to conclude that self-cleavage did occur in 

these cells. The total absence of the intact GFP-Katana-nCENP-A fusion (note the absence 

of a 65 kDa band in lanes 5 and 6) indicates that all synthesized proteins were cleaved and 

reveals the efficiency of the cleavage. We can also remark that the cleaved fragment is 

detected in both nuclear and cytoplasmic extracts, indicating that the cleavage occurred 

rapidly after protein synthesis, before the translocation to the nucleus. 

Figure 6.1 The “Hara-kiri” approach: 

Removal of the inhibitor from the culture 

medium activates the protease, the 

CENP-A amino-terminus is cleaved. 
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6.2 The Katana fusions are expressed and the active form is cleaved in cells. HeLa cells were transfected 

with the indicated Katana vectors, nuclear extractions were performed 54 hours post transfection. Western-

blot analysis was performed with an anti-CENP-A antibody recognizing the C-terminal domain of CENP-A 

on both nuclear (N.E.) and cytoplasmic extracts (C.E.). Endogenous CENP-A is detected in all lanes at 

17kDa. In cells transfected with the GFP- KatanaD-nCENP-A vector a 65kDa band corresponding to the size 

of the fusion is detected (lanes 3–4). In cells transfected with the GFP-Katana-nCENP-A vector a 15kDa 

band corresponding to the size of the C-terminal fragment of the cleaved fusion is detected (lanes 5–6). 

Asterisks show non-specific bands. 

 

Localization of the inactive fusion protein 

 We next wanted to know whether CENP-A could still be recruited to the centromeres 

while fused to the Katana protease, the GFP as well as containing the Katana target site 

within its NH
2
-terminal domain. For this we transfected cells with the vector construct 

expressing the dead form of Katana and performed immunofluorescence staining with a 

CREST antibody that marks the centromeres; we used the natural fluorescence of the GFP 

to detect the inactive fusion protein. 

 In interphase, we could see that the GFP signal colocalized with the CREST staining 

at the centromeres (Figure 6.3, upper row). In mitosis (middle and lower rows), the 

CREST staining was larger than the GFP signal, with the GFP signal overlapping only on 

its edges; this was expected, due to the fact that the CREST antibody recognizes proteins 

located in the whole centromere while CENP-A location is restricted to the outer 

centromere. Overall, we concluded that the GFP-KatanaD-nCENP-A fusion protein can be 

recruited to centromeric chromatin and can localize as the endogenous CENP-A. 
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Figure 6.3 The inactive Katana fusion protein localizes to the centromeres. HeLa cells transfected with 

the GFP-KatanaD-nCENP-A vector were submitted to immunofluorescence analysis with a CREST antibody 

that marks the centromeres. Hoechst was used to stain DNA and GFP to detect the fusion protein. The GFP 

signal was found to colocalize with the centromeric CREST signal in interphase (upper row), in prophase 

(middle row) and in telophase (lower row). 

 

Inhibition and Cleavage of the active Katana fusion protein 

 We finally wanted to check our ability to prevent the cleavage of the active Katana 

fusion protein. For this cells were transfected with the active Katana vector and grown in 

the presence or the absence of the Katana inhibitor. By immunofluorescence we could see 

that in cells that were grown in absence of the inhibitor, no GFP signal was detected at the 

centromeres (Figure 6.4, middle row). As expected, without the inhibitor the fusion protein 

undergoes cleavage before being translocated to the nucleus, so the cleaved CENP-A is no 

longer fused to the GFP and is thus undetectable. 

 In the presence of 9 μM of Katana inhibitor, we expect the GFP-Katana-nCENP-A 

fusion protein to stay intact and behave like the dead Katana fusion. This is what we 

observed (Figure 6.4, lower row, compare to upper row); the GFP signal colocalized with 

the CREST staining, revealing that the GFP remained attached to the globular domain of 
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CENP-A. This allows us to conclude that growing the cells in the presence of 9 μM of 

inhibitor was sufficient to inhibit the protease and prevent the self-cleavage of the fusion 

protein in cells. 

 

Figure 6.4. The inhibitor prevents the cleavage of the Katana fusion protein. HeLa cells transfected with 

the GFP-KatanaD-nCENP-A vector (upper row) or the GFP-Katana-nCENP-A vector were submitted to 

immunofluorescence analysis as before. Cells transfected with the active Katana vector and grown without 

the Katana inhibitor (middle row) exhibited no centromeric GFP signal. Cells grown with 9 μM of inhibitor 

(lower row) showed the same phenotype as cells transfected with the inactive Katana fusion (upper row). 

 The final step before applying the hara-kiri approach to study the amino terminal 

function of CENP-A was to confirm whether the GFP-Katana-nCENP-A fusion could be 

cleaved once it was already incorporated into centromeric chromatin. We were unable to 

achieve cleavage since the GFP signal remained at the centromeres after inhibitor removal 

(data not shown). We postulated that within the crowded centromeric environment the 

protease could not access its target and we were able to overcome this problem by 

introducing two additional cleavage sites to the amino tail. Cells were transfected with the 

GFP-Katana-nnnCENP-A vector and grown in the presence of the inhibitor. Coverslips 

were then fixed at: 0, 15, 30 and 60 minutes after inhibitor removal. Washing out of the 

inhibitor resulted in GFP-fluorescence progressively disappearing from the centromeres, 
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suggesting that CENP-A fusion is cleaved at its NH
2
-terminus as the inhibition of the 

Katana protease is reversed. One hour after inhibitor removal the GFP signal was diffused 

(Figure 6.5). 

 

Figure 6.5. The centromeric Katana fusion protein is cleaved upon inhibitor removal. HeLa cells 

transfected with the GFP-Katana-nnnCENP-A vector were submitted to immunofluorescence analysis with 

CREST antibody after 0, 15, 30 and 60 minutes after inhibitor removal. A) The GFP signal found to 

colocalize with the centromeric CREST signal decreased progressively after inhibitor removal (15 and 30 

minutes) and was defused at 60 minutes. B) Total amount of GFP signal decreased after inhibitor removal 

and was near undetectable after 60 minutes. 

 

Validation of the Hara-kiri approach in stable cell lines expressing the fusion protein 

 HeLa cell lines stably expressing the GFP-Katana-nnnCENP-A were generated. 

Monoclonal cell lines expressing near endogenous levels of the CENP-A fusion protein 

were selected, cautious to the fact that CENP-A overexpression results in partial 

misincorporation of CENP-A outside of the centromeres (Van Hooser et al., 2001) and can 

in itself cause mitotic defects. Western blot analysis showed that the exogenous CENP-A 

fusion protein was expressed at near endogenous levels and was cleaved in absence of the 

inhibitor (Figure 6.6a). 

 Additionally the cleavage of the CENP-A fusion protein was observed by live video-

microscopy, the cleavage took place in similar fashion to that was observed by 

immunofluorescence analysis as the GFP signal gradually decreased and was diffused 

within sixty minutes (Figure 6.6b). This allowed us to validate the Hara-kiri model and 
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proceed to applying the approach to the investigation of the function of the amino-terminal 

domain of CENP-A. 

 

Figure 6.6 The centromeric Katana fusion protein is cleaved upon inhibitor removal in stable cell 

lines. A) Western blot of HeLa cell line stably expressing the GFP-Katana-nnnCENP-A fusion protein: in 

presence of the inhibitor the fusion protein is intact (lane 1) and is cleaved in the absence of the inhibitor 

(lane 2). B) Time-lapse of HeLa cell line stably expressing the GFP-Katana-nnnCENP-A at 0, 15, 30 and 60 

minutes after inhibitor removal. The GFP signal is decreased progressively after inhibitor removal (15 and 

30 minutes) and near undetectable after 60 minutes. 

 

Removal of the CENP-A tail before mitotic entry results in increased mitotic defects 

 Stable cell lines expressing the GFP-Katana-nnnCENP-A fusion were grown for three 

days in the presence of the inhibitor. Cells were then synchronized by double thymidine 

block and endogenous CENP-A was knocked-down using siRNA (Figure 6.7b). The 

inhibitor was removed from the cell culture medium 60 minutes before cells entered 

mitosis and cells were fixed 30 minutes after mitotic entry. Thus, the pool of centromeric 

CENP-A in cells has lost their amino-terminal domains just as the cells enter mitosis.  

 The cleavage of the GFP-Katana-CENP-A fusion at the onset of mitosis led to 

increased mitotic defects in cells depleted of endogenous CENP-A such as the presence of 

misaligned chromosomes in metaphase, lagging chromosomes in anaphase and the 

chromatin bridges in telophase and cytokinesis (Figure 6.7a and c). The number of defects 
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in the cells where the inhibitor was removed increased ~2 fold for metaphase and 

anaphase,  ~1,5 fold for telophase and cytokinesis compared to the cells maintained in the 

presence of the inhibitor (Figure 6.7c). The experiments were performed thrice and ~150 

cells were counted per phase for each condition, the lower incidence of telophase and 

cytokinesis defects could be attributed to a delay to proceed to the final phase of mitosis 

due to defects earlier on in mitosis or to cells that have entered mitosis before total 

cleavage of the NH
2
-terminus was achieved. 

 Taken collectively these data show that the Hara-kiri approach allows us to address 

the specific questions at hand and that the CENP-A NH
2
-terminus is required for proper 

mitosis. 

 
Figure 6.7: The utilization of the Hara-kiri approach permits the cleavage of the CENP-A amino-

terminus, which results in increased mitotic defects. A) The cleavage of the GFP-Katana-CENP-A fusion 

at the onset of mitosis leads to mitotic defects in HeLa cells; highlighted by yellow arrowheads in second 

row. B) Western blot showing siRNA mediated knock-down of endogenous CENP-A. C) Percentage of 

mitotic defects observed by phase in cells left in the presence of the inhibitor (dark green columns) and in 

cells where the inhibitor was removed prior to onset of mitosis (light green columns). Error bars represent 

standard error of the mean. 
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PART IV 

7. Discussion 

7.1. A closer look into CENP-A depletion 

 One of the significant challenges while studying CENP-A is that it is such an essential 

protein. Thus eliminating it entirely is very difficult not only because the absence of 

CENP-A is lethal for cells and organisms but also since 1% of the original CENP-A level 

is sufficient to maintain at least partial centromere function and to nucleate the assembly of 

most kinetochore proteins (Fachinetti et al., 2013).  S. cerevisiea has only one Cse4 

containing nucleosome per centromere (Henikoff et al., 2012a) while in humans it is 

estimated to be around 100 CENP-A nucleosomes. Centromeric chromatin is not 

composed entirely of CENP-A containing nucleosomes but is interspaced with H3 

nucleosomes where approximately one in eight centromeric nucleosomes contain CENP-A 

(Bodor et al., 2014). Hence the amount of CENP-A present within the centromeric 

chromatin is significantly greater than the minimum amount required to ensure function of 

the centromere as the protein is such an essential one.  

 Thus it is difficult to assess the full impact of CENP-A depletion. In this work we 

have used two separate ways to deplete CENP-A in cells to analyze the role of the amino-

tail of CENP-A and its phosphorylation in mitosis. We established conditional 

homozygous knockout/knockin (cKO/KI) mouse cell lines. Using these mice we derived 

mouse embryonic fibroblasts (MEF), which, after immortalization, were infected with 

constructs expressing a tamoxifen inducible Cre-ERT2 recombinase or with AdenoCRE 

recombinase. Treatment with tamoxifen of these cells resulted in excision of the two 

CENP-A alleles and depletion of essentially all protein 6 days after tamoxifen treatment 

and in 4 days when directly infected with AdenoCRE. Direct infection with AdenoCRE 

recombinase proved to be quicker and more effective. The tamoxifen induced CENP-A 

depletion resulted in a small population of cells where the Cre-ERT2 recombinase was not 

expressed, probably through silencing and theses cells exhibited a growth advantage over 

the population of cells where CENP-A depletion was successful. This resulted in the 

appearance of a persistence band on the western blots in knock-out cells as well as in cells 

infected with the non-phosphorylatable GFP-H3SA-CENP-A construct. However this 

band was absent in cells infected with GFP-CENP-A and GFP-H3-CENP-A where the 

knock-out phenotype was rescued. Since AdenoCRE infection proved more effective the 

rest of the study was conducted using this method. 



 79 

 In the second part of our study, we applied the Hara-kiri approach in HeLa cells and 

depleted CENP-A levels using siRNA. However, knock-down approaches are less than 

ideal method as the effect is temporary, especially for proteins such as CENP-A with long 

half-lives. However, RNA interference directed against the CENP-A mRNA made it 

possible to obtain a drastic reduction in the expression of the endogenous form of CENP-A 

and was sufficient to document increased mitotic defects upon cleavage of the CENP-A 

amino-terminus. This is perhaps also due to the fact that the cells were preincubated with 

the inhibitor for three days and the presence of endogenous CENP-A at centromeres was 

already diluted by the presence of the hara-kiri fusion CENP-A prior to siRNA treatment.  

In fact, it is of great interest to us to set up the hara-kiri approach in our MEF cell model 

and we accept to see a higher fold increase in defects caused by the cleavage of the CENP-

A amino-terminus. Primarily because it is a better model to fully and permanently deplete 

endogenous CENP-A and additionally because a diploid cell model is preferable to study 

mitotic defects. 

7.2. The importance of the amino-terminal domain of CENP-A and its 

phosphorylation 

 The mitotic phosphorylation of CENP-A tail at serine 7 was reported only in human 

cells (Zeitlin et al., 2001) and is an important event required for proper chromosome 

segregation and mitotic progression (Goutte-Gattat et al., 2013).  This suggests that mitotic 

phosphorylation of the CENP-A tail should be observed in other metazoans and that it 

could have a role similar to that in human cells.  

 Since no specific antibodies against mouse CENP-A and its potentially 

phosphorylated mitotic form(s) existed, we have used an indirect approach. We first 

showed that in MEF cells expressing a chimeric CENP-A mutant where the amino-tail was 

swapped with that of histone H3 (GFP-H3-CENP-A) was able to rescue the mitotic 

phenotype of MEFs depleted of endogenous CENP-A. However, this was not the case in 

MEF cells that were expressing the non-phosphorylatable swapped mutant GFP-H3SA-

CENP-A, as was the case in HeLa cells (Goutte-Gattat et al., 2013). Since the tail of H3 is 

distinct in both length and sequence from that of CENP-A, these results strongly suggest 

that the mitotic function of the NH2-terminal domain of CENP-A lies entirely in its 

phosphorylation and not in its length nor in its primary amino-acid sequence. Furthermore 

we found that the non-phosphorylatable GFP-SA-CENP-A mutant behaved as the non-

phosphorytable swapped mutant GFP-H3SA-CENP-A and was unable to rescue the 
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mitotic phenotype of cells depleted of CENP-A. Our data further identified among the 

seven serines present in the CENP-A tail, the first three of them, namely S15, S16 and 

S22, as potential sites for phosphorylation, since the mutant GFP-S15.16.22A (where these 

three serines were substituted with alanines) behaved as the completely non-

phosphorylatable GFP-SA-CENP-A mutant and has lost the ability to rescue the mitotic 

defects of MEFs depleted of CENP-A.  

 In brief, our data reveals that the mouse CENP-A, as human CENP-A, appears to be 

phosphorylated during mitosis and its phosphorylation plays an essential function in 

chromosome segregation. This result is also consistent with previous study showing that in 

S. cerevisiae, expression of a non-phosphorylatable form of Cse4p leads to a 2 to 3 fold 

increase in the rate of chromosome segregation defects (Chen et al., 2000).  

 Other studies do not focus on the phosphorylation of the amino-tail but rather the tail 

itself and bare a general consensus that the amino-terminal domain is important for 

centromere function but the details of this function have been conflicting. More recent 

work has proposed diverse functions for the amino-tail using rescue experiments with 

chimeric protein mutants. In human diploid cells it was shown that kinetochore assembly 

requires along with the CATD domain of CENP-A either the amino- or the carboxy-

terminal tail. The same study found that in fission yeast the CATD and the amino-terminal 

domain of Cnp1 were both necessary for centromere function (Fachinetti et al., 2013). 

Additionally in a separate study, Cnp1 amino-terminus mutants were shown to be viable 

but exhibited elevated levels of chromosome loss and centromere inactivation (Folco et al., 

2015). A study in U2OS cells revealed that in early stages of centromere establishment 

both tails of CENP-A were required along with the CATD domain but that they were not 

necessary for centromere maintenance (Logsdon et al., 2015). 

 These results may seem initially conflicting with our results but a closer look reveals 

that this is not the case. Already in S. pombe there is agreement that the amino-tail is 

essential for centromeric function. However in human cells the amino tail doesn't seem to 

be indispensible for centromere function either if the carboxy-tail is present or if the 

centromere has already been established (Fachinetti et al., 2013; Logsdon et al., 2015). But 

it is important to notice that these studies were done using H3 chimeras, so in both studies 

the CENP-A replacements do in fact still have phophorylatable residues at the amino tails. 

 Hence if the mitotic function of CENP-A amino-tail is dependent on phosphorylation, 

it will not have been noticed in these studies. Moreover, results we have obtained using the 
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hara-kiri approach clearly show direct involvement of the amino-tail during mitosis as 

cleavage of the GFP-Katana-CENP-A fusion at the onset of mitosis leads to increased 

mitotic defects in cells depleted of endogenous CENP-A. Thus, centromeric establishment 

and participation in mitosis are two distinct functions of CENP-A amino-terminal domain 

in humans. 

 Strikingly in S. pombe H3 chimeras were not sufficient to assure centromeric function  

(Fachinetti et al., 2013) and Cpn1 amino-tail deletion mutants exhibited similar phenotype 

as the H3 tail swapped Cpn1 mutant (Folco et al., 2015). Indicating that, unlike in S. 

cerevisiae, Cpn1 is probably not phosphorylated. In fact Cpn1 amino-tail has only a single 

serine at S5 contrary to the serine rich amino-tail of Cse4. 

 

7.3. The phosphorylation of CENP-A and CENP-C involvement 

 We have established the mitotic function of the N-terminal domain of CENP-A and 

its phosphorylation, it remains to elucidate what is the function of this phosphorylation. As 

mentioned before, in humans CENP-A is phosphorylated on serine 7 during prophase and 

prometaphase (Zeitlin et al., 2001b). Phosphorylation is transient and is no longer 

detectable from telophase on. It appears to be mediated by Aurora A in prophase and 

Aurora B in prometaphase (Kunitoku et al., 2003). It is necessary for the proper 

chromosome congression and segregation as well as for the completion of cytokinesis 

(Zeitlin et al., 2001a).  

 In HeLa cells mitotic phosphorylation of human CENP-A is required for kinetochore 

function (Goutte-Gattat et al., 2013) as the absence of amino-tail phosphorylation resulted 

in an increase chromosome segregation defects and partial loss of CENP-C from the 

centromeres. We show that in MEFs, as in HeLa cells the centromeric localization of 

CENP-C is partially lost in the absence of CENP-A amino-tail phosphorylation. The 

expression of either GFP-S15.16.22A-CENP-A or GFP-SA-CENP-A in CENP-A depleted 

MEF’s does not lead, in contrast to the phosphorytable counterparts, to rescue of the 

centromere localization of CENP-C. This was also the case in H3 tail swap mutants where 

GFP-H3SA-CENP-A expression resulted in partial CENP-C loss at centromeres upon 

CENP-A depletion while GFP-H3-CENP-A cells showed no change in CENP-C 

localization. Therefore the recruitment or maintenance of CENP-C on the centromeric 

chromatin depends on the phosphorylation of the NH2-terminal domain of CENP-A and it 

is likely that this is the essential mitotic function of the NH2-terminal domain of CENP-A. 
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 So it should be asked how can the phosphorylation of CENP-A participate in the 

centromeric localization of CENP-C? Is it through a direct or indirect interaction with the 

amino-tail? It should be noted that at present there is no evidence of direct interaction 

between the amino-tail of CENP-A and CENP-C. The literature suggests that the 

interaction between the two proteins occurs at the carboxy-terminal end of CENP-A while 

the central region of CENP-C directly binds to the CENP-A nucleosome (Carroll et al., 

2010; Kato et al., 2013). Another hypothesis, which we favor is indirect interaction and 

supposes the existence of an adaptive protein linking CENP-A and CENP-C. Such a 

protein remains to be identified, but the proteins of the 14-3-3 family seem to be good 

candidates. These proteins specifically bind phosphorylated units and serve as adapters in 

a large number of processes (for review, see Hermeking and Benzinger, 2006). We 

hypothesize that one of these proteins associates with the phosphorylated NH2-terminal 

extension of CENP-A and interacts simultaneously with CENP-C, thus stabilizing its 

attachment to centromeric chromatin as in the case of HeLa cells (Figure 7.1).  

       Against this hypothesis, it should be noted that the peptide sequence of CENP-A in 

the vicinity of serine 7 does not correspond to any of the two consensus motifs recognized 

by the 14-3-3 (RSXSXP or RXXXSXP); However, other proteins are known to interact 

with 14-3-3 without meeting these consensus (Aitken, 2006). Furthermore, it has recently 

been shown that 14-3-3 interact with the NH2-terminal extension of H3 on its 

phosphorylated residues S10 and S28 (Winter et al., 2008). This could explain the efficacy 

of the amino-terminal tail of H3 to replace that of CENP-A in cells as well at the presence 

of serine residues in the tails of the CENP-A of different species located at different 

positions. We speculate that the first serine(s) within the tails of the CENP-A proteins in 

metazoan would be, due to their higher accessibility, the ones phosphorylated at the onset 

of mitosis. 

 

Figure 7.1 Schematics describing how phosphorylated CENP-A and CENP-C can act with 14-3-3 proteins 

in the assembly and maintenance of active kinetochores. (adopted from Goutte-Gattat et al, 2013) 
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7.4. Mitotic function, centromere establishment or maintenance? 

 In this study we have showed that the phosphorylation of the amino-terminal domain 

of CENP-A is important for proper mitosis and CENP-C localization in MEF cells. We 

also showed that the presence of amino-terminal domain of CENP-A is necessary during 

mitosis for proper chromosome segregation in HeLa cells. Therefore the recruitment or 

maintenance of CENP-C on centromeric chromatin depends on the phosphorylation of the 

NH2-terminal domain of CENP-A and it is likely that this is the essential mitotic function 

of the amino-terminal domain of CENP-A.  

 Defects in chromosome segregation often stir the focus towards the spindle assembly 

checkpoint (SAC), which precisely serves to prevent such defects. In humans, CENP-A 

phosphorylation is limited to mitosis and is no longer detectable from telophase on and 

CENP-C (Kunitoku et al., 2003) was previously reported to be involved in chromosome 

segregation and mitotic checkpoint function (Kwon et al., 2007). Thus, CENP-C might 

provide an attachment site for the recruitment of outer kinetochore components and their 

associated partners, including the components of the spindle assembly checkpoint 

(Screpanti et al., 2011). It has been reported that the Mis12 complex interacts directly with 

the inner kinetochore via CENP-C. When the interaction between CENP-C and Mis12 is 

disrupted cells experience checkpoint impairment.

 A more recent study has shown that CENP-C interactions are dynamic and cell cycle–

dependent. They suggest that CENP-C is bound weaker to CENP-A nucleosomes during 

interphase through different interactions then in contrast to mitosis where CENP-C binds 

to CENP-A nucleosomes via its C-terminal dimerization domain (Nagpal et al., 2015). 

Considering the above mentioned information, it can be speculated that stronger CENP-C 

binding during mitosis is important for chromosome segregation. This would not be 

surprising since centromeres go through increased tension and pulling as a result of 

microtubule attachment, in fact a loss of spindle tension between the two kinetochores of 

the same chromosome trigger SAC activation since it is a sign of incorrect MT 

attachments. In the absence of sufficient tension, the Aurora B kinase that is localized at 

the centromeres during metaphase, destabilizes the interactions between the kinetochore 

and microtubules. Aurora B may act by directly phosphorylating members KMN network, 

reducing their affinity for microtubules (Welburn et al., 2010).  

 Up to now we have concentrated on the mitotic function of the amino-terminal 

domain of CENP-A. Though our study has linked the amino-tail function directly to 
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mitosis by using the hara-kiri approach, it doesn't exclude the amino-tail from having 

extra-mitotic functions. In fact there has been several reports that link CENP-A amino-tail 

function to the recruitment of other CCAN proteins as well as that of CENP-C. A study in 

human diploid cells has shown that the NH2-terminal domain of CENP-A is important to 

stabilize CENP-B (but no other CCAN proteins) for kinetochore maintenance (Fachinetti 

et al., 2013). In contrast, a separate study in U2OS cells revealed that the amino-tail was 

essential in early stages of centromere establishment in a CENP-B independent manner. 

The study linked amino-tail function to indirect stabilization of CENP-C binding and to 

directly or indirectly promoting CENP-T recruitment. However, the same study found that 

the amino-tail was not essential for centromere maintenance (Logsdon et al., 2015). 

Studies in S. pombe found that Cnp1 amino-terminus mutants were shown to be viable but 

exhibited elevated levels of chromosome loss and centromere inactivation. Amino-

terminus mutants had reduced levels of CENP-T branch of the CCAN but not that of 

CENP-C, indicating a role for Cpn1 amino-tail in centromere maintenance (Folco et al., 

2015).  

 In a recent review by Drinnenberg and colleagues, the auteurs compare the 

kinetochore to the ship of Theseus, asking whether the ship was still the same ship if one 

has changed all its planks, highlighting the recurrent evolutionary turnover of kinetochore 

proteins. Though the protein composition of kinetochores is similar across species as 

divergent as yeast to humans, recent findings have revealed an unexpected degree of 

compositional diversity in kinetochores as some proteins that are essential in some species 

have been lost in others or have functionally diverged to acquire either essential or 

redundant roles (Drinnenberg et al., 2016). 

 Additionally, trying to assess the order of molecular events down-stream of CENP-A 

is very challenging experimentally partially due the low abundance of CENP-A 

nucleosomes compared to H3 nucleosomes, making biochemical analysis more 

challenging and largely due to the slow turnover of CENP-A molecules in the cell. Even 

when CENP-A is depleted using AdenoCRE recombinase based methods, it is hard to 

asses in a mixed population of cells the exact moment of total CENP-A depletion coupled 

with rapid decline in proliferation and increase in mitotic defects. So especially when 

assessing centromere establishment or immediate molecular effects, new models are 

needed. This is why we have devised the hara-kiri approach. 
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7.5. Perspectives 

 Perspectives regarding the phosphorylation of the NH2-terminus of mouse CENP-A in 

MEF cells: The first step forward in this project will be to pin point the serine or serines 

that are phosphorylated in the mouse CENP-A tail. It would be also interesting to evaluate 

whether the localization of other CCAN proteins, mainly CENP-T and CENP-B are 

affected by amino-tail phosphorylation and to quantify the effects on these three proteins. 

What is the extent of kinetochore disruption in the absence of CENP-A phosphorylation 

and what are the downstream effects of partial CENP-C dislocation?   

 Additionally, we would like to show that the 14-3-3 proteins are the "bridges" 

involved in the interaction between CENP-C and the phosphorylated N-terminal domain of 

CENP-A, as in HeLa cells.  

 Eventually it would be desirable to elucidate the kinase responsible for the 

phosphorylation of the amino-tail. Are CENP-A homologues in other eukaryotes also 

phosphorylated? Does it have the same effect on CENP-C?  

 

 Perspectives regarding the functions of the NH2-terminus and the use of the Hara-kiri 

approach in HeLa cells:  The extent of experiments we were able to run with the Hara-kiri 

approach was limited due to the very limited supply of the inhibitor we had. Fortunately, 

the inhibitor has recently been commercialized and we can now purchase it. We would like 

to initially perform the cleavage experiments and reproduce results using live microscopy. 

This will also provide us with additional information on whether the length of mitosis is 

prolonged due to the absence of the amino-tail.  

 It would be also interesting to evaluate whether the localization of CCAN proteins, 

mainly CENP-C but also CENP-T and CENP-B after amino-tail cleavage with the Hara-

kiri method. We would like to pursue the localization of these proteins right after NH2-

terminus cleavage but also at the upcoming mitosis after the cleavage. 

 As mentioned before, the Hara-kiri approach is a new approach we have devised and 

is applicable to other proteins. It can be used in a similar way to our project to study 

functions of other histone tails in time or to study the function other proteins implicated in 

rapid phased processes like mitosis. We expect this approach to become a valuable tool in 

future research. Eventually we would like to use this approach to also further study the 

function of the carboxy-tail of CENP-A, with special interest to its role in CENP-C 

stabilization and centromere maintenance. 
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 A new drug inducible method for controllable CENP-A degradation: A plant auxin-

inducible degron (AID) system has been shown to degrade AID-tagged target proteins in 

nonplant cells (Nishimura et al., 2009). This method has recently become available and 

much like the Hara-kiri approach can be a very useful tool to study CENP-A function. The 

AID-tagged CENP-A can be used to replace in MEF cells the endogenous CENP-A that 

we can deplete using AdenoCRE infection. These cells in turn can be invaluable since 

CENP-A null phenotype can be induced rapidly be after auxin addition. In fact, 

Cleaveland lab has shown that induced CENP-A degradation occurs rapidly after addition 

of auxin with protein half-life reduced to as little as 9 min. Additionally, AID-mediated 

degradation is demonstrated to be rapidly reversible upon auxin removal (Holland et al., 

2012). It can be very interesting to combine the two approaches to the study of CENP-A 

tails.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 87 

ANNEXES 

8. Other publications 

Paper has been accepted, publication pending in Biochemsitry and Cell Biology. 

 

Histone H3.3 regulates mitotic progression in mouse embryonic 

fibroblasts 

 

Aysegul Ors1,2*, Christophe Papin3*, Bertrand Favier4, Yohan Roulland1, Defne 

Dalkara1, Mehmet Ozturk5, Ali Hamiche3# Stefan Dimitrov1# and Kiran Padmanabhan6#. 

 

1 Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209/ 

CNRS 5309, 38700 La Tronche, France 

2 Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 

06800 Ankara, Turkey 

3 Université de Strasbourg, Institut de Génétique et Biologie Moléculaire et Cellulaire 

(IGBMC), CNRS, INSERM, Equipe labélisée Ligue contre le Cancer, 1 rue Laurent 

Fries, B.P. 10142, 67404 Illkirch Cedex, France.  

4 Université de Grenoble Alpes, Team GREPI, Etablissement Français du Sang, EA 

7408, BP35, 38701 La Tronche, France. 

5 Izmir Biomedicine and Genome Center, Faculty of Medicine, Dokuz Eylül University, 

Izmir, Turkey.  

6 Institut Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieur de Lyon, 

UMR 5242, 46 Allée d'Italie, 69364 Lyon Cedex 07, France. 

 

*, equal contribution 

#, corresponding authors: kiran.padmanabhan@ens-lyon.fr, Stefan.dimitrov@univ-

grenoble-alpes.fr,  hamiche@igbmc.fr 

 

 



 88 

 

 

 

 

 

 2 

Abstract 

H3.3 is a histone variant, which marks transcription start sites as well as telomeres and 

heterochromatic sites on the genome. H3.3 presence is thought to positively correlate 

with transcriptional status of its target genes. Using a conditional genetic strategy 

against H3.3B combined with short hairpin RNAs against H3.3A, we essentially 

depleted all H3.3 gene expression in mouse embryonic fibroblasts. Following nearly 

complete loss of H3.3 in cells, our transcriptomic analyses show very little impact on 

global gene expression as well as on histone variant H2A.Z localization. Instead, 

fibroblasts display slower cell growth and an increase in cell death coincident with large-

scale chromosome misalignment in mitosis and large polylobed or micronuclei in 

interphase cells. Thus we conclude that H3.3 may additionally have an important under-

explored role in chromosome segregation, nuclear structure and maintenance of 

genome integrity.  

 

Keywords 

H3.3, transcription, Mouse embryonic fibroblasts, RNA-seq, mitosis 

 

Introduction 

The replacement of canonical histones, core constituents of chromatin, by their 

variants drives chromatin dynamics and allows for functional and structural regulation of 

key cellular mechanisms (Boulard et al. 2007, Henikoff 2008). In contrast with 

replication dependent (RD) histones, the deposition of replication independent (RI) 

occurs in a cell cycle independent manner (Henikoff et al. 2004). There are RI variants 

for all the RD histones except for histone H4 (Hake et al. 2005, Pusarla and Bhargava 

2005). The histone H3 variant H3.3 differs from its RD counterparts H3.1 and H3.2 by 
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