, La plupart des microscopes chirurgicaux dispose, au moins en option, d'un système vidéo d'acquisition stéréoscopique. Les ux vidéo peuvent être acquis directement en numérique ou numérisée et même stockées au format DICOM (DICOM Izer

. Cependant, notre méthode ne peut pas être utilisée sans intervention manuelle. Les méthodes de traitement de la vidéo sont donc utiles dans toutes ces applications

, Le suivi vidéo :vers un système expert de supervision

, En endoscopie ou en microscopie, toute la vidéo analogique est archivée. Elle est cependant très peu consultée, car les interventions sont longues, souvent plusieurs heures. Retrouver un passage précis d'une intervention est très long et laborieux. L'indexation vidéo semble ici essentielle. Suivre les déformations, pourrait permettre de détecter les changements d'action. Une autre possibilité, peut-être complémentaire, est de suivre les outils dans la vidéo. Plusieurs travaux ont déjà montré la faisabilité de cette approche, Trajectographie de points déformés pour l'indexation vidéo Les nouveaux standards d'imagerie médicale prennent en compte la vidéo. DICOM, par exemple, a un groupe de travail spéciquement dédié : DICOM WG 13

, Nous avons cherché à appliquer nos ltres de suivi au suivi de points d'intérêt sur les outils, mais sans succès. Nous l'expliquons par la fréquence d'acquisition faible de la vidéo. Les outils d'une image à l'autre ont des sauts de déplacements de plus de 50 pixels, et nous perdons toute information de déplacement

J. C. Mlj-apuzzo and . Chen, Stereotaxy, navigation and the temporal concatenation, Stereotact Funct Neurosurg, vol.72, p.828, 1999.

. Ma-audette, T. Ferrie, and . Peters, An algorithmic overview of surface registration techniques for medical imaging, Med Image Anal, vol.4, 2000.

D. Amin, . Kanade, B. Digioia, and . Jaramaz, Ultrasound registration of the bone surface for surgical navigation, Comput Aided Surg, vol.8, issue.1, p.116, 2003.

K. Akesson, Augmented virtuality : A method to automatically augment virtual worlds with video images, 1998.

. Bdo-anderson and . Moore, Optimal Filtering, 1979.

E. Arnaud, B. Memin, and . Cernuschi-frías, Conditional lters for image sequence-based tracking -application to point tracking, IEEE Trans Image Process, vol.14, issue.1, p.6379, 2005.

M. Arulampalam, . Maskell, T. Gordon, and . Clapp, A tutorial on particle lters for online non linear/non-gaussian bayesian tracking, IEEE Trans Image Process, vol.50, issue.2, 2002.

. Ma-audette, . Siddiqi, T. M. Fp-ferrie, and . Peters, An integrated rangesensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery, Comput Vis Image Underst, vol.89, p.22651, 2003.

M. Audette, T. Siddiqi, ;. Peters, T. Ahmadi, . Sielhorst et al., Level-set surface segmentation and fast cortical range image tracking for computing intrasurgical deformations, MICCAI part I, p.4208, 1999.

. Rta-azuma, A survey of augmented reality, Presence : Teleoperators and Virtual Environments, vol.6, p.35585, 1997.

G. Batan, M. Ben-dadi, ;. Laborde, M. Birkfellner, . Figl et al., A head-mounted operating binocular for augmented reality visualization in medicinedesign and initial evaluation, IEEE Trans Med Imaging, vol.21, issue.8, p.4957, 2002.

R. J. Benveniste, I. Boppart, C. Herrmann, . Pitris, . Stamper et al., Correlation of factors predicting intraoperative brain shift with successful resection of malignant brain tumors using image-guided techniques, IEEE Eng Med Biol Mag, vol.63, issue.2, p.5462, 1999.

P. J. Besl and . Mckay, A method of registration of 3-D shapes, IEEE Trans Pattern Anal Mach Intell, vol.14, issue.2, p.23956, 1993.

C. Bichlmeier and . Navab, Virtual window for improved depth perception in medical ar, International Workshop on Augmented Reality environments for Medical Imaging and Computer-aided Surgery, 2006.

C. Bichlmeier, N. Sielhorst, ;. Navab, . Bucholz, J. Yeh et al., The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device, International Workshop on Augmented Reality environments for Medical Imaging and Computer-aided Surgery, p.45966, 1997.

J. Cohen-adad, . Paul, P. Morandi, and . Jannin, Knowledge modeling in image guided neurosurgery : application in understanding intra-operative brain shift, SPIE Medical Imaging : Visualization, Image-Guided Procedures and Display, pp.6141-87, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00147527

C. Ciofolo and C. Barillot, Brain Segmentation with Competitive Level Sets and Fuzzy Control, IPMI, p.33344, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00137473

. Ld-cohen and . Cohen, Finite-element methods for active contour models and balloons for 2-D and 3-D images, IEEE Trans Pattern Anal Mach Intell, vol.15, issue.11, p.113147, 1993.

A. Cao, M. I. Dumpuri, H. Miga-;-o-clatz, . Delingette, . If-talos et al., Tracking cortical surface deformations based on vessel structure using a laser range scanner, ISBI, vol.24, p.141727, 2005.

P. Cinquin, Computer assisted medical interventions : passive and semi-active aids, IEEE Eng Med Biol Mag, vol.14, issue.3, p.25463, 1995.

P. Coupé, C. Hellier, and . Barillot, Etat de l'art des méthodes de correction des déformations cérébrales per-opératoires, IRISA, 2005.

K. Cleary, S. Kinselle, J. Collins, . Montagnat, . Ap-zijdenbos et al., Automated estimation of brain volume in multiple sclerosis with BICCR, CARS, International Congress series 1281, vol.8328, p.141, 2001.

. Corrouge, Modélisation statistique de formes en imagerie cérébrale, IFSIC, 2003.

J. Cox, Montreal Med J, issue.24, p.6615, 1896.

H. Chui and . Rangarajan, A new algorithm for non-rigid point matching, IEEE CVPR, 2000.

P. J. Cassidy, ;. Gk-radda, M. Carter, . Sermesant, . Cash et al., Application of soft tissue modelling to image-guided surgery, J R Soc Interface, vol.2, issue.3, p.893909, 2005.

R. M. Comeau, . Sadikot, T. M. Fenster, ;. Peters, . Castellano-smith et al., Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery, SPIE Medical Imaging : Image Processing, vol.27, p.53849, 2000.

. Ma-cardin, . Wang, ;. Db-plewes, J. Colchester, . Zhao et al., Development and preliminary evaluation of VISLAN, a surgical planning and guidance system using intra-operative video imaging, MICCAI (2), vol.1, p.65662, 1996.

T. Fahmy, State of the art in volume rendering, Minimally Invasive Therapies & Novel EmbeddedTechnology Systems, Text Book of the 2006 Summer School, p.1558, 2006.

;. O-faugeras, . Fichtinger, G. Deguet, . Fischer, . Iordachita et al., Three-Dimensional Computer Vision, a Geometric Viewpoint, Comput Aided Surg, vol.10, issue.4, p.24155, 1993.

J. Feldmar, G. Declerck, N. Malandain, . Fischer, . Deguet et al., Extension of the ICP algorithm to nonrigid intensity-based registration of 3D volumes, Stud Health Technol Inform, vol.66, issue.2, p.1505, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00615765

. Oj-fleig, J. Devernay, P. Scarabin, and . Jannin, Surface reconstruction of the surgical eld from stereoscopic microscope views in neurosurgery, CARS, p.25964, 2001.

H. Fuchs, R. Ma-livingston, . Raskar, K. Colucci, . Keller et al., Augmented reality visualization for laparoscopic surgery, MICCAI, p.93443, 1998.

G. Florou, . Mohr-;-m-ferrant, . Nabavi, . Macq, . Black et al., Serial registration of intraoperative MR images of the brain, International Conference on Pattern Recognition, vol.1, p.33759, 1996.

. Em-friets, . Strohbehn, D. W. Hatch, and . Roberts, A frameless stereotaxic operating microscope for neurosurgery, IEEE Trans Biomed Eng, vol.36, issue.6, pp.608-625, 1989.

J. M. Fitzpatrick, C. R. West, and . Maurer, Predicting error in rigid-body, point-based registration, IEEE Trans Med Imaging, vol.17, issue.5, p.694702, 1998.

. Dg-gobbi, T. M. Comeau, and . Peters, Ultrasound/MRI overlay with image warping for neurosurgery, MICCAI, p.10614, 2000.

P. Grunert, . Darabi, R. Espinosa, ;. Filippi, . Wel-grimson et al., An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization, IEEE Trans Med Imaging, vol.26, issue.2, p.12940, 1996.

O. Ganslandt, C. Fahlbucch, H. Nimsky, M. Kober, . Moller et al., Functional neuronavigation with magnetoencephalography : outcome in 50 patients with lesions around the motor cortex, J Neurosurg, vol.91, p.739, 1999.

T. Gasser, . Ganslandt, . Sandalcioglu, . Stolke, C. Fahlbusch et al., Intraoperative functional MRI : Implementation and preliminary experience, GGS + 05, vol.26, p.68593, 2005.

K. Gary, . Ibanez, . Aylard, . Gobbi, K. Blake et al., An integrated visualization system for surgical planning and guidance using image fusion and an open MR, Stereotact Funct Neurosurg, vol.39, issue.4, p.96775, 1994.

M. Gr®ger, . Ortmaier, G. Sepp, ;. Hirzinger, E. Gasser et al., Functional magnetic resonance imaging in anesthetized patients : a relevant step toward real-time intraoperative functional neuroimaging, SPIE Medical Imaging Conference, vol.4681, p.23341, 2002.

N. Glossop and . Wang, Projection augmented reality system for computerassisted surgery, CARS, vol.1256, p.6571, 2003.

P. Hellier, C. Barillot, ;. Hawkes, D. Baratt, . Blackall et al., Tissue deformation and shape models in image-guided interventions : a discussion paper, IEEE Trans Med Imaging, vol.22, issue.2, p.2333, 2003.

. Ph-hsieh, C. H. Chang, ;. Shih, S. Hoppe, . Dauber et al., Image-guided periacetabular osteotomy : computer-assisted navigation compared with the conventional technique : A randomized study of 36 patients followed for 2 years, Stud Health Technol Inform, vol.77, issue.4, p.2068, 2001.

P. Hellier, ;. Hartkens, . Hill, . Castellano-smith, C. R. Hawkes et al., Measurement of intraoperative brain surface deformation under a craniotomy, Recalage non rigide en imagerie cérébrale : méthodes et validation, vol.22, p.51426, 1998.

G. Horstmann and H. Reinhardt, Ranging accuracy test of the sonic microstereometric system. instrumentation assessment, Neurosurgery, vol.34, issue.4, p.75455, 1994.

A. Hagemann, . Rohr, . Hastreiter, C. Rezk-salama, C. Nimsky et al., Coupling of uid and elastic models for biomechanical simulations of brain deformations using FEM, Computers & Graphics, vol.6, issue.4, p.44764, 2000.

. Bkp-horn and . Shunk, Determining optical ow, Articial Intelligence, vol.17, p.185203, 1981.

C. Harris and M. Stephens, A combined corner and edge detector, 4th Avey Vision Conference, p.14751, 1988.

M. Isard and . Blake, CONDENSATIONconditional density propagation for visual tracking, Int J Comput Vis, vol.1, issue.29, p.528, 1998.

M. Isard and . Blake, A mixed-state CONDENSATION tracker with automatic model-switching, ICCV, p.107112, 1998.

S. Iu and K. W. Rogovin, Registering perspective contours with 3-D objects without correspondance using othogonals polynomials, VRAIS, p.3744, 1996.

P. Jannin, De la neurochirurgie guidée par l'image, au processus neurochirurgical assitée par la connaissance et l'information, chapter Chapitre 4 : Validation des méthodes de traitement d'images en chirurgie guidée par l'image, 2005.

P. Jannin, . Bouliou, J. Journet, . Scarabin-;-p-jannin, J. Bouliou et al., A ray-traced texture mapping for enhanced virtuality in image-guided neurosurgery, SPIE Medical Imaging, vol.29, p.110, 1996.
URL : https://hal.archives-ouvertes.fr/inserm-00333607

P. Jannin, B. Grova, and . Gibaud, Fusion de données en imagerie médicale : revue méthodologique basée sur le contexte clinique, ITBM-RBM, issue.22, pp.196-215, 2001.

P. Jannin, C. R. Grova, and . Maurer, Model for dening and reporting referencebased validation protocols in medical image processing, Int J Computer Assisted Radiology and Surgery, vol.1, issue.2, p.6373, 2006.

A. E. Johnson, X. Kang-;-p-jannin, . Morandi, . Oj-fleig, P. Le-rumeur et al., Integration of sulcal and functional information for multimodal neuronavigation, Image and Vision Computing, vol.17, issue.2, p.71323, 1999.

. Fa-jolesz, Image-guided procedures and the operating room of the future, Radiology, vol.204, issue.3, p.60112, 1997.

P. Jannin, . Raimbault, . Oj-fleig, . Morandi, B. Scarabin et al., Bayesian estimation of intra-operative deformation for image-guided surgery using 3-D ultrasound, Surgetica, p.15561, 2000.

K. Pj, Intraoperative brain shift and deformation : a quantitative analysis of cortical displacement in 28 cases, Neurosurgery, vol.43, issue.4, p.759, 1998.

;. Pj-kelly, R. Korb, . Grunert, . Burgert, . Hu-lemke et al., Measurement of intraoperative brain surface deformation under a craniotomy, CARS, vol.43, p.515, 1998.

. Pj-kelly, . Ba-kall, F. Goerss, T. Earnest-;-m-kabuto, H. Kubota et al., Experimental and clinical study of detection of glioma at surgery using uorescent imaging by a surgical microscope after uorescein administration, Minim Invasive Ther Allied Technol, vol.64, issue.1, p.5364, 1986.

. Ge-keles, M. S. Lr-lamborn, and . Berger, Coregistration accuracy and detection of brain shift using intraoperative sononavigation during resection of hemispheric tumors, Neurosurgery, vol.53, issue.3, p.55662, 2003.

. Mf-khan, O. Mewes, and . Skrinjar, Brain shift analysis for deep brain stimulation surgery, ISBI, p.654657, 2006.

R. Klette, A. Schluns, and . Koshan, Computer Vision, Three-Dimensional Data from Images, 1996.

L. Médicale,

F. Laerum, . Borchgrevink, and P. Fosse, The new interventional centrea multidisciplinary r&d clinic for interventional radiology and minimal access surgery, Comput Methods Programs Biomed, vol.57, issue.1-2, p.2934, 1998.

. We-lorensen, ;. Cline, . Long, . Cinquin, . Troccaz et al., Marching Cubes : A high resolution 3D surface construction algorithm, SIGGRAPH, vol.21, p.4551, 1987.

C. G-le-goualher, Y. Barillot, and . Byzais, Three-dimensional segmentation and representation of cortical sulci using active ribbons, Intern J Pattern Recognit Artif Intell, vol.11, issue.8, p.1295315, 1997.

H. Liao, . Hata, M. Nakajima, . Iwahara, T. Sakuma et al., Surgical navigation by autostereoscopic image overlay of integral videography, IEEE Trans Inf Technol Biomed, vol.8, issue.2, p.11421, 2004.

. Ma-livingston, Evaluating human factors in augmented reality systems, EEE Comput Graph Appl, vol.25, issue.6, p.69, 2005.

J. Luber, ;. Mackevics, M. Leong, L. Nicolaou, G. Atallah et al., Nonrigid brain registration : synthesizing full volume deformation elds from model basis solutions constrained by partial volume intraoperative data, Computed Assisted Radiology, vol.9, p.494501, 1995.

J. Lavest, G. Rives, and M. Dhome, Three-dimensional reconstruction by zooming, IEEE Trans Rob Autom, vol.9, issue.2, p.196207, 1993.

. Hu-lemke, S. C. Ratib, and . Horii, Workow in the operating room : a summary review of the arrowhed 2004 seminar in imaging and informatics, CARS, p.8627, 2005.

. H-c-lin, . Shafran, . Murphy, . Okamur, G. D. Dd-yuh et al., Automatic detection and segmentation of robot-assisted surgical motions, MIC-CAI, p.80210, 2005.

. Mmj-letteboer, M. A. Willems, W. J. Viergever, and . Niessen, Brain shift estimation in image-guided neurosurgery using 3-D ultrasound, IEEE Trans Biomed Eng, vol.52, issue.2, p.26876, 2005.

H. Livyatan, L. Yaniv, and . Joskowicz, Gradient-based 2D/3D rigid registration of uoroscopic X-ray to CT, IEEE Trans Med Imaging, Special issue : Medical Image Registration, vol.22, issue.11, 2003.

. Tl-miller, T. Altman, T. H. Tsuda, and . Shaer, An ultrasound imaging method for in vivo tracheal bulk and young's moduli of elasticity, J Biomech, 2006.

, Advanced Techniques in Image-Guided Brain and Spine Surgery, chapter Sources of Error in Image Registration for Cranial Image-Guided Neurosurgery, p.1036, 2002.

M. Isard and . Blake, Icondensation : Unifying low-level and high-level tracking in a stochastic framework, ECCV (1), p.893908, 1998.

P. Milgram and H. Colquhoun, Merging Real and Virtual Worlds, chapter Chapter 1 : A Taxonomy of Real and Virtual World Display Integration, 1999.

B. Ma and . Ellis, Surface-based registration with a particle lter, MICCAI (1), p.56673, 2004.

. Mi-miga, . Fitzpatrick, K. D. Galloway, and . Paulsen, Incorporation of surface-based deformations for updating images intraoperatively, SPIE Medical Imaging 2001 : Image Processing, 2001.

X. Morandi, P. Haegelen, L. Henaux, D. Maurer, . Hill et al., Brain shift is central to the pathogenesis of intracerebral haemorrhage remote from the site of the initial neurosurgical procedure, IEEE Trans Med Imaging, vol.67, issue.8569, p.817825, 1998.
URL : https://hal.archives-ouvertes.fr/inserm-00141643

P. Merloz, . Huberson, . Tonetti, H. Eid, and . Vouaillat, Computer-assisted pedicle screw insertion techniques, Orthopaedics, vol.18, issue.2, p.14959, 2003.

M. Matsumura, T. Kawashima, C. Shibazaki, and . Ohye, Stereotactic biopsy for deep-seated intracerebral lesions. correlation between computer tomography, positron emission tomography and electrophysiological activity, Appl Neurophysiol, vol.50, issue.1-6, p.17882, 1987.

Y. Munz, . Moorthy, . Dosis, S. Hernandez, . Bann et al., The benets of stereoscopic vision in robotic-assisted performance on bench models, Surg Endosc, vol.18, issue.4, p.6116, 2004.

K. Matsui, H. Matsumiya, K. Liao, . Masamune, T. Yasuda et al., Three dimensional real-time image overlay navigation system using integral videography in knee-joint surgery : evaluation of motion tracking capability, CARS, p.1813, 2006.

K. Masamune, . Masutani, . Nakajima, . Sakuma, . Dohi et al., Three-dimensional slice image overlay system with accurate depth perception for surgery, MICCAI, p.395402, 2000.

B. Mansoux, J. Nigay, and . Troccaz, Interaction between a surgeon and a computer assisted surgery system : an interactive design space, Surgetica, 2005.

B. Mansoux, J. Nigay, and . Troccaz, The mini-screen : an innovative device for computer assisted surgery, MMVR. IOS Press, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00294522

S. Martelli, P. Nofrini, A. Vendruscolo, and . Visani, Criteria of interface evaluation for computer assisted surgery systems, Int J Medical Informatics, vol.72, pp.35-45, 2003.

M. Miga, . Paulsen, . Kennedy, . Hoopes, D. W. Hartov et al., Initial in-vivo analysis of 3-D heterogeneous brain computations for model-updated image-guided neurosurgery, MICCAI, vol.49, p.97385, 2000.

. Mi-miga, D. M. Sinha, and . Cash, Biomechanics Applied to Computer Assisted Surgery, chapter Techniques to Correct for soft Tissue Deformations during Image-Guided Brain Surgery, 2005.

J. A. Maintz, M. A. Vierveger, ;. Nakajima, H. Atsumi, . Kikinis et al., Use of cortical surface vessel registration for image-guided neurosurgery, Med Image Anal, vol.1, issue.6, p.12018, 1997.

R. Narayanan, J. Fessler, C. Park, P. Nabavi, . Black et al., Quantication of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging, IPMI, vol.48, p.110, 2000.

. Ta-nagelhus-hernes, Computer-assisted 3d ultrasound-guided neurosurgery : technological contributions, including multimodal registration and advanced display, demonstrating future perspectives, Int J Medical Robotics and Computer Assisted Surgery, vol.2, issue.1, p.6

S. Nicolau, Un système de réalité augmentée pour guider les opérations du foie en radiologie interventionnelle

A. Nabavi, . Kacher, . Dt-gering, W. M. Pergolizzi, . Wells et al., UNSA, Neurosurgical procedures in a 0.5 Tesla, open-conguration intraoperative MRI : Plannning, visualization, and navigation. Automedica, vol.00, p.135, 2001.

L. Nigay, J. Mansoux, and . Troccaz, Abstract and concrete interaction with mixed reality systems / the case of the mini screen, a new interaction device in computer-assisted surgery, MIXER, 2004.

J. Odobez and P. Bouthemy, Robust multiresolution estimation of parametric motion models, Journal of Visual Communication and Image Representation, vol.6, issue.4, p.348365, 1995.

T. Ortmaier, D. H. Groger, V. Boehm, G. Falk, and . Hirzinger, Motion estimation in beating heart surgery, IEEE Trans Biomed Eng, vol.52, issue.10, p.172940, 2005.

P. Paul, Etude des déformations intra-opératoires de la surface corticale basée sur la reconstruction stéréoscopique en neurochirurgie guidée par l'image, 2003.

H. Park, . Bland, C. R. Brock, and . Meyer, Adaptive registration using local information measures, Med Image Anal, vol.8, issue.4, p.46573, 2004.

X. Pennec, N. Cacher, and . Ayache, Tracking brain deformations in time sequences of 3D US images, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00615677

X. Pennec, N. Cachier, ;. Ayache, . Ca-pelizzari, . Chan et al., Accurate three-dimensional registration of CT, PET and/or MR images of the brain, Pattern Recognition Letters. Special issue : Ultrasonic Image Processing and Analysis, vol.24, p.206, 1989.

T. M. Peters, Image-guidance for surgical procedures, Phys Med Biol, vol.51, issue.14, p.50540, 2006.

S. Periaswamy and H. Farid, Medical image registration with partial data, Med Image Anal, 2006.

G. Piriou, Modélisation statistique du mouvement dans des séquences d'images pour la reconnaissance de contenus dynamiques, 2005.

A. G. Podoleanu, Optical coherence tomography, Br J Radiol, vol.78, issue.935, p.97688, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00557342

X. Pennec, P. Roche, N. Cachier, O. Ayache-;-a-puzrin, C. Skrinjar et al., Multi-Sensor Image Fusion and its Applications, chapter Non-Rigid MR/US Registration for Tracking Brain Deformations, SPIE Medical Imaging, vol.5744, p.5764, 2005.

B. Peuchot, M. Tanguy, and . Eude, Virtual reality as an operative tool during scoliosis surgery, CVRMed, p.54954, 1995.

T. Paleologos, . Wadley, C. Kitchen, and . Thomas, Clinical utility and cost-eectiveness of interactive image-guided craniotomy : clinical comparaison between conventionnal and image-guided meningioma surgery, Neurosurgery, vol.47, p.408, 2000.

. Bp-poncelet, . Vj-weeden, M. S. Weissko, and . Cohen, Brain parenchyma motion : Measurement with Cine echoplanar MR imaging, Radiology, vol.185, pp.645-51, 1992.

. Gk-rodhe, B. M. Aldroubi, and . Dawant, The adaptive bases algorithm for intensity based nonrigid image registration, IEEE Trans Med Imaging, vol.22, issue.11, p.14709, 2003.

M. Raimbault, Modélisation de procédures neurochirurgicales dans un contexte de chirurgie guidée par l'image : méthodologie et résultats préliminaires, 2004.

I. Reinertsen, M. Collins-;-i-reinertsen, S. Descoteaux, K. Drouin, L. Siddiqi et al., A realistic phantom for brain-shift simulation, MICCAI, vol.33, p.20816, 2004.

F. Rousseau, C. Hellier, ;. Barillot, . Dw-roberts, F. E. Hartov et al., Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery, Course of brain shift during microsurgical resection of supratentorial cerebral lesions : limits of conventional neuronavigation, vol.25, p.36977, 1998.

K. Rohr, Fundamental limits in 3D landmark localization, IPMI, p.28698, 2005.

T. Rohlng, Transformation model and constraints cause bias in statitics on deformation elds, MICCAI part I, p.20714, 2006.

J. Rosen, . Solazzo, M. Hannaford, ;. Sinanan, . Rosenthal et al., Decomposition of laparoscopic surgery for objective evaluation of surgical residents'learning curve using hidden markov model, IEEE Trans Med Imaging, vol.7, issue.3, p.142435, 2002.

G. Stetten, ;. Chib, B. M. Sinha, . Dawant, . Duay et al., A method to track cortical surface deformations using a laser range scanner, IEEE Trans Med Imaging, vol.20, issue.3, p.76781, 2001.

D. Stoyanov, G. Darzi, ;. Yang, . Sun, . Farid et al., Realtime correction scheme for calibration and implementaiton of microscope-based image-guided neurosurgery, SPIE Medical Imaging : Visualization, Display, and Image-Guided Procedures, vol.4681, p.2930, 2003.

E. Samset and H. Hirschberg, Neuronavigation in intra-operative MRI, Comput Aided Surg, vol.4, issue.4, 1999.

D. Simon, Intra-operative position sensing and tracking devices, Proceedings of the First Joint CVRMed / MRCAS Conference, p.6264, 1997.

P. St-jean, . Sadikot, . Collins, . Clonda, . Kasrai et al., Automated atlas integration and interactive 3-dimensional visualization tools for planning and guidance of functional neurosurgery, IEEE Trans Med Imaging, p.67280, 1998.

R. Szeliski and . Lavallée, Matching 3-D anatomical surfaces with non-rigid deformations unsing octree-splines, Int J Computer Vision, vol.18, issue.2, p.17186, 1996.

P. Sturm, S. Maybank, ;. Stoyanov, . Mylonas, . Deligianni et al., Soft-tissue motion tracking and structure estimation for robotic assisted mis procedures, IEEE CVPR, p.13946, 1999.

. Al-simpson, . Ma, E. Chen, J. Ellis, and . Stewart, Using registration uncertainty visualization in a user study of a simple surgical task, MICCAI, 2006.

W. Schroeder, B. Martin, and . Lorensen, The Visualization Toolkit : An Object-Oriented Approach To 3D Graphics, 1993.

O. Skrinjar and D. J. Nabavi, Model-driven brain shift compensation, Med Image Anal, vol.6, issue.4, p.36173, 2002.

H. Sun, H. Roberts, . Farid, . Wu, K. D. Hartov et al., Cortical surface tracking using a stereoscopic operating microscope, Acta Neurochir Suppl, vol.56, issue.1, p.912, 2003.

J. Shi and C. Tomasi, Good features to track, IEEE CVPR, p.593600, 1994.

O. Skrinjar, J. Tagare, and . Duncan, Surface growing from stereo images, IEEE CVPR, p.5716, 2000.

H. Sun, Registration Using Cortical Surface for Microscope-based Image-guided Neurosurgery, 2002.

C. Tomasi, ;. Kanade, G. Ga-turgeon, G. Lehmann, M. Guiraudon et al., 2D-3D registration of coronary angiograms for cardiac procedure planning and guidance, Med Phys, vol.32, issue.12, p.7108, 1991.

. D-trevisan, . Nicolas, B. Delville, and . Macq, Towards markerless augmented medical visualization, MICCAI, Workshop AMI-ARCS, 2004.

R. Traub, . Stephan, . Heining, C. Sielhorst, . Riquarts et al., Stereoscopic augmented reality navigation for trauma surgery : cadaver experiment and usability study, IEEE CVPR, vol.36474, p.302, 1986.

J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain : 3-Dimensional Proportional System : An Approach to Cerebral Imaging, Thieme Medical, 1988.

M. Uenohara and . Kanade, Vision-based object registration for real-time image overlay, Comput Biol Med, vol.25, issue.2, p.24960, 1995.

. Pa-van-den-elsen, M. A. Pol, and . Viergever, Medical image matching -a review with classication, IEEE Eng Med Biol Mag, vol.12, issue.1, p.2639, 1993.

M. Vaillant, J. Glaunes, ;. Viirre, H. Pryor, T. Nagata et al., The virtual retinal display : A new technology for virtual reality and augmented vision in medicine, D Stredney and SJ Weghorst, vol.38192, p.2527, 1998.

J. Vigueras, M. Simon, and . Berger, Erreurs de calibration en réalité augmentée : une étude pratique, Congrès RFIA'2006, 2006.

. Sk-wareld, Medical image analysis for image guided therapy, IEEE DICTA, p.28491, 2005.

M. Wendt, F. Bani-hashemi, . Sauer-;-cr-wirtz, M. Bonsanto, . Knauth et al., Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery : method and preliminary experience, Brevet international, vol.2, p.1729, 1997.

K. Wurstbauer, P. Deutschmann, F. Kopp, ;. Sedlmayer, . Sk-wareld et al., An augmented reality system for mr image-guided needle biopsy : Initial results in a swine model, Threedimensional digitizer (neuronavigator) : new equipment for ct-guided stereotaxic surgery, vol.75, p.5437, 1987.

P. P-a-woerdeman, H. Willems, J. Noordmans, . Van-der, and . Sprenkel, The analysis of intraoperative neurosurgical instrument movement using a navigation log-le, Int J Med Robotics Comput Assist Surg, vol.2, issue.2, 2006.

. Ml-yuan, A. Ong, and . Nee, Registration using natural features for augmented reality systems, IEEE Trans Vis Comput Graph, vol.12, issue.4, p.56980, 2006.

L. Younes, ;. Pa-yushkevich, J. Piven, C. H. Hazlett, . Smith et al., User-guided 3D active contour segmentation of anatomical structures : Signicantly improved eciency and reliability, Deformations, warping and object comparison, 2000.

Z. Zhang, A exible new technique for camera calibration, IEEE Trans Pattern Anal Mach Intell, vol.22, issue.11, p.13304, 2000.

C. De-stéréotaxie-de-leksell and .. .. ,

. .. Scanner-ct-peropératoire,

.. .. Trois-types-d'irmi,

. .. Imagerie-ultrasonore-peropératoire,

L. .. Visiocell-de-mauna-kea-technologies, , p.17

.. .. Modèle,

. .. Quelques, , p.19

. Éléments and . .. De-neuronavigation, , p.20

.. .. Salle-d'opération-multimodale,

. .. Mc99], 30 2.2 RA dans le microscope chirurgical en neurochirurgie, p.35

. .. , Superposition d'ultrasons sur la vue directe du patient, p.37

. .. , , p.38

, Augmentation de la vidéo par information virtuelle

. .. Va, , p.40

. .. Principe-d'un-casque-de-ra-À-visualisation-vidéo, , p.40

. .. Ra-en-laparoscopie,

. .. Principe-d'un-casque-de-ra-À-visualisation-optique, , p.41

.. .. Le-varioscope,

. .. Principe-de-ra-sur-un-Écran-extérieur, , p.43

, Principe de la projection directe sur patient

, Principe du miroir sans tain en chirurgie

, Illustration de deux lieux de perception possible en laparoscopie, p.45

, Schéma de l'occupation d'une salle d'opération

, Explication géométrique des paramètres du modèle de caméra sténopé, p.64

.. .. Principe-de-la-rectication,

. .. Exemple-de-modèle-patient-3d,

. .. Cadre-de-mayeld,

, Recalage patient-image par pointeur

.. .. Images-d'interventions,

, Système d'acquisition stéréoscopique, vol.74, p.203

.. .. Relations,

L. .. , , p.77

. .. Carte-de-disparité,

, Représentation de la surface des volumes d'intérêt

, Diérence entre les conditions cliniques et les conditions de calibrage, p.83

. .. Surfaces-de-référence,

. .. , Résultats de l'évaluation des performances de la méthode de VA, p.90

, Résultats de l'analyse des eets des paramètres

. Vues-de-ra and . .. Va,

. .. Scène, , p.93

. .. Scène, , p.93

. .. Scène-de-va-après-ouverture-de-la-dure-mère, , p.94

. .. Scène, , p.94

.. .. Va-en-n-d'exérèse,

. .. , Déformations cérébrales mesurées avec une sonde ultrasons, p.111

, Déformations lors de l'ouverture

, Déformations en fonction de la distance à la surface

. .. , Angle formé par la direction principale de la déformation, p.114

C. .. Et-exérèse-d'une-lésion-dans-une-irmi-ouverte, , p.115

, Utilisation de la uorescence avec marqueurs

, Diagramme UML général représentant la globalité des solutions, p.121

, Maillage tétraédrique réalisé à partir du volume IRM préopératoire, p.122

, Systèmes d'acquisition de surfaces

.. .. Utilisation,

.. .. Exemple-de-fantôme-déformable,

, Recouvrement partiel des surfaces et disparition de matière, p.139

. .. , Covariance calculée de manière empirique, Séquence, vol.4, p.150

. .. , Principe général de l'acquisition d'images et du recalage, p.152

, Table de corrélation entre les images issues des diérents canaux, p.155

, Points sélectionnés pour l'évaluation du recalage

. .. Fantôme, , p.160

C. De-déformations-obtenues-sur-le-fantôme-en and P. .. , 161 5.10 Résultats : Surface reconstruite de la dure-mère

. .. , Résultats : amers anatomiques extraits automatiquement, p.165

, Résultats : Reconstructions stéréoscopiques achées dans l'examen IRM préopératoire165

, Résultats : champ de déformation représenté par une carte de couleur, p.166

. .. , Evaluation de la précision de notre méthode de recalage, p.166

. .. , Résultats : la surface source est la surface reconstruite, p.167

, Plusieurs coupes du volume d'ultrasons

. .. , Extrapolation de la déformation aux volumes d'intérêt, p.169

L. .. , , p.169

, Méthode : Fonction u(t) = exp ?kt

, Exemple de position d'un cavernome