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Résumé

Le script est une structure qui décrit une séquence stéréotypée d’événements ou d’actions

survenant dans notre vie quotidienne. Les histoires utilisent des scripts, avec une ou plusieurs

déviations intéressantes, qui nous permettent de mieux saisir les situations quotidiennes rapportées

et les faits saillants du récit. Ainsi, la notion de script est très utile dans de nombreuses applica-

tions d’intelligence ambiante telles que la surveillance de la santé et les services d’urgence. Ces

dernières années, l’avancement des technologies de détection et des systèmes intégrés permettent

aux systèmes de santé de collecter en permanence les activités des êtres humains, en intégrant

des capteurs dans des dispositifs portables (par exemple smart-phone ou smart-watch). La re-

connaissance de l’activité humaine (HAR) a ainsi connue un essor important grâce notamment

à des approches d’apprentissage automatique telles que le réseau neuronal ou le réseau bayésien.

Ces avancées ouvre des perspectives qui vont au delà de la simple reconnaissance d’activités. Ce

manuscrit défend la thèse selon laquelle ces données de capteurs portables peuvent être utilisées

pour générer des récits articulés autour de scripts en utilisant l’apprentissage automatique. Il ne

s’agit pas d’une tâche triviale en raison du grand écart sémantique entre les informations brutes

de capteurs et les abstractions de haut niveau présente dans les récits. A notre connaissance, il

n’existe toujours pas d’approche pour générer un une histoire à partir de données de capteurs en

utilisant l’apprentissage automatique, même si de nombreuses approches d’apprentissage automa-

tique (réseaux de neurones convolutifs, réseaux de neurones profonds) ont été proposées pour la

reconnaissance de l’activité humaine au cours des dernières années. Afin d’atteindre notre objec-

tif, nous proposons premièrement dans cette thèse un nouveau cadre qui traite le problème des

données non uniformément distribuées (problème du biais induit par des classes majoritaires par

rapport aux classes minoritaires) basé sur un apprentissage actif associé à une technique de sur-

échantillonnage afin d’améliorer la macro-exactitude de classification des modèles d’apprentissage

classiques comme le perception multi-couche. Deuxièmement, nous présentons un nouveau système

permettant de générer automatiquement des scripts à partir de données d’activité humaine à l’aide

de l’apprentissage profond. Enfin, nous proposons une approche pour l’apprentissage de scripts à

partir de textes en langage naturel capable d’exploiter l’information syntaxique et sémantique sur

le contexte textuel des événements. Cette approche permet l’apprentissage de l’ordonnancement

d’événements à partir d’histoires décrivant des situations typiques de vie quotidienne. Les perfor-

mances des méthodes proposées sont systématiquement discutées sur une base expérimentale.

Résumé du Chapter 1

Ce chapitre introduit la thèse par une présentation des motivations qui nous ont conduit à aborder

la génération d’histoires à partir de données d’activité issues d’un outil de type smartphone. Il

en discute les principales difficultés, et donne un aperçu de notre recherche et de nos principales

contributions pour les aborder. En fait, de nos jours, les données des capteurs portables sont

collectées partout. Cependant, ces données sont souvent représentées sous une forme binaire et

numérique, ce qui est difficile à comprendre pour l’homme, et il n’existe toujours pas d’approche
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permettant de les structurer et de les transformer sous une forme clairement accessible (par ex-

emple, une histoire ou des scripts). Nous insistons aussi dans ce chapitre sur le rôle joué par

l’apprentissage automatique dans ce processus qui met en jeu une chaîne complexe de traitement,

et sur les limites des techniques conventionnelles, centrées sur une problématique d’abstraction

des données. Par l’apprentissage profond, nous centrons notre attention sur les corrélations entre

informations et éléments cachés de contexte, au sein et entre niveaux d’abstraction. Trois enjeux

majeurs sont finalement identifiés: prise en compte du déséquilibre des données pour la recon-

naissance d’événements, modèles d’apprentissage profonds pour la génération flexible de concepts

sémantiques et de scripts à partir d’événements, apprentissage de scripts à partir de textes en

langage naturel capables d’exploiter l’information syntaxique et sémantique sur le contexte textuel

des événements. Enfin, la dernière section présente un aperçu des différents chapitres de la thèse.

Résumé du Chapter 2

Ce chapitre présente l’état de l’art en le structurant en deux grandes sections : (i) transformation

de données en textes et génération de scripts à partir de données, (ii) reconnaissance de l’activité

humaine à partir de données ambiantes. Dans la première section, nous présentons tout d’abord

quelques grandes tendances de la transformation de données en texte. Dans ces méthodes, cen-

trées sur la génération automatique de textes en langue naturelle (NLG), l’accent est peu mis sur

la problématique de l’apprentissage automatique. Nous discutons ensuite la problématique de la

génération de scripts utilisant le traitement de langage naturel (NLP) et les méthodes convention-

nelles d’apprentissage automatique mises en jeu. Les aspects liés à la modélisation des événements

et de leur structure temporelle sont particulièrement mis en avant. On notera néanmoins que

ces travaux s’appliquent non pas à des données ambiantes mais à des textes en langue naturelle.

La section suivante du chapitre présente l’état de l’art de la reconnaissance de l’activité humaine

(HAR) à partir de données de capteurs portables en utilisant l’apprentissage automatique. Pre-

mièrement, nous introduisons la problématique de la reconnaissance de l’activité humaine. Nous

présentons ensuite les méthodes pour réaliser la reconnaissance de l’activité, en insistant d’abord

sur les questions de l’extraction de caractéristiques et des métriques pour l’évaluation de ces méth-

odes. Nous consacrons ensuite deux sections à la problématique de l’apprentissage automatique,

la première dédiée aux techniques conventionnelles, la seconde aux techniques de l’apprentissage

profond.

Résumé du Chapter 3

Ce court chapitre donne un aperçu de la problématique abordée dans la thèse, de ses dimensions,

et de la démarche proposée. La problématique est présentée comme associant une dimension

d’abstraction des données et une dimension cognitive de communication. L’abstraction des données

met en jeu la qualité des données (introduction de la notion de déséquilibre), la prise en compte du

contexte (what, when and where) mais aussi celle de la traduction entre univers de discours (du

numérique au langagier) différents. La communication des données d’activité met en jeu la notion

de script véhiculant une information temporelle. Elle implique la prise en compte d’une dimension

linguistique. Des questions difficiles d’apprentissage sont impliquées dans les 2 dimensions et nous

mettons en avant l’apport des techniques récentes de l’apprentissage profond. Nous présentons la
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démarche proposée dans la dernière section. Elle prend appui sur les 2 domaines de l’apprentissage

automatique et du traitement du langage naturel.

Résumé du Chapter 4

Ce chapitre présente le cadre de notre proposition pour traiter les données déséquilibrées provenant

des données de capteurs de téléphones mobiles. Nous donnons une introduction sur la question

du déséquilibre dans la première section, puis nous présentons les travaux connexes qui traitent

de ce problème. Ensuite, dans la section 4.3 nous présentons notre nouveau cadre, qui utilise une

technique d’apprentissage actif et de suréchantillonnage pour résoudre les problèmes de données de

déséquilibre, basé sur le perceptron Multicouche. Ensuite, les résultats de l’expérience sont illustrés

dans la section 4.4 sur 2 jeux de données comportant des données audio et d’accéléromètre, toutes

2 comportant des données déséquilibrées. L’apport de notre méthode est clairement démontré. Le

chapitre se termine par une conclusion.

Résumé du Chapter 5

Dans ce chapitre, nous présentons notre nouvelle approche pour générer des scripts à partir

d’événements, qui sont détectés à l’aide d’une méthode d’apprentissage en profondeur sur des

données de capteurs portables. Après une introduction en section 5.1, les travaux associés sont

présentés dans la section 5.2. La méthode proposée est détaillée dans la section 5.3. Elle comporte

2 étapes: génération de concepts sémantiques à partir des données capteur, génération de scripts à

partir des concepts. Les concepts sémantiques sont définis comme des triplets associant geste, ac-

tivité, contexte. Ils sont générés via des réseaux de neurones profonds et ordonnés temporellement.

La génération de scripts s’effectue via une méthode hybride associant une phase de détection à

base de patrons et une phase de traduction de ce "langage source" sous la forme de phrases en

langage cible (scripts).

Les résultats expérimentaux sont présentés dans la section 5.4, sur un ensemble de données

d’activités journalières impliquant plusieurs sujets. Les performances des 2 phases de traitement

sont évaluées séparément. Le chapitre se termine par une brève discussion et un aperçu des travaux

futurs dans la section 5.5.

Résumé du Chapter 6

Nous présentons dans ce chapitre, une approche pour apprendre des scripts à partir de textes en

langage naturel. Dans la section 6.1, nous présentons une introduction sur la notion de script et

son intérêt pour la reconnaissance d’activités humaines. Nous proposons un bref panorama des

travaux dans le domaine de l’apprentissage de script et donnons les bases de notre contribution.

La section 6.2 est dédiée à la présentation des travaux connexes: modèles de représentation des

événements, en particulier multi-arguments et compositionnels, modélisation et apprentissage des

séquences d’événements. Dans la section 6.3, nous détaillons les méthodes proposées et présentons

notre modèle NESS, fondé sur l’exploitation des réseaux de neurones récursifs et une représentation

des événements comme composition de leurs arguments sémantiques. Les résultats expérimentaux

sont présentés dans la section 6.4. Nous comparons les performances de notre approche avec celles

d’autres méthodes de la littérature sur une base de données publique et montrons son apport avant

de conclure en section 6.5.
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Résumé du Chapter 7

Ce chapitre est dédié à la présentation de nos conclusions et perspectives. Il rassemble nos princi-

pales propositions dans les différents domaines scientifiques que nous avons couvert: reconnaissance

de l’activité humaine, génération et apprentissage de scripts via les traitements du langage naturel.

Nous revenons sur la variété et la nouveauté des outils et modèles utilisés et insistons sur leur com-

plémentarité pour faire face aux difficultés (i) du monde numérique des données capteur et (ii) du

monde sémantique de la représentation de l’activité en langue naturelle. Nous revenons sur le rôle

pivot de la notion de script et sur l’apport de l’apprentissage profond pour affronter ces difficultés.

Nous abordons ensuite les limitations de ce travail: pauvreté des données, caractère répétitifs des

événements, manque de représentativité des activités, manque de richesse des ressources langag-

ières. Les principales perspectives concernent l’introduction d’autres données, comme l’émotion ou

la physiologie. Enfin, nous rappelons l’apport de cette thèse à différentes applications du monde

réel.
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Abstract

Script is a structure describes an appropriate sequence of events or actions in our

daily life. A story has invoked a script with one or more interesting deviations, which

allows us to deeper understand what was happened in the routine behavior of our daily

life. Therefore, it is essential in many ambient intelligence applications such as health-

monitoring and emergency services. Fortunately, in recent years, with the advancement of

sensing technologies and embedded systems, which make the health-care system possible

to collect activities of human beings continuously, by integrating sensors into wearable

devices (e.g., smart-phone, smart-watch, etc.). Hence, human activity recognition (HAR)

has become a hot topic interest in research over the past decades. In order to do HAR,

most researches used machine learning approaches such as Neural networks, Bayesian

networks, etc. Therefore, the ultimate goal of our thesis is to generate such kind of

stories or scripts from activity data of wearable sensors using a machine learning approach.

However, to the best of our knowledge, it is not a trivial task due to the very limitation of

information on wearable sensors activity data. Hence, there is still no approach to generate

script/story using machine learning, even though many machine learning approaches were

proposed for HAR in recent years (e.g., convolutional neural network, deep neural network,

etc.) to enhance the activity recognition accuracy.

In order to achieve our goal, first of all in this thesis we proposed a novel framework,

which solved for the problem of imbalanced data, based on active learning combined with

oversampling technique so as to enhance the recognition accuracy of conventional machine

learning models i.e., Multilayer Perceptron. Secondly, we introduce a novel scheme to au-

tomatically generate scripts from wearable sensor human activity data using deep learning

models, evaluate the generated method performance. Finally, we proposed a neural event

embedding approach that is able to benefit from semantic and syntactic information about

the textual context of events. The approach is able to learn the stereotypical order of

events from sets of narrative describing typical situations of everyday life.
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Chapter 1

Introduction

1.1 Story Generation at the Age of Big Data

If the rise of big data has opened many opportunities, making sense of this mass of

information has become one of the major challenges of this century. In this thesis, we

are focusing on an original approach to deal with a subset of big data, namely personal

ambient data (e.g., smartphones, GPS, wearable sensors, etc.), by presenting the collected

data in the form of a personal story. Indeed, human has developed cognitive capabilities

specifically tuned to tell and understand the information in the form of stories [Reiter and

Dale (2000); Portet et al. (2009); Hunter et al. (2012)].

Automatic story generation (SG) has been studied in the domain of Natural Language

Generation (NLG). NLG is concerned with the automatic generation of written texts from

temporal data to support various domains of daily life such as: the generation of weather

report from weather simulations [Reiter and Dale (2000); Reiter et al. (2005)]; helping the

patients understand their complex medical data [Portet et al. (2009); Hunter et al. (2012)];

or supporting social communication for disable people Williams and Reiter (2008). Many

story generators have been proposed [Andersen et al. (1992); Jacobs and Rau (1990);

Poibeau et al. (2013)]. However, most of these approaches were not interested in gener-

ating a story from real data but rather from virtual environments where all the information

is complete and known. Although NLG has a long history of generative narratives from

data or knowledge, most of these narratives do not concern personal ambient data. In

Ambient Intelligence, data is captured by the sensor and thus filled with uncertainty, in-

complete and very low level (e.g., the measure of the skin temperature but not whether the

person feels too warm or cold). Therefore, our ultimate goal is to generate automatically

stories from ambient data, and the Ph.D. subject is focused on Story Generation from

Smart-phone Data. As will be described in this thesis, story generation from smart-phone

data concern the definition of a method to extract meaning information from real sensor
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At 10:00, she sat on a sofa in

the living room and took a cof-

fee with crackers because she

was not fully awake.

After that, she turned on tele-

vision and watched a musical

game-show, while her mother

was cleaning up the floor.

At 10:30 her mother told her to

go to supermarket. Then, she

seemed very exciting with it,

and went to prepare her dress

quickly.

At 10:50 They left home and

went shopping in the supermar-

ket.

Figure 1.2: Example of story written by a user (right side) and the smart-phone data was

collected during an experiment (left side).
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situation in which the data is collected. The structured information must be organized to

respect the conventional human-understandable stories and such a story must be expressed

via a textual representation.

Being able to solve such problems involve many challenges. First, each of the above

steps are related to different research domains (data analysis, knowledge reasoning, Natural

Language Generation) and are generally addressed as a pipeline of processing steps (repro-

cessing of data, segmentation, event extraction, script recognition, textual generation). In

the state of the art, such processing is performed using a model acquired through machine

learning, however, this application suffers from the sparsity of information. Indeed, if it is

possible to find data-set related to smartphones and activity, it is extremely hard to find

a data-set containing both annotated smartphone data and their representation textual

stories.

Second, there is a wide semantic gap between the raw signal and the final story. To deal

with this gap, each step has to consider the overall objective of the task of story genera-

tion. This is very difficult to perform in a pipeline of successive steps. Furthermore, with

such a chain of abstraction steps, each optimized separately, hidden relationships between

information across the abstraction levels that may not be captured. Current methods still

rely on a pipeline approach and lack to consider the correlation between information inside

and across the various abstraction levels. Going further in these directions raises still un-

solved issues in modeling and learning. We explore some of them in this thesis, based on

the recent deep learning approaches.

In this thesis, we present the work performed to move toward story generation from

sensor data by using deep learning neural networks. In particular, the thesis work was

focused on Human Activity Recognition (HAR) from sensors, Concept-to-Text generation

from abstract events, and scripts learning to extract a typical sequence of events (e.g.,

sub-stories) that can be used to model the structure of a story. Hence, this approach is

seen as a bridge that would allow connecting between the domain of HAR, scripts modeling

and NLG in the NLP domain.

1.2 Research Overview and Contributions

In this thesis, Human Activity Recognition (HAR) is the first target of the research

orientation. In HAR, several issues were addressed in [He and Garcia (2009); Lara et al.

(2012)] such as imbalanced data, flexibility, etc. Second, the HAR system only allows one

to recognize discrete human daily activities, hence it is not sufficient to build or generate

a story as described in Miyanishi et al. (2018), which is defined as a problem in NLG

domain. Finally, we would like to predict or infer missing events on scripts modeling from
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the narrative text, which is a hot topic in NLP [Modi et al. (2016); Frermann et al. (2014);

Regneri et al. (2010)]. Therefore, considering all of these problems in different domains,

we summarize the contributions of the thesis is the following:

• Dealing with Imbalanced Datasets for Human Activity Recognition using Mobile

Phone Sensors: In the recent years, the wide spreading of smart-phones that are

daily carried by humans and fit with tens of sensors triggered an intense research

activity in human activity recognition (HAR). HAR in smart-phone is seen as essen-

tial not only to better understand human behavior in daily life but also for context

provision to other applications in smart-phones. Many statistical and logical based

models for on-line or off-line HAR have been designed, however, the current trend

is to use deep-learning with neural networks. These models need a high amount of

data and, as most discriminative models, they are very sensitive to the imbalanced

class problem He and Garcia (2009). In this work, we study different ways to deal

with imbalanced data sets to improve the accuracy of HAR with neural networks and

introduce a new over-sampling method, called Border Limited Link SMOTE (BLL

SMOTE) that improves the classification accuracy of Multi-Layer Perceptron (MLP)

performances, which is presented in Chapter 4.

• Automatic Scripts Generation from Human Activity Recognition using Wearable Sen-

sors Data: Human activity recognition (HAR) plays an important role in the real

world, which allows us to recognize activities of daily living (ADLs) and understand

human life. In spite of this task being an active field in the past decade, most

existing researches concentrate on predicting individual activity labels from internal

and external sensors data. However, our daily life scripts are composed of chrono-

logical ADLs with the corresponding locations and higher activities (e.g., shopping

in the supermarket after eating at the kitchen and leaving home). Therefore, in

this work, we proposed a novel approach that generates scripts from human activity

recognition using wearable sensors data. The proposed method combines semantic

concepts such as gesture, activity, and location detected by sensors for producing a

script with the above three real-world properties. First, we used deep learning neural

networks (DNN) to recognize concepts in terms of a sequence (e.g., gesture, activ-

ity, and location) from wearable sensors data. Second, we combine these concepts

by using manually detection templates in order to glue the concepts in terms of a

sentence. Finally, we formulated the natural language generation step as a machine

translation approach, by applying the sequence to sequence model Sutskever et al.

(2014a) to enrich the target generated sentence from their semantic concepts, which

is considered as the source language. This work is presented in Chapter 5.
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• Neural Networks Modeling for Semantic Script Induction from Narrative Text: Typi-

cal situations of everyday life such as going to a restaurant are pre-encoded common

sense knowledge known as Scripts. Learning such scripts from narratives has been

studied in Natural Language Processing (NLP). These script models would allow

predicting likely next events and would support the natural generation of narratives.

Early work of Script learning focused on word frequency-based methods that suf-

fered from the sparsity problem. Therefore, event embeddings has raised interest

to overcome this issue [Modi (2016); Modi and Titov (2014)]. In this work, we

proposed a neural event embeddings approach that is able to benefit from semantic

and syntactic information about the textual context of events. The approach is able

to learn the stereotypical order of events from sets of narratives describing typical

situations of everyday life. This work is described in Chapter 6.

1.3 Thesis Outline

Chapter 2 gives a short overview of the state-of-the-art on both data-to-text generation

and script learning and generation. Then, it presents human activity recognition (HAR)

from mobile phone sensors, which focuses on the definition of the problem, and the way

this task is generally evaluated. It also introduces a review of state-of-the-art on human

activity recognition, which describes different methods and works, using for HAR on both

machine learning approaches such as conventional and deep learning.

Chapter 3 describes the scientific challenges, the overall approach of the thesis and the

design of the framework to generate stories from raw smartphone sensor data.

In Chapter 4 we introduce our novel framework, based on Multilayer Perceptron (MLP),

which uses active learning and oversampling technique so that it can solve the problems

of imbalanced data.

In Chapter 5, we proposed a novel approach allows us to generate a story in terms

of Scripts from human activity recognition using wearable sensor data and evaluation for

Scripts generation.

Chapter 6 presents a novel technique to classify the order of events from the sequence

of events or scripts from natural language texts. This technique permits to predict what

event happens next from learning ordered of the sequence of events.

Chapter 7 provides an overall conclusion about the work performed during the thesis

and discusses the numerous perspectives for further research it opens.
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Chapter 2

State-of-the-art in Human Activity

Recognition and Story Generation

Scenario 1: Preparing clothes

Find dirty clothes

Put dirty clothes in the basket

Take clothes to washing machine

Scenario 2: Washing clothes
Put clothes in washing machine

Add laundry detergent

Set washing machine to desired setting

Turn on washing machine

Scenario 3: Drying clothes
When finished put clothes in dryer

When dryer finished fold clothes

Put clothes back to the basket

Scenario 4: Exiting laundry
Turn off dryer

Leave laundry room

Table 2.1: Event sequence of laundry

Scripts is a structure that describes an appropriate sequence of events in a particular

context, was first introduced by Schank and Abelson (1975). The structure is an inter-

connected whole and what in one slot affects to what can be in another. As described

in Schank and Abelson (1975) story is a script with various interesting deviations. Such

numerous scripts describe different sequence of events or actions in our daily life such as

bus taking script, working day script and laundry script, and so on. For instance, Table
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2.1 shows an example of laundry scripts in different scenarios.

The above scripts enable us an insight into the sequence of events happening in the

laundry context with different scenarios, which are providing in the form of human-readable

texts. For instance, the sequence of events in scenario 2 lets us deduce that the person is

washing clothes using a washing machine, or scenario 3 shows us that the person is drying

his/her clothes. In general, the overall script would represent the prototypical sequence of

events that human would imagine being part of this task. Hence script is used by humans

to interpret scenes (she doing the laundry) predict the next event and do common sense

reasoning. Since real-life stories are intended to report human activities in a way that is

tuned to the human capability of the understanding script, we introduce the state of the

art in reasoning with the script and human activity recognition from a computer science

perspective.

2.1 State of the art of Data-to-text and Script Genera-

tion

In the several past decades have witnessed a significant researches on data-to-text genera-

tion and script generation. As our literature surveys on data-to-text and script generation,

we can divide it into two domains as follows:

For data-to-text using Natural Language Generation, Reiter et al. (2005) intro-

duced a SUMTIME-MOUSAM system to automatically generate textual weather forecast

by choosing the right word to communicate numeric weather prediction data. The input

to SUMTIME-MOUSAM system is numerical weather parameters and the output is the

weather forecast. However, the input parameters of SUMTIME-MOUSAM system are

produced by simulation. In addition, story generation is not only interested in weather

forecast but also studied in health-care such as helping the patients understand their com-

plex medical data in [Portet et al. (2009); Hunter et al. (2012)] presented BT-45 system

which generates textual summaries of about 45 minutes of continuous physiological signal

(e.g., heart rate, pressure of oxygen and carbon dioxide in blood, oxygen saturation, mean

blood pressure, and peripheral and temperature of the baby) and discrete events (e.g.,

equipment settings and drug administrations). As a result, an experiment on clinical data

of BT-45 system shows that generated texts are inferior to human expert texts in a num-

ber of ways. Likewise, Williams and Reiter (2008) proposed the SKILLSUM system that

generates personalized feedback reports for people with limited reading skills. In order to

do this, there are two approaches to the SKILLSUM system which the first approach is

to determine the content and structure (document-planning) by using pilot experiments
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and interview with domain experts. The second approach is choosing linguistic expressions

(micro-planning) by using constraints based on corpus analysis and preference rules. The

evaluation of the SKILLSUM system illustrated that the generated text was more effective

than canned text at enhancing users’ knowledge of their skills. Moreover, many story gen-

erators have been proposed [Andersen et al. (1992); Jacobs and Rau (1990); Poibeau et al.

(2013)]. Andersen et al. (1992) introduced JASPER which is a fact extraction system.

The system used a template-driven approach, partial understanding technique and heuristic

procedures to extract certain important pieces of information from a limited range of text.

Nevertheless, these approaches were not interested in generating a story from real data

but rather from virtual environments where all the information is complete and known. In

more recent research, Miranda (2018) works on story generation from real sensor data,

which allows generating a sequence of human activities during their ski-touring. In order

to generate the sequence of activities, the proposed system used signal segmentation with

threshold from altitude, which was collected from the global positioning system (GPS)

of the smart-phone to extract information and knowledge about human activities such as

moving, standing as well as the interest location. Then, it is mapped into an ontology tool

with data-to-text processes (e.g., micro-planning, etc.) to generate the story. However,

different from this work, our thesis only focuses on the machine learning approach for

recognizing human activities.

For script generation, early works conducted in the 1970s defined a script as a se-

quence of structured events organized in temporal order Schank and Abelson (1975).

Scripts learning was revived by Chambers and Jurafsky (2008) work, which presented a

statistical approach to capture script knowledge. They proposed an unsupervised induc-

tion framework, called narrative event chains to infer event and rich understanding from

raw news-wire text. Narrative event chains were automatically extracted, by following

mentions of an entity (e.g., protagonist) through the narrative text, which is detected

on the outputs of a coreference resolution system and a dependency parser. The rela-

tionship between events was computed using Pairwise Mutual Information (PMI) score.

The model’s ability to capture commonsense knowledge was evaluated using the Narrative

Cloze (NC) task, in which one event is removed from the event chain and the model is

evaluated by ranking all candidate events. Likewise, in Regneri et al. (2010) work proposed

approach to unsupervised learning scripts, which focused on temporal event structure of

scripts by building a temporal script graph. The graph was calculated for a scenario by

identifying corresponding event descriptions using a Multiple Sequence Alignment (MSA)

algorithm, and converting alignment into a graph. At the evaluation phase, the script

graph algorithm showed that it significantly outperforms a clustering-based baseline, and

the algorithm can distinguish event descriptions that appear at different points in the script
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story-line. Another unsupervised learning of scripts knowledge from the natural text was

proposed by Frermann et al. (2014), which used a hierarchical Bayesian model by inducing

jointly events and constraints on event ordering in one unified framework. They refer to

two types of entities in each type of scenarios such as event types and participant types.

Then, they incorporated the Generalized Mallows Model (GMM) over orderings from sets

of Event Sequence Descriptions (EDSs). In the evaluation stage, their system outperforms

the MSA algorithm provided by Regneri et al. (2010) on the task of event ordering and

achieving comparable results in the event induction task.

In the same year, Pichotta and Mooney (2014) proposed a script learning approach

that employs events with multiple arguments. Unlike previous works, they model the

interactions between multiple entities that enable to better prediction of events in natural

texts or documents. A multi-argument event is a relational atom a = v(es , eo , ep), where

v is a verb lemma, and es , eo , ep are a subject relation to the verb v , direct object of v ,

a prepositional relation to v , respectively. Their multi-argument events modeling allows

to predict event is most likely happened at some point in the sequence. By counting the

number of times occur event a1 and a2 in order to calculate the conditional probability

P (a2|a1) of seeing a1 and a2 in order. In order to infer events, they proposed a ranking

candidate events a by maximizing S(a) =
∑p−1
i=1 logP (a|ai) +

∑|A|
i=p logP (ai |a), where |A|

is an ordered list of events, and p is the length of A. The model demonstrates that

multi-argument events improves predictive accuracy of inferring held-out events. Like

the same year, Modi and Titov (2014) presented another approach for event ordering

tasks based on distributed representation (e.g., vectors of real numbers) of the event of

predicates and their arguments and then the event representation was used in a ranker to

predict the ordering of events. However, in this work, they concentrated on ordering tasks

rather than predict missing events given a set of events. At the evaluation phase, their

approach showed improvement in the F1 score on event ordering with respect to the graph

induction approach Regneri et al. (2010) (84.1% vs. 70.6%). Unlike previous works rely

on event counting-based methods, Modi (2016) proposed a neural network model based

on compositional representations of events, namely event embedding, in order to predict

missing event ek in the prototypical ordering of events (e1, e2, ...ek−1, ..., en). The model

demonstrated that it can obtain statistical dependencies between events in a scenario and

outperformed count-based on the narrative cloze task.

More recent researches [Granroth-Wilding and Clark (2016); Pichotta and Mooney

(2016); Hu et al. (2017)] work on multiple neural networks to improve the quality of the

semantic properties of events were obtained by the model. These studies present an event

embedding approach in terms of dense vector representation instead of symbolic event

representation using by [Chambers and Jurafsky (2008); Regneri et al. (2010); Jans et al.
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(2012)]. Pichotta and Mooney (2016) proposed a Long Short Term Recurrent Neural

Networks (LSTM-RNN) to inferring held-out events from text and inferring novel events

from the text. The input to the sequence modeling task is an event represents as a tuple

of (v , es , eo , ep, p), where v is a verb lemma, es , eo , ep, p are arguments stands in subject,

direct object, prepositional relations, prepositional relating v and ep, respectively. The

model coupled with Beam Search algorithm to generate event inferences on a given set

of candidate events that exist in the training set. Granroth-Wilding and Clark (2016)

introduced a compositional neural network to automatically acquire knowledge of event

sequences from text, which provides a predictive model for use in narrative generation

systems, by learning event embeddings using Word2Vec Mikolov et al. (2013) on narrative

event chains, where each event is represented as a predicate word or an argument word.

Hu et al. (2017) presented a contextual hierarchical LSTM can automatically generate a

short text that describes a possible future sub-event from given previous sub-events that

do not exist in the training data. However, all of these researches work on NLP from

natural language text. Therefore, in order to work with scripts generation from sensors

data, we either need to search for other techniques or find the relevant ways to connect

sensors data to this domain.

2.2 State of the art in Human Activity Recognition from

Wearable Systems

In this section, first of all, we present the definition of the problem of HAR in Section

2.2.1. In Section 2.2.2 we show HAR system including design issues and HAR methods,

and the way this task is generally evaluated. In addition, conventional machine learning

and deep learning on HAR systems are introduced in Section 2.2.3 and Section 2.2.4.

2.2.1 Human Activity Recognition Problems

In recent years, due to the significant development of micro-electronic and computer

system allow people to interact with these devices as part of their daily living. An active

research area was established with the main purpose is to extracting knowledge from col-

lected data of these devices, namely Ubiquitous Sensing Perez et al. (2010). Particularly,

human activity recognition is a task of this field and applied in several daily life domains

such as medical, military and security. For instance, patients with diabetes, obesity, or

heart disease are often required to follow a well-defined exercise routine as part of their

treatment Jia (2009). Therefore, recognizing activities such as walking, running, or resting

becomes quite useful to provide feedback to the caregiver about the patient’s behavior.
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As a consequence, one of the recent challenge approaches in our thesis applied machine

learning to recognize human activities. In fact, human activity recognition (HAR) has been

approached in two different ways, namely external and wearable sensors. External sensors

are fixed in a predetermined point of interest, and the wearable sensors are attached to

the user. My thesis is only concerned about wearable ones due to its advantages such as

very comfortable for carrying, moving and allows to collect data for outdoors activities.

Consequently, we could collect the data from the sensors (e.g., accelerometer, gyroscope,

heart rate, breath rate, etc.) to detect human activities in different scenarios.

HAR is commonly solved using machine learning techniques. Similar to other machine

learning applications, activity recognition requires two stages, i.e., training and testing

(or evaluation). The training stage initially requires a time series dataset of measured

attributes from individuals performing each activity. The time series are divided into time

windows to apply feature extraction in order to filter relevant information in the raw signals

and define metrics to compare them. Later, learning methods are used to generate an

activity recognition model from the dataset of extracted features. Likewise, for testing,

data are collected during a time window and a feature vector - also called feature set - is

calculated. Such a feature set is evaluated in the a priori trained learning model, generating

a predicted activity label. The data collected from wearable sensors are naturally indexed

over the time dimension, which allows us to define the human activity recognition problem

as follows.

Definition 1 (Human Activity Recognition Problem (HARP)) Given a set of n time

series S = {S0, . . . , Sn−1} , each one from a particular measured attribute, and all defined

within time interval I = [ti , tj ], the goal is to find a temporal partition (I0, ..., Ir−1) of I,

based on the data in S, and a set of labels representing the activity performed during each

interval Ik (e.g., sitting, walking, etc.). This implies that time intervals Ik are consecutive,

non-empty, non-overlapping, and such that
r−1
⋃

k=0

Ik = I.

Definition 2 (Relaxed HAR problem) Given a set W = {W0, . . . ,Wm−1} of m equally

sized time windows, totally or partially labeled, and such that each Wi contains a set of

time series Si = {Si ,0, . . . , Si ,k−1} from each of the k measured attributes, and a set

A = {a0, . . . , an−1} of activity labels, the goal is to find a mapping function f: Si → A

that can be evaluated for all possible values of Si , such that f(Si) is as similar as possible

to the actual activity performed during Wi .

Definition 3 Given a classification problem with a feature space χ ∈ Rn and a set of

classes A = {a0, . . . , an−1} , an instance x ∈ χ to be classified, and a set of predictions
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P = {p0, . . . , pk−1} for x , from k classifiers, the goal of a multi-classifier system is to

return the correct label a∗ iff ∃pi ∈ P|a
∗ = pi

Definition 1 only enables one to recognize activities that are not performed simultane-

ously. Therefore, the definition 2 is solved for the case of co-occurrence activities, which

performed more than one in a single time window. However, during transition windows

is made the relaxation produces errors, thus the number of transitions is expected to be

small as much as possible, which leads to deduce the relaxation errors for most applica-

tions. Moreover, there is no one algorithm can achieve the best accuracy for all activities.

Hence, the multi-classifier should be considered as a problem in HAR, which is defined in

definition 3.

2.2.2 Human Activity Recognition System

Design issue and human activity recognition methods

There are eight main challenges related to human activity recognition, namely (1) definition

of the activity set, (2) selection of attributes and sensors, (3) obtrusiveness, (4) data

collection protocol, (5) recognition performance, (6) energy consumption, (7) processing,

and (8) flexibility Lara and Labrador (2013). In this work, we consider the primary issues

mentioned below.

Firstly, the design of any HAR system depends on the activities to be recognized.

In fact, changing the activity set A immediately turns a given HARP into a completely

different problem. From the literature, seven groups of activities can be distinguished.

These groups and the individual activities that belong to each group are summarized in

Table 2.2. Secondly, the success of a HAR system depends also on the sensors and the

attributes chosen to describe the data in a specific domain. In the literature, there are

four groups of common attributes that are computed using wearable sensors in a HAR

context: environmental attributes, acceleration, location and physiological signals Lara

and Labrador (2013). The first place is the attributes that provide context information

describes the individual’s surroundings (e.g., temperature, audio level, etc.), the second

place is triaxial accelerometers often used to recognize ambulation activity, the third place

is Global Positioning System (GPS) currently equipped in cellular phones, the fourth place

is the vital signs data (e.g., heart rate, respiration rate, skin temperature, etc.).

These attributes and sensors would give us a definition of the set of activities for the

daily living domain. In fact, acceleration is one of the important attributes in our domain

which would define set of activities (e.g., walking, running, lying down, sitting, standing

still, etc.), while the environmental attributes could be interested (e.g., audio level and
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Group Activities

Ambulation

Walking, running, sitting, standing still, lying,

climbing stairs, descending stairs, riding escalator,

and riding elevator

Transportation Riding a bus, cycling, and driving

Phone usage Text messaging, making a call

Daily activities

Eating, drinking, working at the PC, watching TV,

reading, brushing teeth, stretching, scrubbing, and

vacuuming

Exercise/fitness
Rowing, lifting weights, spinning, Nordic walking,

and doing push ups

Military
Crawling, kneeling, situation assessment, and

opening a door

Upper body
Chewing, speaking, swallowing, sighing, and mov-

ing the head

Table 2.2: Types of activities recognized by state-of-the-art HAR systems

light intensity are fairly low allow to recognize that user might be sleeping), location or

GPS enables to realize the places where users have been being can also be helpful to figure

out their activities, and physiological signals are confidently a valuable attribute to improve

the recognition accuracy, for instance, heart rate is at a high level could allow to observe

that user might perform running rather than sitting or lying. Meanwhile, obtrusiveness and

data collection protocol show that they have an effect on the accuracy of HAR systems to

raise interesting questions such as how many sensors are enough and where are the places

to attach sensors on a human body to improve the accuracy of human activity recognition

task.

Regarding the design of a HAR system there are several aspects to deal with: (1) the

features extraction methods, (2) the learning algorithm and (3) the quality of the training

data.

Two approaches were introduced to extract the features from time-series data: sta-

tistical and structural are showed in Table 2.3. It depends on the given signal to choose

relevant methods were illustrated in Table 2.4. For instance, [Chen et al. (2008b); He

and Garcia (2009)] the acceleration signals are highly fluctuating and varying, therefore

the statistical feature extraction - either time or frequency domain - is the best method

to handle with these signals. Besides that, Lara et al. (2012) proposed that structural

feature extraction - polynomial - is the best fit for the physiological signals such as heart

rate, respiration rate, breath amplitude, and skin temperature.
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Group Methods

Time domain

Mean, standard deviation, variance, interquartile

range (IQR), mean absolute deviation (MAD),

correlation between axes, entropy, and kurtosis

[Pärkkä et al. (2006), Tapia et al. (2007)]

Frequency domain

Fourier Transform (FT) [Bao and Intille (2004);

Chen et al. (2008a)], Discrete Cosine Transform

(DCT) Altun and Barshan (2010)

Others

Principal Component Analysis (PCA) He and Jin

(2009), Linear Discriminant Analysis (LDA) Chen

et al. (2008a), Autoregressive Model (AR), HAAR

filters Hanai et al. (2009).

Linear F(t) = mt+ b

Polynomial F(t) = a0 + a1 ∗ t + ... + an−1 ∗ tn−1

Exponential F(t) = a ∗ bt + c

Sinusoidal F(t) = a ∗ sin(t + b) + c

Table 2.3: Group of features extraction methods

Attributes Features

Altitude Time domain

Audio Speech recognizer

Barometric pressure Time domain and frequency domain

Humidity Time domain

Light Time domain and frequency domain

Temperature Time domain

Table 2.4: Categories of attributes and features extraction methods

In general, these features extraction methods can influence on recognition accuracy

along with the quality of data and learning algorithm. Moreover, it is believed that fea-

tures extraction methods would take a significant effect on HAR classification accuracy,

for instance, Khan et al. (2010) proposed a group of features can improve the recognition

accuracy up to 97% by using Autoregressive model coefficient, Tilt Angle, Signal Magni-

tude Area. This work shows that carefully choosing features has a great impact on the

classification, hence the need to explore new methods to extract features.

For learning algorithm, there are two mainstream learning approaches, namely super-

vised and unsupervised learning, which deal with labeled and unlabeled data, respectively.
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Supervised learning is one of the most popular approaches to activity recognition with

many algorithms as presented in Table 2.5.

Type Classifiers

Bayesian
Naive Bayes and Bayesian

Networks Lara et al. (2012)

Clustering
K-nearest neighbor Lara

et al. (2012)

Neural Networks

Multilayer Perceptron

[Kwapisz et al. (2011);

Bayat et al. (2014)]

Kernel Method

Support Vector Machine

[Bayat et al. (2014); An-

guita et al. (2012); Khan

et al. (2014)]

Fuzzy Logic

Fuzzy Basis Function and

Fuzzy Inference System

Berchtold et al. (2010a)

Regression methods

Multiclass Logistic Regres-

sion Riboni and Bettini

(2011), Additive Logistic

Regression Lara et al. (2012)

Markov Models

Hidden Markov Models and

Conditional Random Fields

Blachon et al. (2014)

Classifier ensembles
Boosting and Bagging Lara

et al. (2012)

Table 2.5: Classification algorithms used by state of the art HAR systems

Evaluation metrics

When evaluating a machine learning algorithm, the training and testing datasets should

be disjoint. This is with the aim of assessing how effective the algorithm is to model

unseen data. A very intuitive approach is called random split and it simply divides the

entire dataset into two partitions: one for training and the other one for testing - usually,

two-thirds of the data are for training and the remaining one third is for testing. However,

a random split is highly biased by the dataset partition. If instances in any of the training
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or testing sets are concentrated in a particular feature space sub-region, the evaluation

metrics would not reflect the actual performance of the classifier. Therefore, a more

robust approach is cross-validation. In k-fold cross-validation, the dataset is divided into k

equally-sized folds. In the first iteration, the very first fold is used as the testing set while

the remaining k-1 folds constitute the training set. The process is repeated k times, using

each fold as a testing set and the remaining ones for training.

In the end, the evaluation metrics (e.g., accuracy, precision, recall, etc.) are averaged

out over all iterations. In general, the selection of a classification algorithm for HAR has

been merely supported by empirical evidence. The vast majority of the studies use cross-

validation with statistical tests to compare classifiers’ performance for a particular dataset.

The classification results for a particular method can be organized in a confusion matrix

Mn∗n for a classification problem with n classes. This is a matrix such that the element

Mi j is the number of instances from class i that were wrongly classified as class j 6= i .

The following values can be obtained from the confusion matrix in a binary classification

problem:

• True Positives (TP): The number of positive instances that were classified as positive.

• True Negatives (TN): The number of negative instances that were classified as

negative.

• False Positives (FP): The number of negative instances that were classified as posi-

tive.

• False Negatives (FN): The number of positive instances that were classified as neg-

ative.

The accuracy is the most standard metric to summarize the overall classification per-

formance for all classes and it is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

The precision - often referred to as positive predictive value - is the ratio of correctly

classified positive instances to the total number of instances classified as positive:

P recision =
TP

TP + FP

The recall, also called true positive rate, is the ratio of correctly classified positive

instances to the total number of positive instances:

Recal l =
TP

TP + FN

The F-measure combines precision and recall in a single value:

F −measure = 2 ∗
P recision ∗ Recal l

P recision + Recal l
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2.2.3 Conventional Machine Learning on HAR Systems

There are a lot of studies and reports about human activity recognition using wearable sen-

sors in recent years. HAR systems can be divided up following two dimensions. By learning

approach, namely supervised and semi-supervised ; and by the response time constraint,

namely on-line and off-line. The on-line approach provides immediate feedback on the per-

formed activities [Lara and Labrador (2012); Anguita et al. (2013)]. The off-line approach

either needs more time to recognize activities due to high computational demands or are

intended for applications that do not require real-time feedback [Kwapisz et al. (2011);

Ronao and Cho (2015); Lara et al. (2012)]. Figure 2.1 presents a flow diagram of using

conventional machine learning approaches based on sensors for activity recognition. First

of all, the raw data was obtained by some types of sensors (e.g., smart-phones, smart-

watches, WiFi, Bluetooth, audio, etc.). Secondly, the features were extracted from the

raw signal by statistic information such as mean and standard deviation, etc. Finally, these

features were fed into machine learning models (e.g., kNN, SVM, HMM, etc.) so as to

perform the recognition tasks.

Figure 2.1: An Illustration of sensor-based activity recognition using conventional machine

learning approaches Wang et al. (2019).

Supervised Online HAR system

Applications of online activity recognition systems are often seen in health-care, where the

continuous monitoring of patients who have physical or mental pathologies is crucial for

their protection, safety, and recovery. Therefore, it is required for an online system to
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identify what the user is currently doing Lara and Labrador (2012). Likewise, interactive

games or simulators may enhance the user’s experience by considering activities and their

locations Riboni and Bettini (2011).

Study Sensors 1 Activities 2 Algos 3 Performance

Berchtold et al. (2010b) ACC

(phone)

AMB,

PHO (10)

RFIS 71-98% accu-

racy

Riboni and Bettini (2011) ACC

(watch,

phone),

GPS

AMB, DA

(10)

COSAR 93% accuracy

Lara and Labrador (2012) ACC, VS

(Chest)

AMB (3) C4.5 92.6% accu-

racy

Blachon et al. (2014) ACC, Au-

dio

DA (5) RF,

CRF

74% F-

measure

Table 2.6: Summary of state-of-the-art in online HAR systems
1 ACC: Accelerometers, VS: Various Sensors, HAR: Heart rate.
2 AMB: Ambulation activities, DA: Daily activities, PHO: Activities related to phone us-

age.
3 C4.5: Decision Tree, RF: Random Forest, CRF: Conditional Random Fields, RFIS: Re-

current Fuzzy Inference System.

Berchtold et al. (2010b) investigated a system, namely ActiServ, for smart-phone

based activity recognition. The system enables to integrate labeled annotation with new

training data directly on smart-phone at run-time, and using fuzzy inference to classify

for ten ambulation activities based on phone’s accelerometer feature extraction. The

results showed that when using an online-algorithm the accuracy of recognition achieved

only 71%, while offline-algorithm increased up to 98% in the case of subject dependent

analysis.

Riboni and Bettini (2011) presented a framework namely COSAR for context-aware

activity recognition using statistical and ontological reasoning under a mobile Android plat-

form. In this work, the author introduced ontological reasoning along with a statistical

method to recognize ten daily activities such as brushingTeeth, hikingUp, hikingDown, rid-

ingBycycile, jogging, standingStill, strolling, WalkingDownstairs, WalkingUpstairs, Writin-

gonBlackBoard that statistical methods can not classify alone. The idea is statistical

inferencing is performed based on raw data retrieved from body-worn sensors (e.g., ac-
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celerometers) to predict the most probable activities. Then, symbolic reasoning is applied

to refine the results of statistical inferencing by selecting the set of possible activities

performed by a user based on her/his current context. COSAR gathers data from two

accelerometers, one in the phone and another on the individual’s wrist, as well as from the

cellphone’s GPS. COSAR uses an interesting concept of potential activity matrix to filter

activities based upon the user’s location. For instance, if the individual is in the office,

he or she is probably not cycling. Another contribution is the statistical classification of

activities with a historical variant. For example, if the predictions for the last five time

windows were jogging, jogging, walking, jogging, jogging, the third window was likely a

misclassification (e.g., due to the user performing some atypical movement) and the algo-

rithm should automatically correct it. However, this introduces an additional delay to the

system’s response, according to the number of windows analyzed for the historical variant.

The overall accuracy was roughly 93% using Multiclass Logistic Regression though, in

some cases, standing still was confused with writing on a blackboard, as well as hiking up

with hiking down.

Lara and Labrador (2012) proposed Vigilante, a mobile application for real-time human

activity recognition under the Android platform. This application used accelerometers and

physiological signals (e.g., heart rate, respiration rate, etc.) in order to recognize five

ambulation activities. The feature extraction methods statistical and time, frequency

domain was used to extract 84 features. Then, several learning algorithms were applied to

classify activities such as Bayes Network, C45, MLP, SMO, etc. The author reported that

C45 decision tree had the best performance by achieving up to 96.8% accuracy. However,

the author also noticed that the models were extremely influenced by the dataset. When

they tried to train with a given user and tested it on another user data, the classification

accuracy significantly decreased to 64%.

Blachon et al. (2014) introduced another online HAR system using the mobile Android

platform. They reported that the audio signal can play an important role with accelerome-

ters to recognize nine ambulation activities. The time and frequency domain were used to

extract 74 features. Later, learning algorithms such as C45 decision tree, Random forest,

and Conditional Random Fields were applied to classify the activities. The author reported

that the Random Forest was the most performance with an overall F-measure of 74%.

As we can see from the above online HAR systems, it depends on the application

requirement so that the appropriated approach can be selected. For instance, COSAR can

provide a broader set of activities to be recognized, therefore COSAR should be considered

in case of large activities recognition. Moreover, Vigilante is only approach to integrate

vital signals with accelerometers to allow recognize activities related to the health-care

purpose.
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Supervised Offline HAR system

Study Sensors 1 Activities 2 Algos 3 Performance

Zhu and Sheng (2009) ACC

(wrist,

waist)

AMB, TR

(12)

HMM 90%

Kwapisz et al. (2011) ACC AMB(6) MLP,

C4.5, LR

MLP: 91.7%

Lara et al. (2012) ACC, VS

(Chest)

AMB (5) ALR,

Bagging,

C.4.5, NB,

BN

95.7%

Bayat et al. (2014) ACC DA (6) MLP, LB,

SVM, RF

91.15%

Saputri et al. (2014) ACC AMB (6) ANN 93%

Sztyler and Stuckenschmidt (2016) ACC AMB (8) C4.5 89%

Table 2.7: Summary of state-of-the-art in offline HAR systems
1 ACC: Accelerometers, VS: Various Sensors.
2 AMB: Ambulation activities, DA: Daily activities, TR: Transition between activities.
3C4.5: Decision Tree, LR: Logistic Regression, ALR: Additive Logistic Regression, MLP:

Multilayer Perceptron, NB: Naive Bayes, SVM: Support Vector Machines, RF: Random

Forest, LB: LogitBoost, HMM: Hidden Markov Model.

Unlike online systems, offline HAR systems are not dramatically affected by processing

and storage issues because the required computations are performed in a server with

large computational and storage capabilities. Additionally, energy expenditures are not

analyzed in detail as a number of systems require neither integration devices nor wireless

communication so the application lifetime would only depend on the sensor specifications.

Ambulation activities are recognized very accurately by [Lara et al. (2012); Khan et al.

(2010)]. These systems place an accelerometer on the subject’s chest, which is helpful to

avoid ambiguities due to abrupt corporal movements that arise when the sensor is on the

wrist or hip. An additional challenge was raised in Bao and Intille (2004), where activities

such as eating, reading, walking, and climbing stairs could happen concurrently. However,

no analysis is presented to address that matter. In the following paragraph, we introduce

several HAR systems that use an off-line supervised learning approach.

Kwapisz et al. (2011) presented a HAR system under the mobile Android platform.

This system only used the accelerometer to recognize six ambulatory activities such as
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walking, jogging, climbing up stairs, climbing down stairs, sitting and standing from twenty-

nine users attached in their pockets. 43 features were extracted from the time-domain

method. Decision tree C4.5, Multilayer Perceptron (MLP) and Logistic Regression were

applied to classify the activities. The author reported that MLP can obtain 91% accuracy

outperforming the other learning algorithms. However, the activities climbing up and

climbing downstairs were the most difficult to recognize.

The system proposed by Zhu and Sheng (2009) uses Hidden Markov Models (HMM)

to recognize ambulatory activities. Two accelerometers, placed on the subject’s wrist

and waist, were connected to a PDA via a serial port. The PDA sent the raw data via

Bluetooth to a computer that processed the data. This configuration is obtrusive and

uncomfortable because the user has to wear wired links that may interfere with the normal

course of activities. The extracted features are the angular velocity and the 3D deviation

of the acceleration signals. The classification of activities operates in two stages. In

the first place, an Artificial Neural Network discriminates among stationary (e.g., sitting

and standing) and non-stationary activities (e.g., walking and running). Then, an HMM

receives the ANN’s output and generates a specific activity prediction. An important issue

related to this system is that all the data were collected from one single individual, which

does not permit to draw strong conclusions on the system flexibility.

Lara et al. (2012) proposed a system that combines acceleration data with vital signs

to achieve accurate activity recognition. Centinela recognizes five ambulation activities

and includes a portable and unobtrusive real-time data collection platform, which only

requires a single sensing device and a mobile phone. Time- and frequency-domain features

are extracted from acceleration signals while polynomial regression and transient features

are applied to physiological signals. After evaluating eight different classifiers and three

different time window sizes, and six feature subsets, Centinela achieves an overall accuracy

of over 95%. The results also indicate that incorporating physiological signals allows for a

significant improvement of the classification accuracy. As a trade-off, Centinela relies on

ensembles of classifiers accounting for higher computational cost, and it requires wireless

communication with an external sensor, which increases energy expenditures.

Bayat et al. (2014) introduced a recognition system based on acceleration data, which

used a new low-pass filter to detach the component of gravity acceleration from body

acceleration in raw data. There are 18 features were selected from 24 features extracted

along with a window size of 128 samples and 50% overlap. Six daily activities were classified

in several classification models such as MLP, LB, SVM, RF. The achieved accuracy by an

average of these models was 91.15%.

Saputri et al. (2014) proposed a neural network with a three-stage genetic algorithm-

based feature selection to solve for the flexibility or user-independent issue in HAR. Time-
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domain features (e.g., mean, root mean square, variance, correlation, and standard de-

viation, etc.) were extracted by a window-size 100 samples. Then, these features were

selected by a genetic algorithm, so that it can gain attention on the feature set, which is

appropriated for different activities for a single person and effective in representing these

activities across multiple subjects. The system shows that it can achieve 93% of average

accuracy for subject-independent in HAR.

Sztyler and Stuckenschmidt (2016) presented an approach for activity recognition based

on acceleration data, which located in different on-body positions with multiple wearable

devices. This work concentrated on both subject-independent and subject-dependent in

HAR. Without the information of the device position, the classifiers (e.g., Decision Tree)

only can achieve 80% of F-measure. While with information on device position the classifier

can obtain higher F-measure up to 89%.

2.2.4 Deep Learning on HAR Systems

Figure 2.2: An Illustration of sensor-based activity recognition using deep learning ap-

proaches Wang et al. (2019).

Many traditional HAR learning algorithms like Decision Tree, Support Vector Machine

[Bayat et al. (2014); Anguita et al. (2012); Khan et al. (2014)], Conditional Random

Forest Blachon et al. (2014), Naive Bayes, and hidden Markov models Zhu and Sheng

(2009), K-nearest neighbor Sani et al. (2017), etc. have been proposed to achieve good

accuracy on human activity recognition task in the few decades. However, there are several

shortcomings to traditional HAR methods as mentioned in Wang et al. (2019) such as (1)
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the features are often extracted by heuristic and hand-crafted feature extraction methods;

(2) shallow features (e.g., mean, variance, frequency, etc.) usually are only able to be

used for low-level activity recognition task (e.g., walking, jumping, etc.). Nevertheless,

it is hard to use for recognizing high-level or context-aware activities Yang (2009) (e.g.,

drinking coffee, have breakfast, etc.); (3) traditional learning approaches often need a large

number of labeled data for training model. To tackling these limitations, in recent years

there are many types of researches interest in deep learning for HAR issues [Jiang and Yin

(2015a); Ronao and Cho (2015); Murad and Pyun (2017); Ignatov (2018); Bevilacqua

et al. (2018)]. Figure 2.2 shows a demonstration of using deep learning approaches based

on sensors for activity recognition. As we can see from the flowchart of Figure 2.2, a

difference compares to Figure 2.1 (conventional machine learning) is the feature extrac-

tion and model building procedures are usually carried out at the same time, it is also an

advantage of deep learning approaches in comparison with conventional machine learning

approaches. Therefore, manually designed features are replaced by features learning au-

tomatically through the network. Moreover, deep generative models Hinton et al. (2006)

allows exploiting the unlabeled samples for the training model. In addition, training on

a large-scale labeled dataset using deep learning models can be transferred to new tasks

where there are few or none labels. In the following paragraph, we investigate the deep

learning models used in HAR tasks (cf. Table 2.8 )

Model Description

DNN
Deep fully-connected network, artificial neural net-

work with deep layers

CNN
Convolutional neural network, multiple convolu-

tional operations for feature extraction

RNN
Recurrent neural network, network with time cor-

relations and LSTM

DBN/RBM Deep belief network, restricted Boltzmann machine

SAE
Stacked auto-encoder, feature learning by

decoding-encoding auto-encoder

Hybrid Combination of some deep models

Table 2.8: Deep learning models for HAR systems surveyed by Wang et al. (2019)

Deep neural network

Artificial neural network (ANN) is a fundamental network for developing the deep neural

network (DNN). It is designed to contain more layers than ANN (with very few hidden
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layers), thus DNN is able to learn from a large amount of data. Vepakomma et al. (2015)

presented a wristocracy framework that allows recognizing 22 fine-grained activity contexts

with various activity classes (e.g., sitting on a sofa, use the refrigerator, walk indoor, etc.).

The hand-engineered features were extracted by a sliding windows of 2 seconds from

accelerometers, gyroscope and location context (Bluetooth beacon message), then these

features are fed into a DNN model. Hammerla et al. (2016) explored a deep feed-forward

network (DNN) and compare with other networks such as Convolutional neural network

(CNN) and Recurrent neural network (RNN). These networks performed HAR task on

three representative datasets that contain movement data captured with wearable sensors.

As a result, these models outperformed the state of the art on benchmark datasets.

Convolutional neural network

In recent years, CNN is applied in many areas such as image classification, speech recog-

nition, and text analysis because of its automatic feature extraction from signals and

promising results on the tasks. In time series classification like HAR, CNN has two differ-

ent models: local dependency (correlated) and scale in-variance (frequencies) as mentioned

in Wang et al. (2019). Most researches on CNN for HAR models concentrated on several

aspects as follows: input adaptation, pooling, and weight-sharing.

• Input adaptation: The input adaptation is the approach to form sensor readings (e.g.,

3-axis accelerometers) in HAR to be the same as a virtual image, which is the inputs

of CNN. There are two types of adaptation in HAR: (1) data-driven treats each

dimension sensor readings as a channel, then applies 1D convolution on them [Zeng

et al. (2014a); Jiang and Yin (2015a)]. Thereby, the drawback of this approach is

the ignorance of dependencies between dimension and sensors, which may impact

on the performance as mentioned in Wang et al. (2019); (2) model-driven reshapes

the inputs to a virtual 2D image in order to adopt 2D convolution [Ha and Choi

(2016a); Jiang and Yin (2015b)]. Hence, this approach can improve the temporal

relation of the sensor. However, the formulation of the image from the time series

is a non-trivial task.

• Pooling: An interest of pooling is it can accelerate of training process on large

data Bengio (2013). Most approaches performed average and max pooling after

convolution [Ha and Choi (2016a); Kim and Toomajian (2016)].

• Weight-sharing: this approach can also speed up the training process on a new task

[Zebin et al. (2016); Zeng et al. (2014a); Ha and Choi (2016b)].
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Figure 2.4: Architecture of a stacked auto-encoder Chen et al. (2018)

proposed a sparse auto-encoder by using Kullback-Leibler divergence and noise into the

cost function, which could enhance the performance of HAR. In addition, Wang (2016)

investigated in continuous auto-encoder (CAE) in order to extract the feature of non-

linear data by adding Gaussian random units into activation function, and a novel fast

stochastic gradient descent (FSGD) so as to reduce the training time for the model. Chen

et al. (2018) introduced the greedy layer-wise scheme in pre-training, then performs the

fine-tuning. However, due to the dependence on the complexity of layers and activation

functions, SAE might be hard to look for optimization as mentioned in Wang et al. (2019).

Restricted Boltzmann machine

Restricted Boltzmann machine (RBMs) is a generative stochastic artificial neural network,

which is restricted in their neuron and forms a bipartite graph. It is composed of two

layers; i.e., visible and hidden Hinton et al. (2006) where each neuron in the layer is not

connected. The hidden layer assists to forward pass or classification task and the visible

layer helps for backward pass/reconstruction of the original input (known as generative

learning). A deep belief networks (DBNs) is defined as a stack of RBMs, in which two

consecutive layers are represented as an RBM. This stack is often followed with a softmax

layer to create a classifier or help to cluster unlabeled data in an unsupervised task.

In recent years, there are several researches work on HAR using RBMs and DBNs.

Zhang et al. (2015) introduced a real-time application for activity recognition on smart-

phones using DBNs. In pre-train, the input to DBNs is acceleration data and forms a

Gaussian-binary RBMs between input layer and first hidden layer. After pre-train, a soft-
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max layer is added to classify seven activities (e.g., walking, running, lying , etc.). The

DBNs classification model achieved the highest accuracy in comparison with other learning

models such as Bayesian nets, SVM, LR, J48, RF, and KNN. Hammerla et al. (2015) pro-

posed a system evaluates Parkinson’s Disease (PD) in naturalistic environments (e.g., the

daily life of individual affected by PD). A total of approximately 5500 hours of accelerom-

eter data was collected by 34 participants in a home environment, in order to detect for 4

classes: asleep, on , off and dyskinesia. From the raw signal 91 hand-crafted features were

extracted in each minute. Then, in the first step of training, the features are normalized

and fed into RMBs to reconstruct the input features. In the second step of training, a

next Gaussian-binary RBMs layer was taken the activation probabilities of the first RBMs

as its input data. Finally, a softmax layer was added as a top-layer to classify the four

classes.

Recurrent neural network

Recurrent neural network (RNN) is a class of artificial neural networks, where each neu-

ron connected to create a directed graph along a temporal sequence. Long-Short-Term-

Memory (LSTM) is an artificial RNN architecture, which deals with explode and vanishing

gradient problems encountered in RNN. In recent years, there are few researches on RNN

and LSTM for HAR tasks [Hammerla et al. (2016); Edel and Koppe (2016); Murad and

Pyun (2017)]. For instance, Edel and Koppe (2016) presented a binarized BLSTM-RNN

system, which re-defined all parameters (e.g., weight, input, output, hidden layers, etc.)

in the network in term of binary values. Hence, the model only computed on bite-wise

operation instead of using arithmetic operations. As a result, the system reduced the

high computational cost of traditional RNN-LSTM, while it still remains a good accuracy

for the HAR task. Murad and Pyun (2017) proposed a deep recurrent neural network

(DRNN), which is able to capture long-range dependencies in variables-length input se-

quences. Their experiments showed that DRNN outperforms other classifications such as

DBNs, CNN, kNN, SVM in benchmark datasets.

Hybrid model

A hybrid model is the connection of different types of deep learning models together such

as CNN and RNN [Morales and Roggen (2016); Yao et al. (2017)]. For instance, Yao

et al. (2017) proposed a deep learning framework, namely DeepSense, which combines

convolutional neural network and recurrent neural network so as to perform three tasks:

car tracking with motion sensors, human activity recognition and user identification with

biometric motion analysis. It is shown that CNN is responsible for capturing the spa-
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tial relationship, and RNN can achieve to obtain for the temporal relationship. Hence,

integration of CNN and RNN can boost the activity recognition task that have varied

time span and signal distribution. Similarly, Morales and Roggen (2016) also proposed a

framework (DeepConvLSTM) based on convolutional and LSTM neural networks, which

allowed to perform sensor fusion naturally and automatically extracted features using CNN,

after that LSTM was used for learning the temporal dynamic of feature activation. As

a result, DeepConvLSTM was compared with deep non-recurrent networks and previous

learning models on two well-known public HAR datasets (OPPORTUNITY, Skoda). The

result demonstrated that DeepConvLSTM outperformed these learning models. Other

researches integrate CNN with other models such as SAE Zheng et al. (2016) and RBM

Liu et al. (2016). In these works, CNN performed features extraction and generative mod-

els assist to adjust the input data for the training process. There is an expectation to

expanded researches for this area in the future.

In summary, although this state-of-the-art of the HAR domain shows that activities

daily living can be recognized with conventional and deep machine learning. However,

there is still no approach that allows generating a story or script from the HAR system. In

addition, conversely, there is no approach for script generation on the NLP domain using

sensor-based human activity recognition. In this thesis, we approach these issues in order

to connect both domains together. Moreover, we will deal with existing issues on each

domain such as imbalanced data and high-level activities recognition, which enhance the

prediction of the HAR system. Besides, we handle issues on script generation such as

event representation, the sequence of events classification so as to predict the next event,

missing event in natural language text on the NLP domain.
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Chapter 3

Problematic and Overall approach

3.1 Problem Statement

As stated in the introduction, generating a coherent textual story from raw sensor data is

highly challenging. From a pure data abstraction and data processing point of view, the

following research questions should be addressed.

1. What information must be extracted from ambient data to be able to generate a

story?

2. What data processing approach would make the extraction of this information pos-

sible?

3. How this information should be structured?

4. What Natural Language Generation process must be employed to generate a story

from this set of information?

However, from a cognitive point of view, the problem is not defined in terms of data

processing but in terms of information communication. Hence, in this specific case, the

problem of story generation can be seen as constructing a discourse that respects the

following objectives.

1. Linguistically represents a set of events discernible in the data.

2. Relates them temporally and causally.

3. Integrates these chunks of the information under a common communicative purpose.

This communicative purpose will drive, among others, the below sub-objectives

(a) The motivation and/or justification of decisions/actions in the story;

(b) The filtering/amplification of pieces of information.
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3.2 A Data Abstraction Approach

From a data abstraction point of view, the story is about what people do and what they

feel during daily life. Hence, in order to generate a story, we need to know what kinds of

activity are of interest, and what are the methods to automatically extract them.

In recent years with the advanced technology of smart-phone sensors (e.g., capacity

increase, cost efficiency, power efficiency, etc.) it became possible to use it for human

activity recognition (HAR) purposes [Bayat et al. (2014); Kwapisz et al. (2011); Anguita

et al. (2013)]. Indeed, HAR plays an important role in automatically story generation

that allows us to automatically identify and discover what and when people are doing

during their daily life. Moreover, Recognizing Human Activity from sensors data can assist

human to predict physical activity in everyday life such as walking, running and working at

a computer, etc. [Lara and Labrador (2013); Bayat et al. (2014); Blachon et al. (2014);

Kwapisz et al. (2011)]. Therefore, HAR is a core requirement in this thesis in order to

generate a story.

In HAR, the model is typically acquired using machine learning over datasets collected

from smartphones and manually labeled. Such a model should be invariant to the users

and devices on which the data is collected Lara and Labrador (2013). To permit the model

to generalize, a large amount of data from several different users and devices is necessary.

Another important problem is the class imbalance. Indeed, data-sets acquired from real-

life do not contains uniformly distributed examples. For instance, the jump activity might

far less present in the data than the sitting activity. Such a situation biases the learning

towards the majority classes. Thus, a solution must be found to make unbiased learning

possible. To address the HAR problem, we will use Artificial Neural Network models learned

on smartphone data and propose a meta-learning framework to deal with imbalanced data.

However, most of HAR systems in recent researches [Anguita et al. (2012); Khan et al.

(2014); Blachon et al. (2014); Nguyen et al. (2018)] aims at recognizing discrete human

activity labels. As mentioned in Miyanishi et al. (2018) it is not sufficient to generate

a story with discrete human activity labels. Indeed, HAR only answers the question of

the what and when but not where. Furthermore, conventional learning relies on carefully

handcrafted features. However, such features might be sub-optimal for the task. Hence,

we will use recent deep learning techniques to acquire HAR models that are able to work

directly on raw signal data and which can predict both the activity and localization of

the user.

Regarding text generation, as introduced in Chapter 2, There have been researches

for script/story generation from text in Natural Language Processing [Modi and Titov

(2014); Modi (2016); Chambers and Jurafsky (2008); Regneri et al. (2010); Frermann
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et al. (2014); Harrison et al. (2016)] or data-to-text generation in Natural Language

Generation [Portet et al. (2009); Reiter and Dale (2000); Reiter et al. (2005); Miranda

(2018)]. However, to the best of our knowledge, there is no approach of story generation

from wearable sensor data using machine learning techniques, because sensors data has

very limited information. To deal with the generation, we adopt a simple concept-to-

text approach Qader et al. (2018) using a sequence-to-sequence deep model. In this

approach, the information to be communicated is represented as a linearized Abstract

Meaning Representation which is feed to a Recurrent Neural Network which in turn outputs

a sequence of words representing the story. Such a model has proved to be very effective

in recent end-to-end generation tasks Dušek et al. (2018).

3.3 The Cognitive Side of the Approach

Regarding the structuring aspect of a story, there is a large number of ways to perform

it according to the audience, the communication goal and even the medium with which

the story is being expressed (e.g., picture, video, text). Since the objective is to make the

generated story highly understandable by a human, we take a cognitive approach to the

story by considering the Scripts theory. Indeed, much of our common sense knowledge

about the world (such as what usually happens when going to a restaurant) is thought to be

represented in our mind by Scripts. Script theory was introduced by Tomkins (1978) who

claimed that human behavior mostly follows patterns called Scripts which are stereotypical

likely sequences of events. This theory has been popularized in AI by Schank and Abelson

(1975) who introduced it as a method for representing procedural knowledge. Hence, in

this thesis, we define an event/narrative as a sentence of words that describes human

activities, action, and their location. We call script as a sequence of event/narrative,

which is represented in the temporal order. Finally, we consider the story as a sequence

of scripts.

However, script models must be acquired to be useful for story generation. If scripts

are built by humans from experience, computers extract them from data. Over the past

decade, there have been plenty of studies [Modi et al. (2016); Modi (2016); Modi and

Titov (2014); Frermann et al. (2014); Regneri et al. (2010); Granroth-Wilding and Clark

(2016); Hu et al. (2017)] carried out on learning scripts using Natural Language Processing

(NLP) but there is a lack of research regarding script learning from sensor data. Hence, to

extract the script model, we address the issue by learning the script of daily life from the

text with the hope they can be transferable to story generation from data. Once again,

we will use a deep learning approach to this problem.
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Moreover, as reported in Yang et al. (2015) most existing work on HAR relies on heuristic

hand-crafted feature design and shallow feature learning architectures, which cannot find

those distinguishing features to accurately classify different activities. Therefore, Yang

et al. (2015) motivate to develop an automate systematic feature learning from the raw

signals as inputs to be fed into a deep convolution neural network, so that the feature

learning and classification are mutually enhanced by unifying in one model. Moreover,

deep architecture can obtain specific variance or salient patterns of signals at different

scales. In addition, with this model, we can solve the problem of temporal variation of

ADL events by removing repetitive events based on creating new segmentation using the

time-slices on the raw signal. As a result, we can re-segment the events located on the

appearance frequency of their labels in the raw signal. As mention in Miyanishi et al. (2018)

simple ADL labels prediction such as walking, running, etc. is the shortcoming to generate

a story or event time-line. Therefore, in this research, we also follow the approach in

Miyanishi et al. (2018) by recognizing the sequence of combinations of semantic concepts

(e.g., human physical activity, action, location).

In the second part of the Figure 3.1, the output of prediction of HAR (the sequence

of combinations of semantic concepts) will be considered as the input of sequence to se-

quence neural network model Sutskever et al. (2014b), so that the system can generate

the candidate event/text descriptions from the semantic concepts. In fact, generating

descriptions is a popular research in visual content (e.g., images and video) can be di-

vided into four different approaches: (1) generating descriptions for images or videos

contain some associated text [Aker and Gaizauskas (2010); Feng and Lapata (2010)], (2)

generating descriptions by using manually defined rules or templates [Tan et al. (2011);

Guadarrama et al. (2013)], (3) retrieving existing descriptions from similar visual content

[Farhadi et al. (2010); Ordonez et al. (2011)], (4) learning a language model from a train-

ing corpus to generate descriptions [Kulkarni et al. (2011); Kuznetsova et al. (2012)]. In

order to generate text descriptions from semantic concepts, we adopt these approaches

by combining approach (2) and (4). At first, we generate the text description corpus from

semantic concepts by simple detection rules as Tan et al. (2011) to glue the gesture,

action, and location. However, using manually defined rules limit the natural flexibility of

language as mentioned in Kuznetsova et al. (2012). Therefore, in the next step, the text

description corpus can be considered as a target, the semantic concepts are determined

as the source for the sequence to sequence neural network (seq2seq) model. By using

the seq2seq model we can generate and enrich the semantic and syntactic of the gener-

ating candidate event/text descriptions. By recognizing the sequence of combinations of

semantic concepts, we can obtain a sequence of candidate event/text descriptions (Event

timeline/Scripts) that were generated from the seq2seq model.
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system is a problem to automatically construct the structure of some level of abstraction

such as sequences of events, actions or protagonist and entities that participate in that

can be told as a story.

The very first devoted work by Schank and Abelson (1975) studied script knowledge

focused on manual construction of its bases. Then in the past decade, there were many re-

searches revised this work, which interested in automatically induction of script knowledge

from text such as: [Chambers and Jurafsky (2008); Pichotta and Mooney (2014)] carried

out studies on naturally occurring texts or Regneri et al. (2010) worked on crowd-sourced

data. Most of these approaches focused on count-based techniques that represent events

as a graph. Each node of the graph is an event, which is modeling as a verbal predicate

with tuples of its arguments, and arcs correspond to the temporal precedence relation.

Consequently, these methods usually suffer from the data sparsity because of the limi-

tation of their model to capturing dependencies only between events have the common

entities (e.g. protagonist) and the probability of predicate and argument estimates based

on their co-occurrences (count-based method). Furthermore, Modi (2016) proposed event

embedding modeling to conquer the imperfections of the count-based methods. One of

the advantages of the event embeddings is enabling to capture the semantic properties

of events, it means that the events with different surface form of their constituents but

are semantically similar will receive the similar event embeddings. However, one of the

disadvantages of these event embeddings is the lack of understanding events with deeper

syntactic and semantic analysis of language. Therefore, in this proposed method we

present a novel technique to model scripts based on Recursive Neural Networks Semantic

Syntactic, namely NESS to represent a sequence of events as composition of their seman-

tic predicates and arguments. The advantage of our proposed model can effectively dealt

with sparsity in semantic space by representing meaning at a higher level of abstraction

than the surface forms of words.

In the fourth part of Figure 3.1, it presents the way that we enrich our source and

target language, which can be considered as an event structure, and then feed into the

seq2seq model as the input. In order to do this, we take the output of script modeling

then combine with the source and target that we glued from semantic concepts of daily

activity location, which detected by a deep neural network. However, this work still has

not covered in this thesis due to time limitations.
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Chapter 4

Human Activity Recognition from

mobile phone sensors

In this chapter, we present our proposed method to deal with imbalanced data for con-

ventional learning methods using a mobile phone sensor. First of all, in Section 4.1 we

introduce the problem and related work in Section 4.2. Next, in Section 4.3 we introduce

our novel framework, which is using active learning and oversampling technique so that it

can solve for the problems of imbalanced data, based on Multilayer Perceptron (MLP) - a

machine learning model. Next, the experimental results are illustrated in section 4.4. The

chapter ends with a conclusion in Section 4.5.

4.1 Introduction

Human Activity Recognition from wearable sensors and in particular smartphones has been

subjected to intense research and industrial activity this last decade Lara and Labrador

(2013). Many learning algorithms have been used to classify physical human activities such

as Running, Walking, etc. as well as interactive and social activities (chatting, talking,

playing, etc.). HAR is useful for health monitoring, senior care and personal fitness training

as well as for providing context to smartphone applications. Physical human activities are

generally classified from recorded sensor data (e.g. accelerometers, GPS, audio, etc.)

which are embedded into wearable devices (e.g. smartphones and smartwatches).

HAR systems performances are highly dependent on the classification model (Deci-

sion Tree, Support Vector Machine, Multi-Layer Perceptron, etc.), the feature used, the

number of classes and the size of the datasets available for training Lara and Labrador

(2013). However, another aspect that plays an important role in this domain is the lack

of a uniform collection of different activities. In fact, this is the case for most smartphone

datasets (e.g. Running = 4% and Walking =40% distribution). This is called the Class
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Imbalance Problem that is known to have a serious influence on the performance of learn-

ing algorithms because most standard algorithms expect balanced class distributions He

and Garcia (2009).

In the past, research on HAR based on wearable sensors did not systematically handle

the class imbalance problem. Therefore, in this work, we introduce a generic framework

that integrates active learning with an over-sampling method based on MLP to overcome

this problem. We also introduce a new over-sampling method, called BLL SMOTE - an

extension of SMOTE Chawla et al. (2002) - which can apply to non-convex spaces.

Contributions. Our contributions are summarized as follows.

• A framework integrating MLP and active learning with over-sampling.

• A new over-sampling method, BLL SMOTE.

• Experiments with 2 available datasets that show the impact of taking the class

imbalance problem into account in the learning.

The work is organized as follows. Section 4.2 presents a summary of the state of the

art in HAR and in learning techniques with imbalanced data. The overall framework and

the BLL SMOTE method are detailed in Section 4.3. Several experiments are reported in

Section 4.4. The work ends with a short discussion and an outlook on future work.

4.2 Related Work

Human Activity Recognition (HAR) from wearable sensors data is a very rich domain of

research. We restrict here in presenting the main work regarding the classification models

being used, the available ecological datasets and the techniques to deal with imbalanced

class distribution in data. Regarding the classification models, there have been many

approaches to deal with HAR from wearable sensors. Over the last decade, the most

common approach is to process windows of data streams to extract a vector of features

that will, in turn, be fed to a classifier. Many instance-based classifiers have been used in

the field, such as Bayesian Network Lara et al. (2012), Decision Trees Lara et al. (2012);

Blachon et al. (2014), Random Forest Blachon et al. (2014), Artificial Neural Network

(ANN) [Khan et al. (2010); Kwapisz et al. (2011); Lara et al. (2012)], Support Vector

Machines (SVM) [Lara et al. (2012); Anguita et al. (2012)], etc. Since human activities

can be seen as a sequence of smaller sub-activities, sequential models such as Conditional

Random Fields Blachon et al. (2014), Hidden Markov Model Zhu and Sheng (2009) or

Markov Logic Network Chahuara et al. (2016) have also been applied. However, since

51



the advent of Deep Learning, ANN has become of the most popular model in HAR from

wearable sensors [Bayat et al. (2014); Arifoglu and Bouchachia (2017)].

ANN has also been broadly used in HAR [Bayat et al. (2014); Kwapisz et al. (2011);

Khan et al. (2010)] and in addition to that deep learning now is a challenging topic that

many scientists are interested in HAR, for instance, [Ronao and Cho (2015); Zeng et al.

(2014b)] is a demonstration of applying convolution neural networks in HAR using wear-

able sensors. For applying the machine learning approach in our thesis, we achieved to

build a framework of human activity recognition based on a supervised learning algorithm

namely Multilayer Perceptron as shown in Figure 4.2. It was implemented using Tensor-

flow library is provided by Google Team. An advantage of this framework allows us to

deal with poor data quality by using methods such as sampling and cost-sensitive. Indeed,

the quality of training data is also an extreme challenge, in recent years, a survey He and

Garcia (2009) reported that imbalanced data has a serious influence on the performance of

learning algorithms. Most standard algorithms expect balanced class distributions, hence

datasets contain imbalanced class distribution which makes these algorithms fail to cor-

rectly represent the distributive characteristics of the data. As a consequence, it would

produce unfavorable accuracies across the classes of the data and leads to a decrease in

the total accuracy of learning algorithms. In order to deal with imbalanced data, there

are several methods introduced in He and Garcia (2009), namely sampling, cost-sensitive,

kernel-based and active learning. In the first place, under-sampling (e.g., random under-

sampling) was evaluated is as better than over-sampling (e.g., random over-sampling),

which means that reduction of the majority classes provides higher accuracy than an in-

crease of minority classes. In addition, the strategy of under-sampling is also important,

Yen and Lee (2009) proved that cluster based under-sampling outperforms the other under-

sampling techniques. In the second place, cost-sensitive learning methods are concerned

with the costs associated with misclassifying examples by using different cost matrices.

Several methods based on learning algorithms were introduced such as cost-sensitive data-

space weighted adaptive boosting, cost-sensitive decision tree. Although, we only interest

in cost-sensitive neural networks in three ways: first, cost-sensitive modification can be

applied to the probabilistic estimate; second, the neural network outputs can be made

cost-sensitive; third, cost-sensitive modification can be applied to the learning rate. The

idea of the probabilistic estimate is integrating cost factors into the testing stage of clas-

sification to adaptively modify the probability estimate of neural network output, while the

outputs of the neural network are altered during training to bias the neural network to

focus more on expensive class. The learning rate can be applied cost-sensitive to put more

attention on costly examples during the learning. In the third place, we consider the ac-

tive learning that has been investigated to compromise with imbalanced learning problems
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Ertekin et al. (2007a,b). Generally, active learning is used to solve problems related to

unlabeled training data. Moreover, it integrates with sampling techniques to analyze the

effect of under-sampling and over-sampling by using uncertainty sampling methodology;

the challenge is how to measure the uncertainty of an unlabeled instance in order to choose

the maximally uncertain instance to augment the training data. Moreover, this framework

also allows for dealing with over-fitting problems such as regularization and dropout.

Machine learning is highly dependent on datasets. It is, even more, the case with

Deep Learning. If many papers report work dealing with non-accessible datasets, many

others investigate datasets that are made publicly available. The survey by Micucci et al.

(2017) presents a large number of publicly available datasets acquired from a smartphone.

However, it also shows a lack of uniformity in tasks, sensors, protocol, time windows, etc.

It is worth to notice that most of the datasets are restricted to inertial sensors such as

accelerometers. The audio sensors are largely ignored while being among the only ones

that are always found on a smartphone. It is also worth noticing that some are very

imbalanced since the distribution among classes are very different. For instance, in the

ExtraSensory Dataset Vaizman et al. (2017), sitting represents 44.2% of the data while

running only 0.3%. In this case, the learning approach should consider the class imbalance

problem.

He and Garcia (2009) reported that imbalanced data has a serious influence on the

performance of learning algorithms, because most standard algorithms expect balanced

class distributions. Hence, datasets exhibiting imbalanced class distribution make these al-

gorithms fail to correctly represent the distributive characteristics of the data. As a conse-

quence, it would produce mis-classification of minority classes higher than mis-classification

of majority classes, and leads to a decrease in the overall accuracy of learning algorithms.

In fact, in HAR, a few studies coped explicitly with this problem such as Abidine and Fer-

gani (2014) who proposed Weighted Support Vector Machines (WSVM) to improve the

learning of minority classes. However, the approach is based on a scheme that puts more

weight on the errors in the minority classes than on the majority classes. Therefore, this

approach is highly dependent on instances of minority classes.

In general, in order to deal with imbalanced data, several other approaches were intro-

duced in He and Garcia (2009) such as over-sampling, active learning. For the former ap-

proach, some methods were proposed such as SMOTE Chawla et al. (2002) or Borderline

SMOTE Han et al. (2005) which work by generating new synthetic instances of minority

classes. Their studies showed that over-sampling techniques succeeded to enhance the

classification accuracy for imbalanced datasets. For the latter approach, Ertekin et al.

(2007a) introduced a SVM based active learning framework in which SVM starts to train

on a given training dataset, then selects the most informative instances from a pool of
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the features extracted from the sensors, the hidden layer nodes H = {h1, ..., hl} and the

output layer nodes Y = {y1, ..., yk} are computed as follows:
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This is shown in Figure 4.2, where {w1,1, ..., wl ,n}, {w1,1, ..., wk,l} and {b1, ..., bk} rep-

resent weights and bias.

4.3.3 Active Learning

The principle of Active Learning (AL) is to learn to label unknown instances by selecting

(querying) some specific instances and ask an external system (e.g., a human operator) to

label them. It has become an emerging research topic with applications in many fields such

as image segmentation Biswas and Jacobs (2012), data clustering Mai et al. (2016) text

classification Tong and Koller (2001). Applying AL in HAR is thus an interesting approach

since it can further boost up the accuracy by involving humans in the classification task,

especially for hard to classify activities. Moreover, its scheme provides a natural way to

cope with data imbalance by exploring some most uncertain data spaces, as pointed out

in Ertekin et al. (2007a).

Typically, an active learning algorithm chooses objects that their labels are among the

most uncertain ones to query users for. Uncertain instances can be chosen in many differ-

ent ways Settles (2010). Our technique is built upon the uncertainty sampling technique

Settles (2010) whose principle is that the most relevant instances to be selected for anno-

tation are the ones for which the estimates are the less certain. Thus, after MLP training,

we predict the labels of U using the training output Y of MLP. Y can be seen as a vector of

the probability of labels. Then the instances in U are ranked according to their decreasing

Shannon Entropy, because the higher entropy of an instance is, the more uncertainty there

is on its class. Therefore, the most uncertainty instance can be picked up by maximized

Shannon entropy Shannon (2001) using Equation (4.1):

x∗H = argmax
x
−
∑

i

Pθ(yi |x) logPθ(yi |x) (4.1)
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where x is an instance, Pθ(yi |x) is the probability of all possible labels on the instance.

4.3.4 Oversampling Border Limited Link SMOTE Method

While classical active learning methods only add in the training set the uncertainty in-

stances, that were labeled by a user, our method also performs over-sampling on queried

data. This makes it possible to put new information into the training set and tackle the

class imbalance problem.

Over-sampling consists of adding a new sample to a training set, whether they are

synthetic or real. For instance, SMOTE Chawla et al. (2002) generates a new synthetic

instance, using Equation (4.2):

xnew = xi + (x
θ
i − xi) ∗ λ (4.2)

where xnew is the new sample generated from xi ∈ Smin, with Smin is the samples of

minority class, x θi is one of the k-nearest neighbors of xi : x θi ∈ Smin, and λ ∈ [0, 1] is the

random number, which allows to randomly generate the new synthetic instance xnew along

the line between xi and x θi .

However, this method is not relevant in the case of non-convex spaces. For instance,

imagine space as represented in Figure 4.3. If xi and x θi are two samples of the green

(circle) class, a direct application of Eq. (4.2) would produce a new sample xnew which

would not be in the right space.

To avoid the mis-generation of synthetic instances in the case of non-convex dataset,

we introduce the BLL SMOTE method described as follows. The method uses Eq. (4.2)

but calculates the distance from xnew to each of the k-nearest neighbors of xi , denoted

as dj = d(xnew , xθi ), j = 1, ..., k , where d is the Euclidean distance. Then, the distance

of the artificial instance xnew with its nearest instance xdif f 6∈ Smin such that xdif f ∈ S,

denoted as ddif f = d(xnew , xdif f ) is computed. Finally, each dj is compared to ddif f . If any

dj is greater than ddif f , then this artificial instance xnew is not accepted to be generated.

Otherwise, xnew is accepted.

An advantage of BLL SMOTE is to avoid the mis-generated new synthetic instance in

non-convex datasets

4.3.5 Implemented Framework

The overall learning process is summarized in Algorithm 1. Providing a training set S,

a pool of instances U and a number of query N, an MLP model Ω is firstly trained from

S (line 4). Next, uncertainty sampling is used to query instances to be added to S (line
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Algorithm 1: Algorithm MLP AL OS Border Limited Link SMOTE
Input:

(a) X = {x1, ..., xn} : training instances

(b) S: pool of training instances for MLP

(c) U: pool of unlabeled instances

(d) N: number of query

Output:

Ω : the learned model

1 Initialize S from a subset of X

2 Initialize L← ∅

3 for i : 1→ N do

4 Ω = MLP_T rain(S)

5 L← Uncertainty_Sampl ing(U,Ω)

6 U ← U − L

7 Query labels y∗ for all x∗ ∈ L

8 S ← S ∪ L

9 foreach x∗ ∈ L do

10 L_neighbors = k_nearest_neighbors (x∗)

11 foreach x θ∗ ∈ L_neighbors do

12 xnew = x∗ + (x
θ
∗ − x∗) ∗ λ

13 ddif f = Eucl idean_distance(xnew , xdif f )

14 accepted_generation = T rue

15 foreach x θ∗ ∈ L_neighbors do

16 d = Eucl idean_distance(xnew , xθ∗ )

17 if d > ddif f then

18 accepted_generation = False

19 break;

20 if accepted_generation = T rue then

21 S = S ∪ (xnew , y∗)

22 return Ω
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BLL SMOTE also has an effect on the classification performance of each class. On

Figure 4.7, the MLP performance on LIG-SPHAD at the last step of active learning

with over-sampling BLL SMOTE, demonstrates that the minority classes such as Jump,

Unstable can achieve nearly 0.7 and 0.65 F1 score respectively, that is much higher than

the MLP performance in Figure 4.5 where F1 score are 0.6 and 0.5 respectively. On the

ExtraSensory dataset, the right side of Figure 4.7 also illustrates that minority classes

such as Running, Stairs can reach an F1 score of 69% and 65% respectively higher than

in the right side of Figure 4.5, where the same classes achieved 60% and 50% F1 score

respectively. Hence, BLL SMOTE makes it possible to increase minority class performance

in a discriminative setting.

4.5 Conclusion

In this work, we introduced a generic framework that integrates active learning with the

over-sampling method based on MLP to overcome the class imbalance problem. We also

introduce a new over-sampling method, called BLL SMOTE - an extension of SMOTE

Chawla et al. (2002) - which can be applied to non-convex spaces.

The experiments carried out on two different datasets demonstrated that using active

learning with over-sampling to tackle the imbalance distribution of class can increase the

global F1 score of the two datasets by about 15% absolute over the baselines. In each case,

BLL SMOTE shows slightly higher performances than using SMOTE plus Active learning.

In addition, BLL SMOTE is able to increase the classification performance of minority

classes. Another important point of this study is the fact that our method prevents the

mis-generation of the synthetic samples, thanks to its capacity to manage non-convex

datasets.

These results show two advantages over classical approaches: the method makes it

possible to improve overall and local performances and does not require extra external

data. This last advantage is important in a domain such as a smartphone HAR where

data collection is costly and available datasets might differ too much in terms of target,

features or time resolution.
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Chapter 5

Scripts Generation from Events

In this chapter, we present our novel approach to generate scripts from events, which are

detected using a deep learning method on wearable sensors data. Section 5.1 shows an

introduction, then related works are presented in section 5.2. In section 5.3 we introduce

our proposed methods, and the experiment results are illustrated in section 5.4. The

chapter ends with a short discussion and an outlook of future work in Section 5.5.

5.1 Introduction

Script is a stereotypical sequence of events in prototypical scenarios, was first introduced

by Schank and Abelson (1975). As mentioned in Schank and Abelson (1975) a story has

invoked a script with one or more interesting deviations, and more precisely script is also

a very boring little story. There are extremely numerous scripts in our daily life such as

birthday party script, working day script, and restaurant script, and so on. For instance,

Table 5.1 shows an example of restaurant scripts in different scenarios.

The above scripts enable us an insight into the sequence of events happened in the

restaurant context with different scenarios, which are providing in the form of human

readable texts. For instance, the sequence of events in scenario 2 let us deduce that the

person is ordering food, or scenario 4 shows us that the person is leaving the restaurant.

In general, scripts allow human to deeply understand everyday human life in the real world.

Fortunately, nowadays HAR systems are using wearable sensor data also permit us to

recognize human activities during daily life, which are exploiting machine learning models

[Anguita et al. (2013); Kwapisz et al. (2011); Blachon et al. (2014)] to classify and

predict human activity such as walking, running, sitting, etc.. However, these current

HAR systems are often tackling by recognizing discrete daily human activities, hence it

is not sufficient to constitute a script. In this work, we have therefore proposed a novel

approach in order to automatically generate scripts from the human activity recognition
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Scenario 1: Entering

Self into restaurant.

Look where empty tables are.

Where to sit.

Self to table.

Sit down.

Scenario 2: Ordering
Receive menu.

Read menu.

Decide what self want.

Order to waitress.

Scenario 3: Eating
Receive food.

Eat food.

Scenario 4: Exiting
Ask for check.

Receive check.

Tip to waitress.

Self to cashier.

Money to cashier.

Self out of restaurant.

Table 5.1: Event sequence of restaurant visiting

system using wearable sensor data. Figure 5.1 depicts a process of the raw signal data

(e.g., accelerometers, audio, etc.) of human activity into the generation of the scripts.

First, our method generates a rich semantic concept (e.g., gesture, activity, location)

of raw signal sensor data (e.g., accelerometers) detected by using the Sequential HAR

system, which will be described in section 5.3. Unlike Miyanishi et al. (2018) semantic

concepts are unknown related to each other’s, therefore Miyanishi et al. (2018) have to

develop temporal interactions among semantic concepts to remove objects and places

unrelated to each action. In contrast, our sequential HAR system allows us to predict

semantic concepts over time, and present it in the form of a sequence. And second,

we propose to formulate the generation of scripts as a hybrid combination of semantic

concepts detection templates and a machine translation problem. In more detail, detection

rules provide several templates to combine semantic concepts and generate sentences as

a target language for machine translation problems, which is using semantic concepts as

source language and the generated sentences as the target language, will be detailed in
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At 10:00, the person walks in

the building. Then, he/she

sits down in the living room at

10:02.

After that, he/she puts coffee

in the coffee machine in the liv-

ing room at 10:03. At 10:05

he/she put the cracker on the

table in the living room.

At 10:06 he/she eats cracker in

the living room. Then, he/she

drinks coffee in the living room

at 10:10.

At 10:11 he/she leaves the

building. Then, he/she goes

shopping in the street at 10:12.

Figure 5.1: Illustration of generating scripts from human activity using wearable sensor

data.

section 5.3.

We evaluate our proposed method on a daily-activity dataset collected by several sub-

jects on several days Sztyler et al. (2016). The experimental results present that the

proposed method can automatically generate scripts in unseen locations with high relevant

accuracy corresponding to the actual texts. Furthermore, we found that our method is

the first approach that enables us to generate automatically scripts from the HAR system

using wearable sensor data.

The remainder of the work is organized as follows. Section 5.2 presents a summary of

the state of the art in text generation from the HAR system. The proposed methods are

detailed in Section 5.3. Several experiments are reported in Section 5.4. The work ends

with a short discussion and an outlook of future work in Section 5.5.

5.2 Related Work

In recent years, there have been some researches interested in activity report generation in

health care [Kashimoto et al. (2017); Inoue et al. (2015)]. However, these existing studies
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focus on generate activity reports based on charts or graphs by predicting activity labels

from sensor data. In contrast, in this work, we mainly focus on generating a sequence of

events/scripts.

For recognize human activities of daily life, many approaches [Anguita et al. (2013);

Kwapisz et al. (2011); Bayat et al. (2014)] were proposed used online and offline classi-

fication models, which allow recognizing indoor and outdoor activities with external and

wearable sensors. Moreover, due to the evolutionary development of wearable sensors, it

can be easy to integrate on wearable devices (e.g., smart-phone, smartwatch, etc.) to

record attributes (e.g., acceleration, location, etc.). Recently, many vision-based activ-

ity recognition methods have been proposed using wearable cameras [Ma et al. (2016);

Pirsiavash and Ramanan (2012); Ohnishi et al. (2016)] for predicting daily activities and

their related objects in home environments. With this motivation in our current work, we

are also using wearable sensors to predict daily activities by developing a deep learning

model. However, we still have not considered the wearable camera for our HAR system.

For context-aware of human activities of daily life, some studies were carried out [Lee

and Mase (2002); Riboni and Bettini (2011)] to recognize daily activities, and simultane-

ously the places where the activities were performed. According to Lee and Mase (2002),

the transition of locations is detected by integrating the subject’s motor activities using

a dead-reckoning method. Similarly, Riboni and Bettini (2011) proposed a system that

combines between ontological reasoning and statistical inferencing to recognize more accu-

rately activities based on contextual conditions (e.g., location, surrounding environments,

used objects). Nevertheless, these researches did not consider on the sequence of events

or scripts generation from daily activities recognition.

There have been much extensive researches work on language description generation

[Miyanishi et al. (2018); Rohrbach et al. (2013)] from visual content (e.g., image, video,

etc.). In general, there are four main research directions according to Rohrbach et al.

(2013) (1) generating descriptions for images and videos which already contain some

associated texts [Aker and Gaizauskas (2010); Feng and Lapata (2010)]; (2) generating

descriptions with manually defined rules or templates [Tan et al. (2011); Guadarrama

et al. (2013)]; (3) retrieving existing descriptions from similar visual content [Farhadi

et al. (2010); Ordonez et al. (2011)]; (4) learning a language model from training corpus

to generate descriptions [Kulkarni et al. (2011); Kuznetsova et al. (2012)]. However,

these current work did not focus on description generation from wearable sensor data

(e.g., accelerometers, audio, etc.), which is much more limited information than images

or videos.
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5.3 Proposed Method

In order to automatically generate scripts, we design the proposed system illustrated in

Figure 5.2. In the proposed system, multiple semantic concepts were produced from sensor

data based on learning Sequential Deep Learning Model so that it can classify and predict

three real-world properties (gesture, activity, location) be considered as semantic concepts

and events. We will detail these processes in the next section 5.3.1.

5.3.1 Semantic Concepts Generation with Deep Learning Neural Net-

work Model

Semantic Concepts Representation and Events

In the first step, we represent the real-world states as a sequence of events e = [e1, e2, ...en],

where each event e is denoted as a tuple of semantic concepts (sc1, sc2, ..., scm). Each

semantic concepts is represented by concept form of < g, a, l >, where g is the ges-

ture of the subject (i.e., Walking, Running, Sitting, etc.), a is the activity of the subject

does (i.e., Mealpreparation, Deskwork, Housework, Shopping, etc.), l is the location (i.e.,

Street, Home, Building, etc.) the subject stands.

Generating Semantic Concepts using Deep Neural Network Model

In this section, we present the deep learning Neural Network Model with a sequence-labeling

approach that is used to generate semantic concepts of gesture, activity, and location by

predicting labels from sensor data as illustrated in Figure 5.2.

First, we process a time-sliced and multi-dimensional sensor data on a 3-axis signal of

accelerometer data that was collected by a mobile device carried around several persons’

body-positions (e.g., Thigh, Upper-arms, Head, Waist, Forearms, Shin, Chest). Actually in

HAR problem, most of recent studies [Kwapisz et al. (2011); Anguita et al. (2012); Khan

et al. (2014)] used a fixed sliding window for features extraction and built different machine

learning models (e.g., Random Forest, Support Vector Machine, Convolutional Neural

Network, and so on) to classify and predict the human activity labels. However, these

current works relied on heuristic hand-crafted feature design, which can not achieve to find

the best features for the learning model to accurately classify different human activities.

Therefore, in this work we follow Jiang and Yin (2015a) to build a deep neural network –

Deep Neural Network (DNN) captures the salience of signal (3-axis accelerometer data)

in different scales by a time-sliced representation as shown in Figure 5.2. For the DNN

model, assume that we have a signal of sensor data in duration T = (t1, t2, ..., tN). At
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Figure 5.2: Illustration of generating semantic concepts (e.g., gesture) from human activity

using deep neural network.

each step t is defined by a time-sliced that segments raw signal from start time ti to end

time tj has an input vector xti j (xti j is composed by 3-axis signal of sensor data), and a label

of sensor data yti j (one-hot vector) is the most frequent label that is represented in the

time duration ti to tj , and produce a hidden state hti j . The function of LSTM is defined

as below:

gti j = sigmoid(Wgxti j + Ughti j−1 + bg)

sti j = tanh(Wsxti j + Ushti j−1 + bs)

fti j = sigmoid(Wf xti j + Uf hti j−1 + bf )

ŝti j = fti j ∗ sti j−1 + gti j ∗ sti j

oti j = sigmoid(Woxti j + Uohti j−1 + bo)

hti j = oti j ∗ relu(ŝti j )

where Wg,Ws ,Wf ,Wo ∈ RnHXnI and Ug, Us , Uf , Uo ∈ RnHXnH are weighted matrices. The

dimension nI is the size of the input vector, nH is the size of hidden vector. bg, bs , bf , bo

are bias vectors, ∗ is the element-wise multiplication. gti j , sti j , fti j , ŝti j , oti j are the input

gate, states of memory cells, forget gates of the memory cells, new states of memory cells

and output gates of memory cells, respectively. We refer to the above function as hti j =
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LSTM(xti j , hti j−1). Then, the output of hidden states hti j are fully connected to an output

layer with activation softmax that produces the probability of all possible labels. Next, we

predict labels of sensor data xti j at each time-sliced window ti j by maximizing the conditional

probability p(yti j |xti j ) =
exp (Wohti j+bo)∑
k(Wohk+bo)

, whereWo ∈ RnLXnH . The dimension nL are the size of

labels. Afterward, we combine simultaneously labels into semantic concepts with its start

and end times. Consequently, we successfully capture a chronological semantic concept

that composes of three conceptual components gesture, activity, the location from sensor

data.

5.3.2 Scripts Generation from Semantic Concepts

In this section, we will introduce the technique to generate scripts from the semantic

concepts that we detected by using deep learning neural network model, which is described

in section 5.3.1. First, we will generate target sentences/sentence descriptions from the

semantic concepts by manually defined detection rules. Second, we will enrich the semantic

and syntactic of the target sentence by learning sequence to sequence model.

Scripts Generation from Manually Detection Templates

In recent years, manually defined rules and templates were used in several studies [Tan

et al. (2011); Kulkarni et al. (2011); Kuznetsova et al. (2012)], which allowed to generate

language from extracted semantic concepts from visual content (i.e., images, videos). In

this section, we follow this technique in order to generate target language/sentences from

the semantic concepts, which are extracted from outputs of recognition by using deep

learning neural networks as presented in the section 5.3.1. To generate target sentences/

language, we consider a triplet of concepts: human gesture concept (e.g., walking), human

action concept (e.g., meal preparation) and location concept (e.g., home) the places

where the action was done. Simple rule-based methods rely on these concepts. Our

first template is based on the subject who is known as first-person wore the wearable

sensors, therefore to be more generic the subject phrase is "the person". Then, it is

concatenated with the human gesture, action and location concepts according to identified

gesture/action/location concepts. For instance, if "sitting" and "meal preparation" are

detected simultaneously, then we form a sentence likes "the person sits and prepares a

meal". If the location "home" is identified, then we output "the person sits and prepares

the meal at home". Sometimes, the location concepts might be identified but gesture

and action concepts can be missing. In this case, we use a phrase to present location

setting only such as "the person is at home". The figure 5.3 presents the simple rules for

the detection templates. As a result, the target sentences/language was created by using
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Figure 5.4: Illustration of seq2seq model for enrich semantic and syntactic of scripts

generation from semantic concepts.

target sentences named as (s1, s2..., sm). The function of RNNs defined as follow:

ht = δh(Whxt + Uhht−1 + bh)

yt = δy(Wyht + by)

However, with the simple decoder seq2seq might not be efficient to generate corrected

words for the sequence of words. Therefore, in this seq2seq model, we also apply attention

decoder [Qader et al. (2018); Britz et al. (2017)] by multiplied attention weights with

encoder output vectors to produce the weighted combination. This result obtains a specific

part of the input sequence; therefore, decoder attention can choose the right words to

generate. We follow Qader et al. (2018) to produce attention weights in decoder by

calculating the following Equation 5.1.
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αi j =
exp (ei j)

∑Tx
k=1 exp (eik)

(5.1)

where ei j is computed as follow: ei j = f (si−1, hj), ei j represents an alignment model

that decoder at step i which parts of hidden state of the input sequence to be attended.

The alignment model f can be a simple feed-forward neural network. Then, the context

vector c at step i should be updated on the sequence length Tx as Equation 5.2.

ci j =

Tx
∑

j=1

αi jhj (5.2)

The entire process of the seq2seq model using for automatic scripts generation is shown

in Figure 5.4.

5.4 Experiments

5.4.1 Datasets

Figure 5.5: Collector and labeling framework: Wear (smart-watch) Hand (smart-phone).

We evaluate our proposed method using datasets of activity daily livings from Sztyler

et al. (2016), which are collected from seven subjects, that recorded manually their daily

routine including posture, activity, and location for several days. Figure 5.6 is depicted

for the sample rows of the original dataset. Each line of the raw data corresponds to

one measurement, in which the first element is the row index; the second element is a
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Gesture Activity Location

walking, running, sitting,

standing, climbing upstairs,

descending downstairs, lay-

ing, unknown

desk work, housework,

meal preparation, move-

ment, personal grooming,

relaxing, shopping, socializ-

ing, sport, transportation,

unknown

building, home, street,

transportation, office,

unknown

Table 5.2: List of names of semantic concepts used for gesture, activity and location

our DNN using Adam optimizer Kingma and Ba (2015), with a learning rate of 0.001 and a

batch size of 256. We used the cross-entropy loss for a multi-class label of gesture, activity,

and location. Then, we predicted labels of semantic concepts with leave-one cross-days

training, which trains a model on several days and tested it with another day of data. For

the preliminary experiment, we only chose subject 2 from seven subjects in the datasets

Sztyler et al. (2016) for our experiment. In subject 2 datasets, the data was collected for

thirteen days. In order to test the semantic concepts and scripts generation in one day, we

train our DNN on several days (e.g., day 1, 3-9, 12, 13, 15, 16) and test on day 2. The

classification performance (F1-score) of gesture, activity, location labels were 0.95, 0.76,

0.94, respectively. As a result, we obtained the labels of 29075 gestures, 29075 activities,

29075 of locations with a time-sliced of 40 and no-overlap between segments from the

test set. Afterward, we merged these labels to create semantic concepts. There are two

types of concepts that we defined after semantic generation: manually labeled that was

collected by the subject and predicted ones in test set, where we consider as TrueConcepts

and PredConcepts, respectively. In the next section, we will introduce scripts generation

performance from the semantic concepts.

Scripts Generation Performance

We generated a sequence of events in terms of scripts using semantic concepts made from

sensor data as presented in the proposed method in section 5.3.2. First, we obtained the

manually semantic concepts as described above with 29075 semantic concepts, we consider

it as the source language for the encoder of the seq2seq model. Second, we made the

target language (sc1, sc2, ..., scm) for creating a given input decoder of the seq2seq model

by using the manual detection templates on extracting semantic concepts. For the training

seq2seq model, we used both semantic concepts and target language (sc1, sc2, ..., scm)

of TrueConcepts for encoder and decoder, respectively. For testing seq2seq model, both

semantic concepts and target language (sc1, sc2, ..., scm) of PredConcepts were used.
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As a result, we obtained target outputs (sc1, sc2, ..., scm′) from test set. Finally, we

evaluated target outputs that were generated from the seq2seq model, which is using

common metrics: BLEU-1, BLEU-2, BLEU-3 and BLEU-4 in both PredConcepts and

TrueConcepts. BLEU is a metric for evaluating a generated sentence to a reference

sentence. It is one of the first metrics to claim a high correlation with human judgments

of quality. BLEU’s output is always a number between 0 and 1. This value indicates how

similar the candidate text is to the reference texts, with values closer to 1 representing

more similar texts. Cumulative scores refer to the calculation of individual n-gram scores

at all orders from 1 to n and weighting them by calculating the weighted geometric mean.

The cumulative and individual 1-gram BLEU use the same weights, e.g. (1, 0, 0, 0). The

2-gram weights assign a 50% to each of 1-gram and 2-gram and the 3-gram weights are

33% for each of the 1, 2 and 3-gram scores. The weights for the BLEU-4 are 1/4 (25%)

or 0.25 for each of the 1-gram, 2-gram, 3-gram, and 4-gram scores. Figure 5.7 shows

our evaluation of PredConcepts and TrueConcepts. As we can see from the Figure, the

performances of the seq2seq model on predict labels are high with the BLEU approximate

0.96, while the performances of the seq2seq model on true labels are less than predict

ones, especially in case BLEU-4 is 0.76.

Figure 5.7: Performances of scripts generation using seq2seq model for TrueConcepts and

PredConcepts.

Table 5.3 shows an excerpt from the generation of scripts using the seq2seq model. As

we can see from the figure, although the seq2seq model can achieve to generate scripts

in terms of human-readable text. However, there are repetitive sentences or events in the

scripts, hence it is still needed to consider the technique to merge the events (sentences)

together.

5.5 Conclusion

In this work, we proposed a novel technique that can generate scripts from human activity

recognition using wearable sensor data. As we have known, the HAR systems only allow
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The person stands and chats at street or road or pasture.

The person stands and chats at street or road or pasture.

The person stands and chats at street or road or pasture.

The person is at the building.

The person sits and eats or drinks at home.

The person stands and cleans up at home.

The person sits and works at office.

The person sits and works at office.

The person is in the building.

The person is in the building.

The person is in the building.

The person is in the building.

The person is in the building.

The person stands and works at desk in the building.

The person stands and works at desk in the building.

The person stands and works at desk in the building.

The person stands and works at desk in the building.

The person stands and works at desk in the building.

Table 5.3: An excerpt of scripts generation from the model

recognizing discrete activity labels of daily living. Hence, our proposed work shows a step

further in HAR application in our daily life. Moreover, the automatically generated scripts

from the HAR system enable us to understand what was happened inside numerical data

by translating it to human-readable text. Despite the limitation in repetitive events of

scripts, hence we need to find out a new technique to merge these events in the future

works.
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Chapter 6

Learning Scripts from Natural Language

Texts

There are difficulties because of a lack of data to extract information from sensor data

and it is also very hard to learn events from sensor data. Therefore, in this chapter, we

present an approach to learn events from natural language text. In section 6.1 we present

an introduction about the scripts learning in Natural Language Processing domain, and

its related works in section 6.2. In section 6.3 we show our proposed methods, and the

experimental results are illustrated in section 6.4. The chapter ends with a short discussion

and an outlook of future work in Section 6.5.

6.1 Introduction

Scripts are thought to be represented in our minds, which present much of our common

sense knowledge about the world (such as what usually happens when going to a restau-

rant). Script theory was first introduced by Tomkins (1978) who claims that human

behavior mostly follows patterns called Scripts which are stereotypical likely sequences of

events. Automatically acquiring script models would be useful not only to get a better

insight about the human mind but also to build systems which could communicate with

human more naturally.

Take for instance the situation where someone says “I am going to a restaurant”. The

human recipient of this message will naturally infer that this will take some time and that

this person will have to choose dishes. This knowledge about the fact that, at a restaurant,

people read the menu and wait for their order, is naturally shared between the protagonists

of the conversation. However, this implicit knowledge must be made explicit to machines

to interpret the situation. Such a script could be learned from the text. Let’s take the

example of Figure 6.1 where two texts (scenarios 1 and 2 on the right side) describe a
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natural language texts [Granroth-Wilding and Clark (2016); Modi (2016); Modi et al.

(2017)]. Moreover, this kind of knowledge can be applied to many domains of artificial

intelligence, more specifically on automatic narrative generations [A. Baez Miranda et al.

(2014); Martin et al. (2018)], information extraction [Dasigi and Hovy (2014); Pichotta

and Mooney (2016)], and dialogue Harrison et al. (2016).

Early work on script learning focused on manual construction of script knowledge bases

Schank and Abelson (1975), but in recent years there was a strong research interest in the

automatic induction of script knowledge from text, for example [Chambers and Jurafsky

(2008); Pichotta and Mooney (2014)] investigated studies on naturally occurring texts or

crowd-sourced data [Regneri et al. (2010); Li and Riedl (2015)]. Most of these approaches

represent the sequence of events as a graph. Each node of the graph is an event, which

is modeled as a verbal predicate with its arguments, and arcs correspond to the sequential

relation. A graph models common-sense knowledge about the stereotypical sequence

of events more than their temporal order1. However, most of the recent approaches

extracted events from texts using count-based techniques which are usually limited in their

modeling due to their poor handling of data sparsity. Indeed, such approaches can capture

dependencies only between events that have shared entities (e.g. protagonist) based on

probability models acquired from their co-occurrences (count-based method). To avoid this

problem, different researchers [Modi (2016); Dasigi and Hovy (2014)] have proposed an

event predicate-argument representation based on embedding modeling. The advantage of

the event embeddings is to capture the semantic properties of events, i.e., the events with

different textual surface forms but which are used in the same context will receive close

embeddings. However, one disadvantage of this approach is that it requires prepossessing

of the semantics content of the text which is still a challenging task. Furthermore, few

approaches exploit the syntactic structure of the event text. For instance, the distance

between “John eats the food” and “John is on the table” should be large. Hence when

learning the embeddings of “John eats the food on the table” far less weight must be given

to the prepositional phrase “on the table”.

In this chapter, we present a new technique to model the embeddings of events that is

resistant to syntactic variations. This learning is based on Recursive Neural Network (RNN)
2. This approach is called NESS for recursive neural Network Event Semantic Syntactic, to

represent events as a hierarchical composition of their semantic and syntactic predicates

1Stereotypical order denotes the order in which events are told in texts not their real temporal order. E.g

“I’ve been to London yesterday. I took the bus” is a pair of events not told in chronological order though

perfectly natural.
2Recursive Neural Network (RNN) is not to be confused with Recurrent Neural Network (also RNN for

short.
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and arguments. An advantage of our proposed model is that it can effectively deal with

sparsity in semantic space by representing meaning at a higher level of abstraction than the

surface forms of words. Moreover, our approach does not rely on extra domain knowledge

such as wordnet but only on predefined word embeddings. Results on a publicly available

dataset provided by Regneri et al. (2010) shows that one version of NESS (only verbs)

can provide performance superior to the state-of-the-art baseline systems.

Our approach is focused on learning the stereotypical order of events from a set of

texts. In that sense, it is a different task than reconstructing temporal ordering (cf.

SEM EVAL Bethard et al. (2017)). Furthermore, this modeling does not capture all the

information of the script such as the one that can be useful for predicting the next events

(see the narrative Cloze Task Chambers and Jurafsky (2008)). However, our model can

be extended to model other aspects such as sequence generation, event prediction, and

story generation. But we leave these extensions for further work.

Contributions. Our contributions are summarized as follows.

• A technique based on Recursive Neural Network (RNN) for Scripts learning, namely

NESS ;

• An experiment with a comparison with baseline models [Regneri et al. (2010); Modi

and Titov (2014)] that shows the impact of event embeddings based on syntactic

and semantic features.

The chapter is organized as follows. Section 6.2 presents a summary of the state of the

art in learning techniques with Scripts. NESS modeling techniques are detailed in Section

6.3. Experiments are reported in Section 6.4. The chapter ends with a short conclusion

and an outlook on future work.

6.2 Related work

Scripts have been popularized in AI by Schank and Abelson (1975) who introduced it as a

method for representing procedural knowledge. At that time, event sequences representing

scripts were manually encoded in knowledge bases to perform tasks such as event infer-

ence, event generation, etc. Nowadays there are a lot of researches on script induction

[Chambers and Jurafsky (2008); Regneri et al. (2010); Modi and Titov (2014); Pichotta

and Mooney (2014); Jans et al. (2012); Granroth-Wilding and Clark (2016); Pichotta and

Mooney (2016); Modi (2016); Hu et al. (2017); Martin et al. (2018)] from texts. Each

research developed different approaches which are generally based on two phases: event

representation and modeling to learning the scripts.

81



For the event representation phase, the system from Chambers and Jurafsky (2008)

presents narrative events as pairs of the form (event, dependency), where the event is

represented by a verb and the dependency represents typed dependency relations between

event and a protagonist such as subject and object. The event chain is formed by col-

lecting events sharing a common protagonist from texts using a syntactic parser and a

co-reference system. The system achieves impressive performance to classify temporal re-

lations between given event descriptions. Another technique introduced by Regneri et al.

(2010) considers the whole predicate-argument structure as an atomic unit. But these

representations suffer from the sparsity issue which would limit its applicability to machine

learning. Another approach from the system of Balasubramanian et al. (2013) proposed

Rel-grams to represent events as a triples (arg1, relation, arg2), where arg1 and arg2

represent the subject and object respectively, to overcome the lack of coherence of protag-

onist representation of event chains from the system of Chambers and Jurafsky (2008).

In Pichotta and Mooney (2014), an event is represented as a tuples of v(es , eo , ep), where

v is a verb lemma, es is the subject, eo is the object, and ep is an entity with prepositional

relation to v . An advantage of multi-arguments event model is that it allows encoding

a richer representation of events in comparison with previous methods. Therefore, it has

been used in recent works such as [Modi (2016); Granroth-Wilding and Clark (2016)]. An-

other approach of event representation is that one can use a compositional model based

on recursive neural networks Socher et al. (2012), which learns compositional vector rep-

resentations for phrases and sentences of arbitrary syntactic type and length and which

has been shown successfully in detecting atypical events in news Dasigi and Hovy (2014).

For the sequence modeling phase, existing models can be considered into two main

methods: weak-order, and strong-order. The former studied in the relations between pairs

of events, and the latter investigated the temporal order of events in a full sequence.

Event-pair models used discrete event representations and estimated event relations by

statistical counting as Chambers and Jurafsky (2008) used Pairwise Mutual Information

(PMI) to calculate event relations, and while most sub-sequence models followed Jans

et al. (2012) used skip n-gram. However, counting-based methods suffer from data or

event sparsity, therefore more recent work developed embeddings system to tackle this

issue. According to the system of Granroth-Wilding and Clark (2016) leveraged the skip-

gram model of Mikolov et al. (2013) for training embedding of events and arguments by

ordering them into a pseudo sentence. Modi (2016) applied word embedding to verbs

and arguments directly and automatically unified event embedding into a single structured

event embeddings by using a neural network. Another approach is presented by Frermann

et al. (2014) which is based on a hierarchical Bayesian model to build a generative model

for joint learning of event types and ordering constraints.
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6.3.1 Learning Model

The model used for learning is based on the Recurrent Neural Network architecture which

encodes the input sequence into the fixed-length vector. This model is able to treat a

sequence of variable size and has become the standard approach for many tasks in particular

in Natural Language Processing tasks Sutskever et al. (2014a). Briefly, a recurrent unit,

at each step t takes an input xt and a previously hidden state ht−1 and compute its hidden

state and the output using:

ht = σh(Whxt + Uhht−1 + bh),

yt = σy(Wyht + by),

where yt is the output vector at each step; W,U, b are the parameters of the neural layer

and σh and σy the activation functions of the neural layers. Numerous improvements have

been made to this architecture such as using mono or multi layer of Long Short-Term

Memory (LSTM) Hochreiter and Schmidhuber (1997) to prevent the exploding/vanishing

gradient problem and to model long dependencies in the sequence.

An LSTM is used to map a sequences of existing events {e1, ..., en} into hidden vectors

{h1, ..., hn}, which encode the order. Pair of hidden vector linked to 2 events are merged

to form u is computed as a composition of arguments (cf. section 6.3.2). This is then

passed to a feed forward layer which in turn feed the output layer y which is composed of

a single neuron and softmax activation function to make a binary classification (follow or

not follow).

6.3.2 Event Representation

Input events are a sequence of natural language sentences. In order to represent an event in

a numerical space, a sentence is parsed as a syntactic tree where each node is labeled with

its linguistic constituent and the leave by their POS tag (part-Of-Speech). For instance,

as exemplified in Figure 6.2, the first event e0 is "John eats the food on the table". All the

word will be attributed their POS tag: "John (NN) eats (VB) the (DT ) food (NN) on

(IN) the (DT ) table (NN)" where NN is a noun, DT is determiner, V B is a verb and IN

is a preposition. Higher-level nodes are constituents, for instance (PP on table) means

that "on table" is a prepositional phrase. Hence the complete syntactic structure of the

sentence is fleshed out.

To transform this syntactic structure into a numerical vector representation, we take

an argument representation approach. Using this approach, the embeddings of the event

can be represented as a single vector e, which is composed of representations of individual

words that are guided by the POS tagging.
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same context is a negative training example.

s = STu (6.2)

The optimization of θarg is obtained by Equation 6.3:

argmin
θarg
max(0, 1− sei + sej + su) (6.3)

where sei and sej are the scores of the composition of the entire argument produce

by the root node of argument as the respectively to events ei and ej , and su is the score

produced by randomly replacing one of the words in the argument at a time.

Socher et al. (2013) used a supervised objective that is based on the label error at the

topmost node in the RNN. Event composition takes argument representation and produces

the event representation and label indicating whether the event is in order or not. There-

fore, the event composition node’s parameters θevent = {Wevent ∈ Rn×kn, bevent , LBevent ∈

R
n×1} where k is the number of arguments per event. LBevent is the label operator. The

objective of this phase is as Equation 6.4:

arg min
θevent
(−α log h(ei)× h(ej) + ((1− α) log(1− h(ei)× h(ej))) (6.4)

where α is the reference binary label determining whether the event ei follows the event

ej or not, and the h(ei) is the output of hyperbolic tangent function define as following:

h(ei) =
1

1+e
−LBT

event
ei

We implement the functions and using mini-batch (size = 128) stochastic gradient

descent with adam learning Kingma and Ba (2015) schedule.

6.4 Experimental results

6.4.1 Data

To evaluate the approach, we selected the crowd-sourced data provided by Regneri et al.

(2010). They collected events sequence descriptions (ESDs) of different kinds of human

daily activities (e.g. visit a restaurant, cooking eggs, etc.). Although this dataset is small

(only 30 ESDs per activity) it is the only one available to test script learning. The events

were extracted from the original dataset using an automatic method for marking up tem-

poral relations in natural language texts Verhagen et al. (2005). These temporal relations

follow TimeML (www.timeml.org). The TimeML scheme flags tensed verbs, adjectives,

and nominals with EVENT tags with various attributes such as the class of event, tense,

grammatical aspect, part-of-speech, and cardinality of the event if it has appeared more

than one. For temporal relation annotation, there are 14 temporal relations in TLINK
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Another method, Multiple Sequence Alignment (MSA) was proposed in Regneri et al.

(2010) inspired by research in DNA alignment. The input is some sequences s1, ...sn ∈
∑∗

over some alphabet
∑

, along with cost function cm :
∑

×
∑

← R for substitution and

gapcostcgap ∈ R for insertion and deletion.
∑

contains the individual event descriptions

while sequence are ESDs. An MSA is a matrix where column are sequences with possibly

some gap φ between the events of the sequence. Thus each row contains at least a

non-gap and if a row contains two events, these are said to be aligned. The alignment is

performed using a cost function: c(A) = cgap.
∑

∅+
∑n

i=1

∑m

j=1

∑m

k=j+1 cm(aj i , aki), where

cgap ∈ R is a gap cost for insertion and deletion,
∑

∅ is the number of gap in A, n is the

number of rows and m the number of sequences. If a row contains non-gaps, then these

symbols is aligned; aligning a non-gap with a gap can be thought of as an insertion or

deletion. In the original implementation, the alignment problem is solved by first aligning

two sequences, considering the result as a single sequence whose elements are pairs, and

repeating this process until all sequences are incorporated in the MSA. We used the same

implementation.

The hierarchical Bayesian model (BS) was introduced by Frermann et al. (2014). It

is based on the Generalized Mallows Model (GMM) a statistical model over orderings. It

takes two parameters σ the canonical ordering and ρ > 0 a dispersion parameter which

is a penalty for the divergence d(π, σ) between an observed ordering π and the canonical

ordering σ. The Generalized Mallows Model is defined as GMM(π, σ) ≈ Πie−ρivi where

ρi is the item specific dispersion parameter and vi is a vector of inversion counts. The

authors then assumed that for each ESD the event e is realized or not by drawing from

Binomial(Θe)
2. Then, drawing an event ordering π based on the GMM(ρ).

Finally, in Modi and Titov (2014) Event Embeddings (EE) are computed based on

their predicates and arguments. Given an event, e = (v , d, a1, a2), (here v is the predicate

lemma, d the dependency and a1, a2 are corresponding argument lemmas), each lemma

(and dependency) is mapped to a vector using a lookup matrix C. Then each event

representation is learned by A ∗ tanh(T ∗ Ca1,: + R ∗ Cv,: + T ∗ Ca2,:) + b. then the event

representations are used in a linear ranker to predict the expected ordering of events. Both

the parameters of the compositional process for computing the event representation ((R,

T, A and lookup matrix C) and the ranking component of the model are estimated from

data.

6.4.3 Results

NESS was also compared to a version of our model which uses only verbs (NESS2) in a

similar way to BL and EEverbs in Modi and Titov (2014). The training sets are the dev set
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Table 6.1: Results on the datasets Regneri et al. (2010) for the verb-frequency baseline

(BL), the verb-only embedding model (EEverb), Regneri et al. (2010) (MSA), Frermann

et al. (2014) (BS), Modi and Titov (2014) full model (EE), the full model NESS1 and

verb-only embedding model (NESS2). Results with models other than NESS are extracted

from Modi and Titov (2014)

Test sets Size Precision Recall F1

BL EEv MSA BS EE NESS1 NESS2 BL EEv MSA BS EE NESS1 NESS2 BL EEv MSA BS EE NESS1 NESS2

Bus 276 70.1 81.9 80.0 76.0 85.1 75.2 76.7 71.3 75.8 80.0 76.0 91.9 96.2 98.2 70.7 78.8 80.0 76.0 88.4 84.4 86.1

Coffee 340 70.1 73.7 70.0 68.0 69.5 63.2 64.1 72.6 75.1 78.0 57.0 71.0 96.3 94.6 71.3 74.4 74.0 62.0 70.2 76.2 76.3

Fastfood 236 69.9 81.0 53.0 97.0 90.0 78.9 78.4 65.1 79.1 81.0 65.0 87.9 94.5 95.6 67.4 80.0 64.0 78.0 88.9 86.0 86.1

Return 156 74.0 94.1 48.0 87.0 92.4 77.7 75.9 68.6 91.4 75.0 72.0 89.7 82.3 86.3 71.0 92.8 58.0 79.0 91.0 80.0 80.1

Iron 276 73.4 80.1 78.0 87.0 86.9 68.4 69.3 67.3 69.8 72.0 69.0 80.2 86.0 96.8 70.2 69.8 75.0 77.0 83.4 76.2 80.1

Microw. 450 72.6 79.2 47.0 91.0 82.9 64.8 65.7 63.4 62.8 83.0 74.0 90.3 97.1 99.4 67.7 70.0 60.0 82.0 86.4 77.6 78.8

Eggs 370 72.7 71.4 67.0 77.0 80.7 83.4 80.4 68.0 67.7 64.0 59.0 76.9 91.2 96.7 70.3 69.5 66.0 67.0 78.7 87.2 87.8

Shower 346 62.2 76.2 48.0 85.0 80.0 74.5 76.8 62.5 80.0 82.0 84.0 84.3 99.2 98.4 62.3 78.1 61.0 85.0 82.1 85.2 86.2

Phone 272 67.6 87.8 83.0 92.0 87.5 79.2 82.2 62.8 87.9 86.0 87.0 89.0 99.0 99.1 65.1 87.8 84.0 89.0 88.2 87.9 89.9

Vending 260 66.4 87.3 84.0 90.0 84.2 68.0 67.2 60.6 87.6 85.0 74.0 81.9 95.2 99.1 63.3 84.9 84.0 81.0 88.2 79.3 79.9

Average 69.9 81.3 65.8 85.0 83.9 73.3 73.7 66.2 77.2 78.6 71.7 84.3 94.3 96.4 68.0 79.1 70.6 77.6 84.1 82.0 83.2

(doorbell, laundry, omelet, restaurant), the test sets are 10 sets (bus, coffee, fast-food,

return, iron, microwave, eggs, shower, phone, vending). The results are presented in Table

6.1. From these results we can see that NESS is competitive in classifying the order of

events. NESS2 with a verb only reaches an F1-score of 83.2% which outperforms the

BL and EEverbs models with an F1-score of 68.0% and 79.1% respectively. In addition,

regarding the full model including predicate and arguments, NESS1 achieved 82.0% F1-

score higher than the MSA and BS model that reached 70.6% and 77.6% of F1-score.

Yet NESS1 is slightly lower than EE which obtained 84.1% of F1-score.

6.5 Conclusion

In this work, we introduced a novel technique based on Recursive Neural Network to

modeling the Scripts learning in order to capture the order of sequence of events from

natural text. We also presented experimental results of our model on the public dataset

provided by Regneri et al. (2010), and compare our model with baseline models such as

MSA, BL, BS, EEverbs , full model EE that presented the results in Modi and Titov (2014).

From the results, we can see that our model can achieve with high accuracy (82.0% and

83.2% in F1-score for both model NESS1 and NESS2 respectively) to learning the order of

sequence of events by using RNN model. Moreover, in order to overcome the sparsity issue

by using count-based methods we presented the binary tree event embeddings. In future

work, we can develop and apply other techniques to learn Scripts in order to improve the
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semantic representation by using some kind of Tree-Structured Long Short Term Memory

Networks Tai et al. (2015).
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion

In this thesis, story generation from ambient sensors is approached by a pipeline of ab-

straction: from raw data to a sequence of sentences summarizing the ‘story’ of this data.

The first step of the pipeline focused on Human Activity Recognition from smartphone

data. Indeed, daily life story being about what people do, being able to extract human

activity is a necessary step to reach this goal. We approached HAR by machine learning.

However, conventional machine learning approaches are sensitive to the problem of imbal-

anced data. This why our first contribution was a framework for solving the imbalanced

data issue. This method enhanced the performance of the conventional machine learning

model (e.g., Multilayer Perceptron) for activity classification tasks. However, conventional

machine learning models rely on feature engineering to extract parameters from raw data.

Therefore, we subsequently used a deep learning approach in order to recognize high-level

human activities from raw data. Furthermore, the final text was also generated using a

sequence-to-sequence deep model using a concept-to-text approach Qader et al. (2018).

These two models used together gave an initial system that can automatically generate

scripted texts from wearable sensor data using HAR. Secondly, we introduce an event

presentation of script modeling from natural language text on the Natural Language Pro-

cessing (NLP) domain, which enables us to classify the order of sequence of events so as to

predict what event happened next in natural language text. Moreover, with this approach,

the model can also predict missing event Modi (2016), and generate sub next event in

natural text Hu et al. (2017). However, we let this work for future research. Finally,

most current state-of-the-art on both domains of the HAR system and script generation

(SG) on NLP has not provided any approach to generate story/script from sensors data.

Therefore, different from currently state-of-the-art, we propose a novel approach to invent

a system, which allows generating script from HAR using wearable sensors data.
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The two main reasons why we have to connect from the HAR domain to script gen-

eration on the NLP domain: (1) firstly, due to the segmentation of raw sensors data in

order to build the input, which then is fed into the input layer of deep learning for HAR.

It leads to the issue of an event would be missing within the sequence of events. As a

result, prediction of missing events in the sequence of events by using script modeling will

assist to solve this problem; (2) secondly, since the limitation of raw signals recording using

sensors, the training, and test data are also limited for prediction tasks on HAR system.

Therefore, the prediction of an event using script learning from the natural text would

replace the limited raw sensor data, and it also provides a new approach for the HAR task.

In summary, this thesis contributes novel approaches to support for limitations of both

HAR and NLP domains. For the HAR domain, script learning can assist the HAR task by

predicting missing events and the next event in the sequence of events. For script learning,

the HAR task provides an approach to generate a script using deep learning from sensors

data. Moreover, the thesis also provides an approach to connect from HAR to the NLP

domain by generating script from sensors data.

7.2 Further work and open challenges

Although the thesis has achieved preliminary results to automatically generate scripts/story

from wearable sensor data using HAR. Nevertheless, there are issues and open challenges

we would like to address for future work.

Firstly, as mentioned in the conclusion of chapter 5, our script generation method

using deep learning from wearable sensor data has still suffered from repetitive events.

This problem happened because of the segmentation method of raw signals from sensor

data. Consequently, we have to find a relevant way to deal with this issue.

Secondly, although we can achieve to use seq2seq with an attention model, which

allows the generating model to choose the right words to generate. In addition, it also

enriches the semantic and vocabulary of the targeted sentence. However, the corpus of

source and target languages are very limited in this thesis, especially in the case of HAR

from sensor data. Therefore, we need to find a relevant approach to build richer vocabulary

for both source and target language.

Thirdly, it is also interesting to engage other information into our overall approaches

such as emotion (e.g., sad, happy, etc.) and health status (e.g., fever, hypothermia, etc.).

Obviously, this information would combine with human daily activity and their location

so as to make audiences deeply understand the story. Moreover, with this combined

information our current semantic concepts daily activity location also can be naturally

enriched, which would solve for the limitation of semantic concepts in our current issues.
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Therefore, emotion recognition [Tarnowski et al. (2017); Chaparro et al. (2018)] from

facial expression or [Batbaatar et al. (2019); Shaheen et al. (2014)] from the text are

extensions for our future works. Besides, health status detection Chen and Meng (2011)

from physiological monitoring also can be considered as another open challenge for our

future works. Furthermore, the health status may assist us to deeper understand human

decision-making, which relates to the human context. For instance, the person forgot his

jacket during the mountain climbing, his body temperature went down quickly. Therefore,

he decided to come back instead of going up to the peak.

Finally, we would like to point out the usefulness of our thesis to the real world. First of

all, the thesis gives a novel approach to translate sensors data (e.g., numeric and binary)

to text in term of script, which allows audiences to an insight deeply about the sequence

of events in the daily activity domain (e.g., smart-home, outdoor environment). It can

be applied to health-monitoring in the home environment for elderly people, in which the

scripts would be summarized human activities. From the analysis of historical script or

summarized activities, it can assist to detect routine behaviour for elderly people. From

routine behaviour analysis, we can develop a recommended system to encourage human

activity changing. Moreover, we also can investigate emergency alarming system in order

to warn unusual changing activity.
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