B. Ahvazi, K. M. Boeshans, W. Idler, U. Baxa, and P. M. Steinert, Roles of calcium ions in the activation and activity of the transglutaminase 3 enzyme, Journal of Biological Chemistry, vol.278, issue.26, pp.23834-23841, 2003.

C. Aillaud, C. Bosc, Y. Saoudi, E. Denarier, L. Peris et al., Evidence for new Cterminally truncated variants of -and -tubulins, Molecular Biology of the Cell, vol.27, pp.640-653, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405743

A. Akhmanova and C. C. Hoogenraad, Microtubule minus-end-targeting proteins, Current Biology, vol.25, issue.4, pp.162-171, 2015.

L. Amos and D. Schlieper, Microtubules and maps, Advances in Protein Chemistry, vol.71, issue.04, pp.257-98, 2005.

C. Arce and H. S. Barra, Association of tubulinyl-tyrosine carboxypeptidase with microtubules, FEBS Letters, vol.157, issue.1, pp.75-83, 1983.

C. Arce and H. S. Barra, Release of C-terminal tyrosine from tubulin and microtubules at steady state, The Biochemical Journal, vol.226, issue.1, pp.311-318, 1985.

C. Arce, H. S. Barra, J. Rodriguez, and R. Caputto, Tentative identification of the amino acid that binds tyrosine as a single unit into a soluble brain protein, FEBS Letters, vol.50, issue.1, pp.5-7, 1975.

C. A. Arce, M. E. Hallak, J. A. Rodriguez, H. S. Barra, and R. Caputio, Capability of Tubulin and Microtubules To Incorporate and To Release Tyrosine and Phenylalanine and the Effect of the Incorporation of These Amino Acids on Tubulin Assembly, Journal of Neurochemistry, vol.31, pp.205-210, 1978.

C. A. Arce, J. A. Rodriguez, H. S. Barra, and R. Caputto, Tyrosine, l???Phenylalanine and l???3,4???Dihydroxyphenylalanine as Single Units into Rat Brain Tubulin, vol.59, pp.145-149, 1975.

C. E. Argarana, H. S. Barra, and R. Caputto, Tubulinyl-tyrosine carboxypeptidase from chicken brain: properties and partial purification, Journal of Neurochemistry, vol.34, issue.1, pp.114-122, 1980.

C. E. Argaraña, H. S. Barra, and R. Caputto, Release of [14C]tyrosine from tubulinyl-[14C]tyrosine by brain extract. Separation of a carboxypeptidase from tubulin-tyrosine ligase, Molecular and Cellular Biochemistry, vol.19, issue.1, pp.17-21, 1978.

C. E. Argaraña, H. S. Barra, and R. Caputto, Inhibition of tubulinyl-tyrosine carboxypeptidase by brain soluble RNA and proteoglycan, The Journal of Biological Chemistry, vol.256, issue.2, pp.827-857, 1981.

N. Arimura and K. Kaibuchi, Neuronal polarity: from extracellular signals to intracellular mechanisms, Nature Reviews Neuroscience, vol.8, issue.3, pp.194-205, 2007.

C. Badin-larçon, C. Boscheron, J. M. Soleilhac, M. Piel, C. Mann et al., Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.5577-82, 2004.

M. Barisic, R. Silva-e-sousa, and S. Tripathy, Microtubules detyrosination guides chromosomes during mitosis, Science Report, pp.1-9, 2015.

H. S. Barra, Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins, vol.60, pp.1384-1390, 1974.

H. S. Barra, C. A. Arce, and R. Caputto, Total Tubulin and Its Aminoacylated and Non-aminoacylated Forms During the Development of Rat Brain, vol.446, pp.439-446, 1980.

H. S. Barra, C. A. Arce, J. A. Rodriguez, and R. Caputto, Incorporation of Phenylalanine As a Single Unit Into Rat Brain Protein: Reciprocal Inhibition By Phenylalanine and Tyrosine of Their Respective Incorporations, Journal of Neurochemistry, vol.21, pp.1241-1251, 1973.

H. S. Barra and C. E. Argaraña, Activation of tubulinyl-tyrosine carboxypeptidase by spermine, spermidine and putrescine, Biochemical and Biophysical Research Communications, vol.108, issue.2, pp.654-661, 1982.

H. S. Barra, J. A. Rodriguez, C. A. Arce, and R. Caputto, A soluble preparation from rat brain that incorporates into its own proteins ( 14 C)arginine by a ribonuclease-sensitive system and ( 14 C)tyrosine by a ribonuclease-insensitive system, Journal of Neurochemistry, vol.20, issue.1, pp.97-108, 1973.

F. Bartolini, J. B. Moseley, J. Schmoranzer, L. Cassimeris, B. L. Goode et al., The formin mDia2 stabilizes microtubules independently of its actin nucleation activity, The Journal of Cell Biology, vol.181, issue.3, pp.523-536, 2008.

S. Belmadani, C. Poüs, R. Ventura-clapier, R. Fischmeister, and P. F. Méry, Post-translational modifications of cardiac tubulin during chronic heart failure in the rat, Molecular and Cellular Biochemistry, vol.237, pp.39-46, 2002.

I. Berezniuk, P. J. Lyons, J. J. Sironi, H. Xiao, M. Setou et al., Cytosolic carboxypeptidase 5 removes alpha-and gamma-linked glutamates from tubulin, The Journal of Biological Chemistry, 2013.

S. A. Berkowitz and J. Wolff, Intrinsic calcium sensitivity of tubulin polymerization. The contributions of temperature, tubulin concentration, and associated proteins, The Journal of Biological Chemistry, vol.256, issue.21, pp.11216-11239, 1981.

P. Bieling, S. Kandels-lewis, I. A. Telley, J. Van-dijk, C. Janke et al., CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites, The Journal of Cell Biology, vol.183, issue.7, pp.1223-1233, 2008.

A. Bosson, J. Soleilhac, O. Valiron, D. Job, A. Andrieux et al., Cap-Gly Proteins at Microtubule Plus Ends: Is EB1 Detyrosination Involved, PLoS ONE, vol.2012, issue.3, p.33490
URL : https://hal.archives-ouvertes.fr/inserm-00734122

M. Bré and E. Kreis, Control of Microtubule Nucleation and Stability in Madin-Darby Canine Kidney Cells : The Occurrence of Noncentrosomal , Stable Detyrosinated Microtubules, vol.105, pp.1283-1296, 1987.

S. Brunet, T. Sardon, T. Zimmerman, T. Wittmann, R. Pepperkok et al., & Vernos, I. Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts, Molecular Biology of the Cell, vol.15, issue.12, pp.5318-5346, 2004.

J. C. Bulinski and G. G. Gundersen, Stabilization of post-translational modification of microtubules during cellular morphogenesis, BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, vol.13, issue.6, pp.285-93, 1991.

T. L. Burgess, D. A. Skoufias, and L. Wilson, Disruption of the golgi apparatus with brefeldin a does not destabilize the associated detyrosinated microtubule network, Cell Motility and the Cytoskeleton, vol.20, issue.4, pp.289-300, 1991.

L. Cassimeris, The oncoprotein 18/stathmin family of microtubule destabilizers. Current Opinion in Cell Biology, vol.14, pp.18-24, 2002.

M. S. Chan, L. Wang, N. Chanplakorn, K. Tamaki, T. Ueno et al., Effects of estrogen depletion on angiogenesis in estrogen-receptor-positive breast carcinoma--an immunohistochemical study of vasohibin-1 and CD31 with correlation to pathobiological response of the patients in neoadjuvant aromatase inhibitor therapy, Expert Opinion on Therapeutic Targets, vol.16, issue.1, pp.69-78, 2012.

W. Chang, D. R. Webster, A. Salam, D. Gruber, A. Prasad et al., Alteration of the C-terminal amino acid of tubulin specifically inhibits myogenic differentiation, The Journal of Biological Chemistry, vol.277, issue.34, pp.30690-30698, 2002.

S. J. Chapin and J. C. Bulinski, Cellular microtubules heterogeneous in their content of microtubuleassociated protein 4 (MAP4), Cell Motility and the Cytoskeleton, vol.27, issue.2, pp.133-149, 1994.

D. Chrétien and R. H. Wade, New data on the microtubule surface lattice, Biology of the Cell, vol.71, issue.1-2, pp.161-74, 1991.

M. A. Cianfrocco, M. E. Desantis, A. E. Leschziner, and S. L. Reck-peterson, Mechanism and Regulation of Cytoplasmic Dynein, Annual Review of Cell and Developmental Biology, vol.31, pp.83-108, 2015.

C. Conde and A. Cáceres, Microtubule assembly, organization and dynamics in axons and dendrites, Nature Reviews. Neuroscience, vol.10, issue.5, pp.319-351, 2009.

M. Contin, S. A. Purro, C. G. Bisig, H. S. Barra, and C. Arce, Inhibitors of protein phosphatase 1 and 2A decrease the level of tubulin carboxypeptidase activity associated with microtubules, European Journal of Biochemistry, vol.270, issue.24, pp.4921-4929, 2003.

A. Dammermann, A. Desai, and K. Oegema, The minus end in sight, Current Biology, vol.13, issue.03, pp.614-624, 2003.

G. Deanin, Tyrosyltubulin Ligase Activity in Brain , Skeletal the Developing Muscle , and Liver of, vol.233, pp.230-233, 1977.

D. Alonso, C. A. Arce, C. A. Barra, and H. C. , Tyrosinatable and non-tyrosinatable tubulin subpopulations in rat muscle in comparison with those in brain, Biochimica et Biophysica Acta -Protein Structure and Molecular Enzymology, vol.1163, pp.26-30, 1993.

J. Deloulme, S. Gory-fauré, F. Mauconduit, S. Chauvet, J. Jonckheere et al., Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth, Nature Communications, vol.6, p.7246, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02005112

A. Desai, T. J. Mitchison, . Microtubule, and . Dynamics, Annual Review of Cell and Developmental Biology, vol.13, issue.1, pp.83-117, 1997.

Y. Ditamo, Y. M. Dentesano, S. A. Purro, C. A. Arce, and C. G. Bisig, Post-Translational Incorporation of L-Phenylalanine into the C-Terminus of ?-Tubulin as a Possible Cause of Neuronal Dysfunction, Scientific Reports, vol.6, p.38140, 2016.

R. Dixit, B. Barnett, J. E. Lazarus, M. Tokito, Y. E. Goldman et al., Microtubule plusend tracking by CLIP-170 requires EB1, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.492-499, 2009.

C. Duellberg, M. Trokter, R. Jha, I. Sen, M. O. Steinmetz et al., Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein, Nature Cell Biology, vol.16, issue.8, pp.804-811, 2014.

S. Dunn, E. E. Morrison, T. B. Liverpool, C. Molina-parís, R. Cross et al., Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells, Journal of Cell Science, vol.121, pp.1085-95, 2008.

S. Dunn, E. E. Morrison, T. B. Liverpool, C. Molina-parís, R. Cross et al., Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells, Journal of Cell Science, vol.121, pp.1085-95, 2008.

S. K. Dutcher, Motile organelles: the importance of specific tubulin isoforms, Current Biology : CB, vol.11, issue.11, pp.419-441, 2001.

B. Eddé, J. Rossier, J. P. Le-caer, J. C. Promé, E. Desbruyères et al., Polyglutamylated alpha-tubulin can enter the tyrosination/detyrosination cycle, Biochemistry, vol.31, issue.2, pp.403-413, 1992.

A. Elie, E. Prezel, C. Guérin, E. Denarier, S. Ramirez-rios et al., ? Arnal, I. Tau co-organizes dynamic microtubule and actin networks, Scientific Reports, vol.5, p.9964, 2015.

C. Erck, R. Frank, and J. Wehland, Tubulin-tyrosine ligase, a long-lasting enigma, Neurochemical Research, vol.25, issue.1, pp.5-10, 2000.

C. Erck, L. Peris, A. Andrieux, C. Meissirel, A. D. Gruber et al., A vital role of tubulin-tyrosine-ligase for neuronal organization, p.102, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00380196

C. Erck, L. Peris, A. Andrieux, C. Meissirel, A. D. Gruber et al., A vital role of tubulin-tyrosine-ligase for neuronal organization, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.7853-7861, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00380196

K. Ersfeld, J. Wehland, U. Plessmann, H. Dodemont, V. Gerke et al., Characterization of the tubulin-tyrosine ligase, J. Cell Biol, vol.120, issue.3, pp.725-732, 1993.

L. Evans, T. Mitchison, and M. Kirschner, Influence of the centrosome on the structure of nucleated microtubules, The Journal of Cell Biology, vol.100, issue.4, pp.1185-91, 1985.

X. Fonrose, F. Ausseil, E. Soleilhac, V. Masson, B. David et al., Parthenolide inhibits tubulin carboxypeptidase activity, Cancer Research, vol.67, issue.7, pp.3371-3379, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02348180

Y. Furutani, Y. Shiozaki-sato, M. Hara, Y. Sato, and S. Kojima, Hepatic fibrosis and angiogenesis after bile duct ligation are endogenously expressed vasohibin-1 independent, Biochemical and Biophysical Research Communications, vol.463, issue.3, pp.384-392, 2015.

S. Gadadhar, S. Bodakuntla, K. Natarajan, and C. Janke, The tubulin code at a glance, Journal of Cell Science, vol.130, pp.1347-1353, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02376271

G. Geuens, G. G. Gundersen, R. Nuydens, F. Cornelissen, J. C. Bulinski et al., Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells, The Journal of Cell Biology, vol.103, issue.5, pp.1883-93, 1986.

P. Gobrecht, A. Andreadaki, H. Diekmann, A. Heskamp, M. Leibinger et al., Promotion of Functional Nerve Regeneration by Inhibition of Microtubule Detyrosination, Journal of Neuroscience, vol.36, issue.14, pp.3890-3902, 2016.

P. Gobrecht, A. Andreadaki, H. Diekmann, A. Heskamp, M. Leibinger et al., Promotion of Functional Nerve Regeneration by Inhibition of Microtubule Detyrosination, Journal of Neuroscience, vol.36, issue.14, pp.3890-3902, 2016.

S. Gomis-rüth, C. J. Wierenga, and F. Bradke, Plasticity of polarization: changing dendrites into axons in neurons integrated in neuronal circuits, Current Biology : CB, vol.18, issue.13, pp.992-1000, 2008.

O. J. Gruss, M. Wittmann, H. Yokoyama, R. Pepperkok, T. Kufer et al., Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells, Nature Cell Biology, vol.4, pp.871-879, 2002.

W. Gu, S. A. Lewis, and N. J. Cowan, Generation of antisera that discriminate among mammalian alpha-tubulins: introduction of specialized isotypes into cultured cells results in their coassembly without disruption of normal microtubule function, The Journal of Cell Biology, vol.106, issue.6, pp.2011-2033, 1988.

W. Gu, S. A. Lewis, and N. J. Cowan, Generation of antisera that discriminate among mammalian alpha-tubulins: introduction of specialized isotypes into cultured cells results in their coassembly without disruption of normal microtubule function, The Journal of Cell Biology, vol.106, issue.6, pp.2011-2033, 1988.

L. F. Gumy, D. J. Chew, E. Tortosa, E. A. Katrukha, L. C. Kapitein et al., The Kinesin-2 Family Member KIF3C Regulates Microtubule Dynamics and Is Required for Axon Growth and Regeneration, Journal of Neuroscience, vol.33, issue.28, pp.11329-11345, 2013.

G. G. Gundersen and J. C. Bulinski, Distribution of Tyrosinated and Nontyrosinated a-Tubulin during Mitosis, vol.102, pp.1118-1126, 1986.

G. G. Gundersen and J. C. Bulinski, Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin, European Journal of Cell Biology, vol.42, issue.2, pp.288-94, 1986.

G. G. Gundersen and M. H. Kalnoski, Distinct Populations of Microtubules : Tyrosinated and Nontyrosinated Alpha Tubulin Are Distributed Differently In Vivo, vol.38, pp.779-789, 1984.

G. G. Gundersen and S. Khawaja, Generation of a Stable, Posttranslationally Modified Microtubule Array Is an Early Event in Myogenic Differentiation, vol.109, pp.2275-2288, 1989.

G. G. Gundersen, S. Khawaja, and J. C. Bulinski, Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules, The Journal of Cell Biology, vol.105, issue.1, pp.251-64, 1987.

G. Gurland and G. G. Gundersen, Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts, Journal of Cell Biology, vol.131, issue.5, pp.1275-1290, 1995.

F. K. Gyoeva and V. I. Gelfand, Coalignment of vimentin intermediate filaments with microtubules depends on kinesin, Nature, vol.353, issue.6343, pp.445-448, 1991.

M. E. Hallak, J. A. Rodriguez, H. S. Barra, and R. Caputto, Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin, FEBS Letters, vol.73, issue.2, pp.147-50, 1977.

J. W. Hammond, C. Huang, S. Kaech, C. Jacobson, G. Banker et al., Posttranslational Modifications of Tubulin and the Polarized Transport of Kinesin-1 in Neurons, vol.21, pp.572-583, 2010.

T. Heishi, T. Hosaka, Y. Suzuki, H. Miyashita, Y. Oike et al., Endogenous Angiogenesis Inhibitor Vasohibin1 Exhibits Broad-Spectrum Antilymphangiogenic Activity and Suppresses Lymph Node Metastasis, The American Journal of Pathology, vol.176, issue.4, pp.1950-1958, 2010.

M. C. Hendershott and R. D. Vale, Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin, Proceedings of the National Academy of Sciences, vol.111, pp.5860-5865, 2014.

N. Hinamoto, Y. Maeshima, H. Yamasaki, T. Nasu, D. Saito et al., Exacerbation of diabetic renal alterations in mice lacking vasohibin-1, PloS One, vol.9, issue.9, p.107934, 2014.

N. Hirokawa, Y. Noda, Y. Tanaka, and S. Niwa, Kinesin superfamily motor proteins and intracellular transport, Nature Reviews. Molecular Cell Biology, vol.10, issue.10, pp.682-96, 2009.

N. Hirokawa and R. Takemura, Molecular motors and mechanisms of directional transport in neurons, Nature Reviews. Neuroscience, vol.6, issue.3, pp.201-215, 2005.

H. Murofushi, Purification Ligase from and Characterization of Tubulin-Tyrosine Porcine, Biochem, J, vol.1980, issue.3, pp.979-984

N. Homma, Y. Takei, Y. Tanaka, T. Nakata, S. Terada et al., Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension, Cell, vol.114, pp.229-239, 2003.

S. Horie, Y. Suzuki, M. Kobayashi, T. Kadonosono, S. Kondoh et al., Distinctive role of vasohibin-1A and its splicing variant vasohibin-1B in tumor angiogenesis, Cancer Gene Therapy, vol.23, issue.5, pp.133-141, 2016.

T. Hosaka and H. Kimura, Vasohibin-1 Expression in Endothelium of Tumor Blood Vessels Regulates Angiogenesis, The American Journal of Pathology, vol.175, issue.1, pp.430-439, 2009.

Y. Hou and G. B. Witman, Dynein and intraflagellar transport, Dyneins, vol.334, pp.394-421, 2012.

J. Howard and A. Hyman, Microtubule polymerases and depolymerases. Current Opinion in Cell Biology, vol.19, pp.31-35, 2007.

B. Howell, N. Larsson, M. Gullberg, and L. Cassimeris, Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin, Molecular Biology of the Cell, vol.10, pp.105-123, 1999.

. Hyman, S. Salser, D. N. Drechsel, N. Unwin, and T. J. Mitchison, Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Molecular Biology of the Cell, vol.1992, pp.1155-1167

A. S. Infante, M. S. Stein, Y. Zhai, G. G. Borisy, and G. G. Gundersen, Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap, Journal of Cell Science, vol.113, issue.2, pp.3907-3926, 2000.

S. Ito, H. Miyashita, Y. Suzuki, M. Kobayashi, S. Satomi et al., Enhanced cancer metastasis in mice deficient in vasohibin-1 gene, PloS One, vol.8, issue.9, p.73931, 2013.

C. Jacobson, B. Schnapp, and G. Banker, A change in the selective translocation of the kinesin-1 motor domain marks the initial specification of the axon, Neuron, vol.49, pp.797-804, 2006.

R. Jha and T. Surrey, Regulation of processive motion and microtubule localization of cytoplasmic dynein, Biochemical Society Transactions, vol.43, pp.48-57, 2015.

D. Job, O. Valiron, and B. Oakley, Microtubule nucleation. Current Opinion in Cell Biology, vol.15, pp.111-117, 2003.

L. C. Kapitein and C. C. Hoogenraad, Which way to go? Cytoskeletal organization and polarized transport in neurons, Molecular and Cellular Neuroscience, vol.46, issue.1, pp.9-20, 2011.

L. C. Kapitein, M. A. Schlager, M. Kuijpers, P. S. Wulf, M. Van-spronsen et al., Mixed Microtubules Steer Dynein-Driven Cargaison Transport into Dendrites, Current Biology, vol.20, issue.4, pp.290-299, 2010.

C. Kato, K. Miyazaki, A. Nakagawa, M. Ohira, Y. Nakamura et al., Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis, International Journal of Cancer. Journal International Du Cancer, vol.112, issue.3, pp.365-75, 2004.

J. Kern, M. Bauer, K. Rychli, J. Wojta, and A. Ritsch, Alternative Splicing of Vasohibin-1 Generates an Inhibitor of Endothelial Cell Proliferation , Migration , and Capillary Tube Formation, 2008.

J. Kern, M. Steurer, G. Gastl, E. Gunsilius, and G. Untergasser, Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo, BMC Cancer, vol.9, p.284, 2009.

J. P. Kerr, P. Robison, G. Shi, A. I. Bogush, A. M. Kempema et al., Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle, Nature Communications, vol.6, p.8526, 2015.

S. Khawaja and G. G. Gregg, Enhanced Stability of Microtubules Enriched in Detyrosinated Tubulin Is Not a Direct Function of Detyrosination Level Quantxfication of Microtubules, The Journal of Cell Biology, vol.106, pp.141-149, 1988.

R. Kikuno, T. Nagase, K. Ishikawa, M. Hirosawa, and N. Miyajima, Prediction of the Coding Sequences of Unidentified Human Genes . XIV . The Complete Sequences of 100 New cDNA Clones from Brain Which Code for Large Proteins in vitro, vol.205, pp.197-205, 1999.

J. Kim, K. Kim, J. Park, H. Kim, Y. Sato et al., Expression of vasohibin-2 in pancreatic ductal adenocarcinoma promotes tumor progression and is associated with a poor clinical outcome, Hepato-Gastroenterology, issue.138, pp.251-257

H. Kimura, H. Miyashita, Y. Suzuki, M. Kobayashi, K. Watanabe et al., Distinctive localization and opposed roles of vasohibin-1 and vasohibin-2 in the regulation of angiogenesis, vol.113, pp.4810-4819, 2009.

H. Kimura, H. Miyashita, Y. Suzuki, M. Kobayashi, K. Watanabe et al., Distinctive localization and opposed roles of vasohibin-1 and vasohibin-2 in the regulation of angiogenesis, vol.113, pp.4810-4819, 2016.

M. Kishlyansky, J. Vojnovic, E. Roudier, C. Gineste, S. Decary et al., Striated muscle angio-adaptation requires changes in Vasohibin-1 expression pattern, Biochemical and Biophysical Research Communications, vol.399, issue.3, pp.359-364, 2010.

S. Kitahara, Y. Suzuki, M. Morishima, A. Yoshii, S. Kikuta et al., Vasohibin-2 modulates tumor onset in the gastrointestinal tract by normalizing tumor angiogenesis, pp.1-15, 2014.

S. Kitahara, Y. Suzuki, M. Morishima, A. Yoshii, S. Kikuta et al., Vasohibin-2 modulates tumor onset in the gastrointestinal tract by normalizing tumor angiogenesis, Molecular Cancer, vol.13, p.99, 2014.

T. Kitajima, Y. Toiyama, K. Tanaka, S. Saigusa, and M. Kobayashi, Vasohibin-1 Increases the Malignant Potential of Colorectal Cancer and Is a Biomarker of Poor Prognosis, vol.5330, pp.5321-5329, 2014.

Y. Konishi and M. Setou, Tubulin tyrosination navigates the kinesin-1 motor domain to axons, Nature Neuroscience, vol.12, issue.5, pp.559-67, 2009.

Y. Konishi and M. Setou, Tubulin tyrosination navigates the kinesin-1 motor domain to axons, Nature Neuroscience, vol.12, issue.5, pp.559-67, 2009.

T. Kosaka, Y. Miyazaki, A. Miyajima, S. Mikami, Y. Hayashi et al., The prognostic significance of vasohibin-1 expression in patients with prostate cancer, British Journal of Cancer, vol.108, issue.10, pp.2123-2132, 2013.

T. Koyanagi, Y. Suzuki, Y. Saga, S. Machida, Y. Takei et al., In vivo delivery of siRNA targeting vasohibin-2 decreases tumor angiogenesis and suppresses tumor growth in ovarian cancer, Cancer Science, vol.104, issue.12, pp.1705-1715, 2013.

T. E. Kreis, Microtubules containing detyrosinated tubulin 1987, vol.6, pp.2597-2606

G. Kreitzer, G. Liao, and G. G. Gundersen, Detyrosination of Tubulin Regulates the Interaction of Intermediate Filaments with Microtubules In Vivo via a Kinesin-dependent Mechanism, vol.10, pp.1105-1118, 1999.

N. Kumar and M. Flavin, Preferential action of a brain detyrosinolating carboxypeptidase on polymerized tubulin, The Journal of Biological Chemistry, vol.256, issue.14, pp.7678-86, 1981.

N. Kumar and M. Flavin, Modulation of Some Parameters, European Journal of Biochemistry, vol.128, pp.215-222, 1982.

L. Lafanechère, C. Courtay-cahen, T. Kawakami, M. Jacrot, M. Rüdiger et al., Suppression of tubulin tyrosine ligase during tumor growth, Journal of Cell Science, vol.111, issue.2, pp.171-81, 1998.

L. Lafanechère and D. Job, The third tubulin pool, Neurochemical Research, vol.25, issue.1, pp.11-19, 2000.

J. C. Larcher, D. Boucher, S. Lazereg, F. Gros, and P. Denoulet, Interaction of kinesin motor domains with ?-and ?-tubulin subunits at a tau-independent binding site: Regulation by polyglutamylation, Journal of Biological Chemistry, vol.271, issue.36, pp.22117-22124, 1996.

P. C. Letourneau and J. P. Wire, Three-dimensional organization of stable microtubules and the Golgi apparatus in the somata of developing chick sensory neurons, Journal of Neurocytology, vol.24, pp.207-223, 1995.

D. Li, K. Zhou, S. Wang, Z. Shi, and Z. Yang, Recombinant adenovirus encoding vasohibin prevents tumor angiogenesis and inhibits tumor growth, Cancer Science, vol.101, issue.2, pp.448-452, 2010.

Z. Li, M. Tu, B. Han, Y. Gu, X. Xue et al., Vasohibin 2 Decreases the Cisplatin Sensitivity of Hepatocarcinoma Cell Line by Downregulating p53, vol.9, pp.1-9, 2014.

Z. Li, M. Tu, B. Han, Y. Gu, X. Xue et al., Vasohibin 2 decreases the cisplatin sensitivity of hepatocarcinoma cell line by downregulating p53, PloS One, vol.9, issue.3, p.90358, 2014.

G. Liao and G. G. Gundersen, Kinesin Is a Candidate for Cross-bridging Microtubules and, vol.273, pp.9797-9803, 1998.

S. Liu, B. Han, Q. Zhang, J. Dou, F. Wang et al., Vasohibin-1 suppresses colon cancer, vol.6, 2015.

S. Liu, B. Han, Q. Zhang, J. Dou, F. Wang et al., Vasohibin-1 suppresses colon cancer, Oncotarget, vol.6, issue.10, pp.7880-98, 2015.

G. López-bendito and Z. Molnár, Thalamocortical development: how are we going to get there?, Nature Reviews Neuroscience, vol.4, issue.4, pp.276-289, 2003.

J. Löwe, H. Li, K. Downing, and E. Nogales, Refined structure of ??-tubulin at 3.5 Å resolution, Journal of Molecular Biology, vol.313, pp.1045-1057, 2001.

M. S. Lu and C. A. Johnston, Molecular pathways regulating mitotic spindle orientation in animal cells, Development, vol.140, issue.9, pp.1843-56, 2013.

R. F. Ludueña, A hypothesis on the origin and evolution of tubulin, International review of cell and molecular biology, vol.302, pp.41-185, 2013.

S. Marcos, J. Moreau, S. Backer, D. Job, A. Andrieux et al., Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone, PloS One, vol.4, issue.4, p.5405, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410213

R. L. Margolis and L. Wilson, Opposite end assembly and disassembly of microtubules at steady state in vitro, Cell, vol.13, pp.1-8, 1978.

T. M. Martensen, Preparation of brain tyrosinotubulin carboxypeptidase, Methods in Cell Biology, vol.24, pp.265-274, 1982.

J. Mary, V. Redeker, J. P. Le-caer, J. Rossier, and J. M. Schmitter, Posttranslational modifications in the C-terminal tail of axonemal tubulin from sea urchin sperm, Journal of Biological Chemistry, vol.271, issue.17, pp.9928-9933, 1996.

R. J. Mckenney, W. Huynh, R. D. Vale, and M. Sirajuddin, Tyrosination of ?-tubulin controls the initiation of processive dynein-dynactin motility, The EMBO Journal, vol.2016, issue.11, pp.1175-85

A. Mialhe, L. Lafanechèere, I. Treilleux, P. Prognosis, L. Lafaneche et al., Tubulin Detyrosination Is a Frequent Occurrence in Breast Cancers of Poor Prognosis Tubulin Detyrosination Is a Frequent Occurrence in Breast Cancers of, pp.5024-5027, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02348211

H. Miki, Y. Okada, and N. Hirokawa, Analysis of the kinesin superfamily: Insights into structure and function, Trends in Cell Biology, vol.15, issue.9, pp.467-476, 2005.

L. M. Miller, A. Menthena, C. Chatterjee, P. Verdier-pinard, P. M. Novikoff et al., Increased levels of a unique post-translationally modified betaIVb-tubulin isotype in liver cancer, Biochemistry, vol.47, issue.28, pp.7572-82, 2008.

K. Mitchison, Dynamic instability of microtubule growth, 1984.

Y. Miyazaki, T. Kosaka, S. Mikami, E. Kikuchi, N. Tanaka et al., The Prognostic Significance of Vasohibin-1 Expression in Patients with Upper Urinary Tract Urothelial Carcinoma, Clinical Cancer Research, vol.2012, issue.12, pp.4145-4153

M. Modesti and H. Barra, The interaction of myelin basic protein with tubulin and the inhibition of tubuline carboxypeptidase 1986

N. M. Modesti, C. E. Argarana, H. S. Barra, and R. Caputto, Inhibition of Brain tubulinyl Tyrosine Carboxypeptidase by Endogenous Proteins, 1984.

C. A. Moores, M. Perderiset, F. Francis, J. Chelly, A. Houdusse et al., Mechanism of microtubule stabilization by doublecortin, Molecular Cell, vol.14, pp.833-839, 2004.

L. Multigner, I. Pignot-paintrand, Y. Saoudi, D. Job, U. Plessmann et al., The A and B tubules of the outer doublets of sea urchin sperm axonemes are composed of different tubulin variants, Biochemistry, vol.35, issue.33, pp.10862-71, 1996.

H. Naito, H. Kidoya, Y. Sato, and N. Takakura, Induction and expression of anti-angiogenic vasohibins in the hematopoietic stem/progenitor cell population, Journal of Biochemistry, vol.145, issue.5, pp.653-659, 2009.

T. Nakata and N. Hirokawa, Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head, The Journal of Cell Biology, vol.162, issue.6, pp.1045-55, 2003.

T. Namba, Y. Funahashi, S. Nakamuta, C. Xu, T. Takano et al., Extracellular and Intracellular Signaling for Neuronal Polarity, Physiological Reviews, vol.95, pp.995-1024, 2015.

D. Neukirchen and F. Bradke, Neuronal polarization and the cytoskeleton, Seminars in Cell & Developmental Biology, vol.22, issue.8, pp.825-833, 2011.

S. Nimmagadda, P. Geetha-loganathan, F. Pro, M. Scaal, and B. Christ, Expression Pattern of Vasohibin During Chick, pp.1358-1362, 2007.

J. J. Nirschl, M. M. Magiera, J. E. Lazarus, C. Janke, E. L. Holzbaur et al., Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons Article a -Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons, CellReports, vol.2016, issue.11, pp.2637-2652

M. Nishita, T. Satake, Y. Minami, and A. Suzuki, Regulatory mechanisms and cellular functions of noncentrosomal microtubules, The Journal of Biochemistry, vol.109, 2017.

J. B. Olmsted, J. V. Cox, C. F. Asnes, L. M. Parysek, and H. D. Lyon, Cellular regulation of microtubule organisation, J. Cell Biol, vol.99, issue.1, pp.28-32, 1984.

A. F. Palazzo, T. A. Cook, A. S. Alberts, and G. G. Gundersen, mDia mediates Rho-regulated formation and orientation of stable microtubules, Nature Cell Biology, vol.3, issue.8, pp.723-729, 2001.

D. Panda, H. P. Miller, . Banerjee, R. F. Ludueña, and L. Wilson, Microtubule dynamics in vitro are regulated by the tubulin isotype composition, Proceedings of the National Academy of Sciences of the United States of America, vol.91, pp.11358-11362, 1994.

L. Paturle, J. Wehland, R. L. Margolis, and D. Job, Complete separation of tyrosinated, detyrosinated, and nontyrosinatable brain tubulin subpopulations using affinity chromatography, Biochemistry, vol.28, pp.2698-704, 1989.

L. Paturle-lafanechère, B. Eddé, P. Denoulet, . Van-dorsselaer, H. Mazarguil et al., Characterization of a major brain tubulin variant which cannot be tyrosinated, Biochemistry, 1991.

L. Paturle-lafanechère, M. Manier, N. Trigault, F. Pirollet, H. Mazarguil et al., Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies, Journal of Cell Science, vol.107, pp.1529-1572, 1994.

L. Peris, M. Thery, J. Fauré, Y. Saoudi, L. Lafanechère et al., Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends, The Journal of Cell Biology, vol.174, issue.6, pp.839-888, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00380096

L. Peris, M. Wagenbach, L. Lafanechère, J. Brocard, A. T. Moore et al., A. Motor-dependent microtubule disassembly driven by tubulin tyrosination, The Journal of Cell Biology, vol.185, issue.7, pp.1159-66, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02073505

A. R. Prescott, . Webb, and . Rawlins, Microtubules Form Rich Distinct in Post-translationally Modified Arrays in Frog Lens Epithelial, 1997.

A. R. Prescott, S. F. Webb, D. Rawlins, P. J. Shaw, and R. M. Warn, Microtubules rich in posttranslationally modified alpha-tubulin form distinct arrays in frog lens epithelial cells, Experimental Eye Research, vol.52, issue.6, pp.743-53, 1991.

A. E. Prota, M. M. Magiera, M. Kuijpers, K. Bargsten, D. Frey et al., Structural basis of tubulin tyrosination by tubulin tyrosine ligase, The Journal of Cell Biology, vol.200, issue.3, pp.259-70, 2013.

G. B. Quinones, B. A. Danowski, A. Devaraj, V. Singh, and L. A. Ligon, The posttranslational modification of tubulin undergoes a switch from detyrosination to acetylation as epithelial cells become polarized, Molecular Biology of the Cell, vol.22, issue.7, pp.1045-57, 2011.

&. Raybin and . Flavin, Enzyme which specifically adds tyrosine to the alpha chain of tubulin, 1977.

V. Redeker, Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins, Methods in cell biology, vol.95, pp.77-103, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01183771

V. Redeker and J. Rossier, & Frankfurter, a. Posttranslational modifications of the C-terminus of alphatubulin in adult rat brain: alpha 4 is glutamylated at two residues, Biochemistry, vol.37, issue.42, pp.14838-14882, 1998.

V. Redeker, F. Rusconi, J. Mary, ?. Prom, D. Rossier et al., Structure of the C-terminal tail of ?-tubulin: Increase of heterogeneity from newborn to adult, Journal of Neurochemistry, vol.67, pp.2104-2114, 1996.

I. Rishal and M. Fainzilber, Axon-soma communication in neuronal injury, Nature Reviews. Neuroscience, vol.15, issue.1, pp.32-42, 2014.

A. Ritter, N. Kreis, F. Louwen, L. Wordeman, and J. Yuan, Molecular insight into the regulation and function of MCAK, Critical Reviews in Biochemistry and Molecular Biology, vol.2016, issue.4, pp.228-245

P. Robison, M. A. Caporizzo, H. Ahmadzadeh, A. I. Bogush, C. Y. Chen et al., Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes, Science, vol.2016, issue.6284, pp.659-0659

P. Robison, M. A. Caporizzo, H. Ahmadzadeh, A. I. Bogush, C. Y. Chen et al., Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes, Science, vol.2016, issue.6284, pp.659-0659

P. Robison and B. L. Prosser, Microtubule mechanics in the working myocyte, The Journal of Physiology, vol.595, issue.12, pp.3931-3937, 2017.

A. Rodriguez and G. G. Borisy, Experimental Phenylketonuria : Replacement of Carboxyl Terminal Tyrosine by Phenylalanine in Infant Rat Brain Tubulin, vol.206, pp.463-465, 1979.

J. Rodriguez, H. S. Barra, C. Arce, M. E. Hallak, and R. Caputto, The reciprocal exclusion by L-dopa (L-3,4-dihydroxyphenylalanine) and L-tyrosine of their incorporation as single units into a soluble rat brain protein, The Biochemical Journal, vol.149, pp.115-121, 1975.

J. A. Rodriguez and G. G. Borisy, Modification of the C-terminus of brain tubulin during development, Biochemical and Biophysical Research Communications, vol.83, issue.2, pp.579-86, 1978.

K. Rogowski, J. Van-dijk, M. M. Magiera, C. Bosc, J. Deloulme et al., A family of protein-deglutamylating enzymes associated with neurodegeneration, Cell, vol.2010, issue.4, pp.564-78
URL : https://hal.archives-ouvertes.fr/hal-00538184

A. Roll-mecak, Intrinsically disordered tubulin tails: Complex tuners of microtubule functions?, Seminars in Cell and Developmental Biology, vol.37, pp.11-19, 2015.

A. Roll-mecak and F. J. Mcnally, Microtubule-severing enzymes, Current Opinion in Cell Biology, vol.2010, issue.1, pp.96-103

A. Roll-mecak and R. D. Vale, Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin, Nature, pp.363-367, 2008.

A. Rovini, G. Gauthier, R. Bergès, A. Kruczynski, D. Braguer et al., Anti-migratory effect of vinflunine in endothelial and glioblastoma cells is associated with changes in EB1 C-terminal detyrosinated/tyrosinated status, PloS One, vol.8, issue.6, p.65694, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01406320

L. Sanchez-pulido and C. P. Ponting, Sequence analysis Vasohibins : new transglutaminase-like cysteine proteases possessing a non-canonical Cys-His-Ser catalytic triad, pp.1-5, 2016.

L. Sanchez-pulido and C. P. Ponting, Vasohibins: New transglutaminase-like cysteine proteases possessing a non-canonical Cys-His-Ser catalytic triad, Bioinformatics, vol.32, pp.1441-1445, 2016.

H. C. Schroder, J. Wehland, and K. Weber, Purification of brain tubulin-tyrosine ligase by biochemical and immunological methods, Journal of Cell Biology, vol.100, pp.276-281, 1985.

E. Schulze, D. J. Asai, J. C. Bulinski, and M. Kirschner, Posttranslational modification and microtubule stability, The Journal of Cell Biology, vol.105, issue.5, pp.2167-77, 1987.

D. J. Sharp and J. L. Ross, Microtubule-severing enzymes at the cutting edge, Journal of Cell Science, vol.125, pp.2561-2569, 2012.

Z. Shen, Y. Yan, C. Ye, B. Wang, K. Jiang et al., The effect of Vasohibin-1 expression and tumor-associated macrophages on the angiogenesis in vitro and in vivo, Tumor Biology, vol.37, pp.7267-7276, 2016.

T. Shibuya, K. Watanabe, H. Yamashita, K. Shimizu, H. Miyashita et al., Isolation and characterization of vasohibin-2 as a homologue of VEGF-inducible endothelium-derived angiogenesis inhibitor vasohibin, Thrombosis, and Vascular Biology, vol.26, pp.1051-1058, 2006.

M. Silva, N. Morsci, K. C. Nguyen, A. Rizvi, C. Rongo et al., Cell-Specific ??-Tubulin Isotype Regulates Ciliary Microtubule Ultrastructure, Intraflagellar Transport, and Extracellular Vesicle Biology, vol.27, pp.968-980, 2017.

M. Sirajuddin, L. M. Rice, and R. D. Vale, Regulation of microtubule motors by tubulin isotypes and post-translational modifications, Nature Cell Biology, vol.16, issue.4, pp.335-379, 2014.

M. Sirajuddin, L. M. Rice, and R. D. Vale, Regulation of microtubule motors by tubulin isotypes and post-translational modifications, Nature Cell Biology, 2014.

B. Sironi and . Arce, The association of tubulin carboxypeptidase activity with microtubules in brain extracts is modulated by phosphorylation/dephosphorylation processes, 1997.

D. A. Skoufias, T. L. Burgess, and L. Wilson, Spatial and temporal colocalization of the Golgi apparatus and microtubules rich in detyrosinated tubulin, The Journal of Cell Biology, vol.111, issue.5, pp.1929-1966, 1990.

W. Song, Y. Cho, D. Watt, and V. Cavalli, Tubulin-tyrosine ligase (TTL)-mediated increase in tyrosinated ?-tubulin in injured axons is required for retrograde injury signaling and axon regeneration, Journal of Biological Chemistry, vol.290, issue.23, 2015.

Y. Song, L. L. Kirkpatrick, A. B. Schilling, D. L. Helseth, N. Chabot et al., Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules, Neuron, vol.2013, issue.1, pp.109-132

K. Soucek, A. Kamaid, A. D. Phung, L. Kubala, J. C. Bulinski et al., Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. The Prostate, vol.66, pp.954-65, 2006.

M. O. Steinmetz and A. Akhmanova, Capturing protein tails by CAP-Gly domains, Trends in Biochemical Sciences, pp.535-545, 2008.

Y. Suzuki, M. Kobayashi, H. Miyashita, H. Ohta, H. Sonoda et al., Isolation of a small vasohibinbinding protein ( SVBP ) and its role in vasohibin secretion, pp.3094-3101, 2010.

A. Szyk, A. M. Deaconescu, G. Piszczek, and A. Mecak, Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin, Nature Structural & Molecular Biology, vol.18, issue.11, pp.1250-1258, 2011.

Y. Takahashi, T. Koyanagi, Y. Suzuki, Y. Saga, and N. Kanomata, Vasohibin-2 Expressed in Human Serous Ovarian Adenocarcinoma Accelerates Tumor Growth by Promoting Angiogenesis, pp.1135-1147, 2012.

Y. Takahashi, T. Koyanagi, Y. Suzuki, Y. Saga, N. Kanomata et al., Vasohibin-2 expressed in human serous ovarian adenocarcinoma accelerates tumor growth by promoting angiogenesis, Molecular Cancer Research : MCR, vol.2012, issue.9, pp.1135-1181

Y. Takahashi, Y. Saga, T. Koyanagi, Y. Takei, S. Machida et al., The angiogenesis regulator vasohibin-1 inhibits ovarian cancer growth and peritoneal dissemination and prolongs host survival, International Journal of Oncology, vol.47, issue.6, pp.2057-63, 2015.

Y. Takahashi, Y. Saga, T. Koyanagi, Y. Takei, S. Machida et al., Vasohibin-1 expression inhibits advancement of ovarian cancer producing various angiogenic factors, vol.1, 2016.

E. Takeda, Y. Suzuki, T. Yamada, H. Katagiri, and Y. Sato, Knockout of Vasohibin-1 Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor , Insulin Receptor Substrate 1 , and Insulin Receptor Substrate 2 in Their White Adipose Tissue, 2017.

K. Tamaki, T. Moriya, Y. Sato, T. Ishida, Y. Maruo et al., Vasohibin-1 in human breast carcinoma: a potential negative feedback regulator of angiogenesis, Cancer Science, vol.100, issue.1, pp.88-94, 2009.

K. Tamaki, H. Sasano, Y. Maruo, Y. Takahashi, M. Miyashita et al., Vasohibin-1 as a potential predictor of aggressive behavior of ductal carcinoma in situ of the breast, Cancer Science, vol.101, issue.4, pp.1051-1059, 2010.

W. C. Thompson, G. G. Deanin, and M. W. Gordon, Intact microtubules are required for rapid turnover of carboxyl-terminal tyrosine of a-tubulin in cell cultures, Cell Biology, vol.76, issue.3, pp.1318-1322, 1979.

J. Thyberg and S. Moskalewski, Relationship between the Golgi complex and microtubules enriched in detyrosinated or acetylated alpha-tubulin: studies on cells recovering from nocodazole and cells in the terminal phase of cytokinesis, Cell and Tissue Research, vol.273, issue.3, pp.457-66, 1993.

L. G. Tilney, J. Bryan, D. J. Bush, K. Fujiwara, M. S. Mooseker et al., Microtubules: evidence for 13 protofilaments, The Journal of Cell Biology, vol.59, issue.2, pp.267-75, 1973.

O. Tort, S. Tanco, C. Rocha, I. Bièche, C. Seixas et al., The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids, Molecular Biology of the Cell, vol.25, issue.19, pp.3017-3044, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01116480

M. Tu, H. Li, N. Lv, C. Xi, Z. Lu et al., Vasohibin 2 reduces chemosensitivity to gemcitabine in pancreatic cancer cells via Jun proto-oncogene dependent transactivation of ribonucleotide reductase regulatory subunit M2, Molecular Cancer, vol.16, p.66, 2017.

M. Tu, C. Lu, N. Lv, J. Wei, Z. Lu et al., Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2, Cancer Letters, vol.383, pp.272-281, 2016.

R. B. Vallee, A taxol-dependent procedure for the isolation of microtubules and microtubuleassociated proteins (MAPs), The Journal of Cell Biology, vol.92, issue.2, pp.435-477, 1982.

K. T. Vaughan, S. H. Tynan, N. E. Faulkner, C. J. Echeverri, and R. B. Vallee, Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends, Journal of Cell Science, vol.112, pp.1437-1484, 1999.

B. G. Vértessy, F. Orosz, J. Kovács, and J. Ovádi, Alternative binding of two sequential glycolytic enzymes to microtubules. Molecular studies in the phosphofructokinase/aldolase/microtubule system, Journal of Biological Chemistry, vol.272, issue.41, pp.25542-25546, 1997.

A. Villasante, D. Wang, P. Dobner, P. Dolph, S. A. Lewis et al., Six mouse alpha-tubulin mRNAs encode five distinct isotypes: testis-specific expression of two sister genes, Molecular and Cellular Biology, vol.6, issue.7, pp.2409-2428, 1986.

K. W. Volker and H. R. Knull, A glycolytic enzyme binding domain on tubulin, Archives of Biochemistry and Biophysics, vol.338, issue.2, pp.237-243, 1997.

H. T. Vu, H. Akatsu, Y. Hashizume, M. Setou, and K. Ikegami, Increase in ?-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer's disease, Scientific Reports, vol.7, p.40205, 2017.

T. Y. Vue, M. Lee, Y. E. Tan, Z. Werkhoven, L. Wang et al., Thalamic Control of Neocortical Area Formation in Mice, Journal of Neuroscience, vol.33, issue.19, pp.8442-8453, 2013.

R. Walker, O. Brien, K. Pryer, M. E. Soboeiro, . Voter et al., Dynamic Instability of Individual Microtubules, The Journal of Cell Biology, vol.107, pp.1437-1448, 1988.

Q. Wang, X. Tian, C. Zhang, and Q. Wang, Upregulation of vasohibin-1 expression with angiogenesis and poor prognosis of hepatocellular carcinoma after curative surgery, pp.2727-2736, 2012.

K. Watanabe, Y. Hasegawa, H. Yamashita, K. Shimizu, Y. Ding et al., Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis, p.114, 2004.

K. Watanabe, Y. Hasegawa, H. Yamashita, K. Shimizu, Y. Ding et al., Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis, The Journal of Clinical Investigation, vol.114, issue.7, pp.898-907, 2004.

D. R. Webster, Regulation of Post-translationally Modified Microtubule Populations During Neonatal Cardiac Development, vol.1761, pp.1747-1761, 1997.

D. R. Webster, N. M. Modesti, and J. C. Bulinski, Regulation of cytoplasmic tubulin carboxypeptidase activity during neural and muscle differentiation: characterization using a microtubule-based assay, Biochemistry, issue.25, pp.5849-56, 1992.

D. R. Webster and M. C. Oxford, Regulation of Cytoplasmic Tubulin Carboxypeptidase Activity In Vitro, vol.436, pp.424-436, 1996.

D. R. Webster, J. Wehland, K. Weber, and G. G. Borisy, Detyrosination of Alpha Tubulin Does Not Stabilize Microtubules In Vivo, vol.111, pp.113-122, 1990.

J. Wehland and K. Weber, Turnover of the carboxy-terminal tyrosine of a-tubulin and means of reaching elevated levels of detyrosination in living cells 1987, pp.185-204, 1973.

J. Wehland, M. C. Willingham, and I. V. Sandoval, A rat monoclonal antibody reacting specifically with the tyrosylated form of ??-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo, Journal of Cell Biology, vol.97, pp.1467-1475, 1983.

J. C. Weizetfel, C. E. Argaraña, D. M. Beltramo, and H. S. Barra, The integrity of tubulin molecule is not required for the activity of tubulin carboxypeptidase, Biochemical and Biophysical Research Communications, vol.159, issue.2, pp.770-776, 1989.

J. C. Weizetfel, A. M. Smania, H. S. Barra, and C. E. Argaraña, A brain protein (P30) that immunoreacts with a polyclonal anti-pancreatic carboxypeptidase A antibody shows properties that are shared with tubulin carboxypeptidase, Molecular and Cellular Biochemistry, vol.170, issue.1-2, pp.139-185, 1997.

Y. Wen, C. H. Eng, J. Schmoranzer, N. Cabrera-poch, E. J. Morris et al., EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nature Cell Biology, vol.6, issue.9, pp.820-850, 2004.

R. Whipple, A. M. Cheung, and S. S. Martin, Detyrosinated microtubule protrusions in suspended mammary epithelial cells promote reattachment, Experimental Cell Research, vol.313, issue.7, pp.1326-1362, 2007.

R. Whipple, M. I. Vitolo, A. E. Boggs, M. S. Charpentier, K. Thompson et al., Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-?B inhibition, Breast Cancer Research, vol.15, issue.5, p.83, 2013.

R. A. Whipple, M. A. Matrone, E. H. Cho, E. M. Balzer, M. I. Vitolo et al., Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement, Cancer Research, vol.70, issue.20, pp.8127-8164, 2010.

H. Witte and F. Bradke, The role of the cytoskeleton during neuronal polarization, Current Opinion in Neurobiology, vol.18, issue.5, pp.479-87, 2008.

H. Witte, D. Neukirchen, and F. Bradke, Microtubule stabilization specifies initial neuronal polarization, The Journal of Cell Biology, vol.180, issue.3, pp.619-651, 2008.

G. Xue, W. Sun, B. Xu, Y. Han, B. Wang et al., Vasohibin 2 is transcriptionally activated and promotes angiogenesis in hepatocellular carcinoma, pp.1724-1734, 2011.

X. Xue, Y. Zhang, Q. Zhi, M. Tu, Y. Xu et al., MiR200-upregulated Vasohibin 2 promotes the malignant transformation of tumors by inducing epithelial-mesenchymal transition in hepatocellular carcinoma, pp.1-10, 2014.

Z. Xue, Y. Zhi, Q. Tu, M. Xu, Y. Sun et al., MiR200-upregulated Vasohibin 2 promotes the malignant transformation of tumors by inducing epithelial-mesenchymal transition in hepatocellular carcinoma, Cell Communication and Signaling, vol.12, p.62, 2014.

Y. Yan, Z. Shen, Y. Ye, K. Jiang, H. Zhang et al., A novel molecular marker of prognosis in colorectal cancer: Vasohibin-1, Medical Oncology, vol.31, issue.2, p.816, 2014.

D. Yang, N. Rismanchi, B. Renvoisé, J. Lippincott-schwartz, C. Blackstone et al., Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B, Nature Structural & Molecular Biology, vol.15, issue.12, pp.1278-1286, 2008.

K. Yoshinaga, K. Ito, T. Moriya, S. Nagase, T. Takano et al., Expression of vasohibin as a novel endothelium-derived angiogenesis inhibitor in endometrial cancer, Cancer Science, vol.99, issue.5, pp.914-923, 2008.

K. Yoshinaga, K. Ito, T. Moriya, S. Nagase, T. Takano et al.,

I. Yu, C. P. Garnham, and A. Mecak, Writing and reading the tubulin code, Journal of Biological Chemistry, vol.290, issue.28, pp.17163-17172, 2015.

J. Zhang, M. Lesort, R. P. Guttmann, and G. V. Johnson, Modulation of the in situ activity of tissue transglutaminase by calcium and GTP, Journal of Biological Chemistry, vol.273, issue.4, pp.2288-2295, 1998.

T. Zhang, T. Yu, D. Zhang, X. Hou, X. Liu et al., Vasohibin-1 expression detected by immunohistochemistry correlates with prognosis in non-small cell lung cancer, Medical Oncology, issue.5, p.963, 2014.

G. Zhao, Y. Yang, Y. Tang, R. Han, and Y. Sun, Reduced expression of vasohibin-1 is associated with clinicopathological features in renal cell carcinoma, Medical Oncology, vol.29, issue.5, pp.3325-3359, 2012.

S. Zink, L. Grosse, A. Freikamp, S. Bänfer, F. Müksch et al., Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells, Journal of Cell Science, vol.125, pp.5998-6008, 2012.