, contact made of hydrogen-doped In2O3

, Furthermore, the incorporation of heavy alkali should also improve the p-n heterojunction of ultrathin cells, and using a more transparent front contact stack would reduce the absorption losses at wavelengths below 550 nm

, These additional optimizations should lead to ultrathin CIGS solar cells that are as efficient as standard ones

, RBC/Al2O3 + 4-nm-NaF*, vol.7

, Intergovernmental Panel on Climate Change (IPCC), tech. rep, Synthesis Report, 2014.

D. H. Meadows, D. L. Meadows, and J. Randers, The limits to Growth, the 30-Year Update, 2012.

. Paris-agreement, United Nations / Framework Convention on Climate Change (FCCC), Paris, tech. rep, 2015.

, World energy assessment: energy and the challenge of sustainability, 2000.

, Fraunhofer ISE, tech. rep, 2019.

M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl-ebinger, M. Yoshita et al., Solar cell efficiency tables (version 54), Prog. Photovolt. Res. Appl, vol.27, issue.7, pp.565-575, 2019.

K. A. Horowitz, R. Fu, and M. Woodhouse, An analysis of glass-glass CIGS manufacturing costs, Sol. Energy Mater. Sol. Cells, vol.154, pp.1-10, 2016.

, Study on the review of the list of critical raw materials: critical raw materials factsheets. European Commission, 2017.

J. Pettersson, T. Törndahl, C. Platzer-björkman, A. Hultqvist, and M. Edoff, The Influence of Absorber Thickness on Cu(In,Ga)Se2 Solar Cells With Different Buffer Layers, IEEE J. Photovolt, vol.3, issue.4, pp.1376-1382, 2013.

P. M. Salomé, Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer, Adv. Mater. Interfaces, vol.5, issue.2, p.1701101, 2018.

L. M. Mansfield, Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells, Prog. Photovolt. Res. Appl, vol.26, issue.11, pp.949-954, 2018.

F. Mollica, Optimization of ultra-thin Cu(In,Ga)Se2 based solar cells with alternative backcontacts, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01545671

O. Lundberg, M. Bodegård, J. Malmström, and L. Stolt, Influence of the Cu (In, Ga) Se2 thickness and Ga grading on solar cell performance, Prog. Photovolt. Res. Appl, vol.11, issue.2, pp.77-88, 2003.

, International Energy Agency, tech. rep, 2017.

C. Kost, S. Shammugam, V. Jülch, H. Nguyen, and T. Schlegl, Levelized Cost of Electricity -Renewable Energy Technologies, Fraunhofer ISE, tech. rep, 2018.

, Climate Change 2014: Mitigation of Climate Change, Intergovernmental Panel on Climate Change (IPCC), tech. rep, 2014.

M. Powalla, Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2," Engineering, vol.3, pp.445-451, 2017.

, CIGS White Paper, Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg (ZSW), Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), tech. rep, 2019.

K. A. Horowitz and M. Woodhouse, Cost and potential of monolithic CIGS photovoltaic modules, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp.1-6, 2015.

M. J. , Energy payback time and carbon footprint of commercial photovoltaic systems, Sol. Energy Mater. Sol. Cells, vol.119, pp.296-305, 2013.

J. L. Shay, S. Wagner, and H. M. Kasper, Efficient CuInSe2/CdS solar cells, Appl. Phys. Lett, vol.27, issue.2, pp.89-90, 1975.

P. Jackson, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Prog. Photovolt. Res. Appl, vol.19, issue.7, pp.894-897, 2011.

M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato et al., )2 thin-film solar cell with a new world record efficacy of 23, Cd-free Cu, 2019.

P. M. Salomé, H. Rodriguez-alvarez, and S. Sadewasser, Incorporation of alkali metals in chalcogenide solar cells, Sol. Energy Mater. Sol. Cells, vol.143, pp.9-20, 2015.

M. Ashby, Materials and Environment, 2013.

A. Chiril?, Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films, Nat. Mater, vol.10, issue.11, pp.857-861, 2011.

R. Carron, Advanced Alkali Treatments for High-Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates, Adv. Energy Mater, vol.9, issue.24, p.1900408, 2019.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte et al., Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi RRL -Rapid Res. Lett, vol.10, issue.8, pp.583-586, 2016.

T. Kato, J. Wu, Y. Hirai, H. Sugimoto, and V. Bermudez, Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22, 9% Achieved by Cs-Treated Cu, vol.9, pp.325-330, 2019.

K. Orgassa, H. W. Schock, and J. H. Werner, Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells, Thin Solid Films, pp.387-391, 2003.

K. Hsiao, J. Liu, H. Hsieh, and T. Jiang, Electrical impact of MoSe2 on CIGS thinfilm solar cells, Phys. Chem. Chem. Phys, vol.15, issue.41, p.18174, 2013.

D. Abou-ras, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells, Thin Solid Films, pp.433-438, 2005.

T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, and T. Mise, Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts, Sol. Energy, vol.77, issue.6, pp.739-747, 2004.

J. Keller, W. Chen, L. Riekehr, T. Kubart, T. Törndahl et al., Bifacial Cu(In,Ga)Se2 solar cells using hydrogen-doped In2O3 films as a transparent back contact, Prog. Photovolt. Res. Appl, vol.26, issue.10, pp.846-858, 2018.

M. D. Heinemann, Cu(In,Ga)Se2 superstrate solar cells: prospects and limitations, Prog. Photovolt. Res. Appl, vol.23, issue.10, pp.1228-1237, 2015.

H. Simchi, B. E. Mccandless, T. Meng, J. H. Boyle, and W. N. Shafarman, MoO3 back contact for CuInSe2-based thin film solar cells, MRS Online Proc. Libr. Arch, vol.1538, pp.173-178, 2013.

T. Klinkert, Comprehension and optimisation of the co-evaporation deposition of Cu(In,Ga)Se2 absorber layers for very high efficiency thin film solar cells, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01130052

T. Klinkert, M. Jubault, F. Donsanti, D. Lincot, and J. Guillemoles, Differential in-depth characterization of co-evaporated Cu(In,Ga)Se2 thin films for solar cell applications, Thin Solid Films, vol.558, pp.47-53, 2014.

M. I. Alonso, M. Garriga, C. A. Durante-rincón, E. Hernández, and M. León, Optical functions of chalcopyrite CuGa x In 1-x Se2 alloys, Appl. Phys. Mater. Sci. Process, vol.74, issue.5, pp.659-664, 2002.

S. Wei and A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys, J. Appl. Phys, vol.78, issue.6, pp.3846-3856, 1995.

M. A. Contreras, Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency, Prog. Photovolt. Res. Appl, vol.20, issue.7, pp.843-850, 2012.

S. Siebentritt, L. Gütay, D. Regesch, Y. Aida, and V. Deprédurand, Why do we make Cu(In,Ga)Se2 solar cells non-stoichiometric?, Sol. Energy Mater. Sol. Cells, vol.119, pp.18-25, 2013.

S. Siebentritt, M. Igalson, C. Persson, and S. Lany, The electronic structure of chalcopyrites-bands, point defects and grain boundaries, Prog. Photovolt. Res. Appl, vol.18, issue.6, pp.390-410, 2010.

T. Nishimura, S. Toki, H. Sugiura, K. Nakada, and A. Yamada, Effect of Cu-deficient layer formation in Cu(In,Ga)Se2 solar-cell performance, Prog. Photovolt. Res. Appl, vol.26, issue.4, pp.291-302, 2018.

M. , Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction, Appl. Phys. Lett, vol.79, issue.27, pp.4482-4484, 2001.

D. Hariskos and M. Powalla, Thermodynamic limitations for alkali metals in Cu(In,Ga)Se2, J. Mater. Res, vol.32, issue.20, pp.3789-3800, 2017.

R. A. Mickelsen and W. S. Chen, 4% efficient thin-film CuInSe2/CdS solar cell, presented at the 15th Photovoltaic Specialists Conference, pp.800-804, 1981.

R. Klenk, T. Walter, H. Schock, and D. Cahen, A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation, Adv. Mater, vol.5, issue.2, pp.114-119, 1993.

M. A. Contreras, High efficiency Cu(In,Ga)Se2-based solar cells: processing of novel absorber structures, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion -WCPEC, vol.1, pp.68-75, 1994.

I. Repins, 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Prog. Photovolt. Res. Appl, vol.16, issue.3, pp.235-239, 2008.

T. Dullweber, G. Hanna, U. Rau, and H. W. Schock, A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors, Sol. Energy Mater, p.6, 2001.

S. Wei, S. B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2, J. Appl. Phys, vol.85, issue.10, pp.7214-7218, 1999.

P. M. Salomé, Cu(In,Ga)Se2 Solar Cells With Varying Na Content Prepared on Nominally Alkali-Free Glass Substrates, IEEE J. Photovolt, vol.3, issue.2, pp.852-858, 2013.

P. M. Salomé, Incorporation of Na in Cu(In,Ga)Se2 Thin-Film Solar Cells: A Statistical Comparison Between Na From Soda-Lime Glass and From a Precursor Layer of NaF, IEEE J. Photovolt, vol.4, issue.6, pp.1659-1664, 2014.

D. Rudmann, Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to postdeposition Na incorporation, Appl. Phys. Lett, vol.84, issue.7, pp.1129-1131, 2004.

D. Rudmann, D. Brémaud, H. Zogg, and A. N. Tiwari, Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils, J. Appl. Phys, vol.97, issue.8, p.84903, 2005.

D. Rudmann, Sodium incorporation strategies for CIGS growth at different temperatures, Thin Solid Films, pp.55-60, 2005.

R. Wuerz, A. Eicke, F. Kessler, P. Rogin, and O. Yazdani-assl, Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates, Thin Solid Films, vol.519, issue.21, pp.7268-7271, 2011.

V. Achard, Study of Gallium Front Grading at Low Deposition Temperature on Polyimide Substrates and Impacts on the Solar Cell Properties, IEEE J. Photovolt, pp.1-6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02327799

F. Pianezzi, Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier, Prog. Photovolt. Res. Appl, vol.20, issue.3, pp.253-259, 2012.

R. Wuerz, A. Eicke, F. Kessler, S. Paetel, S. Efimenko et al., CIGS thin-film solar cells and modules on enamelled steel substrates, Sol. Energy Mater. Sol. Cells, vol.100, pp.132-137, 2012.

A. Chiril?, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat. Mater, vol.12, issue.12, pp.1107-1111, 2013.

F. Pianezzi, Defect formation in Cu(In,Ga)Se2 thin films due to the presence of potassium during growth by low temperature co-evaporation process, J. Appl. Phys, vol.114, issue.19, p.194508, 2013.

P. Reinhard, Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells, Chem. Mater, vol.27, issue.16, pp.5755-5764, 2015.

T. Lepetit, S. Harel, L. Arzel, G. Ouvrard, and N. Barreau, KF post deposition treatment in co-evaporated Cu(In,Ga)Se2 thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics, Prog. Photovolt. Res. Appl, vol.25, issue.12, pp.1068-1076, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01705360

C. P. Muzzillo, J. D. Poplawsky, H. M. Tong, W. Guo, and T. Anderson, Revealing the beneficial role of K in grain interiors, grain boundaries, and at the buffer interface for highly efficient CuInSe2 solar cells, Prog. Photovolt. Res. Appl, vol.26, issue.10, pp.825-834, 2018.

O. Donzel-gargand, Deep surface Cu depletion induced by K in high-efficiency Cu(In,Ga)Se2 solar cell absorbers, Prog. Photovolt. Res. Appl, vol.26, issue.9, pp.730-739, 2018.

F. Pianezzi, Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells, Phys. Chem. Chem. Phys, vol.16, issue.19, p.8843, 2014.

K. F. Tai, R. Kamada, T. Yagioka, T. Kato, and H. Sugimoto, S,Se)2 solar cell: Reduced recombination rate at the heterojunction and the depletion region due to K-treatment, Jpn. J. Appl. Phys, vol.56, issue.8S2, 2017.

C. P. Muzzillo, Review of grain interior, grain boundary, and interface effects of K in CIGS solar cells: Mechanisms for performance enhancement, Sol. Energy Mater. Sol. Cells, vol.172, pp.18-24, 2017.

E. Cadel, N. Barreau, J. Kessler, and P. Pareige, Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se2 thin film, Acta Mater, vol.58, issue.7, pp.2634-2637, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477285

O. Cojocaru-mirédin, T. Schwarz, and D. Abou-ras, Assessment of elemental distributions at line and planar defects in Cu(In,Ga)Se2 thin films by atom probe tomography, Scr. Mater, vol.148, pp.106-114, 2018.

A. Vilalta-clemente, Rubidium distribution at atomic scale in high efficient Cu(In,Ga)Se2 thin-film solar cells, Appl. Phys. Lett, vol.112, issue.10, p.103105, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01929133

N. Nicoara, Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments, Nat. Commun, vol.10, issue.1, p.3980, 2019.

D. Abou-ras, No Evidence for Passivation Effects of Na and K at Grain Boundaries in Polycrystalline Cu(In,Ga)Se2 Thin Films for Solar Cells, Sol. RRL, vol.3, issue.8, p.1900095, 2019.

U. Rau, K. Taretto, and S. Siebentritt, Se,S)2 thin-film solar cells, Grain boundaries in Cu(In,Ga), vol.96, pp.221-234, 2009.

W. K. Metzger, Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se2 solar cells, Thin Solid Films, vol.517, issue.7, pp.2360-2364, 2009.

D. Abou-ras, Grain-boundary character distribution and correlations with electrical and optoelectronic properties of CuInSe2 thin films, Acta Mater, vol.118, pp.244-252, 2016.

M. Gloeckler, J. R. Sites, and W. K. Metzger, Grain-boundary recombination in Cu(In,Ga)Se2 solar cells, J. Appl. Phys, vol.98, issue.11, p.113704, 2005.

G. Hanket, J. H. Boyle, and W. N. Shafarman, Characterization and device performance of (Ag,Cu)(In,Ga)Se2 absorber layers, 34th IEEE Photovoltaic Specialists Conference (PVSC), pp.1240-001245, 2009.

M. Edoff, High Voc in (Cu,Ag)(In,Ga)Se2 Solar Cells, IEEE J. Photovolt, vol.7, issue.6, pp.1789-1794, 2017.

G. Kim, W. M. Kim, J. Park, D. Kim, H. Yu et al., Thin Ag Precursor Layer-Assisted Co-Evaporation Process for Low-Temperature Growth of Cu(In,Ga)Se2 Thin Film, ACS Appl. Mater. Interfaces, vol.11, issue.35, pp.31923-31933, 2019.

J. H. Boyle, B. E. Mccandless, W. N. Shafarman, and R. W. Birkmire, Structural and optical properties of (Ag,Cu)(In,Ga)Se2 polycrystalline thin film alloys, J. Appl. Phys, vol.115, issue.22, p.223504, 2014.

P. T. Erslev, J. Lee, G. M. Hanket, W. N. Shafarman, and J. D. Cohen, The electronic structure of Cu(In1?xGax)Se2 alloyed with silver, Thin Solid Films, vol.519, issue.21, pp.7296-7299, 2011.

W. Shafarman, C. Thompson, J. Boyle, G. Hanket, P. Erslev et al., Device characterization of (Ag,Cu)(In,Ga)Se2 solar cells, 2010 35th IEEE Photovoltaic Specialists Conference, pp.325-000329, 2010.

C. P. Thompson, L. Chen, W. N. Shafarman, J. Lee, S. Fields et al., Bandgap gradients in (Ag,Cu)(In,Ga)Se2 thin film solar cells deposited by three-stage coevaporation, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp.1-6, 2015.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2011.

N. Naghavi, Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments, Prog. Photovolt. Res. Appl, vol.18, issue.6, pp.411-433, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00628412

T. Hildebrandt, Fast Chemical Bath Deposition Process at Room Temperature of ZnS-Based Materials for Buffer Application in High-Efficiency Cu(In,Ga)Se2-Based Solar Cells, IEEE J. Photovolt, vol.8, issue.6, pp.1862-1867, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02327800

C. Persson, C. Platzer-björkman, J. Malmström, T. Törndahl, and M. Edoff, Strong Valence-Band Offset Bowing of ZnO 1 ? x S x Enhances p -Type Nitrogen Doping of ZnO-like Alloys, Phys. Rev. Lett, vol.97, issue.14, p.146403, 2006.

M. Gloeckler and J. R. Sites, Efficiency limitations for wide-band-gap chalcopyrite solar cells, Thin Solid Films, pp.241-245, 2005.

R. Scheer, L. Messmann-vera, R. Klenk, and H. Schock, On the role of non-doped ZnO in CIGSe solar cells, Prog. Photovolt. Res. Appl, vol.20, issue.6, pp.619-624, 2012.

M. Powalla, S. Paetel, E. Ahlswede, R. Wuerz, C. D. Wessendorf et al., Thin-film solar cells exceeding 22% solar cell efficiency: An overview on 200

-. Cdte and C. , Ga)Se2-, and perovskite-based materials, Appl. Phys. Rev, vol.5, issue.4, p.41602, 2018.

Y. Hagiwara, T. Nakada, and A. Kunioka, Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer, Sol. Energy Mater. Sol. Cells, vol.67, issue.1, pp.267-271, 2001.

J. S. Ward, Cu(In,Ga)Se2 solar cells measured under low flux optical concentration, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp.2934-2937, 2014.

, MiaSolé -Home," MiaSolé

M. Stölzel, Absorber Optimization in CIGSSe Modules with a Sputtered ZnOS Buffer Layer at 19% Efficiency," presented at the 36th European Photovoltaic Solar Energy Conference and Exhibition, p.7, 2019.

J. Guillemoles, T. Kirchartz, D. Cahen, and U. Rau, Guide for the perplexed to the Shockley-Queisser model for solar cells, Nat. Photonics, vol.13, issue.8, pp.501-505, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02344164

P. Würfel and U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, 2016.

, Reference Air Mass 1.5 Spectra

W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys, vol.32, pp.510-519

S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells, Sol. Energy, vol.130, pp.139-147, 2016.

M. Burgelman and J. Marlein, Analysis of graded band gap solar cells with SCAPS, Proceedings of the 23rd European Photovoltaic Solar Energy Conference, pp.2151-2155, 2008.

&. Scaps,

W. W. Gärtner, Depletion-layer photoeffects in semiconductors, Phys. Rev, vol.116, issue.1, p.84, 1959.

L. Lombez, D. Ory, M. Paire, A. Delamarre, G. E. Hajje et al., Micrometric investigation of external quantum efficiency in microcrystalline Cu(In,Ga)(S,Se)2 solar cells, Thin Solid Films, vol.565, pp.32-36, 2014.

M. Richter, M. Hammer, T. Sonnet, and J. Parisi, Bandgap extraction from quantum efficiency spectra of Cu(In,Ga)Se2 solar cells with varied grading profile and diffusion length, Thin Solid Films, vol.633, pp.213-217, 2017.

R. Scheer and H. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, 2011.

S. Siebentritt, What limits the efficiency of chalcopyrite solar cells?, Sol. Energy Mater. Sol. Cells, vol.95, issue.6, pp.1471-1476, 2011.

, Mineral Commodity Summaries, U.S. Department of the Interior, U.S. Geological Survey, tech. rep, 2019.

, Availability of Indium and Gallium, 2019.

V. Bermudez, Economical and operational issues for CIGS in the future PV panorama, Sol. Energy, vol.146, pp.85-93, 2017.

W. N. Shafarman, R. W. Birkmire, S. Marsillac, M. Marudachalam, N. Orbey et al., Effect of reduced deposition temperature, time, and thickness on Cu(InGa)Se2 films and devices, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, pp.331-334, 1997.

T. Negami, S. Nishiwaki, Y. Hashimoto, and N. Kohara, Effect of absorber thickness on performance of Cu(In,Ga)Se2 solar cells, Proceedings of the 2nd WCPEC, pp.1181-1184, 1998.

T. Dullweber, O. Lundberg, J. Malmstrom, M. Bodeg, H. W. Schock et al., Back surface band gap gradings in Cu(In,Ga)Se2 solar cells, p.3, 2001.

M. Gloeckler and J. R. Sites, Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells, J. Appl. Phys, vol.98, issue.10, p.103703, 2005.

Z. J. Li-kao, Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering, Prog. Photovolt. Res. Appl, vol.20, issue.5, pp.582-587, 2012.

A. ?ampa, J. Kr?, J. Malmström, M. Edoff, F. Smole et al., The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells, Thin Solid Films, vol.515, issue.15, pp.5968-5972, 2007.

N. Dahan, Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 ?m, J. Appl. Phys, vol.112, issue.9, p.94902, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00785309

T. Dullweber, U. Rau, M. A. Contreras, R. Noufi, and H. W. Schock, Photogeneration and carrier recombination in graded gap Cu(In,Ga)Se2 solar cells, IEEE Trans. Electron Devices, vol.47, issue.12, pp.2249-2254, 2000.

V. Achard, Study of Cu(In,Ga)Se2 Thin Film Growth at Low Temperature on Polyimide Substrate in a Multistage Coevaporation Process for Photovoltaic Applications, ACS Appl. Energy Mater, vol.1, issue.10, pp.5257-5267, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02327802

O. Lundberg, M. Edoff, and L. Stolt, The effect of Ga-grading in CIGS thin film solar cells, Thin Solid Films, pp.520-525, 2005.

T. Klinkert, M. Jubault, F. Donsanti, D. Lincot, and J. Guillemoles, Ga gradients in Cu(In,Ga)Se2: Formation, characterization, and consequences, J. Renew. Sustain. Energy, vol.6, issue.1, p.11403, 2014.

G. Yin, V. Brackmann, V. Hoffmann, and M. Schmid, Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature, Sol. Energy Mater. Sol. Cells, vol.132, pp.142-147, 2015.

A. J. Mcevoy, T. Markvart, and L. Castaner, Practical Handbook of Photovoltaics: Fundamentals and Applications, 2012.

W. Hsu, Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3, Appl. Phys. Lett, vol.100, issue.2, p.23508, 2012.

J. Mattheis, P. J. Rostan, U. Rau, and J. H. Werner, Carrier collection in Cu(In,Ga)Se2 solar cells with graded band gaps and transparent ZnO:Al back contacts, Sol. Energy Mater. Sol. Cells, vol.91, issue.8, pp.689-695, 2007.

E. Jarzembowski, F. Syrowatka, K. Kaufmann, W. Fränzel, T. Hölscher et al., The influence of sodium on the molybdenum/Cu(In,Ga)Se2 interface recombination velocity, determined by time resolved photoluminescence, Appl. Phys. Lett, vol.107, issue.5, p.51601, 2015.

J. A. Giesecke, M. Kasemann, and W. Warta, Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images, J. Appl. Phys, vol.106, issue.1, p.14907, 2009.

M. Nerat, Copper-indium-gallium-selenide (CIGS) solar cells with localized back contacts for achieving high performance, Sol. Energy Mater. Sol. Cells, vol.104, pp.152-158, 2012.

B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, and M. Edoff, Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts, Sol. Energy Mater. Sol. Cells, vol.117, pp.505-511, 2013.

R. Kotipalli, Addressing the impact of rear surface passivation mechanisms on ultrathin Cu(In,Ga)Se2 solar cell performances using SCAPS 1-D model, Sol. Energy, vol.157, pp.603-613, 2017.

A. Cuevas, Carrier population control and surface passivation in solar cells, Sol. Energy Mater. Sol. Cells, vol.184, pp.38-47, 2018.

R. Kotipalli, B. Vermang, J. Joel, R. Rajkumar, M. Edoff et al., Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface, AIP Adv, vol.5, issue.10, p.107101, 2015.

F. Mollica, Comparative study of patterned TiO2 and Al2O3 layers as passivated back-contact for ultra-thin Cu(In,Ga)Se2 solar cells, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.2213-2217, 2016.

B. Vermang, Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells, Prog. Photovolt. Res. Appl, vol.22, issue.10, pp.1023-1029, 2014.

B. Vermang, Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se2 Solar Cells, IEEE J. Photovolt, vol.4, issue.6, pp.1644-1649, 2014.

D. Ledinek, O. Donzel-gargand, M. Sköld, J. Keller, and M. Edoff, Effect of different Na supply methods on thin Cu(In,Ga)Se2 solar cells with Al2O3 rear passivation layers, Sol. Energy Mater. Sol. Cells, vol.187, pp.160-169, 2018.

D. Ledinek, J. Keller, C. Hägglund, W. Chen, and M. Edoff, Effect of NaF pre-cursor on alumina and hafnia rear contact passivation layers in ultra-thin Cu(In,Ga)Se2 solar cells, Thin Solid Films, vol.683, pp.156-164, 2019.

S. Choi, Y. Kamikawa, J. Nishinaga, A. Yamada, H. Shibata et al., Lithographic fabrication of point contact with Al2O3 rear-surface-passivated and ultra-thin Cu(In,Ga)Se2 solar cells, Thin Solid Films, vol.665, pp.91-95, 2018.

P. Casper, Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer, Phys. Status Solidi RRL -Rapid Res. Lett, vol.10, issue.5, pp.376-380, 2016.

G. Yin, Well-Controlled Dielectric Nanomeshes by Colloidal Nanosphere Lithography for Optoelectronic Enhancement of Ultrathin Cu(In,Ga)Se2 Solar Cells, ACS Appl. Mater. Interfaces, vol.8, issue.46, pp.31646-31652, 2016.

T. S. Lopes, Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells, IEEE J. Photovolt, vol.9, issue.5, pp.1421-1427, 2019.

M. Saifullah, Performance and Uniformity Improvement in Ultrathin Cu(In,Ga)Se2 Solar Cells with a WO x Nanointerlayer at the Absorber/Transparent Back-Contact Interface, ACS Appl. Mater. Interfaces, vol.11, issue.1, pp.655-665, 2019.

H. Simchi, J. K. Larsen, and W. N. Shafarman, Transparent Back Contacts for Superstrate (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells, IEEE J. Photovolt, vol.5, issue.1, pp.406-409, 2015.

M. D. Heinemann, Advantageous light management in Cu(In,Ga)Se2 superstrate solar cells, Sol. Energy Mater. Sol. Cells, vol.150, pp.76-81, 2016.

T. Nakada, Microstructural and diffusion properties of CIGS thin film solar cells fabricated using transparent conducting oxide back contacts, Thin Solid Films, pp.419-425, 2005.

M. Terheggen, H. Heinrich, and G. Kostorz, Ga2O3 segregation in Cu(In,Ga)Se2/ZnO superstrate solar cells and its impact on their photovoltaic properties, Thin Solid Films, p.4, 2002.

F. Mollica, Light absorption enhancement in ultra-thin Cu(In,Ga)Se2 solar cells by substituting the back-contact with a transparent conducting oxide based reflector, Thin Solid Films, vol.633, pp.202-207, 2017.

Y. Son, Control of Structural and Electrical Properties of Indium Tin Oxide (ITO)/Cu(In,Ga)Se2 Interface for Transparent Back-Contact Applications, J. Phys. Chem. C, vol.123, issue.3, pp.1635-1644, 2019.

H. Simchi, J. Larsen, K. Kim, and W. Shafarman, Improved Performance of Ultrathin Cu(InGa)Se2 Solar Cells With a Backwall Superstrate Configuration, IEEE J. Photovolt, vol.4, issue.6, pp.1630-1635, 2014.

B. Bissig, Novel back contact reflector for high efficiency and double-graded Cu(In,Ga)Se2 thin-film solar cells, Prog. Photovolt. Res. Appl, vol.26, issue.11, pp.894-900, 2018.

J. Goffard, Light Trapping in Ultrathin CIGS Solar Cells with Nanostructured Back Mirrors, IEEE J. Photovolt, vol.7, issue.5, pp.1433-1441, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01710935

M. Kovacic, Light management design in ultra-thin chalcopyrite photovoltaic devices by employing optical modelling, Sol. Energy Mater. Sol. Cells, vol.200, p.109933, 2019.

M. Schmid, Review on light management by nanostructures in chalcopyrite solar cells, Semicond. Sci. Technol, vol.32, issue.4, p.43003, 2017.

H. Chen, Ultrathin and nanowire-based GaAs solar cells, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02100507

H. Chen, A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror, Nat. Energy, vol.4, issue.9, pp.761-767, 2019.
URL : https://hal.archives-ouvertes.fr/hal-00914745

C. Van-lare, G. Yin, A. Polman, and M. Schmid, Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns, ACS Nano, vol.9, issue.10, pp.9603-9613, 2015.

E. Jarzembowski, B. Fuhrmann, H. Leipner, W. Fränzel, and R. Scheer, Ultrathin Cu(In,Ga)Se 2 solar cells with point-like back contact in experiment and simulation, Thin Solid Films, vol.633, pp.61-65, 2017.

G. Yin, M. W. Knight, M. Van-lare, M. M. Garcia, A. Polman et al., Optoelectronic Enhancement of Ultrathin CuIn 1-x Ga x Se2 Solar Cells by Nanophotonic Contacts, Adv. Opt. Mater, vol.5, issue.5, p.1600637, 2017.

&. Dr, M. Eberl, and . Gmbh,

L. J. Van-der-pauw, A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape, Philips Res. Rep, vol.13, pp.1-9, 1958.

P. Lalanne and J. P. Hugonin, Reticolo software for grating analysis

C. A. Kaufmann, Depth profiling of Cu(In,Ga)Se2 thin films grown at low temperatures, Sol. Energy Mater, vol.93, issue.6-7, pp.859-863, 2009.

L. M. Mansfield, Comparison of CIGS Solar Cells Made With Different Structures and Fabrication Techniques, IEEE J. Photovolt, vol.7, issue.1, pp.286-293, 2017.

R. L. Garris, S. Johnston, J. V. Li, H. L. Guthrey, K. Ramanathan et al., Electrical characterization and comparison of CIGS solar cells made with different structures and fabrication techniques, Sol. Energy Mater. Sol. Cells, vol.174, pp.77-83, 2018.

J. Moseley, Luminescence methodology to determine grain-boundary, grain-interior, and surface recombination in thin-film solar cells, J. Appl. Phys, vol.124, issue.11, p.113104, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02411367

H. Guthrey, J. Moseley, J. Nishinaga, H. Shibata, H. Takahashi et al., Spatially Resolved Recombination Analysis of CuIn x Ga 1-x Se2 Absorbers With Alkali Postdeposition Treatments, IEEE J. Photovolt, vol.8, issue.6, pp.1833-1840, 2018.

, Attolight

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez et al., CASINO V2.42-A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users, Scanning, vol.29, issue.3, pp.92-101, 2007.

F. Urbach, The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids, Phys. Rev, vol.92, issue.5, pp.1324-1324, 1953.

J. D. Cohen, J. T. Heath, and W. N. Shafarman, Photocapacitance Spectroscopy in Copper Indium Diselenide Alloys, pp.69-90, 2006.

M. Troviano and K. Taretto, Urbach Energy In CIGS Extracted from Quantum Efficiency Analysis of High Performance CIGS Solar Cells, Photovolt. Sol. Energy Conf, pp.2933-2937, 2009.

S. Wolf, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, J. Phys. Chem. Lett, vol.5, issue.6, pp.1035-1039, 2014.

A. Cattoni, H. Anne-marie, D. Decanini, J. Shi, and J. Chen, Soft UV nanoimprint lithography: a versatile tool for nanostructuration at the 20nm scale, 2011.

H. Schmitt, Life time evaluation of PDMS stamps for UV-enhanced substrate conformal imprint lithography, Microelectron. Eng, vol.98, pp.275-278, 2012.

M. J. Haslinger, M. A. Verschuuren, R. Van-brakel, J. Danzberger, I. Bergmair et al., Stamp degradation for high volume UV enhanced substrate conformal imprint lithography (UV-SCIL), Microelectron. Eng, vol.153, pp.66-70, 2016.

N. Tucher, O. Höhn, H. Hauser, C. Müller, and B. Bläsi, Characterizing the degradation of PDMS stamps in nanoimprint lithography, Microelectron. Eng, vol.180, pp.40-44, 2017.

J. D. Bass, D. Grosso, C. Boissiere, and C. Sanchez, Pyrolysis, Crystallization, and Sintering of Mesostructured Titania Thin Films Assessed by in Situ Thermal Ellipsometry, J. Am. Chem. Soc, vol.130, issue.25, pp.7882-7897, 2008.

T. Bottein, Environment-controlled sol-gel soft-NIL processing for optimized titania, alumina, silica and yttria-zirconia imprinting at sub-micron dimensions, Nanoscale, vol.10, issue.3, pp.1420-1431, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01951258

O. Dalstein, D. R. Ceratti, C. Boissière, D. Grosso, A. Cattoni et al., Nanoimprinted, Submicrometric, MOF-Based 2D Photonic Structures: Toward Easy Selective Vapors Sensing by a Smartphone Camera, Adv. Funct. Mater, vol.26, issue.1, pp.81-90, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01253850

M. Richter, Comprehensive simulation model for Cu(In,Ga)(Se,S)2 solar cells, Sol. Energy Mater. Sol. Cells, vol.132, pp.162-171, 2015.

T. Kato, K. Kitani, K. F. Tai, R. Kamada, H. Hiroi et al., Characterization of the Back Contact of CIGS Solar Cell as the Origin of Rollover Effect, Eur. Photovolt. Sol. Energy Conf. Exhib, pp.1085-1088, 2016.

I. H. Malitson and M. J. Dodge, Refractive-index and birefringence of synthetic sapphire, J. Opt. Soc. Am, vol.62, issue.11, pp.1405-1405, 1972.

N. Naghavi, Ultrathin Cu(In,Ga)Se2 based solar cells, Thin Solid Films, vol.633, pp.55-60, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02327808

A. Kim, Y. Won, K. Woo, C. Kim, and J. Moon, Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells, ACS Nano, vol.7, issue.2, pp.1081-1091, 2013.

D. Chen, Thermally Stable Silver Nanowire-Polyimide Transparent Electrode Based on Atomic Layer Deposition of Zinc Oxide on Silver Nanowires, Adv. Funct. Mater, vol.25, issue.48, pp.7512-7520, 2015.

M. D. Heinemann, The Importance of Sodium Control in CIGSe Superstrate Solar Cells, IEEE J. Photovolt, vol.5, issue.1, pp.378-381, 2015.

J. Keller, Using hydrogen-doped In2O3 films as a transparent back contact in (Ag,Cu)(In,Ga)Se2 solar cells, Prog. Photovolt. Res. Appl, 2018.

G. Yin, P. Manley, and M. Schmid, Light trapping in ultrathin CuIn1-xGaxSe2 solar cells by dielectric nanoparticles, Sol. Energy, vol.163, pp.443-452, 2018.

O. Poncelet, R. Kotipalli, B. Vermang, A. Macleod, L. A. Francis et al., Optimisation of rear reflectance in ultra-thin CIGS solar cells towards 20% efficiency, Sol. Energy, vol.146, pp.443-452, 2017.

O. Dupré, R. Vaillon, and M. A. Green, Physics of the temperature coefficients of solar cells, Sol. Energy Mater. Sol. Cells, vol.140, pp.92-100, 2015.

K. Mullaney, G. M. Jones, C. A. Kitchen, and D. P. Jones, Infra-red reflective coverglasses: the next generation, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference -1993 (Cat. No.93CH3283-9, pp.1363-1368, 1993.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, A Comprehensive Photonic Approach for Solar Cell Cooling, ACS Photonics, vol.4, issue.4, pp.774-782, 2017.

D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. O. Yang et al., A study of low temperature crystallization of amorphous thin film indium-tin-oxide, J. Appl. Phys, vol.85, issue.12, pp.8445-8450, 1999.

U. Betz, M. Kharrazi-olsson, J. Marthy, M. F. Escolá, and F. Atamny, Thin films engineering of indium tin oxide: Large area flat panel displays application, Surf. Coat. Technol, vol.200, pp.5751-5759, 2006.

T. S. Sathiaraj, Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level, Microelectron. J, vol.39, issue.12, pp.1444-1451, 2008.

A. M. Gabor, Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors, Sol. Energy Mater. Sol. Cells, pp.247-260, 1996.

V. G. Hill, R. Roy, and E. F. Osborn, The System Alumina-Gallia-Water, J. Am. Ceram. Soc, vol.35, issue.6, pp.135-142, 1952.

H. Peelaers, J. B. Varley, J. S. Speck, and C. G. Van-de-walle, Structural and electronic properties of Ga2O3-Al2O3 alloys, Appl. Phys. Lett, vol.112, issue.24, p.242101, 2018.

J. Keller, F. Gustavsson, L. Stolt, M. Edoff, and T. Törndahl, On the beneficial effect of Al2O3 front contact passivation in Cu(In,Ga)Se2 solar cells, Sol. Energy Mater. Sol. Cells, vol.159, pp.189-196, 2017.

S. Niki, Effects of the surface Cu2?xSe phase on the growth and properties of CuInSe2 films, Appl. Phys. Lett, vol.74, issue.11, pp.1630-1632, 1999.

J. Kessler, C. Chityuttakan, J. Lu, J. Schöldström, and L. Stolt, Cu(In,Ga)Se2 thin films grown with a Cu-poor/rich/poor sequence: growth model and structural considerations, Prog. Photovolt. Res. Appl, vol.11, issue.5, pp.319-331, 2003.

P. J. Rostan, J. Mattheis, G. Bilger, U. Rau, and J. H. Werner, Formation of transparent and ohmic ZnO:Al/MoSe2 contacts for bifacial Cu(In,Ga)Se2 solar cells and tandem structures, Thin Solid Films, pp.67-70, 2005.

N. Ehrmann and R. Reineke-koch, Ellipsometric studies on ZnO:Al thin films: Refinement of dispersion theories, Thin Solid Films, vol.519, issue.4, pp.1475-1485, 2010.

L. Gouillart, Development of reflective back contacts for high-efficiency ultrathin Cu(In,Ga)Se2 solar cells, Thin Solid Films, vol.672, pp.1-6, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02327807

F. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, Comparison of structural and electrical properties of Cu(In, Ga)Se2 for substrate and superstrate solar cells, Thin Solid Films, pp.293-296, 2002.

A. Rockett, Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances, Thin Solid Films, vol.372, issue.1, pp.212-217, 2000.

A. Virtuani, E. Lotter, M. Powalla, U. Rau, J. H. Werner et al., Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells, J. Appl. Phys, vol.99, issue.1, p.14906, 2006.

F. Erfurth, Mo/Cu(In, Ga)Se2 back interface chemical and optical properties for ultrathin CIGSe solar cells, Appl. Surf. Sci, vol.258, issue.7, pp.3058-3061, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00785307

E. Khawaja and S. G. Tomlin, The optical constants of thin evaporated films of cadmium and zinc sulphides, J. Phys. Appl. Phys, vol.8, issue.5, p.581, 1975.

E. D. Palik, Handbook of Optical Constants of Solids, 1985.

Y. Jiang, S. Pillai, and M. A. Green, Re-evaluation of literature values of silver optical constants, Opt. Express, vol.23, issue.3, p.2133, 2015.

A. Loubat, Optical properties of ultrathin CIGS films studied by spectroscopic ellipsometry assisted by chemical engineering, Appl. Surf. Sci, vol.421, pp.643-650, 2017.