, Nous nous sommes intéressés aux paramètres suivant : le ratio de dimensionnement h/d, le débit d'air ventilé et la température critique pour basculer sur un refroidissement sous air. A l'issue de cette analyse, nous pouvons retenir, parmi les ratios h/d proposés par le fabricant de silos, un rapport critique (h/d = 0.77) permettant de minimiser l'autoéchauffement des plaquettes de bois torréfiées stockées dans le silo étudié. La variation du comportement thermique en fonction du diamètre est principalement due aux pertes thermiques en parois. Quoique, la contribution des pertes aux parois devrait produire la tendance inverse que celle attendue. Par ailleurs, un débit d'air de refroidissement compris entre 20 et 30 Nm 3 /min suffit pour éviter une situation d'emballement thermique et limiter l'auto-échauffement, Ce modèle a finalement été extrapolé à l'échelle industrielle afin d'étudier la tendance à l'auto-échauffement au sein d'un silo de plaquettes de hêtre pendant le stockage

, De ce fait, l'intégration des phénomènes exothermiques observés à petite échelle dans le modèle couplé conçu pour le LFT serait envisageable. L'adsorption chimique de l'oxygène sur la surface réactive du substrat à basse température pourrait être formulée dans le modèle MDEA. Ce modèle permettrait de définir des énergies d

, par exemple par microcalorimétrie C80. Cet appareil pourrait détecter des flux de chaleur en limite de détection en ATG/ATD et éventuellement, permettre d'identifier l'adsorption physique. Par ailleurs, on pourrait explorer l'impact d'un arrangement local singulier des particules, créant par exemple une zone de forte masse volumique et de faible perméabilité. Pour ce faire, le modèle couplant cinétique et transferts pourrait être enrichi par une description de l

, Il serait envisageable d'opter pour une modélisation plus fine de l'auto-échauffement en couplant un modèle CFD continu pour la phase gazeuse à un modèle discret qui décrit les transferts de masse de chaleur et les quantités de mouvement pour chaque particule

. Ensuite, couplant la cinétique et les transferts à l'échelle pilote, puis, tester une approche plus robuste intégrant la CFD

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Coal oxidation at low temperatures : oxygen consumption, oxidation products, reaction mechanism and kinetic modelling, Progress in Energy and Combustion Science, vol.29, pp.487-513, 2003.

J. N. Carras and B. C. Young, Self-heating of coal and related materials : Models, application and test methods, Progress in Energy and Combustion Science, vol.20, issue.1, pp.1-15, 1994.

C. D. Blasi, C. Branca, F. E. Sarnataro, and A. Gallo, Thermal Runaway in the Pyrolysis of Some Lignocellulosic Biomasses, Energy & Fuels, vol.28, pp.2684-2696, 2014.

. Ramírez-gómez, Research needs on biomass characterization to prevent handling problems and hazards in industry, Particulate Science and Technology, vol.34, pp.432-441, 2016.

K. Candelier, J. Dibdiakova, G. Volle, and P. Rousset, Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysis, Thermochimica Acta, vol.644, pp.33-42, 2016.

W. Guo, K. Trischuk, X. Bi, C. J. Lim, and S. Sokhansanj, Measurements of wood pellets self-heating kinetic parameters using isothermal calorimetry, Biomass and Bioenergy, vol.63, pp.1-9, 2014.

T. Luangwilai, H. S. Sidhu, and M. I. Nelson, One-dimensional spatial model for self-heating in compost piles : Investigating effects of moisture and air flow, Food and Bioproducts Processing, vol.108, pp.18-26, 2018.

M. Escudey, A. Arias, J. Förster, N. Moraga, C. Zambra et al., Sewage Sludge Self-Heating and Spontaneous Combustion. Field, Laboratory and Numerical Studies, High Temperature Materials and Processes, vol.27, pp.337-346, 2011.

G. Cocchi, The relationship between thermal diffusivity, energy of activation and temperature rise in subcritical self heating of fuels in simple geometries, Fuel, vol.158, pp.816-825, 2015.

A. Vince, Etat de l'Art des Méthodes Expérimentales d'Analyse de Risque de l'Emballement Thermique, INERIS, Direction des Risques Accidentels, 2000.

J. Couillet, Méthodes pour l'évaluation et la prévention des risques accidentels (DRA-006) : Dispersion atmosphérique (Mécanismes et outils de calcul), Version projet, INERIS, 2002.

P. Nordon, B. C. Young, and N. W. Bainbridge, The rate of oxidation of char and coal in relation to their tendency to self-heat, Fuel, vol.58, pp.443-449, 1979.

S. Krishnaswamy, R. D. Gunn, and P. K. Agarwal, Low-temperature oxidation of coal. 2. An experimental and modelling investigation using a fixed-bed isothermal flow reactor, Fuel, vol.75, pp.344-352, 1996.

D. C. Cruz-ceballos, K. Hawboldt, and R. Hellleur, Effect of production conditions on self-heating propensity of torrefied sawmill residues, Fuel, vol.160, pp.227-237, 2015.

, Low temperature oxidation of coals : Effects of pore structure and coal composition, Fuel, vol.64, pp.297-302, 1985.

, Comparison of the R70 self-heating rate of New Zealand and Australian coals to Suggate rank parameter, International Journal of Coal Geology, vol.64, pp.139-144, 2005.

S. Kenouche, Physico-chimie des surfaces et catalyse hétérogène, p.93, 2016.

F. Sun, -. Lian, and . Meunier, Adsorption. aspects théoriques, pp.2730-2731, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02484091

W. Stelte, Guideline : storage and handling of wood pellets, p.2012, 2012.

A. H. Mahmoudi, F. Hoffmann, M. Markovic, B. Peters, and G. Brem, Numerical modeling of self-heating and self-ignition in a packed-bed of biomass using XDEM, Combustion and Flame, vol.163, pp.358-369, 2016.

P. Perré, R. Rémond, and I. Turner, A comprehensive dual-scale wood torrefaction model : Application to the analysis of thermal run-away in industrial heat treatment processes, International Journal of Heat and Mass Transfer, vol.64, pp.838-849, 2013.

F. Ferrero, M. Malow, M. Schmidt, and U. Krause, Computational modelling of the self-ignition process to achieve safe storage of biomass, Fire Engineering, vol.12, pp.1-10, 2008.

H. Koseki, Safety Evaluation and Cause Investigation of the Fire in Various Solid Biomass Fuels and Organic Rubble Pile Using High Sensitivity Calorimeters

N. Murasawa, H. Koseki, Y. Iwata, and L. Gao, Study on spontaneous ignition of stored food waste to be used for recycling, Fire and Materials, vol.37, pp.520-529, 2013.

W. Guo, Self-heating and spontaneous combustion of wood pellets during storage, 2013.

R. Jirjis, Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis, Biomass and Bioenergy, vol.28, pp.193-201, 2005.

F. Hshieh and G. Richards, Factors influencing chemisorption and ignition of wood chars, Combustion and flame, vol.76, issue.1, pp.37-47, 1989.

A. G. Bradbury and F. Shafizadeh, Role of oxygen chemisorption in lowtemperature ignition of cellulose, Combust. Flame ; (United States), vol.37, 1980.

A. G. Bradbury and F. Shafizadeh, Chemisorption of oxygen on cellulose char, Carbon, vol.18, pp.109-116, 1980.

M. R. Khan, C. E. Everitt, and A. P. Lui, Modeling of oxygen chemisorption kinetics on coal char, Combustion and Flame, vol.80, pp.83-93, 1990.

M. Van-blijderveen, E. A. Bramer, and G. Brem, Modelling spontaneous ignition of wood, char and RDF in a lab-scale packed bed, Fuel, vol.108, pp.190-196, 2013.

H. Brocksiepe, Charcoal," in Ullmann's Encyclopedia of Industrial Chemistry, 2000.

M. J. Van-der-stelt, H. Gerhauser, J. H. Kiel, and K. J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels : A review, Biomass and Bioenergy, vol.35, pp.3748-3762, 2011.

R. B. Bates and A. F. Ghoniem, Modeling kinetics-transport interactions during biomass torrefaction : The effects of temperature, particle size, and moisture content, Fuel, vol.137, pp.216-229, 2014.

D. A. Granados, F. Chejne, and P. Basu, A two dimensional model for torrefaction of large biomass particles, Journal of Analytical and Applied Pyrolysis, vol.120, pp.1-14, 2016.

R. Rémond, I. Turner, and P. Perré, Modeling the Drying and Heat Treatment of Lignocellulosic Biomass : 2d Effects Due to the Product Anisotropy, Drying Technology, vol.28, pp.1013-1022, 2010.

S. M. Lim and M. Y. Chew, Chemisorption And Low-Temperature Pyrolysis Of Wood Chars In Smoldering Combustion, Fire Safety Science, vol.7, pp.127-127, 2007.

J. S. Tumuluru, C. J. Lim, X. T. Bi, X. Kuang, S. Melin et al., Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass, vol.8, pp.1745-1759, 2015.

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Kinetic modeling of lowtemperature oxidation of coal, Combustion and Flame, vol.131, pp.452-464, 2002.

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Coal oxidation at low temperatures : oxygen consumption, oxidation products, reaction mechanism and kinetic modelling, Progress in Energy and Combustion Science, vol.29, issue.6, pp.487-513, 2003.

R. Kaji, Y. Hishinuma, and Y. Nakamura, Low temperature oxidation of coals-a calorimetric study, Fuel, vol.66, pp.154-157, 1987.

J. Zhang, T. Ren, Y. Liang, and Z. Wang, A review on numerical solutions to self-heating of coal stockpile : Mechanism, theoretical basis, and variable study, Fuel, vol.182, pp.80-109, 2016.

F. Akgün and A. Arisoy, Effect of particle size on the spontaneous heating of a coal stockpile, Combustion and Flame, vol.99, pp.137-146, 1994.

G. G. Karsner and D. D. Perlmutter, Reaction regimes in coal oxidation, AIChE Journal, vol.27, pp.920-927, 1981.

T. Azhar and T. N. Arbaee, Experimental study and numerical modelling of selfheating behaviour of torrefied and non-torrefied biomass fuels, 2018.

L. M. Meteos, J. G. Torrent, J. C. Gómez, and N. F. Ávelez, Physical characteristics of biomass and its influence in self-combustion, International Multidisciplinary Scientific GeoConference SGEM 2013, pp.110-110, 2013.

B. Evangelista, P. Arlabosse, A. Govin, S. Salvador, O. Bonnefoy et al., Reactor scale study of self-heating and self-ignition of torrefied wood in contact with oxygen, Fuel, vol.214, pp.590-596, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01650705

P. Nordon, A model for the self-heating reaction of coal and char, Fuel, vol.58, issue.6, pp.456-464, 1979.

H. Su, F. Zhou, J. Li, and H. Qi, Effects of oxygen supply on low-temperature oxidation of coal : A case study of Jurassic coal in Yima, China, Fuel, vol.202, pp.446-454, 2017.

Y. Zhang, Y. Li, Y. Huang, S. Li, and W. Wang, Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC-FTIR technology, Journal of Thermal Analysis and Calorimetry, vol.131, issue.3, pp.2963-2974, 2018.

K. Wang, J. Deng, Y. Zhang, and C. Wang, Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG-FTIR and in situ IR analysis, Journal of Thermal Analysis and Calorimetry, vol.132, pp.591-598, 2018.

H. Fujitsuka, R. Ashida, M. Kawase, and K. Miura, Examination of Low-Temperature Oxidation of Low-Rank Coals, Aiming at Understanding Their Self-Ignition Tendency, Energy & Fuels, vol.28, pp.2402-2407, 2014.

G. Qi, D. Wang, K. Zheng, J. Xu, X. Qi et al., Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air, Journal of Loss Prevention in the Process Industries, vol.35, pp.224-231, 2015.

B. Evangelista, O. Bonnefoy, A. Govin, P. Arlabosse, S. Salvador et al., Experimental study of self-heating phenomenon at the reactor-scale. Safety assessment of a fixed-bed filled with torrefied wood chips, Anque and Enginyers Industrials de catalunya and SEQUI and A IQS, p.2448, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01720397

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Experimental Study on Low-Temperature Oxidation of an Australian Coal, Energy & Fuels, vol.13, pp.1173-1179, 1999.

J. C. Edwards, Mathematical modeling of spontaneous heating of a coalbed, 1990.

A. Arisoy, B. B. Beamish, and E. Çetegen, Modelling Spontaneous Combustion of Coal, TURKISH JOURNAL OF ENGINEERING AND ENVIRONMENTAL SCIENCES, vol.30, pp.193-201, 2006.

J. Deng, Y. Xiao, Q. Li, J. Lu, and H. Wen, Experimental studies of spontaneous combustion and anaerobic cooling of coal, Fuel, vol.157, pp.261-269, 2015.

B. Li, G. Chen, H. Zhang, and C. Sheng, Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition, Fuel, vol.118, pp.385-391, 2014.

X. D. Chen, On Basket Heating Methods for Obtaining Exothermic Reactivity of Solid Materials, Process Safety and Environmental Protection, vol.77, pp.187-192, 1999.

C. Aharoni and M. Ungarish, Kinetics of activated chemisorption. Part 1.-The non-elovichian part of the isotherm, Physical Chemistry in Condensed Phases, vol.1, pp.400-408, 1976.

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures, Fuel, vol.81, pp.1913-1923, 2002.

W. F. Degroot and F. Shafizadeh, Influence of inorganic additives on oxygen chemisorption on cellulosic chars, Carbon, vol.21, pp.61-67, 1983.

H. Teng and C. Hsieh, Activation Energy for Oxygen Chemisorption on Carbon at Low Temperatures, Industrial & Engineering Chemistry Research, vol.38, pp.292-297, 1999.

Z. Du, A. F. Sarofim, J. P. Longwell, and C. A. Mims, Kinetic measurement and modeling of carbon oxidation, Energy & Fuels, vol.5, pp.214-221, 1991.

A. Y. Kam, A. N. Hixson, and D. D. Perlmutter, The oxidation of bituminous COAL-II experimental kinetics and interpretation, Chemical Engineering Science, vol.31, pp.821-834, 1976.

G. G. Karsner and D. D. Perlmutter, Model for coal oxidation kinetics. 1. Reaction under chemical control, Fuel, vol.61, pp.29-34, 1982.

A. Arisoy and B. Beamish, Reaction kinetics of coal oxidation at low temperatures, Fuel, vol.159, pp.412-417, 2015.

J. C. Jones and S. C. Newman, Non-Arrhenius behaviour in the oxidation of two carbonaceous substrates, Journal of Loss Prevention in the Process Industries, vol.16, pp.223-225, 2003.

L. Yuan and A. C. Smith, CFD modeling of spontaneous heating in a largescale coal chamber, Journal of Loss Prevention in the Process Industries, vol.22, pp.426-433, 2009.

K. Vafai and M. Sozen, Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed, Journal of Heat Transfer, vol.112, pp.690-699, 1990.

A. Amiri and K. Vafai, Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media, International Journal of Heat and Mass Transfer, vol.37, pp.939-954, 1994.

C. K. Ho and S. W. Webb, Gas transport in porous media, vol.20, 2006.

G. Amhalhel and P. Furma?ski, PROBLEMS OF MODELING FLOW AND HEAT TRANSFER IN POROUS MEDIA, Journal of Power Technologies, vol.85, issue.0, pp.55-88, 1997.

H. Thunman and B. Leckner, Thermal conductivity of wood-models for different stages of combustion, Biomass and Bioenergy, vol.23, pp.47-54, 2002.

, Thermal dispersion in a porous medium -ScienceDirect

F. Kuwahara, A. Nakayama, and H. Koyama, A Numerical Study of Thermal Dispersion in Porous Media, Journal of Heat Transfer, vol.118, pp.756-761, 1996.

P. Jiang and Z. Ren, Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model, International Journal of Heat and Fluid Flow, vol.22, pp.102-110, 2001.

M. H. Pedras and M. J. De-lemos, Thermal dispersion in porous media as a function of the solid-fluid conductivity ratio, International Journal of Heat and Mass Transfer, vol.51, pp.5359-5367, 2008.

, Heat and mass transfer in packed beds N. Wakao and S. Kaguei. [electronic resource] -Version details

W. Chen, J. Peng, and X. T. Bi, A state-of-the-art review of biomass torrefaction, densification and applications, Renewable and Sustainable Energy Reviews, vol.44, pp.847-866, 2015.

A. Sarvaramini, G. P. Assima, and F. Larachi, Dry torrefaction of biomass -Torrefied products and torrefaction kinetics using the distributed activation energy model, Chemical Engineering Journal, vol.229, pp.498-507, 2013.

J. Shankar-tumuluru, S. Sokhansanj, J. R. Hess, C. T. Wright, and R. D. Boardman, REVIEW : A review on biomass torrefaction process and product properties for energy applications, Industrial Biotechnology, vol.7, pp.384-401, 2011.

S. Proskurina, J. Heinimö, F. Schipfer, and E. Vakkilainen, Biomass for industrial applications : The role of torrefaction, Renewable Energy, vol.111, pp.265-274, 2017.

D. R. Nhuchhen, P. Basu, and B. Acharya, A comprehensive review on biomass torrefaction, International Journal of Renewable Energy & Biofuels, vol.2014, pp.1-56, 2014.

L. Xiao, Z. Shi, F. Xu, and R. Sun, Hydrothermal carbonization of lignocellulosic biomass, Bioresource Technology, vol.118, pp.619-623, 2012.

W. Yan, J. T. Hastings, T. C. Acharjee, C. J. Coronella, and V. R. Vásquez, Mass and Energy Balances of Wet Torrefaction of Lignocellulosic Biomass, Energy & Fuels, vol.24, pp.4738-4742, 2010.

P. C. Bergman, A. R. Boersma, J. H. Kiel, M. J. Prins, K. J. Ptasinski et al., Janssen, Torrefaction for entrained-flow gasification of biomass, 2005.

J. Ratte, E. Fardet, D. Mateos, and J. S. Héry, Mathematical modelling of a continuous biomass torrefaction reactor : TORSPYD? column, Biomass and Bioenergy, vol.35, pp.3481-3495, 2011.

M. Brebu and C. Vasile, Thermal degradation of lignin-a review, Cellulose Chemistry & Technology, vol.44, issue.9, p.353, 2010.

T. Chen, J. Zhang, and J. Wu, Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model, Bioresource Technology, vol.211, pp.502-508, 2016.

R. B. Bates and A. F. Ghoniem, Biomass torrefaction : Modeling of reaction thermochemistry, Bioresource Technology, vol.134, pp.331-340, 2013.

J. Parikh, S. A. Channiwala, and G. K. , A correlation for calculating HHV from proximate analysis of solid fuels, Fuel, vol.84, pp.487-494, 2005.

S. A. Channiwala and P. P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel, vol.81, pp.1051-1063, 2002.

A. Demirba?, Relationships between lignin contents and heating values of biomass, Energy Conversion and Management, vol.42, pp.183-188, 2001.

C. Yin, Prediction of higher heating values of biomass from proximate and ultimate analyses, Fuel, vol.90, pp.1128-1132, 2011.

A. Friedl, E. Padouvas, H. Rotter, and K. Varmuza, Prediction of heating values of biomass fuel from elemental composition, Analytica Chimica Acta, vol.544, issue.1, pp.191-198, 2005.

A. G. Bradbury, Y. Sakai, and F. Shafizadeh, A kinetic model for pyrolysis of cellulose, Journal of Applied Polymer Science, vol.23, pp.3271-3280, 1979.

C. , D. Blasi, and M. Lanzetta, Intrinsic kinetics of isothermal xylan degradation in inert atmosphere, Journal of Analytical and Applied Pyrolysis, vol.40, pp.287-303, 1997.

J. J. Orfão, F. J. Antunes, and J. L. Figueiredo, Pyrolysis kinetics of lignocellulosic materials-three independent reactions model, Fuel, vol.78, pp.349-358, 1999.

M. M. Prins, Thermodynamic analysis of biomass gasification and torrefaction, 2005.

J. Peng, X. T. Bi, J. Lim, and S. Sokhansanj, Development of Torrefaction Kinetics for British Columbia Softwoods, International Journal of Chemical Reactor Engineering, vol.10, issue.1, 2012.

I. Turner, P. Rousset, R. Rémond, and P. Perré, An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260°C, International Journal of Heat and Mass Transfer, vol.53, pp.715-725, 2010.

W. Chen and P. Kuo, Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis, Energy, vol.36, pp.6451-6460, 2011.

G. Varhegyi, M. J. Antal, T. Szekely, and P. Szabo, Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse, Energy and Fuels, vol.3, pp.329-335, 1989.

S. Cavagnol, E. Sanz, W. Nastoll, J. F. Roesler, V. Zymla et al., Inverse analysis of wood pyrolysis with long residence times in the temperature range 210-290°C : Selection of multi-step kinetic models based on mass loss residues, Thermochimica Acta, vol.574, pp.1-9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01240787

S. Cavagnol, J. F. Roesler, E. Sanz, W. Nastoll, P. Lu et al., Exothermicity in wood torrefaction and its impact on product mass yields : From micro to pilot scale, The Canadian Journal of Chemical Engineering, vol.93, pp.331-339, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128752

J. Cai, W. Wu, and R. Liu, An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass, Renewable and Sustainable Energy Reviews, vol.36, pp.236-246, 2014.

J. Cai and R. Liu, New distributed activation energy model : Numerical solution and application to pyrolysis kinetics of some types of biomass, Bioresource Technology, vol.99, pp.2795-2799, 2008.

J. M. Cai and R. H. Liu, Parametric study of the nonisothermal n th-order distributed activation energy model involved the Weibull distribution for biomass pyrolysis, Journal of Thermal Analysis and Calorimetry, vol.89, pp.971-975, 2007.

J. Cai, F. He, and F. Yao, Nonisothermal nth-order DAEM equation and its parametric study-use in the kinetic analysis of biomass pyrolysis, Journal of Mathematical Chemistry, vol.42, issue.4, pp.949-956, 2007.

P. Rousset, I. Turner, A. Donnot, and P. Perré, Choix d'un modèle de pyrolyse ménagée du bois à l'échelle de la microparticule en vue de la modélisation macroscopique, Annals of Forest Science, vol.63, pp.213-229, 2006.

M. Ohliger and J. Eisert, Efficient measurement-based quantum computing with continuous-variable systems, Physical Review A, vol.85, p.62318, 2012.

S. Stuart, Ninth Symposium (International) on Combustion, 1962.

H. Kung and A. S. Kalelkar, On the heat of reaction in wood pyrolysis, Combustion and Flame, vol.20, pp.91-103, 1973.

C. A. Koufopanos, N. Papayannakos, G. Maschio, and A. Lucchesi, Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects, The Canadian Journal of Chemical Engineering, vol.69, issue.4, pp.907-915, 1991.

Y. Haseli, J. A. Van-oijen, and L. P. De-goey, Modeling biomass particle pyrolysis with temperature-dependent heat of reactions, Journal of Analytical and Applied Pyrolysis, vol.90, pp.140-154, 2011.

V. Strezov, J. A. Lucas, T. J. Evans, and L. Strezov, Effect of heating rate on the thermal properties and devolatilisation of coal, Journal of Thermal Analysis and Calorimetry, vol.78, pp.385-397, 2004.

V. Pozzobon, J. Colin, and P. Perré, Hydrodynamics of a packed bed of nonspherical polydisperse particles : A fully virtual approach validated by experiments, Chemical Engineering Journal, vol.354, pp.126-136, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01959277

W. Stelte, Danish Technological Institute, RK Report

A. Bouzarour, V. Pozzobon, P. Perré, and S. Salvador, Experimental study of torrefied wood fixed bed : Thermal analysis and source term identification, Fuel, vol.234, pp.247-255, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01853486

J. Garcia-torrent, N. Fernandez-anez, L. M. Pejic, and L. Montenegro-mateos, Assessment of self-ignition risks of solid biofuels by thermal analysis, Fuel, vol.143, pp.484-491, 2015.

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp.39-43, 1995.

Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization, Lecture Notes in Computer Science, pp.591-600, 1998.

V. Pozzobon, G. Baud, S. Salvador, and G. Debenest, Darcy Scale Modeling of Smoldering : Impact of Heat Loss, Combustion Science and Technology, vol.189, pp.340-365, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619244

R. S. Miller and J. Bellan, Analysis of Reaction Products and Conversion Time in the Pyrolysis of Cellulose and Wood Particles, Combustion Science and Technology, vol.119, pp.331-373, 1996.

E. W. Lemmon and R. T. Jacobsen, Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air, International Journal of Thermophysics, vol.25, pp.21-69, 2004.

R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki, A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa, Journal of Physical and Chemical Reference Data, vol.29, pp.1361-1433, 2000.

A. J. Brainard, H. Joseph, J. Keenan, J. Chao, and . Kaye, Gas tables : International version second edition (SI units), AIChE Journal, vol.211, issue.1, pp.172-172, 1983.

M. W. Chase, , pp.1-1951, 1998.

M. Itay, C. R. Hill, and D. Glasser, A study of the low temperature oxidation of coal, Fuel Processing Technology, vol.21, pp.81-97, 1989.

J. W. Cumming, Reactivity assessment of coals via a weighted mean activation energy, Fuel, vol.63, pp.1436-1440, 1984.

R. Storn and K. Price, Differential Evolution -A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, vol.11, pp.341-359, 1997.

N. Wakao, Particle-to-fluid transfer coefficients and fluid diffusivities at low flow rate in packed beds, Chemical Engineering Science, vol.31, pp.1115-1122, 1976.

C. K. Lee, R. F. Chaiken, and J. M. Singer, Charring pyrolysis of wood in fires by laser simulation, Symposium (International) on Combustion, vol.16, pp.1459-1470, 1977.

M. Quintard, M. Kaviany, and S. Whitaker, Two-medium treatment of heat transfer in porous media : numerical results for effective properties, Advances in Water Resources, vol.20, pp.77-94, 1997.

J. Bear and C. Braester, On the Flow of Two Immscible Fluids in Fractured Porous Media, Developments in Soil Science (Iahr, vol.2, pp.177-202, 1972.

A. Gandomkar and K. E. Gray, Local thermal non-equilibrium in porous media with heat conduction, International Journal of Heat and Mass Transfer, vol.124, pp.1212-1216, 2018.

L. Virto, M. Carbonell, R. Castilla, and P. J. Gamez-montero, Heating of saturated porous media in practice : Several causes of local thermal non-equilibrium, International Journal of Heat and Mass Transfer, vol.52, pp.5412-5422, 2009.

N. Wakao and S. Kagei, Heat and mass transfer in packed beds, 1982.

W. M. Rohsenow, J. P. Hartnett, Y. I. Cho, H. Others, . Of et al., , vol.3, 1998.

H. Lu, E. Ip, J. Scott, P. Foster, M. Vickers et al., Effects of particle shape and size on devolatilization of biomass particle, Fuel, vol.89, pp.1156-1168, 2010.

. Bibliographie,

K. Vafai, Convective flow and heat transfer in variable-porosity media, Journal of Fluid Mechanics, vol.147, pp.233-259, 1984.

J. M. Delgado, Longitudinal and Transverse Dispersion in Porous Media, Chemical Engineering Research and Design, vol.85, pp.1245-1252, 2007.

J. R. Welty, C. E. Wicks, R. E. Wilson, and G. L. Rorrer, Fundamentals of momentum, heat, and mass transfer, 2008.

, Decagonal Silos | Cylindrical Silos Ireland

V. B. St-pierre and N. , Ventilation et conservation des grains à la ferme, 2014.