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Abstract:
This dissertation aims to investigate the multispectral

images in moving objects detection via background

subtraction, both with classical and deep learning

based methods. As an efficient and representative

classical algorithm for background subtraction, the

traditional Codebook has first been extended to

multispectral case. In order to make the algorithm

reliable and robust, a self-adaptive mechanism to

select optimal parameters has then been proposed.

In this frame, new criteria in the matching process

are employed and new techniques to build the

background model are designed, including box-

based Codebook, dynamic Codebook and fusion

strategy. The last attempt is to investigate the

potential benefit of using multispectral images

via convolutional neural networks. Based on

the impressive algorithm FgSegNet v2, the major

contributions of this part lie in two aspects: (1)

extracting three channels out of seven in the

FluxData FD-1665 multispectral dataset to match the

number of input channels of the deep model, and

(2) proposing a new convolutional encoder to utilize

all the multispectral channels available to further

explore the information of multispectral images.

Titre : Multispectral Images Based Background Subtraction Using Codebook and Deep Learning
Approaches
Mots-clés : Soustraction d’arrière-plan, Images multispectrales, Modèle de Codebook, Apprentissage
profond
Résumé :
Cette thèse vise à étudier les images multispectrales

pour la détection d’objets en mouvement par

soustraction d’arrière-plan, à la fois avec des

méthodes classiques et d’apprentissage profond.

En tant qu’algorithme classique efficace et

représentatif pour la soustraction de fond,

l’algorithme Codebook traditionnel a d’abord été

étendu au cas multispectral. Afin de rendre

l’algorithme fiable et robuste, un mécanisme auto-

adaptatif pour sélectionner les paramètres optimaux

a ensuite été proposé. Dans ce cadre, de

nouveaux critères dans le processus d’appariement

sont employés et de nouvelles techniques pour

construire le modèle d’arrière-plan sont conçues,

y compris le Codebook de boı̂tes, le Codebook

dynamique et la stratégie de fusion. La dernière

tentative est d’étudier les avantages potentiels

de l’utilisation d’images multispectrales via des

réseaux de neurones convolutifs. Sur la base

de l’algorithme impressionnant FgSegNet v2, les

principales contributions de ce travail reposent sur

deux aspects: (1) extraire trois canaux sur sept

de l’ensemble des données multispectrales du

FluxData FD-1665 pour correspondre au nombre de

canaux d’entrée du modèle profond, et (2) proposer

un nouvel encodeur convolutionnel pour pouvoir

utiliser tous les canaux multispectraux disponibles

permettant d’explorer davantage les informations

des images multispectrales.
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1

INTRODUCTION

This chapter presents an introduction of the background subtraction, describes perspec-

tives and challenges to investigate multispectral images in this computer vision task, and

also the objectives of this work. Moreover, an outline of the thesis is included at the end

of this chapter.

1.1/ BACKGROUND

Nowadays, we are flooded by digital images and videos. For example, as smart phones

become increasingly popular, taking a photo or video and sharing it have never been eas-

ier. Besides, just a click on the internet, millions of images and videos can come to you.

Computer vision, as a scientific discipline to enable computers to see and understand

the content of digital images and videos, helps human process this vast number of digital

data publicly available. The subject itself has been arisen to mimic human visual system

in the 1960s [Aloimonos, 1990], and advances rapidly in recent years along with cheaper

and more capable cameras, affordable processing power and increasingly mature vision

algorithms.

Nowadays, computer vision is a very active and booming study field with

a wide variety of applications based on many specialized tasks techniques.

Some popular and attractive examples of applications are Autonomous Vehi-

cles [Fridman et al., 2019] [Martı́nez-Dı́az et al., 2018] [Litman, 2017], Amazon Go

[Polacco et al., ], Google Lens [Achom Nishalakshmi et al., 2018], Face Recognition

[Balaban, 2015] [Parkhi et al., 2015]. They rely on the following techniques to understand

the digital images and videos, including but not limited to, object classification to group

3



4 CHAPTER 1. INTRODUCTION

images into different categories, object detection to identify specific objects in an image,

image segmentation to partition an image into separate multiple regions, instance seg-

mentation to create masks for each individual object in the image.

Detection of moving objects in video sequences is one of the prerequisite and funda-

mental techniques in many computer vision systems. Three typical and widely used

approaches in moving object detection [Maddalena et al., 2007] are temporal difference

computing the difference between two or three consecutive frames [Shuigen et al., 2009]

[Lipton et al., 1998], background subtraction distinguishing moving objects by com-

paring the current frame with a constructed background model [Liang et al., 2002]

[Haritaoglu et al., 2000], and optical flow analysis providing all motion informa-

tion [Thakoor et al., 2004] [Zhang et al., 2006] [Aslani et al., 2013] [Agarwal et al., 2016].

Among these three methods, background subtraction is the most efficient and widely

adopted approach to discriminate foreground objects captured by a stationary camera

and plays an crucial role due to its potential applications in the tasks discussed below

[Bouwmans et al., 2019a].

Visual surveillance of human activities: In several environments, like traffic moni-

toring, parking lot management, train stations and airports surveillance, background

subtraction technique is applied first to identify and track objects of interests.

Visual analysis of human activities: The detection of moving objects by back-

ground subtraction has also been used in sport, like soccer and tennis, to make

important decisions and analyze athletic performance.

Visual observation of animals and insects: The intelligent visual observation of

animals and insects needs to be simple and non-invasive. Thus, a video-based

system is suitable to detect and track animals and insects in order to analyze their

behavior or keep vision on any unusual activities.

Visual observation of natural environments: Background subtraction can be

used to detect foreign objects in natural environments such as forest, ocean and

river to protect the biodiversity.

Human-machine interaction: Several multimedia applications require human-

machine interaction. For example, the gamer can observe his own image or sil-

houette composed into a virtual scene, built based on the background subtraction
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techniques.

Vision-based hand gesture recognition: Hand gesture recognition has been

adopted in several applications like robotics, behaviour studies, human-computer

interface, sign language interpretation and learning. This technique requires de-

tecting moving hand area first in a video sequence before tracking and recognizing

hand gesture.

Content-based video coding: In video coding for transmission applications, such

as teleconferencing, digital movies and video phones, only the key frames with the

moving objects are transmitted.

Background substitution: Background substitution, also called background cut or

video matting, is to extract the foreground from the input video and then combine it

with a new background.

1.2/ PERSPECTIVES

Background subtraction is also called foreground detection [Krungkaew et al., 2016] and

foreground-background segmentation [Xu et al., 2016]. As the name suggests, it aims to

detect foreground regions that are in motion from background of a video sequence. The

first task of background subtraction is to construct and maintain a solid background model,

which contains the static part of the scene or, more generally speaking, every information

that can be considered as background given the characteristics of the observed scene.

Then a binary mask, distinguishing pixels as background or foreground pixels, is obtained

by performing a subtraction between the current frame and the constructed background

model.

According to the Background Subtraction Website [Bouwmans, 2014], which provides

exhaustive resources in this research domain, such as references, datasets, codes

and also links to demonstration websites, the majority of the current background sub-

traction algorithms are focused on conventional visible images, mainly Red-Green-

Blue (RGB), or transferring it to other color model, like YCbCr [Shah et al., 2015], Lab

[Krungkaew et al., 2016] or YUV [Huang et al., 2016]. Commonly, the methods devel-

oped for visible light cameras are particularly sensitive to low light conditions and specular
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reflections.

In recent years, with the rise of different sensors, several background subtrac-

tion algorithms are proposed to utilize alternative kinds of data or integrates mul-

tiple complementary information to overcome these limitations [Zheng et al., 2019a],

such as depth camera [Maddalena et al., 2018] [Camplani et al., 2013], light field

sensing [Shimada et al., 2013] [Shimada et al., 2015], infrared camera [Qiu et al., 2019]

[Yan et al., 2018]. Besides, thanks to the technological advances in video capture, now it

is possible to capture and visualize a scene at various bands of the electromagnetic spec-

trum. Thus, as one of these alternatives, multispectral imaging has also been gaining in

popularity.

The corresponding multispectral sequence, as the name implies, is a collection of

several monochrome sequences of the same scene and each band, or channel, is

taken with additional receptors sensitive to other frequencies of the visible light or fre-

quencies beyond the visible light like the infrared region of electromagnetic continuum

[Bouchech, 2015]. Multispectral imaging is related to hyperspectral imaging in that both

provide increased spectral discrimination compared with traditional imaging methods.

The difference is primarily in the number of bands employed and the degree of spec-

tral resolution [Ferrato et al., 2013]. Whereas multispectral imaging generally refers to a

set of 310 spectral bands, hyperspectral imaging often uses significantly larger numbers

of bands [Rüfenacht et al., 2013] [Hagen et al., 2013].

Multispectral video processing is attracting increased interest in recent years, as it

offers better spectral resolution, and different bands of multispectral video streams

can enhance video analytics capabilities in different ways [Rüfenacht et al., 2013].

One of the early applications of multispectral imaging is to detect or track mili-

tary targets [Goldberg et al., 2003]. Later, it is also employed in many other vision

tasks [Viau et al., 2016] [Salerno et al., 2014] [Li et al., 2017], such as remote sens-

ing [Shaw et al., 2003], weather forecasting [USGS, 2018] [Grolier et al., 1984], food

control [Feng et al., 2018], face recognition [Bourlai et al., 2012] [Ice et al., 2012], an-

cient manuscripts analysis [Easton et al., 2003] [Diem et al., 2007], paintings investiga-

tion [Zhao et al., 2008].

Compared with visible images, background subtraction using multispectral images can

be more interesting, for the intuitive fact that with more spectral bands, more informa-
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tion could be obtained, particularly for harsh environmental conditions characterized by

unfavorable lighting and shadows, or around-the-clock applications, like surveillance and

autonomous driving. Thanks to the recent advances in multispectral video acquisition

technology, new products such as the FD-1665 Multispectral cameras from FluxData are

commercially available to offer the possibility to record multispectral images of more than

three spectral channels in the visible and near infrared part of the spectrum simultane-

ously. In [Benezeth et al., 2014a], Benezeth et el. have built a mutispectral dataset, which

introduces novel opportunities and challenges for background subtraction. Based on the

preliminary study conducted by the creators of this dataset, multispectral images have

demonstrated good potential to be used for background subtraction.

1.3/ OBJECTIVES

As the opportunities and challenges always coexist, the main objective of this thesis is

how to better use multispectral images for background subtraction based on the pioneer-

ing works in this field. To efficiently achieve this goal, the following attempts have been

conducted as part of this research effort, with respect to both classical and deep learning

based approaches.

As an efficient and representative classical method for background subtraction, Codebook

algorithm proposed by Kim [Kim et al., 2005] is widely used with visual images. In order to

investigate the advantages of multispectral sequences, the original Codebook algorithm

is first adapted from traditional RGB to multispectral case.

In the original Codebook, there are four parameters that need to be tuned experimentally

carefully to find the appropriate values and achieve satisfying results for a specific scene,

which is always a really cumbersome and tricky task. What is more important for our

research objective, when using the multispectral sequences, the parameters also have

to be adjusted with different numbers of channels. Therefore, the second attempt in this

thesis is to design a self-adaptive mechanism to select optimal parameters automatically.

In the framework of the multispectal self-adaptive Codebook algorithm, two perspectives

are available to further improve the multispectral model. The first one is to employ a better

feature representation with new robust feature descriptors or different features fusion. The

other is to introduce other strategies to build the model to represent the background.
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In this decade, deep learning has drawn much attention in the computer vision community

and deep features obtained from Convolutional Neural Networks have been shown as

powerful and effective image representations for various computer vision tasks. Thus,

we’d like to make an attempt to follow the trend of deep learning and apply its concepts

to background subtraction using multispectral images.

1.4/ THESIS ORGANIZATION

The rest of this thesis is organized as follows.

Chapter 2: In order to cope with challenges for background subtraction, numer-

ous approaches have been proposed over the past years. This chapter conducts

a literature review of the state of arts for background subtraction. Some well-

known classical methods and state-of-art deep learning based approaches with

RGB images are introduced, together with existing multispectral approaches using

the same dataset as the one used in this thesis.

Chapter 3: For better explanation, the original Codebook algorithm is first stated

in five important issues, namely background model initialization, matching process,

background model updating strategy, background model refining and foreground

detection. Then it is adapted to multispectral case to investigate the advantages of

multispectral sequences for the task of background subtraction. Besides, a detailed

description for the adopted multispectral dataset and evaluation metrics are also

presented in this chapter.

Chapter 4: To get rid of the cumbersome and tricky task to select the optimal pa-

rameters for various scenes and different numbers of multispectral channels, a self-

adaptive mechanism is proposed by calculating iteratively and recording additional

statistical information vectors for each codeword. In the multispectal self-adaptive

Codebook framework, improvements have been proposed in two aspects. The first

one is to introduce a new feature descriptor called spectral information divergence

in the matching process, while the latter aspect includes three techniques to build

the background model, namely, box-based Codebook, dynamic Codebook and fu-

sion strategy.
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Chapter 5: The fashionable deep learning is explored for background subtraction

with mutispectral images. Firstly, three channels are extracted from the multispec-

tral images to match the number of input channels of the pretrained deep model,

aiming to investigating the possible improvements against RGB. Secondly, a new

convolutional encoder was proposed to utilize all the multispectral channels avail-

able to further explore the information of multispectral images. To the best of our

knowledge, this work is the first attempt to investigate the potential benefits of us-

ing multispectral information via deep features learned with convolutional neural

networks for the background subtraction task.

Chapter 6: The work of this thesis is summarised and the future works are dis-

cussed in the last chapter.





2

STATE OF ART

2.1/ INTRODUCTION

Background subtraction is a well studied field in the domain of computer vision and

many algorithms have been designed to separate the moving objects (foreground)

from the static information (background), as witnessed by several surveys such as

[Bouwmans, 2014] [Sobral et al., 2014] [Bouwmans et al., 2017b] [Kalsotra et al., 2019]

[Bouwmans et al., 2019b]. A quick search for “background subtraction” on IEEE Xplore

returns over 2200 publications in the last ten years (2010-2020).

Fig.2.1 shows several processing modules for the majority of background subtraction al-

gorithms, which are background model initialization, background model maintenance, and

foreground detection. As the names suggest, background model initialization regards the

initializing step to create the background model [Bouwmans et al., 2017a]; background

model maintenance concerns the adaptation of the model to the background changes,

and foreground detection is to compare each incoming frame with the built background

model to acquire a binary mask distinguishing between foreground pixels and background

ones.

To obtain this foreground mask, the simplest and most straightforward technique is an

interframe difference between the current frame and the background reference frame

with a global static threshold. However, detecting moving objects is not as easy as it may

first appear, due to the complexity and challenges of real-world scenes. For example,

finding a good empty background reference frame is always impossible in the case of

dynamic background, and illumination changes may also make the global static threshold

an inferior choice.

11
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Background
Initialization

Background
Model

Foreground
Detection

Model
Maintenance

Input Frame

Figure 2.1: Background subtraction process

Table 2.1 summarizes the challenges of background subtraction considering three factors:

background, foreground and camera [Kalsotra et al., 2019] [Bouwmans et al., 2019a].

We will make a brief introduction for twofold reasons. First, video sequences in the avail-

able datasets are typically structured based on the challenges of background subtraction

summarized here, including the multispectral dataset used in this thesis. Second, it can

offer a reference for later construction of larger multispectral datasets for exhaustive eval-

uation of multispectral information for background subtraction.

Illumination changes: The illumination changes affect the pixels in the current

video frame and interrupt background model. For example, moving clouds in the

sky would lead to gradual illumination changes and switching the light in a room can

be a sudden illumination change. These illumination changes would induce false

positives.

Dynamic background: The background contains some periodical or irregular

movements, such as waving trees, traffic lights, moving escalator, and swaying

curtains. As a consequence, parts of the background in the video frame do not

overlap with the corresponding parts in the background image. Hence, dynamic

background may also cause false positives.

Shadows: The shadows cast by moving objects or fixed background often bring

additional difficulty to background subtraction. Overlapping shadows of foreground

regions for example hinder their separation and classification and always result into

object merging and object distortion.
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Table 2.1: Background subtraction challenges

Background Foreground Camera

Illumination Changes Shadows Video Noise
Dynamic Background Camouflage Moving Camera
Shadows Intermittent Object Motion Camera Jitter
Challenging Weather Occlusion
Bootstrapping
Moved Background Objects
Night Videos

Challenging weather: Videos recorded in challenging weather conditions with low-

visibility, such as fog, rain, snow, and air turbulence, would complicate the back-

ground model construction and generate false detection.

Night videos: The segmentation of foreground objects and their contours become

difficult for lack of sufficient illumination in night scenes. Besides, strong headlights

would cause halos and reflections on the street, resulting with false positives.

Bootstrapping: In some environments, a period absent of moving objects is not

available for background initialization and thus makes it difficult to compute a repre-

sentative background image and generates defective background model with some

algorithms.

Moved background objects: A background object can be moved. This information

needs to be noticed by the background model maintenance strategy so that these

objects will not be considered as foreground afterwards.

Camouflage: When some moving objects poorly differ from the appearance of

background, for example, in cases where foreground objects and background scene

have a similar color, the foreground objects are more likely to be falsely labeled as

background.

Intermittent object motion: Foreground objects that are embedded into the back-

ground scene and start moving after background initialization are the so-called

ghosts. In contrast, foreground objects that stop moving for a certain amount of

time, fall into the category of intermittent object motion, such as a sequence of cars

that arrive, stop at a street light and then move away.

Occlusion: Occlusion is also a very common challenge, which complicates the



14 CHAPTER 2. STATE OF ART

computation of background model. For example, a walking person passing behind

a tree is partially occluded in several frames.

Video noise: Video signal is generally superimposed by noise. Coping with such

degraded signals affected by different types of noise, such as sensor noise or com-

pression artifacts, brings in more difficulties to background subtraction.

Moving camera: Background subtraction can be also used in applications in which

cameras are slowly moving, which need more subsequent process to compensate

this background motion.

Camera jitter: In some cases, it is possible that the camera itself is frequently in

movement due to physical influence such as wind. Similar to the cases of dynamic

background and moving camera, the pixel locations between the video and back-

ground frame do not overlap anymore.

In order to cope with these challenges illustrated above, numerous approaches have been

proposed over the past years for background subtraction. They differentiate in the way

they construct the background model, the way the model is updated over time, and how

foreground pixels are detected.

In this chapter, we will first review the algorithms for traditional RGB images with both

classical and deep learning based methods. Since the objective of this thesis is to in-

vestigate multispectral images for the task of background subtraction, we will go on to

introduce the existing multispectral approaches. These algorithms have been tested on

the same dataset we have adopted, and will be later used for quantitative comparison

with the algorithms proposed in this thesis. What needs to be noted is that the objec-

tive of this chapter is not to present a comprehensive survey of background subtraction

techniques, like the Background Subtraction Website [Bouwmans, 2014], but to present

the most important reference methods and recent state-of-the-art improvements in this

domain.

To better present the state of art, the remainder of this chapter is arranged as follows.

The well-known classical methods and state-of-art deep learning based approaches for

background subtraction with RGB images are presented in Section 2.2. The algorithms

available in literature dealing with multispectral images are reviewed in Section 2.3. In

Section 2.4, we conclude this chapter.
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2.2/ BACKGROUND SUBTRACTION METHODS WITH RGB IMAGES

The majority of the current background subtraction algorithms are focused on con-

ventional RGB images. Detailed overviews are available in [Bouwmans, 2014]

[Sobral et al., 2014]. This section will offer a brief review of classical and deep learning

based background subtraction methods on RGB images.

2.2.1/ CLASSICAL APPROACHES FOR BACKGROUND SUBTRACTION WITH RGB

IMAGES

There are numerous different classical background subtraction techniques for visi-

ble RGB images in literature. Representative conventional methods include paramet-

ric Gaussian Mixture Models (GMM) [Stauffer et al., 2000], nonparametric Kernel Den-

sity Estimation (KDE) [Elgammal et al., 2000], Codebook [Kim et al., 2005] and ViBe

[Barnich et al., 2010].

In this subsection, two methods, namely GMM and KDE, which are older but fre-

quently cited, are firstly introduced, respectively. As a major motivation of the con-

tribution of this thesis, the Codebook algorithm is going to be presented in de-

tail in Chapter 3. Then, some more recent conventional approaches that per-

form well on CDnet2014 dataset [Wang et al., 2014], namely, ViBe based estima-

tions [Hofmann et al., 2012] [St-Charles et al., 2014] [St-Charles et al., 2015], In Unity

There Is Strength (IUTIS) [Bianco et al., 2017] and Semantic background subtraction

[Braham et al., 2017] [Zeng et al., 2019], are discussed later in this chapter.

2.2.1.1/ GAUSSIAN MIXTURE MODEL

Gaussian mixture models (GMM), proposed by Stauffer and Grimson

[Grimson et al., 1998] [Stauffer et al., 1999] [Stauffer et al., 2000], are the most popular

parametric models used for background subtraction. The authors model each pixel in

the scene by a mixture of K Gaussian distributions, where K is a small number from 3

to 5. Different Gaussians are assumed to represent different intensity in the RGB color

space. The weight parameters of the mixture represent the time proportion that a certain

intensity stays in the scene.
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The probability density function p(xt) of observing the current pixel value is considered

given by the following equation in the multidimensional case:

p (xt) =
K∑

i=1

φi,tN
(
xt|µi,t ,Σi,t

)
, (2.1)

where xt is the input at time t; φi,t (where i = 1, . . . ,K) are the combination weights, which

add up to 1 (
∑K

i=1 φi,t = 1); and K is the number of Gaussian components. The ith Gaussian

density is

N
(
xt|µi,t ,Σi,t

)
=

1√
(2π)D |Σi,t|

exp
(
−

1
2

(
xt − µi,t

)>
Σ−1

i,t

(
xt − µi,t

))
(2.2)

where µi,t and Σi,t are the mean vector and the covariance matrix of this component

density, respectively.

Based on the fact that static background pixels trend to cluster tightly while moving ob-

jects form wider clusters due to different reflecting surfaces during the movement, the

probable background intensities are those which stay longer and more static. Thus, the

K distributions are ordered based on the fitness value φi,t/Σi,t and the first B distributions

are used as the background model of the scene, where B is estimated with a threshold.

Once the background model is established, foreground pixels are detected if they are

more than 2.5 standard deviations away from any of the B distributions.

Several improvements and extensions have been proposed by automatic updating

of the GMM component number and learning rate [KaewTraKulPong et al., 2002],

[Zivkovic, 2004], using adaptive thresholds [McHugh et al., 2009], or by replacing the

Gaussian distribution with more flexible ones [Elguebaly et al., 2014]. These improve-

ments can achieve some automation in adapting the GMM parameters to background

dynamics [Boulmerka et al., 2017].

2.2.1.2/ KERNEL DENSITY ESTIMATION

As a representative of nonparametric pixel-level background modeling approaches, Ker-

nel Density Estimation (KDE) [Elgammal et al., 2000] [Elgammal et al., 2002] is also fre-

quently cited in background subtraction domain. Unlike GMM introduced above, it esti-
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mates the probability density function from many samples without any prior assumptions.

A simplified review of this algorithm can be summarised as below. Let xt denote the

observed intensity at time t. The probability of this observation can be estimated with the

most recent samples x1, . . . , xi, . . . , xN for this pixel by Equation 2.3.

Pr(xt) =
1
N

N∑
i=1

K(σ)(xt − xi) (2.3)

where K(σ) is a kernel function with bandwidth σ, which needs to be chosen carefully, as

small a bandwidth will lead to a ragged density estimate while too wide a bandwidth will

lead to an over-smoothed density estimate [Duda et al., 2012]. Thus, it is better to assign

different bandwidths for different pixels. This estimation can also be easily generalized to

color space by kernel products. Accordingly, different kernel bandwidths can be chosen

for each color channel. The pixel is considered to be a foreground pixel if

Pr(xt) ≤ threshold (2.4)

Except that KDE does not require the definition of the model’s parameters, this model can

deal well with changes in background. However, it is very time consuming and memory

demanding. Besides, shadows and illumination changes are not well handled using this

approach [Boulmerka et al., 2017]. Some improvements have been proposed to over-

come these problems [Mittal et al., 2004] [Sheikh et al., 2005] [Zivkovic et al., 2006].

2.2.1.3/ VIBE BASED ESTIMATION

Barnich and Van Droogenbroeck [Barnich et al., 2010] have proposed a method called

ViBe, which stands for Visual Background extractor. Unlike the aforementioned GMM and

KDE, no estimation of the probability density function of the background pixel is performed

in the mechanism of ViBe. The per-pixel background model is made of a collection of N

pixel values

M = {v1, v2, · · · , vN} (2.5)

taken in previous frames.

For foreground-background segmentation of the current pixel value v(x), we compare it to
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the closest values in the model M by defining a sphere S R(v(x)) of radius R centered on

v(x). The pixel v(x) is then classified as background if the cardinality of the set intersection

S R(v(x)) ∩ {v1, v2, · · · , vN} (2.6)

is not smaller than a given threshold. That is to say, if a pixel in the new input frame is

similar to a portion of its recently observed samples, it is considered as background and

may be selected to update the background model. This sample consensus approach has

motivated various more advanced models for background subtraction in the last decade.

Some representatives are listed here.

Hofmann et al. [Hofmann et al., 2012] have proposed the Pixel-Based Adaptive Seg-

menter (PBAS). The decision threshold for each pixel is not fixed like in ViBe, but can

dynamically changes along with dynamic background over time, by recording and up-

dating the minimal decision distance at each observation. Besides, the controller with

feedback loop is also designed for the learning parameter in the updating process.

Another improvement of Vibe is the Self-Balanced SENsitivity SEgmenter (SuBSENSE)

algorithm [St-Charles et al., 2014] proposed by St-Charles et al., which uses both color

and Local Binary Similarity Pattern (LBSP) features to improve the spatial awareness. It

also has a pixel-level feedback scheme that dynamically adjusts the decision threshold.

From the same authors, the Pixel-based Adaptive Word Consensus Segmentation

(PAWCS) method [St-Charles et al., 2015] is an extension of SubSCENE that implements

a real-time internal parameter updating strategy. It also adds a persistence indicator fea-

ture to the color-LBSP pixel representation to group a background word and represent

the information at the pixel level.

2.2.1.4/ IN UNITY THERE IS STRENGTH

Another promising solution for foreground-background segmentation lies in the combina-

tion or fusion of different existing detection algorithms. For example, in the CDnet dataset

paper [Wang et al., 2014], the authors have applied majority vote strategy on several al-

gorithms and evaluated the performance with different numbers of detection methods

used. Instead of this straightforward trial-and-error procedure and the simple majority
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vote fusion, Bianco et al. [Bianco et al., 2017] have proposed a mechanism which exploits

genetic programming for automatical algorithm selection, combination and processing. It

is termed as In Unity There Is Strength (IUTIS) and the IUTIS-5, which uses the top

five algorithms on the CDnet2014 (until July 2014), currently outperforms all the other

unsupervised algorithms on the same dataset.

Genetic programming belongs to the category of evolutionary algorithms, which mimic

the biological evolution process that individuals in a population evolve and compete with

each other toward a defined goal [Burke et al., 2010] [Pappa et al., 2014]. The inputs of

this algorithm are the set of the binary foreground-background masks obtained by ex-

isting algorithms ζ = {Ck}
n
k=1, the candidate solution C0 is evolved using the functional

symbol set, corresponding to the operations performed on the input masks, and termi-

nal symbols set. Given a set of n predefined algorithms, the fitness function f (C0) of

C0 is defined by a weighted average of three components with Equation 2.7. The opti-

mization process is based on a set of standard performance measure M = {m1, · · · ,mM}.

Specifically, the measures are recall, precision, false positive ratio, false negative ratio,

percentages of wrong classification and F-measure, as it is used on CDnet2014 dataset

[Wang et al., 2014].

f (C0) =
1
M

M∑
j=1

(ω0 · rank(C0;
{
m j(Ck(ν))

}n

k=1
) + ω1 ·

M∑
j=1

P j
1(C0) + ω2 · P2(C0)) (2.7)

where rank(C0; ·) represents the rank of the candidate solution C0 according to the mea-

sure m j; P j
1(C0) is the distance between C0 and the best algorithm respect to the measure

m j in existing algorithm set ζ; the penalty term P2(C0) is defined as

P2(C0) =
number o f algorithms selected in C0

number o f algorithms in ζ
(2.8)

which guides the genetic programming to select a small number of algorithms in ζ. Be-

sides, ω0, ω1 and ω2 in Equation 2.7 are three weights indicating the relative contribution

of these three components.
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Figure 2.2: Flowchart of semantic background subtraction algorithm [Braham et al., 2017]

2.2.1.5/ SEMANTIC BACKGROUND SUBTRACTION

Another promising perspective proposed by Braham et al. [Braham et al., 2017] intro-

duces object-level semantics to the task of background subtraction. The flowchart of this

algorithm is illustrated in Fig.2.2.

Let BG and FG denote background and foreground, separately. B = {BG, FG} is the

pixel-level result from any background subtraction algorithm, while S BG and S FG are the

two probability signals derived from the semantics. The decision of the final combination

D = {BG, FG} is obtained by the Equation 2.9

D(x) =


BG i f S BG ≤ τBG

FG i f S FG ≥ τFG

(2.9)

with two thresholds τBG and τFG. If the two conditions in Equation 2.9 are not met, which

means the semantics do not provide enough information to classify the pixel as back-

ground or foreground, the final decision will be acquired based on the background sub-

traction algorithm:
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Table 2.2: Top six deep learning based approaches reported on CDnet2014 dataset
[Wang et al., 2014]

Approaches Average F-measure Network architecture
FgSegNet v2 [Lim et al., 2019] 0.9847 Convolutional Neural Network
FgSegNet S [Lim et al., 2018] 0.9804 Convolutional Neural Network

FgSegNet M [Lim et al., ] 0.9770 Convolutional Neural Network
BSPVGAN [Zheng et al., 2019b] 0.9501 Generative Adversarial Network

BSGAN [Zheng et al., 2018a] 0.9339 Generative Adversarial Network
Cascade CNN [Wang et al., 2017] 0.9209 Convolutional Neural Network

D(x) = B(x) (2.10)

Based on the work of Braham et al., an improved algorithm called Background Subtrac-

tion with real-time Semantic Segmentation (RTSS) [Zeng et al., 2019] has been proposed

lately, where the decision of the final combination is used to feedback and guide the back-

ground model updating.

2.2.2/ DEEP LEARNING BASED APPROACHES FOR BACKGROUND SUBTRACTION

WITH RGB IMAGES

Recently, Convolutional Neural Networks (CNNs or ConvNets) based approaches have

been demonstrated to be powerful frameworks for background subtraction in videos

acquired by static cameras [Bouwmans et al., 2019b]. Compared with manually se-

lected features such as Scale-Invariant Feature Transform (SIFT) [Lowe, 1999], His-

togram of Oriented Gradients (HOG) [Dalal et al., 2005], or Local Binary Pattern (LBP)

[Guo et al., 2010], CNNs have the ability to learn features from multiple layers that best fit

a given set of data.

These deep learning based algorithms have shown impressive detection results and

outperformed the classical methods by large margins. The top six background sub-

traction algorithms on the well-known large-scale change detection dataset CDnet

[Goyette et al., 2012] [Wang et al., 2014] all based on deep neural networks in the cat-

egory of supervised methods and are presented in Table 2.2.

These leading deep neural networks based background subtraction methods work with

RGB images. In this section, we will describe several CNNs that achieve the top perfor-



22 CHAPTER 2. STATE OF ART

Fig. 1: The FgSegNet Architecture

on CDnet2014 dataset. Their method is computa-
tionally expensive due to large number of patches
extracted from each frame. Conversely, in [14],
Wang et al. proposed an image-wise method with-
out using any background models. They trained
scene specific networks using 200 frames by man-
ual selection and have an overall F-Measure of
0.95† in CDnet2014 dataset. Instead of training
a network for a specific scene, Babaee et al. [13]
trained their model all at once by combining train-
ing frames from various video sequences; in par-
ticular, including 5% of frames from each video
sequence. They followed the same training pro-
cedure as in [12], in which image-patches were
combined with background-patches then fed to the
network. They obtained an F-Measure of 0.7548†.
Recently, Sakkos et al. [15] used a 3D convolution
technique to track temporal changes in video se-
quences, without using any background models in
training. Their approach performed with an aver-
age F-Measure of 0.9507† in CDnet2014 dataset.

In this work, we generated scene specific mod-
els using only a few frames, i.e. 50 and 200, sim-
ilar to Wang et al. [14]. Using the same method-
ology with theirs in the training frame selection,
our model outperformed all the reported methods
by an overall F-Measure of 0.9770 and ranked as
number one in CDnet 2014 Challenge.

3 The Method

In this section, we clarify the details of our
approach in three separate sections: (1) training
examples selection, (2) network architecture and
(3) implementation details.

3.1 Training Examples Selection

Selection of the frames for training scene spe-
cific models can be crucial and may require atten-
tion if the background is dynamic and the images
in the scene contain important artifacts such as
thermal, dynamicBackground, badWeather, or tur-
bulence categories in CDnet2014 dataset. For a
static video sequence which has less background
motion, such as slightly waving trees, only a num-
ber of training examples, i.e. 50 frames, will be
sufficient. The frames can be selected randomly
by focusing more on the frames that contain some
foreground objects. This strategy helps the net-
work to learn and segment foreground pixels more
accurately. However, for more complex scenes and
dynamic backgrounds or camera panning-tilting-
zooming video sequences, it is better to select
more training examples, i.e. 200 frames, by in-
cluding different parts of the scene in the selected
examples. The content of the training frames may
include foreground or background parts or both.
One can select n number of frames, where n ≪ N
and N is the total number of frames in a video se-
quence. In our experiments, we manually and ran-
domly selected 50 and 200 frames for two separate
trainings. Next section, we discuss the imbalanced
class sample problem in supervised binary classi-
fication, which needs attention to generate robust
models in this domain.

3.1.1 Working with imbalanced data

In a supervised training setting, the imbal-
anced number of training examples for different
class categories may cause bias problems in classi-
fication; this is an active research problem [33,34].
It is also the case in foreground object segmen-
tation training since the distribution of the back-

3

Figure 2.3: FgSegNet M network architecture [Lim et al., 2018]

mances in the state of the art regarding background subtraction, or change detection.

2.2.2.1/ FGSEGNET M

FgSegNet M, proposed in [Lim et al., 2018], is a convolutional neural network with

encoder-decoder structure and can be trained end-to-end under a triplet framework, as

shown in Fig. 2.3, where FgSegNet is short for foreground segmentation networks and M

indicates multiple inputs.

The encoder consists of three CNNs that process in parallel with the same input images

in different scales to generate multi-scale deep features. Each feature CNN encoder

adopts the first four blocks of the pretrained VGG16 network with minor modification. The

corresponding architecture is illustrated in Fig. 2.4, where the input is raw RGB images

with a size of W × H × 3.

After the triplet encoder, three feature maps, namely F1, F2 and F3, are obtained si-

multaneously with different sizes. F2 and F3 will be firstly upscaled with simple nearest

neighbor interpolation to match the size of F1, then all the three feature maps are concate-

nated along the depth dimension to be a combined feature map and fed into the attached

decoder.

The decoder is novel transposed convolutional neural network to map the features to a

foreground probability map pixel by pixel. It is made up with eleven transposed convolu-

tional layers, as shown in Fig. 2.5. The output is a dense probability mask for each pixel,

with a value ranging between 0 and 1, indicating the probability of being a foreground

pixel. It has the same size as the original input images.

For the last step, thresholding is applied to the probability mask image to obtain a binary
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combined feature map, i.e. F. Finally, F is fed
into a single TCNN to learn the weights for de-
coding. Final output is a segmentation mask that
has the same size as the original input (I0). The
details of our encoding and decoding network con-
figurations are provided below.

3.2.1 The Triplet CNN Configuration

CNNs perform well, and even outperform hu-
man performance by some margins, in various
problems in different domains. To gain a deeper
insight about what CNNs learn, we can inspect
the visualizations of the filters that are learnt at
each layer [17]. These visualizations show that the
lower layers learn some generic low-level features
such as color blobs, edges in various directions,
textures which are useful in many tasks when
used as feature representations. Motivated by this
generic feature encoding properties of the CNNs,
we utilize a triplet CNN that contains three copies
of a CNN that operate in parallel with the same
input in three different scales. The first four blocks
of these networks are modified copies of the pre-
trained VGG-16 Net [28]; we removed the third
and fourth max pooling layers and insert dropouts
between each layer of fourth convolutional block
as illustrated in Fig. 2 (for full network architec-
ture of VGG-16 Net, one may refer to the original
paper in [28]).

The input to each CNN is raw RGB images
in different sizes. Assuming that the input image
size is WxHx3, where W is the image width, H
is the image height and 3 is the RGB color chan-
nels, it is transformed to 64 feature maps of size
WxH at the end of the first convolutional block,
then these feature maps are downsampled by a 2x2
max pooling layer with a stride 2 and transformed
into 128 feature maps of size W

2 × H
2 at the end of

the second block. Again, these feature maps are
downsampled by a 2x2 max pooling layer with a
stride 2 and transformed into 256 feature maps of
size W

4 × H
4 at the end of the third block. Finally,

these feature maps are transformed into 512 fea-
ture maps of size W

4 × H
4 at the end of the fourth

block.

In our segmentation approach, we use only
a few training examples for model generation;
hence, to avoid overfitting, we apply dropout
regularization after each convolutional layer in
the fourth convolutional block. Note that zero
padding is applied in all the convolutional layers in

our network to preserve spatial dimensions of the
inputs in the outputs. The details of the encoding
network configuration are presented in Table 1.

Fig. 2: The architecture of each CNN in the triplet
network.

3.2.2 TCNN Configuration

The output of the encoding network, i.e. F, is
a concatenated form of the feature maps in three
different scales. This map is fed to the TCNN to
learn the weights for decoding the feature maps;
the output will be a dense probability mask (Fig.
3). In our network, F has a large depth, i.e. 1536,
due to concatenation of features across three dif-
ferent scales. For computational efficiency and to
increase non-linearity of the decision function in
our network, we use 1x1 transposed convolutional
layers in each block to project a high dimensional
feature map depth into a lower dimension.

If we consider block 5 in TCNN, which is spec-
ified in detail in

Fig. 3: The TCNN architecture

the bottom-right row of Table 1, the concatenated

5

Figure 2.4: Encoder Architecture of each CNN in Triplet Network [Lim et al., 2018]

foreground background segmentation result. In the original paper, a fixed threshold of

0.8 has been chosen based on the classification performance in the experiments with

different thresholds [Lim et al., 2018].

2.2.2.2/ FGSEGNET S

In the paper [Lim et al., 2018], Lim et al. have also proposed another multi-scale archi-

tecture called FgSegNet S for foreground background segmentation, where S stands for

single input. Instead of downsampling the input pictures to use both higher level and

lower level contextual information, the authors have designed a Feature Pooling Module

(FPM) to extract multi-scale features from a single-input encoder. In this mechanism, the

features obtained from the encoder CNN in Fig. 2.4 first need to be passed through FPM

before they are fed to the following decoder network.

Fig. 2.6 illustrates the FPM structure, which has been inspired by the promising results of

dilated convolutions for semantic segmentation in [Yu et al., 2015] [Chen et al., 2017] and

[Chen et al., 2018]. FPM connects a max-pooling layer and four parallel dilated convolu-

tions with different dilation rates, which operate on same feature maps from encoder lay-

ers, followed by a Batch Normalization (BN) layer [Ioffe et al., 2015] and Spatial Dropout

(SD) [Tompson et al., 2015].
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combined feature map, i.e. F. Finally, F is fed
into a single TCNN to learn the weights for de-
coding. Final output is a segmentation mask that
has the same size as the original input (I0). The
details of our encoding and decoding network con-
figurations are provided below.

3.2.1 The Triplet CNN Configuration

CNNs perform well, and even outperform hu-
man performance by some margins, in various
problems in different domains. To gain a deeper
insight about what CNNs learn, we can inspect
the visualizations of the filters that are learnt at
each layer [17]. These visualizations show that the
lower layers learn some generic low-level features
such as color blobs, edges in various directions,
textures which are useful in many tasks when
used as feature representations. Motivated by this
generic feature encoding properties of the CNNs,
we utilize a triplet CNN that contains three copies
of a CNN that operate in parallel with the same
input in three different scales. The first four blocks
of these networks are modified copies of the pre-
trained VGG-16 Net [28]; we removed the third
and fourth max pooling layers and insert dropouts
between each layer of fourth convolutional block
as illustrated in Fig. 2 (for full network architec-
ture of VGG-16 Net, one may refer to the original
paper in [28]).

The input to each CNN is raw RGB images
in different sizes. Assuming that the input image
size is WxHx3, where W is the image width, H
is the image height and 3 is the RGB color chan-
nels, it is transformed to 64 feature maps of size
WxH at the end of the first convolutional block,
then these feature maps are downsampled by a 2x2
max pooling layer with a stride 2 and transformed
into 128 feature maps of size W

2 × H
2 at the end of

the second block. Again, these feature maps are
downsampled by a 2x2 max pooling layer with a
stride 2 and transformed into 256 feature maps of
size W

4 × H
4 at the end of the third block. Finally,

these feature maps are transformed into 512 fea-
ture maps of size W

4 × H
4 at the end of the fourth

block.

In our segmentation approach, we use only
a few training examples for model generation;
hence, to avoid overfitting, we apply dropout
regularization after each convolutional layer in
the fourth convolutional block. Note that zero
padding is applied in all the convolutional layers in

our network to preserve spatial dimensions of the
inputs in the outputs. The details of the encoding
network configuration are presented in Table 1.

Fig. 2: The architecture of each CNN in the triplet
network.

3.2.2 TCNN Configuration

The output of the encoding network, i.e. F, is
a concatenated form of the feature maps in three
different scales. This map is fed to the TCNN to
learn the weights for decoding the feature maps;
the output will be a dense probability mask (Fig.
3). In our network, F has a large depth, i.e. 1536,
due to concatenation of features across three dif-
ferent scales. For computational efficiency and to
increase non-linearity of the decision function in
our network, we use 1x1 transposed convolutional
layers in each block to project a high dimensional
feature map depth into a lower dimension.

If we consider block 5 in TCNN, which is spec-
ified in detail in

Fig. 3: The TCNN architecture

the bottom-right row of Table 1, the concatenated

5

Figure 2.5: Decoder Configuration [Lim et al., 2018]

like the manner in the FgSegNet M, the five sets of extracted features are subsequently

concatenated along the depth axis to be a combined feature map, which is then used

to output a pixel-level foreground probability map with the same decoder network intro-

duced for FgSegNet M. Finally the binary segmentation label for each pixel is obtained

via thresholding.

2.2.2.3/ BAYESIAN GENERATIVE ADVERSARIAL NETWORKS

The Generative Adversarial Networks (GANs) were invented by Goodfellow et al.

[Goodfellow et al., 2014] and were described as ”the coolest idea in machine learning

in the last twenty years” by Yann LeCun during a seminar in 2016 [LeCun, 2016]. Given

a training set, this technique learns to generate new data with the same statistics as

the training set. Though originally proposed as a form of generative model for unsu-

pervised learning, GANs have also been proven useful for semi-supervised learning

[Salimans et al., 2016], fully supervised learning [Isola et al., 2017], and reinforcement

learning [Ho et al., 2016].

Recently, GANs has shown impressive results in computer vision such as generation of

examples for image datasets [Radford et al., 2015], super resolution [Ledig et al., 2017],

generation of photographs of human faces [Karras et al., 2017] and so on. Zheng et al.



2.2. BACKGROUND SUBTRACTION METHODS WITH RGB IMAGES 25

258 L.A. Lim, H. Yalim Keles / Pattern Recognition Letters 112 (2018) 256–262 

Fig. 1. The FgSegNet_M architecture. 

transposed convolution with a stride of 2 to upscale feature maps 

by a factor of two in block 6. Moreover, we reduce the number 

of feature maps to 256 and 128 for block 6 and 7, respectively. In 

block 8, we operate 5x5 transposed convolution with a stride of 

2 to enlarge feature maps to match the original size of the input 

image. In block 9, we project 64 feature maps of block 8 into 1 fea- 

ture map by operating a 1x1 transposed convolution with a stride 

of 1. Finally, a sigmoid function is applied to the last layer to gen- 

erate a probability mask for each pixel to encode the probability of 

being a foreground pixel by a value that is between 0 and 1. 

Note that ReLU non-linearities are applied to every transposed 

convolutional layers of TCNN, except the last layer where a sigmoid 

activation is used to predict a probability mask. Besides dropout, 

to alleviate overfitting in our network, we apply L2 regularization 

to the weights in the first transposed convolutional layers, in the 

blocks 5, 6, 7 and 8. 

3.2. FgSegNet_M network architecture 

Our first multi-scale segmentation architecture, FgSegNet_M , 

which contains a triplet of CNN encoders that operates in three 

different scales for feature encoding and a TCNN for decoding, is 

depicted in Fig. 1 . This network learns a function f that maps a 

given set of raw pixel values P R to a set of probability values, i.e. 

values between 0 and 1, that represent the foreground probabil- 

ity map P M , defined by f :P R → P M . To correctly learn this mapping 

( f ), contextual information around the neighborhood of each pixel 

is essential. Learning to classify a pixel from a small fixed win- 

dow, which is centered on it, is difficult. To understand the con- 

textual relation of this local region with its surrounding, the net- 

work needs to engage global information in multiple scales. Hence, 

in this network we use full-size and multiscale images in the net- 

work training. A fixed receptive field is operated on these scales. As 

demonstrated in Fig. 1 , we downsample the input image, which is 

represented in RBG color space, by a factor of two using a Gaussian 

pyramid with a sigma that covers more than 99% of the Gaussian 

distribution. More precisely, given an input image I , it is down- 

scaled into I i :i ∈ [0, 1, 2] where I 0 is the original size of the image. 

These three images are fed simultaneously to our triplet CNN in 

parallel. Note that the architecture of the CNNs in the triplet are 

exactly the same and they share weights (refer to Section 3.1.1 for 

the architectural details). The resultant embeddings of each input 

is denoted by F j :j ∈ [1, 2, 3], where F 1 , F 2 and F 3 are the embed- 

dings of the inputs I 0 , I 1 and I 2 , respectively. These feature em- 

beddings are then re-arranged to compose the combined feature 

representation of the decoding network. In this context, F 2 and F 3 
are upscaled, by using nearest neighbor interpolation, to match the 

scale of F 1 , and then concatenated along their depth axis to form 

the combined feature map, i.e. F . Finally, F is fed into the TCNN 

Fig. 2. The Feature Pooling Module (FPM). BN (BatchNormalization), SD (Spatial- 

Dropout). All convolution layers have 64 features. 

( Section 3.1.2 ) to learn the weights for decoding. Final output is 

a segmentation mask that has the same size as the original input 

( I 0 ). 

Our experiments with different input scales depicted that, set- 

ting the input scale to 1 or 2 resulted in slightly poor performance, 

possibly due to the coverage of less contextual information; yet, 

more than 3 input scales are computationally expensive. 

3.3. FgSegNet_S network architecture 

In our second multi-scale segmentation architecture, FgSeg- 

Net_S , we use a feature pooling module (FPM) ( Fig. 2 ), which oper- 

ates on top of the final encoder (CNN) layer ( Section 3.1.1 ), to ex- 

tract features at multiple scales. Note that instead of using multi- 

scale inputs, we use a single scale input in this case. 

Dilated convolutions have shown promising results in semantic 

segmentation domain [34–36] ; the idea is to increase the field-of- 

views in the network without learning extra parameters. By adapt- 

ing the same idea, we design a feature pyramid pooling module 

that applies a max-pooling layer and several parallel dilated con- 

volutions with different dilation rates. In Fig. 2 , for the set of input 

feature maps F ; a 2x2 max-pooling followed by 1x1 convolution, 

a normal 3x3 convolution and three 3x3-dilated convolutions with

dilation rates of 4, 8 and 16, operate on the same features F . The 

resultant features are concatenated along the dept axis, followed

by a BatchNormalization layer [37] and SpatialDropout [38] with 

a rate of 0.25, and then passed through the TCNN ( Section 3.1.2 ). 

Figure 2.6: Feature Pooling Module [Lim et al., 2018]

have proposed background subtraction algorithms with Bayesian Generative Adversarial

Networks in [Zheng et al., 2018a] and [Zheng et al., 2019b], based on the research work

of Saatci and Wilson [Saatci et al., 2017].

The background subtraction problem is viewed as a binary classification problem about

background and foreground for each image pixel. In their work, parallel vision first

constructs virtual foreground-background segmentation images to simulate and rep-

resent complex real foreground-background segmentation by using Bayesian GANs,

which is trained with the Deep Convolutional Generative Adversarial Networks (BSGAN)

[Radford et al., 2015]. Computational experiments are then utilized to train and evaluate

a variety of vision algorithms. The pipeline of the algorithm is presented in Fig. 2.7, which

includes four steps.

To obtain a gray background image in the first step, the temporal median value is calcu-

lated after the RGB frames are converted by Equation 2.11 to gray domain (denoted with

Y), which need to be further normalized with respect to the interval between 0 and 1. This

simple median filter method works well if each pixel is visible for at least half time during

the observing period. Unless, more complex scene background modeling approaches

like [Laugraud et al., 2015] will be adopted.

Y = 0.229 × R + 0.587 ×G + 0.114 × B (2.11)
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Fig. 3. The flow chart of our algorithm. 

Fig. 4. Bayesian generative adversarial networks based on DCGAN. 
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The discriminator discretized function is: 
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where l G is the loss function of the discriminator network, and l G 
is the loss of the generator network.

When the generator network generates high quality fake sam- 

ples, the discrepancy between the fake samples and real samples is 

expected to be small. A suitable discrepancy measure should cap- 

ture statistical properties of the real and fake data. We choose the 

maximum mean discrepancy (MMD), which asserts when the di- 

mension of the data is large and the moment matching in the in- 

put space is not possible, to measure difference between the em- 

pirical means of two distributions using a nonlinear feature map is 

a measure of closeness for two-sample problems. Our △ function 

is defined as, 
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3.4. Training process of proposed algorithm 

We mainly use the idea of parallel vision to solve the back- 

ground subtraction problem. We use Bayesian generative adversar- 

ial network to simulate and generate the foreground/background 

segmentation results under complex scenes. We use computa- 

tional experiments to train and evaluate our algorithms. Bayesian 

GANs can be combined with source images and real fore- 

ground/background segmentation images to train the vision mod- 

els. This helps improve the generalization ability of vision models. 

To be specific, we use the Bayesian generative adversarial net- 

work to achieve foreground/background segmentation, and the 

flow graph is shown in Fig. 3 . We view the background subtrac- 

tion problem as a classification problem of image pixels. It means 

that we are addressing one binary classification problem about 

background and foreground [50] . We aim to make our result sim- 

ilar to the Groundtruth as far as possible. We randomly selects 

100 frames from each dataset as the inputs of the network. We 

standardize the image and use white Gaussian noise to generate 

a set of tags, and standardized images and tags set is the inputs 

of the generator network. The generator network generates the 

foreground/background segmentation images and the discriminator 

network determines the foreground/background segmentation im- 

ages. We use standardized images and the foreground/background 

segmentation images generated by the generator network as the 

inputs of the discriminator network. The discriminator network de- 

termine 0 or 1 based on the input of Ground-truth and the fore- 

ground/background segmentation images, and feedback to the gen- 

erator network. The generator network and the discriminator net- 

work are updated iteratively. In particular, after the network reads 

100 image frames, we take an image as an example to state. We 

input an image to the network, first normalize all pixel values of 

the image to the interval of [0,1], we call it the normalized image. 

Then, the normalized image and Gaussian noise are inputted to 

the generator and the generator network generates an image called 

the generated image. The generated image acts as input of the dis- 

criminator network. Finally, the discriminator network determines 

whether or not 1 based on the input of Ground-truth and the gen- 

erated image. If the decision is true, the label that the generated 

image is 1 which is the result of our work, otherwise 0. 

We use the DCGAN [32] to train. The network structure of 

the generator network combines the downsampling and the 

upsampling shown in Fig. 5 (a). The pathway from the white 

noise is upsampling, and the size of each layer changes in 

Please cite this article as: W. Zheng, K. Wang and F.-Y. Wang, A novel background subtraction algorithm based on parallel vision and 

Bayesian GANs, Neurocomputing, https://doi.org/10.1016/j.neucom.2019.04.088 

Figure 2.8: Flow Chart of Bayesian GANs [Zheng et al., 2019b]

For the second step, a scene-specific dataset to train the network is established with

a T × T 2-channel images patch, where one channel represents the background patch

extracted from the gray median image in the first step, and the other is for the input patch.

The corresponding target value is assigned by:

t(x) =


1 i f class(pc) = f oreground

0 i f class(pc) = background
(2.12)

where pc denotes the central pixel for the patch. T is set as 27 by the authors.

Fig. 2.8 illustrates the flow chart of training process in detail. The inputs of the generator

network are the normalized image and Gaussian noise. Then the generated foreground-

background segmentation image is fed to the discriminator network, together with the

normalized image, to determine 0 or 1 based on the input of groundtruth, which will

be then fed back to the generator network. Thus both the generator and discriminator

networks are updated iteratively.
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2.2.2.4/ CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

Bakkay et el. proposed another deep background subtraction method based on Con-

ditional Generative Adversarial Networks (cGAN) in [Bakkay et al., 2018]. Following the

routine of the GAN design, the proposed model consists of a generator network and a

discriminator network, where the former one learns the mapping from the observing im-

age and background to the foreground mask, and the latter optimizes the loss function,

which is a combination of a conventional binary cross-entropy loss and an adversarial

term, to train this mapping.

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������

Figure 2.9: Folw Chart of Conditional GAN [Bakkay et al., 2018]

Fig. 2.9. illustrates the flow chart of cGAN. In the training phase, the generater network

produces a predicted foreground mask notated as ŷ from the input pair composed of an

image and a background. Then the discriminator network compares ground truth and

predicted output under condition of the input pair. Backpropagating the two networks
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leads to generate better masks, which cannot be distinguished from ground truth by the

discriminator. In the testing phase, the trained generater network outputs a foreground-

background segmentation mask.

Fig. 2.10 shows the architecture of the proposed model. The discriminator network on

top includes four convolutional and downsampling layers, and the last convolutional layer

is followed by one fully connected layer to transform the features map in a 1 dimen-

sional vector. The generator network below follows the encoder-decoder structure of

U-net [Ronneberger et al., 2015]. The encoder is made up of eight convolutional layers

as proposed in [Isola et al., 2017], where the middle six layers are six ResNet blocks and

adopt the weights trained for ResNet-101 [He et al., 2016] while the parameters are ran-

domly initialized. The decoder is built in a similar way with eight transpose convolutional

layers with a reverse layers ordering, where all the weights are trainable.

2.2.2.5/ CASCADE CNN

An end-to-end deep model was proposed by Wang et al. in [Wang et al., 2017], based

on a multi-resolution CNN. Several CNN configurations and training strategies have been

explored. The architecture of the basic CNN model is illustrated in Fig. 2.11. It consists

of four convolutional layers, among which the first two come with a 2×2 maxpooling layer,

and two fully connected layers.

One of the drawbacks for the basic CNN model lies in the wrong classification of the

uniform textureless areas for large moving objects, because of its fixed input patch size.

In order to solve this, a multi-scale CNN model has been implemented and illustrated in

Fig. 2.12. The input images are first resized with two different scales before they are

fed to the same basic CNN model and upscaled back. The final foreground-background

mask is obtained with an average pooling.

In order to model the dependencies among adjacent pixels and thus enforce spatial co-

herence, a cascaded CNN model has been further implemented by the authors. As

shown in Fig. 2.13, the first CNN model is used to compute a foreground probability map

which is then concatenated with the original frame and fed to a second CNN model to

compute refined probability map. The input of the second CNN is thus an image with four

channels, namely red, green, blue, and a foreground likelihood probability.
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Figure 2.11: Architecture of the Basic CNN Model [Wang et al., 2017]

Figure 2.12: Architecture of the Multiscale CNN Model [Wang et al., 2017]

2.3/ BACKGROUND SUBTRACTION METHODS WITH MUTISPECTRAL

IMAGES

In this section, we will introduce several background subtraction approaches

based on multispectral images. They have been tested on the same dataset

[Benezeth et al., 2014a] we have adopted in this theis and will be later used for quan-

titative comparison with the approaches proposed in this paper.

2.3.1/ MAHALANOBIS DISTANCE

The first method we will review here is a straightforward extension of a color-based back-

ground subtraction algorithm, which is introduced in the original multispectral dataset

paper [Benezeth et al., 2014a]. As it is known, background subtraction can be performed

by the Equation 2.13, with the assumption that the observed video sequence I is made

of a static background B in front of which moving objects are observed.
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Figure 2.13: Architecture of the cascaded CNN Model [Wang et al., 2017]

χt(s) =


1, d(Is,t, Bs,t) > τ

0, otherwise,
(2.13)

where τ is a threshold, χt is the motion label field at time t, and d is the distance between

the pixel value Is,t and the background model Bs,t at time t and location s. For a multi-

spectral video sequence, Is,t is a vector defined by I = [I1, I2, . . . , In], where n stands for

the number of spectral channels of multispectral frames.

If the background B can be determined by a single image free of moving objects, pixels

corresponding to foreground moving objects can be detected by thresholding a distance

function, such as the Euclidian distance:

d =

√√√ k∑
i=1

(Ii
s,t − Bi

s,t)2

. (2.14)

However, it is not the case for real-life scenarios. Modeling the background B with a sin-

gle image requires a rigorously fixed background void of noise and artefacts. A promis-

ing solution is to model each background pixel by a probability density function (PDF)

learned over a series of training frames. In this case, the background subtraction prob-

lem becomes a PDF-thresholding issue for which a pixel with low probability is likely to

correspond to a foreground moving object.

For instance, in order to account for noise, it is possible to model every background pixel

with a Gaussian distribution N(µ,Σ), where µ and Σ stand for the average background

multispectral vector and covariance matrix at pixel s and time t, respectively. In this con-

text, the distance metric can be the Mahalanobis distance:
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dM =

√
|Is,t − µs,t|Σ

−1
s,t |Is,t − µs,t|

T . (2.15)

Since the covariance matrix contains large values in noisy areas and low values in more

stable areas, Σ makes the threshold locally dependent on the amount of noise. In other

words, the noisier a pixel is, the larger the temporal gradient |Is,t −µs,t| has to be to get the

pixel labeled in motion. This makes the method significantly more flexible and robust.

Besides, In order to adjust the fact that the illumination often changes in time, the mean

and covariance of each pixel can also be iteratively updated with:

µs,t+1 = (1 − α)µs,t + αIs,t (2.16)

Σs,t+1 = (1 − α)Σs,t + α(Is,t − µs,t)(Is,t − µs,t)
T (2.17)

2.3.2/ POOLING

The second approach introduced by Benezeth et al. in [Benezeth et al., 2014a] is called

Pooling. Instead of using all the channels directly, as the algorithm extending Mahalanobis

distance does, Pooling combines the background subtraction masks from some spectral

channels. The results suggest not all channels are needed to reach the highest accuracy,

which indicates only a few number of channels actually define the moving objects.

The definition to perform pooling is as follows,

χt(s) =


1,

∑
i χ

i
t(s) > ρ

0, otherwise,
(2.18)

where χi
t(s) is the motion label at time t and location s obtained with the ith channel.

ρ ∈ [1, n] defines the Pooling strategy and n is the whole number of multispectral channels.

If ρ is 1, the Pooling is equivalent to logical OR, where the current pixel is detected as

foreground as long as the motion mask is foreground for at least one channel. Similarly,

the Pooling will become logical AND if ρ is set to n, which means a pixel can be regarded

as moving category only when the label is always foreground for all channels.
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2.3.3/ SPECTRAL ANGLE

Instead of using a straightforward extension of the color-based Mahalanobis distance,

the multispectral dataset paper [Benezeth et al., 2014a] has also proposed another two

dedicated ways to measure the similarity or dissimilarity of spectral vectors.

The first one is called spectral angle dθ, which extracts geometric features by calculating

the angle between two spectra [Schowengerdt, 2006] and is defined with the following

equation:

dθ(Is,t,µs,t) = cos−1
(
< Is,t,µs,t >

|Is,t||µs,t|

)
, (2.19)

where Is,t is the multispectral vector of the current image and µs,t is that of the back-

ground model. As we can see, here spectra are considered as vectors in a k-dimensional

space, which indicates this spectral distance measure is suitable for arbitrary number of

multispectral channels.

With spectral angle metric, small angles mean similar vectors. Thus, another key advan-

tage of this measure is that it is intensity invariant because the angle between two vectors

is independent of the vector length. This property is very interesting for background sub-

traction problems when there are shadows and illumination variations.

2.3.4/ SPECTRAL INFORMATION DIVERGENCE

Another spectral distance measurement utilized in the dataset paper

[Benezeth et al., 2014a] is referred to as Spectral Information Divergence (SID)

[Chang, 2000], which is also applied to determine the spectral closeness or distance

between two multispectral vectors. This measure is relatively recent and is expected to

be more effective than spectral angle dθ in preserving spectral properties.

The spectral information divergence models the spectral channel-to-channel variability as

a result of uncertainty caused by randomness, which is based on the Kullback-Leibler di-

vergence to measure the discrepancy of probabilistic behaviours [Chang, 2000]. That is

to say, it considers each pixel as a random variable and then defines the desired proba-

bility distribution by normalizing its spectral histogram to unity, which is expressed by
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
Px(i) =

xt(i)∑n
i=1 xt(i)

Pv(i) =
vm(i)∑n

i=1 vm(i)

(2.20)

where n is the number of channels. Then the spectral information divergence dS ID be-

tween the current spectral vector xt and the background model vm can be defined with

Equation 2.21.

dS ID(xt,vm) =
n∑

i=1

Px(i)log
Px(i)
Pv(i)

+

n∑
i=1

Pv(i)log
Pv(i)
Px(i)

(2.21)

2.3.5/ ONLINE STOCHASTIC TENSOR DECOMPOSITION

Besides, Sobral et al. [Sobral et al., 2015] have proposed another mechanism based on

stochastic decomposition of low-rank and sparse components for background subtrac-

tion with multispectral video sequences. In this algorithm, each multispectral image is

represented as a three-dimension data cube or tensor, which can be considered as a

multidimensional or N-way array.

As reviewed in [Bouwmans et al., 2017b] [Davenport et al., 2016] and [Lin, 2016], low-

rank and sparse decomposition methods are based on the assumption that the uncor-

rupted information lies in a low dimensional subspace, whereas noise is sparse. This

assumption holds a particular association to the task of foreground-background segmen-

tation. To be more specific, as it is almost static and highly correlated between frames,

the background is assumed to be a low dimensional subspace, where the sparse outliers

usually represent the foreground objects.

Based on the pioneering tensor-based decomposition methods [Feng et al., 2013]

[Goes et al., 2014], the framework of Online Stochastic Tensor Decomposition (OSTD)

has been proposed in [Sobral et al., 2015]. They have extended the online stochastic

principal analysis optimization for multispectral images using tensor analysis, where the

stochastic optimization is applied on each mode of the tensor and the individual basis is

updated iteratively followed by the processing of the current frame.
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2.3.6/ ONLINE ONE-CLASS ENSEMBLE FOR FEATURE SELECTION

In background subtraction, the features characterize a region and can be compared

against a known background model to classify it as either foreground or background.

As we know, color features, edge features, stereo features, and motion features are com-

monly used in this field. However, the optimal features for background subtraction may

be case by case.

Given the ensemble learning mechanism proposed in [Bolón-Canedo et al., 2014], an

algorithm called Online Weighted One-Class Random Subspace (OWOC-RS) has been

designed by Silva et al. in [Silva et al., 2016], which is capable to select suitable pixel-

based features to separate the foreground regions from the background. Besides, the

relative importance of each feature over time is updated with adaptive mechanism.

In order to not only increase the efficiency in terms of time and memory consumption

but also the segmentation performance, an improved version has been also proposed by

the same authors in [Silva et al., 2017]. The novel method is named as Superpixel-based

Online Wagging One-Class Ensemble (Superpixel-OWAOC) as it adopts the superpixel

idea and is based on wagging for selecting suitable individual features.

2.4/ CONCLUSION

In this chapter, we have conducted a study on background subtraction by investigating

the state-of-the-art algorithms for both RGB and multispectral images.

The challenges of background subtraction include but are not limited to the following three

categories: background (illumination changes, dynamic background, shadows, challeng-

ing weather, bootstrapping, moved background objects and night videos), foreground

(shadows, camouflage, intermittent object motion and occlusion) and camera (video

noise, moving camera and camera jitter). In order to cope with these challenges, nu-

merous algorithms have been designed over the past years for background subtraction.

The majority of the current background subtraction algorithms are focused on conven-

tional RGB images, which could offer motivation and perspective for multispectral case.

Firstly, representative classical algorithms with RGB images are reviewed in this chapter.

Two methods, namely Gaussian mixture models and Kernel density estimation, which
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are older but frequently cited, are introduced, respectively. Besides, some more recent

conventional approaches that perform well on CDnet2014 dataset, namely, ViBe based

estimations (Pixel-Based Adaptive Segmenter, Self-Balanced SENsitivity Segmenter and

Pixel-based Adaptive Word Consensus Segmentation), In Unity There Is Strength and

Semantic background subtraction, are presented as well.

Recently, deep learning based approaches have shown an impressive detection results

and outperformed the classical methods by large margins. Thus, several leading deep

models working with RGB images that achieve the top performances are also illustrated

in this chapter, including Convoluntional Neural Networks, like FgSegNet M, FgSegNet S

and Cascade CNN, Bayesian generative adversarial networks and Conditional generative

adversarial networks.

Since the objective of this thesis is to investigate multispectral images for the task of back-

ground subtraction, we introduced the existing multispectral approaches. In addition to

the four algorithms (Mahalanobis distance, Pooling, Spectral angle, and Spectral informa-

tion divergence) proposed by the creators of the multispectral dataset, Online stochastic

tensor decomposition and Online one-class ensemble for feature selection are also pre-

sented. These algorithms have been tested on the same dataset we have adopted, and

will be later used for quantitative comparison with the algorithms proposed in this thesis.
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3

MULTISPECTRAL CODEBOOK FOR

BACKGROUND SUBTRACTION

3.1/ INTRODUCTION

The original Codebook algorithm for background subtraction was inspired by Kohonen

[Kohonen, 1995] [Ripley, 2007] and proposed in 2005 by Kim [Kim et al., 2005]. It is

a clustering scheme with several important additional elements, which make it robust

against moving background, to construct a background model from a sequence of im-

ages on a pixel-by-pixel basis, then to compare this background model with every new

frame in order to finally obtain a foreground background segmentation mask. The mo-

tivation for selecting such a model is that it is fast to run, because it is deterministic;

efficient for requiring little memory; adaptive to multiple background situations as it does

not assume the potential parametric distributions of the background; and able to handle

complex backgrounds with sensitivity [Doshi et al., 2006]. It has been proved to be very

efficient in dealing with dynamic backgrounds.

Like many other background subtraction schemes, the Codebook process includes three

main steps: background model initialization, background model maintenance and fore-

ground detection [Sobral, 2017], as illustrated in Fig. 3.1.

Accordingly, the original Codebook algorithm will be stated in five important issues for bet-

ter explanation, namely background model initialization, matching process, background

model updating strategy, background model refining and foreground detection. The im-

plementations of the original algorithm is detailed on the basis of these issues. For the

39
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Figure 3.1: Block diagram of the Codebook process

improved versions later in this chapter and next chapter, we will only focus on the modified

parts.

During the last decade, many works have been dedicated to improve the original Code-

book model. For example, [Zhang et al., 2016] and [Li et al., 2012] have adopted a two-

layer model, to handle dynamic background and illumination variation problems. Other

modifications like transferring RGB to other color models like YCbCr and Lab, in order to

solve the problem of existence of shadows and highlights for foreground detection, can

also be found in [Murgia et al., 2014] and [Aung et al., 2017]. In [Zaharescu et al., 2011],

a multi-scale multi-feature Codebook model, which integrates intensity, color and texture

information across multiple scales, has been presented for challenging environments. A

strategy has been proposed in [Noh et al., 2014] which takes advantages of the Code-

book and GMM-based techniques to overcome not only non-practical modeling method-

ologies of the probabilistic approaches, but also inaccurate detection performance of

Codebook techniques in moving backgrounds. [Mousse et al., 2014] associates the orig-

inal Codebook with an edge detection algorithm. In the work of [Tu et al., 2008], the

background model is constructed by encoding each pixel into a codebook consisting of

codewords based on a box model and it is also appropriate in the Hue-Saturation-Value

(HSV) color space. Besides, [Ruidong, 2015] has rewritten the model parameters and

then processed the three channels separately to simplify the matching equations. In

[Kusakunniran et al., 2016], a dynamic boundary of codebook under the Lab color space

has been developed and evaluated using the well-known large-scale dataset CDnet2012

[Goyette et al., 2012] and its extension CDnet2014 [Wang et al., 2014].

The rest of this chapter is organised as follows. Section 3.2 illustrates the original Code-
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Table 3.1: The description of the elements in the tuple auxm

Ǐ, Î the minimum and maximum brightness range assigned to the codeword respectively
f the frequency of access or the number of times that the codeword is matched
λ maximum length of time between consecutive accesses

p, q the first and the last access times of the codeword respectively

book algorithm in detail, which is then adapted to multispectral case in Section 3.3. The

multispectral dataset, evaluation metrics and experiments are discussed in Section 3.4,

while conclusions and future work are presented in Section 3.5.

3.2/ THE ORIGINAL CODEBOOK

The original Codebook is a pixel-based algorithm, which means that the whole process

happens at each pixel independently and ignores information observed at other pixels.

For each pixel, a codebook C ={c1, c2 ,. . . , cL }, consisting of several , is constructed.

The number of codewords is different according to the pixel’s variation. The codeword

can be regarded as cluster of samples with similar certain spectral features and defined

in a form of super cubes capable of describing these samples [Yongjia et al., 2014]. More

precisely, each codeword cm is composed of an RGB vector vm= (R, G, B) and a six-tuple

auxm = (Ǐm, Îm, fm, λm, pm, qm). The tuple auxm stores the auxiliary information such

as intensity statistics and temporal variables, which are listed and explained in Table 3.1

[Aung et al., 2017], and assist in training and pruning the Codebook background model.

3.2.1/ CODEBOOK MODEL INITIALIZATION

At the beginning, the codebook is an empty set and the number of the codewords is set

to 0. When the first frame comes, the Codebook model is initialized by constructing an

associated codeword for each pixel with the corresponding vector v being set to be the

RGB values of that pixel as below:

v = x = (R,G, B) (3.1)

And the corresponding six-tuple vector aux = (Ǐ, Î, f , λ, p, q) is assigned with
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aux = (I, I, 1, 0, 1, 1) (3.2)

where I represents the intensity or brightness value, which is calculated by

I =
√

(R2 +G2 + B2) (3.3)

3.2.2/ CODEBOOK MATCHING PROCESS

In the training phase, for a newly incoming frame at time instant t, the current value xt

of a given pixel is compared to its current codebook to construct the background model.

Comparisons are made by both the color distortion measurement and brightness bounds.

The color distortion is defined as:

colordist(xt,vm) = δ =

√
‖xt‖

2 −
< xt,vm >2

‖vm‖
2

=

√
(R2 +G2 + B2) −

RR +GG + BB

R
2
+G

2
+ B

2

(3.4)

where (R,G,B) represents the RGB vector of incoming pixels, whereas (R, G, B ) is the

average RGB vector of the corresponding codeword. The brightness function is defined

as:

brightness(I, < Ǐm, Îm >) =


true i f Ilow ≤ I ≤ Ihi

f alse otherwise
(3.5)

The lower bound Ilow and upper bound Ihi of the range are defined in Equation 3.6 by

Ǐm and Îm, which are the minimum and maximum brightness of all pixels assigned to this

codeword, and stored in the 6-tuple auxm illustrated in Table 3.1 for the current codeword

cm.


Ilow = αÎm

Ihigh = min
{
βÎm,

Ǐm

α

} (3.6)
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where α and β are manually set constant parameters.

If two conditions, namely color distortion and brightness bounds, are both satisfied, that

is to say, the colordist value is smaller than a threshold ε1 and the output of the bright-

ness function is true, as illustrated in Equation 3.7, the current pixel is matched with this

codeword cm, which is then used as the sample’s encoding approximation.


colordist(xt,vm) ≤ ε1

brightness
(
I,

〈
Ǐm, Îm

〉)
= true

(3.7)

Otherwise, a new codeword is to be created. The average RGB vector v is initialized with

the current pixel spectral values.

v = xt = (R,G, B) (3.8)

The corresponding initial six-tuple vector aux = (Ǐ, Î, f , λ, p, q) is assigned with

aux = (I, I, 1, t − 1, t, t) (3.9)

3.2.3/ CODEBOOK MODEL UPDATING

Codewords in the background model are designed to be updated in an online way to

account for the environmental changes in video streams. When a new frame is arriving,

the color distortion in Equation 3.4 and brightness function in Equation 3.5, defined in the

last section, together with the brightness bounds Equation in 3.6 are first calculated to

see whether a match can be found based on Equation 3.7.

For the matched codeword, its corresponding average RGB vector vm and components

in the auxm are updated using the new arrived (R,G,B) vector and the intensity value I of

the current pixel. Particularly speaking, vector vm is updated with Equation 3.10.

vm ← (
fmR

fm + R
,

fmG
fm +G

,
fmB

fm + B
) (3.10)

The six elements in the vector auxm are updated as what are listed in Table 3.2, where
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Table 3.2: The update of the elements in the tuple auxm

minimum brightness range Ǐ Ǐm ← min
{
I, Ǐm

}
maximum brightness range Î Îm ← min

{
I, Îm

}
frequency of access f fm ← fm + 1
maximum length of time λ λm ← max {λm, t − qm}

first access time p pm ← pm

last access time q qm ← t

the subscript m indicates the current codeword.

For the codewords that are not matched successfully, the λ component is updated as

λ← λ + 1 and all other components are kept the same.

When there is no new frame in the training process, the longest time interval between two

consecutive accesses λm for each codeword cm is computed by

λm = max {λm,N − qm + pm − 1} (3.11)

where N is the number of training frames.

3.2.4/ CODEBOOK MODEL REFINING

During the training period, there are not only the background information, but moving

foreground objects may also exists in the image sequence. Thus, the codebook model

obtained from the previous steps contains all the codewords that represent the scene

and can be called fat codebook [Kim et al., 2005]. It is obvious that those redundant

codewords that contain moving objects should be eliminated in order to get a refined and

true background model.

Thanks to the fact that the values for actual background usually recur, temporal filtering

can be adopted to achieve this goal. This is why λ, which is defined as the maximum

length of time between consecutive accesses, is recorded in the tuple auxm for each

codeword and then used to discriminate the actual background codewords from the mov-

ing foreground codewords that are inactive for a long period of time. To be more specific,

codewords having small λ are mostly representing the true background while those with

larger λ should be filtered out. Let C and M denote the fat and refined background model,

respectively. The temporal filtering can be described with:
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M =
{
cm | cm ∈ C and λm ≤ T

}
(3.12)

where T is a threshold value. Usually, the threshold is set to the half of the number of

training frames [Kim et al., 2005]. That is to say, all the codewords in the final refined

background model M should recur at least every N/2 frames.

3.2.5/ CODEBOOK FOREGROUND DETECTION

After constructing the Codebook model, the moving objects can be detected by using

background subtraction directly. It simply consists in calculating the difference of the

current image from the background model with respect to brightness and color distortion,

detailed in Section 3.2.2. Then the pixel is detected as foreground if no acceptable match-

ing codeword exists. Otherwise, it is classified as background and the corresponding

matched codeword is updated according to the updating procedure presented in Section

3.2.3. The algorithm is illustrated in Algorithm 1, where ε2 is color threshold during the

detection phase, which can be set with higher value to be more tolerant for noise in the

detection phase.

Algorithm 1 Codebook forground detection algorithm

1: x = (R,G, B), I =
√

(R2 +G2 + B2)
2: search the codeword cm in C matching xt if (a) and (b) occur.
3: (a) colordist(xt,vm) ≤ ε2
4: (b) brightness

(
I,

〈
Ǐm, Îm

〉)
= True

5: if there is a match, then
6: output the pixel as background and update the current matched codeword
7: else
8: output the pixel as foreground
9: end if

Note that in the construction phase, when there is no appropriate match found, a new

codeword is established, while in the detection phase, the pixel is detected as foreground

directly and no more extra measure is taken.
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3.3/ MULTISPECTRAL CODEBOOK

Since the object of this research work is to investigate the benefits of multispectral se-

quences rather than traditional RGB to improve the performance of background subtrac-

tion, we would like to adapt the original RGB-based Codebook algorithm to multispectral

sequences. Minor modifications need to be performed. Specifically speaking, the defini-

tion of brightness in RGB is extended to multispectral case. Besides, unlike color distor-

tion in the original Codebook, we adopt spectral distortion instead, as the term color is

always related to RGB, and even for three bands out of multispectral sequences, they are

not strictly color.

In the case of multispectral images, each codeword cm is also defined by two vectors:

the first one contains the average spectral value for each channel or band of the pixel,

vm = (V1,V2, ...,Vn), where n is the number of multispectral channels. The second one is

the six-tuple auxm = (Ǐm, Îm, fm, λm, pm, qm), as listed in Table 3.1.

3.3.1/ MULTISPECTRAL CODEBOOK MODEL INITIALIZATION

At the beginning, the codebook is an empty set and the number of the codewords is

set to 0. When the first frame comes, the multispectral Codebook model is initialized by

constructing an associated codeword for each pixel with the corresponding vector v being

set to be the spectral values of that pixel.

v = x = (X1, X2, ..., Xn) (3.13)

The auxiliary vector aux is set as below:

aux = (I, I, 1, 0, 1, 1) (3.14)

As we know, for grayscale images, the grayscale value or the brightness is obtained by

I = |x| =
√

x2. For RGB images, the brightness is calculated by I =
√

R2 +G2 + B2.

Accordingly, for multispectral images, given a pixel x = (X1, X2, ..., Xn), the brightness can

be measured by
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I =

√√ n∑
i=1

X2
i (3.15)

where i is the index of spectral channel.

3.3.2/ MULTISPECTRAL CODEBOOK MATCHING PROCESS

The matching process for multispectral Codebook algorithm is evaluated by two condi-

tions: brightness bound and spectral distortion.

Like the original Codebook, two criteria need to be satisfied simultaneously to find a match

between the current pixel with a codeword cm. Specifically, the brightness of the pixel must

lie in the interval
[
Ilow, Ihigh

]
, which is calculated from the min and max brightness Ǐm, Îm in

Equation 3.6.

brightness(I, < Ǐm, Îm >) = true (3.16)

Equation 3.17 gives the calculation of spectral distortion, spectral dist, between a new

coming spectral pixel vt = (X1, X2, ..., Xn) and a codeword auxm with the average spectral

vector vm = (V1,V2, ...,Vn)

spectral dist(xt,vm) =

√
‖xt‖

2 −
〈xt,vm〉

2

‖xt‖
2

2

= ‖xt‖
2 − ‖xt‖

2cos2θ (3.17)

The second condition is that the spectral distortion must lie under a given threshold ε1.

spectral dist(xt,vm) 6 ε1 (3.18)

To make it intuitive, the two criteria are visualized in Fig. 3.2. The pixel of a multispectral

image is considered as vector in an n-dimensional space and three bands are used as

an example. The cylinder model [Zeng et al., 2014] is adopted to cope with illumination

changes. In Fig. 3.2, the blue cylinder represents a certain codeword, which is built with

the spectral distortion threshold around the mean vector. Thus the bottom radius is the

threshold ε1. Besides, the red and the blue vectors stand for the average spectral vm
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Figure 3.2: Visualization of the judging criteria brightness and spectral distortion

in this codeword and the current pixel xt, respectively. With Equation 3.17, the spectral

distortion can be calculated and illustrated with the green line. As discussed above, a

match is found if the brightness of the pixel vector lies between Ilow and Ihi, and the

spectral distortion is under a given threshold ε1. Accordingly, the L2-norm of vector xt

must be located along the axis in the cylinder and the length of the green line must be

smaller than the radius of the cylinder. Obviously, the codeword cm and the current xt are

not matched in the Fig. 3.2, as the criteria of spectral distortion is not satisfied.

3.3.3/ MULTISPECTRAL CODEBOOK MODEL UPDATING

To construct the background model, the current value xt of a given pixel is compared to

its current codebook. if there is a match with a codeword cm, this codeword is used as

the sample’s encoding approximation. Otherwise, a new codeword is to be created.

Detailedly speaking, the average multispectral vector vm is updated as follows:

vm ← (
fmXm1 + X1

fm + 1
,

fmXm2 + X2

fm + 1
, . . . ,

fmXmn + Xn

fm + 1
) (3.19)

As for the six-tuple auxm = ( Ǐm, Îm, fm, λm, pm, qm ), it is updated exactly the same way as

the original Codebook algorithm. At the end of the Codebook construction algorithm, the

model also has to clean the codewords that are most probably belonging to foreground

objects, based on the λm recorded in the auxm, as illustrated for the original Codebook.
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The detailed algorithm of codebook construction is given in Algorithm 2.

Algorithm 2 Multispectral Codebook construction

1: L← 0, C← φ
2: for t = 1→ N do
3: xt = (X1, X1, ..., Xn), I =

√∑n
i=1 X2

i
4: Find the codeword cm in C matching textb f xt by checking (a) and (b)
5: (a) spectral dist (xt, vm) 6 ε1
6: (b) brightness

(
I,

〈
Ǐm, Îm

〉)
= True

7: if C = φ or there is no match then
8: L← L + 1, create a new codeword cL
9: vL = xt

10: auxL = 〈I, I, 1, t − 1, t, t〉
11: else
12: update the matched codeword cm composed of vm =

(
X̄1m, X̄2m, ..., X̄nm

)
and

auxm =
〈
Ǐm, Îm, fm, λm, pm, qm

〉
13: vm ←

(
fmX̄1m+X1

fm+1 ,
fmX̄2m+X2

fm+1 , ...,
fmX̄nm+Xn

fm+1

)
14: auxm ←

〈
min

{
I, Ǐm

}
,max

{
I, Ǐm

}
, fm + 1,max {λm, t − qm} , pm, t

〉
15: end if
16: end for

Fig. 3.3 offers a working flow for multispectral Codebook model construction with bright-

ness and spectral distortion. When a new frame arrives, the brightness and spectral

distortion are first computed based on Equation 3.15 and Equation 3.17. Then if the two

criteria illustrated in Equations 3.16 and 3.18 are satisfied simultaneously, a match be-

tween the current pixel and codeword is found. The codeword will be updated with the

information of this pixel. Unless, a new codeword will be created.

3.3.4/ MULTISPECTRAL CODEBOOK FOREGROUND DETECTION

The foreground detection phase that follows conducts the matching process like that in

background model construction phase. The brightness and spectral distortion criteria are

evaluated with Equations 3.16 and 3.18 between the testing frame and the background

model. The pixel is detected as foreground if no acceptable matching codeword exists,

as illustrated in Fig. 3.4. Otherwise, it is classified as background and the corresponding

codeword is updated accordingly. During the detection phase, the threshold for spectral

distortion is set with higher value to be more tolerant for noise.

We need to note that in the background model construction in Fig. 3.3, when there is

no appropriate match found, a new codeword will be established, while in the foreground
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Figure 3.3: Codebook construction with brightness and spectral distortion

detection phase in Fig. 3.4, the pixel is detected as foreground and then the task is

accomplished.

3.4/ EXPERIMENTS

3.4.1/ EVALUATION DATASET

To evaluate the performance of the proposed approaches for background subtraction, the

multispectral dataset presented by Benezeth et al. [Benezeth et al., 2014b] is adopted

for testing in this thesis. This dataset was created in order to investigate the use of

multispectral videos of more than three bands for background subtraction.

To our knowledge, this dataset is the only public real multispectral image background sub-

traction dataset available. Most public image datasets built for background subtraction, or

change detection, such as the well-known Wallflower dataset [Toyama et al., 1999], the

Stuttgart Artificial Background Subtraction (SABS) dataset [Brutzer et al., 2011] and CD-

net [Goyette et al., 2012] [Wang et al., 2014], are based on visible spectral images. Some

other datasets include still recombined images. For example, the Grayscale-Thermal
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Figure 3.4: Multispectral Codebook foreground detection

Foreground Detection (GTFD) dataset [Li et al., 2016] provides a pair of grayscale and

thermal frames captured by two cameras to investigate the fusion methods of thermal

and grayscale data for effective foreground detection. Besides, the LITIV 2018 dataset

[St-Charles et al., 2019] includes a pair composed of visible and Long Wavelength In-

frared (LWIR) spectra.

As [Benezeth et al., 2014b] does not give an official name for the multispectral dataset

they have established, some other works that use this dataset like [Silva et al., 2017]

[Sobral et al., 2015] call it MSVS as an abbreviation of MultiSpectral Video Sequences.

However, in [Kalsotra et al., 2019], which is a survey work of datasets for background

subtraction, this multispectral dataset is introduced as FluxData FD-1665 dataset, in-

dicating the camera type for image acquisition. In this thesis, we follow the name in

[Kalsotra et al., 2019], with a thought that more multispectral datasets will be built and

published in future with a variety of multispectral imaging devices.

The FluxData FD-1665 dataset contains multispectral sequences with seven channels,

or bands, captured simultaneously with the commercial camera from FluxData, Inc. (FD-

1665-MS camera). Among the seven channels, six are in the visible spectrum and the

last one is in the Near-InfraRed (NIR) spectrum. Fig. 3.5 shows an example associated

with a single frame of one sequence of the multispectral dataset. In the figure, Images
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Figure 3.5: Frame of one sequence of the multispectral dataset

1-6 show the 6 visible channels, Image 7 corresponds to the NIR channel, and the last

image is the corresponding pixel-based ground truth.

The dataset is composed of five sequences containing frames of size 658 × 492 for each

channel. The dataset represents one indoor video sequence and four outdoor scenes

with different challenges such as shadows, intermittent object motion and camouflage

effects (color similarity between object and background). The complete details of each

video sequence are mentioned in Table 3.3.

The dataset includes as well the corresponding RGB sequences, which are obtained with

a linear integration of the seven-channel original multispectral images weighted by three

different spectral envelopes [Jacobson et al., 2005], shown in Equation 3.20.

R =
n∑

i=1

riXi, G =
n∑

i=1

GiXi, B =
n∑

i=1

biXi (3.20)

where ri, gi, bi are the weights on the ith spectral channel, defined based on the charac-

teristics of the specific multispectral camera, and n is the number of channels, which is

seven here.

Fig. 3.6 presents examples of RGB frames extracted from the five RGB videos estimated

from the five multispectral videos. These sequences are all publicly available. Thus there

are three subsets for each scene, namely multispectral image sequence with the size of

658 × 492 × 7, corresponding RGB image sequence of 658 × 492 × 3 and the groundtruth

images of 658 × 492 × 1.

Pixel-wise labeled foreground masks, namely ground truth images, are annotated
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Figure 3.6: Snapshots of the five scenes in the FluxData FD-1665 dataset

Figure 3.7: Example of groundtruth labels

manually and provided to public for a fair precise validation. With reference to

[Goyette et al., 2012], the groundtruth image is not an ideal binary mask, containing only

moving pixels with a grayscale value of 1 and static pixels with a grayscale value of 0.

Since some areas carry a certain level of uncertainty, it is difficult for a person to reliably

classify them as background or foreground pixels, such as those pixels close to moving

objects boundaries, as illustrated with the partial magnification in the red circle in Fig.

3.7. To avoid evaluation metrics from being corrupted, these pixels that are corrupted by

motion blur, are labeled as unknown and assigned grayscale value of 170.

Besides, the Non-ROI (not in the Region Of Interest) label is adopted to prevent the

evaluation metrics being influenced by activities unrelated to the task considered. For

example, the scene 3 is cluttered with moving tree, as shown in Fig. 3.7. However, what

we care is the performance of an algorithm to detect the moving objects on the street.

Thus the top and down parts are labeled as Non-ROI with a grayscale value of 85. The

four labels are listed in Table 3.4, where pixels with a grayscale value of 85 and 170 in the

ground truth images are ignored in accuracy evaluation.
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Table 3.4: Ground truth labels

Label Grayscale Value Motion Status

Moving 255 Foreground

Unknown 170 Half-occluded and corrupted by motion blur

Non-ROI 85 Unrelated activities

Static 0 Background

3.4.2/ EVALUATION METRICS

The binary mask obtained from the foreground detection process is compared with the

corresponding ground truth image. As the ground truth is provided at pixel resolution,

the performance of background subtraction algorithms can be evaluated more precisely,

compared with the ground truth form of bounding box. In order to determine how well

the algorithm can correctly identify moving region and conduct a quantitative compari-

son between different approaches, some basic metrics are defined and usually used in

background subtraction[Viau et al., 2016], as listed in Table 3.5.

Table 3.5: Basic evaluation metrics

True positive (TP) The number of correctly identified foreground

True negative (TN) The number of correctly identified background

False positive (FP) The number of incorrectly identified foreground

False negative (FN) The number of incorrectly identified background

In general, these metrics in Table 3.5 are not very individually useful and are typically

quoted together when assessing the performance. From these four basic metrics, several

other global performance metrics can be computed to assess the performance of the

background subtraction algorithm. Among which, precision and recall are defined with

Equations 3.21 and 3.22.

Precision =
Correctly classi f ied f oreground pixels

Pixels classi f ied as f oreground
=

T P
T P + FN

(3.21)
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Recall =
Correctly classi f ied f oreground pixels

Ground truth f oreground pixels
=

T P
T P + FP

(3.22)

Based on Equations 3.21 and 3.22, F-measure, is defined as a harmonic mean of the

precision and recall with Equation 3.23, where the relative contribution of precision and

recall to the F-measure are equal. It is also known as balanced F-score or F1 score, which

reaches its best value at 1 and worst score at 0. That is to say, the greater the value is, the

better the detection quality is. It makes the analysis of results easier and is generally used

to assess the performance of background subtraction algorithm or to compare different

algorithms against a common dataset. That is why we adopt this measure of accuracy for

all the experiments in this thesis.

F − measure = 2 ×
Precision × Recall

Precision + Recall
(3.23)

3.4.3/ EXPERIMENTS

Since the traditional codebook algorithm for RGB, is three channels based, we begin with

the trials with three bands. The number of combination composed of three bands out of

seven is C3
7 = 35. For fair comparison, parameters for RGB and these three-dimensional

multispectral sequences are the same for the experiments. The four parameters, which

are empiric values determined experimentally and used for the Codebook algorithms are

as the following:

α = 0.7, β = 1.5, ε1 = 0.02, ε2 = 0.04 (3.24)

The experiments are conducted on the five different multispectral sequences and the F-

measures are recorded in Table 3.6. The RGB results are also shown in the last row,

acting as a reference to illustrate the improvement that can be achieved by using mul-

tispectral images. The largest value in each column is in bold. Besides, some visual

examples are shown in Fig. 3.8, where the top row is original multispectral sequences.

For all sequences, no morphological operation is applied.

The table 3.6 illustrates the performance comparison between the three-dimensional mul-

tispectral sequences and RGB, whose result is not the best for all five videos. The av-
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Table 3.6: Average F-measure on the five videos (three-channel images case)

Combination Video 1 Video 2 Video 3 Video 4 Video 5 mean

1 123 0.6505 0.9422 0.7733 0.8037 0.7211 0.7782

2 124 0.8355 0.9420 0.7516 0.8065 0.7864 0.8244

3 125 0.8342 0.9450 0.7515 0.8148 0.7734 0.8238

4 126 0.7104 0.8950 0.7082 0.8047 0.8154 0.7867

5 127 0.7739 0.9396 0.6558 0.8071 0.7247 0.7802

6 134 0.8421 0.9461 0.7921 0.8513 0.7670 0.8397

7 135 0.8402 0.9538 0.7838 0.8350 0.7622 0.8350

8 136 0.7017 0.9040 0.7417 0.8381 0.8031 0.7977

9 137 0.7764 0.9463 0.6908 0.8354 0.7113 0.7920

10 145 0.8636 0.9440 0.7689 0.8475 0.7757 0.8399

11 146 0.8519 0.8952 0.7296 0.8435 0.8132 0.8267

12 147 0.7932 0.9488 0.6881 0.8084 0.7480 0.7973

13 156 0.8705 0.9038 0.7564 0.8440 0.8091 0.8368

14 157 0.7943 0.9538 0.6908 0.8252 0.7361 0.8000

15 167 0.7839 0.9302 0.6518 0.8105 0.7832 0.7919

16 234 0.8358 0.9434 0.7418 0.8168 0.7810 0.8238

17 235 0.8339 0.9448 0.7345 0.8180 0.7657 0.8194

18 236 0.6959 0.8849 0.6880 0.8104 0.8075 0.7773

19 237 0.7714 0.9459 0.6400 0.8259 0.7248 0.7816

20 245 0.8583 0.9386 0.7099 0.8199 0.7899 0.8233

21 246 0.8437 0.8795 0.6677 0.7901 0.8241 0.8010

22 247 0.7900 0.9467 0.6273 0.8083 0.7662 0.7877

23 256 0.8666 0.8831 0.6832 0.8000 0.8179 0.8102

24 257 0.7893 0.9472 0.6262 0.8211 0.7539 0.7875

25 267 0.7838 0.9050 0.5934 0.8221 0.7923 0.7793

26 345 0.8619 0.9423 0.7409 0.8585 0.7746 0.8356

27 346 0.8436 0.8831 0.7088 0.8423 0.8076 0.8171

28 347 0.7904 0.9455 0.6525 0.8116 0.7634 0.7927

29 356 0.8661 0.8904 0.7187 0.8650 0.8026 0.8286

30 357 0.7894 0.9546 0.6640 0.8298 0.7577 0.7991

31 367 0.7833 0.9169 0.6281 0.8308 0.7773 0.7873

32 456 0.8718 0.8799 0.6992 0.8297 0.8131 0.8187

33 457 0.7897 0.9402 0.6435 0.8140 0.7690 0.7913

34 467 0.7854 0.9060 0.6181 0.8071 0.7904 0.7814

35 567 0.7844 0.9098 0.6095 0.8027 0.7869 0.7787

36 RGB 0.8086 0.9431 0.7578 0.7679 0.7789 0.8113
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Figure 3.8: Background subtraction results on five videos. The top row is original multi-
spectral sequences, the second row is the corresponding ground truth and the last two
rows are the results obtained by the respect best combination of three-channel based
multispectral and RGB sequences, respectively.

erage of F-measure on the five videos is calculated and listed in the rightmost column,

from which, the accuracy (0.8399) of the best average three-channel combination on five

video presents nearly 3% improvement than the result (0.8113) of RGB. As it is shown,

the multispectral sequences can represent an alternative to conventional RGB sequences

for the background subtraction task.

3.5/ CONCLUSION AND FUTURE WORKS

In this chapter, the original Codebook algorithm based on conventional RGB sequences

is first stated in detail with five important issues, namely background model initialization,

matching process, background model updating strategy, background model refining and

foreground detection. Since multispectral sequences can provide more information com-

pared with RGB triplets, the original Codebook algorithm is then adapted to multispectral

case to investigate the advantages of multispectral sequences for the task of background

subtraction.

In order to achieve this goal, two modifications have been performed comparing with the

original RGB Codebook technique. Specifically speaking, the definition of brightness in
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RGB is extended to multispectral case, with an arbitrary number of spectral channels.

Besides, we replace the color distortion with spectral distortion, as the term of color is not

suitable anymore in multispectral sequences. The implementation of multispectral Code-

book has also been explained step by step, except for the background model refining,

which is the same with that in the original Codebook algorithm.

We have conducted experiments on the FluxData FD-1665 dataset, which contains five

scenes with various challenges for multispectral sequences and the corresponding RGB

sequences, together with the groundtruth. For fair comparison, the same parameter set is

adopted for RGB and three-dimensional multispectral sequences. Both visual and numer-

ical results on five multispectral and RGB sequences are displayed. Experiments have

showed that multispectral images may represent an alternative to conventional images in

the background subtraction. These encouraging results open a door for future works for

applying multispectral images in background subtraction.

However, the four parameters α, β, ε1 and ε2 are adjusted experimentally carefully accord-

ing to the empiric values recommended by the pioneering works of Codebook algorithm,

which is very time consuming and not robust. When we want to continue the experiments

on non three-dimensional multispectral sequences, we find it too inconvenient to obtain

the optimal parameters by cumbersome parameter tuning. It becomes a must for auto-

matic selection to further investigate the benefits of multispectral images in the current

research work.





4

MULTISPECTRAL SELF-ADAPTIVE

CODEBOOK AND ITS VARIANTS FOR

BACKGROUND SUBTRACTION

4.1/ INTRODUCTION

In the previous chapter, we have extended the original three dimensional Codebook al-

gorithm to the multispectral field. As a parametric method, the original Codebook needs

parameter tuning to find the appropriate values for every scene and meanwhile the de-

tection performance is heavily impacted by the parameters. As we know, the Codebook

model devoted in the previous chapter has four basic following key parameters: α, β, ε1

and ε2. To be specific, α and β are used to obtain the brightness bounds from the min

and max values Ǐm and Îm in a certain codeword, with Equation 3.6, and, ε1 and ε2 are the

spectral distortion thresholds used in the background model construction and foreground

detection phases, respectively.

The fashionable way to get these parameters is empirical and experimental. The pio-

neers of this technique have provided the typical range of these parameters, namely,

α ∈ [0.4, 0.7] and β ∈ [1.1, 1.5] [Kim et al., 2005]. However, this is far from adequate, be-

cause manual parameters tuning is still required to achieve satisfying results for a specific

scene, which is always a really cumbersome and tricky task for researchers. Besides, if

the algorithm needs to be run for long periods of time, the parameters should not be static

but could be automatically adapted to the environmental changes. What is more impor-

61
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tant for our research objective, when using the multispectral sequences, the parameters

also have to be adjusted with different number of channels. Therefore, there is a need

for further research with regard to realizing an automatic selection mechanism for optimal

parameters.

Motivated by the work of [Shah et al., 2015], which has proposed the statistical parameter

estimation method in YCbCr color space, we first propose a multispectral self-adaptive

technique in this chapter for automatically optimal parameter selection to get rid of the

tiring searching work. That is to say, those parameters listed above do not need to be

obtained by burdensome experiments, but to be estimated from the data themselves

statistically, which can help save a lot of efforts and time.

In order to further improve the multispectral model, two aspects can be considered

[Ma et al., 2012]. The first one is to employ a better feature representation by discov-

ering a new robust feature descriptor or combining different features together. The other

is to introduce other strategies to build the model to represent the background. Thus later

in this chapter, we will make attempts to develop the multispectral self-adaptive Codebook

along these two directions.

The rest of this chapter is organised as follows. Section 4.2 presents the multispectral

self-adaptive mechanism in detail. Based on this framework, Section 4.3 introduces an-

other feature descriptor named spectral information divergence in the matching process.

From Section 4.4 to Section 4.6, other approaches to build the multispectral self-adaptive

Codebook are investigated, namely box-based Codebook, dynamic Codebook and fusion

strategy, respectively. Finally, the experiments are conducted on the FluxData FD-1665

dataset introduced in previous chapter and discussed in Section 4.7, while conclusions

and future work are presented in Section 4.8.

4.2/ MULTISPECTRAL SELF-ADAPTIVE MECHANISM

A detailed description of the proposed multispectral self-adaptive mechanism is pre-

sented in this section. In order of achieve the goal of selecting the optimal parameters

automatically, some additional statistical information need to be calculated iteratively and

recorded for each codeword during the whole process. In spite of the vector of average

spectral values of the codeword vm and the six-tuple auxm, we record another vector
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named Sm, which represents the set of the variances of the separate spectrums σ2
i . Be-

sides, for vectors vm and Sm, one more dimension is added to record the average of

brightness Im and its variance σ2
I , respectively. Thus for the multispectral sequences with

n channels, the vectors vm and Sm are of n + 1 dimension. The extra one channel stands

for the numerical information of the brightness.

4.2.1/ MULTISPECTRAL SELF-ADAPTIVE CODEBOOK MODEL INITIALIZATION

The initialization strategy is kept the same for the six-tuple vector auxm with the Codebook

algorithm in the previous chapter, while it is modified a little for the average vector vm, with

one more element related with brightness. Specifically speaking, for a new codeword of

a given pixel, the initial value of vm is:

v = x = (X1, X2, ..., Xn, I) (4.1)

Meanwhile, the Sm of the new codeword is also a vector of dimension n + 1, which is

initialized with the square values of individual spectrum and brightness.

S = (X2
1 , X

2
2 , . . . , X

2
n , I

2) (4.2)

4.2.2/ MULTISPECTRAL SELF-ADAPTIVE CODEBOOK MATCHING PROCESS

In the multispectral self-adaptive Codebook framework, definitions of brightness and

spectral distortion are kept the same with those in the previous chapter, as defined in

Equations 3.15 and 3.17. During the matching process, the statistical information calcu-

lated and recorded step by step for each codeword is used to estimate both the brightness

bounds and spectral distortion threshold. To be specific, the bounds of brightness can be

estimated by


Ilow = Ǐm − σI

Ihigh = Îm − σI

(4.3)

where σI is the standard deviation of brightness in the current codeword, whose square is
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the last element of vector Sm. And the thresholds of the spectral distortion for background

model construction phase and foreground detection phase are unified with ε, which is

calculated by

ε = max([σ1, σ2, ..., σn]) (4.4)

where σi, i ∈ [1, n] is the standard deviation of the ith channel value in the current code-

word, whose square is the corresponding ith element of vector Sm.

With the self-adaptive mechanism, brightness bounds and spectral distortion threshold

are obtained automatically and able to adjust themselves with statistical properties of the

input sequences. In the phase of background model construction, for each pixel, when

a new image arrives, the brightness and spectral distortion are first computed, then the

matching process is conducted codeword by codeword. If the brightness of the new pixel

lies in the current interval of the brightness bounds, as shown in Equation 4.3, and the

spectral distortion is smaller than the current threshold ε of a certain codeword, the new

pixel will be modeled as a perturbation on this background codeword. Unless, a new

codeword will be seeded.

4.2.3/ MULTISPECTRAL SELF-ADAPTIVE CODEBOOK MODEL UPDATING

If a match is satisfied in the matching process, the corresponding codeword is updated

with the information of the current pixel. Specifically speaking, the average multispectral

vector vm is updated as follows:

vm ← (
fmXm1 + X1

fm + 1
,

fmXm2 + X2

fm + 1
, . . . ,

fmXmn + Xn

fm + 1
,

fmImn + In

fm + 1
) (4.5)

As for the six-tuple auxiliary vector auxm = ( Ǐm, Îm, fm, λm, pm, qm ), it is updated exactly

the same way with that for the original Codebook algorithm, as listed in Table 3.2.

The vector Sm storing the variance of each separate spectrum and brightness is updated

as follows:
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Sm ← (
fmσm1 + (X1 − Xm1)2

fm + 1
,

fmσm2 + (X2 − Xm2)2

fm + 1
, . . . ,

fmσmn + (Xn − Xmn)2

fm + 1
,

fmσIm + (I − Im)2

fm + 1
)

(4.6)

The modules for the model refining and the foreground detection thoroughly follow the

logic of the original Codebook algorithm. That is to say, the codewords representing the

moving object regions will be removed with the help of the information stored in the six-

tuple vector auxm. After the establishment of background model, the matching process

is conducted in the detection phase. The new pixel is classified as background if an

acceptable matching codeword exists and the vectors in the current codeword will be

also updated as illustrated above at the same time. Otherwise, the pixel is detected as

foreground.

In this section, we have proposed multispectral self-adaptive mechanism to improve the

Codebook algorithm. With this technique, the brightness bounds and spectral distortion

thresholds are calculated automatically from the image data themselves statistically, not

chosen empirically like the original Codebook, which is helpful for researchers to get rid

of the cumbersome task of parameters tuning.

4.3/ SPECTRAL INFORMATION DIVERGENCE

From this section on, we will investigate techniques to improve the multispectral self-

adaptive Codebook algorithm proposed in previous section. The first attempt introduced

in this section is the utilization of the spectral information divergence to evaluate the spec-

tral distance between the new pixel vector and that in the tested codeword in the matching

process.

Based on the algorithms explained above, we can conclude that the main idea of Code-

book background model construction is that, if the pixel of the current image is close

enough to the average vector of the current codeword in the background model, it will be

regarded as a perturbation on that codeword, unless, it will establish a new codeword to

be associated with that pixel. However, how to measure this closeness, or in another way

of comprehension, distance?
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In multispectral Codebook algorithm, two criteria have been adopted to evaluate the dis-

tance between two vectors, the brightness and the spectral distortion. Specifically speak-

ing, the brightness is simply the L2-norm of the related channels, defined with Equation

3.15, and the spectral distortion is measured as a function of the brightness-weighted

angle between the current and reference spectral vectors, as illustrated in Equation 3.17.

We should be aware that the combination of brightness and spectral distortion defined

previously is not the only choice of estimation criteria.

Motivated by the spectral information divergence adopted in [Benezeth et al., 2014a], in

this section, it is first employed to replace the spectral distortion in the previous multispec-

tral self-adaptive Codebook model to be the matching criteria together with the brightness

condition.

The whole diagram keeps the same with that in the previous section. Fig. 4.1 is the

flow chart for background model construction. After the initialization of the Codebook for

each pixel, the brightness and spectral information divergence are computed based on

Equation 3.15 and Equation 2.21 when a new frame arrives. Besides, the same self-

adaptive thresholding procedure is adopted for spectral information divergence as for

spectral distortion. If a match is found, the current codeword will be updated with the

spectral information of the new pixel, unless, a new codeword is created.

To further utilize the spectral information, the three features mentioned here are then

employed together, as shown in Fig. 4.2. This step forward opens a door for other pos-

sibilities to seek novel kind of feature representation in the construction of the Codebook

background model.

4.4/ MULTISPECTRAL SELF-ADAPTIVE BOX-BASED CODEBOOK

In the Codebook scheme, the background model is a set of pixel-wise codebooks consist-

ing of the codewords. The original codeword has cylindrical structure which is visualized

in Fig. 3.2 and devised based on an experiment observing how pixel values change

over time. However, in essence, the cylindrical codeword has a disadvantage of complex

structure and accordingly, it requires high computational cost for matching process.

To remedy the drawback, we are going to propose multispectral box-based Codebook
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Figure 4.1: Codebook construction with brightness and spectral information divergence

with another codeword structure, which is motivated by the idea of [Tu et al., 2008] and

[Noh et al., 2012]. We improve their work by making the boundary self-adaptive and ex-

tending the structure to multispectral case.

4.4.1/ MULTISPECTRAL BOX-BASED CODEBOOK MODEL INITIALIZATION

The codebook for every pixel is an empty set and the number of the codewords is set

to 0 at the beginning. When the first multispectral frame comes, the Codebook model is

established with the first codeword consisting of v, aux and S , initialized with the spectral

values of all the channels.

v = x = (X1, X1, ..., Xn, I) (4.7)

where n is the number of multispectral channels and the brightness I is calculated with

Equation 3.15.

The auxiliary information is defined as a four-tuple vector aux = ( f , λ, p, q ), without the

information for the minimum and maximum of brightness. The meanings of these four
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Figure 4.2: Codebook construction with three features

elements keep the same as in Table 3.1 and they are initialized as:

aux = (1, 0, 1, 1) (4.8)

S only contains the variance of brightness, which is initialized with:

S = I2 (4.9)

4.4.2/ MULTISPECTRAL BOX-BASED CODEBOOK MATCHING PROCESS

The main difference lies here. The matching process is much more direct compared with

that for the cylindrical Codebook model. For an input pixel at time instant t, with the

current pixel value xt = (X1, X2, . . . , Xn), a matching codeword vm = (V1,V2, . . . ,Vn) is found

if

|Xi − Vi| ≤ σI (4.10)

is satisfied for each channel i, where σI is the standard deviation of brightness in the
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Figure 4.3: Box-based Codebook Model

current codeword, whose square is the element of S .

To make it clear to understand, the box-based Codebook model is represented in Fig-

ure 4.3, using three channels for example, whereas, it is very easy to be extended for

multispectral images with more than three channels. The blue point in the center of the

box denotes the average vector vm for the current codeword. According to Equation 4.10,

a match is found only when the new coming pixel green point xt locates inside the box,

whose side length is 2 × σI.

4.4.3/ MULTISPECTRAL BOX-BASED CODEBOOK MODEL UPDATING

Like all algorithms with the framework of Codebook illustrated above, when a new frame

arrives, the matching criteria in Equation 4.10 is first evaluated. If it is satisfied, the

corresponding codeword is updated with the information of the current pixel.

specifically speaking, the average multispectral vector vm is updated with:

vm ← (
fmXm1 + X1

fm + 1
,

fmXm2 + X2

fm + 1
, . . . ,

fmXmn + Xn

fm + 1
,

fmImn + In

fm + 1
) (4.11)

As for the four-tuple auxm = ( fm, λm, pm, qm ), it is updated exactly the same way with the

original Codebook algorithm, as listed in Table 3.2.

S m storing the variance of the brightness is updated with:
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S m ←
fmσIm + (I − Im)2

fm + 1
(4.12)

The algorithm of the multispectral box-based Codebook construction is summarized in

Algorithm 3, where N is the number of frames.

Algorithm 3 Multispectral box-based Codebook construction

1: L← 0, C← φ
2: for t = 1→ N do
3: xt = (X1, X1, ..., Xn)
4: Find the matching codeword cm to xt in C if the following condition is satisfied for

each channel.
5: |Xi − Vi| ≤ σI

6: if C = φ or there is no match then
7: L← L + 1, create a new codeword cL

8: v0 = xt

9: aux0 = (1, t − 1, t, t)
10: S = I2

11: else
12: update the matched codeword
13: vm ← ( fmXm1+X1

fm+1 ,
fmXm2+X2

fm+1 , . . . ,
fmXmn+Xn

fm+1 ,
fmImn+In

fm+1 )
14: auxm ← ( fm + 1,maxλm, t − qm, pm, t)
15: S m ←

fmσIm+(I−Im)2

fm+1
16: end if
17: end for

Subsequently, the modules for the background model refining and the foreground detec-

tion thoroughly follow the way of the original Codebook algorithm.

4.5/ MULTISPECTRAL SELF-ADAPTIVE DYNAMIC CODEBOOK

In this section, we are going to propose a mutispectral dynamic Codebook algorithm,

which is motivated by the work of [Ruidong, 2015] and [Kusakunniran et al., 2016], by

extending the three-channel based Codebook algorithm to multispectral images with dy-

namic boundary mechanism for individual channel. It follows the overall workflow of orig-

inal Codebook model. We will illustrate the details step by step.
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4.5.1/ MULTISPECTRAL DYNAMIC CODEBOOK MODEL INITIALIZATION

The Codebook model is initialized when the first multispectral frame comes by construct-

ing an associated codeword for each pixel with the corresponding vector v being set to

be the spectral values of all the channels for that pixel as below:

v = x = (X1, X2, . . . , Xn) (4.13)

where n is the number of channels. The auxiliary information will be defined as a four-

tuple auxm = ( fm, λm, pm, qm ), which follows the strategy of box-based Codebook, and

they are initialized as:

aux = (1, 0, 1, 1) (4.14)

In spite of the vector v storing the average spectral values of the codeword and the aux-

iliary tuple aux, we also record a third vector named S, which represents the set of the

variances of the separate spectrums σ2
i and is initialized as:

S = (X2
1 , X

2
2 , . . . , X

2
n) (4.15)

What’s more, another two vectors need to be recorded for the minimum and maximum

values for each channel and they are initialized with the spectral values of the first multi-

spectral frame:

B min = (X1, X2, . . . , Xn) (4.16)

B max = (X1, X2, . . . , Xn) (4.17)

4.5.2/ MULTISPECTRAL DYNAMIC CODEBOOK MATCHING PROCESS

The matching condition is different from that in the multispectral Codebook algorithms

illustrated above. For an input pixel at time instant t, with the current spectral value xt =
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(X1, X2, . . . , Xn), the matching codeword is found if

B lowi ≤ Xi ≤ B highi (4.18)

is satisfied for each channel i, i ∈ [1, n] , where B low and B high denote the lower and

upper boundaries, respectively. The lower boundary for each channel B lowi can be ob-

tained with the corresponding minimum value stored in B min and the standard deviation

in the current codeword by

B lowi = max(B mini − σi, 0) (4.19)

The upper boundary is obtained with the corresponding maximum value stored in B max

and the standard deviation by

B highi = max(B maxi + σi, 255) (4.20)

where σi is the standard deviation of the ith channel value in the current codeword, whose

square is the corresponding ith element of Sm. It is observed that, during this matching

process, the boundaries are acquired from the data themselves and no manual parame-

ters tuning is required, which makes the proposed model more practical.

4.5.3/ MULTISPECTRAL DYNAMIC CODEBOOK MODEL UPDATING

Like the original Codebook algorithm, when a new frame arrives, the matching criteria

is first evaluated to see whether it is satisfied. If a match is found, the corresponding

codeword is updated with the information of the current pixel.

Specifically speaking, the average multispectral vector vm is updated as below.

vm ← (
fmXm1 + X1

fm + 1
,

fmXm2 + X2

fm + 1
, . . . ,

fmXmn + Xn

fm + 1
) (4.21)

As for the four-tuple vector auxm = ( fm, λm, pm, qm ), it is updated exactly the same way

as the original Codebook algorithm.
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The vector Sm storing the variance of each separate spectrum is updated with:

Sm ← (
fmσm1 + (X1) − Xm1

2

fm + 1
,

fmσm2 + (X2) − Xm2
2

fm + 1
, . . . ,

fmσmn + (Xn) − Xmn
2

fm + 1
)

(4.22)

The two vectors for the minimum and maximum values for each channel, namely,

B min = (B min1, B min2, . . . , B minn) (4.23)

B max = (B max1, B max2, . . . , B maxn) (4.24)

are updated as follows:

B mini ← min(B mini, Xi) (4.25)

B maxi ← max(B maxi, Xi) (4.26)

The process of the multispectral self-adaptive dynamic Codebook construction is sum-

marized in Algorithm 4, where N is the number of frames. The modules for the model

refining and the foreground detection are the same as those used in the original Code-

book algorithm.
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Algorithm 4 Multispectral dynamic Codebook construction

1: L← 0, C← φ

2: for t = 1→ N do

3: xt = (X1, X1, ..., Xn)

4: Find the matching codeword to xt in C if the following condition is

satisfied for each channel.

5: B lowi ≤ Xi ≤ B highi

6: if C← φ or there is no match then

7: L← L + 1, creat a new codeword cL

8: v0 = xt

9: aux0 = (1, t − 1, t, t)

10: S0 = (X2
1 , X

2
2 , . . . , X

2
n)

11: B min = (X1, X2, . . . , Xn)

12: B max = (X1, X2, . . . , Xn)

13: else

14: update the matched codeword

15: vm ← ( fmXm1+X1
fm+1 ,

fmXm2+X2
fm+1 , . . . ,

fmXmn+Xn
fm+1 )

16: auxm ← ( fm + 1,maxλm, t − qm, pm, t)

17: Sm ← ( fmσm1+(X1)−Xm1
2

fm+1 ,
fmσm2+(X2)−Xm2

2

fm+1 , . . . ,
fmσmn+(Xn)−Xmn

2

fm+1 )

18: B mini ← min(B mini, Xi)

19: B maxi ← max(B maxi, Xi)

20: end if

21: end for

4.6/ MULTISPECTRAL SELF-ADAPTIVE FUSION STRATEGY

Another step forward to exploit benefits of each spectral channel of multispectral images

is to fuse the detection results of the monochromatic channels. The idea is very straight

forward after we introduce the mechanism of getting dynamic boundary for individual

channel. We first employ the multispectral self-adaptive dynamic Codebook which has

been discussed in detail in the previous subsection to each channel separately and obtain

multiple foreground background binary masks independently. Then the detection results
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of the monochromatic channels are fused via union, vote or intersection to get the final

foreground background segmentation result.
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Figure 4.5: Workflow Of Fusion Strategy for Multispectral self-adaptive Codebook

As we know, all the algorithms presented before this section belong to the pipeline on

the left in Fig. 4.4, where all the channels used will be fed to the model together. Thus

each channel has an influence on whether a match could be found in both background

model construction phase and foreground detection phase. That is to say, all the chan-

nels shape the model jointly. However, in the fusion pipeline illustrated on the right in Fig.

4.4, each channel decides one model independently, then the individual detection results
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are fused to obtain the final output. The workflow for multispectral self-adaptive fusion

strategy is shown in Fig. 4.5, where each channel defines a background model and ob-

tains a foreground background mask with the self-adaptive dynamic technique proposed

in Section 4.5. Then these n masks together produce a final mask with fusion.

4.7/ EXPERIMENTAL RESULTS

The experiments have also been conducted on the FluxData FD-1665 dataset and will

be presented in two categories for clearer statement. The first part illustrates experi-

ments of multispectral self-adaptive Codebook with cylindrical structure, which consists

of the algorithms proposed in Section 4.2 and Section 4.3. The second one evaluates the

performance with other multispectral self-adaptive structures, including box-based Code-

book, dynamic Codebook and fusion strategy proposed in Section 4.4, Section 4.5 and

Section 4.6, respectively.

All the multispectral Codebook algorithms proposed in this chapter are based on the self-

adaptive mechanism. That is to say, we don’t need to provide the parameters adjusted

empirically. The experiments are conducted on n channels on the five multispectral video

sequences in the FluxData FD-1665 dataset, where n ∈ [3, 7], not only for three channels

as in the previous chapter.

In the following, the experiments are firstly conducted with different strategies illustrated

above on the thirty-five different three-channel-based combinations, thirty-five different

four-channel based combinations, twenty-one different five-channel based combinations,

seven different six-channel based combinations, and total seven channels, together with

the RGB for five videos. Then, only the largest F-measures among different combinations

with same number of channels, or bands, are selected and listed in this section.

4.7.1/ EXPERIMENTS OF MULTISPECTRAL SELF-ADAPTIVE CODEBOOK WITH

CYLINDRICAL STRUCTURE

In Table 4.1, brightness (B) and spectral distortion (SD) are used for evaluating the spec-

tral distance between incoming pixel and the average vector in the current codeword. The

largest F-measure for each video is in bold and the average F-measures for n bands of
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Table 4.1: Best F-measures for multispectral Codebook with B+SD on the five videos

Video 3 Bands 4 Bands 5 Bands 6 Bands 7 Bands RGB
1 0.7995 0.8046 0.8060 0.8043 0.7983 0.4789
2 0.9615 0.9624 0.9636 0.9643 0.9631 0.9535
3 0.9231 0.9248 0.9204 0.9051 0.8381 0.9188
4 0.8981 0.9001 0.8999 0.8918 0.8856 0.8871
5 0.9171 0.9198 0.9190 0.9189 0.9110 0.9130

mean 0.8999 0.9023 0.9018 0.8969 0.8792 0.8303

multispectral sequences on five videos are listed in the last row.

As indicated in Table 4.1, multispectral sequences can always outperform the correspond-

ing RGB sequences. The combination with four channels performs best, with 7.2% higher

F-measure than the RGB result on average. The combinations with three, five and six

channels also have good performance with slight difference. The fact that the seven-

band-based combination performs worst and even the six-channel situation has little ac-

curacy decrease shows that, it is not always a wise decision to adopt as many channels

as we have. There may exist information cancellation with more channels. Nevertheless,

the combination with seven channels still can be nearly 5% more than the RGB result on

average over five videos.

In the following experiments, the spectral information divergence explained in Section 4.3

is employed to replace the spectral distortion in the matching process. As stated above,

the experiments for different n-band-based multispectral sequences are conducted and

the largest F-measures are selected and listed in Table 4.2. Here, the judging criteria are

brightness (B) and spectral information divergence (SID).

From Table 4.2, with this new set of criteria, the multispectral sequences still have bet-

ter performance than the RGB sequences. Same as in Table 4.1, the four-band-based

combination achieves the best results, with a 7.8% higher accuracy on average. The com-

bination of three channels and five channels also perform well with a negligible gap while

six-channel-based and seven-channel-based situations have much lower F-measure.

In the third experiment, brightness (B), spectral distortion (SD) and spectral information

divergence (SID) are adopted together to determine the distance between two spectral

vectors in the matching process, during which, the self-adaptive threshold is shared by

spectral distortion and spectral information divergence. From the results on the five videos

and each combination, the best F-measures for each column are extracted and listed in
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Table 4.2: Best F-measures for multispectral Codebook with B+SID on the five videos

Video 3 Bands 4 Bands 5 Bands 6 Bands 7 Bands RGB
1 0.9208 0.9219 0.9059 0.8676 0.7883 0.6355
2 0.9538 0.9526 0.9504 0.9471 0.9451 0.9479
3 0.8939 0.8914 0.8825 0.8766 0.8351 0.8867
4 0.8784 0.8807 0.8783 0.8728 0.8558 0.8217
5 0.8765 0.8801 0.8842 0.8425 0.7855 0.8447

mean 0.9047 0.9053 0.9003 0.8813 0.8420 0.8273

Table 4.3: Best F-measures for multispectral Codebook with B+SD+SID on the five videos

Video 3 Bands 4 Bands 5 Bands 6 Bands 7 Bands RGB
1 0.9144 0.9147 0.8971 0.8607 0.7727 0.6555
2 0.9614 0.9623 0.9635 0.9642 0.9631 0.9535
3 0.9213 0.9180 0.8938 0.8634 0.8045 0.9054
4 0.8968 0.8979 0.8972 0.8885 0.8821 0.8867
5 0.8791 0.8800 0.8948 0.8459 0.7853 0.8543

mean 0.9146 0.9146 0.9093 0.8845 0.8415 0.8511

Table 4.3.

As we can see from Table 4.3, when all the seven channels are fed to the model, a

worse detection result than that of RGB sequence has been produced. However, with

the combination of three, four and five channels, we can still have a satisfying 6% higher

F-mesaure.

From Table 4.1 to Table 4.3, regardless of different judging criteria used in matching pro-

cess, multispectral sequences show an attractively better performance than the traditional

RGB sequences, only except for the situation of seven channels with all three criteria.

Besides, combinations of three, four and five are promising to obtain a more accurate

foreground detection results. The six-channel-based situation is less better while that of

seven channels together is the worst.

We’d like to conduct a brief summary for the experiment results obtained until now. the

best multispectral results not only from Table 4.1 to Table 4.3 above, but also from Table

3.6 in previous chapter are extracted and listed in Table 4.4, together with the correspond-

ing RGB results.

In Table 4.4, the first category, using brightness and spectral distortion with static pa-

rameter mechanism, records the best multispectral and RGB results of each sequence

taken from Table 3.6. In the self-adaptive mechanism, the same items for three different
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Table 4.4: Best F-measures with different mechanisms and sets of criteria

Mechanism criteria Images Video 1 Video 2 Video 3 Video 4 Video 5 Mean
Static

parameters B+SD RGB 0.8086 0.9431 0.7578 0.7679 0.7789 0.8113
Multi 0.8718 0.9546 0.7921 0.8650 0.8241 0.8615

Self-
adaptive

mechanism

B+SD RGB 0.4789 0.9535 0.9188 0.8871 0.9130 0.8303
Multi 0.8060 0.9643 0.9248 0.9001 0.9198 0.9030

B+SID RGB 0.6355 0.9479 0.8867 0.8217 0.8447 0.8273
Multi 0.9219 0.9538 0.8939 0.8807 0.8842 0.9069

B+SD+SID RGB 0.6555 0.9535 0.9054 0.8867 0.8543 0.8511
Multi 0.9147 0.9642 0.9213 0.8979 0.8948 0.9186

sets of criteria are also extracted from Table 4.1 to Table 4.3. The corresponding average

F-measures on the five sequences are calculated and listed in the last column.

From Table 4.4, we can see that on the Videos 2 to 5, which are outdoor scenes, it

performs best to adopt multispectral self-adaptive technique using the brightness and

spectral distortion as matching criteria. What needs to mention is that, in this process

researchers do not have to take time and effort to search for the appropriate parameters.

For the indoor Video 1, the utilization of the spectral information divergence does great

help. The F-measure shows a great jump when SD is replaced by SID. When the three

criteria are used together, the performance drops little from the B+SID combination, but

still far better than that of B+SD. If all videos are considered, judging from the mean

F-measures, the three-criteria based multispectral self-adaptive Codebook is the most

promising choice.

4.7.2/ EXPERIMENTS OF MULTISPECTRAL SELF-ADAPTIVE CODEBOOK WITH

OTHER STRUCTURES

In the following experiments, we go on evaluating the performance of the multispectral

self-adaptive box-based Codebook, dynamic Codebook and fusion strategy proposed in

Section 4.4, Section 4.5 and Section 4.6, respectively.

Table 4.5 lists the selected largest F-measures with multispectral self-adaptive box-based

Codebook. The combination with three channels performs best and multispectral images

with other numbers of channels all can produce a higher F-measure compared with RGB

images.

The second experiment in this section is conducted for multispectral self-adaptive dy-

namic Codebook. The largest F-measures are selected and listed in Table 4.6, from
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Table 4.5: Best F-measures with multispectral box-based Codebook on the five videos

Video 3 Bands 4 Bands 5 Bands 6 Bands 7 Bands RGB
1 0.8538 0.8272 0.8262 0.8270 0.8312 0.4319
2 0.9522 0.9523 0.9519 0.9502 0.9462 0.9480
3 0.8853 0.8849 0.8855 0.8840 0.8763 0.8938
4 0.8864 0.8874 0.8884 0.8876 0.8859 0.8843
5 0.8890 0.8801 0.8694 0.8597 0.8482 0.8707

mean 0.8933 0.8864 0.8843 0.8817 0.8776 0.8057

Table 4.6: Best F-measures with multispectral dynamic Codebook on the five videos

Video 3 Bands 4 Bands 5 Bands 6 Bands 7 Bands RGB
1 0.8669 0.8750 0.8757 0.8749 0.7759 0.8011
2 0.9607 0.9609 0.9607 0.9603 0.9307 0.9584
3 0.9456 0.9464 0.9460 0.9445 0.8321 0.9414
4 0.8693 0.8731 0.8734 0.8728 0.8661 0.8450
5 0.9010 0.9024 0.8969 0.8966 0.8719 0.8785

mean 0.9087 0.9116 0.9105 0.9098 0.8553 0.8849

which, combinations with three, four, five and six channels have a similar better perfor-

mance, while that with seven channels performs worse than RGB images.

The last experiment is for multispectral self-adaptive fusion strategy. Here we will only

explore on the thirty-five different three-channel-based combinations, thirty-five different

four-channel-based combinations, twenty-one different five-channel-based combinations,

seven different six-channel-based combinations, and total seven-channel case, but not

the RGB. Because we just want to investigate whether Codebook-based models with

other codeword structures will do good to background subtraction task with multispectral

images. The best F-measures are selected and shown in Table 4.7, where the F-measure

obtained with three, four and five are attractively promising, which is consistent with the

results of former experiments.

The results of all the proposed methods are further compared in Table 4.8, by selecting

the largest F-measure for each video with the methods illustrated above, in which, the

brightness (B), spectral distortion (SD) and spectral information divergence (SID) are

adopted to build the cylinder background model. The average F-measures for all the five

videos and outdoor sequences are also calculated and listed in the last two rows of this

table.

The F-measures with Pooling, the algorithm proposed in the original multispectral dataset

paper [Benezeth et al., 2014a], are also listed in the 2th column in Table 4.8 as a refer-
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Table 4.7: Best F-measures with fusion strategy on the five videos

Video 3 Bands 4 Bands 5 Bands 6 Bands 7 Bands
1 0.8967 0.8836 0.8805 0.8712 0.7796
2 0.9607 0.9608 0.9607 0.9604 0.9575
3 0.9372 0.9346 0.9277 0.9020 0.8059
4 0.8685 0.8732 0.8741 0.8742 0.8709
5 0.8847 0.8913 0.8820 0.8646 0.8429

mean 0.9096 0.9087 0.9050 0.8945 0.8514

Table 4.8: Overall evaluation of proposed mechanisms on the five videos

Video Pooling B+SD B+SID B+SD+SID Box-based Dynamic Fusion
1 0.7984 0.8060 0.9219 0.9147 0.8538 0.8757 0.8967
2 0.8815 0.9643 0.9538 0.9642 0.9523 0.9609 0.9608
3 0.6487 0.9248 0.8939 0.9213 0.8855 0.9464 0.9372
4 0.8392 0.9001 0.8807 0.8979 0.8884 0.8734 0.8742
5 0.7704 0.9198 0.8842 0.8948 0.8890 0.9024 0.8913

Outdoor mean 0.7850 0.9273 0.9032 0.9196 0.9038 0.9208 0.9160
Mean 0.7876 0.9030 0.9069 0.9186 0.8938 0.9118 0.9121

ence. As reviewed in the second chapter, Pooling also need to select the combination of

some spectral channels with the highest accuracy, as we have done for the algorithms in

this chapter.

From Tables 4.1, to 4.3, and Tables 4.5 to 4.7, which show the results of six self-adaptive

algorithms we have proposed in this chapter, the largest F-measure never appear when all

seven channels are used. The combination with four channels has the largest possibility

to achieve the best performance. This agrees with the assertion deduced with the Pooling

method by Yannick et al. [Benezeth et al., 2014a] that only few channels actually define

the moving objects.

From average F-measures for the whole dataset, the approaches of codeword with other

structures can produce comparable results to those methods that utilize all the three

criteria with cylindrical structure, listed in 5th column in Table 4.8, which proves the effec-

tiveness of methods with other structures. As we can see for the method adopting B and

SD, the accuracy for outdoor scenes outperforms in average all the other mechanisms,

but it achieves less satisfactory result for the indoor video. The last three techniques pro-

posed with non-cylindrical structures, especially the multispectral self-adaptive dynamic

Codebook algorithm can be a compromising solution.

Another advantage is the low complexity of the matching equations, as the multispectral

channels are processed separately only utilizing the intensity value of each channel and
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no correlation between channels need to be considered and calculated in the matching

process. Besides, for all the algorithms listed here, it is quite easy to adapt to multispectral

images with any number of channels for background subtraction.

4.8/ CONCLUSION AND FUTURE WORKS

In this chapter, we have achieved significant improvements by investigating several en-

hancements on the Codebook framework for background subtraction, using multispectral

sequences. The main contributions can be concluded as follows.

Firstly, a multispectral self-adaptive mechanism has been designed to obtain the parame-

ters automatically based on the statistical information extracted from the data themselves,

while the parameters in the original version are selected empirically and experimentally.

The self-adaptive technique makes the algorithm solid, reliable and robust, as the detec-

tion results of Codebook are not heavily impacted by the parameters any more, let alone

the time and effort to search for the optimal parameters. This technique is particularly

important in the research for multispectral case, as the parameters should be varied with

different number of channels used.

Then we have explained in detail the improvements in the framework of multispectral self-

adaptive Codebook model that show performance increase in two aspects. The first one

is to employ another criteria named spectral information divergence in the matching pro-

cess. The second aspect is to introduce other strategies to build the model to represent

the background.

In the multispectral self-adaptive Codebook framework, we have conducted experiments

with the matching criteria as the combination of brightness and spectral distortion, the

combination of brightness and spectral information divergence, and the combination of

these three distance evaluation together in the matching process. The threshold for spec-

tral information divergence is obtained and updated with the same self-adaptive mecha-

nism of that for spectral distortion. The results clearly show that the multispectral self-

adaptive Codebook is more capable of detecting moving object regions than the multi-

spectral Codebook extended directly from the original Codebook devoted in the previous

chapter.
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Furthermore, we have proposed three techniques to build the background model based

on Codebook algorithm for multispectral images: box-based Codebook, dynamic Code-

book and fusion strategy, each of which processes the multispectral channels indepen-

dently. Specifically speaking, only the intensity value for each channel is used to calculate

the spectral similarity between the new frame pixel and reference one in current code-

word. Besides, like the algorithms illustrated above, the thresholds are not set in advance

empirically and fixed for the whole procedure, but obtained based on statistical informa-

tion extracted from the data and can always adjust themselves to the scene changes.

Results demonstrated that we can acquire a comparable accuracy using much simpler

matching equations than the aforementioned methods based on cylinder model.

These improvements forward altogether offer new insight for future works for using multi-

spectral sequences for robust detection and motion analysis for moving objects detection.

In next chapter, we investigate the use of deep learning technique for background sub-

traction with multispectral images, since it acquires impressive accuracy and attracting

performance in computer vision community.





5

MULTISPECTRAL BACKGROUND

SUBTRACTION WITH DEEP LEARNING

5.1/ INTRODUCTION

In this decade, deep learning based on the work of Yann LeCun et al. in 1989

[LeCun et al., 1989], has revolutionized computer vision, and deep features ob-

tained from Convolutional Neural Networks (ConvNets also called CNNs) have been

shown as powerful and effective image representations for various computer vision

tasks such as object classification [Krizhevsky et al., 2012] [Simonyan et al., 2014]

[Szegedy et al., 2015] [He et al., 2016], object detection [Uijlings et al., 2013]

[Girshick et al., 2014] [Girshick, 2015] [Ren et al., 2015] [Redmon et al., 2016] se-

mantic segmentation [Long et al., 2015][Badrinarayanan et al., 2017] [He et al., 2017].

Recently, inspired by the impressive achievement of deep learning, background subtrac-

tion based on deep learning shows great success and is now becoming a hot research

topic due to its high precision [Lim et al., 2018] [Lim et al., 2019].

The first attempt to apply ConvNets for background subtraction problem was conducted

by Braham and Van Droogenbroeck in 2016 [Braham et al., 2016]. Since then, Numer-

ous supervised-based deep learning papers [Babaee et al., 2018] [Lim et al., 2018]

[Lim et al., 2017] [Lim et al., 2019] [Zheng et al., 2019b] [Zheng et al., 2018b]

[Wang et al., 2017] [Bakkay et al., 2018] have been published in the field of background

subtraction. Currently, the top background subtraction methods in the large-scale dataset

CDnet2012 [Goyette et al., 2012] and its extension CDnet 2014 [Wang et al., 2014] are

based on ConvNets with a large gap of performance in comparison to conventional

85
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approaches. Among all these supervised-based deep learning methods, the method

called FgSegNet v2 [Lim et al., 2019] outperforms state-of-the-art approaches.

Moreover, the majority of the current background methods in this research community

are focused on visible images or Red-Green-Blue (RGB). With the rise of different sen-

sors, multi-modal foreground detection, which integrates multiple complementary data

like visible and thermal infrared sources, has received more and more attention recently

[Zheng et al., 2019a]. Compared with visible images, background subtraction using multi-

spectral images can be more interesting because of the better spectral resolution. Thanks

to the recent advances in technology, new products such as the FD-1665 Multispectral

Cameras from FluxData are commercially available to offer the possibility to record multi-

spectral images of more than three spectral channels in the visible and near infra-red(NIR)

part of the spectrum simultaneously [Benezeth et al., 2014a].

To our knowledge, the FluxData FD-1665 dataset is the only public real multispec-

tral image background subtraction dataset. Most public image datasets built for back-

ground subtraction, or change detection, such as the well-known Wallflower dataset

[Toyama et al., 1999], the Stuttgart Artificial Background Subtraction (SABS) dataset

[Brutzer et al., 2011] and CDnet [Goyette et al., 2012] [Wang et al., 2014], are based on

visible spectral images or still recombined images. For example, the Grayscale-Thermal

Foreground Detection (GTFD) dataset [Li et al., 2016] provides pairs of grayscale and

thermal frames to investigate the fusion methods of thermal and grayscale data for effec-

tive foreground detection.

According to the above observations and motivated by the impressive accuracy of

FgSegNet v2 [Lim et al., 2019] for foreground segmentation with RGB images, we made

an attempt to investigate the potential benefits of using multispectral images via con-

volutional neural networks for background subtraction in this chapter, based on the

FgSegNet v2 model.

The major contributions of this work lie in two aspects. Firstly, we extracted three chan-

nels out of seven of the FluxData FD-1665 multispectral dataset to match the number of

input channels of the FgSegNet v2 deep model, aiming to investigating the possible im-

provements against RGB. Secondly, a new convolutional encoder was proposed to utilize

all the multispectral channels available to further explore the information of multispec-

tral images. To the best of our knowledge, this work is the first attempt to investigate
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the potential benefits of using multispectral information via deep features learned with

convolutional neural networks for the background subtraction task.

The rest parts of this chapter are organized as follows. Section 5.2 briefly discusses

the background and related works. The proposed attempts utilising the ConvNets-based

multispectral background subtraction methods are explained in Sections 5.3. Sections

5.4 illustrates the experimental evaluation and the obtained results compared with other

approaches using all the channels of the same multispectral dataset. In Section 5.5, we

conclude our work and provide some future works.

5.2/ RELATED WORKS

We will discuss some related works regarding deep learning, convolutional neural net-

works. Specifically, we will focus our task by doing a very brief review of VGG net-

works and the encoder-decoder architecture, as they are related with the deep model

of FgSegNet v2 we are going to use.

5.2.1/ DEEP LEARNING

Recent advances in Artificial Intelligence (AI) and machine learning, especially the emerg-

ing field of deep learning, have changed the way we process, analyse and manipulate

data. The schematic relationship among these three terminologies are provided with Fig.

5.1. Machine learning is a sub-type of AI, which is inspired by human brain and enables

computers to learn from large amounts of data. Besides, Table 5.1 further illustrates the

main differences between traditional machine learning and deep learning. With machine

learning, the relevant features of an image are manually extracted. With deep learning,

the raw images are directly fed into a deep neural network that learns the features auto-

matically. What’s more, deep learning often requires hundreds of thousands or millions

of images to reach best results. It’s also computationally intensive and requires a high-

performance computer.

As a subset of machine learning, deep learning has taken off since 2012, which provides

advanced analytics and offers great potentials in the era of big data. It has achieved

huge success in a variety of domains, not only in classical computer vision tasks, such as
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Artificial intelligence – enable computers to
mimic human intelligence  

Machine learning – enable machines to
improve performance with experience 

Deep learning – enable a machine to
train itself based on neural networks 

Figure 5.1: Artificial intelligence, machine learning and deep learning

target detection, visual recognition and robotics, but also in many other practical applica-

tions [Nogueira et al., 2017] [Wang et al., 2018] and have attracted great interest in both

academia and industrial communities [Zhang, 2018].

Deep models can be referred to as neural networks with deep structures. The concept

of neural networks is not something new and can date back to 1940s [Pitts et al., 1947].

The original intention was to simulate the human brain system to solve general learning

problems in a principled way. Since then this decades-old scientific discovery started its

long journey to innovate the entire academic community.

There are some remarkable technical breakthroughs and significant advances in

the design of network structures and training strategies, including but not lim-

ited to: [Rumelhart et al., 1985] proposed back-propagation algorithm in 1980s;

[Jarrett et al., 2009] came up with a new type of non-linearity, namely the widely used

Rectified Linear Unit (ReLU); [Glorot et al., 2010] presented a new weight initialization;

[Ciresan et al., 2011] proposed the Max-pooling instead of average sub-sampling; with

dropout in [Hinton et al., 2012] and data augmentation, the overfitting problem in training

could be relieved; with batch normalization (BN) [Ioffe et al., 2015], the training of very

deep neural networks became quite efficient.

It is all these continuous efforts, together with the emergence of large scale annotated

training data, such as ImageNet [Deng et al., 2009] and the fast development of high

performance parallel computing systems, such as Graphics Processing Units (GPUs)

that prosper deep learning nowadays [Zhao et al., 2019].
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5.2.2/ CONVOLUTIONAL NEURAL NETWORKS

ConvNets are the most representative models of deep learning and are designed to

process data that come in the form of multiple arrays, such as a colour image com-

posed of three 2D arrays containing pixel intensities in the three colour channels

[LeCun et al., 2015]. ConvNets-based network architectures now dominate the field of

computer vision.

Although ConvNets were invented in the 1980s [Fukushima, 1980], the breakthrough was

made on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) by

Krizhevsky et al. [Krizhevsky et al., 2012], who applied the deep convolutional networks

to a dataset of 1.2 million high-resolution images and achieved excellent performance,

almost halving the error rates of the best competing approaches. This network is called

AlexNet, named after Alex Krizhevsky, the first author of this breakthrough. The results

of AlexNet, for the first time, show that a large convolutional neural network is capable of

achieving recordbreaking accuracy on a highly challenging dataset using purely super-

vised learning.

Since AlexNet, even larger and deeper networks have been proposed. These models in-

clude the VGG networks [Simonyan et al., 2014], which makes use of a number of repeat-

ing blocks of elements; the network in network (NiN) [Lin et al., 2013], which convolves

whole neural networks patch-wise over inputs; the GoogLeNet [Szegedy et al., 2015] and

its higher versions [Ioffe et al., 2015] [Szegedy et al., 2016] and [Szegedy et al., 2017],

which make use of networks with parallel concatenations; residual networks (ResNet)

[He et al., 2016] which are currently the most popular go-to architecture today, and

densely connected networks (DenseNet) [Huang et al., 2017], which are expensive to

compute but have set some recent benchmarks [Zhang et al., 2019]. These architectures

are now the base models upon which an enormous amount of research and projects are

built and have been applied with great success in the computer vision community.

5.2.3/ VGG NETWORKS

The VGG networks are ConvNets designed by Simonyan and Zisserman

[Simonyan et al., 2014]. They were originally proposed for the ImageNet Large

Scale Visual Recognition Competition (ILSVRC-2014) by the Visual Geometry Group,
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Figure 5.2: Architecture of VGG16

where the name of this set of models comes from.

There are 6 kinds of ConvNet configurations included in the VGG networks. All configu-

rations follow the generic design in architecture and differ only in the depth. As a typical

and popular ConvNet architecture, VGG16 has been fine-tuned for many other tasks,

such as object detection [Ren et al., 2015], semantic segmentation [Lim et al., 2017]

[Dai et al., 2016] and so on.

Fig. 5.2 shows the VGG16 architecture. Like earlier AlexNet [Krizhevsky et al., 2012],

VGG16 can be partitioned into two parts: the first one consisting mostly of convolutional

and pooling layers and the second one consisting of fully connected layers. The idea of

block is used in the first part. The VGG16 has five convolutional blocks, among which the

first two have two convolutional layers each and the latter three contain three convolutional

layers each.

Table 5.2 illustrates the details of the configuration of VGG16, including the type, the ker-

nel size, the number of channels and the output shape for each hidden layer. Specifically

speaking, one VGG block consists of a sequence of convolutional layers, performing 3x3

convolutions with stride 1 and pad 1, followed by a maxpooling layer for spatial downsam-

pling, which performs 2x2 maxpooling with stride 2. Thus the resolution is halved after

each block.

We can also see in Table 5.2, the first block has 64 output channels and each sub-

sequent block doubles the number of output channels, until that number reaches 512

[Zhang et al., 2019]. The input size of pictures for VGG16 is 224 × 224 × 3 and 3 stands

for the three spectral channels of RGB. The output size for each layer is also listed for

better understanding the structure of this model.
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Table 5.2: VGG16 network configuration

Block Layer type kernel size Number of channels Output shape

input - - 224 × 224 × 3

1

convolution 3×3 64 224×224×64

convolution 3×3 64 224×224×64

maxpooling 2×2 112×112×64

2

convolution 3×3 128 112×112×128

convolution 3×3 64 112×112×128

maxpooling 2×2 56×56×128

3

convolution 3×3 256 56×56×256

convolution 3×3 256 56×56×256

convolution 3×3 256 56×56×256

maxpooling 2×2 28×28×256

4

convolution 3×3 512 28×28×512

convolution 3×3 512 28×28×512

convolution 3×3 512 28×28×512

maxpooling 2×2 14×14×512

5

convolution 3×3 512 14×14×512

convolution 3×3 512 14×14×512

convolution 3×3 512 14×14×512

maxpooling 2×2 7×7×512

FullyConnected 4096 1×1×4096

FullyConnected 4096 1×1×4096

FullyConnected 1000 1×1×1000

5.2.4/ ENCODER-DECODER ARCHITECTURE

The encoder-decoder architecture is a neural network design pattern and it is ap-

plied in many image classification network, such as AlexNet [Krizhevsky et al., 2012],

VGG network [Simonyan et al., 2014], GoogLeNet [Szegedy et al., 2015] and Resnet
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Input Features OutputEncoder Decoder

Figure 5.3: Encoder-decoder architecture

[He et al., 2016]. In this architecture, the network is partitioned into two parts, the en-

coder and the decoder.

As Fig. 5.3 shows, the input, such as an image patch, is fed to the encoder which

produces features. The decoder module then converts the features into a prediction

results for a specific purpose. Meantime, the error is measured. The encoder and

decoder are parameterized functions that are trained to minimize the average error

[Ranzato et al., 2007].

The encoder can perform data compression especially in dealing input of high dimen-

sionality by mapping input to a hidden layer [Rumelhart et al., 1986]. The decoder can

reconstruct the approximation of input.

An encoder is a network (FC, CNN, RNN (Recurrent neural network), etc) that takes the

input, and outputs a feature map/vector/tensor. This feature vector holds the information,

the features, that represents the input. The decoder is again a network (usually the same

network structure as encoder but in opposite orientation) that takes the feature vector

from the encoder, and gives the best closest match to the actual input or intended output.

5.3/ PROPOSED MULTISPECTRAL BACKGROUND SUBTRACTION

WITH DEEP LEARNING

In this section, we will present the deep learning approaches we proposed for back-

ground subtraction with multispectral images. The proposed algorithms are based on

FgSegNet v2 [Lim et al., 2019], which will be first introduced as it serves as inspiration

for multispectral case. Then, the proposed architectures are introduced.
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Pattern Analysis and Applications 

1 3

computed by multiplying the filter coefficients in a spa-

tially sparse way; this is done by the enlargement of the 

region that the filter is applied without introducing new 

coefficients to the filter. This convolution has been recently 

applied in semantic segmentation domain [9–11, 39]; the 

idea is to enlarge the field of views in the network without 

increasing the number of learnt parameters. Motivated by 

the recent success of the previous works, we proposed 

in [1] an FPM module with parallel dilated convolution 

layers that is plugged on top of a single-input encoder; 

it provides comparable foreground segmentation results 

compared to multi-input encoder.

2.1  The method

In this section, we revisit our previous work, FgSegNet [1], 

in both encoder and FPM module. For more details, one may 

refer to the original paper.

2.2  The encoder network

As authors of reference [30] do, we also use in FgSegNet 

the low-level features of the pre-trained VGG-16 net. We 

utilize the first four blocks of VGG-16 net by removing the 

last, i.e., fifth, block and third max-pooling layers, obtaining 

therefore higher-resolution feature maps. Dropout [32] layers 

are inserted after every convolutional layer of the modified 

net, and then, this block is fine-tuned. In this work, we also 

use the same encoder architecture as in the FgSegNet imple-

mentation. We observe that this modified net improves the 

performance compared to other pre-trained nets.

2.3  The modified FPM

Given feature maps F, which are obtained from the output 

of our encoder, the original FPM module [1] pools features 

at multiple scales by operating several convolutional layers 

with different dilation rates and a max-pooling layer fol-

lowed by a 1 × 1 convolution on the same feature F, and 

then, the pooled features are concatenated along the depth 

dimension. Finally, the concatenated feature is passed 

through BatchNormalization [16] and SpatialDropout [34] 

layers. In this work, we improve the original FPM module 

by proposing some modifications to it in two parts (Fig. 3): 

(1) the resultant features fa from a normal 3 × 3-conv are 

concatenated with the feature F and progressively pooled 

by a 3 × 3-conv with a dilation rate of 4, resulting in features 

fb . Then, F and fb are concatenated and fed to a 3 × 3-conv 

with dilation rate of 8, resulting in features fc . Again, F and 

fc are concatenated and fed to a 3 × 3-conv with dilation rate 

of 16. Finally, all features are concatenated to form 5x64 

depth features, that we call it as F′ ; F′ contains multi-scale 

features with wider receptive fields than those used in [1]. 

(2) We replace BatchNormalization with InstanceNormali-

zation [35] since we empirically observe that InstanceNor-

malization gives slightly better performance with a small 

batch size.

Fig. 2  The flow of FgSegNet_v2 architecture

Fig. 3  The modified FPM module, M-FPM. IN (InstanceNormaliza-

tion), SD (SpatialDropout). All convolution layers have 64 features

Figure 5.4: FgSegNet v2 network architecture [Lim et al., 2019]

5.3.1/ FGSEGNET V2

The ranking first algorithm on the large-scale change detection dataset CD-

net [Goyette et al., 2012] [Wang et al., 2014] is the method called FgSegNet v2

[Lim et al., 2019]. FgSegNet v2 utilizes the concept of the aforementioned encoder-

decoder structure and takes advantages of the pretrained VGG16 and the transposed

convolutional neural network (TCNN), as shown in Fig.5.4. It is followed by the former ver-

sion FgSegNet [Lim et al., 2018], which includes two approaches, namely FgSegNet M

and FgSegNet S.

As reviewed in the second chapter, FgSegNet M has proposed a triplet of encoders to

extract multi-scale features and then used transposed convolution in the decoder to learn

a mapping from feature space to image space. FgSegNet S has adopted a single-input

encoder but achieved comparable performance by applying an Feature Pooling Module

(FPM) mechanism, which adopts several parallel dilated convolutions with different dila-

tion rates to extract multi-scale features.

Table 5.3 shows the configuration for the encoder part of the FgSegNet v2. It utilizes the

first four blocks of VGG16 with some modifications, i.e. removing the maxpooling layer of

the third and forth blocks and inserting a dropout layer after every convolutional layer in

the forth block. During the training process, the first three blocks are frozen and only the

modified forth block is reinitialized and fine-tuned.
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Table 5.3: FgSegNet v2 encoder configuration

Block Layer type kernel size Number of channels Output shape

input - - W × H × 3

1

convolution 3×3 64 W×H×64

convolution 3×3 64 W×H×64

maxpooling 2×2 W/2×H/2×64

2

convolution 3×3 128 W/2×H/2×128

convolution 3×3 64 W/2×112×H/2

maxpooling 2×2 W/4×H/4×128

3

convolution 3×3 256 W/4×H/4×256

convolution 3×3 256 W/4×H/4×256

convolution 3×3 256 W/4×H/4×256

4

convolution 3×3 512 W/4×H/4×512

dropout W/4×H/4×512

convolution 3×3 512 W/4×H/4×512

dropout W/4×H/4×512

convolution 3×3 512 W/4×H/4×512

dropout W/4×H/4×512

As a higher version, FgSegNet v2 is more robust against camera motion, as the original

FPM module in FgSegNet S has been improved to capture multi-scale with wider recep-

tive fields. As shown in Fig. 5.5, it has adopted cascade dilated convolutional layers

instead of parallel strategy. Besides, Instance Normalization (IN) [Ulyanov et al., 2016]

has been adopted to replace Batch Normalization (BN), as it produces slightly high accu-

racy by observation.

Furthermore, a novel decoder network with Global Average Pooling (GAP) module has

been designed to improve the performance with small cost in computation. As illustrated

in Fig. 5.4, the low level feature coefficients vectors in the encoder network are extracted

and used to guide the high level features in the decoder part.

In our work, the modified FPM and the decoder with GAP are inherited from FgSegNet v2.
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Pattern Analysis and Applications 

1 3

computed by multiplying the filter coefficients in a spa-

tially sparse way; this is done by the enlargement of the 

region that the filter is applied without introducing new 

coefficients to the filter. This convolution has been recently 

applied in semantic segmentation domain [9–11, 39]; the 

idea is to enlarge the field of views in the network without 

increasing the number of learnt parameters. Motivated by 

the recent success of the previous works, we proposed 

in [1] an FPM module with parallel dilated convolution 

layers that is plugged on top of a single-input encoder; 

it provides comparable foreground segmentation results 

compared to multi-input encoder.

2.1  The method

In this section, we revisit our previous work, FgSegNet [1], 

in both encoder and FPM module. For more details, one may 

refer to the original paper.

2.2  The encoder network

As authors of reference [30] do, we also use in FgSegNet 

the low-level features of the pre-trained VGG-16 net. We 

utilize the first four blocks of VGG-16 net by removing the 

last, i.e., fifth, block and third max-pooling layers, obtaining 

therefore higher-resolution feature maps. Dropout [32] layers 

are inserted after every convolutional layer of the modified 

net, and then, this block is fine-tuned. In this work, we also 

use the same encoder architecture as in the FgSegNet imple-

mentation. We observe that this modified net improves the 

performance compared to other pre-trained nets.

2.3  The modified FPM

Given feature maps F, which are obtained from the output 

of our encoder, the original FPM module [1] pools features 

at multiple scales by operating several convolutional layers 

with different dilation rates and a max-pooling layer fol-

lowed by a 1 × 1 convolution on the same feature F, and 

then, the pooled features are concatenated along the depth 

dimension. Finally, the concatenated feature is passed 

through BatchNormalization [16] and SpatialDropout [34] 

layers. In this work, we improve the original FPM module 

by proposing some modifications to it in two parts (Fig. 3): 

(1) the resultant features fa from a normal 3 × 3-conv are 

concatenated with the feature F and progressively pooled 

by a 3 × 3-conv with a dilation rate of 4, resulting in features 

fb . Then, F and fb are concatenated and fed to a 3 × 3-conv 

with dilation rate of 8, resulting in features fc . Again, F and 

fc are concatenated and fed to a 3 × 3-conv with dilation rate 

of 16. Finally, all features are concatenated to form 5x64 

depth features, that we call it as F′ ; F′ contains multi-scale 

features with wider receptive fields than those used in [1]. 

(2) We replace BatchNormalization with InstanceNormali-

zation [35] since we empirically observe that InstanceNor-

malization gives slightly better performance with a small 

batch size.

Fig. 2  The flow of FgSegNet_v2 architecture

Fig. 3  The modified FPM module, M-FPM. IN (InstanceNormaliza-

tion), SD (SpatialDropout). All convolution layers have 64 features

Figure 5.5: Modified FPM structure [Lim et al., 2019]

Since the FPM module can be regarded as preprocessing for decoder network, hereafter,

they are merged to the decoder implementation for concise expression.

5.3.2/ MULTISPECTRAL THREE-CHANNEL BASED FGSEGNET V2

The original VGG16 deep model is pretrained using conventional RGB images with three

channels. Accordingly, the third dimension of the filter for the first convolutional layer

is also three. In order to investigate the possible improvement of multispectral images

against RGB based on FgSegNet v2, we first extract three channels out of seven in the

multispectral FluxData FD-1665 dataset [Benezeth et al., 2014a], which was introduced

in detail earlier in the third chapter. Then, the trials with these extracted three-channel

images are conducted using FgSegNet v2 for each scene.

Fig. 5.6 illustrates the working flow of this proposed mechanism. The multispectral

images are first processed through the module of three-channel extraction to produce

three-channel based images, which are then fed to the encoder adapted from VGG16

and decoder network, following the same manner of FgSegNet v2 explained above.

The number of combinations composed of three channels among seven is C3
7 = 35. Thus,

for each scene, we have built thirty-five independent background models. After each deep

model is trained with the training subset of a certain combination of channels, the testing

subset of the same channels is used to evaluate the performance of this background
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Figure 5.6: Multispectral three-channel based FgSegNet v2

model.

5.3.3/ PROPOSED CONVOLUTIONAL ENCODER FOR ALL MULTISPECTRAL CHAN-

NELS

As we mentioned in the last section, the third dimension of first filter of the original VGG16

is three, as it has been pretrained with three-channel based RGB images. If we simulta-

neously feed the multispectral images with more than three channels to the deep model

of FgSegNet v2, which adopts the first four blocks of VGG16 as the encoder, only the

first three channels are really processed, while others are ignored. Therefore, we can

not utilize the FgSegNet v2 model directly for multispectral images with more than three

channels.

In order to further explore the benefits of multispectral images, we have proposed

a new convolutional encoder for extracting the relevant deep features from the given

multispectral-groundtruth pair with images consisting any arbitrary number of channels.

Table 5.4 illustrates the configuration of the proposed encoder for multispectral images,

where the number of input is seven, as the FluxData FD-1665 dataset we use contains

seven channels. Including the trainable Block 4 from the FgSegNet v2, the proposed

encoder consists of two more convolutional layers, both of which are followed by a max-

pooling layer in order to match the size of the inputs for the decoder.

Fig.5.7 shows the architecture of background subtraction for multispectral images with the

proposed convolutional encoder. Following the idea of FgSegNet v2 that feeds different

levels of features to the decoder, the low level feature coefficients vectors after each

convolutional layer in the encoder network are extracted and used to guide the high level

features in the decoder part.

As it is known, the parameters in the VGG16 network have been pretrained with a vast
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Conv1 DecoderConv2Maxpooling1 Maxpooling2

Proposed Encoder

Block4 from
FgSegNet_v2

Figure 5.7: Proposed multispectral background subtraction architecture

number of RGB images, which are not available for multispectral case. We can see in the

proposed convolutional encoder illustrated in Fig.5.7, there is no pretrained deep model

adopted. Thus, all the parameters in this proposed mechanism are trainable.

What is needed to be stated is that, the filter channel of the first convolutional layer is

not fixed in the proposed encoder, and will only be assigned when the images for training

arrive. That is to say, for multispectral case, the size of the filter will be 3×3×7 (7 stands

for the number of available channels), while the size is set to 3×3×3 if RGB images are

fed. This property allows us to conduct a fair comparison for performance in background

subtraction between multispectral images based model and RGB images based model.

Table 5.4: Proposed multispectral encoder configuration

Block Layer type Kernal size Number of channels Output shape

input - - W×H×7

1
convolution 3×3 64 W×H×64

maxpooling 2×2 W/2×H/2×64

2
convolution 3×3 128 W/2×H/2×128

maxpooling 2×2 W/4×H/4×128

3

(Block 4 from

FgSegNet v2)

convolution 3×3 512 W/4×H/4×512

dropout W/4×H/4×512

convolution 3×3 512 W/4×H/4×512

dropout W/4×H/4×512

convolution 3×3 512 W/4×H/4×512

dropout W/4×H/4×512
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5.4/ EXPERIMENTAL RESULTS

5.4.1/ MULTISPECTRAL THREE-CHANNEL BASED RESULTS

The first experiments are conducted for thirty-five three-channel based combinations on

the five different videos in the FluxData FD-1665 dataset. Given the groundtruth data, the

performance of foreground detection is evaluated at a pixel level by F-measure, which is

a harmonic value of precision and recall and is widely used in the domain of background

subtraction. What is needed to be noted is that only the pixels with the label of moving or

static are taken into consideration in the evaluation process.

Table 5.5 shows the three-channel based F-measures on five videos, together with the

RGB results in the last row, acting as a reference. The highest accuracy for each scene

is in bold. It is clear that the best three-channel combination on one video is not always

the same on the others, which is reasonable, since the spectral property and the ability

to represent scenes vary with different channel combinations. This is quite obvious for

Video 1, which is the only indoor scene, where the largest F-measure is 0.9703 (with the

combination of Channels 4, 5 and 7), while the smallest is 0.9425 (with Channels 2, 4

and 5). As it is known, Channel 7 corresponds to the NIR spectrum and it offers good

complementary information in this scene.

In order to be more clear in comparing the performance of RGB and other three-channel

combinations extracted from the original seven-channel multispectral images, the largest

F-measures for each scene in Table 5.5 are selected, together with the RGB for five

videos and listed in Table 5.6. As Table 5.6 indicates, there are always three-channel

based combinations that have better spectral discrimination and outperform the RGB im-

ages with a certain degree, especially for the Video 5, where there exists objects with

shadows. With the combination of Channels 1, 4 and 7, a higher F-measure of 0.9840 is

obtained compared to 0.9714 for RGB images. This is quite interesting, because in this

part we have followed the same mechanism of FgSegNet v2 for the fine-tuning strategy,

that is, only the parameters in the forth block are reinitialized and fine-tuned by the new

data, while the first three blocks are frozen and the parameters are adopted directly from

VGG16 deep model. As VGG16 is pretrained with conventional RGB images, one can

expect better segmentation results with RGB images than the extracted three-channel

based multispectral images. We think that the combination of channels (1, 4 and 7) per-
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Table 5.5: Three-channel F-measures on five videos

Combination channels Video 1 Video 2 Video 3 Video 4 Video 5

1 123 0.9655 0.9983 0.9787 0.9666 0.9833

2 124 0.9618 0.9984 0.9804 0.9676 0.9799

3 125 0.9657 0.9983 0.9795 0.9688 0.9817

4 126 0.9667 0.9983 0.9785 0.9673 0.9830

5 127 0.9645 0.9983 0.9781 0.9695 0.9832

6 134 0.9675 0.9983 0.9790 0.9684 0.9828

7 135 0.9657 0.9983 0.9789 0.9693 0.9815

8 136 0.9675 0.9983 0.9781 0.9623 0.9832

9 137 0.9656 0.9983 0.9788 0.9669 0.9829

10 145 0.9629 0.9984 0.9780 0.9686 0.9828

11 146 0.9661 0.9982 0.9800 0.9659 0.9828

12 147 0.9653 0.9983 0.9783 0.9668 0.9840

13 156 0.9658 0.9983 0.9777 0.9645 0.9838

14 157 0.9638 0.9984 0.9790 0.9686 0.9818

15 167 0.9653 0.9984 0.9790 0.9682 0.9829

16 234 0.9480 0.9980 0.9818 0.9726 0.9765

17 235 0.9449 0.9981 0.9819 0.9706 0.9772

18 236 0.9445 0.9980 0.9809 0.9735 0.9795

19 237 0.9455 0.9982 0.9835 0.9729 0.9803

20 245 0.9425 0.9981 0.9820 0.9732 0.9800

21 246 0.9467 0.9982 0.9813 0.9715 0.9802

22 247 0.9451 0.9982 0.9817 0.9711 0.9818

23 256 0.9473 0.9979 0.9826 0.9709 0.9798

24 257 0.9455 0.9982 0.9813 0.9715 0.9753

25 267 0.9503 0.9982 0.9818 0.9757 0.9798

26 345 0.9584 0.9986 0.9829 0.9730 0.9759

27 346 0.9613 0.9986 0.9819 0.9731 0.9758

28 347 0.9611 0.9986 0.9833 0.9707 0.9787

29 356 0.9572 0.9985 0.9822 0.9730 0.9780

30 357 0.9624 0.9986 0.9819 0.9734 0.9758

31 367 0.9601 0.9986 0.9809 0.9735 0.9762

32 456 0.9669 0.9985 0.9797 0.9770 0.9786

33 457 0.9703 0.9984 0.9788 0.9774 0.9801

34 467 0.9692 0.9986 0.9797 0.9788 0.9785

35 567 0.9690 0.9986 0.9801 0.9754 0.9762

RGB 0.9683 0.9982 0.9808 0.9715 0.9714
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formed better than RGB thanks, once again, to the NIR complementary spectral property

of Channel 7.

Table 5.6: Best three-channel F-measures on five videos

Video Best MUL RGB

1 0.9703 0.9683

2 0.9986 0.9982

3 0.9835 0.9808

4 0.9788 0.9715

5 0.9840 0.9714

5.4.2/ PROPOSED CONVOLUTIONAL ENCODER RESULTS

Followingly, the experiments with the new convolutional encoder are conducted for both

multispectral images and RGB images. As there is no pretrained deep model, all the

parameters are trained from scratch. The only difference for multispectral images and

the RGB case lies at the filter size of the first convolutional layer, namely, 3×3×7 for the

former and 3×3×3 for the latter.

Table 5.7 illustrates the F-measures obtained with multispectral images based model and

RGB images based model on the five videos in the FluxData FD-1665 dataset. As it is

shown, multispectral images based model generally performs better than the RGB based

one.

Specifically speaking, the proposed convolutional approach with multispectral images

performs quite well on Video 2, where a very high F-measure can already be obtained

by RGB images and there is no obvious accuracy difference between the two kinds of

methods. However, for other videos, we could get considerable higher accuracy with

multispectral images based model, especially for Video 3, where more than three per-

centages improvement is obtained via the utilization of multispectral images, which is

very impressive. The results show that multispectral images based model could be a

promising alternative to conventional RGB images based one in background subtraction.

Besides, Fig.5.8 shows some visual results. The top two rows are multispectral and RGB
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24

Table 7. F-measures with the proposed convolutional encoder on five videos

Video MUL RGB

1 0.9786 0.9540

2 0.9982 0.9942

3 0.9430 0.9109

4 0.9619 0.9558

5 0.9603 0.9383

Fig. 9. Background subtraction results on the five videos
Figure 5.8: Background subtraction results on the five videos

images, respectively. The third one is the corresponding groundtruth images. The forth

and fifth rows are the background subtraction masks obtained by multispectral and RGB

images, respectively. Since the pixels out of ROI or unknown are not considered in the

training process, the detection results of these corresponding areas are random. In order

to make the visual results tidy and easy to read, we assign the same gray value for these

pixels in the mask images as they are originally in the groundtruth images.

Table 5.7: F-measures with new convolutional encoder on five videos

Video MUL RGB

1 0.9786 0.9540

2 0.9982 0.9942

3 0.9430 0.9109

4 0.9619 0.9558

5 0.9603 0.9383

We further compare the multispectral results obtained by the proposed convolutional
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encoder with the classical approaches in [Benezeth et al., 2014a] [Sobral et al., 2015]

[Silva et al., 2016] and [Silva et al., 2017] using the same dataset. They have been ex-

plained in the chapter of state of art. The F-measures of these different methods on the

five videos of the FluxData FD-1665 dataset are collected and listed in Table 5.8.

Table 5.8: F-measures of different approaches on five videos

Video MD SA SID OSTD
OWOC

-RS

Superpixel

-OWAOC
Proposed

1 0.8105 0.9042 0.9022 0.9365 0.9008 0.9135 0.9786

2 0.8900 0.9562 0.9686 0.9517 0.8727 0.9591 0.9982

3 0.6889 0.8970 0.8958 0.9064 0.9635 0.9376 0.9430

4 0.8327 0.6733 0.6878 0.8929 0.8997 0.8827 0.9619

5 0.7724 0.7422 0.7574 0.9266 0.8400 0.8693 0.9603

mean 0.7989 0.8346 0.7427 0.9228 0.8953 0.9124 0.9684

MD = Mahalanobis Distance [Benezeth et al., 2014a]

SA = Spectral Angle [Benezeth et al., 2014a]

SID = Spectral Information Divergence [Benezeth et al., 2014a]

OSTD = Online Stochastic Tensor Decomposition [Sobral et al., 2015]

OWOC-RS = Online Weighted One-Class Random Subspace [Silva et al., 2016]

Superpixel-OWAOC = Superpixel-based Online Wagging One-Class Ensemble [Silva et al., 2017]

The proposed convolutional approach outperforms the classical methods with a consid-

erable gap on average, with a mean F-measure of 0.9684, which is nearly five percent

higher than the ranking first classical algorithm OSTD in the fifth column. This shows

the impressive ability of deep features learned with the proposed ConvNet in the task of

background subtraction.

However, we need to be aware that the conventional feature selection methods can also

obtain great accuracy with a carefully designed mechanism. As we can see, the OWOC-

RS proposed by [Silva et al., 2016] has achieved the highest F-measure for the Video 3,

where it exists dynamic backgrounds, shadows and occlusion. Since it is a challenging

scene, we think the proposed multispectral images based model needs more training

images to better learn and represent the background. This supposal coincides with the
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fact that deep learning based methods always rely on big amount of data to achieve

better performance. That is also part of reason why there are still researchers devoting

themselves in classical methods or other new approaches, while deep leaning is changing

the domain of computer vision nowadays.

5.4.3/ PREDICTION TIME

Computational complexity is also observed during our experiments. The deep learning

algorithm was implemented using Keras framework with TensorFlow backend, on a single

NVIDIA GeForce GTX1080Ti GPU with a memory of 11GB and an Intel Core i7K-8700K

CPU (6 cores and 12 threads) with a RAM of 32 GB. The time for prediction with our

proposed approach is 0.134s for each multispectral image with a resolution of 492×658.

To be best of our knowledge, our work is the first attempt to utilize multispectral im-

ages [Benezeth et al., 2014a] for background subtraction task with deep learning based

method. Although the authors of [Sobral et al., 2015] and [Silva et al., 2017] have pro-

vided the computational cost of their classical algorithms with Matlab installed in laptop,

we can not conduct relevant comparison of prediction time with different platforms and

languages adopted.

5.5/ CONCLUSION

In this work, we followed the trend of deep learning and apply its concepts to background

subtraction using multispectral images. Based on the ranking first algorithm FgSegNet v2

on the large-scale change detection dataset CDnet, we first extracted three channels out

of the seven channels on five videos in the FluxData FD-1665 dataset to match the num-

ber of input channels for the pretrained VGG16 deep model with RGB images. The results

were interesting, as some combinations of three-channel based multispectral images per-

formed better than the conventional RGB images.

In order to further explore the benefits of multispectral images, we have proposed

a new convolutional encoder for extracting the relevant deep features from the given

multispectral-groundtruth pair with images consisting of any arbitrary number of chan-

nels. The modified VGG16 has been pretrained with large-scale RGB ImageNet dataset,
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which are not available for multispectral case. Thus, there is no pretrained deep model

adopted in the proposed encoder and all the parameters are trainable. The accuracy

of the proposed convolutional approach is quite appealing when compared with other

approaches using the same multispectral dataset. As the filter channel of the first convo-

lutional layer is not fixed and can also be used for RGB images, the results show that the

multispectral images based model outperforms the RGB images based one.

Our work can be seen as an attempt to investigate the potential advantages of using mul-

tispectral information via deep features learned with ConvNets for the background sub-

traction task. Some future research directions using multispectral images in background

subtraction are as follows. Larger multispectral datasets including other challenges, like

night videos, should be investigated for exhaustive evaluation of multispectral information

for background subtraction. Besides, as the filter channel of the first convolutional layer is

arbitrary in the proposed encoder, the performance of foreground-background segmenta-

tion with other sizes (4, 5, 6) of multispectral images combination can be further studied.

Another interesting direction lies in the combination of the proposed encoder and the pre-

trained deep models like VGG16 to take use of their powerful generic feature encoding

properties. Last but not least, other data sources like depth, could also be explored and

exploited for future research as they can offer important complementary information for

background subtraction task.
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CONCLUSIONS AND FUTURE WORKS

6.1/ CONCLUSIONS

Background subtraction is a crucial task in many computer vision applications. In this

thesis, we have proposed several background subtraction methods using multispectral

image sequences. The following contributions have been established as part of this re-

search effort.

First of all, the original RGB based Codebook algorithm has been adapted to multispectral

case. In order to achieve this goal, two modifications have been conducted comparing

with the original Codebook technique. Specifically speaking, the definition of brightness in

RGB color space is extended to multispectral case, with an arbitrary number of spectral

channels. Besides, we replace the color distortion with spectral distortion, as the term

of color is no longer suitable in multispectral sequences. The experiments have been

conducted on all the five scenes in the FluxData FD-1665 dataset, for both RGB images

and multispectral three-channel based images, respectively. Same set of parameters is

adopted for fair comparison. Experiments have shown that multispectral images may

represent an alternative to conventional images in the background subtraction. These

encouraging results open a door for future works for applying multispectral images in

background subtraction.

Followingly, a self-adaptive mechanism is designed to select the optimal parameters

based on the statistical information extracted from the data themselves, by calculating

iteratively and recording additional statistical information vectors for each codeword. With

the self-adaptive mechanism, brightness bounds and spectral distortion threshold are ob-

tained automatically and able to adjust themselves with statistical properties of the input

109
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sequences. Comparing with the original Codebook algorithm, where the parameters are

carefully selected by manual tuning based on the typical range provided by the pioneers

of this technique, this step forward is necessary and significant for three-fold considera-

tions.

1) Manual tuning for optimal parameters is time consuming and not robust, as the

detection results of Codebook are heavily impacted by the parameters.

2) If the algorithm needs to be run for long periods of time, the parameters should not

be static but could be automatically adapted to the environmental changes.

3) When using the multispectral sequences, the parameters also have to be adjusted

with different number of channels used. This is a big issue for our research objec-

tive.

Furthermore, in the framework of multispectral self-adaptive Codebook model, improve-

ments have been proposed in two aspects. The first one is to introduce a new feature

descriptor called spectral information divergence in the matching process to evaluate

the spectral distance between the new pixel vector and that in the tested codeword. It

has been first employed to replace the spectral distortion in the previous multispectral

self-adaptive Codebook model to be the matching criteria together with the brightness

condition. To further utilize the spectral information, the three features mentioned here

have been then adopted together. In both mechanisms, the strategy to acquire the self-

adaptive threshold for spectral information divergence is the same with that for spectral

distortion. According to the experimental results, the utilization of the spectral information

divergence does great help for the indoor scene. The three-criteria based multispectral

self-adaptive Codebook is the most promising choice across all the five scenes. This at-

tempt opens a door for other possibilities to seek novel kind of feature representation in

the construction of the Codebook background model.

The latter aspect includes three techniques to build the background model, namely, box-

based Codebook, dynamic Codebook and fusion strategy, each of which processes the

multispectral channels independently and only the intensity value for each channel is

used to calculate the spectral similarity between the new frame pixel and reference one

in current codeword. From average F-measures for the whole dataset, the approaches
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of codeword with these new non-cylindrical structures can produce comparable results to

those methods that utilize all the three criteria with aforementioned cylindrical structure.

Besides, for all the algorithms listed here, it is quite easy to adapt to multispectral images

with any number of channels for background subtraction.

Last but not least, we have followed the trend of deep learning and applied its concepts to

background subtraction using multispectral images. Based on the ranking first algorithm

FgSegNet v2 for RGB images, we first extracted three channels out of the seven channels

to match the number of input channels for the pretrained VGG16 deep model with RGB

images. Besides, in order to use more channels of the multispectral images, a new

convolutional encoder has been proposed for extracting the relevant deep features from

the given multispectral-groundtruth pair with images consisting of any arbitrary number

of channels. The proposed convolutional approach outperforms the classical methods

with a considerable gap on average, which shows the impressive ability of deep features

learned with the proposed ConvNet in the task of background subtraction.

6.2/ FUTURE WORKS

Based on the algorithms proposed and results obtained in this thesis, we believe the

following perspectives could help further develop the research conducted in this thesis.

1) In the framework of multispectral self-adaptive Codebook model, we have in-

vestigated spectral information divergence to measure the spectral distance.

There is another feature description named Local Binary Patterns (LBP) 1994

[Ojala et al., 1994] [Ojala et al., 1996], which can also be a promising choice. As

a very powerful feature for texture classification, LBP has been proven to be useful

in moving object detection [Wang et al., 2009] [Heikkila et al., 2006]. The accuracy

could improve with a well designed mechanism to integrate LBP with the spectral

features adopted in our work.

2) In order to utilise all the seven multispectral channels in the deep learning frame-

work, we have proposed an new encoder with an arbitrary number of input for first

filter. We could also further study the performance of foreground-background seg-

mentation with other sizes (four, five or six) of multispectral images combination.
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Another promising direction lies in the combination of the proposed encoder and

the pretrained deep models like VGG16 to take use of their powerful generic feature

encoding properties.

Some other interesting future research directions are as follows.

1) We sincerely appreciate the creators of FluxData FD-1665 dataset, which is the

only public real multispectral image dataset for background subtraction, to the best

of our knowledge. However, it only consists of five videos and all are in daytime

with good illumination condition. Thus, larger multispectral datasets including other

challenges, as illustrated in Chapter 2, especially night videos, should be investi-

gated for exhaustive evaluation of multispectral based algorithms for background

subtraction task.

2) The leading background subtraction algorithms work with RGB images. It would

be interesting if we introduce more diverse sources of information for this task.

The multispectral images adopted in this thesis is one choice. Nowadays,

some researchers are also working on exploiting and integrating depth data, as

they can offer important complementary information, to resolve the challenges

of background subtraction like [Camplani et al., 2014] [Camplani et al., 2017]

[Moyà-Alcover et al., 2017] [Fernandez-Sanchez et al., 2013] with attractive and

promising performance.

3) Most of the background subtraction approaches available are specifically designed

for static cameras. As we know, a typical procedure for the traditional background

subtraction algorithms first builds a statistical background model and then extracts

moving objects by detecting foreground regions, which do not share similar char-

acteristics with the static background. The model would probably be invalid when

the camera moves. It would be also very interesting if the background subtraction

methods illustrated in the state of arts can be modified and extended to the case of

moving cameras, like the efforts done in [Kim et al., 2013] [Viswanath et al., 2015]

[Gong et al., 2017].

4) As we can see on CDnet website [Wang et al., 2014], the ranking first approaches

using the large-scale CDnet dataset for background subtraction, are mainly based
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on supervised learning with convolutional networks. Although they have out-

put really impressive performance, unsupervised and semi-supervised methods

[Saatci et al., 2017] are still needed to be investigated and explored to use of as

little labeled data as possible, since they are not always available or consuming to

obtain [Sultana et al., 2018].
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