W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys, vol.32, issue.3, pp.510-519, 1961.

M. J. Kerr, P. Campbell, and A. Cuevas, Lifetime and efficiency limits of crystalline silicon solar cells, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, pp.438-441, 2002.

. G03-committee, Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface

S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications, 2005.

M. Z. Rahman, Modeling Minority Carrier's Recombination Lifetime of p-Si Solar Cell, International Journal of Renewable Energy Research, vol.2, issue.1, pp.117-122, 2012.

M. G. Hudedmani, V. M. Soppimath, and C. K. Jambotkar, A Study of Materials for Solar PV Technology and Challenges, Eur. J. Appl. Eng. Sci. Res, vol.1, issue.5, pp.1-13, 2017.

W. Shockley and W. T. Read, Statistics of the Recombinations of Holes and Electrons, Phys. Rev, vol.87, issue.5, pp.835-842, 1952.

R. N. Hall, Electron-Hole Recombination in Germanium, Phys. Rev, vol.87, issue.2, pp.387-387, 1952.

B. Haave, N-type Czochralski silicon ingots-Oxygen-related defects in the last solid fraction, 2016.

G. Coletti, Impurities in silicon and their impact on solar cell performances, 2011.

A. Borghesi, B. Pivac, A. Sassella, and A. Stella, Oxygen precipitation in silicon, J. Appl. Phys, vol.77, issue.9, pp.4169-4244, 1995.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon, Phys. Rev. B, vol.86, issue.16, p.165202, 2012.

Y. Miyamura, H. Harada, S. Nakano, S. Nishizawa, and K. Kakimoto, Relationship between carbon concentration and carrier lifetime in CZ-Si crystals, J. Cryst. Growth, vol.486, pp.56-59, 2018.

O. Breitenstein, J. P. Rakotoniaina, M. H. Rifai, and M. Werner, Shunt types in crystalline silicon solar cells, Prog. Photovolt. Res. Appl, vol.12, issue.7, pp.529-538, 2004.

H. Hieslmair and J. Appel, Effects of injection-level dependent bulk lifetime on cell properties, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.2434-2439, 2016.

S. R. Dhariwal and A. P. Kulshreshtha, Theory of back surface field silicon solar cells, Solid-State Electron, vol.24, issue.12, pp.1161-1165, 1981.

, IHS Markit -PV Module Supply Chain Tracker, 2018.

P. P. Altermatt and K. R. Mcintosh, A Roadmap for PERC Cell Efficiency towards 22%, Focused on Technology-related Constraints, Energy Procedia, vol.55, pp.17-21, 2014.

T. Röder, P. Grabitz, S. Eisele, C. Wagner, J. R. Köhler et al., 0.4% absolute efficiency gain of industrial solar cells by laser doped selective emitter, 34th IEEE Photovoltaic Specialists Conference, pp.871-000873, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00023379

B. Hallam, Efficiency enhancement of i-PERC solar cells by implementation of a laser doped selective emitter, Sol. Energy Mater. Sol. Cells, vol.134, pp.89-98, 2015.

F. Ye, 22.13% Efficient industrial p-type mono PERC solar cell, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.3360-3365, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02478564

J. Shewchun, D. Burk, and M. B. Spitzer, MIS and SIS solar cells, IEEE Trans. Electron Devices, vol.27, issue.4, pp.705-716, 1980.

M. A. Green and A. W. Blakers, Advantages of metal-insulator-semiconductor structures for silicon solar cells, Sol. Cells, vol.8, issue.1, pp.3-16, 1983.

S. W. Glunz, Passivating and Carrier-selective Contacts -Basic Requirements and Implementation, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC, pp.2064-2069, 2017.

J. Shewchun, R. Singh, and M. A. Green, Theory of metal-insulator-semiconductor solar cells, J. Appl. Phys, vol.48, issue.2, pp.765-770, 1977.

F. Feldmann, Charge carrier transport mechanisms of passivating contacts studied by temperature-dependent J-V measurements, Sol. Energy Mater. Sol. Cells, vol.178, pp.15-19, 2018.

T. F. Wietler, Pinhole density and contact resistivity of carrier selective junctions with polycrystalline silicon on oxide, Appl. Phys. Lett, vol.110, issue.25, p.253902, 2017.

R. Peibst, Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story?, Sol. Energy Mater. Sol. Cells, vol.158, pp.60-67, 2016.

M. Grünewald and P. Thomas, A hopping model for activated charge transport in amorphous silicon, Phys. Status Solidi B, vol.94, issue.1, pp.125-133, 1979.

M. Taguchi, E. Maruyama, and M. Tanaka, Temperature Dependence of

, Amorphous/Crystalline Silicon Heterojunction Solar Cells, Jpn. J. Appl. Phys, vol.47, issue.2R, p.814, 2008.

A. Cuevas, G. Giroult-matlakowski, P. A. Basore, C. Dubois, and R. King, Extraction of the surface recombination velocity of passivated phosphorus-doped silicon emitters, Conference Record of the IEEE Photovoltaic Specialists Conference, pp.1446-1449, 1994.

P. P. Altermatt, Numerical modeling of highly doped Si:P emitters based on Fermi-Dirac statistics and self-consistent material parameters, J. Appl. Phys, vol.92, issue.6, pp.3187-3197, 2002.

A. Lanterne, Etude, réalisation et caractérisation de dopages par implantation ionique pour une application aux cellules solaires en silicium, 2014.

B. Paviet-salomon, Procédés de dopage et de recuit laser pour la réalisation de cellules photovoltaïques au silicium cristallin, 2012.

B. Min, J. Krügener, M. Müller, K. Bothe, and R. Brendel, Fundamental consideration of junction formation strategies for phosphorus-doped emitters with J0e < 10 fA/cm2, Energy Procedia, vol.124, pp.126-130, 2017.

M. Tanaka, S. Okamoto, S. Tsuge, and S. Kiyama, Development of hit solar cells with more than 21% conversion efficiency and commercialization of highest performance hit modules, Proceedings of 3rd World Conference onPhotovoltaic Energy Conversion, vol.1, pp.955-958, 2003.

R. Varache, A. Valla, N. Nguyen, and D. Muñoz, Front Side Recombination Losses Analysis in Rear Emitter Silicon Heterojunction Solar Cells, Energy Procedia, vol.55, pp.302-309, 2014.

M. Bivour, Doped Layer Optimization for Silicon Heterojunctions by Injection-Level-Dependent Open-Circuit Voltage Measurements, IEEE J. Photovolt, vol.4, issue.2, pp.566-574, 2014.

M. Taguchi, 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer, IEEE J. Photovolt, vol.4, issue.1, pp.96-99, 2014.

S. Saomoto, World's Highest Conversion Efficiency of 26.33% Achieved in a Crystalline Silicon Solar Cell -A World First in a Practical Cell Size, New Energy and Industrial Technology Development Organization (NEDO

, Kaneka Corporation, vol.14, 2016.

A. Descoeudres, Low-temperature processes for passivation and metallization of highefficiency crystalline silicon solar cells, Sol. Energy, vol.175, pp.54-59, 2018.

A. Augusto, E. Looney, C. Cañizo, S. G. Bowden, and T. Buonassisi, Thin silicon solar cells: Pathway to cost-effective and defect-tolerant cell design, Energy Procedia, vol.124, pp.706-711, 2017.

M. Mikolá?ek, The influence of post-deposition annealing upon amorphous silicon/crystalline silicon heterojunction solar cells, Mater. Sci. Eng. B, vol.189, pp.1-6, 2014.

M. A. Green, Crystalline silicon solar cells, Clean Electricity from Photovoltaics, vol.1, p.868, 2001.

C. Battaglia, A. Cuevas, and S. Wolf, High-efficiency crystalline silicon solar cells: status and perspectives, Energy Env. Sci, vol.9, issue.5, pp.1552-1576, 2016.

M. Galiazzo, Fine Line Double Printing and Advanced Process Control for Cell Manufacturing, Energy Procedia, vol.67, pp.116-125, 2015.

D. Zhang, J. Moyer, and W. Zhang, Front contact pastes with increased aspect ratio to achieve higher efficiency on screen printed solar cells, 34th IEEE Photovoltaic Specialists Conference, pp.1321-001324, 2009.

X. Chen, K. Church, H. Yang, I. B. Cooper, and A. Rohatgi, Improved front side metallization for silicon solar cells by direct printing, 2011 37th IEEE Photovoltaic Specialists Conference, pp.3667-003671, 2011.

P. P. Altermatt, Learning from the Past to Look Beyond the Roadmap of PERC Si Solar Cell Mass Production," presented at the 35th European Photovoltaic Solar Energy Conference and Exhibition, pp.215-221, 2018.

M. G. Young, Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen, 2017.

B. Hallam, The role of hydrogenation and gettering in enhancing the efficiency of nextgeneration Si solar cells: An industrial perspective: Role of hydrogenation and gettering for nextgeneration Si solar cells, Phys. Status Solidi A, vol.214, issue.7, p.1700305, 2017.

A. Y. Liu, C. Sun, V. P. Markevich, A. R. Peaker, J. D. Murphy et al., The gettering effect of dielectric films for silicon solar cells, green, vol.2, issue.1, pp.7-24, 2012.

J. Lindroos and H. Savin, Review of light-induced degradation in crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, vol.147, pp.115-126, 2016.

F. A. Lindholm, A. Neugroschel, M. Arienzo, and P. A. Iles, Heavily doped polysiliconcontact solar cells, IEEE Electron Device Lett, vol.6, issue.7, pp.363-365, 1985.

N. G. Tarr, A polysilicon emitter solar cell, IEEE Electron Device Lett, vol.6, issue.12, pp.655-658, 1985.

F. Feldmann, M. Simon, M. Bivour, C. Reichel, M. Hermle et al., Carrierselective contacts for Si solar cells, Appl. Phys. Lett, vol.104, issue.18, p.181105, 2014.

A. Moldovan, Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers grown by photo-oxidation or wet-chemical oxidation in ozonized water, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp.1-6, 2015.

D. Yan, A. Cuevas, J. Bullock, Y. Wan, and C. Samundsett, Phosphorus-diffused polysilicon contacts for solar cells, Sol. Energy Mater. Sol. Cells, vol.142, pp.75-82, 2015.

B. Nemeth, Low temperature Si/SiOx/pc-Si passivated contacts to n-type Si solar cells, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp.3448-3452, 2014.

S. W. Glunz, The irresistible charm of a simple current flow pattern -25% with a solar cell featuring a full-area back contact, European Photovoltaic Solar Energy Conference and Exihibition, 2015.

G. Nogay, Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells, ACS Appl. Mater. Interfaces, vol.8, issue.51, pp.35660-35667, 2016.

R. Peibst, Implementation of n+ and p+ Poly Junctions on Front and Rear Side of Double-Side Contacted Industrial Silicon Solar Cells, Photovolt. Sol. Energy Conf. Exhib, pp.323-327, 2016.

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics, Sol. Energy Mater. Sol. Cells, vol.120, pp.270-274, 2014.

U. Römer, Ion Implantation for Poly-Si Passivated Back-Junction Back-Contacted Solar Cells, IEEE J. Photovolt, vol.5, issue.2, pp.507-514, 2015.

R. M. Swanson, Back side contact solar cell with doped polysilicon regions, 2008.

J. Krügener, Dopant diffusion from p+-poly-Si into c-Si during thermal annealing, Photovoltaic Specialists Conference (PVSC), pp.2451-2454, 2016.

Y. Tao, V. Upadhyaya, Y. Huang, C. Chen, K. Jones et al., Carrier selective tunnel oxide passivated contact enabling 21.4% efficient large-area N-type silicon solar cells, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.2531-2535, 2016.

S. Mack, F. Feldmann, A. Moldovan, M. Lenes, J. Luchies et al., Impact of Surface Morphology and Interfacial Oxide Thickness on Passivation Quality of p+ Polysilicon Passivating Contacts," presented at the 35th European Photovoltaic Solar Energy Conference and Exhibition, pp.587-590, 2018.

H. E. Çiftp?nar, Study of screen printed metallization for polysilicon based passivating contacts, Energy Procedia, vol.124, pp.851-861, 2017.

B. Nemeth, Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells, J. Mater. Res, vol.31, issue.06, pp.671-681, 2016.

B. Demaurex, S. Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering, Appl. Phys. Lett, vol.101, issue.17, p.171604, 2012.

J. Melskens, B. W. Van-de-loo, B. Macco, L. E. Black, S. Smit et al., Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects, IEEE J. Photovolt, vol.8, issue.2, pp.373-388, 2018.

M. Osbourne, Imec and Jolywood R&D collaboration on bifacial n-PERT solar cells hits a record 23.2% efficiency, PV Tech, p.23, 2019.

M. Osbourne, Trina Solar launches 425Wp bifacial i-TOPCon module, PV Tech, p.13

U. Wurfel, A. Cuevas, and P. Wurfel, Charge Carrier Separation in Solar Cells, IEEE J. Photovolt, vol.5, issue.1, pp.461-469, 2015.

J. Geissbühler, 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector, Appl. Phys. Lett, vol.107, issue.8, p.81601, 2015.

M. Bivour, J. Temmler, H. Steinkemper, and M. Hermle, Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells, Sol. Energy Mater. Sol. Cells, vol.142, pp.34-41, 2015.

J. Bullock, Efficient silicon solar cells with dopant-free asymmetric heterocontacts, Nat. Energy, vol.1, issue.3, p.15031, 2016.

J. Bullock, Survey of dopant-free carrier-selective contacts for silicon solar cells, Photovoltaic Specialists Conference (PVSC), pp.210-0214, 2016.

X. Yang, Q. Bi, H. Ali, K. Davis, W. V. Schoenfeld et al., High-Performance TiO2-Based Electron-Selective Contacts for Crystalline Silicon Solar Cells, Adv. Mater, vol.28, issue.28, pp.5891-5897, 2016.

S. Zhong, Exploring co-sputtering of ZnO:Al and SiO2 for efficient electron-selective contacts on silicon solar cells, Sol. Energy Mater. Sol. Cells, vol.194, pp.67-73, 2019.

M. T. Greiner, M. G. Helander, W. Tang, Z. Wang, J. Qiu et al., Universal energy-level alignment of molecules on metal oxides, Nat. Mater, vol.11, issue.1, pp.76-81, 2012.

J. Schmidt, R. Peibst, and R. Brendel, Surface passivation of crystalline silicon solar cells: Present and future, Sol. Energy Mater. Sol. Cells, vol.187, pp.39-54, 2018.

P. Stradins, Passivated tunneling contacts to n-type wafer silicon and their implementation into high performance solar cells, National Renewable Energy Lab.(NREL), 2014.

K. A. Nagamatsu, Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell, Appl. Phys. Lett, vol.106, issue.12, p.123906, 2015.

L. G. Gerling, Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells, Sol. Energy Mater. Sol. Cells, vol.145, pp.109-115, 2016.

V. Titova and J. Schmidt, Implementation of full-area-deposited electron-selective TiOx layers into silicon solar cells, AIP Adv, vol.8, issue.12, p.125023, 2018.

G. Masmitjà, Interdigitated back-contacted crystalline silicon solar cells with lowtemperature dopant-free selective contacts, J. Mater. Chem. A, vol.6, issue.9, pp.3977-3985, 2018.

H. T. Nguyen, Influence of a Gold Seed in Transparent V2Ox/Ag/V2Ox Selective Contacts for Dopant-Free Silicon Solar Cells, IEEE J. Photovolt, pp.1-6, 2018.

D. D. Ceuster, Passivating Contacts: Prospects for highvolume mnufacturing, 2019.

A. Ur-rehman, Development and prospects of surface passivation schemes for highefficiency c-Si solar cells, Sol. Energy, vol.166, pp.90-97, 2018.

J. Panigrahi, R. Vandana, P. K. Singh, and . Singh, Study of Al2O3/ZnO multilayers for silicon surface passivation, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.2964-2966, 2016.

D. L. Young, Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides, Energy Procedia, vol.55, pp.733-740, 2014.

G. G. Untila, Passivation of boron-doped ?+-Si emitters in the (p+nn+)Si solar cell structure with AlOx grown by ultrasonic spray pyrolysis, Sol. Energy, vol.98, pp.440-447, 2013.

W. Yoon, Transparent conducting oxide-based, passivated contacts for high efficiency crystalline Si solar cells, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp.1-4, 2015.

A. Cuevas, T. Allen, J. Bullock, Y. Wan, and X. Zhang, Skin care for healthy silicon solar cells, Photovoltaic Specialist Conference (PVSC), pp.1-6, 2015.

S. Werner, E. Lohmüller, A. Wolf, and F. Clement, Extending the limits of screen-printed metallization of phosphorus-and boron-doped surfaces, Sol. Energy Mater. Sol. Cells, vol.158, pp.37-42, 2016.

M. Dahlinger, K. Carstens, J. R. Köhler, R. Zapf-gottwick, and J. H. Werner, Laser Doped Screen-printed Back Contact Solar Cells Exceeding 21% Efficiency, Energy Procedia, vol.55, pp.410-415, 2014.

M. Bivour, S. Schröer, M. Hermle, and S. W. Glunz, Silicon heterojunction rear emitter solar cells: Less restrictions on the optoelectrical properties of front side TCOs, Sol. Energy Mater. Sol. Cells, vol.122, pp.120-129, 2014.

R. Bel-hadj-tahar, T. Ban, Y. Ohya, and Y. Takahashi, Tin doped indium oxide thin films: Electrical properties, J. Appl. Phys, vol.83, issue.5, p.2631, 1998.

H. Askari, H. Fallah, M. Askari, and M. C. Mohmmadieyh, Electrical and optical properties of ITO thin films prepared by DC magnetron sputtering for low-emitting coatings, ArXiv Prepr, 2014.

M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker et al., Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films, Thin Solid Films, vol.326, issue.1, pp.72-77, 1998.

. Virginia, , 2019.

W. C. Shank, I. , B. E. Kimball, A. C. Tolcin, and D. E. Guberman, Chapiter I -Germanium and Indium, Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply, pp.1-27, 2017.

S. Augy, C. Guérin, and J. Lamour, Risques sanitaires associés à l'indium et ses composés, 2006.

E. M. Bomhard, The toxicology of indium tin oxide, Environ. Toxicol. Pharmacol, vol.45, pp.282-294, 2016.

E. Kobayashi and Y. Watabe, Rear-emitter Silicon Heterojunction Solar Cells with Cerium Oxide-doped Indium Oxide, 2014.

M. Morales-masis, S. D. Wolf, R. Woods-robinson, J. W. Ager, and C. Ballif, Transparent Electrodes for Efficient Optoelectronics, Adv. Electron. Mater, vol.3, issue.5, p.1600529, 2017.

G. Luka, Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications, J. Mater. Sci. Mater. Electron, vol.22, issue.12, pp.1810-1815, 2011.

B. Macco, D. Deligiannis, S. Smit, R. A. Van-swaaij, M. Zeman et al.,

. Kessels, Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO, Semicond. Sci. Technol, vol.29, issue.12, p.122001, 2014.

W. L. Chen, G. S. Shen, Z. Wu, Z. Li, and R. J. Hong, Optimizing transparent conductive

, Al-doped ZnO thin films for SiNx free crystalline Si solar cells, J. Mater. Sci. Mater. Electron, vol.27, issue.7, pp.7566-7572, 2016.

P. Carroy, D. Muñoz, F. Ozanne, A. Valla, P. Mur et al., Analysis of Different Front and Back TCO on Heterojunction Solar Cells, Photovolt. Sol. Energy Conf. Exhib, pp.359-364, 2015.

A. Tomasi, Transparent electrodes in silicon heterojunction solar cells: Influence on carrier recombination, Photovoltaic Specialist Conference (PVSC), pp.1-3, 2015.

A. Tomasi, Transparent Electrodes in Silicon Heterojunction Solar Cells: Influence on Contact Passivation, IEEE J. Photovolt, vol.6, issue.1, pp.17-27, 2016.

S. Martin-de and N. , a-Si:H/c-Si heterojunction solar cells: back side assement and improvement, 2012.

T. Minami, T. Miyata, and T. Yamamoto, Stability of transparent conducting oxide films for use at high temperatures, J. Vac. Sci. Technol. Vac. Surf. Films, vol.17, issue.4, pp.1822-1826, 1999.

S. Tabassum, E. Yamasue, H. Okumura, and K. N. Ishihara, Damp heat stability of AZO transparent electrode and influence of thin metal film for enhancing the stability, J. Mater. Sci. Mater. Electron, vol.25, issue.7, pp.3203-3208, 2014.

T. F. Wietler, High Temperature Annealing of ZnO:Al on Passivating POLO Junctions: Impact on Transparency, Conductivity, Junction Passivation, and Interface Stability, vol.9, pp.89-96, 2019.

J. Niemelä, Rear-emitter silicon heterojunction solar cells with atomic layer deposited ZnO:Al serving as an alternative transparent conducting oxide to In2O3:Sn, Sol. Energy Mater. Sol. Cells, vol.200, p.109953, 2019.

T. Konishi and K. Ohdaira, Indium tin oxide sputtering damage to catalytic chemical vapor deposited amorphous silicon passivation films and its recovery, Thin Solid Films, 2017.

K. Tao, The impact of indium tin oxide deposition and post annealing on the passivation property of TOPCon solar cells, Sol. Energy, vol.176, pp.241-247, 2018.

A. H. Le, Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma excitation modes, Sol. Energy Mater. Sol. Cells, vol.192, pp.36-43, 2019.

D. Zhang, A. Tavakoliyaraki, Y. Wu, R. A. Van-swaaij, and M. Zeman, Influence of ITO deposition and post annealing on HIT solar cell structures, Energy Procedia, vol.8, pp.207-213, 2011.

A. Morales-vilches, Recovery of Indium-tin-oxide/silicon Heterojunction Solar Cells by Thermal Annealing, Energy Procedia, vol.44, pp.3-9, 2014.

F. Feldmann, High and Low Work Function Materials for Passivated Contacts, Energy Procedia, vol.77, pp.263-270, 2015.

B. Demaurex, Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells, IEEE J. Photovolt, vol.4, issue.6, pp.1387-1396, 2014.

W. L. Bailey, M. G. Coleman, C. B. Harris, and I. A. Lesk, Texture etching of silicon: method, 1979.

J. N. Ximello-quiebras, Wet chemical textures for crystalline silicon solar cells, 2013.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers, J. Electrochem. Soc, vol.137, issue.11, pp.3612-3626, 1990.

J. Horzel, Development of Rear Side Polishing Adapted to Advanced Solar Cell Concepts, Photovolt. Sol. Energy Conf. Exhib, pp.2210-2216, 2011.

S. Mack, F. Feldmann, A. Moldovan, M. Lenes, J. Luchies et al., Impact of Surface Morphology and Interfacial Oxide Thickness on Passivation Quality of p+ Polysilicon Passivating Contacts," presented at the 35th European Photovoltaic Solar Energy Conference and Exhibition, pp.587-590, 2018.

K. O. Davis, Impact of ozone-based cleaning on surface recombination with different passivation materials, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp.1-3, 2015.

S. R. Dhariwal and A. P. Kulshreshtha, Theory of back surface field silicon solar cells, Solid-State Electron, vol.24, issue.12, pp.1161-1165, 1981.

D. Mathiot, Dopage et Diffusion dans le Silicium, Cours En Ligne Sur Httpwww-Phase Cstrasbourg Fr? MathiotRessourcesDopageDiff Pdf, 2002.

T. Michel, Phosphorus emitter engineering by plasma-immersion ion implantation for c-Si solar cells, Sol. Energy Mater. Sol. Cells, vol.133, pp.194-200, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02570721

A. Lanterne, Etude, réalisation et caractérisation de dopages par implantation ionique pour une application aux cellules solaires en silicium, 2014.

A. Lanterne, Plasma Immersion Ion Implantation for Emitter and BSF Doping in Ntype PERT Solar Cells with a Single Activation Anneal, Proc. 44th IEEE PVSEC, 2005.

T. I. Kamins, Structure and Properties of LPCVD Silicon Films, J. Electrochem. Soc, vol.127, issue.3, pp.686-690, 1980.

J. Krügener, Dopant diffusion from p+-poly-Si into c-Si during thermal annealing, Photovoltaic Specialists Conference (PVSC), pp.2451-2454, 2016.

R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, Dielectric surface passivation for silicon solar cells: A review: Dielectric surface passivation for silicon solar cells, Phys. Status Solidi A, vol.214, issue.7, p.1700293, 2017.

M. G. Young, Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen, 2017.

B. Hallam, The role of hydrogenation and gettering in enhancing the efficiency of nextgeneration Si solar cells: An industrial perspective: Role of hydrogenation and gettering for nextgeneration Si solar cells, Phys. Status Solidi A, vol.214, issue.7, p.1700305, 2017.

L. Bounaas, Etude et intégration de matériaux avancés pour la passivation face arrière de cellules photovoltaïques minces, 2014.

P. Banerjee, W. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, J. Appl. Phys, vol.108, issue.4, p.43504, 2010.

A. H. Le, Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma excitation modes, Sol. Energy Mater. Sol. Cells, vol.192, pp.36-43, 2019.

B. Demaurex, S. Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering, Appl. Phys. Lett, vol.101, issue.17, p.171604, 2012.

T. Konishi and K. Ohdaira, Indium tin oxide sputtering damage to catalytic chemical vapor deposited amorphous silicon passivation films and its recovery, Thin Solid Films, 2017.

H. Askari, H. Fallah, M. Askari, and M. C. Mohmmadieyh, Electrical and optical properties of ITO thin films prepared by DC magnetron sputtering for low-emitting coatings, ArXiv Prepr, 2014.

M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker et al., Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films, Thin Solid Films, vol.326, issue.1, pp.72-77, 1998.

M. M. Hilali, A. Rohatgi, and B. To, Review and Understanding of Screen-Printed Contacts and Selective-Emitter Formation, National Renewable Energy Lab, 2004.

K. Ren, T. Ye, Y. Zhang, and A. Ebong, The Role of Nano-crystallites on Conduction Mechanisms of Current Through Ag Gridlines of Si Solar Cells, MRS Adv, vol.4, issue.5-6, pp.311-318, 2019.

S. Werner, E. Lohmüller, A. Wolf, and F. Clement, Extending the limits of screen-printed metallization of phosphorus-and boron-doped surfaces, Sol. Energy Mater. Sol. Cells, vol.158, pp.37-42, 2016.

K. Ren, V. Unsur, A. Chowdhury, Y. Zhang, and A. Ebong, The impact of tellurite glass on contact resistance of the fire through dielectric (FTD) c-Si solar cell with lightly doped emitter, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, pp.1051-1054, 2018.

K. R. Mikeska, M. Lu, and W. Liao, Tellurium-based screen-printable conductor metallizations for crystalline silicon solar cells, Prog. Photovolt. Res. Appl, vol.0, issue.0

Y. Li, H. Kim, J. Yi, D. Kim, and J. Huh, Improved Electrical Performance of Low-Temperature-Cured Silver Electrode for Silicon Heterojunction Solar Cells, IEEE J. Photovolt, vol.8, issue.4, pp.969-975, 2018.

M. Galiazzo, Fine Line Double Printing and Advanced Process Control for Cell Manufacturing, Energy Procedia, vol.67, pp.116-125, 2015.

D. H. Goldstein, Polarization signature research, 2003.

A. Alvarez, L. Llin, A. Mellor, D. J. Paul, and N. J. Ekins-daukes, ITO and AZO films for low emissivity coatings in hybrid photovoltaic-thermal applications

L. B. Valdes, Resistivity Measurements on Germanium for Transistors, Proc. IRE, vol.42, pp.420-427, 1954.

S. M. Sze and K. K. Ng, Physics of semiconductor devices, 2007.

C. Jacoboni, Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions, 2010.

R. Green, Hall effect measurements in materials characterization, 2011.

P. Blood and J. W. Orton, The electrical characterisation of semiconductors, Rep. Prog. Phys, vol.41, pp.157-257, 1978.

D. P. Kennedy and P. C. Murley, A Two-Dimensional Mathematical Analysis of the Diffused Semiconductor Resistor, IBM J. Res. Dev, vol.12, issue.3, pp.242-250, 1968.

H. Berger, Contact resistance on diffused resistors, 1969 IEEE International Solid-State Circuits Conference, vol.XII, pp.160-161, 1969.

H. Murrmann and D. Widmann, Current crowding on metal contacts to planer devices, 1969 IEEE International Solid-State Circuits Conference, vol.XII, pp.162-163, 1969.

H. H. Berger, Contact Resistance and Contact Resistivity, J. Electrochem. Soc, vol.119, issue.4, pp.507-514, 1972.

D. K. Schroder and D. L. Meier, Solar cell contact resistance-A review, IEEE Trans. Electron Devices, vol.31, issue.5, pp.637-647, 1984.

, WCT120 Photoconductance Lifetime Tester User Manual

R. A. Sinton, A. Cuevas, and M. Stuckings, Quasi-steady-state photoconductance, a new method for solar cell material and device characterization, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, pp.457-460, 1996.

R. A. Sinton and A. Cuevas, Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data, Appl. Phys. Lett, vol.69, issue.17, pp.2510-2512, 1996.

A. Cuevas and R. A. Sinton, Characterisation and Diagnosis of Silicon Wafers and Devices, pp.227-252, 2003.

P. Banerjee, W. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, « Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films, J. Appl. Phys, vol.108, p.43504, 2010.

M. Nicolai, M. Zanuccoli, F. Feldmann, M. Hermle, and C. Fiegna, Analysis of Silicon Solar Cells With Poly-Si/SiOx Carrier-Selective Base and Emitter Contacts », IEEE J. Photovolt, vol.8, issue.1, pp.103-109, 2018.

F. Feldmann, High and Low Work Function Materials for Passivated Contacts », Energy Procedia, vol.77, pp.263-270, 2015.

B. Demaurex, « Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells, IEEE J. Photovolt, vol.4, issue.6, pp.1387-1396, 2014.

T. F. Wietler, High Temperature Annealing of ZnO:Al on Passivating POLO Junctions: Impact on Transparency, Conductivity, Junction Passivation, and Interface Stability, vol.9, pp.89-96, 2019.

T. Minami, T. Miyata, and T. Yamamoto, « Stability of transparent conducting oxide films for use at high temperatures, J. Vac. Sci. Technol. Vac. Surf. Films, vol.17, issue.4, pp.1822-1826, 1999.

S. Calnan and A. N. Tiwari, « High mobility transparent conducting oxides for thin film solar cells, Thin Solid Films, vol.518, issue.7, pp.1839-1849

A. B. Morales-vilches, Al/a-SiOx front contact for polycrystalline-silicon-onoxide (POLO) solar cells, AIP Conf. Proc, vol.1999, issue.1, p.40016, 2018.

T. Konishi and K. Ohdaira, « Indium tin oxide sputtering damage to catalytic chemical vapor deposited amorphous silicon passivation films and its recovery », Thin Solid Films, 2017.

D. Zhang, A. Tavakoliyaraki, Y. Wu, R. A. Van-swaaij, and E. M. Zeman, Influence of ITO deposition and post annealing on HIT solar cell structures », Energy Procedia, vol.8, pp.207-213, 2011.

A. Morales-vilches, « Recovery of Indium-tin-oxide/silicon Heterojunction Solar Cells by Thermal Annealing, Energy Procedia, vol.44, pp.3-9, 2014.

S. Li, P. Repo, G. Gastrow, Y. Bao, and H. Savin, Effect of ALD reactants on blistering of aluminum oxide films on crystalline silicon, pp.1265-1267, 2013.

Y. Bao, S. Li, G. Gastrow, P. Repo, H. Savin et al., Effect of substrate pretreatments on the atomic layer deposited Al2O3 passivation quality, J. Vac. Sci. Technol. A, vol.33, issue.1, pp.1-123, 2014.

J. Cui, Y. Wan, Y. Cui, Y. Chen, P. Verlinden et al., « Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide, Appl. Phys. Lett, vol.110, issue.2, p.21602, 2017.

X. Yang, Q. Bi, H. Ali, K. Davis, W. V. Schoenfeld et al., , vol.2

, Based Electron-Selective Contacts for Crystalline Silicon Solar Cells », Adv. Mater, vol.28, pp.5891-5897, 2016.

I. Dirnstorfer, « Al2O3-TiO2 Nanolaminates for Conductive Silicon Surface Passivation, IEEE J. Photovolt, vol.6, issue.1, pp.86-91, 2016.

G. Masmitjà, « Interdigitated back-contacted crystalline silicon solar cells with lowtemperature dopant-free selective contacts, J. Mater. Chem. A, vol.6, issue.9, pp.3977-3985, 2018.

M. G. Young, « Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen, 2017.

B. Hallam, « The role of hydrogenation and gettering in enhancing the efficiency of nextgeneration Si solar cells: An industrial perspective: Role of hydrogenation and gettering for nextgeneration Si solar cells, Phys. Status Solidi A, vol.214, issue.7, p.1700305, 2017.

H. Lignier, E. Picard, and E. S. Dubois, « Controlling surface contamination issues in the fabrication environment of high efficiency crystalline silicon-based homojunction solar cells, Energy Procedia, vol.124, pp.745-751, 2017.

A. Morales-vilches, « Recovery of Indium-tin-oxide/silicon Heterojunction Solar Cells by Thermal Annealing, Energy Procedia, vol.44, pp.3-9, 2014.

A. H. Le, « Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma excitation modes, Sol. Energy Mater. Sol. Cells, vol.192, pp.36-43, 2019.

B. Demaurex, S. Wolf, A. Descoeudres, Z. C. Holman, and E. C. Ballif, « Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering, Appl. Phys. Lett, vol.101, p.171604, 2012.

J. Chen, « Impact of firing on surface passivation of p-Si by SiO2/Al and SiO2/SiNx/Al stacks, J. Appl. Phys, vol.110, p.126101, 2011.

A. G. Aberle, Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis, 2004.

Y. Wan and K. R. Mcintosh, On the Surface Passivation of Textured C-Si by PECVD Silicon Nitride, IEEE J. Photovolt, vol.3, issue.4, pp.1229-1235, 2013.

K. R. Mcintosh and L. P. Johnson, « Recombination at textured silicon surfaces passivated with silicon dioxide, J. Appl. Phys, vol.105, p.124520, 2009.

M. Li, L. Zeng, Y. Chen, L. Zhuang, X. Wang et al., « Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings », Int. J. Photoenergy, vol.2013, pp.1-8, 2013.

N. Sahouane and A. Zerga, « Optimization of Antireflection Multilayer for Industrial Crystalline Silicon Solar Cells, Energy Procedia, vol.44, pp.118-125, 2014.

B. Zhu, « Characteristics of Al-doped ZnO thin films prepared in Ar + H 2 atmosphere and their vacuum annealing behavior, J. Vac. Sci. Technol. Vac. Surf. Films, vol.31, issue.6, p.61513, 2013.

D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato et al., High mobility hydrogenated zinc oxide thin films, vol.163, pp.255-262, 2017.

W. Li, L. Tang, J. Du, F. Xue, Z. Luo et al., « Hydrogen annealed ZnO:B film grown by LPCVD technique as TCO for enhancing conversion efficiency of a-Si:H/?c-Si:H tandem solar cells, Sol. Energy Mater. Sol. Cells, vol.200, p.109942, 2019.

L. Ding, S. Nicolay, J. Steinhauser, U. Kroll, and C. Ballif,

, Conductivity/Transparency Trade-Off in MOCVD ZnO Thin Films by Hydrogen Plasma », vol.23, pp.5177-5182, 2013.

M. Morales-masis, « Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films, APL Mater, vol.2, issue.9, p.96113, 2014.

E. Bruhat, T. Desrues, D. Blanc-pélissier, B. Martel, R. Cabal et al., « TCO contacts on poly-Si layers: High and low temperature approaches to maintain passivation and contact properties, AIP Conf. Proc, vol.2147, issue.1, p.40001, 2019.

E. Bruhat, T. Desrues, D. Blanc-pélissier, B. Martel, R. Cabal et al., « Fired Hydrogenated AZO Layers: A New Passivation Approach for High Temperature Passivated Contact Solar Cells, pp.208-213, 2019.

J. Krügener, « Dopant diffusion from p+-poly-Si into c-Si during thermal annealing, Photovoltaic Specialists Conference (PVSC), pp.2451-2454, 2016.

J. Polzin, F. Feldmann, B. Steinhauser, M. Hermle, and S. W. Glunz, Study on the interfacial oxide in passivating contacts », AIP Conf. Proc, vol.2147, p.40016, 2019.

P. Padhamnath, High-Quality Doped Polycrystalline Silicon Using Low-Pressure Chemical Vapor Deposition (LPCVD) », Energy Procedia, vol.150, pp.9-14, 2018.

H. Park, « Passivation quality control in poly-Si/SiOx/c-Si passivated contact solar cells with 734 mV implied open circuit voltage, Sol. Energy Mater. Sol. Cells, vol.189, pp.21-26, 2019.

M. K. Stodolny, « Novel Schemes of p+ poly-Si Hydrogenation Implemented in Industrial 6'' Bifacial Front-and-Rear Passivating Contacts Solar Cells », 35th EU-PVSEC Proc, pp.414-417, 2018.

D. L. Young, « Front/Back Poly-Si/SiO2 Passivated Contact Device with Voc > 720 mV », présenté à 35th European Photovoltaic Solar Energy Conference and Exhibition, pp.700-703, 2018.

S. Duttagupta, N. Nandakumar, P. Padhamnath, J. K. Buatis, R. Stangl et al., « monoPoly TM cells: Large-area crystalline silicon solar cells with fire-through screen printed contact to doped polysilicon surfaces, Sol. Energy Mater. Sol. Cells, vol.187, pp.76-81, 2018.

. Le-même-masque, Dans un premier temps, l'interface OTC/homojonction est investiguée, notamment en étudiant l'influence d'une couche de passivation ultra-mince sur le passage des charges à l'interface. Dans un second temps, l'interface OTC/n + poly-Si est caractérisée, et l'étude de ces contacts est réalisée dans les deux cas également après recuit. Par ailleurs, le contact OTC/jonction étant réalisé sur toute la surface des cellules, l'objectif est d

, Contact OTC/homojonction p + et influence d'une couche de passivation ultramince Afin d'analyser la résistivité de contact de l'interface OTC/ homojonction p + en fonction de l'épaisseur d'une couche de passivation ultramince

, AlOx (ALD) de différentes épaisseurs ont été déposées puis activées par recuit FGA. Le dépôt pleine plaque de 50 nm d'AZO (ALD) a ensuite été réalisé puis des dépôts localisés de 50 nm d'ITO (PC) et de 600 nm d'Ag (PC). L'AZO (ALD) ne pouvant être réalisé localement par masquage, ce matériau a été gravé sélectivement dans une solution de HCl fortement diluée en fin de procédé, les zones préalablement recouvertes par l'ITO, Après le surdopage p + , réalisé par diffusion gazeuse sur des substrats de silicium de type n texturés, les couches d

/. Ito, PC) a été choisie pour ces échantillons afin de ne pas dégrader la couche de passivation mince lors de la pulvérisation cathodique. Suite aux mesures TLM, la courbe de ?contact AZO/p+ en fonction de l'épaisseur d'AlOx (ALD)

, Les valeurs de ?contact AZO/p+ dépassent alors fortement la limite de 100 m?.cm 2 fixée pour ce contact. L'intégration de la couche de passivation mince d'AlOx pour les cellules semble alors compromise en l'état. Afin d'améliorer le passage des charges à cette interface, il serait possible de réaliser ces dépôts d'AlOx sur des surfaces ayant subi un nettoyage HF pré-dépôt. En effet, ici, un rinçage ozoné ayant été réalisé avant le dépôt d'AlOx, une épaisseur d'oxyde supplémentaire d'environ 1nm était présente. Néanmoins, cet oxyde est utile pour améliorer l'homogénéité de la couche d'AlOx et ses propriétés passivantes. Ainsi, il sera probablement préférable, Il apparaît que les valeurs de résistivité augmentent fortement par l'insertion de 0,4 nm d'AlOx à l'interface

, les valeurs de résistivité de contact à l'interface OTC/n + poly-Si sont inférieures à l'objectif de 100 m?.cm 2 même avant le recuit. Néanmoins, une augmentation significative de ?contact OTC/n+ poly-Si peut être observée pour les échantillons présentant la bicouche recuite sous air : une telle augmentation est probablement liée à l'augmentation de la résistivité de la couche d'AZO (ALD) après un recuit sous air (voir partie III.2.2 p.83). Ainsi, le recuit sous atmosphère contrôlée (N 2 ) permet de limiter l'augmentation de ? contact OTC/n+ poly-Si et donc de stabiliser l'interface avec le n + poly-Si. Par ailleurs, un recuit des échantillons au sein d'un four à passage infrarouge à 550°C ne semble pas impacter la résistivité de contact OTC/n + poly-Si, Pour la monocouche d'ITO (PC) ainsi que pour la bicouche ITO (PC) / AZO (ALD)

, En effet, après la texturation des substrats de silicium, les surdopages bore et phosphore de part et d'autre du substrat ont été réalisés par diffusion gazeuse. Les substrats ont par la suite été nettoyés et ont subi un rinçage ozoné avant le dépôt de 100 nm d'OTC en surface, la sérigraphie et le recuit à 200°C et 300°C sous air pendant 20 minutes. Pour cette structure les performances attendues en VOC et JSC sont relativement faibles, Cette partie a pour but d'analyser le potentiel des structures de cellules à contacts passivés proposées dans la partie, p.42

, Ici comme pour les précédentes approches, après la texturation des substrats de silicium, le nettoyage des plaquettes a lieu, suivi d'un rinçage ozoné. Les plaquettes sont ensuite introduites au sein de la chambre LPCVD afin de subir un dépôt double face de 20 nm ou 30 nm de poly-Si intrinsèque (poly-Si (i)). Les couches de poly-Si (i) sont alors dopées par implantation PIII de bore en face avant et de phosphore en face arrière du dispositif, Les cellules intégrant du poly-Si dopé sur les deux faces du dispositif (voir Figure V-13 (c)) : ce procédé simplifié permet l'intégration bifaciale des couches de poly-Si dopées

, Les substrats sont par la suite nettoyés (HF) pour enlever l'oxyde résiduel avant le dépôt de 100 nm d'OTC, la sérigraphie et le recuit à 200°C et 300°C sous air pendant 5 minutes. Pour cette structure les performances en VOC et JSC devraient être améliorées par rapport aux structures précédentes, cette dernière présentant une passivation des contacts par la couche poly-Si sur oxyde déposée sur les deux faces

, Comparaison des performances obtenues sur les différentes structures de cellules Cette sous partie traitera dans un premier temps de la comparaison des structures contactées par l'ITO (PC) standard puis dans un second temps s'intéressera à l'impact du remplacement de cet ITO (PC) standard par un empilement ITO (PC)/AZO (ALD) moins agressif pour les contacts passivés

, Comparatif des différentes structures de cellules proposées

P. Dans-cette, les différentes structures de cellules fabriquées sont comparées, en utilisant une monocouche d'ITO (PC) comme OTC de référence. Par ailleurs, pour les cellules incluant des empilements poly-Si/SiOx/c-Si double face, seule les cellules incluant des couches de 30 nm de poly-Si sont étudiées

, impact de la température de recuit des cellules intégrant des monocouches d'ITO (PC) sur les paramètres I-V, il apparaît que le recuit des échantillons à 300°C est bénéfique. En effet, pour l'intégralité des dispositifs, une augmentation du VOC du JSC et des FF est observée. Ce gain peut être expliqué par l'amélioration des propriétés électriques mais aussi optiques des couches d'ITO suite à leur recuit à 300°C sous air

, Alors qu'on pourrait s'attendre à une hausse significative des performances en VOC et JSC de par la présence d'un contact passivé en face arrière, les performances ne sont pas supérieures : si une baisse des recombinaisons de surface semble être obtenue (amélioration du JSC), cette dernière est entièrement contre-balancée par une chute du FF. Cette chute du FF, ainsi que les faibles valeurs de J SC et V OC , sont probablement dues au procédé complexe de fabrication des cellules. En effet, la couche de barrière froide doit être entièrement enlevée par voie chimique afin de permettre une bonne prise de contact des OTC sur la couche de n + poly-Si. Il est possible que cette gravure dégrade les propriétés de passivation de surface et que des résidus de la barrière subsistent

, Références bibliographiques du Chapitre V

G. G. Untila, T. N. Kost, A. B. Chebotareva, and E. D. Kireeva, « Contact resistance of indium tin oxide and fluorine-doped indium oxide films grown by ultrasonic spray pyrolysis to diffusion layers in silicon solar cells, Sol. Energy Mater. Sol. Cells, vol.137, pp.26-33, 2015.

E. Bruhat, T. Desrues, B. Grange, D. Blanc-pélissier, and E. S. Dubois, « Bifacial crystalline silicon homojunction cells contacted with highly resistive TCO layers, AIP Conf. Proc, vol.1999, issue.1, p.40004, 2018.

E. Bruhat, T. Desrues, D. Blanc-pélissier, B. Grange, and E. S. Dubois, « Optimizing TCO Layers for Novel Bifacial Crystalline Silicon Homojunction Solar Cells Integrating Passivated Contacts, European Photovoltaic Solar Energy Conference and Exhibition, pp.610-613, 2018.

D. Pysch, A. Mette, and S. W. Glunz, « A review and comparison of different methods to determine the series resistance of solar cells, Sol. Energy Mater. Sol. Cells, vol.91, pp.1698-1706, 2007.

R. Peibst, « Building Blocks for Industrial, Screen-Printed Double-Side Contacted POLO Cells With Highly Transparent ZnO:Al Layers », IEEE J. Photovolt, pp.1-7, 2018.

M. Dahlinger, K. Carstens, J. R. Köhler, R. Zapf-gottwick, and J. H. Werner, « Laser Doped Screen-printed Back Contact Solar Cells Exceeding 21% Efficiency, Energy Procedia, vol.55, pp.410-415, 2014.

P. Padhamnath, « Metal contact recombination in monoPoly TM solar cells with screenprinted & fire-through contacts, Sol. Energy Mater. Sol. Cells, vol.192, pp.109-116, 2019.

A. Rodofili, « Laser Transfer and Firing of NiV Seed Layer for the Metallization of Silicon Heterojunction Solar Cells by Cu-Plating, Sol. RRL, vol.1, issue.8, p.1700085, 2017.

, AZO (PC) peut ainsi être considérée comme une alternative intéressante aux dépôts standards d'ITO (PC) pour des applications nécessitant des recuits jusqu'à 350°C. Par ailleurs, lorsque déposées sur des couches minces d'a-Si:H (i), les couches d'AZO (PC) observent une réparation des propriétés de passivation des échantillons suite à l'étape de recuit, faisant de ces dépôts une alternative sans indium intéressante. Pour des utilisations sans recuit thermique, seules deux solutions semblent envisageables pour ne pas endommager la passivation de surface : les monocouches d'AZO (ALD) ou les bicouches ITO (PC)/AZO (ALD), propriétés de l'ITO (PC) et de l'AZO (PC) s'améliorent bien avec le recuit. L'AZO (PC) présente même une transmission effective supérieures à celle de l'ITO (PC). L'

, SiOx, a-Si:H (i)). De plus, les interactions entre ces couches minces diélectriques et les dépôts d'OTC semblent pour l'heure réduire leurs propriétés de passivation. Face à ces limitations, l'hydrogénation des interfaces par des empilements SiNx:H/AZO (ALD) et SiNx:H/AlOx/AZO (ALD) a été développée. Ces empilements diélectriques/OTC, très prometteurs, permettent quant à eux l'obtention d'i-VOC > 700 mV après recuit à haute température sur des substrats non surdopés et polis chimiquement. Ces propriétés de passivation sont néanmoins fortement diminuées par la texturation de surface et/ou la présence d'un surdopage homojonction de type p + ou n + . De plus, si les couches d'AZO (ALD) sont généralement très sensibles au recuit sous air qui les rend résistives, ce n'est pas le cas des empilements SiNx:H/AZO (ALD) et SiNx:H/AlOx/AZO (ALD) : une amélioration de la résistance par carré de la couche est constatée pour l'empilement SiNx:H/AlOx/AZO (ALD), Optimisation de la passivation Différentes approches ont été investiguées afin d'obtenir d'excellentes propriétés de passivation, compatibles avec des procédés de fabrication industriels. Les couches minces déposées sur sur-dopages homojonction, bien que prometteuses, conduisent pour l'instant à des valeurs de i-VOC trop faibles (< 700 mV) avec les matériaux testés ici

, Ces dernières permettent d'obtenir des valeurs de i-VOC supérieures à 720 mV après recuit de cristallisation, valeurs pouvant ensuite être encore améliorées par des procédés d'hydrogénation. Néanmoins, la finesse de ces couches nécessite une prise de contact par OTC car une sérigraphie de pâte traversante pourrait réduire les propriétés de passivation. L'implémentation sur ces jonctions d'empilements diélectriques/AZO permet non seulement l, Finalement, des couches minces de n + poly-Si/SiOx ont été développées dans ces travaux

E. Bruhat, T. Desrues, B. Grange, and H. Lignier, Danièle Blanc-Pélissier and Sébastien Dubois, TCO contacts for high efficiency c-Si solar cells: Influence of different annealing steps on the Si substrates and TCO layers properties, Energy Procedia, vol.124, pp.829-833

E. Bruhat, T. Desrues, B. Grange, D. Blanc-pélissier, and S. Dubois, Bifacial Crystalline Silicon Homojunction Cells Contacted with Highly Resistive TCO Layers, AIP Conference Proceedings, vol.1999, issue.1, p.40004, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01891178

E. Bruhat, T. Desrues, B. Grange, D. Blanc-pélissier, and S. Dubois, Optimizing TCO Layers for Novel Bifacial Crystalline Silicon Homojunction Solar Cells Integrating Passivated Contacts, 35th, European Photovoltaic Solar Energy Conference Proceedings, pp.610-613, 2018.

E. Bruhat, T. Desrues, D. Blanc-pélissier, B. Martel, R. Cabal et al., TCO Contacts on Poly-Si Layers: High and Low Temperature Approaches to Maintain Passivation and Contact Properties, 2019.

E. Bruhat, T. Desrues, D. Blanc-pélissier, B. Martel, R. Cabal et al., Contacting n + Poly-Si Junctions with Fired AZO Layers: A Promising Approach for High Temperature Passivated Contact Solar Cells, th IEEE Photovoltaic Specialists Conference Proceedings, vol.46, 2019.

E. Bruhat, T. Desrues, D. Blanc-pélissier, and B. Martel, Raphaël Cabal and Sébastien Dubois, Fired Hydrogenated AZO Layers: A New Passivation Approach for High Temperature Passivated Contact Solar Cells, 36 th European Photovoltaic Solar Energy Conference Proceeding, 2019.

E. Bruhat, T. Desrues, D. Blanc-pélissier, and S. Dubois,