. Distributed and . .. Model,

D. Zero-forcing, 116 6.3.1 Adapting Phase to CSIT Topology, Hybrid Active-Passive ZF Precoding

, Rate Gap of Zero-Forcing in the Distributed CSIT Setting, p.123

, Analysis of the Power Normalization Parameters ? i

.. .. Numerical-results,

.. .. Conclusions,

, Rate Gap of the M×K Network MISO with Distributed CSIT 135

. .. Preliminaries,

C. .. Zero-forcing-precoding, 139 7.2.1 Centralized Zero-Forcing Schemes (Under ideal CSIT sharing)

R. Gap-of-the, M. Network, and . .. Setting, 3.2 Proposed Transmission Scheme: Consistent Distributed ZF

.. .. , 152 7.4.1 Neglecting Non-Consistent Events

.. .. Numerical-results,

. .. Conclusions, 163 décennie. Il est prévu que le déploiement imminent de la technologie de réseau cellulaire de cinquième génération (5G) [1] entraîne non seulement débits de données plusélevés, mais aussi un variété de cas d'utilisation inédits et diversifiés. En effet, cette diversification des services est l, Trois cas d'utilisation principaux sont envisagés dans la générationà venir : Communications robustes et ultra fiablesà faible latence (URLLC

, La conjonction de ces trois côtés est destinéeà contribuerà l'épanouissement de fonctionnalités jamais vues auparavant telles que l

, Afin de pouvoir fournir ces nouvelles applications, le réseau s'appuiera sur des technologies innovantes [16], telles que les communicationsà ondes millimétriques, pp.23-26

, En outre, l'augmentation attendue de la densité des réseaux -en termes de cellules et d'appareils -fait de la gestion des interférences l'un des problèmes essentiels dans des transmissions sans fil

, Cette hétérogénéité affecté egalement les capacités de backhaul des différents noeuds. Par ailleurs, les situations dans lesquelles les noeuds communicants se déplacentà grande vitesse sont en plein essor. Les scénarios hétérogènes et avec mobilitéélevée conduisentà l'impossibilité d'avoir une gestion centralisée des communications sans fil, d'où la nécessité de comprendre comment les systèmes distribués se comportent et quelles sont leurs limites fondamentales. Précodage avec Information du Canal Décentralisée L'hypothèse du modèle C-CSIT peut modéliser unémetteur multi-antenne ou une transmission conjointe de différentsémetteurs non co-localisés si nous, L'une des conséquences qui découle de la description du réseau antérieurement décrite est l'augmentation de l'hétérogénéité du réseau, soit entre des noeuds communicants ou entre différents réseaux partageant les mêmes ressources

C. Dans-ces, on peut supposer que la CSI imparfaite est parfaitement partagée entre les antennes d'émission non co-localisées. Néanmoins, les réseaux hétérogènesà venir comprennent une grande variété d'appareils, tels que les terminaux d'utilisateurs, les relais drones, les pico-stations, etc., qui cherchent a coopérer malgré l'absence d'une liaison de retour idéale entre eux. D'autres scénarios mettant en scène des liens backhaul existants peuvent favoriser un traitement local plutôt que centralisé afin de répondre aux fortes contraintes de latence dérivées de la 5G

, Cet aspect permet d'analyser ce qui se passe lorsque la CSI n'est pas parfaitement partagé entre les dispositifs, c'est-à-dire lorsque chaque noeud peut avoir un CSI différent

, Dans cette thèse, nous nous concentrons sur le réseau MIMO distribué pourétudier l'impact de ces divergences entre les noeuds coopérants. Bien qu'il aitété suggéré dans la littérature passée que les réseaux avec CSIT distribuée pourraient souffrir une réduction sévère de la performance par rapport aux scénarios classiques de CSIT centralisé, Dans cette configuration réseau, chaque noeud est doté d'une information imparfaite sur l'état du système, vol.82

, Plusieurs travaux se sont concentrés sur cette configuration avec CSIT distribuée [83], par exemple, l'analyse des performances d'alignement d'interférence [76] ou l'étude de la performance de Zéro-Forçage conventionnel dans la limite de grand système, vol.84

. Toutefois, bon nombre des questions et des défis posés par ce contexte demeurent des problèmes non résolus. Par conséquent, il y a un intérêtévidentà examiner le scénario dans lequel chaqueémetteur peut avoir une information différente sur le canal, vol.85

, Il existe un grand nombre de systèmes distribués différents, vol.83, pp.86-91

C. Néanmoins and M. Thèse-s'adresseà-ce-que-l'on-appelle-le-réseau-distribué, dans lequel lesémetteurs ont accèsà toute l'informationà fournir aux utilisateurs, mais ils ne partagent pas la même CSIT [82]. Ce modèle survient dans les cas où les données peuventêtre mises en mémoire tampon ou en antémémoire

A. Bazco, P. De-kerret, D. Gesbert, and N. Gresset, Generalized Degrees-of-Freedom of the 2-user MISO Broadcast Channel with Distributed CSIT, dans Proc. IEEE International Symposium on Information Theory, pp.1092-1096, 2017.

A. Bazco, P. De-kerret, D. Gesbert, and N. Gresset, Méthode de transmission robuste au partage imparfait de l'information de canal entre transmetteurs, dans Proc. Colloque GRETSI, 2017.

A. Bazco-nogueras, L. Miretti, P. De-kerret, D. Gesbert, and N. Gresset, Achieving Vanishing Rate Loss in Decentralized Network MIMO, dans Proc. IEEE International Symposium on Information Theory (ISIT), pp.1457-1461, 2019.

A. Bazco-nogueras, L. Miretti, P. De-kerret, D. Gesbert, and N. Gresset, Transmission Robuste de Zéro-Forçage Asymptotiquement Optimale pour Coopération Imparfaite de Transmetteurs, dans Proc. Colloque GRETSI, 2019.

A. Journaux, P. Bazco-nogueras, D. De-kerret, N. Gesbert, and . Gresset, Distributed CSIT does not reduce the Generalized DoF of the 2-user MISO Broadcast Channel, pp.685-688, 2019.

A. Bazco-nogueras, P. De-kerret, D. Gesbert, and N. Gresset, On the Degrees-of-Freedom of the K-user Distributed Broadcast Channel, soumisà IEEE Transactions on Information Theory, 2018.

A. Bazco-nogueras, P. De-kerret, D. Gesbert, and N. Gresset, Asymptotically Achieving Centralized Rate on the M × K Decentralized Network MISO, 2019.

G. P. Group, View on 5G Architecture, 2019.

A. Gupta and R. K. Jha, A survey of 5g network: Architecture and emerging technologies, IEEE Access, vol.3, pp.1206-1232, 2015.

P. Popovski, J. J. Nielsen, C. Stefanovic, E. D. Carvalho, E. Strom et al., Wireless access for ultra-reliable low-latency communication: Principles and building blocks, IEEE Network, vol.32, issue.2, pp.16-23, 2018.

M. Bennis, M. Debbah, and H. V. Poor, Ultrareliable and low-latency wireless communication: Tail, risk, and scale, Proceedings of the IEEE, vol.106, issue.10, pp.1834-1853, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02873993

M. Kountouris, P. Popovski, I. Hou, S. Buzzi, A. Müller et al., Guest Editorial Ultra-Reliable Low-Latency Communications in wireless networks, IEEE J. Sel. Areas Commun, vol.37, issue.4, pp.701-704, 2019.

P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll et al., Mobile network architecture evolution toward 5g, IEEE Communications Magazine, vol.54, issue.5, pp.84-91, 2016.

C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson et al., Massive machine-type communications in 5g: physical and mac-layer solutions, IEEE Communications Magazine, vol.54, issue.9, pp.59-65, 2016.

Z. Dawy, W. Saad, A. Ghosh, J. G. Andrews, and E. Yaacoub, Toward massive machine type cellular communications, IEEE Wireless Communications, vol.24, issue.1, pp.120-128, 2017.

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, 5G-Enabled Tactile Internet, IEEE J. Sel. Areas Commun, vol.34, issue.3, pp.460-473, 2016.

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, Realizing the tactile internet: Haptic communications over next generation 5G cellular networks, IEEE Wireless Commun, vol.24, issue.2, pp.82-89, 2017.

Z. Becvar, M. Vondra, P. Mach, J. Plachy, and D. Gesbert, Performance of mobile networks with UAVs: Can flying base stations substitute ultra-dense small cells, Proc. 23th European Wireless Conference (EW), pp.1-7, 2017.

B. Li, Z. Fei, and Y. Zhang, UAV communications for 5G and Beyond: Recent advances and future trends, IEEE Internet of Things Journal, vol.6, issue.2, pp.2241-2263, 2019.

Z. Ning, F. Xia, N. Ullah, X. Kong, and X. Hu, Vehicular social networks: Enabling smart mobility, IEEE Communications Magazine, vol.55, issue.5, pp.16-55, 2017.

Z. Su, Y. Hui, and Q. Yang, The next generation vehicular networks: A contentcentric framework, IEEE Wireless Communications, vol.24, issue.1, pp.60-66, 2017.

C. Wu, Z. Liu, D. Zhang, T. Yoshinaga, and Y. Ji, Spatial intelligence toward trustworthy vehicular iot, IEEE Commun. Mag, vol.56, issue.10, pp.22-27, 2018.

B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, Networks and Devices for the 5G Era, IEEE Communications Mag, vol.52, issue.2, pp.90-96, 2014.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar et al., Millimeter wave mobile communications for 5g cellular: It will work, IEEE Access, vol.1, pp.335-349, 2013.

J. Qiao, X. S. Shen, J. W. Mark, Q. Shen, Y. He et al., Enabling device-todevice communications in millimeter-wave 5g cellular networks, IEEE Communications Magazine, vol.53, issue.1, pp.209-215, 2015.

M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li et al., Millimeter wave communications for future mobile networks, IEEE Journal on Selected Areas in Communications, vol.35, issue.9, pp.1909-1935, 2017.

E. Bastug, M. Bennis, and M. Debbah, Living on the edge: The role of proactive caching in 5G wireless networks, IEEE Commun. Mag, vol.52, issue.8, pp.82-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01098858

M. Chen, Y. Qian, Y. Hao, Y. Li, and J. Song, Data-driven computing and Caching in 5G networks: Architecture and delay analysis, IEEE Wireless Commun, vol.25, issue.1, pp.70-75, 2018.

A. Asadi, Q. Wang, and V. Mancuso, A survey on device-to-device communication in cellular networks, IEEE Communications Surveys Tutorials, vol.16, issue.4, pp.1801-1819, 2014.

J. Hoydis, S. Brink, and M. Debbah, Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?, IEEE J. Sel. Areas Commun, vol.31, issue.2, pp.160-171, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00925966

E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, Massive mimo for next generation wireless systems, IEEE Communications Magazine, vol.52, issue.2, pp.186-195, 2014.

E. Björnson, E. G. Larsson, and T. L. Marzetta, Massive mimo: ten myths and one critical question, IEEE Communications Magazine, vol.54, issue.2, pp.114-123, 2016.

A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. Nguyen et al., Hybrid beamforming for massive mimo: A survey, IEEE Communications Magazine, vol.55, issue.9, pp.134-141, 2017.

M. Costa and A. E. Gamal, The capacity region of the discrete memoryless interference channel with strong interference (Corresp.), IEEE Trans. Inf. Theory, vol.33, issue.5, pp.710-711, 1987.

G. Caire and S. Shamai, On the achievable throughput of a multiantenna Gaussian Broadcast Channel, IEEE Trans. Inf. Theory, vol.49, issue.7, pp.1691-1706, 2003.

A. Lozano, A. M. Tulino, and S. Verdú, High-SNR power offset in multiantenna communication, IEEE Trans. Inf. Theory, vol.51, issue.12, pp.4134-4151, 2005.

B. Hassibi and M. Sharif, Fundamental Limits in MIMO Broadcast Channels, IEEE Journal on Selected Areas in Communications, vol.25, issue.7, pp.1333-1344, 2007.

M. Maddah-ali, A. Motahari, and A. Khandani, Communication over MIMO X channels: Interference alignment, decomposition, and performance analysis, IEEE Trans. Inf. Theory, vol.54, issue.8, pp.3457-3470, 2008.

E. Pateromichelakis, M. Shariat, A. U. Quddus, and R. Tafazolli, On the evolution of multi-cell scheduling in 3gpp lte / lte-a, IEEE Communications Surveys Tutorials, vol.15, issue.2, pp.701-717, 2013.

H. Dahrouj and W. Yu, Coordinated beamforming for the multicell multi-antenna wireless system, IEEE Trans. on Wireless Commun, vol.9, issue.5, pp.1748-1759, 2010.

F. Maschietti, D. Gesbert, P. De-kerret, and H. Wymeersch, Robust location-aided beam alignment in millimeter wave massive mimo, pp.2017-2017

, IEEE Global Communications Conference, 2017.

S. Das, H. Viswanathan, and G. Rittenhouse, Dynamic load balancing through coordinated scheduling in packet data systems, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies, vol.1, pp.786-796, 2003.

R. Irmer, J. Droste, P. Marsch, M. Grieger, G. Fettweis et al., Coordinated multipoint: Concepts, performance, and field trial results, IEEE Communications Magazine, vol.49, issue.2, pp.102-111, 2011.

H. Weingarten, Y. Steinberg, and S. Shamai, The capacity region of the gaussian multiple-input multiple-output broadcast channel, IEEE Trans. Inf. Theory, vol.52, issue.9, pp.3936-3964, 2006.

P. Viswanath and D. N. Tse, Sum capacity of the vector Gaussian Broadcast Channel and uplink-downlink duality, IEEE Trans. Inf. Theory, vol.49, issue.8, pp.1912-1921, 2003.

N. Jindal and A. Goldsmith, Dirty-paper coding versus tdma for mimo broadcast channels, IEEE Trans. Inf. Theory, vol.51, issue.5, pp.1783-1794, 2005.

V. R. Cadambe and S. A. Jafar, Interference alignment and degrees of freedom of the K-user interference channel, IEEE Trans. Inf. Theory, vol.54, issue.8, pp.3425-3441, 2008.

R. Etkin, D. Tse, and H. Wang, Gaussian interference channel capacity to within one bit, IEEE Trans. Inf. Theory, vol.54, issue.12, pp.5534-5562, 2008.

M. Kountouris, R. Francisco, D. Gesbert, D. T. Slock, and T. Salzer, Multiuser diversity -multiplexing tradeoff in mimo broadcast channels with limited feedback, Proc. Asilomar Conf. on Signals, Systems and Computers, pp.364-368, 2006.

C. K. Au-yeung and D. J. Love, On the performance of random vector quantization limited feedback beamforming in a MISO system, IEEE J. Sel. Areas Commun, vol.6, issue.2, pp.458-462, 2007.

P. Ding, D. J. Love, and M. D. Zoltowski, Multiple antenna Broadcast Channels with shape feedback and limited feedback, IEEE Trans. Signal Process, vol.55, issue.7, pp.3417-3428, 2007.

A. S. Motahari and A. K. Khandani, Capacity Bounds for the Gaussian Interference Channel, IEEE Trans. Inf. Theory, vol.55, issue.2, pp.620-643, 2009.

H. Huh, A. M. Tulino, and G. Caire, Network MIMO with linear zero-forcing beamforming: Large system analysis, impact of channel estimation, and reducedcomplexity scheduling, IEEE Trans. Inf. Theory, vol.58, issue.5, pp.2911-2934, 2012.

M. Min, Y. Jeon, and G. Im, On Achievable Multiplexing Gain of BD in MIMO Broadcast Channels With Limited Feedback, IEEE Trans. on Wireless Communications, vol.15, issue.2, pp.871-885, 2016.

E. Piovano and B. Clerckx, Optimal DoF Region of the K-User MISO BC With Partial CSIT, IEEE Commun. Lett, vol.21, issue.11, pp.2368-2371, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01493429

A. G. Davoodi and S. A. Jafar, CSIT Thresholds for Collapse of Degrees of Freedom in Wireless Networks, 2018 IEEE International Conference on Communications (ICC), pp.1-6, 2018.

A. G. Davoodi, B. Yuan, and S. A. Jafar, GDoF Region of the MISO BC: Bridging the Gap Between Finite Precision and Perfect CSIT, IEEE Trans. Inf. Theory, vol.64, issue.11, pp.7208-7217, 2018.

M. Maddah-ali and D. Tse, Completely stale transmitter channel state information is still very useful, IEEE Trans. Inf. Theory, vol.58, issue.7, pp.4418-4431, 2012.

J. Xu, J. G. Andrews, and S. A. Jafar, MISO Broadcast Channels with delayed finite-rate feedback: Predict or observe?, IEEE Trans. on Wireless Commun, vol.11, issue.4, pp.1456-1467, 2012.

R. Tandon, S. Mohajer, V. Poor, and S. Shamai, Degrees of freedom region of the MIMO interference channel with output feedback and delayed CSIT, IEEE Trans. Inf. Theory, issue.99, p.1, 2012.

S. Yang, M. Kobayashi, D. Gesbert, and X. Yi, Degrees of freedom of time correlated MISO Broadcast Channel with delayed CSIT, IEEE Trans. Inf. Theory, vol.59, issue.1, pp.315-328, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00749287

M. J. Abdoli, A. Ghasemi, and A. K. Khandani, On the Degrees of Freedom of K-User SISO interference and X channels with Delayed CSIT, IEEE Trans. Inf. Theory, vol.59, issue.10, pp.6542-6561, 2013.

M. Dai and B. Clerckx, Transmit beamforming for MISO Broadcast Channels with Statistical and Delayed CSIT, IEEE Trans. on Commun, vol.63, issue.4, pp.1202-1215, 2015.

A. Vahid, M. A. Maddah-ali, and A. S. Avestimehr, Approximate Capacity Region of the MISO Broadcast Channels With Delayed CSIT, IEEE Trans. on Commun, vol.64, issue.7, pp.2913-2924, 2016.

T. Gou and S. Jafar, Optimal use of current and outdated channel state information: Degrees of freedom of the MISO BC with mixed CSIT, IEEE Commun. Lett, vol.16, issue.7, pp.1084-1087, 2012.

P. De-kerret, D. Gesbert, J. Zhang, and P. Elia, Optimally bridging the gap from delayed to perfect CSIT in the K-user MISO BC, Proc. IEEE Information Theory Workshop (ITW), pp.300-304, 2016.

R. Tandon, S. A. Jafar, S. Shamai-(shitz, ). , and H. V. Poor, On the synergistic benefits of alternating CSIT for the MISO BC, IEEE Trans. Inf. Theory, vol.59, issue.7, pp.4106-4128, 2013.

J. Chen and P. Elia, Toward the performance versus feedback tradeoff for the two-user MISO Broadcast Channel, IEEE Trans. Inf. Theory, vol.59, issue.12, pp.8336-8356, 2013.

C. S. Vaze and M. K. Varanasi, Dirty paper coding for the mimo cognitive radio channel with imperfect csit, 2009 IEEE International Symposium on Information Theory, pp.2532-2536, 2009.

H. Du and T. Ratnarajah, Robust joint signal and interference alignment for mimo cognitive radio network, 2012 IEEE Wireless Communications and Networking Conference (WCNC), pp.448-452, 2012.

O. Munoz-medina, J. Vidal, and A. Agustin, Linear transceiver design in nonregenerative relays with channel state information, IEEE Transactions on Signal Processing, vol.55, issue.6, pp.2593-2604, 2007.

X. Tang and Y. Hua, Optimal design of non-regenerative mimo wireless relays, IEEE Transactions on Wireless Communications, vol.6, issue.4, pp.1398-1407, 2007.

H. W. Je, D. H. Kim, and K. B. Lee, Joint precoding for mimo-relay systems with partial channel state information, 2009 IEEE International Conference on Communications, pp.1-5, 2009.

Y. Huang, L. Yang, M. Bengtsson, and B. Ottersten, A limited feedback joint precoding for amplify-and-forward relaying, IEEE Transactions on Signal Processing, vol.58, issue.3, pp.1347-1357, 2010.

J. Zhang and K. B. Letaief, Interference management with relay cooperation in two-hop interference channels, IEEE Wireless Communications Letters, vol.1, issue.3, pp.165-168, 2012.

O. Simeone, O. Somekh, H. V. Poor, and S. Shamai, Downlink multicell processing with limited-backhaul capacity, EURASIP Journal on Advances in Signal Processing, 2009.

J. Zhao, T. Q. Quek, and Z. Lei, Coordinated multipoint transmission with limited backhaul data transfer, IEEE Trans. Wireless Commun, vol.12, issue.6, pp.2762-2775, 2013.

M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, 5g backhaul challenges and emerging research directions: A survey, IEEE Access, vol.4, pp.1743-1766, 2016.

P. Popovski, Ultra-reliable communication in 5g wireless systems, 1st International Conference on 5G for Ubiquitous Connectivity, pp.146-151, 2014.

R. Radner, Team decision problems, The Annals of Mathematical Statistics, 1962.

Y. C. Ho, Team decision theory and information structures, Proceedings of the IEEE, vol.68, issue.6, pp.644-654, 1980.

X. Rao, L. Ruan, and V. K. Lau, CSI feedback reduction for MIMO interference alignment, IEEE Trans. Signal Process, vol.61, issue.18, pp.4428-4437, 2013.

P. De-kerret and D. Gesbert, Interference alignment with incomplete CSIT sharing, IEEE Trans. Wireless Commun, vol.13, issue.5, pp.2563-2573, 2014.

C. Hao and B. Clerckx, Degrees-of-Freedom of the K-user MISO interference channel with delayed local CSIT, Proc. IEEE International Conference on Communications (ICC), pp.4217-4222, 2015.

N. Lee, R. Tandon, and R. W. Heath, Distributed space-time Interference Alignment with moderately Delayed CSIT, IEEE Trans. Wireless Commun, vol.14, issue.2, pp.1048-1059, 2015.

A. Vahid and R. Calderbank, Two-user erasure Interference Channels with local delayed CSIT, IEEE Trans. Inf. Theory, vol.62, issue.9, pp.4910-4923, 2016.

A. Lapidoth and Y. Steinberg, The multiple access channel with two independent states each known causally to one encoder, Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp.480-484, 2010.

R. Kolte, A. Özgür, and H. Permuter, Cooperative binning for semideterministic channels, IEEE Trans. Inf. Theory, vol.62, issue.3, pp.1231-1249, 2016.

P. De-kerret and D. Gesbert, Degrees of freedom of the network MIMO channel with distributed CSI, IEEE Trans. Inf. Theory, vol.58, issue.11, pp.6806-6824, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00807327

R. Zakhour and D. Gesbert, Team decision for the cooperative MIMO channel with imperfect CSIT sharing, Proc. Information Theory and Applications Workshop (ITA), 2010.

Q. Li, P. Kerret, D. Gesbert, and N. Gresset, Robust regularized ZF in decentralized Broadcast Channel with correlated CSI noise, Proc. Allerton Conference on Communication, Control, and Computing (Allerton), pp.329-336, 2015.

D. Gesbert, P. De-kerret, and ;. C. Richard, Team Methods for Device Cooperation in Wireless Networks, Cooperative and Graph Signal Processing, vol.18, pp.469-487, 2018.

S. Grandhi, R. Vijayan, and D. Goodman, Distributed power control in cellular radio systems, IEEE Trans. on Commun, vol.42, issue.234, pp.226-228, 1994.

B. L. Ng, J. S. Evans, S. V. Hanly, and D. Aktas, Distributed downlink beamforming with cooperative base stations, IEEE Trans. Inf. Theory, vol.54, issue.12, pp.5491-5499, 2008.

A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione, Gossip algorithms for distributed signal processing, Proceedings of the IEEE, vol.98, issue.11, pp.1847-1864, 2010.

V. Aggarwal, Y. Liu, and A. Sabharwal, Sum capacity of interference channels with a local view: Impact of distributed decisions, IEEE Trans. on Inf. Theory, vol.58, issue.3, pp.1630-1659, 2012.

A. Vahid and R. Calderbank, Two-User Erasure Interference Channels With Local Delayed CSIT, IEEE Trans. Inf. Theory, vol.62, issue.9, pp.4910-4923, 2016.

G. Sartoretti, Y. Wu, W. Paivine, T. K. Kumar, S. Koenig et al., Distributed reinforcement learning for multi-robot decentralized collective construction, Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol.9, 2019.

M. A. Maddah-ali and U. Niesen, Fundamental limits of Caching, IEEE Trans. Inf. Theory, vol.60, issue.5, pp.2856-2867, 2014.

J. Zhang, F. Engelmann, and P. Elia, Coded caching for reducing csit-feedback in wireless communications, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp.1099-1105, 2015.

J. Zhang and P. Elia, Fundamental Limits of Cache-Aided Wireless BC: Interplay of Coded-Caching and CSIT Feedback, IEEE Trans. Inf. Theory, vol.63, issue.5, pp.3142-3160, 2017.

M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer, Caching in named data networking for the wireless internet of things, 2015 International Conference on Recent Advances in Internet of Things (RIoT), pp.1-6, 2015.

S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang et al., A survey on mobile edge networks: Convergence of computing, caching and communications, IEEE Access, vol.5, pp.6757-6779, 2017.

A. Bazco, P. Kerret, D. Gesbert, and N. Gresset, Generalized degrees-of-freedom of the 2-user case MISO broadcast channel with distributed CSIT, Proc. IEEE International Symposium on Information Theory (ISIT), pp.1092-1096, 2017.

A. Bazco-nogueras, P. Kerret, D. Gesbert, and N. Gresset, Distributed CSIT Does Not Reduce the Generalized DoF of the 2-user MISO Broadcast Channel, IEEE Wireless Commun. Lett, vol.8, issue.3, pp.685-688, 2019.

A. Bazco, P. Kerret, D. Gesbert, and N. Gresset, Méthode de transmission robuste au partage imparfait de l'information de canal entre transmetteurs, 2017 GRETSI Colloque, 2017.

A. Bazco-nogueras, P. Kerret, D. Gesbert, and N. Gresset, On the Degrees-of-Freedom of the K-user Distributed Broadcast Channel, IEEE Trans. Inf. Theory, 2018.

A. Bazco-nogueras, L. Miretti, P. Kerret, D. Gesbert, and N. Gresset, Achieving Vanishing Rate Loss in Decentralized Network MIMO, Proc. IEEE International Symposium on Information Theory (ISIT), pp.1457-1461, 2019.

, Transmission robuste de zéro-forçage asymptotiquement optimale pour coopération imparfaite de transmetteurs, 2019.

A. Bazco-nogueras, P. Kerret, D. Gesbert, and N. Gresset, Asymptotically Achieving Centralized Rate on the MxK Decentralized Network MISO, 2019.

K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, Femtocaching: Wireless content delivery through distributed caching helpers, IEEE Trans. Inf. Theory, vol.59, issue.12, pp.8402-8413, 2013.

N. Golrezaei, A. G. Dimakis, and A. F. Molisch, Scaling Behavior for Deviceto-Device Communications With Distributed Caching, IEEE Trans. Inf. Theory, vol.60, issue.7, pp.4286-4298, 2014.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing and its role in the Internet of Things, Proc. Workshop on Mobile Cloud Computing (MCC), pp.13-16, 2012.

M. Peng, C. Wang, V. Lau, and H. V. Poor, Fronthaul-constrained cloud radio access networks: Insights and challenges, IEEE Wireless Commun, vol.22, issue.2, pp.152-160, 2015.

, Final definition and evaluation of PHY layer approaches for RANaaS and joint backhaul-access layer, 2011.

D. J. Love, R. W. Heath, V. K. Lau, D. Gesbert, B. D. Rao et al., An overview of limited feedback in wireless communication systems, IEEE J. Sel. Areas Commun, vol.26, issue.8, pp.1341-1365, 2008.

T. Cover and A. Thomas, Elements of information theory, 2006.

S. A. Jafar and M. J. Fakhereddin, Degrees of Freedom for the MIMO Interference Channel, IEEE Trans. Inf. Theory, vol.53, issue.7, pp.2637-2642, 2007.

M. A. Maddah-ali and D. N. Tse, Completely stale transmitter channel state information is still very useful, Proc. Allerton Conference on Communication, Control, and Computing (Allerton), 2010.

P. De-kerret, Transmitter cooperation with distributed feedback in wireless networks, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00952820

P. De-kerret, M. Guillaud, and D. Gesbert, Degrees of freedom of certain interference alignment schemes with distributed CSI, Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00868389

J. Chen, S. Yang, and P. Elia, On the fundamental feedback-vs-performance tradeoff over the MISO-BC with imperfect and delayed CSIT, Proc. IEEE International Symposium on Information Theory (ISIT), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00830764

M. Razaviyayn, G. Lyubeznik, and Z. Luo, On the degrees of freedom achievable through interference alignment in a MIMO interference channel, Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2011.

M. A. Maddah-ali and U. Niesen, Cache-aided interference channels, 2015 IEEE International Symposium on Information Theory (ISIT), pp.809-813, 2015.

A. Sengupta, R. Tandon, and O. Simeone, Cache aided wireless networks: Tradeoffs between storage and latency, 2016 Annual Conference on Information Science and Systems (CISS), pp.320-325, 2016.

J. Hachem, U. Niesen, and S. N. Diggavi, Degrees of freedom of cache-aided wireless interference networks, IEEE Transactions on Information Theory, vol.64, issue.7, pp.5359-5380, 2018.

A. Davoodi and S. A. Jafar, Aligned Image Sets Under Channel Uncertainty: Settling Conjectures on the Collapse of Degrees of Freedom Under Finite Precision CSIT, IEEE Trans. Inf. Theory, vol.62, issue.10, pp.5603-5618, 2016.

A. Lozano, R. W. Heath, and J. G. Andrews, Fundamental limits of cooperation, IEEE Trans. Inf. Theory, vol.59, issue.9, pp.5213-5226, 2013.

V. V. Veeravalli and A. E. Gamal, Interference Management in Wireless Networks: Fundamental Bounds and the Role of Cooperation, 2018.

C. Huang, S. A. Jafar, S. Shamai-(shitz, ). , and S. Vishwanath, On degrees of freedom region of MIMO networks without channel state information at transmitters, IEEE Trans. Inf. Theory, vol.58, issue.2, pp.849-857, 2012.

G. Bresler and D. Tse, The two-user gaussian interference channel: a deterministic view, European Transactions on Telecommunications, vol.19, issue.4, pp.333-354, 2008.

D. Tuninetti, On interFerence channel with generalized feedback (IFC-GF), Proc. IEEE International Symposium on Information Theory (ISIT), 2007.

W. Wu, S. Vishwanath, and A. Arapostathis, Capacity of a class of cognitive radio channels: Interference channels with degraded message sets, IEEE Trans

, Inf. Theory, vol.53, issue.11, 2007.

P. Mohapatra and C. Murthy, Inner bound on the GDOF of the K-user MIMO Gaussian symmetric interference channel, IEEE Trans. Commun, issue.99, pp.1-10, 2012.

C. S. Vaze and M. K. Varanasi, The degree-of-freedom regions of MIMO broadcast, interference, and cognitive radio channels with no CSIT, IEEE Trans. Inf. Theory, vol.58, issue.8, pp.5354-5374, 2012.

A. Chaaban and A. Sezgin, On the generalized degrees of freedom of the Gaussian interference relay channel, IEEE Trans. Inf. Theory, vol.58, issue.7, pp.4432-4461, 2012.

S. Shamai and S. Verdú, The impact of frequency-flat fading on the spectral efficiency of CDMA, IEEE Trans. Inf. Theory, vol.47, issue.4, pp.1302-1327, 2001.

J. Lee and N. Jindal, High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding Versus Linear Precoding, IEEE Trans. Inf. Theory, vol.53, issue.12, pp.4787-4792, 2007.

N. , MIMO Broadcast Channels with finite-rate feedback, IEEE Trans. Inf. Theory, vol.52, issue.11, pp.5045-5060, 2006.

S. Lin and I. Wang, Gaussian Broadcast Channels With Intermittent Connectivity and Hybrid State Information at the Transmitter, IEEE Trans. Inf. Theory, vol.64, issue.9, pp.6362-6383, 2018.

S. Lashgari, R. Tandon, and S. Avestimehr, MISO Broadcast Channel With Hybrid CSIT: Beyond Two Users, IEEE Trans. Inf. Theory, vol.62, issue.12, pp.7056-7077, 2016.

E. Piovano, H. Joudeh, and B. Clerckx, Overloaded multiuser MISO transmission with imperfect CSIT, Proc. Asilomar Conf. on Signals, Systems and Computers, pp.34-38, 2016.

P. De-kerret, R. Fritzsche, D. Gesbert, and U. Salim, Robust precoding for network MIMO with hierarchical CSIT, 2014 11th Int. Symp. Wireless Commun. Systems (ISWCS), pp.987-991, 2014.

P. De-kerret, A. Bazco, and D. Gesbert, Enforcing coordination in network MIMO with unequal CSIT, 2016 50th Asilomar Conference on Signals, Systems and Computers, pp.39-43, 2016.

I. Atzeni and D. Gesbert, Cooperative mimo precoding with distributed csi: A hierarchical approach, 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp.1-5, 2018.

G. Hardy, E. Wright, D. Heath-brown, and J. Silverman, An Introduction to the Theory of Numbers, ser. Oxford mathematics, 2008.

D. E. Knuth, Big Omicron and Big Omega and Big Theta, SIGACT News, vol.8, issue.2, pp.18-24, 1976.

S. Janson, Probability asymptotics: notes on notation, 2011.

C. Hao, B. Rassouli, and B. Clerckx, Achievable DoF Regions of MIMO Networks With Imperfect CSIT, IEEE Trans. Inf. Theory, vol.63, issue.10, pp.6587-6606, 2017.

M. W. Amos-lapidoth and S. Shamai, On the capacity of fading MIMO Broadcast Channels with imperfect transmitter side-information, 2006.

C. Hao, Y. Wu, and B. Clerckx, Rate analysis of two-receiver MISO Broadcast Channel with finite rate feedback: A rate-splitting approach, IEEE Trans. on Commun, vol.63, issue.9, pp.3232-3246, 2015.

A. Wiesel, Y. C. Eldar, and S. Shamai, Zero-forcing precoding and generalized inverses, IEEE Trans. Signal Process, vol.56, issue.9, pp.4409-4418, 2008.

B. Clerckx, H. Joudeh, C. Hao, M. Dai, and B. Rassouli, Rate splitting for MIMO wireless networks: a promising PHY-layer strategy for LTE evolution, IEEE Commun. Mag, vol.54, issue.5, pp.98-105, 2016.

A. Davoodi and S. A. Jafar, Aligned Image Sets and the GDoF of Symmetric MIMO Interference Channel with Partial CSIT, Proc. IEEE Global Communications Conference (GLOBECOM), pp.1-6, 2017.

, Generalized Degrees of Freedom of the Symmetric K User Interference Channel Under Finite Precision CSIT, IEEE Trans. Inf. Theory, vol.63, issue.10, pp.6561-6572, 2017.

A. G. Davoodi and S. Jafar, Aligned Image Sets and the Generalized Degrees of Freedom of Symmetric MIMO Interference Channel With Partial CSIT, IEEE Trans. Inf. Theory, vol.65, issue.1, pp.406-417, 2019.

A. G. Davoodi and S. A. Jafar, K-User Symmetric M × N MIMO Interference Channel Under Finite Precision CSIT: A GDoF Perspective, IEEE Trans. Inf. Theory, vol.65, issue.2, pp.1126-1136, 2019.

E. Piovano, H. Joudeh, and B. Clerckx, Generalized Degrees of Freedom of the Symmetric Cache-Aided MISO Broadcast Channel With Partial CSIT, IEEE Trans. Inf. Theory, vol.65, issue.9, pp.5799-5815, 2019.

. Veniam, Moving Terabytes of data between vehicles and the cloud, 2019.

C. T. Ng, D. Gunduz, A. J. Goldsmith, and E. Erkip, Distortion minimization in Gaussian layered broadcast coding with successive Refinement, IEEE Trans

, Inf. Theory, vol.55, issue.11, pp.5074-5086, 2009.

O. E. Ayach and R. W. Heath, Interference alignment with analog channel state feedback, IEEE Trans. Wireless Commun, vol.11, issue.2, pp.626-636, 2012.

A. G. Davoodi and S. A. Jafar, Sum-set inequalities from aligned image sets: Instruments for robust gdof bounds, Proc. IEEE International Symposium on Information Theory (ISIT), pp.684-688, 2017.

A. Davoodi and S. A. Jafar, Generalized Degrees of Freedom of the Symmetric K-User Interference Channel under Finite Precision CSIT, CoRR, 2016.

M. Madiman, On the entropy of sums, Proc. IEEE Information Theory Workshop (ITW), pp.303-307, 2008.

P. Billingsley, Probability and Measure, ser. Wiley Series in Probability and Statistics, 1995.

R. Couillet and M. Debbah, Random matrix methods for wireless Communications, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00658725

D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 2015.

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

A. Lapidoth, A foundation in Digital communication, 2009.

K. B. Petersen and M. S. Pedersen, The Matrix Cookbook, 2012.

H. V. Henderson and S. R. Searle, On deriving the inverse of a sum of matrices, Siam Review, vol.23, issue.1, pp.53-60, 1981.