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Abstract

Cooperative transmission between different nodes is expected to be one of the main
tools towards managing interference in the increasingly complex and cluttered wireless
networks. Network cooperation is known to bring multiplicative gains under certain ideal
assumptions, such as having perfect information about the propagation channel towards
the users at every cooperating node. However, those ideal assumptions are not feasible
in many of the current network settings and applications. There exist several reasons
whereby the desired hypotheses do not hold. In order to achieve the promised gains,
the network should be able to perfectly share all the information —in a timely manner—
among the different cooperating nodes, which can be non co-located. Yet, current wireless
transmissions cope with many challenging constraints, as tight delay constraints, fast-
changing channels or rate-limited backhaul links —to name just a few—, that impede the
perfect sharing of the locally collected information. The topic of analyzing how the
non-fulfillment of the ideal hypotheses impacts the performance of cooperative settings
has generated great interest in the research community. Nevertheless, the main focus
has been concentrated on scenarios in which, although the channel state information is
imperfectly or only partially collected, all the nodes share the same information. This
last assumption is neither feasible in many current wireless networks scenarios, as stated
by the previously described constraints.

This thesis aims for shedding light on the performance of decentralized cooperative
settings in which the information available at each node may be different and potentially
of different accuracy. In particular, we focus on the so-called distributed Network MIMO,
in which a set of transmitters jointly serve a set of users. The setting considered is
characterized by two main aspects: The perfect sharing of the user’s information data
and the imperfect sharing of the channel state information. We analyze the distributed
Network MIMO setting so as to characterize its fundamental limits and provide novel
algorithms.

Specifically, the analysis is carried out from two different perspectives. We start by
characterizing the Degrees-of-Freedom metric of the setting. The Degrees-of-Freedom

is an approximation of the capacity at high signal-to-noise ratio that allows to identify



Abstract

insightful understandings of the network behavior. The contribution is twofold, as we
provide both achievable schemes that increase considerably the performance with respect
to the solutions available in the literature, and upper-bounds that illustrate up to which
scale the distributed setting performance is harmed with respect to the perfect-sharing
setting. It turns out that, in some configurations, the distributed setting is able to attain
the Degrees-of-Freedom performance of the ideal setting with perfect sharing of the
channel information. The second perspective consists in restricting the transmission to
the conventional paradigm of Zero-Forcing and studying whether the performance losses
from decentralized information can be precisely calculated. More precisely, we analyze
the achievable rate at high signal-to-noise ratio with the goal of quantifying the rate loss
from decentralization, i.e., we compute the difference of rate between the distributed
setting and the ideal centralized setting with perfect sharing. We propose a novel zero-
forcing scheme tailored to the decentralized configuration that asymptotically attains
the centralized rate. On the basis of the aforementioned analysis, we also tackle related
challenges such as the best channel information allocation, the impact of instantaneous

power constraint and other challenges arising from the setting considered.
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Abrégé

La transmission coopérative entre différents noeuds devrait étre 'un des principaux
outils de gestion des interférences dans des réseaux sans fil de plus en plus complexes et
encombrés. La coopération en réseau est connue pour apporter des gains multiplicatifs
sous certaines hypotheses idéales, telles que le fait de disposer d’informations parfaites
sur le canal de propagation vers les utilisateurs a chaque noeud coopérant. Toutefois,
ces hypotheses idéales ne sont pas réalisables dans bon nombre des parametres et des
applications réseau actuels. Il existe plusieurs raisons pour lesquelles les hypotheses
souhaitées ne peuvent pas étre considérées. Afin de atteindre les gains promis, le réseau
devrait étre en mesure de partager parfaitement toutes les informations —dans un délai
convenable— entre les différents noeuds de coopération, qui peuvent étre situés dans
des lieux différents. Pourtant, les transmissions sans fil actuelles doivent faire face a de
nombreuses contraintes, comme des délais serrés, des canaux en évolution rapide ou des
liaisons de retour a débit limité, pour n’en nommer que quelques-unes, qui empéchent le
partage parfait des informations recueillies localement. Le sujet de ’analyse de I'impact
de la non-réalisation des hypothéses idéales sur la performance des scénarios coopératifs a
suscité un grand intérét dans le milieu de la recherche. Néanmoins, I'accent a surtout été
mis sur des scénarios dans lesquels, bien que les informations sur 1’état des canaux soient
imparfaites ou seulement partiellement collectées, tous les nceuds partagent les mémes
informations. Cette derniere hypothese n’est pas réalisable dans de nombreux scénarios
actuels de réseaux sans fil, comme l'indiquent les contraintes décrites précédemment.
Cette these vise a mettre en lumiere la performance des scénarios coopératifs dé-
centralisés dans lesquels I'information disponible a chaque nceud peut étre différente et
potentiellement d’une précision différente. En particulier, nous nous concentrons sur ce
qu’on appelle le réseau distribué MIMO, dans lequel un ensemble d’émetteurs servent
conjointement un ensemble d’utilisateurs. Le cas considéré se caractérise par deux aspects
principaux : Le partage parfait des données d’information de 'utilisateur et le partage
imparfait des informations sur 1’état du canal. Nous analysons le réglage distribué du
réseau MIMO afin de caractériser ses limites fondamentales et de fournir de nouveaux

algorithmes.
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Abrégé

Plus précisément, 'analyse est effectuée sous deux angles différents. Nous commen-
cons par caractériser les Degrés de Liberté du scénario. Les Degrés de Liberté est une
approximation de la capacité & un rapport signal /bruit élevé qui permet d’identifier des
apercus perspicaces du comportement du réseau. La contribution est double puisque nous
fournissons a la fois des schémas réalisables qui augmentent considérablement la perfor-
mance par rapport aux solutions disponibles dans la littérature et des limites supérieures
qui illustrent jusqu’a quelle échelle la performance du scénario distribué est affectée par
rapport au réseau avec du partage parfait. Il s’avere que, dans certaines configurations, le
réglage distribué est capable d’atteindre les performances de Degrés de Liberté du réglage
idéal avec un partage parfait des informations du canal. La deuxieme perspective consiste
a limiter la transmission au paradigme conventionnel du Zéro-Forcage et a étudier si les
pertes de performance & cause de la décentralisation peuvent étre calculées avec précision.
Particulierement, nous analysons le débit réalisable & un rapport signal/bruit élevé dans
le but de quantifier la perte de débit due a la décentralisation, c¢’est-a-dire que nous
calculons la différence de débit entre le réglage distribué et le réglage centralisé idéal
avec un partage parfait. Nous proposons un nouveau systeme de zéro-forcage adapté a la
configuration décentralisée qui atteint asymptotiquement le débit centralisé. Sur la base
de I'analyse susmentionnée, nous nous attaquons également a des défis connexes tels que
la meilleure allocation de I'information de canal, 'impact de la contrainte de puissance

instantanée et d’autres défis découlant du contexte considéré.
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Notations

The next list describes an overview on the notation used throughout this manuscript. We
use boldface uppercase letters (A) for matrices, boldface lowercase letters for vectors (a),
and regular lowercase letters for scalars (a). Events are represented by regular uppercase
letters (A) and sets by calligraphic uppercase letters (A). Unless otherwise stated, the
same notation is used for a random variable and its realization. For any matrix A, VA

denotes the matrix composed of the square root of the elements of A.

(1, 22)" max(z1, x2,0).

Za The phase of a complex scalar a = |a|e*“.

argmax Points or elements of the domain of some function at which the
function values are maximized.
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function values are minimized.
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Nc(0,1) Circularly symmetric complex Gaussian distribution.

Ei(x) Exponential integral defined as Eq(z) £ [~ L dt.
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i For an index i € Ny, i = N\i .

In Natural logarithm.

£(x,y) Angle between two vectors x,y. |cos(L(x,y))| = [xTy|/(|x]|[ly]).
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Chapter 1

Introduction

Wireless communications technologies have considerably evolved in the past decade.
It is expected that the imminent deployment of the fifth generation cellular network
technology (5G) [1] will bring not only several order higher data rates, but also a collection
of new and diversified use cases. Indeed, this diversification of services is one of the
main targets of the 5G development [2]. Three main use cases are contemplated in
the upcoming nascent generation: Ultra-Reliable Low-Latency Robust Communications
(URLLC) [3-5], Enhanced Mobile Broadband (eMBB) [6], and Massive Machine-type
Communication (mMTC) [7,8]. The conjunction of those three aspects is intended to
contribute to the blossoming of unseen functionalities such as tactile Internet [9, 10],
UAV-aided networks [11,12], vehicular networks [13,14], or Internet-of-Things (IoT) [15].
In order to be able to provide these new applications, the network will leverage innovative
technologies [16], such as millimeters-wave communications [17-19], caching [20, 21],
device-to-device communications [22], or massive-MIMO [23-26]. Furthermore, the
expected higher network density —in terms of cells and devices— makes interference
management one of the essential problems for wireless transmissions [2].

One consequence that arises from the network portrayal previously described is the
increase of the heterogeneity in the network, both between nodes communicating with
each other and between different networks sharing the same resources. This heterogeneity
also affects the backhaul capabilities of the different nodes. Moreover, the situations in
which the communicating nodes are moving around at high speed are burgeoning. Both
heterogeneity and high mobility impede the possibility of a centralized management of
the wireless communications, and hence the necessity of understanding how distributed

systems behave and what are their fundamental limits.
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1.1 Cooperative Transmission

The notable densification of the network results in a necessity of cooperation to avoid
the congestion of the wireless medium. Multi-user cooperative networks and the extend
of its theoretical capabilities have been thoroughly analyzed in the literature [27-31].
Network cooperation can take shape in many different forms. Originally, cooperation
was reduced to static policies that ensured a certain functioning, e.g. partial frequency
reuse. With the escalation of the network complexity, cooperative methods evolved to
address the soaring requirements [32]. Intuitively, the cooperation gains are subordinated
to which information is shared among the cooperating nodes. We can distinguish two
categories of essential information: The system —or channel- information and the user’s
data information.

Considering the user’s data information, the cooperation mechanisms depend on
whether this information is available at all the nodes or not. If the user’s data are not
shared, such that each cooperative node is endowed with different data information, the
cooperation can be carried through coordinated beamforming [33,34] or coordinated
scheduling [35]. In the opposite scenario, with sharing of the user’s data, we can apply
strategies with stronger cooperation along with the previous ones. One of the main
cooperative strategies is the Coordinated Multipoint (CoMP) transmission [36]. This
configuration, also known as Cooperative Multiple-input multiple-output (MIMO), joint
transmission, or Network MIMO, benefits from the data sharing so that the interference
can be canceled or even turned into useful signal.

Multi-user joint transmission in wireless networks is known to bring multiplicative
improvements in network rates [37], but only under the assumption of perfect Channel
State Information (CSI). This perfect CSI scenario has been profoundly studied [37-41].
Unfortunately, perfect CSI acquisition is not possible in most of the current network
applications because of its complexity and resource consumption. Consequently, the
literature has striven to unravel how imperfect or quantized CSI at the transmitters
(CSIT) affects the performance.

1.2 Precoding Under Non-Ideal Backhaul and CSI

1.2.1 Imperfect Channel State Information

Motivated by the infeasibility of the previous ideal assumption, settings in which the
information available at the communicating nodes does not meet the perfect CSI assump-
tion were thoroughly investigated. Thereby, the community focused on settings where

the information available is timely but imperfect [31,42-50], or where the information
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is delayed [51-57]. This research topic has kept active during the last decade, and
a large number of works have developed generalized schemes for the case of partially
outdated [54, 58, 59], alternating [60], or evolving CSIT [61]. The attempt to comprehend
the behavior of the current networks has led to the study of elaborated and complex
settings. For example, the Cognitive Interference Channel, in which only some nodes

have access to the other nodes’ information [62,63], or the relay network [64—68].

Significantly, even though the aforementioned works assumed an imperfect acquisition
or estimation of the CSI, they consider that all the cooperating nodes share the same
imperfect information. Hereinafter, we refer to the setting where the transmission is
optimized on the basis of a single imperfect/outdated channel estimate being common
at every transmit antenna as Centralized CSIT (C-CSIT) setting. Nevertheless, current
and upcoming wireless networks characteristics make this assumption of perfect sharing
impractical in many applications. This is due to, for example, the proliferation of
heterogeneous networks for which some of the nodes have a wireless, fluctuating, or
limited backhaul [69-71], or URLLC applications [3,4,72], in which the perfect sharing of
the information would result in an inoperable delay. Settings in which simple devices with
low capabilities aim to communicate in a dense environment —as in IoT applications— also
fall into the use cases in which the sharing of information is both desirable and challenging.
This evolution of different use cases boosts the interest of distributed information settings,
in which the information available at the communicating nodes is not only imperfect
but different from one node to another. This type of settings can be included in the
so-called Team Decision problems [73,74], in which different agents aiming at the same
goal attempt to cooperate in the absence of perfect communication between them.

Recently, the increasing importance of cooperation of non-collocated transmitters
—as, for example, in Unmanned Aerial Device (UAV) aided networks [11]- has led to an
increasing number of works challenging this assumption of centralized CSIT. In [75,76],
methods have been developed to reduce the CSIT required to achieve MIMO Interference
Alignment (IA), and the high-SNR regime with delayed and local CSIT in the Interference
Channel (IC) is also studied in several works [77-79]. The assumption of centralized
CSIT has also been challenged in capacity analysis for the Multiple Access Channel [80]
and the Relay Channel [81], among others.

1.2.2 Precoding Under Distributed Channel State Information Setting

The C-CSIT model assumption can model a multi-antenna transmitter or a joint trans-
mission from different non-colocated transmitters in the case where we assume a ideal
Cloud Radio Access Network (C-RAN) [16]. In these cases, it is feasible to assume that

the imperfect information is perfectly shared between the non-colocated transmitting
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antennas. Nevertheless, upcoming heterogeneous networks include a huge variety of
devices, such as user terminals, drone-enabled relays, pico base stations, etc., seeking
to cooperate for transmission despite the lack of an ideal backhaul linking them. Other
scenarios featuring existing backhaul links may favor local processing over centralized
one in order to meet the tight latency constraints derived from 5G and tactile internet
applications [9].

This aspect fosters analyzing what happens when this CSI is not perfectly shared
among the devices, i.e., when each node may have a different CSI. This new setting is
called Distributed CSIT (D-CSIT) setting [82]. In this network configuration, each node
is endowed with an imperfect information about the system state. This information can
be different from node to node, and moreover the accuracy at one node can differ from
one parameter to another. Hence, the heterogeneity of the current wireless networks is
correctly contained in this model. In this thesis, we focus on the distributed Network
MIMO setting to study the impact of those discrepancies between cooperating nodes.
While it was suggested in the past literature that Distributed CSIT scenarios can severely
impact on the network performance in comparison with classical limited-yet-centralized
CSIT ones [82], a crucial problem is how transmitters can cooperatively combat the lack
of mutual CSI consistency in order to reduce the gap with respect to the centralized
system performance.

Several works have focused on this Distributed CSIT setting [83], e.g., analyzing
Interference Alignment performance [76] or studying the Regularized Zero-Forcing per-
formance in the large system limit [84]. However, many of the issues and challenges
introduced by this setting are still open problems. As a result, there is a clear interest in
looking at the scenario in which each transmitter may have a different information about
the channel [85]. There exists a great number of different distributed settings [83,86-91].
Nonetheless, this thesis is aimed at the so-called Distributed Network MIMO, wherein
the transmitters have access to all the information symbols of the users, yet do not share
the same CSIT [82]. This model arises in scenarios in which the data can be buffered
or cached [92-94], but the CSI needs to be available with very small delay, such as
high-mobility scenarios, or IoT or V2X networks with fast channel varying but low data
rate [15,95,96]. In general, any use case in which latency constraints impede efficient

CSIT sharing within the channel coherence time.

1.3 Thesis Outline and Main Contributions

This thesis is divided into three parts. Prior to present the contributions of this thesis,

we introduce its motivation and scope in the first part, that is composed of two chapters.



1.3. Thesis Outline and Main Contributions

The current chapter is committed to motivating the study of the topic considered in this
thesis, as well as providing an overview of the state of the art and the main contributions.
The other introductory chapter, Chapter 2, comprises a comprehensive description of the
model and tools considered. In particular, it describes the mathematical model for the
assumption of decentralized information, the figures of merit and the notations employed.
Besides that, Chapter 2 also discloses some practical scenarios that motivate and bring
about the theoretical model.

In each of the two other parts we aim to shed light on the fundamental limits of
cooperative and decentralized communication from a different perspective. Part II seeks
to characterize the optimal Degrees-of-Freedom (DoF) of the decentralized Network MISO
setting, whereas Part III confronts the problem from a different point of view. In this
part, we analyze the performance of Zero-Forcing precoding schemes in the distributed
cooperative setting. The choice of Zero-Forcing is motivated by its simplicity and the
fact that it is prevalently employed in practical transmissions with spatial multiplexing.
Let us discuss these sections in more detail.

The DoF characterization carried through Part II usually requires a twofold analy-
sis: The achievability analysis, in which we develop schemes that can attain a certain
performance, and the converse, in which we establish upper-bounds on the attainable

performance. We tackle both aspects in Part 11, which comprises the following chapters:

e Chapter 3: In this chapter, we consider the simple single-antenna setting with 2
transmitters (TXs) and 2 receivers (RXs) and we study the Generalized Degrees-of-
Freedom (GDoF) metric of a joint transmission in which the two TXs are endowed
with a different channel information. Recently, the GDoF of the centralized setting
in which both TXs share the channel information has been obtained in [50]. The
main contribution of this chapter is the characterization of the sum GDoF for the
decentralized counterpart setting in which each TX may have a different channel
estimation. We show that the centralized GDoF performance is attained for any
path-loss topology and whichever TX has the best estimate for each channel
coefficient. This interesting result is obtained thanks to a novel precoding scheme
that adapts to the setting configuration, and which is built on the idea that a TX
only uses its instantaneous channel information if that information is the most

accurate one among the TXs.

The work presented in this chapter has resulted in the following publications:

[97] Antonio Bazco, Paul de Kerret, David Gesbert, and Nicolas Gresset,
“Generalized Degrees-of-Freedom of the 2-user MISO Broadcast Channel with
Distributed CSIT,” in Proc. IEEE International Symposium on Information
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Theory (ISIT), June 2017, pp. 1092-1096.

[98] Antonio Bazco-Nogueras, Paul de Kerret, David Gesbert, and Nicolas
Gresset, “Distributed CSIT does not reduce the Generalized DoF of the 2-user
MISO Broadcast Channel,” in IEEE Wireless Communications Letters, June
2019, pp. 685-688.

e Chapter 4: The previous chapter benefits from the structure of the setting
considered inasmuch as there exists only one interfered RX, and thus a single TX
can manage the interference if we design a suitable scheme. Hence, the extension
of those results to an expanded setting with more nodes is not straightforward.
In this chapter, we study the K x K Network MISO with distributed CSIT so
as to determine to what extent the previous results are generalizable. Our main
contributions are twofold: First, we derive an intuitive centralized upper-bound
for the setting with distributed CSIT. This upper-bound is based on a genie-aided
setting in which the TXs are allowed to share their local CSIT with the other TXs.
Consequently, the genie-aided setting is a centralized scenario in which every TX
obtains K different estimates. We show that this setting attains the same DoF as
a centralized setting in which the TXs are only endowed with the most accurate
estimate among the K available estimates. Second, we develop an achievable
scheme that increases considerably the DoF performance with respect to the known
approaches in the literature. In a similar manner as in the previous chapter, the
transmission scheme varies accordingly to the CSI configuration. This scheme shows
that, for a certain CSI accuracy regime, it is still possible to attain the DoF of
the genie-aided setting for any size of the network. The key to achieve this result
is to capitalize on the idea that the unavoidable interference can be exploited as
side information at the receiver. This approach was aptly applied in the literature
related with delayed CSIT. However, here it is employed in a different manner, as
it is retransmitted before its actual generation. Moreover, the achievable scheme
illustrates how important is to choose appropriately who transmits and to whom it
transmits in cooperative decentralized settings, as it turns out that the maximum

DoF is sometimes obtained only if a part of the TXs do not transmit any signal.
These results have led to the following publications.
[99] Antonio Bazco, Paul de Kerret, David Gesbert, and Nicolas Gresset,

“Méthode de transmission robuste au partage imparfait de linformation de

canal entre transmetteurs,” in Proc. Colloque GRETSI, September 2017.
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[100] Antonio Bazco-Nogueras, Paul de Kerret, David Gesbert, and Nicolas
Gresset, “On the Degrees-of-Freedom of the K-user Distributed Broadcast
Channel,” submitted to IEEE Transactions on Information Theory, 2018.

e Chapter 5: The two previous chapters are more focused on the achievability
analysis, as the upper-bound is obtained from a centralized genie-aided setting. In
Chapter 5 we turn our attention to distributed upper-bounds. In particular, we
consider the Network MIMO setting, in which M transmit antennas jointly serve 2
multi-antenna RXs. Previously, we have assumed that the TXs are endowed with
different CSI which can also be of different accuracy. In order to distinguish between
the impact of imperfect CSI and distributed CSI, we simplify the CSIT configuration
in this chapter, such that we consider that m transmit antennas have access to
perfect CSI of the whole channel matrix, whereas the M — m transmit antennas
have only access to finite precision CSI. We present a distributed upper-bound
for this regime, which is shown to be tight a certain regime. Specifically, for the
regime in which the number of informed transmit antennas is bigger or equal than
the minimum number of antennas at the users. We provide also a transmission
scheme attaining the said upper-bound, and we generalize it to obtain a general
lower-bound applicable at any regime. This chapter is composed of partial results

that are not published yet.

The analysis of Part 11 is motivated by the results of Part 1, as one of the main questions
arising from the previous chapters is if those results extend to finer metrics than DoF and
GDoF'. In order to answer this question, we restrict our analysis to simple zero-forcing
transmission schemes. The objective is to disclose the loss of performance on account
of not sharing perfectly the CSIT. Therefore, we study the rate gap of the decentralized
scenario with respect to the centralized setting in which the channel information at the
transmitters is perfectly shared. We consider in this part that the precoder satisfies an
instantaneous power constraint. This is important due to the decentralized structure of
the network considered, since a transmitter cannot know the power normalization applied
at the other transmitter because each one computes it on the basis of its own channel

information, which can be different. Part III comprises two different chapters.

e Chapter 6: In this chapter, we consider the simple single-antenna setting with
2 TXs and 2 RXs as in the initial chapter of Part II. However, we analyze now
the rate gap of the distributed setting when the joint transmission makes use of
zero-forcing schemes to attenuate the interference. The contribution of this chapter
is manifold. First, we show that the rate achieved with zero-forcing transmission
in the distributed CSIT setting converges at high SNR to the rate attained in the
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centralized genie-aided setting where the best channel estimate is shared between
the transmitters. This result implies that there is not rate gap on the asymptotic
regime. Second, we develop a zero-forcing-type precoding scheme tailored for the
distributed setting. This precoding scheme builds on the main insights of Chapter 3
for the DoF analysis. Third, we propose novel precoding strategies that allow
to increase considerably the performance at low-to-medium SNR. Among these
strategies, it is noteworthy the fact that reducing the accuracy of the channel
information at one TX can improve the performance. This behavior arises from
an implicit compromise between the accuracy of the decision locally taken by a
certain transmitter and the consistency —or agreement— between the decisions of

both transmitters.

The work presented in this chapter has produced the following publications:

[101] Antonio Bazco-Nogueras, Lorenzo Miretti, Paul de Kerret, David Ges-
bert, and Nicolas Gresset, “Achieving Vanishing Rate Loss in Decentralized
Network MIMO,” in Proc. IEEE International Symposium on Information
Theory (ISIT), July 2019, pp. 1457-1461.

[102] Antonio Bazco-Nogueras, Lorenzo Miretti, Paul de Kerret, David Ges-
bert, and Nicolas Gresset, “Transmission Robuste de Zéro-Forcage Asympto-

tiguement Optimale pour Coopération Imparfaite de Transmetteurs,” in Proc.
Collogue GRETSI, August 2019.

Chapter 7: We extend the analysis of the previous chapter for the general M x K
Network MISO setting with multiple-antenna transmitters. In a similar vein as
in Chapter 4, the goal of this chapter is to comprehend the main insights of the
results of the simple setting by confronting the analysis to a more general case. The
contribution of this chapter is to show that the rate of the centralized genie-aided
setting is asymptotically reached for all the channel information configurations
for which the distributed setting attains the centralized DoF. In other words, the
decentralized setting not only achieves the same multiplexing gain as the centralized
setting, but also the beamforming gain. We futher study how this result extends
to the non-asymptotic SNR regime. We develop a transmission scheme to achieve
these results. This scheme also makes use of the idea that reducing the accuracy of
information at some nodes improves the agreement between all the transmitters.
However, it differs from the scheme of the 2x2 case in the fact that the transmitters
with more accurate information now attempt to correct the interference generated

by the other transmitters.

10
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These results have been submitted to the following publication.

[103] Antonio Bazco-Nogueras, Paul de Kerret, David Gesbert, and Nicolas
Gresset, “Asymptotically Achieving Centralized Rate on the M x K Decentral-
ized Network MISO,” submitted to IEEE Transactions on Information Theory,
2019.

To finalize, we discuss in Chapter 8 the main conclusions that emerge from the work

developed during this thesis.
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Chapter 2

Problem Statement and System
Model

We consider a cooperative wireless network in which several transmitters aim to jointly
serve several users. In order to apply this Cooperative Multi-point transmission (CoMP),
all the transmitting nodes share the information data symbols destined to be decoded
at the receivers. Hence, the joint transmission is intended to cancel or avoid that the
interference from other users impacts the performance. The main particularity of our
model is the assumption of decentralized channel state information. Consequently, each
transmitter owns a particular channel estimate, possibly different with respect to the one
available at the other transmitters. We motivate in the following this scenario, and we

define the mathematical model that we assume.

2.1 Motivation and Practical Examples of the Distributed
CSIT setting

2.1.1 Perfect User Data Sharing

In order to account for TX-dependent limited feedback in the network MIMO channel,
we focus in this thesis on a wireless configuration in which the user’s data symbols
are available and jointly transmitted from all the TXs, whereas the channel estimates

could only be imperfectly obtained at the TXs. Such assumptions, although seemingly

13
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contradictory at first sight, are actually very relevant in current wireless networks, and
even more in future 5G-and-beyond wireless networks. The main reason is that, in many
scenarios of interest, the latency constraint for data delivery is significantly looser than
the CSI outdating constraint, as the later is related to the coherence time and hence
very short in many relevant mobility scenarios. This property has for consequence that
the data sharing (or caching) between TXs can be achieved in practice while timely CSI
acquisition and sharing becomes the main bottleneck.

Our assumption that the user’s data symbols are available at all the TXs is made
possible without putting in question the scenario described above because of two recent
major techniques envisioned for future 5G-and-beyond wireless networks: Caching [92,
104,105] and Cloud-Ran/Fog-Ran [106,107].

Through caching, the user’s data symbols are pre-fetched at the TX nodes before
the transmission occurs [92]. Caching is an increasingly important feature that already
exists in many scenarios [20,94] and is envisioned in many more [21]. With the user’s
data symbols available at the TXs, even at mobile and cost-efficient ones, the accurate
and timely acquisition of the multi-user channel becomes the main bottleneck for efficient
interference reduction. This leads to a D-CSIT configuration wherever the cooperation

links are not obtained with sufficient accuracy.

In the Cloud-RAN paradigm, the centralization of the processing of all nodes is
envisioned so as to gain full benefits of cooperation. This centralization is however
limited by its cost and its delay, such that partial centralization is considered a promising
solution [108]. Considering decentralized precoding at the TXs allows to reduce the delay
in CSI acquisition. In that case, the backhaul links are solely used to convey the user’s
data since, for many data-oriented applications, the application’s latency requirements
are orders of magnitude slower than the rate at which the fading channel evolves. The
CSI estimates are directly exchanged between the TXs through direct links, thus reducing
the delay of the complete CSI acquisition at the TXs. This CSI exchange between TXs

through limited resources leads to a D-CSIT configuration.

2.1.2 Imperfect CSI Acquisition and Sharing

Although the assumption of having decentralized channel state information may seem
contradictory with the assumption of perfect sharing of user data symbols, both aspects co-
exist in many scenarios of interest. This model is motivated by the different timescales of
latency that information data and CSI may experience in a range of emerging applications.
Indeed, CSI sharing is constrained by the channel coherence time, which can be very
short in mobility scenarios (ms). This, together with the fact that the communication link

between TXs is usually latency-limited backhaul implies that perfect CSI sharing is hard
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to achieve. On the other hand, many data applications have delivery time restrictions
which are orders of magnitude weaker, such that it can be pre-fetched or cached at the
various TXs and ready to be synchronously transmitted.

To convey the main idea, a non-limiting practical scenario is depicted in Fig. 2.1.
In this 2x2 scenario, under the assumption of centralized configuration, both TXs are
connected via an ideal —no rate-limited, instantaneous— backhaul, e.g. an optic fiber
connection. Conversely, in the distributed setting, the TXs are connected by an imperfect,
rate-limited or delayed link —e.g., wireless link—, such that they may share some CSI.
Then, if we assume a short channel coherence time, the TXs will not be able to perfectly
share its CSI, although they may transmit some noisy, quantized or compressed version

of the locally available information.

Perfect backhaul (Centralized)

Figure 2.1 — Distributed vs Centralized CSIT example.

In the scenario described, depending on the CSI acquisition protocol, the CSI
allocation will be different. For example, if we assume a Time Division Duplexing (TDD)
setting in which the TX is estimating the uplink channel to make use of the reciprocity
property, each TX will have a probably good estimate of its own local links towards
both users. This implies that, in Fig. 2.1, TX 1 would obtain a fed-back estimate of the
solid-line links and TX 2 would obtain a fed-back estimate of the dashed-line links. Then,
the TXs could acquire a coarse estimate of the other TX’s information via the TX-TX
link. If Frequency Division Duplexing (FDD) is used, such that the RX sends to the TXs
a quantized version of the channel, we can have: a) If the user is connected to only one
TX, each TX will have good CSI of a single user —e.g., if TX 1 is connected with RX 1 it
will obtain the dark red links, if it is connected to RX 2, the light blue links—; b) if the RX
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limited links (Distributed)
m =

(a) Multiple Base-Stations. Each one knows (b) Master Base Station with remote radio-
better the CSI of a subset of RXs. They obtain  heads. It obtains an estimate of the whole
a less accurate estimate of the other RXs via channel matrix, then it transmits noisy or
the wireless TX-TX links. compressed CSI to the auxiliary TXs.

Figure 2.2 — Distributed CSIT setting use cases.

is connected to both, he may use a different feedback rate to adapt to the link capacity
towards each of the TXs. Finally, TX 2 could also be a remote radio-head to enhance
downlink transmission such that the RXs feed back the whole channel matrix to TX 1,
and TX 1 attempts to send the most appropriate information to TX 2 via the limited
wireless link. In this way, many different CSI configurations can appear as function of
the system characteristics, all of them enclosed in the Distributed CSIT setting, that is
rigorously defined in the following section.

We assume that a limited cooperation between TXs has taken place before the
transmission phase, leading to a certain CSI accuracy configuration. Hence, we assume
hereinafter that the average CSIT accuracy remains constant for a certain time. The
problem of studying the best strategy of CSI sharing in a limited and constrained
communication is a very interesting research problem per-se, but it is outside the scope of
this work. Thus, we do not discuss the exact CSI acquisition mechanism. The generality
of our model is exactly meant to adapt to any CSI sharing scenario.

The extension of the example for an arbitrary number of nodes follows easily. For
instance, the model encloses a setting in which the RXs feed back their channel vectors
to the TXs and 1) either a RX i sends the CSI to a TX j, and TX j shares a noisy
or compressed information to the other TXs, or 2) each RX i sends a CSI of different
accuracy towards each TX, depending on the link quality. The scenario is depicted
in Fig. 2.2a. Furthermore, we can also model a scenario in which a main, multi or
massive antenna base station serves a set of users with the help of some single or multi
antenna remote radio-head or simple TXs, as depicted in Fig. 2.2b. We present a more

comprehensive discussion about the possible network configurations in Chapter 4.
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2.2 Downlink Transmitter Cooperation

In this thesis, we focus mainly on the downlink (DL) transmission, although most of the
findings could be also applicable for the uplink (UL) transmission. The main reason to
consider DL transmission is that it is a more challenging and pertinent case concerning
the problem of CSI acquisition and sharing [109]. We consider the Network MISO setting
in which M TXs jointly serve K single-antenna receivers (RXs), and where TX j has N;

antennas. We denote the total number of transmit antennas as
M
Nr 23N (2.1)
=1

The TXs seek to deliver a certain message W, to each RX i. The messages W, are inde-
pendent and identically distributed (i.i.d.), each one drawn from a circularly-symmetric
complex Gaussian distribution Mg (0, 1). Those messages are mapped into data symbols s;,
and the vector s 2 [s1, ..., skt
The channel from the M TXs to the K RXs is represented by the channel matrix H €

CHE*Nr  Since we will make extensive use of several sub-matrices of H, we appropriately

is assumed to be known by all the TXs.

define them in the following. Therefore, the channel coefficient from the n-th antenna of
TX k to RX i is denoted as h; 1. ,,, and the vector of channel coefficients from TX k to
RX i is represented by hgk € C Nk where (-)! denotes the conjugate transpose. For the
cases in which we assume single-antenna TXs, hgk, matches h; 1, ,, and thus we will denote
it as h; ;. The vector of channel coefficients from all the TXs to RX i is represented by
hil € C™*N7. Similarly, the sub-matrix of channel coefficients from TX k towards all the
RXs is denoted by H, j, € CE*Nk: in the case of single-antenna TXs, H, ;. is a vector

and hence it is denoted as h, ;. Consequently, we can write the channel matrix as
H H H
h; hi, ... hyy

H.i . Hou|2

H H H
hil Wi, ... by,

as
[I>
lI>

(2.2)

The channel coefficients are assumed to be drawn from a distribution with density such
that all the channel sub-matrices are full rank with probability one. We will consider
sharper assumptions on the channel distribution within each chapter. We assume that
all the TXs are endowed with the data symbols vector s. They precode the vector s with
a precoder T. The received signal at the RXs is then given by

y £ VPHTSs + n, (2.3)
]T

where P is transmit power, y 2 [y1,...,yk]" is the received signal vector and y; is the
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Chapter 2. Problem Statement and System Model

received signal at RX i. The vector n € CX stands for the Additive White Gaussian
Noise (AWGN) distributed as Ng(0,1).

In a similar manner as for the channel matrix, the precoding matrix T can be
decomposed in several sub-matrices of interest. Hence, T}, € CN+*X denotes the precoding
matrix applied at TX k; in case of single-antenna TXs setting, TX k applies a precoding
vector and hence we denote it as tpxj € CP*¥. The global precoding vector applied to
the data symbols of RX i is denoted as t; € CN7*1. The precoding vector applied at
TX k for the data symbol of RX 4 is represented by t;; and, in case of single-antenna

TXs setting, t; ; is scalar and hence we denote it as t; . Consequently, we can write that

Ty ti1 ...tk
t ... tK}é - (2.4)

T tl,M tK,M

T2

(1>
—

Throughout this manuscript, we assume different power constraints for the transmit signal.
In particular, we consider a average power constraint from Chapter 3 to Chapter 5, such
that there exists a constant ¢ € RT satisfying E[||T||?] < ¢. However, for Chapter 6 and
Chapter 7 we assume that the precoding vector has a per-TX instantaneous unit-norm

constraint, such that
[Tkl < e. (2.5)

Note that, even if we set | Tg|| = ¢, the transmit power varies over the time as the power
of the data symbols s; varies. With a huge abuse of notation, and for sake of concision,
we refer hereinafter to the constraint in (2.5) as instantaneous power constraint, although
strictly speaking it is an instantaneous power constraint on the precoding vector. This is

done in opposition to the less restrictive average power constraint on the precoder.

2.3 System Figures of Merit

We present the main metrics used throughout this manuscript to characterize and compare
the performance of the different scenarios and settings. Since this thesis is aimed at the

high-SNR regime, the figures of merit considered are tailored to this regime.

2.3.1 Average Rate

The main performance metric considered is the expected value of the user rate. We
assume that every user i € Ni wishes to receive a message W; € W,. After n channel
uses, the rate R;(P) is achievable for RX i if R;(P) = %nwi' and the probability of
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2.3. System Figures of Merit

wrong decoding goes to zero as n goes to infinity. Then, the expected sum rate is defined
as R(P) 2 Y% | Ri(P). The sum capacity C(P) is defined as the supremum of the sum
of all achievable rates [110]. In particular, under the assumption that the data symbols
are i.i.d. Ng(0, 1), the expected rate for RX 4 is given by

log, <1 + %|h?lfi‘2H 2) . (2.6)
T4+3 0s wihite

Ri(P)2E

In the following, we may omit the explicit reference to the transmit power P. Importantly,
due to the unit-norm AWGN assumption, the average Signal-to-Noise ratio (SNR)
coincides with the transmit power. Accordingly, the nominal parameter P will be likewise
referred as nominal SNR.

Finding fundamental limits of the rate in complex multi-user systems, such as the
Network MISO setting with imperfect or distributed CSIT, has been shown to be an
elusive problem. For this reason, several asymptotic metrics has been widely used in the
literature. Such metrics have been proven instrumental to improve the understanding of

multi-user networks. We present in the following the asymptotic metrics that we consider.

2.3.2 Degrees-of-Freedom

The DoF metric, also known as multiplexing gain or pre-log factor, is defined as [111]

DoF £ lim cr) )
P—o0 logy(P)

(2.7)

In a similar way, the DoF for a particular RX is denoted as DoF;. Intuitively, the DoF
is the first order approximation of the capacity, and it represents the slope of the rate
as a function of the logarithm of the SNR P when P approaches to infinity. Fig. 2.3
illustrates its meaning. The DoF of a point-to-point single-antenna transmission is equal
to 1. Hence, the intuition behind this metric is that a setting with a DoF=D is equivalent
in the asymptotic regime to D independent point-to-point channels.

Despite the fact that DoF presents several limitations as figure of merit —we discuss
them in the following—, it has been key in the characterization of complex problems, e.g.
delayed CSIT [31,112], distributed CSIT [113,114], mixed CSIT [59, 115], Interference
Alignment (TA) [40,116], caching [94, 117-119], etc.

2.3.3 Generalized Degrees-of-Freedom

One of the weakness of DoF is that it does not take into account the network topology
—we refer to network topology as the path-loss characterization of the system—. This
condition comes from its limiting nature. Indeed, as P grows, the possible impact of

finite path-loss differences between links vanishes. This behavior is clear by analyzing
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the limit in (2.7), since any finite path-loss can be expressed as a multiplicative constant
inside the logarithm such that it does not affect the limit. This issue is not relevant if the
channel links are in the same order of magnitude. However, it implies that DoF analysis
does not ensure truthful insights when the difference between channel strengths becomes

significant. The following example illustrates this behavior.

Example 2.1. Suppose a setting in which 2 single-antenna TXs jointly transmit
towards 2 single-antenna RXs, with no CSI at the TXs. Consider that the channels
TX 1-RX 1 and TX 2-RX 2 have a unit variance, whereas the channels TX 1-RX 2
and TX 2-RX 1 have variance v € (0, 1] that does not depend on P.

In this scenario, the DoF analysis provides that the DoF is equal to 1 indepen-
dently of the value of v [120], i.e., it only attains the DoF of a single-RX transmission.
This result comes from the fact that, for any v > 0, all the channel strengths scale
proportionally to P. Nevertheless, if the value of + is very small, for example
v = 10719, the network topology is almost equivalent to two parallel independent
channels, and hence the achievable rate is almost twice the rate of a single-RX
transmission. Therefore, in this example, DoF analysis does not provide a truthful

characterization of the sum-rate behavior in realistic transmissions.

The fact that DoF analysis does not take the network topology into account implies that
it may not be the right metric for large networks analysis [121] or unbalanced network
topologies. One of the solutions to overcome this limitation is to consider the so-called
locally-connected networks [122], in which the channel links are supposed to be non-zero
only for a local neighborhood of the considered node. Although this assumption allows
for insightful analysis for large networks, it does not avoid the problem highlighted in
Example 2.1.

The Generalized Degrees of Freedom (GDoF) concept was introduced in [41] with
the purpose of overcoming this limitation and taking into account the path-loss topology.
GDoF is an extension of the DoF model where the path-loss is modeled as a function
of the SNR. Hence, the network structure and its topology impact the analysis. Indeed,
GDoF has the same definition of DoF, i.e.,

GDoF £ lim cP)

P00 logy(P) (28)

Nevertheless, the difference lies in the channel model: Let us consider an arbitrary channel
coefficient h; .. In the GDoF channel model, it is defined as

hi g &V PYirlg (2.9)
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where g; ;, is drawn from a distribution that does not depend on the parameter P, i.e., as
h; , in the previous channel model. The parameter «; ;, € [0, 1] represents the relative
channel strength for the link. In particular, v; » = 1 can be seen to be equivalent to have
negligible path-loss; moreover, if v;, = 1 for all links, we recover the DoF model. On
the other side, 7; 1 = 0 is equivalent to have a blocked link, in the sense that any signal
received from that channel link lies under the noise floor even if P — oo.

GDoF has been proven an interesting approach since optimal achievable schemes for
GDoF analysis also achieve capacity within a constant number of bits [41,123,124], and it
has been extensively used in the literature for characterizing complex settings [125-129].
We consider that the parameters v;; are known by anyone, since they are assumed to be

long-term coefficients that vary slowly.

Remark 2.1. In the GDoF analysis, the nominal parameter P does not represent the
transmit power, as for every value of P the setting changes. Conversely, it allows to
group the configurations that have the same capacity when it is normalized by log,(P).
In other words, the GDoF' analysis keeps constant the ratio of capacities between the
channel link: A link with ~; ;, = % has half of the capacity of a link with v; ;, = 1, for any
value of P. 0

2.3.4 Affine Approximation of the Rate

Although GDoF overcomes the lack of sensitivity of DoF regarding the path-loss topology
and, in some cases, it allows to achieve capacity within a known number of bits, it still
undergoes the other main limitation of DoF: The metric does not provide any bounded
knowledge about the achievable rate. Indeed, the definition of DoF in (2.7) implies that

the rate can be written as
R = DoF log,(P) + o(logy(P)), (2.10)

and the term o( logy(P)) is not bounded. In Fig. 2.3, we show how two settings with
the same DoF —which represents the slope of the rate— can achieve considerably different
rates. Nevertheless, the metric can be refined to offer results of achievable rate with a
bounded gap. In particular, we consider the affine approximation of the rate at high
SNR, introduced in [130]. According to this approximation, the achievable rate can be

expressed as [130]
R = DoF log,(P) — Reo + 0(1), (2.11)

where R, denotes the rate offset —or vertical offset—. The approximation in (2.11) can

also be written in terms of the power offset —horizontal offset— L., where R = DoF L.
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Rate [bits/s/Hz]

SNR [dB]

Figure 2.3 — Qualitative illustration of the affine approximation of two different setting
with the same DoF (slope) but different rate offset Roo = DoF L.

An illustrative visualization is shown in Fig. 2.3. The term L. represents the zero-
order term with respect to a reference setting with the same slope but whose affine

approximation intersects the origin. Note that the rate offset is defined as
Roo = lim DoF logy(P) — R(P), (2.12)
P—oo

where R(P) represents the rate as function of the SNR P. This measure has shown
instrumental in several findings. In [29], Lozano et al. analyze the multiple-antenna
point-to-point scenario, revealing that some system features which do not impact the
DoF (as antenna correlation, fading...) do considerably impact the zero-order term,
affecting the performance of the system at any possible SNR. In addition to expose
the limitations of having only information about the DoF, [29] also reveals that the
affine expansion offers appreciably tight approximations also at medium-to-low SNR.
This characterization has been also established for the Broadcast Channel (BC) with
perfect CSIT using Dirty-paper coding and linear precoding [131], and for the BC with
imperfect CSIT [132]. In [132], the quantized feedback scenario was studied under the
assumption of Zero-Forcing (ZF) schemes, showing that the channel-to-estimation-noise
ratio must be proportional to SNR® in order to attain a DoF per user of DoFrx; = a.

Furthermore, having a ratio of SNR® was shown to be equivalent to send a quantized
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feedback of arlogy(SNR) bits, what could be attained if the feedback resources scale as
the capacity of the channel. In the same vein as in [29], this approximation is expected
to be adequate also to characterize the performance below the high-SNR regime for a

broad set of configurations and settings.

2.4 Distributed CSIT Model

The main particularity of this thesis is the consideration that the TXs do not share
perfectly their CSI. In this section, we present the general mathematical model and
the assumptions that hold throughout the entire thesis. This scenario can be seen as a
multi-agent cooperative decision with common goal, where each node knows the structure
of the system but not the information that the others have received [73]. Further details
and considerations are included in the corresponding chapters. We start by introducing
the imperfect CSIT model for the centralized CSIT setting.

2.4.1 Centralized CSIT Model

In the Centralized CSIT setting (C-CSIT), there is a single estimate of the channel
matrix H € CEXN7_ shared by all the TXs. We denote the estimate of a certain channel
submatrix with a hat (%), i.e., H, h;, I:I*Jg, denote the estimate of H, h;, H, j, respectively.
Let us first consider a single channel coefficient for a single-antenna TX setting. Then,

the imperfect CSIT assumption is modeled such that

hik £ /1= Zig Wi+ /Zik 6k, (2.13)

where 0 ; j, is the additive noise variable and Z denotes the variance scaling of that noise.
Let 1,,xm, Opxm, denote respectively the all-ones matrix and the all-zeros matrix of size

n X m. Based on (2.13), the channel matrix estimate can be written as

H2 .1y, —ZOH+VZ 0O A, (2.14)

where © represents the Hadamard —element-wise— product and A is a noise random matrix
that encloses the additive estimation noise and whose covariance matrix is bounded. The
variance scaling of the estimation noise is provided by the deterministic matrix Z. Thus,
Z encloses the average accuracy of the estimates. Intuitively, if Z = Oxx n,, the estimate
is perfect, since H = H. Conversely, if Z = 1xxn,, the estimate is composed only of
random noise. We further define the i-th row of A as §;, such that A = [§y, ..., dk]T.
This setting provides a great generality, as it comprises cases where each channel coefficient

is known with a different accuracy and with any possible correlation, incorporating any
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heterogeneous scenario.

2.4.2 Distributed CSIT Model

The Distributed CSIT (D-CSIT) model is characterized by the consideration that each
TX is endowed with a possibly different estimate. Thus, the key singularity of this setting
is that, for any channel coefficient, there exist as many estimates as TXs, each one of
them locally available at a single TX. The extension from the centralized model in (2.14)
is direct. Let us denote the estimate at TX j as HO!, Then, HY is defined as

0D 2 V1 n, — 29 0 H+ VZ0 o AD), (2.15)

Hence, each TX has a different estimation noise (AY)) with a a different power (Z)).
Furthermore, we define the distributed estimate counterpart of the different sub-matrices
defined in Section 2.2 consistently. For example, the estimate of the vector channel
towards RX i (h;) is denoted as flz(j ),

Remark 2.2. 1t is critical to understand well how the Distributed CSIT setting differs from
the many different heterogeneous CSIT configurations studied in the literature. Indeed, a
heterogeneous CSIT configuration typically refers to a centralized CSIT setting (i.e., with
a channel estimate common to all TXs), where each element of the channel is known
with a different quality owing to specific feedback mechanisms [49,133-135]. In contrast,
the distributed setting considered here has as many different channel estimates as TXs,
where each TX does not have access to the CSIT knowledge at the other TXs. 0

2.4.3 Estimation Noise Scaling

The main reason why we consider the model of (2.15) with the variance of each noise
coefficient explicitly indicated with the element-wise product is that our analysis is mainly
dependent of the scaling of that variance. In particular, we only require from AU) that
it is a random variable with bounded covariance matrix and density (although further
assumptions are considered for certain chapters). In turn, we analyze the impact of
the value Z\) when it is modeled as a function of the SNR. It is known that, for the
centralized CSIT case, the signal-to-noise ratio of the estimate should scale as P%, with
a > 0, in order to avoid the collapse of the multiplexing gain [50, 132]. Then, we consider

an exponential scaling with P also for the D-CSIT setting. Consequently, we assume

'"Henceforward, and as a general rule, we consistently use the sub-index i to refer to RXs, the sub-index
k to refer to channels or parameters asociated to TXs, and the super-index () to indicate where the term
is known. Hence, xfj) denotes the estimate at TX j of a parameter zx of TX k (channel coeflicient, power
normalization, etc.).
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that the matrix ZU) is defined such that its (i,k) coefficient is given by
(.7) — —Q; k
ZY) = poix, (2.16)
where 0 < ozz(.jk) < 1. The coefficient al(jlz is the accuracy scaling parameter that measures
the quality of estimation of the channel matrix at TX j. The CSI accuracy at the TXs

is characterized throughout this thesis with these parameters 045]2. We define the set of

accuracy scaling parameters as «, such that

s {O‘z(,]k)}iGNn Jsk€Npy - (2.17)
The parameters a&) are assumed to be long-term coefficients that vary slowly. Based
on that, it is assumed that every TX knows the full set «, as it only requires to share
few bits over a long period of time. Moreover, we will refer to the TX with the greatest
parameter agjk? as the “most-informed” or the “best-informed” TX. In the following, we

present some intuitions and justifications of the exponential model.

Limited Feedback

This scaling model arises when we consider a setting in which the RXs quantize their
perfect channel information and feed that quantization back to the TXs. Jindal demon-
strated in [132] that, in the (centralized) MISO BC setting, if the channel vector is
quantized with B bits, the estimation noise variance scales as 9w, Hence, letting the
number of quantization bits scale as B = (M — 1)alogy(P), the estimation noise scaling

becomes

B

2TM-1 = P, (2.18)

which matches the model in (2.16). Note that the assumption that the number of bits
is proportional to log(P) is a feasible assumption since it is equivalent to say that the

feedback rate scales linearly with the capacity of the channel link.

Multiplexing Gain

It is known that, if the noise variance does not scale as P~%, for a > 0, the multiplexing
gain (DoF) of the setting is lost with respect to the case with no CSIT [120,132]. Since
our analysis is focused on the high-SNR regime, this CSIT accuracy model enables us
to obtain a comprehensive characterization of the network behavior in the asymptotic
regime. On this basis, the parameter 045‘7,2 can be restricted to the interval [0, 1]. This is

due to the fact that, with a% = 1, the estimation error lies on the noise floor —since it
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has a scaling that does not grow with P— and hence it is negligible in the asymptotic
regime. In particular, for the GDoF channel model, 045]12 can be restricted to [0, v; x], for

the reason previously exposed.

2.4.4 Sorted CSIT Setting

There exists a particular case that is of significant relevance on its own: The CSIT config-
uration in which the TXs can be ordered by their CSIT accuracy. In this configuration,
so-called sorted CSIT setting, we can write w.l.o.g. that

1> >a? > >l >0, (2.19)
For the sake of concision and readability, we consider also a simplified version of this
setting in which a given TX has the same accuracy scaling parameter for any channel
coefficient, i.e., that oz(J,z =al), Vi € Ng, k € Ny, Hence, (2.19) becomes

%

1> o > 4?2 > > aM) >0, (2.20)

which implies that TX 1 is the best-informed TX, i.e, whose CSI has the highest accuracy.

This model encloses for example a scenario in which a main, multi or massive antenna,
base station serves a set of users with the help of some single or multi antenna remote
radio-heads or simple TXs, as depicted in Fig. 2.2b. Moreover, it can be seen as a
simplification for a more decentralized setting, in which each TX obtains the channel
information of its attached users. Then, a TX gathers the information from all the other
TXs but, due to the tight latency constraints or the limited capacity of the backhaul
links, can only send back a compressed version of the channel matrix. This configuration

is represented by Fig. 2.2a.

2.4.5 Hierarchical CSIT Model

Another important case which belongs to the D-CSIT setting is the so-called Hierarchical
CSIT (H-CSIT) setting: Consider the D-CSIT setting with M TXs in which each TX
owns a different channel estimate of the coefficient h;j, denoted as ﬁz(jk) The setting
follows a Hierarchical CSIT configuration if and only if each TX knows the estimate at
the TXs whose estimate is less accurate. That is, for each channel coefficient, we can
order the TXs such that TX 1 is the best-informed TX and TX M is the TX with the
least accurate estimate. Then, the estimate of TX j + 1 is included in the information
available at TX j such that TX j knows
HO0)

NEEY
ik e hl.k

, b9, (2.21)

)
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This CSIT structure appears in many heterogeneous networks, in which e.g. a main
TX shares with the other TXs its channel estimate but has to compress it to transmit
through a rate-limited link, or in cases in which there exits multi-level quantization
schemes. Several works in the literature have focused on such setting [83,136-138]. with
the aftermath that the explicit structure of the CSIT enables important gains with respect
to the fully distributed setting.

2.4.6 CSIR Model

In this work, we focus on the impact of the imperfect CSI on the TX side as the CSI
acquisition is widely acknowledged to be more challenging on the TX side than on the
RX side. For example, in FDD, due to the need to feed back the CSI that has been
estimated at the RX towards the TX. Therefore, we consider that every RX has perfect

knowledge of its own channel.

2.5 Genie-aided Centralized CSIT Setting

Finding purely distributed upper-bounds is a challenging subject that remains open for
most of the settings. We tackle this problem in Chapter 5. However, any decentralized
scenario with distributed estimates has an ideal centralized counterpart in which a genie
provides the best estimate of each parameter to every node. Based on that, we introduce
the notion of “genie-aided centralized scenario” that will be used all over this thesis. A
genie-aided centralized scenario is a C-CSIT setting —in which all the TXs are endowed
with the same CSI- that is obtained from a D-CSIT setting by means of providing the
TXs with CSI available at other TXs. We must note that we consider two possible

genie-aided settings, each one for a different part of this thesis.

1. The first genie-aided scenario, considered for the DoF analysis, is such that each
TX shares its CSI with any other TX. Thus, every TX owns the set of M estimates.

2. The second genie-aided scenario, less loosened, considers that all the TXs are

endowed only with the estimate of best average accuracy.

This ideal setting provides us with a benchmark for the performance on the D-CSIT
setting. In this way, we are able to analyze which is the impact of having distributed
information or, in other words, the cost of not sharing the CSI. In general, the genie-aided

centralized setting is represented by a MISO BC setting with N transmit antennas.

Remark 2.3. Tt is important to observe that in the first genie-aided model every TX

owns the set of M estimates of the M TXs, whereas in the second one each TX owns
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only the best estimate among all the TXs, instead of its own estimate. The later model
allows a fairer comparison between the D-CSIT and the C-CSIT scenarios. The former
would benefit from the fact that the knowledge of M estimates allows to reduce the
noise variance by a factor proportional to M. However, it proves useful as achieving the

performance of such an ideal setting strengthens the results of the D-CSIT setting. [J

2.6 Asymptotic Notation

This thesis is mainly focused on the asymptotic analysis of the rate in the high-SNR
regime. In the interest of clarity, we specify in the following the notation considered to
express certain asymptotic properties. In particular, we base our notation in the prevalent
Bachmann-Landau notation [139]. As lucidly summarized in [140], mathematicians
and researchers have applied different notations to refer to the asymptotic behavior or
scaling of functions, e.g. relational notation as <, >, =< or the dot-notation =, <, but also
set-notations as the Bachmann—Landau notation. In this thesis, we make use of the later
because it can be placed inside the mathematical derivations and offers a more flexible

handling. Specifically, we follow the limit interpretation given below [140].

Definition 2.1. Let g be a real valued function. Let f be a real or complex valued

function. One writes?

f(z) = O(g(x)) (2.22)

Lf ()]
g(x)

if and only if lim sup,_, < 00.

Definition 2.2. Let g be a real valued function. Let f be a real or complex valued

function. One writes

f(x) = o(g(x)) (2.23)

if and only if limg s % = 0.

Note that f(z) = o(g(z)) = f(x) = O(g(x)), but the converse is not true. We present in

the following another asymptotic notation that is disjoint with o(g(z)) and which was

2The “=" sign in f(z) = O(g(z)) is an abuse of notation that actually means f(z) € O(g(z)). Indeed, it
is a one-way equality [140] since O(x) = O(x?) but O(x?) # O(x). This “=" notation has been extensively
used in the literature and we use it for convenience. However, its exact meaning must be clear.
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firstly introduced by Knuth in [140].

Definition 2.3. Let g be a real valued function. Let f be a real or complex valued

function. One writes

f(z) = O(g(x)) (2.24)
if and only if there exist positive constants C7 > 0, Cy < 00, such that

lim sup @)l < Oy < o0, and lim inf J@) > cy. (2.25)
z—o0  9(T) z—oo ()

The previously enunciated O-notations are defined for limits of function when their
arguments approaches infinity. Besides this notation, we introduce also equivalent
asymptotic notations for random variables —see [141] for a detailed discussion about the
different probabilistic versions of asymptotic notations— This notation will be very useful

throughout the rest of the manuscript.

Definition 2.4. Let y be a random variable with probability density function that
depends on a parameter 6 and is denoted by f,g. Let g be a real valued function.

Consider the random variable y_ whose probability density function is given by

Froo (@) = lim fx|e<g(x€)>. (2.26)
One writes
X = ©:(9(9)) (2.27)

if and only if the limiting probability density function is bounded, i.e.,
max f, (x) = £ < oo, (2.28)
x

and there exist positive constants C; > 0, Cy < 00, such that

C1 < E[[lx 1) < Cs. (2.29)

The notation ©,(g(¢)) is the equivalent of O(f(x)) for random variables. Intuitively, it

implies that the random variable y can be decomposed as

%= 9(0)%, (2.30)
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such that the random variable ¥ is a “normalized” variable for which the peak of the
Probability Density Function (PDF) does not scale with 6. As a matter of example,
consider a transmission of data symbols drawn from a complex Gaussian random variable
h ~ Nc(0,1). Suppose that we transmit those data symbols with a power P, such that

the transmitted signal z is given by

(2.31)

Then, it follows that z = ©,(v/P). Moreover, Definition 2.4 leads to the following

corollary.
Corollary 2.1. Let x = 6,(\/P). Then,

Ef|z|*] = ©(P). (2.32)

Corollary 2.1 sets a relation between both functional and probabilistic notations (Defi-
nition 2.3 and Definition 2.4, respectively). Therefore, a random variable in ©,(y) has
an expected squared norm in ©(y?). We similarly define the probabilistic equivalent
of O(f(z)) in Definition 2.1.

Definition 2.5. Let y be a random variable with probability density function that
depends on a parameter 6 and is denoted by f,s. Let g be a real valued function.

Consider the random variable y_ whose probability density function is given by

Frnla) 2 i 055 ). (2.33)
One writes
X = Ou(9(0)) (2.34)

if and only if the limiting probability density function is bounded, i.e., if f,"** =
max; fy_(7) satisfies that f*** < oo, and there exists a positive constant C < oo,
such that

E[ll %0 IP] < Ci. (2.35)

Together with the previous notations, it is normally assumed that f(x) ~ g(x) denotes

that lim, oo % = 1. However, throughout this manuscript we use ~ to denote that a
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random variable has a certain distribution, i.e., we write X ~ F if and only if the random
variable X is distributed as F'. Besides the standard O-notations and their probabilistic
counterparts, we make use of another asymptotic notation that will prove useful in the

DoF analysis. This last notation is a relaxation of Definition 2.3.

Definition 2.6. Let g be a real valued function. Let f be a real or complex valued

function. One writes

f(@) = Ouog(g(2)) (2.36)
if and only if

loa(f(@))

|
Jim S @) 1. (2.37)

Why is this last notation interesting? As previously mentioned, it can be seen as a
relaxation of ©(g(z)), i.e.,

Ouug (9(2)) C O(g(a)). (2.39)

It turns out that, for DoF analysis, it is enough to satisfy ©Ojee (g(x)) As a matter
of example, let us denote the expected SINR as f(P) = E[SINR| and suppose that
f(p) = ®1og(Pd), for any 0 < d < 1. By upper-bounding the rate through Jensen’s
inequality, the DoF is given by

i g1+ f(P) _

2.39
P—oo  logy(P) (2:39)
From Definition 2.6, the assignment f(P) = Ojog(P?) is equivalent to
1 P

P log(P%)

Hence, we can see that (2.39) and (2.40) are equivalent expressions. For this reason, in
the remaining of the document, a scenario in which the SINR term scales as 910g(Pd)

can be understood as having a DoF = d.
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Chapter 3

GDoF Analysis of the 2x2
Distributed Network MISO

In this chapter we analyze the GDoF of the 2 x 2 setting under the D-CSIT assumption.
It is known that, in the specific case where each TX has an homogeneous estimate of
the whole channel matrix (such that every channel coefficient is estimated at a given TX
with the same average accuracy), the DoF of the D-CSIT setting matches the DoF of the
genie-aided C-CSIT setting [82]. In this chapter, we extend the analysis to the general
case with arbitrary accuracy parameters and arbitrary path-loss scaling, so as to answer

the question:
For the 2x2 setting, when does the D-CSIT setting achieve the GDoF of the C-CSIT?

This generalization of the initial result of [82] is far from trivial, as the outcomes could be
due to several particularities of the setting assumed in [82]; namely, the master-slave-type
configuration —with one TX having a better information about the whole system—, the

homogeneous accuracy assumption, or the absence of path-loss differences.

3.1 Preliminaries

As previously mentioned, Etkin et al. introduced the GDoF metric in [41]. The GDoF is

a generalization of the DoF metric that provides a finer characterization of the setting
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Chapter 3. GDoF Analysis of the 2x2 Distributed Network MISO

capacity, offering in some cases capacity results within a constant number of bits [41].
Among the vast literature on GDoF analysis, one work is of particular consideration
because of its complementarity with this chapter. Davoodi, Yuan, and Jafar presented
in [50] the GDoF of the MISO BC with imperfect, yet centralized', CSIT. Thus, we can
obtain from [50] the GDoF of the genie-aided C-CSIT setting described in Section 2.5

that we employ as reference setting.

3.1.1 System Model

The transmit signal is defined as in Section 2.2. We recall that h? £ [hi 1, hj2o] denotes
the multi-TX channel to RX ¢ and h; ; denotes the fading channel coefficient from TX &
to RX 4. The transmit signal x = PTs € C2¥! fulfills the average power constraint
E[||x||?] = P. Following the GDoF model of Section 2.3.3, the channel coefficients are
defined as

hj & Pk g (3.1)

where P is the nominal SNR parameter. The parameter 7;; € [0,1] is the relative
channel strength exponent between TX k£ and RX ¢. Finally, the normalized channel
parameters g; , are mutually independent and drawn from a generic (in the sense that
any matrix formed by i.i.d. elements according to this distribution will be full rank)

continuous distribution with density and whose density peak does not scale with P.

3.1.2 Distributed CSIT Model

The D-CSIT model is slightly simplified with respect to the general model described in
Section 2.4. In particular, instead of defining the estimate of g; ;, at TX j as (2.13), i.e.,

gz(]k) 2\V1- Zz(jk) gik + Zz(jk) z(]k)’ (3.2)

we omit the term /1 — Z, as it does not impact the GDoF metric due to the fact that
; (4)
the term is ©(1). Moreover, we model the noise variance scaling as ZZ(Jk) = P~ %k, Hence,

the channel estimate at TX j is written as

Nei 5—al) o(j

g 2 gig+ Pokol), (33)
and fl% = P%’J@_lg‘g‘k). This simplified model is the conventional DoF model used in
the literature [54,58,59,120, 142] to shape the dependency of the CSIT accuracy as a

function of the SNR. The estimation noise terms 52(‘72 are drawn from a generic continuous

LCentralized refers to a logically centralized setting where all the TXs have access to the same, possibly
imperfect, CSI.
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X 1 TX2

_
&) = gk +P weof)
{0 7ix)

Figure 3.1 — 2x2 Network MISO with distributed CSIT. The “bubble” contains the
information available at each TX. Note that the accuracy of the estimate can be different
from TX to TX and from one link to another. The parameters ~; ,, represent the different
path-loss scaling at each link.

distribution with density, independent of P, and independent from TX to TX. We limit
the values of the CSIT quality exponent to ozg],z € [0,7vi k). Note that, in terms of GDoF,
()

an estimate with CSIT exponent o) = ;) can be intuitively understood as being

perfect [50], since the error generated by the estimation noise lies on the noise floor.
Conversely, 04%2 = 0 is intuitively understood as being useless from a GDoF perspective.

Our uppelj—bound analysis of the D-CSIT setting makes use of the results of Davoodi
and Jafar for the C-CSIT setting in [50]. Consequently, we recall here the Bounded Density

assumption usually considered in the Aligned Image Set approach [50,120].

Definition 3.1 (Bounded Density Coefficients [120]). A set of random variables, A,
is said to satisfy the bounded density assumption if there exists a finite positive
constant fiax,

0 < fmax < 00, (3.4)

such that for all finite cardinality disjoint subsets A;, A of A, with A; C A, Ay C
A, AN A =10, |Ai| < oo, |As| < oo, the conditional probability density functions

exist and are bounded as follows

VAL Ao, faya,(A1lAz) < fli) (3.5)
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Chapter 3. Centralized CSIT Setting

We assume hereinafter that all channel realizations g; ;, and estimation noise variables 61.(2
satisfy the bounded density property. This assumption excludes the cases where a channel
coefficient is function of others or the CSIT is perfectly known, and it is equivalent to

the restriction in [143] that the differential entropy must be greater than —oo [120].

3.1.3 Review of the Results for the Centralized CSIT Setting

As mentioned in Section 2.5, the setting in which the CSIT is perfectly shared between
the TXs plays a mayor role in our analysis of the upper-bound as a reference setting
with which we can compare the performance. This comparison allows us to bring out
the impact of having discrepancies between TXs. In this centralized setting all the TXs
share the exact same, potentially imperfect, channel estimate. Hence, there is a single
channel estimate and we can remove the TX index and consider just H. The GDoF of
the 2-user MISO BC with centralized CSIT has been derived in [50]. We state in the

following their main result for sake of completeness.

Theorem 3.1. [50] In the 2-user MISO BC with centralized CSIT, the optimal sum
GDoF, denoted as GDoF““S!T (), satisfies

GDoF S (o) = min(Dy, Ds), (3.6)
where we have defined Dy and Dy as

D1 £ max (y1,2,71,1) + max ((v21 — 1+ 1), (22 — 2+ a1)t), (3.7)
Dy £ max (y2,2,72,1) + max ((y1,1 — v21 + a2)t, (2 — 2 +a2)™),  (3.8)

with the short-hand notations

(05} é min (041’1, 041,2) s (3.9)

a9 é min (042’1, OZ2’2) o (310)

Interestingly, depending on the network geometry, the path-loss can be either advantageous
(since they reduce the interference power received) or detrimental (since they reduce the
intended signal power received in the same level that the interference). Moreover, the

GDoF performance only depends on the weakest CSIT parameter for each receiver.

Remark 3.1. This optimal sum GDoF is achieved by superposition coding, rate splitting
and ZF precoding [132,144]. A detailed discussion about the GDoF expression in (3.6)-
(3.10) is provided in [50]. O
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3.2 GDoF of the Distributed CSIT Setting

3.2.1 Centralized Upper-Bound

We can obtain an intuitive upper-bound for the D-CSIT setting by assuming a genie-aided

centralized setting in which each TX has access to the estimates of all the TXs.

Lemma 3.1. In the 2 x 2 D-CSIT single-antenna Network MISO, the optimal GDoF
is upper-bounded by the GDoF of a C-CSIT scenario in which the channel estimates
of both TXs are perfectly shared, such that each TX accesses to the set of estimates
{ﬂ(l), ﬂ(Q)}. Let us define the set of accuracy scaling parameters of the D-CSIT and
C-CSIT settings as

(81 £ {agflg}i,j,kENz and o* £ {gré%x O‘E’Jk)}i,kENza (311)
2
respectively. Then,

GDoFPT (o) < GDoF“S (o). (3.12)

Proof. 1t is clear that the genie-aided C-CSIT setting is an upper-bound of the
D-CSIT setting, as providing with extra information can not hurt the performance.
It remains to prove that the GDoF of the genie-aided CSIT setting is given by
GDoFCSIT (%), Such setting corresponds to a (logically) centralized scenario with
a shared CSI composed by {I:I(l), I:I(Q)}. The particularity of having several estimates
at a single node is a novel assumption that is not contemplated in the literature.
However, the following proposition allows us to link this particular setting with the

commonly used centralized setting.

Proposition 3.1. Let h® and h® be two random variables defined as L) £
h+]5_o‘(j)5(j), where h and 8Y9) are independent continuous random variables sat-
isfying the Bounded Density assumption of Definition 5.1. Then, the conditional
probability density function fhlfl(l),fl(?) satisfies that

pmax(a(l),a?
max fy i) e = O(PUHETAT), (3.13)

The proof of Proposition 3.1 is relegated to Appendix D for clarity. Actually, this

proposition is a particular case of Lemma 4.1, which covers the general K x K setting
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Chapter 3. Centralized CSIT Setting

and will be presented in Chapter 4. Using Proposition 3.1, we obtain that the peak of
the probability density function of this genie-aided scenario with multiple estimates
has the same scaling as the centralized setting with only a single estimate H*, whose
accuracy scaling coefficients are given by a* in (3.11). It was shown in [120, Section
V.8] that the DoF is characterized by the peak of the probability density function,

and hence we obtain Lemma 3.1. |

3.2.2 Distributed Lower-Bound

We have introduced in the previous section an intuitive upper-bound for the D-CSIT

setting. Now, we show that this genie-aided upper-bound is achievable.

Theorem 3.2. In the 2 x 2 single-antenna Network MISO with D-CSIT exponents cx,
the sum GDoF denoted by GDoF ST (o) satisfies

CDoFPSIT (o) > GDoF““ST (o), (3.14)

where GDoF ST (a*) is the GDoF of the C-CSIT scenario with a single shared

estimate of accuracy scaling parameters
a* = {ai,k = max (ozl(.lk), 041(2,3) }i,k‘ € Ng} . (3.15)

Proof. The achievability proof relies on a proposed transmission scheme so-called
Sliced ZF (S-ZF) which is presented in Section 3.3. [ |

The lower-bound of Theorem 3.2 and the upper-bound of Lemma 3.1 coincide and thus
GDoFP (o) = GDoFCST (o). (3.16)

Remarkably, the achieved GDoF is only limited by the most accurate estimate of each
link, no matter which TX has it.

3.2.3 DoF Results

The DoF scenario models a network in which the path-loss does not scale exponentially
with P. That is, where «; ;, = 1 for any ¢,k € Ny. In this simplified scenario, the DoF
(GDoF) result from Theorem 3.2 becomes

DoF?* (@) =1+ min (max(al)). (3.17)
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3.2. GDoF of the Distributed CSIT Setting

Considering az(.jk) = al), Vi, k € Ny, we recover the results from [32].

3.2.4 An Illustrative Case

We introduce in the following a simple example to convey the main intuition behind
Theorem 3.2, and to illustrate how the CSIT configuration —what CSI is known with
which quality at which TX- impacts the GDoF performance. As aforementioned, each
TX has its own estimate of the channel coefficient between TX &k and RX 4, with an error
scaling as f_’_agflz. In the following example, we consider the conventional DoF, i.e., that
the channel path-loss does not scale as the SNR P (v;, = 1 for any ¢, k € Ny). Moreover,
we consider a CSIT allocation such that, for p € [0, 1],

TX 1 {af] =0.25, a{) =025, of =05, afj=05 },
T™X 2 — {aﬂ =p, a% =p, ag =1-p, a% =1- p}

Note that as p increases, TX 2 becomes better informed about the links towards RX 1
and less about the links towards RX 2, while TX 1 keeps a fixed estimation quality for
each user. In Fig. 3.2 we show the DoF achieved by the proposed S-ZF scheme as a
function of p. We compare this DoF with a centralized CSIT setting with CSIT quality
Qi = max(al(’lk), ozz(.?k)), Vi, k € Ny, whose DoF is computed in [50], as well as with the
scheme based on conventional ZF and Time Division Multiplexing (TDM).

As stated in Theorem 3.2, the proposed scheme attains the DoF of the genie-aided
centralized case, whereas the standard scheme based on conventional ZF, which is optimal
in the C-CSIT setting, performs poorly when confronted with CSI discrepancies between
TXs. Note that the only case where the conventional ZF scheme is performing as the

proposed scheme is for p = 0.25, as both TXs have the same accuracy for the worse RX.

3.2.5 Implications on CSIT Allocation

Theorem 3.2 shows that, in terms of GDoF, the D-CSIT setting is not sensitive to who
has the channel estimate. In the following, we illustrate this aspect from the point of
view of limited-budget CSI feedback from the RXs. In settings in which the CSIT is
obtained by quantized feedback from the RXs, it was shown in [132] that there exists a
linear relation between the number of feedback bits per user (B) and the multiplexing
gain (GDoF). Specifically, a quality exponent al(]g
BY) = o)) 10g,(P) bits [132].

Let us consider for simplicity the DoF model, such that 7; ; = 1 for any ¢,k € Na.

Suppose also that agll)c =1, 0452,)c =0, for all kK € Ng. Thus, TX 1 knows the vector channel

models a feedback quantized with

of RX 1 perfectly in terms of DoF. Now, let us assume that the maximum feedback rate
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Figure 3.2 — DoF of the illustrative example setting as function of p.

from RX 2 towards the TXs, By, = Bél,g + Bé?,z, is equal to By = log,(P), and therefore

o) +afl =1, VEEN,. (3.18)
We vary the number of bits that RX 2 sends to each TX, and thus also aéj,)ﬁ. In particular,
we suppose that RX 2 first transmits all the feedback bits to TX 1 (what implies that
ozéll)c =1 and afz = 0). Then RX 2 starts sending gradually more feedback bits to TX 2,
reducing at the same time the rate towards TX 1 because of the constraint in (3.18). We

can model the feedback allocation shift through a parameter § € [0, 1] satisfying

ayl=1-8,  VieN,, (3.19)
(2)

ay) =B, Vi € Ns. (3.20)
In Fig. 3.3, the sum DoF of the proposed scenario is shown as function of the feedback
allocation parameter 5. We can see that the sum DoF decreases as the CSI becomes more
evenly distributed. This property is a direct aftermath of the DoF expression, which
depends on min; g (man(agg)), what in our case is equivalent to max(1 — /3, 3). Thus,
up to 8 = 0.5 the DoF decreases to DoF = 1.5. If 8 keeps increasing beyond 8 = 0.5, the
DoF raises gradually. Finally, for 8 = 1 we recover the maximum DoF of DoF = 2. Two

main insights arise from Fig. 3.3. The first one is the explicit symmetry, which implies
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Figure 3.3 — Sum DoF as function of the CSIT allocation at the TXs.

that it does not matter which TX owns the CSIT. (For g = 1, each TX owns the CSIT
of one RX.) The second insight is that in the 2-user D-CSIT setting, under a maximum
feedback rate constraint for each RX, the optimal CSIT allocation decision in terms of
GDoF is to transmit the CSI of a certain link only to one of the two TXs. Moreover,
the CSI of different links does not need to be sent to the same TX. This insight follows
from (3.15) in Theorem 3.2.

3.3 Sliced Zero-Forcing Precoding

The proof of Theorem 3.2 is presented in the next section. Prior thereto, we present a
novel precoding scheme, coined as Sliced Zero-Forcing (S-ZF'), which is essential in that
proof. The D-CSIT setting is characterized by its flexibility, in the sense that it comprises
different CSIT configurations for which the transmission scheme must be adapted. Indeed,
S-ZF uses different precoder expressions —slices— depending on the CSI allocation.

As usual in interference minimizing schemes, the designs of the precoding vectors
towards the different RXs can be decoupled [50,137]. Consequently, we present here the
precoding vector for the data symbols of RX 1, designed to cancel the interference at
RX 2. The precoder for RX 2 will be obtained by a permutation of the user indexes. We

t%ZF e )\1W1 and

(1) (1)
t W

t52F 2 !(15] 2\, [ g;] , (3.21)
t1,2 W12

decompose the precoding vector such as
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Table 3.1 — CSI Allocation Regimes

a 1 2 1 2
a2 ay) > ag) ay) < ag)
agf > aé? Most-informed TX (TX 1) Locally Informed TXs
agf < agf Non-locally Informed TXs Most-informed TX (TX 2)

where A is a power normalization constant and ng ,1 denotes the precoding coefficient
applied at TX k£ and computed locally at TX j, before the power normalization. Note
that the super-index (j) is used to highlight which TX owns that information, and which
estimate H) has been used to compute it. Following the ZF approach [145], the vector

W = [ngf, WQ]T is designed so as to satisfy”

hi'w, =0, (3.22)

although each TX computes (3.22) based on its own available CSIT. This aspect will be
discussed in more detail below for each CSI configuration. Moreover, it is important to
mention that one TX does not need to compute or know the coefficient applied at the
other TX. The normalization constant A; is chosen to fulfill the average power constraint

and is then given by

1
D VI — (3.23)
B [|lwaf?]
for the constraint E[[|t}%F||?] = 1. The normalization constant A; only depends on

statistical information and can hence be computed at both TXs. Regarding the possible
CSI allocation, the channel vector hil is composed of two coefficients, such that we can
distinguish four different CSI regimes depending on which TX has better knowledge of
each link. Those four regimes are shown in Table 3.1 and they can be reduced to three
cases by symmetry between the TXs. For each of these regimes, we will now describe the
S-ZF precoding scheme. We restrict ourselves to the precoder for the data symbols of
RX 1, and then only the channel vector of RX 2 is relevant. The key intuition of this
scheme is that a TX only uses its own estimate if it is the most accurate among the two

TXs, as it will become clear in the following.

2If we consider Regularized ZF instead of conventional ZF, the ZF condition in (3.22) is only fulfilled
asymptotically. At a certain finite transmit power, Regularized ZF does not focus only on interference
cancellation ((3.22)), but it also takes into account the impact of noise.
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Locally Informed TXs

In this case, each TX has the best estimate of its own channel coefficient towards RX 2.

The precoding coefficient at each TX is then given by

- - 1
wii 2 D" (IBSH1P+ 5) o
. . 1\—-1 :
w2 (-1 ()" (B3P + 5)

Non-locally Informed TXs

In this case, each TX knows more accurately the channel coefficient from the other TX

towards RX 2. The precoding coefficient at each TX is given by

(3.25)

Most-informed TX

In this last case, there exists one TX that has the best estimate of both coefficients. The
S-ZF precoding is then based on the AP-ZF scheme introduced in [82]: The TX with less
accurate CSIT (e.g., TX 2) transmits with a constant precoder while the most-informed
TX (TX 1) tries to correct the interference generated by TX 2. As a matter of example,
let us consider that the constant precoder at TX 2 is given by W% £ _1. Thus,

1 ~(1 ~(1 IN—1.(q
wi = (D™ (G112 + ) hg). (3.26)
In order to convey the main intuition behind the precoder expressions, Table 3.2 shows

the simplified expression ~with non-regularized inverses— of the precoders in (3.26)-(3.25).

Remark 3.2. The S-ZF precoding is designed so that the interfered RX receives two equal
signals with opposite phase and hence the interference is canceled. The precoder allows
to use only the most accurate estimate of each link. Table 3.2 shows that all the choices

of wy solve (3.22) with the highest possible accuracy. O

Normalization Constant

The value of the normalization constant \; varies accordingly to the precoder expression.
The next proposition discloses the asymptotic scaling of A\; for each one of the possible
precoders, whereas A9 follows from a permutation of the RX indexes. We analyze the

normalization constant with Rayleigh fading in detail in Section 3.6.
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Table 3.2 — Simplified precoder wy = [wglf, wg]T for the data symbols of RX 1 according
to the CSIT configuration. “Main TX j” denotes the “Most-informed TX” (TX j) case.

Main TX 1 Main TX 2 Local CSIT _1\1_0{1‘_1(30_3{ ?_SI_T:
""""""""""""""""""" 1 2
oyl > af] o8l > o o] > o) o] <aff)
1 2
agy > af a3 > ol off<af)  asy>oadl
M)\ —17(1 A1)\ —1 ~(1
o | g 1 i) i)
A\ =171 (1 ~ -1 ~ (2
-1 —(053)"BsY ~ (b)) —h{)

Proposition 3.2. The normalization constant of the precoder for the data symbols
of RX 1, for the constraint B[||t3%F||?] = 1, satisfies that

@k)g ]5 —max(y2,1,72, 2)) Non-locally Informed TXs (3.27a

n(7v2,1,72,2)— 1) Locally Informed TXs (3.27b
(12272, 1)+) Most-informed TX (TX 1) (3.27c
—(r21-722)" ) Most-informed TX (TX 2) (3.27d

)

A1 )
)

)

Il
A/-\AA

Proof. The asymptotic scaling of A; is directly obtained from the precoding vector
definitions in (3.26), (3.24), and (3.25), and the fact that IE[||BZ(],2H] =P, W

S-ZF Precoder: General Expression

The adaptive S-ZF precoder can be enclosed in a single precoding expression that
encapsulates the four possible precoding vectors summarized in Table 3.2 and described
in (3.24)-(3.26). Let us denote, for any index a C Na, the complementary @ = a (mod 2)+1,
such that a,a € Ny, and a # a. Therefore, we can write the S-ZF precoder for RX i as

() & (_qyi ) 4 D RO (ROR 4 1yt ROBURCING
wi) 2 (-1 (1 o)+ BIY (1Y) + ) )(1 oD+ DAY, (3.28)
where c E {0,1} is defined as

)
ok (3.29)
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TX 1 TX2

(©) (@)

Figure 3.4 — Network topology for the Parallel Configuration.
The role of the parameters cgjk) is to allow to swift from one precoder to another according
to the CSI allocation at the TXs.

3.4 Achievability Example for a Simple Configuration

In this section, we illustrate the proposed precoding scheme for a simple CSIT and
path-loss configuration, so as to convey the main intuition while avoiding cluttered and
heavy notations. Specifically, we consider a particular path-loss configuration for the
sake of exposition —so-called Parallel Configuration, and represented in Fig. 3.4— in
which v;; = 1 and «; , = v for k # i. Besides this, we consider that each TX has an
homogeneous CSI accuracy, i.e., ozglz = al), for any i,k € Ny, and that TX 1 is the best
informed TX, i.e., a() > o). Suppose now that we aim to send information to both
users and satisfy that the interference lies on the noise floor (PY).

Fig. 3.5 illustrates the different power levels for the transmission of the symbols of
RX 2 at RX 1. (Due to the symmetry of the configuration, the received signal at RX 2 is
equivalent.) We can observe several insights from Fig. 3.5: First, the transmitted power
scales as P17+l Thus, in this particular configuration, the path-loss is beneficial, as
it allows to increase the received power of the intended signal while keeping fixed the
interference power. Note that in other path-loss configurations this behavior is reversed
and the path-loss is detrimental. Second, it shows how TX 1 reduces his transmitted
power for so to compensate that the channel from TX 2 is weaker, so that the interference

power received at RX 1 from both TXs has the same scaling. Hence, the non-intended
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Figure 3.5 — Illustration of the different power scaling for the Parallel Configuration. At-
tenuation of the signal power due to the path-loss and the S-ZF precoding are emphasized
using arrows.

symbol scales in patt Then, thanks to the S-ZF precoding, it is possible to entirely

cancel the interference (see Lemma 3.2).

3.5 Proof of Theorem 3.2

The achievability proof of Theorem 3.2 is based on the transmission scheme that attains
the centralized GDoF bound in the centralized MISO BC of [50], but they differ on the
precoding vector applied. The centralized scheme uses conventional ZF as the tool to
reduce the interference. However, the use of conventional ZF in the D-CSIT setting
leads to a degraded interference cancellation, such that the centralized GDoF cannot be
reached. We overtake the limitation of conventional ZF with the proposed S-ZF scheme

—introduced in Section 3.3— and achieve the centralized upper-bound. We present here
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the main structure of the transmission scheme, emphasizing the novelty with respect to
the centralized achievable scheme. A detailed description of the scheme, disclosing the
appropriate transmit power of each symbol for each CSI allocation regime is relegated to

Appendix A for the sake of conciseness.

3.5.1 Rate-Splitting Approach

The transmission scheme makes use of the rate-splitting approach [54, 146]. In this
technique, the messages intended by the RXs (W; for RX i) are split in several data
symbols. The main idea is that each message W is divided in a private (s;p) and a
common (s;.) messages. Then, the private part is transmitted so as to be decoded by
the intended RX (RX i) and attenuated at the other RXs. Conversely, the common parts

of each message are gathered in a single data symbol

Se = {S1,¢,---+SK,c}- (3.30)

This common symbol is broadcast so as to be decoded by all the RXs —and thus its rate
is limited by the worst RX channel quality— For the decoding, each RX first decode the
common symbol s.. Then, the RX substracts the contribution of s. to the received signal,
and thus it can decode the intended private symbol s;, by treating the other s;,, j # 1,
symbols as noise. The general rate-splitting approach allows for an arbitrary number of

splittings, as well as common symbols for a sub-set of RXs.

3.5.2 Superposition Coding Transmission Scheme

Superposition coding schemes have been shown to achieve optimal DoF and GDoF for
multiple BC settings with imperfect CSIT [48,50,97,137]. In our setting, the transmission

scheme fits the expression
_ b b ZF ZF B
x = Ppcteesse + Pzr(t1 szr1 + t57 szr2) + Pyt yss. (3.31)

The terms spc, Szr1, Szr2, S¢ denote four different information symbols that are
described in the following. Depending on the path-loss topology (i.e., the value of v; 1)
and the CSIT allocation (i.e., the value of agfg), some of those four symbols may be
suppressed. In the general scheme, those symbols form a three-layer structure where each

layer has a different power scaling, given by Ppc, Pzr, and P¢. Specifically:

1. Low-power layer: sy is a non-zero-forced symbol transmitted with power such that

it is only received by the intended RX, if the path-loss topology allows for that.

2. Zero-Forcing layer: szp;, 1 € Ng, is intended to RX i and canceled at the other
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RX using ZF-type precoding. A necessary condition for the optimality of the
scheme is that the interference generated by those symbols lies below the noise floor.

Therefore, they are transmitted with a power proportional to the CSI accuracy.

3. Full-power layer: spc is a broadcast symbol transmitted with full power, intended
to be decoded at both RXs.

In order to decode every intended symbol, RX i applies successive decoding [97] to first
decode spc, then its intended symbol szr; and finally s, if it is intended to RX i. Note
that, in this case, the Full-power layer carries the common symbol s. introduced in the
previous section about the rate-splitting approach. Hence, this symbol sgc = s, may
carry information for all the RXs uniformly, but we can also adapt its composition such
that we balance the user rate accordingly to different considerations (e.g., max-min rate
optimization). Furthermore, the private message of one of the RXs may be further split
in two symbols: If we consider that s, is intended to RX i, the private message s;

previously described is divided into szp; and sg.

3.5.3 Interference Cancellation

Importantly, the precoders tgc and t4 depend only on the long-term statistical information
(az(]k) and 7; 1) and are hence not affected by the instantaneous CSI discrepancies between
TXs. This implies that, in order to prove that it is possible to achieve the same GDoF as
in the centralized setting with o; ) = max(ag}k), ag?k?), we only need to show that S-ZF
achieves the same level of interference attenuation as ZF in the centralized setting of
reference. This is shown for the interference at RX 2 by means of the following lemma,

while the same result holds for RX 1 after a permutation of indexes.

Lemma 3.2. The S-ZF precoder achieves the same interference reduction scaling
as the conventional ZF precoder computed from the best estimate of each channel
coefficient, i.e.,

opt

|2 = @ (Pt i=ad) (332

when E [|[t3%5||?] = ©(1), and where we have defined the short-hand notation ag? as

aZP! 2 min ( max o), max oY) ) . (3.33)
2 A 2,1, 1 2,2
JjENy Jj €N
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Proof. We prove separately each of the regimes of Table 3.1.

Non-locally Informed TXs: From the precoding vector expression in Table 3.2,
the interference term satisfies that
\h§t§ZF\2 = A \—hz,lflgg +h2,2flg|2
(a)

_ ()

)\% } —ho 1hg o — h2,1P_a272+72’2_15§712)

VORI (3.34)
+hyghyy 4 hyp P22 7167 |
(2) __ ()
( ) )\QP’yQ 1+72,2— Q‘P Qg 1g2 26(721) . P_a2’2g ’ (55712) 27
where (a) holds because, by definition,

BY) 2 Dy + Poskeelgh) (3.35)

and (b) comes from hy j, = ]5727’€_1g2 k- Focusing on the absolute value term in (3.34)

and recalling that a5P" = mm(aé %, a; i) it holds that

) (1) o
[Pl 00 — P o) = 0,(PF), (3:36)

Including (3.36) in (3.34) and substituting A; with (3.27a) yields
opt

|h2Ht§ZF‘2 — @, (P™Min(2a22)— 105y (3.37)

what proves Lemma 3.2 for the “Non-locally Informed TXs” case. The two other

regimes follow in a similar manner.

Locally Informed TXs: In this case, substituting t%ZF by its expression® yields

= ) i)
9% |+ Pt )
FEEGED ™ - pfaé,%wla?%(ﬁ?%) F e
U Prettal (@) - P el

(i)@ (Prmn('ygl,'yzg) 1—ag )’

(])

(9) ;
where (a) follows from hyj = h; Pfa2fk+72,k715§{]1’ (b) comes from applying

flé] ) = prar-lp (] ) , and (c) is obtalned after substituting A; with its value in (3.27b).
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Chapter 3. Centralized CSIT Setting

Most-informed TX: Let us consider w.l.o.g. the case in which TX 1 is the TX
with the most accurate CSI. Hence, following the same steps as in the previous cases,
we obtain

InSF2F |2 = A2 | ~hg1 (B5) 'R + hay

)

5—as!) - _
= X3 | Prosttea s (a0 gy, - prosatrealsD2 (3.39)

_ min s —1—aSPt
— ®p(P (72,1,72,2) 2 )7

‘ 2

what concludes the proof of Lemma 3.2. |

From the Corollary 2.1, Lemma 3.2 implies that

opt

E[|[n¢77"| 2] = g(prinhz1za)mlmesT, (3.40)

i.e., the average received power of the interference scales as in the centralized setting.

3.6 Normalization Constant with Rayleigh Fading

Proposition 3.2 establishes the asymptotic scaling of A\; on the limiting high-SNR regime.
Hereunder, we extend the characterization of A; under the assumption of Rayleigh fading

by providing its exact value. Recalling (3.23), the constant \; is defined as

1

PV —
VE[[[wil|?]

Let us assume that the channel is drawn from a complex gaussian distribution where
all the links are independent with different variance, i.e., h; 5 ~ N¢(0, a? i) The GDoF

channel model is recovered if Uzk = PY%+»~1 Therefore, we need to obtain E[||w;|?]. We

(1>

(3.41)

present in the following the expression of \; for each one of the regimes of Table 3.1. We
use the GDoF model as throughout the rest of the section, and we refer to Appendix B
for a general expression for any channel variance Ui ; and any regularization term, as well
as for a full characterization of the probability density function of A;. We further assume

that the estimate flij,g follows the same distribution as the channel coefficient h; ;.

3.6.1 Preliminaries: Statistics of the Regularized Inverse

The S-ZF precoder computes in several cases the regularized inverse of a channel coeffi-
cient ﬁgjlz, which is given by (BEJIE)HGEE],C) 2+ 1/P)~!. We are interested in the expected

3We have omitted the regularization of the inverse for simplicity, as it does not have any impact in
the asymptotic regime.
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value of its squared absolute value.

Proposition 3.3. The regularized inverse of a channel coefficient satisfies that

~ (4 S (j Iy-1)? =i i s
B+ 5) [ = P T e P - 1), @

A

where E1(z) is the exponential integral defined as E1(z) = [° ? dt.

Proof. The proof is relegated to Appendix B. |

3.6.2 Normalization Constant for the S-ZF Precoders
Non-locally Informed TXs: This case does not require inversion and J; is given by
1
(1) (2)
\/E [|W7;,1 2+ w5 2] (3.43)
_ 1
B \/Pﬁ,z—l + pria—1 '

Ai =

Most-informed TX: Suppose that TX 1 is the Most-informed TX. From Proposi-
tion 3.3 and the definition of the precoder it follows that

1

(3.44)

A = .
\/ Pria—ia (eP’”“ Ey(Pi1)(1+ Pi) — 1) +1
Locally Informed TXs: In this case, each TX applies the regularized inverse as

precoder, and thus Proposition 3.3 yields

1

A = . (3.45)
VS, Pl (e By (P14 P) — 1)

3.6.3 Asymptotic scaling of the normalization constant

The asymptotic scaling of A; in the “Non-locally Informed TXs” case is directly obtained
from (3.43) and it matches (3.27a), as expected. For the other two cases, let us consider

the limit as P approaches to infinity. Consider «; > 0. Note that

lim 14+ P77k =1 (3.46)
P—oo
lim ef =1 (3.47)
P—oo
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Figure 3.6 — Approximation of the El(%) when P — co.

P

lim E,(P k) ~° In(PY+) — 0.57722. (3.48)

P—oo
The linear approximation of the exponential integral in (3.48) is shown in Fig. 3.6 to fit
almost perfectly. The Mean Square Error (MSE) of this approximation is € = 1.8793%1071!
for P > 10dB. Consider now the “Most-informed TX” case with TX 1 having more
accurate CSI. Then,

P—oo 1

VP27t (In(PYit) — 1.57722) + 1

Interestingly, the logarithmic term In(P71) implies that \; = @log(P_(Wﬂ_W!l)Jr) but
conversely \; # @(P*(W’Q*VE,lﬁ). This scaling justifies the defined notation Ojeg(-).
3.7 Numerical Results

We consider a parallel path-loss topology as the one introduced in Section 3.4 and depicted

in Fig. 3.4, whose path-loss coefficients are given by
Yii = 1, Yik = 0.8, Vi, k € No, k 7é 1. (350)
We further consider that the TXs have a homogeneous CSIT accuracy, such that

o) =05 al)=0, VikeN,. (3.51)
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Figure 3.7 — Sum rate in terms of the SNR for the Parallel Configuration of Section 3.7,
with a¥ = 0.5, a? =0, and v = 0.8.

In this case, the CSI accuracy at TX 2 does not scale with P and thus it is fruitless in
terms of GDoF. The S-ZF scheme has been simulated and compared with two different
schemes. The first one is the Centralized CSIT setting where both TXs share the CSIT
information, which has been shown in Lemma 3.1 to be an upper-bound for the D-CSIT
setting. The second one is the naive distributed ZF, where each TX implicitly assumes
that the other TX has the same channel estimate [82], and then applies conventional ZF.

In Fig. 3.7, the GDoF is equal to the slope at high SNR of the sum-rate function
over the SNR. It can be seen that S-ZF in the D-CSIT setting achieves the same GDoF
as the C-CSIT case. The naive distributed Zero-Forcing is limited by the worst CSIT
quality estimate, a(?) = 0, and thus the CSIT at the best TX is useless for this naive ZF
and it matches the performance of the setting with no CSIT [82].

3.8 Conclusions
We have shown that, remarkably, having different CSIT at each TX does not decrease

the GDoF of the 2-user Network MISO for any channel topology. Key to this surprisingly

good performance is the adaptation of the role of each TX as a function of the multi-TX
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Chapter 3. Centralized CSIT Setting

multi-user CSIT configuration. The dimensionality of the setting provides the main
intuition of this result: For each precoding vector, the TXs need to cancel out only one
interference term. Then, having an accurate CSI at only one TX is enough to manage
the interference. Besides this, we develop an adapted transmit power scheme that attains
the GDoF of the ideal centralized setting with perfect CSIT sharing. Hence, this work
reveals that cooperative settings are much more resilient against CSI mismatches between
TXs than commonly thought in the community, what could impact the future design of
feedback mechanisms. The main question that follows from this analysis is if the result
can be extended to more general networks, with an arbitrary number of TXs and RXs.

This subject is investigated in the following chapter.
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Chapter 4

DoF Analysis of the KxK
Distributed Network MISO

In the previous chapter, we have analyzed the particular setting with 2 single-antenna
TXs and 2 single-antenna RXs, with the aftermath that having different CSIT scaling at
each TX does not reduce the GDoF of the system. Motivated by this result, we extend
the analysis to the K x K setting, aiming at finding the fundamental limitations of the

distributed setting. In other words, at answering the question

To what extent can the D-CSIT setting retain the GDoF of the centralized setting?

However, the GDoF metric suffers from a curse of dimensionality, in the sense that the
number of parameters increases polynomially with respect to the size of the network. In
particular, in a D-CSIT K x K network there are K2 path-loss parameters () and K3
accuracy scaling parameters («). Hence, the tractability of the analytical characterization
of the network becomes cumbersome. In the literature, many works that tackle this
challenge circumvent this difficulty by assuming simplified symmetric settings [50,147—-151].
In a similar vein, we focus in this chapter on the DoF analysis, such that all the channel
coefficients undergo the same path-loss scaling and thus v; , = 1 for any i,k € Ng. This
restriction allows us to direct the analysis on the impact of decentralized CSIT and to

abstract it from the path-loss topology leverage.
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Chapter 4. DoF Analysis of the Kx K Distributed Network MISO

As a matter of example, the DoF of the 2 x 2 C-CSIT setting is given by

DoF(a) =1+ min (a; ). (4.1)
i,kENs
If we compare the simple expression in (4.1) with the GDoF expression for the same
setting in Theorem 3.1, we observe that the complexity of the expression already raises
considerably for the simplest network case.

Hereunder, we analyze the D-CSIT setting with K TXs and K RXs. We first compute
the DoF of the genie-aided C-CSIT setting where all TXs are given the knowledge of
all the channel estimates at all TXs. We also show that this bound is tight for a range
of D-CSIT configurations, coined the Weak-CSIT regime and defined rigorously further
down. Interestingly, the optimal DoF for such D-CSIT settings only depends on the CSIT
quality at the most informed TXs. Sharing the instantaneous CSIT among the TXs is
hence not necessary to achieve the genie-aided centralized DoF and does not improve
the optimal DoF. Building on previous fundamental principles, we also present a robust
transmission scheme adapted to any CSIT configuration and any number of users and
which significantly improve the achieved DoF with respect to state-of-the-art methods.

A byproduct of the content of this chapter, which completes its main contributions,
is the development of new methods used as building blocks to our main algorithm and
which are of interest by themselves for other applications. The first one is the idea that
increasing the number of TXs with no CSIT can increase the DoF performance, as they
turn out to be essential for transmitting multi-stream transmissions to a single-antenna
user, and hence create an overloaded transmission. The second method is the translation
to the distributed CSIT setting of the idea introduced by Maddah-Ali and Tse in [51],
consisting in estimating and retransmitting the interference generated. Interestingly, and
in contrast to [51], the interference terms are estimated before they even take place and
are retransmitted in the same time slot. This principle could be applied in other wireless

configurations where some nodes are more informed than others.

4.1 Preliminaries

4.1.1 Transmission Model

We focus in this chapter in a communications system where K TXs jointly serve K RXs
over a Network MISO channel. We consider that each node (TX or RX) is equipped with
a single-antenna. The assumption of single-antenna TX is done for ease of exposition, and
the extension to multiple-antenna TX is straightforward. The transmit and received signal

is defined as in Section 2.2. We assume that the transmitted multi-user signal satisfies an
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average power constraint of P. The channel is assumed to be drawn from a continuous
distribution with density such that all the channel matrices and their sub-matrices are
full rank with probability one. Moreover, the channel coefficients are assumed to change

after one channel use and to be independent from one channel use to another.

The transmitted multi-user signal x is obtained from the symbol vector s € C?*!
having its elements i.i.d. according to N¢(0,1), where b is the number of independent
data symbols delivered. We will differentiate in this chapter between the private data
symbols, destined to be decoded at a particular user, and the common data symbols,
broadcast and destined to be decoded at all users. Note that the term private is used
only in contrast to common and does not refer to any privacy/secrecy constraint, but to

the fact that only one user will decode the symbol.

4.1.2 Distributed CSIT Model

We consider the D-CSIT model described in Section 2.4, such that TX j receives the
imperfect multi-user channel estimate H() = [flgj), e ,fl%)]H € CE*E where (flgj))H
refers to the estimate at TX j of the channel from all TXs towards RX ¢. TX j then
designs its transmit coefficients solely as a function of HU) and the statistics of the
channel. Since this chapter is focused on the DoF analysis, we use the same model as in
the previous chapter, which has been described in Section 3.1.2, but with the particularity
that PYik—1 =1 for any 4,k € Ng. Therefore, we write the channel estimate as

N __ @) (i

hY) 2 by + Pk80). (4.2)
We consider in this chapter the particular Sorted CSIT setting introduced in 2.4.4, in
which we can order the TXs such that

1>al) >al? > > >0 (4.3)

This assumption is made so as to avoid the unmanageable increment of possible CSIT
regimes. Besides that, this regime is interesting also because it has proven to obtain
important gains with respect to the lower-bound. Since the sorted structure applies to
any channel coefficient in the same order, we can assume w.l.o.g. that agjlc) = o). Hence,
1> a) > > aM) > 0, and the estimate matrix at TX j is given by

AU — H4 P AU, (4.4)

For later use, we also denote the i-th row of AU as ((Si(j ))H, such that it holds that
fll(] ) — h; + ]5*0‘(])61(] ). The multi-user distributed CSIT configuration can be hence

99



Chapter 4. DoF Analysis of the Kx K Distributed Network MISO
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Figure 4.1 — K x K Network MISO setting with Distributed CSIT. The accuracy of the
channel estimate at TX j is modeled through the CSIT scaling coefficient a(/).

represented through the multi-TX CSIT scaling vector o € RY defined as
as {a(l), e a(K)}. (4.5)

The parameters « represent the average accuracy of the estimates. They are long-term
coefficients that vary slowly in time and can be easily shared to all TXs. Consequently,
the parameters a are assumed in the following to be fixed and known at all TXs. As in
the previous chapter, we assume that all channel realizations h; j, and estimation noise
variables 61(],3 satisfy the bounded density assumption of Definition 3.1. Furthermore, the

channel realizations and the estimation noise are mutually independent.

4.1.3 Imperfect CSI Acquisition and Sharing

We consider in this thesis that the TX-dependent local imperfect multi-user channel
estimate is obtained at the TXs from a CSI acquisition and sharing mechanism not dis-
cussed in this work. Yet, due to unavoidable delay and imperfections in the CSI sharing

mechanism, this CSI sharing step leads to a setting where the TXs have received different
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<mmmemeee- > Limited/delayed/noisy backhaul link
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Figure 4.2 — Schematic illustration of three different example scenarios with distributed
CSIT. FDD transmission is assumed. h; denotes the (highly accurate) estimate of user i’s
channel that is fed back to the attached TX. HY) denotes the CSI matrix obtained at
TX j after cooperation. HU) and h; represent a quantized /coarse version of the respective
estimates, transmitted through limited backhaul communications.

imperfect estimates of the true channel. We provide below several practical examples
that illustrate different network configurations that lead to the D-CSIT configuration
introduced in 4.1.2.

Example 4.1. In a network with several Base Stations (TXs) cooperating to jointly
serve their users, each TX obtains a feedback from its attached user such that
each TX will know accurately only a part of the channel state information. For
example, in Time Division Duplexing (TDD) transmission with reciprocity, each
TX will obtain a good estimate of its local channel; instead, in Frequency Division
Duplexing (FDD) with user feedback, each TX will obtain a good estimate of the
whole channel vector towards its attached user. Considering a CSI exchange step
with heterogeneous links in the sense that one direction is of better quality, requires
less quantization, or introduces less delay (which is a very reasonable assumption
when considering heterogeneous networks where some of the TXs are UAVs [11,12]
or vehicles [152]), we obtain a setting where one of the TXs is uniformly more
informed that the other. A particular example is depicted in Fig. 4.2.a, in which the
link between TX 2 and TX 3 is a limited Device-to-Device (D2D) link.
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Example 4.2. In addition, considering the previous setting in the case where
CSI exchange is limited by a very restrictive delay, the sharing can be done by a
transmission of the accurate CSI to a specific -main— TX, which then forwards a
coarser version of the whole channel matrix to all TXs due to delay constraints. This
retransmission from the main TX could also be broadcast, such that the resources
spent on the sharing are reduced. Using layered encoding [153], every TX would

obtain an estimate with a different accuracy. This setting is shown in Fig. 4.2.b.

Example 4.3. In a wireless network with one principal TX receiving feedback from
all users to be served and several remote radio heads helping in the joint transmission,
a distributed CSIT configuration is obtained when the CSI sharing from the main TX
to the remote radio heads is done using limited and imperfect communication links,
as illustrated in Fig. 4.2.c. It could also be envisioned that the remote radio heads
directly acquire low precision channel state information from direct feedback from
the users using layered encoding [153] or analog feedback [154]. Due to the weaker
capabilities of the remote radio heads, a Distributed CSIT (D-CSIT) configuration
with homogeneous quality at each TX would then be obtained.

We assume in the following that the CSI acquisition step has already occurred through
limited and imperfect communication links and has led to each TX having access to its

own imperfect estimate of the multi-user channel state.

4.1.4 CSIR Model

As in the important literature on delayed CSIT [51,54,58—-61] we assume that the RX has
been able to obtain perfect knowledge of the channel of the other RXs. This assumption
is key to the approach used in this chapter. However, it is important to note that this
assumption can be weakened as it is sufficient for the RXs to obtain the CSIT up to the
best CSIT quality across the TXs (not necessarily the same estimate, but of the same
quality). Furthermore, the estimate should be available at the RX for the decoding, such

that its latency constraint stems from the user’s data, not from the channel coherence.

4.2 DoF of the Distributed CSIT setting

As a preliminary, let us first state the optimal DoF of the centralized K-user BC setting
where there exists a single estimate with a CSIT scaling coefficient « that is perfectly
shared by all TXs. It was shown in [120] that the sum DoF in that configuration, denoted
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by DoF®“SIT (), is equal to
DoF“ST(q) =14 (K — 1)a. (4.6)

We can now present our main results.

4.2.1 Centralized Upper-bound

In a similar manner as for the 2 x 2 setting of the previous chapter, we can obtain
an intuitive upper-bound for the K x K setting with distributed CSIT by assuming a
genie-aided centralized setting in which each TX has access to the estimates of all the
TXs. The following theorem is an extension of Lemma 3.1 for an arbitrary number of
nodes.

Theorem 4.1. In the K x K single-antenna Network MISO with distributed CSIT,
the optimal DoF' is upper-bounded by the DoF of a C-CSIT scenario in which the
channel estimates of all the TXs are perfectly shared, such that each TX accesses to

the set of estimates {I:I(j)}jGNK. Concretely, let us define the set of scaling parameters
of the D-CSIT and C-CSIT settings as

o= {az(',jg}i,j,keNK and o £ {?éaN’; az(,jlz}z‘,keNKa (4.7)
respectively. Then,
DoFPS!T (o) < DoFCCSIT (). (4.8)

Proof. The proof relies on the following important lemma.

Lemma 4.1. Let HU) £ 4 + P‘O‘(j)A(j), where H, AY), Vj € Ng, are inde-
pendent continuous random variables satisfying the Bounded Density assumption.

Then, the conditional probability density function fﬂlﬁ(l) g satisfies that

i g = O (P o) (49)

Proof. The proof is relegated to Appendix D for clarity. |

63



Chapter 4. DoF Analysis of the Kx K Distributed Network MISO

Let us now assume a genie-aided scenario where all channel estimates are exchanged
between all the TXs. Such setting corresponds to a (logically) centralized scenario
with a shared CSI composed by {I:I(l), cee I:I(K)}. Using Lemma 4.1, we obtain that
the peak of the probability density function of this genie-aided scenario with multiple
estimates has the same scaling as the centralized setting with only H®. It then
directly follows from the proof in [120, Section V.8] that the DoF of the genie-aided

scenario, denoted by DOFSC%%T (o), is given by
DoFSS3T (@) = DoFCOSIT (1), (4.10)

From this equivalence, and the fact that providing with more information does not
hurt, the proof is concluded. |
Lemma 4.1 is expected to hold in a more general group of distributions, i.e., including
cases where the different noise variables are partially correlated. Indeed, for the Gaussian
case where the noise variables {Ay,z }vjeny are drawn from partially correlated jointly

Gaussian distributions, it is easy to show analytically that (4.9) is also satisfied.

Proposition 4.1. Suppose that the estimation noise variables {Agjk)}VjeNK are
drawn from partially correlated jointly Gaussian distributions. Then, Lemma /.1
holds and thus it follows that

DOFDCSIT(Q) < DOFCCSIT(Q(]')). (411)

Proof. The proof is relegated to Appendix C.4 |

Interestingly, the upper-bounds of both Theorem 4.1 and Lemma 4.1 also hold for the
GDoF model, as the path-loss parameters do not affect the CSIT accuracy scaling, and

hence the result of Lemma 4.1 is independent of the path-loss.

4.2.2 Distributed Lower-bound

In the following, we present a DoF lower-bound for the K x K Network MISO setting with
distributed CSIT. We split the lower-bound in two different CSIT regimes, depending on
whether it matches the centralized upper-bound of Theorem 4.1 or not. The proposed

scheme achieving the lower-bound follows the same approach for both regimes.

a) Weak-CSIT Configuration

In this regime, defined rigorously in the following, the D-CSIT setting surprisingly attains
the DoF of the genie-aided C-CSIT setting, as shown in the following theorem.
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4.2. DoF of the Distributed CSIT setting

Theorem 4.2. Suppose that the m first TXs have the same CSIT accuracy scaling,

ie., o) =...=al™ m < K. Let us define a'*?* gs
O[VVeak A 1 (4 12)
" 1+ K(K—-m-—1) '

Then, if o) < aVeak the sum DoF of the K x K Network MISO with Distributed
CSIT satisfies
DoFPOSIT (o) > DoFCOSIT (o), (4.13)

Proof. The result follows directly from the analysis of the proposed scheme presented
in detail in Section 4.4. |

The regime for which a(!) < anwbeak is called the “m-TX Weak-CSIT” regime. For
convenience, we simplify the notation and refer to it generally as the “Weak-CSIT regime”.
In the so-called Weak-CSIT regime, the upper-bound of Theorem 4.1 is tight. Surprisingly,
for m = 1, the most heterogeneous case, the DoF depends only on the CSI quality at
TX 1, although with the downside of reducing the range of possible CSIT configurations.
For m = K — 1 it holds that a%v‘ialk =1, and thus every CSIT configuration is included
in the Weak-CSIT regime, which is consistent with the simple use of single-stream

Active-Passive Zero-Forcing (AP-ZF) precoding presented in [82].

Remark 4.1. The fact that it is possible to achieve the DoF of the centralized upper-bound
with badly informed TXs is a surprising result which is not expected to extend to many
other CSIT configurations. Indeed, it can be intuitively seen using basic linear algebra

that at least K — 1 dimensions are necessary to cancel K — 1 ZF constraints. O

b) Extension to Arbitrary CSIT Configurations
Theorem 4.2 shows the CSIT configurations for which the upper-bound of Theorem 4.1

is tight. In the following, we present a robust transmission scheme that builds on the
transmission scheme attaining Theorem 4.2, which is extended to adapt to any CSIT
configuration without restriction. The main challenge comes from the large number of
CSIT scaling parameters, leading to an even larger (combinatorially large) number of
possible CSIT configurations depending on their relative values. First, we define three

terms that play an important role in the proposed transmission scheme.

Definition 4.1 (Transmitting TXs). A TX is said to be a “Transmitting TX” if it is
connected and sends information to the RXs. It may or may not use its instantaneous

CSI for precoding.
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This definition is made necessary by the distributed nature of the CSIT. Indeed, in contrast
to the centralized setting where adding antennas cannot reduce the performance [419,128],
using additional antennas can decrease the achievable DoF in the distributed setting by
creating additional interference. Hence, although considering a setting with K TXs, it
may be beneficial in some CSI configurations to “turn off” some of the TXs and to use a

smaller number of “Transmitting TXs”.

Definition 4.2 (Active TXs). A TX is said to be an “Active TX” if it is a Trans-

mitting TX and it makes use of its instantaneous CSI.

Definition 4.3 (Passive TXs). A TX is said to be a “Passive TX” if it is a Trans-

mitting TX but it does not make use of its instantaneous CSI.

A more thorough explanation about these definitions is provided later on, along with the
description of the proposed scheme. Interestingly, it will become clear which parameters
are critical to optimize: Both the number of “Transmitting TXs” and the number of

“Active TXs”. In relation to these two notions, we present the following definition.

Definition 4.4 (Transmission Mode (n, k)). We define the Transmission Mode (n, k)
as the transmission with k& Transmitting TXs and n < k Active TXs.

Building on these definitions, the following lower bound is exactly obtained by optimizing

the performance of the proposed scheme over the different Transmission Modes.

Theorem 4.3. The sum DoF of the K x K D-CSIT Network MISO with accuracy

FAPZF(a)

scaling parameters o is lower-bounded by Do , obtained by solving the

following linear program:

K k-1

DoF*P2E(q) maxnnlzez Z’Ynk:(1+ (k—1)a )> (4.14)
k=2n=1

K k-1

subject to Z Z’yn,k =1, Yi=>0, (4.15)
k=2n=1
K k-1

YD dnjrmg 20, (4.16)

k=2n=1

where vy, 1 15 a time-sharing variable representing the percentage of time allocated to
the Transmission Mode (n,k) and dy; 21 — o™ — k(k —n —1)a(™.
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Proof. The transmission scheme for a particular Transmission Mode is described in
Section 4.4 and, building on this result, the explanation and proof of the theorem is

given in Section 4.5. |

The transmission scheme and the achieved DoF are obtained by solving a simple linear
programming problem with low complexity. Interestingly, the expression1 + (k — 1)a(”)
in (4.14) corresponds to the DoF achieved in the k-user centralized setting with k& TXs
sharing a CSIT of quality o™ (See (4.6)).

Remark 4.2. The linear program of Theorem 4.3 depends only on the K — 1 best CSIT
coefficients and not on o). This property was already highlighted in [82] and follows
from the fact that it is possible to solve K — 1 linear equations with K — 1 Active TXs,
and thus serving K users at the same time. Consequently, it can always be assumed that
a®) = 0 without reducing the DoF. O

Besides that, it is remarkable that time sharing between only two Transmission Modes is

sufficient,as presented in the following corollary.

Corollary 4.1. The linear program of Theorem /.3 has always an optimal solution

with only two Transmission Modes (ni,k1) and (ng, ks), i.e.,

Tni,k1 > 07 Tna,ka > O> Tnk = 07 V(n, k) ¢ {(nla kl)’ (n27k2)}- (417)

Proof. The proof is relegated to Appendix C.3. |

Intuitively, if there are two modes of transmission, the first one is a generator of interfer-
ence, i.e., it creates side-information at the RXs through the overloaded transmission, and
relies on a successive second Transmission Mode to retransmit some of this interference
—side information—, in order to decode the overloaded transmission. When only one
mode is used, the interference is directly retransmitted through rate splitting using the
common data symbol. Furthermore, the D-CSIT setting here assumed and the Delayed
CSIT setting presented in [112] share an important feature: The more you overload the
transmission, the better. This behavior arises as consequence of the fact that it is not
possible to cancel out all the interference.

We show in Fig. 4.3a the DoF as a function of a(!) for K =4 TXs and a® = o).
We compare the achievable DoF with the centralized upper-bound for different values
of a®. Up to ayeak = 0.2 the centralized upper-bound is achieved for any value of

3)

a® —as stated in Theorem 4.2, as well as when a® becomes equal to a® | which is

consistent with the results in [82].
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(a) DoF obtained in the case with K = 4 TXs, for different values of a(®) as a function of a(!),
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(b) Sum DoF of the K = 4-user Network MISO setting with distributed CSIT as function of a(%,
with a® =1, and a® = o® = 0.
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5
4.5
4
3.5
&
A 77
I 25
S %,
3 L rasSSSSases AL
= R A N 11
N S S S N S S 5 v
A S anaNhNaRs
N OSSO S SIS SR T
2.5 NS S I
: S A S AR
eSS KPR ST
S 2 22 2y Y e e A g u R EE =
SN AN
9 RS AAS SIS 2
NS A S I S
S S S SO OS2
eSS SN NS SEEE
S S S S AL U SIS SSSSSEseo
RS SSe
= IS SN S
1.5 “‘ S COCSEES

Figure 4.4 — Sum DoF for the 5 x 5 setting with o = a® = a, a® = o = g, and
®G) =0
e .

In Fig. 4.3b, we show the DoF achieved by AP-ZF for K =4 TXs when we fix the
number of Transmitting TXs (i.e., the value of k in Theorem 4.3) for the specific case
where o =1, a® = a® =0, and o(? varies from 0 to 1. Depending on the value of
a® it is optimal to use either 2 Transmitting TXs or 3 Transmitting TXs, but never
K = 4 Transmitting TXs.

Finally, we illustrate our results for the 5 x 5 setting in which the CSIT scaling
parameters are given by a® =@ =g, a® = a® = g, and a® = 0. We depict in
Fig. 4.4 the sum DoF region as function of o and 8. Note that the metric is the sum
DoF, not the DoF region. This figure illustrates that, even for simple and homogeneous
cases, the sum DoF value does not follow a simple expression. It also shows how —in
some cases— providing a TX with better CSI accuracy does not always improve the DoF:
For a = 1, we obtain the same DoF = 3 if 8 < %.

4.3 Illustrative Toy Scheme
We start by presenting a simple transmission scheme in a toy setting to exemplify the

key features of our approach and convey the main intuition in a clear manner. The full

scheme achieving the DoF of Section 4.2 will be described in Section 4.4.
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We consider a 3-user setting with oM =0.1,a® =0, and a® = 0. The conventional
regularized Zero-Forcing would achieve a DoF of 1, which is the same as for the no CSIT
scenario. We will show how it is possible to achieve a DoF of 1 + 2a(!) = 1.2, which is
the value of the DoF that would be achieved in a centralized setting with TX 2 and TX 3
sharing the same estimate as TX 1 [120], such that there is no DoF loss from not sharing
the CSIT between the TXs.

4.3.1 Encoding

The transmission scheme consists in a single channel use during which 3 private data
symbols of a(!) logy(P) bits are sent to each user —thus leading to 9 data symbols being sent
in one channel use—. Additionally, a common data symbol of rate (1 — 1)) log,(P) bits
is broadcast from TX 1 to all users using superposition coding [110]. Note that the
information contained in this common data symbol is not only composed of “fresh”
information bits destined to one user, but is also composed of side information necessary
for the decoding of the private data symbols, as will be detailed below. The transmitted
signal x € C? is then equal to

1
X=381+8y+s3+ |0] sg (4.18)
0

where

e s; € C? is a vector containing the three private data symbols destined to RX i,
each one with power Pa(l)/9 and rate M) log,(P) bits.

e ¢ is the common data symbol transmitted only from TX 1 and destined to be
decoded at all users, with power P — P and rate (1 —aM)log,(P) bits.

The signal received at RX ¢, illustrated in Fig. 4.5, is equal to

yi=h;1s0 + hi's; + hi'lsy + hi's; |, (4.19)
—— ——

~—— ~——
6. (P) e (PV) @ (PV) e, (P)

where the power scaling is written under the bracket, and where the noise term has been
neglected for clarity. Note that in this illustrative example no precoding is applied. The
expression of the transmit signal in (4.18) enlightens two key features of the transmission
scheme: i) the overloaded transmission in which we send simultaneously several data
symbols to each RX, and ii) the use of superposition coding to transmit at the same time

—but different power layers— the common symbol sy and the private symbols s;.
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Figure 4.5 — Illustration of the received signals at every RX. Each RX receives its desired
private data symbols and interference scaling both in pa. Through superposition
coding, it also receives the common data symbol sy containing a mix of fresh desired data
symbols (illustrated in white), and side information to remove interference (illustrated
with the color of the relevant RX).

4.3.2 Interference Estimation and Quantization at TX 1

The key element of the scheme is that the common data symbol sg is used to con-
vey side information, enabling each user to decode its desired private data symbols.
More specifically, TX 1 uses its local CSIT H®O to estimate the interference terms
(flgl))Hsk, Vi, k with k # i, which will be generated by the first layer of transmission.
Then, TX 1 quantizes those (flgl))Hsk terms and transmits them using the common data
symbol sg. Each interference term has a variance scaling in P and is quantized using
a®log, (P) bits, such that the quantization noise can be made to remain at the noise
floor using an appropriate uniform or Lloyd quantizer [110]. In total, the transmission of
all the quantized estimated interference requires a transmission of 6a(!) logy(P) bits.
These 6oV log, (P) bits can be transmitted via the common data symbol s if it
holds that 6a(Y logy(P) < (1 —a(Y)logy(P), which is the case for the example considered
here since 6 x 0.1 < 1 — 0.1. If the inequality is strict (as it is in this case), so carries
some additional (1 — 7a(!))log,(P) fresh information bits —0.3logy(P) bits here— to

any particular user.

4.3.3 Decoding and DoF Analysis

It remains to verify that this transmission scheme achieves the claimed DoF'. Let us
consider w.l.o.g. the decoding at RX 1 as the decoding at the other users is the same up
to a circular permutation of the RX’s indexes. Note that signals at the noise floor are
systematically omitted.

Using successive decoding [110], the common data symbol s is decoded first, followed

by the private data symbols s1. The data symbol sq of rate of (1 — 1)) logy(P) bits can
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be decoded with a vanishing probability of error as its effective SNR can be seen in (4.19)
to scale in P1—o. Upon decoding sg, the quantized estimated interferences (flgl))HSQ
are obtained up to the quantization noise. As the quantization noise is at the noise floor,
it is neglected in the following. RX 1 has then decoded:

(h{Y)Hgy = Wiy + P~2(5V)Hsg, | (4.20)
@p (Poz(”) @p (PO)

This means that the interference terms hilsy can be suppressed up to the noise floor at

RX 1. By proceeding in the same way with (flgl))HS;g, the remaining signal at RX 1 is

Y1 = hIfI.Sl. (421)

This signal, in combination with the interference terms (ﬁgl))Hsl and (flgl) )Hs1 obtained

through sg, allows RX 1 to form a virtual received vector y} € C3 defined as

S1. (422)

Each component of ) has an effective SNR scaling in P such that RX 1 can decode with
a vanishing error probability its three data symbols of rate a(!) logy(P) bits. Considering
the three RXs, 9a(!) log,(P) bits have been transmitted through the private data symbols
and (1 — 7aM)log,(P) bits through the common data symbol sg, which yields a sum
DoF of 1 + 2o,

Remark 4.3. Interestingly, the above scheme is based on interference estimation, quantiza-
tion and retransmission, in a similar fashion as done in the different context of precoding
with delayed CSIT (see e.g. [54,58,59]). Yet, we exploit in this work the distributed
nature of the CSIT instead of the delayed knowledge of the CSIT such that in our scheme

the interference are estimated and quantized before even being generated. O

4.4 Transmission Mode (n,k) with n Actives TXs and k
Transmitting TXs

Leaving behind the toy example, we present in this section the Transmission Mode (n, k)
with n Active TXs and k£ Transmitting TXs. We split the description such that we

introduce the main structure of the transmission in Section 4.4.1. The precoding scheme
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is described in detail in Section 4.4.2. The received signal is then studied in Section 4.4.3
and to conclude we compute the achieved DoF in Section 4.4.4 and Section 4.4.5. Note
that in this section we enclose the transmit power in the data symbol vectors so as to
ease the readability. Hence, a vector s, € C'*4 said to be transmitted such that each
symbol is sent with power P® satisfies that E[|s,|?] = AP®.

4.4.1 Encoding

We assume that there are only k& Transmitting TXs, and only k¥ RXs are served at a given
transmission. Let U denote the set of RXs served and let us assume w.l.o.g. that the
served RXs are the k first users, such that & = {1,...,k}. Then, in the Transmission
Mode (n, k), the transmitted signal x € CF is given by

k
1 APZF
X = so+ y TV s, (4.23)
[0k1x1 Z ' '

i=1

where

e s; € CF™" contains k — n data symbols destined to RX i, which we hence denote as
private, each one of rate o™ log,(P) bits and power pe™ /(k(k—n)), distributed in
an i.i.d. manner. They are precoded with the AP-ZF precoder T?PZF e Ckx(k=n)

with n active TXs as described in detail in Subsection 4.4.2.

e sy € C is a data symbol destined to be decoded at all users and that we hence

denote as common, of rate (1 — a(™)log,(P) bits and power P — pa,

Therefore, £ — n data streams are sent to every RX but each RX has only one antenna.
This overloaded transmission is necessary to take advantage of the k — n — 1 interference
terms generated by the RX’s symbols at the other RXs, following the intuition from [51]
that interference can be used as side information. This is detailed in Section 4.4.3.

A total of k(k — n)a™ log,(P) bits are sent in one channel use through the private
data symbols. Furthermore, an additional data symbol of data rate (1 — (™) log,(P) bits
is broadcast from TX 1. We will show that this common data symbol sy does not only
contain new information bits, but also side information to enable the successful decoding

of the private data symbols.

4.4.2 Precoding: AP-ZF with n Active TXs

The proposed precoder can be decoupled such that the precoder for each RX is computed
independently up to a power normalization. We describe now the AP-ZF precoder serving

a specific RX ¢ with n Active TXs. This precoder allows to transmit k —n streams to RX i
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while reducing the interference at the n following RXs, i.e., at RXs (i +¢) mod [k] + 1,
vVt € {1,...,n}. For ease of notation, we omit in the following the modulo operation as it
is clear what an index bigger than k refers to. The precoder is obtained from distributed

precoding at all TXs such that

elTTZAPZFa)
TmAPZF(2)
e, T,
TP = : (4.24)
APZF (k)
e;fTi
where e}r refers to the ¢-th row of the identity matrix Iy« and T?PZFU ) denotes the
AP-ZF precoder computed at TX j. Thus, we consider the design of T?PZF(] ) at TX J-

Remark 4.4. Note that although TX j computes the full precoder T?PZFU )

coefficients are effectively used for the transmission due to the distributed precoding

, only some

configuration, as made clear in (4.24). O

As a preliminary, let us define the Active Channel Hy € C"*™ as the channel
coefficients from the Active TXs (TX 1 to TX n) to the RXs whose received interference
is reduced (RX i+ 1 to RX i+ n), i.e.,

HA = Hi+1:i+n,1:n- (425)

Similarly, the Passive Channel Hp € C"*(*~") contains the channel coefficients from the
Passive TXs (TX n + 1 to TX k) to the RXs with reduced interference (RX i 4+ 1 to
RX i+n), ie.,

Hp £ Hi tivnntike (4.26)
An illustration of the Active Channel and the Passive Channel is depicted in Fig. 4.6. The

Passive TXs do not use their instantaneous CSIT. Hence, the Passive Precoder used is
an arbitrarily chosen deterministic full rank matrix denoted by )\?PZFTZ-P € Clk=n)x(k—n)_

where )\fPZF is a constant used to satisfy an average sum power constraint and is detailed
further down. On the other hand, every Active TX j, Vj € N,,, computes T?PZF(] ) ¢
CF*k=1 on the basis of its own available CSIT HU ), such that
A7)
APZF(j) _ yapzF | T;
T, =\ é‘f (4.27)
The active precoder T?(j ) is computed as
A(q A (7 A (5 1 -1 ./ s
T = — (@)Y + 1) @) YT (4.28)
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258 A&

k-n streams H, € C<n

K-n-1interfered RXs AP-ZF reduces interference

Interference not reduced

Figure 4.6 — AP-ZF illustration: The number n of Active TXs determines the number of
RXs at which the interference is reduced, whereas the number of Passive TXs (k — n)
determines the number of independent streams that each RX can receive.

Remark 4.5. The design of the active precoder in (4.28) is an extension of the AP-ZF
precoder introduced in [82]. Intuitively, the n Active TXs invert the channel to the n
chosen RXs so as to cancel the interference generated by the Passive TXs. Interestingly,
the number of Passive TXs limits the rank of the transmitted signal while the number of

Active TXs limits the number of users whose received interference is attenuated. O

The AP-ZF precoder TﬁPZF € CF*k=n actually applied in the transmission and
defined in (4.24), can be written as

eII{Tf’(I)
THPZF A N\APZF , (4.29)
T}
where the normalization coefficient )\?P ZF {5 chosen as
-1
-1
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This normalization constant /\?PZF

requires only statistical CSI and can hence be com-
puted at every TX, even the passive ones. It ensures that an average sum-power

normalization constraint is satisfied, i.e., that
APZF
E [T F] = 1. (4.31)

The fundamental property of AP-ZF is that it effectively achieves interference reduction
at the n RXs up to the worst accuracy across the Active TXs, as stated in the following

lemma.

Lemma 4.2. The AP-ZF precoder with n Active TXs satisfies
|[RETAPZE |2 — 0, (P, Ve {i+1,...,i+n}. (4.32)

Proof. The proof of Lemma 4.2 is given in Appendix C.2 along with the derivation
of other important properties of AP-ZF precoding. |

4.4.3 Received Signals

Let us define the set ZAPZE as!
TAPZE & 641, i k—n—1}, (4.33)

Intuitively, the set IiAPZF contains the RX indexes of the interfering signals that have
not been attenuated towards RX i. The signal received at RX ¢ is thus given by

= hiiso + BIT s L Y T, L Y T, (1
o (]3) o (Pa(n)) EEI?PZF ZEU\IiAPZF
(2 o ~
o, () o, (P0)

where the noise term has been neglected for clarity. The last term in (4.34) scales as P°
following the attenuation by P~ due to AP-ZF precoding, as shown in Lemma 4.2.
In Fig. 4.7 we illustrate the received signal at every RX for k = 3 Transmitting TXs and
n = 1 Active TXs. We can see the improvement with respect to Fig. 4.5 since the number
of significant interference terms is reduced by half thanks to the AP-ZF precoding. Since
n = 1, the data symbol vector of a given RX can only be attenuated at a single RX. Note
that, if we select n = 2, the interference could be attenuated at both interfered RXs, but

'We omit the modulo operation.
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Figure 4.7 — Illustration of the received signals for the Weak-CSIT regime in the case
of k = 3 Transmitting TXs and n = 1 Active TXs. Due to the AP-ZF precoding, the
interference generated is reduced and thus extra new information can be sent through sg
(white).

with a level of attenuation proportional to the CSI accuracy of the second TX, which is

smaller than the accuracy at TX 1.

4.4.4 Decoding

TX 1 uses its local CSIT H®) to estimate the interference terms h?T?PZFSK,Vf € IZ-APZF.
Each interference term scales in P*"™ such that, by using o™ log,(P) bits, each term
can be quantized with a quantization noise that lies at the noise floor [110]. Considering
all users, this means that k(k —n—1)a(™ log,(P) interference bits have to be transmitted.
In order to do so, we use the broadcast data symbol sg. If the quantity of information to
be retransmitted exceeds the data rate of sy, additional broadcast resources will need to
be find to enable the successful decoding of the private data symbol. Fig. 4.8 shows an
example of this problem. This is the essence of the linear optimization in Theorem 4.3
and will be discussed further in Section 4.5. We assume here that all the interference
terms could be transmitted using the common data symbol sy and we will verify that it
is indeed possible for a given RX i to decode its (k — n)a(™ log,(P) intended bits.

By using successive decoding, the data symbol sq of rate of (1 — ™) log,(P) bits
can be decoded with a vanishing probability of error as its effective SNR can be seen
in (4.34) to scale as pil—at, Upon decoding sg, we obtain the estimated interferences
(flgl))HTgAPZF(l)SZ, for £ € IiAPZF, up to the quantization noise at the noise floor. It then
holds that

(ﬁgl))HT[APZF(l)Se _ (th +],5,(%(1)((151))1{) T?PZF(I)SZ
= piT TP g, 4 pret (g HTAPZFO g, (4.35)

(]

= BT s, 4 it (TP pPar) 5
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where the last equality is obtained after omitting the term p—at¥ (5§1))HTKAPZF(1).5¢, since

its power scales as p—a pa™ — p0 and thus it is negligible for the DoF analysis. Recall
that s, is transmitted with power scaling as P Tt holds that, V¢ € Ng,Vj € N, the
AP-ZF precoding satisfies the following property (see the proof in Appendix C.1):

APZF(j —a®
TP _mpPZE 2 — o, (poY). (4.36)
It follows from (4.36) and the fact that s, = @p(Pa(j)) that
hil (TﬁPZF“) - T{}PZF) s¢ = 0,(P). (4.37)

After having subtracted the quantized interference terms, the remaining signal at RX ¢

up to the noise floor is
yi = b T, (4.38)

The key point of our approach is that RX ¢ also receives through the broadcast data
symbol the interference created by its own intended symbols at the other RXs, i.e.,
the estimated interference terms (flgl))HT?PZF(l)si, V¢ such that i € Z*P%F —note the
swap of indexes i-f with respect to previous expressions— Each of those terms is an
independent linear combination of the symbols s;, and thus RX ¢ can form a virtual

received vector y; € CF=" equal to

hH
(hD)H
! TAPZF g, (4.39)

v A
;=

y .

(b

z—(k—n—l))H

Each component of y, has a SINR scaling in P and the AP-ZF precoder is of rank k—n
(See Lemma C.2 in Appendix C.1) such that RX ¢ can decode its desired k — n data
symbols, each with the rate of o™ log,(P) bits.

Remark 4.6. The rank in (4.39) is ensured by the use of the Passive TXs. Hence, it is
interesting to observe how uninformed TXs prove to be instrumental in the proposed

scheme. O

4.4.5 DoF Analysis

We have considered the Transmission Mode (n,k) with n Active TXs and k& Transmitting

TXs. In this case, the transmission to each RX i creates |ZAP%F| = k —n — 1 interference
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Figure 4.8 — Illustration of the signals received with K = 3 Transmitting TXs for the case
where it is not possible to retransmit all the interference generated in the same channel
use. As depicted, sg can not carry all ai, by, ¢ as desired.

terms which gives in total k(k — n — 1)a™ log,(P) bits that need to be retransmitted.

Interf(-)

Consequently, we define DoF, as the DoF consumed in order to transmit these

interference terms and which is given by
DoF™er ) & k(k — n — 1)a™. (4.40)

In contrast, data symbol sq carries (1 — a(™)logy(P) bits, i.e., the DoF of the common

data symbol DoFEf-,jc is given by
DoF5§ 21— o™, (4.41)

Finally, considering the (k —n)a(™ log,(P) private bits for all k users leads to the private
DoF denoted by DOFET,?’ and defined as

DoFFRY 2 k(k — n)a™, (4.42)

which is the DoF obtained from the private data symbols if all the interference is canceled.
Putting (4.40), (4.41), and (4.42) together, the total DoF is

DoF,, x = DoFE 1Y + DoFBG — DoF ) (4.43)

at the condition that DOFE% — Dongzerf(_) >0, i.e., that all interference terms could have
been retransmitted. If this condition does not hold, the retransmission of the interference
is managed through the time-sharing optimization of the different modes as discussed in
Section 4.5. Conversely, the optimal result of Theorem 4.2 is achieved if the condition
DOFE,% — DoF:jzerf(_) > 0 is true for the Transmission Mode (m, K), where m is the
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number of TXs with a(?) = a(!). By solving the inequality DoFBC — Do Flnzerf(_) > 0, the

maximum value of ave®* is obtained from (4.40) and (4.41) as aweak = m

4.5 Proof of Theorem 4.3

Considering Transmission Mode (n,k), let us start by defining d,, , as the difference
between the DoF available in the broadcast symbol sy and the DoF consumed by the

interference to be retransmitted (see Section 4.4 for more details), i.e

dp i 2 DoFEY — DoFfjj;er“‘>

4.44
1= o™ — (k- — Da®, (449

In fact, it is not required that each Transmission Mode leads to the transmission of all
interference terms, it is only necessary that all interference terms were successfully trans-
mitted at the end of the time sharing between all Transmission Modes. Mathematically,

this interference retransmission constraint is written as

K k-1

SN Ynpdng =0, (4.45)

k=2n=1

with v, ;. being the time sharing variable, such that v, ; > 0 and Zk 9 Zn 1Ynk = 1.

Interestingly, with that constraint, the sum DoF can then be rewritten as

K k-1 K k-1
Z Z Tn,k DOka = Z Z Do FPrlv + DOFn ¢ - DOngzerf(_)
o i (4.46)
:ZZ’Yn,k<1+( — 1o U)
k=2n=1

The optimal time allocated to each Transmission Mode is obtained by maximizing the
DoF over the time-sharing variables, i.e., optimizing the percentage of time in which each

Transmission Mode is used. That problem leads to the following optimization problem.

K k-1
max1m1ze Z nyn k <1+ (k—1)a (”)) (4.47)
k=2n=1
K k-1 K k-1
subject to > Y Yk =1 Yk =20, DO dupYnk > 0. (4.48)
k=2n=1 k=2n=1
which concludes the proof of Theorem 4.3. [ |
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Interestingly, it is important to optimize over both the number of Transmitting TXs
and the number of Active TXs. As shown in Fig. 4.3b, depending on the CSI allocation
at each TX, using K Transmitting TXs can be detrimental. The number of Active TXs n
controls how many RXs can have its received interference attenuated and up to which
level that interference is reduced while the number of Transmitting TXs k controls how

many users are served.

4.6 Discussion

For a given CSIT configuration, the linear program of Theorem 4.3 —recalled in (4.47)-
(4.48)— has an immediate solution. Moreover, as stated in Corollary 4.1, the maximum
DoF can be obtained always by means of two Transmission Modes at most. We discuss

in the following several aspects of the previous results.

4.6.1 Number of Transmitting TXs

The first aspect is the fact that “turning-off” some TXs and multiplexing less RXs spatially
can be beneficial. This is a consequence of the CSIT heterogeneity among the TXs, and
it can be understood from the following example: Consider a setting with n TXs sharing
perfect CSIT of the whole channel matrix, and an arbitrarily large number of RXs. If
we start adding TXs to the joint transmission that do not have instantaneous CSIT,
the DoF can be increased —as shown by the previous results—, and we can serve more
RXs simultaneously. However, if the number of non-informed TXs keeps growing, at a
certain point those TXs will create more interference whereas the informed TXs will be
unable of canceling the interference out. Thus, after a certain total number of TXs k, it
can be beneficial to schedule a sub-set of RXs (a number smaller than k) so as to avoid
the collapse of DoF. This intuition shows why we consider also the Transmission Modes
with k < K Transmitting TXs. In order to highlight this property visually, we reuse the

network setting of Fig. 4.3a for the following example.

Example 4.4. Consider a network with K = 4 TXs and K = 4 RXs. Suppose that
the forth TX has a useless CSI in terms of DoF (¥ = 0), that TX 1 and TX 2
have the same CSI accuracy (o) = a(?), and TX 3 has a CSI accuracy that is a
fraction of the accuracy at TX 1, i.e., a(®) = ua(l), with 0 < p < a®. We show in
Fig. 4.9 the DoF achieved by means of our proposed scheme.

From the fact that o) = 0, applying conventional ZF in a naive manner will
produce a DoF of 1, as TDM. Conversely, if a3 = o) (4 = 1), we attain the
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Figure 4.9 — DoF obtained in the case with K = 4 TXs, for different values of a® as a
function of oM, whereas a?) = "), and o* = 0. The region with gray background is
the DoF gain obtained from “turning-off” some TXs and scheduling the RXs.

centralized DoF of 1+ (K — 1)a(!). In Fig. 4.3a, we presented the DoF achieved by
the linear program of Theorem 4.3, in which we consider any number of Transmitting
TXs. There, as well as in Fig. 4.9, it can be seen that the proposed scheme is robust
against the D-CSIT setting, as the DoF increases proportionally to 1) even if
a®) = 0 —represented by the dash-dotted line in Fig. 4.9-.

This information was already represented in Fig. 4.3a. Besides this, we have
depicted in Fig. 4.9 the maximum DoF performance if we fix the number of Trans-
mitting TXs to K = 4. We observe that the performance is under the minimum
performance of the general scheme for a® < % This shows how adding an extra
TX can harm the DoF performance of the joint transmission. The DoF gain that
is obtained from the generalization of the scheme when a(®) = 0 is shown in gray
background color. Importantly, this gap is significative, since for V) =1 we double
the DoF (from 1.6 to 3).

4.6.2 Number of Active TXs

The other parameter optimized in Theorem 4.3 is the number of TXs that make use of

its instantaneous CSIT to compute the precoder —Active TXs—. This value is important
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as it controls two dimensions of the transmission: First, the spatial dimension, in the
sense that the number of RXs whose interference can be attenuated is equal to the
number of Active TXs. Second, the power dimension, since the interference is attenuated
up to a power that is proportional to the accuracy of the CSI at the last TX (a(”)).
Specifically, during a Transmission Mode with n Active TXs, the interference received
from the symbols of a certain RX ¢ is attenuated at n RXs by a factor pa,
Therefore, we can interpret this behavior as how many bits of interference terms can
we avoid to retransmit?. From this point of view, with n Active TXs, the quantity of

bits retransmitted is given by
DoF™ ) — Lk — n — 1)a™, (4.49)

what follows from (4.40). Hence, the quantity of bits retransmitted is reduced by
kna ™ bits with respect to the case with no interference cancellation through AP-ZF.
Unfortunately, the value obtained if we add one Active TX more, k(k — n)a"+1 log,(P),
can be either greater or smaller, and furthermore the rate obtained after correct decoding
also varies. This implies that there exists a compromise on the number of Active TXs
that is not straightforward. A qualitative illustration of this comments is depicted in

Fig. 4.10 in the following page.

4.6.3 CSIT Allocation

We consider now a different problem with respect to the previous part of the chapter,
where we have analyzed which is the best transmission scheme for a given distributed
CSIT allocation. In this section, we are interested in the dual analysis: Assume that we
use our proposed scheme, which is the best allocation for a given “budget” of CSIT?. Let

us introduce a value A such that the sum of scaling coefficients « satisfies that

K

> o) = A (4.50)

i=1

In a scenario in which the RXs quantize its channel information and feed it back to the
TXs, this is equivalent to say that there is a maximum number of quantization bits to be
transmitted.

In the problem considered in Theorem 4.3, both o) and dp i are constant for any
7,m, k, and it is a simple linear program. In the problem considered here, a) becomes
a variable and there is an extra constraint as Z]K:_ll all) = A. This problem is highly

complex. However, we can use Corollary 4.1 to simplify the expression.
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Active TX Passive TXs (fixed precoder) Active TXs (instantaneous CSIT) Passive TXs (fixed precoder)

(a) Interference reduction for n = 1 Active TXs | (b) Interference reduction for n = 2 Active TXs

Active TXs (i CSIT)] Active TXs (instantaneous Cslﬂ—‘

_J

(c) Interference reduction for n = 3 Active TXs | (d) Interference reduction for n = 4 Active TXs

Figure 4.10 — Interference cancellation compromise as function of the number of Active
TXs. The Active TXs are highlighted, as well as the RXs whose interference is attenuated
through AP-ZF precoding. The first RX (blue) is the intended RX. The TX’s bar
represents the level of the estimation noise. The RX’s bar represents the level of remaining
interference. Note that increasing the number of Active TXs extend the number of RXs
whose interference is attenuated, but it decreases the accuracy of such attenuation.
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Lemma 4.3. For a given total amount of CSIT A, the best CSIT allocation using

the proposed scheme is given by solving the following program:

DoFAP%F (o) = maximize 1 +v(k1 — 1)al™) + (1 — ) (ks — 1))  (4.51)

k1,n1,
k2,n2,
[0
subject to ki, ke €1{2,...,K}, (4.52)

ni€{l,... k — 1}, (4.53)
ng € {1, ceey ko — 1} ’ dn2’k2 >0, (4.54)
KE-1
> o =4 (4.55)
j=1

where we have defined the constants dpj, =1 — ™ — k(k —n —1)a™ and

1 Zf dn1,k1 > 07
dng,kg
dn2,k2_dn1,k1

L

v (4.56)

otherwise.

Since the DoF and the interference generated in mode (n, k) depend only on n, k and alm,
the DoF will be improved if we allocate the CSIT in a homogeneous way. For example,
consider than n; < ne. Then, the best interference cancellation accuracy is proportional
to the quality at TX n;. Hence, it is useless to have a(™ > (™), for any TX n such that
n < n1, since that extra information does not improve the DoF performance. Similarly,
we have that the optimal CSIT accuracy sharing for the TXs n; < n < no would be
o™ = o("2) and intuitively (™ = 0, for n > ny. Consequently, the best CSIT allocation
—when our proposed scheme is applied— follows always a layered structure. We extend the

discussion on CSI allocation in Appendix E.

4.7 Conclusions

We have analyzed the DoF of the K x K Network MISO setting with distributed CSIT.
We have described a novel D-CSIT robust transmission scheme that significantly improve
the achieved DoF with respect to state-of-the-art precoding approaches when faced
with distributed CSIT. We have first derived an upper-bound coined as the centralized
upper-bound and consisting in a genie-aided setting where all the channel estimates are
made available at all TXs. Then, we have shown how this genie-aided upper-bound was

achieved by the proposed transmission scheme over a range of CSIT configurations, the
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so-called “Weak-CSIT” regime. Surprisingly, this upper-bound can even be achieved with
the CSI being handed at a single TX, i.e., with all other TXs having access to no CSIT.
The proposed robust precoding scheme relies on new methods such as the estimation
of the interference and their transmission from a single TX, as well as a modified ZF
precoding allowing for an overloaded transmission. These new methods have a strong
potential in other wireless configurations with TXs having access to different qualities of
CSI. Converting these new innovative transmission schemes into practical transmissions
schemes in realistic environments is an interesting and ongoing research direction. Such
a robust precoding scheme could yield important gains in practice and make advanced
precoding schemes more practical. Deriving tighter distributed upper-bounds is also an

interesting and challenging research problem.
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Chapter 5

DoF Analysis of the 2-user
Distributed Network MIMO

In this chapter, we focus on the Network MIMO with 2 multi-antenna RXs. We consider
that RX ¢ has NN; antennas and that there are M transmit antennas. The transmit
antennas can enclose an arbitrary number of physical transmitters, such that we can
have M single-antenna distributed transmitters or 2 transmitters of % antennas, for
example. The particularity of this chapter is the assumption that only m of the M
transmit antennas are endowed with accurate CSI. By analyzing this configuration, we

intend to answer the question
To how many transmit antennas do we need to provide CSI?

The solution to the previous question helps also to answer the question of how much an

extra informed antenna can help.

5.1 System Model

We analyze the 2-user Network MIMO where M transmit antennas aim to jointly serve
2 RXs endowed with N7 and N, antennas, respectively. We assume w.l.o.g. that Ny < Ns.
Importantly, in this chapter we slightly modify the signification of TX with respect to

the rest of the dissertation. Hereinafter, we refer to the i-th transmit antenna as TX;.
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This modification is motivated by the fact that in this chapter it is not relevant how

many transmitters there are. The received signal at RX 7 is modeled as
Yi(t) £ PH;(6)X(t) + N, (5.1)

The parameter ¢ represents the channel use, P is the nominal SNR parameter, Y;(t) =
[Yii(t), Yia(t), ..., Yin, (5], and H; € RN*M denotes the matrix of channel coefficients
for RX i. We define the global channel matrix as H = [Hy, HQ]T, H ¢ RMHN2)xM,
The vector X () £ [X1(t), Xo(t), ..., Xar(t)]" is the transmit signal with unitary power
constraint. N; denotes the AWGN noise at RX i. We study here the scenario where the
first m antennas (TXs) have perfect CSIT of the whole multi-user channel matrix, whilst

the other M — m antennas have only finite precision CSIT. We define:

e TX, £ [TXy,...,TX,,], the m transmit antennas with perfect CSI. Consequently,
we have that HY) = H for any j < m. The results of this chapter also hold if these
TXs are endowed with a CSI with accuracy scaling parameter o = 1.
o TXy 2 [TX,ni1,- .., TX ], the M —m transmit antennas with finite precision CSI,
ie., az(]k) <0 for any m < 5 < M and for any 4, k.
Similarly, we denote as H; s (resp. H;,) the channel coefficient matrix from TX
(resp. TX,), and as Xy (resp. X, ) the transmit signal from TX, (resp. TX,). The
superscript ™ in any variable X stands for {X (1), X(2),...,X(n)}. For any set of
variables S, H ( N S;e8 Si) denotes the joint entropy of the elements in S.

In this chapter, we make use of the Aligned Image Set technique introduced by
Davoodi and Jafar [120] for the proof of the converse. For that, we need to consider the
same assumptions as in [120]. Hence, we consider that the channel satisfies the Bounded
Density assumption —presented in Definition 3.1, and that the channel coefficients are

bounded away from 0 and infinity.

Definition 5.1 ( [155, Definition 4]). For real numbers x1,z9, ..., 2k, define the
notations Lg’»(a:i, i € Ng), and Lj(z;,i € Ng), as

L?-(xl, Ty ,xk) = Z ngﬂ'xiJ (5.2)

1€Ng
Lj(y, o, ozp) = Y [hyixi) (5.3)

1ENg

for distinct random variables g;; € G, and for some arbitrary real valued and finite
constants hj; € H, |h;i| < 6, < oo. The subscript j is used to distinguish among

multiple sums.
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5.2 DoF Region of the (M, Ni, N;) Network MIMO

The main goal of this chapter is to characterize the DoF region of the Distributed Network
MIMO with 2 multi-antenna RXs. For that purpose, we have considered a simple D-CSIT
configuration, in which the TXs have either perfect CSI or finite precision CSI. The
assumption of this particular configuration allows us to drop the impact of imperfect CSI
—in the sense of noisy CSI- and highlight the impact of Decentralized CSIT. In particular,
this analysis helps to understand the benefit of providing a TX with CSI. We present in

the following theorem an outer-bound of the DoF region of the setting considered.

Theorem 5.1. Suppose a 2-user Network MIMO in which RX i has N; antennas and
there are M transmit antennas (TXs). Suppose that N1 < Ny and that m antennas
have perfect CSI of the whole channel matriz, whereas the other M — m TXs are

endowed only with finite precision CSI. Then, the DoF region is enclosed in

dl S min(M, Nl)

dg S min(M, Ng)
(dl,dQ) & (5.4)
di +do < min(M, Ny + Ng)

dq do—m
min(M,N1+N2)—m + No—m < 1

if m < min(Na, M — N7), and

dy < min(M, Ny)
(d1,d2) € § dy < min(M, Na) (5.5)
di +ds < min(M, Ny + Ng)

me > min(NQ,M — Nl)

The proof is relegated to Section 5.5. As a direct consequence of the previous theorem,

we can infer the following sum DoF upper-bound.

Lemma 5.1. The sum DoF of the 2-user Network MIMO (M, Ny, No, m) is upper-
bounded by

(5.6)

in(Ny, M — N-
d1 + do < min <N1+N2, M, No+ Ny mln( L, 2) )

min(Ny + No, M) —m
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We have presented the upper-bound results for the considered setting. We introduce the
achievability results hereinafter. The following theorem shows the achievable DoF for the
setting with m > Nj.

Theorem 5.2. The sum DoF of the 2-user Network MIMO (M, N1, Na,m) is lower-
bounded by

(5.7)

in(Ny, M — N
d1 + do > min <N1+N2, M, No+ Ny gnile 2) )

min(Ny + No, M) — m

Proof. The proof follows from the transmission scheme and is given in Section 5.4. W

Thus, the sum DoF bound of Lemma 5.1 is tight for m > N;. More importantly, this
result implies that the DoF region of Theorem 5.1 can be easily shown to be exact for
m > Ni. The transmission scheme achieving Theorem 5.2 is based on the Active-Passive

Zero-Forcing precoding introduced in Section 4.4. For the simple case where M = Ny + Na,

Ny 4+ Ny it m > Ny
di+dy = N ] (5.8)
N2+N1m 1fN1§m<N2.

Unfortunately, no tight general bound is known for the case m < Njp, apart from particular
cases. Nevertheless, we can extend the achievable scheme that attains Theorem 5.2 to

obtain a general lower-bound.

Proposition 5.1. Consider m < Ny. Then, the sum DoF of the 2-user Network
MIMO (M, N1, Na,m) is lower-bounded by

m2

min(Ng, M — m))

dy + d2 > max (min(NQ, M), min(No, M —m) + (5.9)

Proof. The proof is relegated to Section 5.6, along with a specific lower bound for a
particular setting. [ ]

5.3 Discussion

The sum DoF of the 2-user MIMO BC with perfect CSIT is DoF* = min(M, No+ Ny) [96].
Hence, it holds that we only need perfect CSIT at m = min(Ny, M — Ny) to recover
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DoF
DoF for Perfect CSIT
9 L e e e e e - ; ___.___..___..
/’.//
I e

B °«
Y U S S Dof” for no CSIT.
1 . - - - Upper-bound
-T- ® Lower-bound
0 ] : : m

0 N1 =3 Ny =6 M=9

Figure 5.1 — DoF as function the number of transmit antennas with perfect CSIT (m)
for the case (M, Ny, N2) = (9,6, 3).

the maximum DoF. This aftermath extends the results of the previous chapters, in
which we have shown that having the most accurate CSI at only a subset of TXs is
—sometimes— enough to recover the DoF achieved with perfect CSI sharing. Moreover,
we have quantized the gain from providing perfect CSI to an extra transmit antenna
for the cases in which m > Nj. An interesting question that arises from this analysis is
to determine whether adding a perfectly informed antenna can boost the DoF in more
than 1. Consider the setting with (M, N1, No) = (2N, N, N). In this case, if m = N we
obtain that DoF = 2N, whereas if m = 0 we have that DoF = N. Thus, either the gain
is exactly 1 DoF for each extra perfectly-informed antenna, or providing perfect global
CSI to an extra antenna do increase the DoF in more than 1.

In Fig. 5.1, we show the sum DoF as function of m. We observe how for m > N5 the
DoF with centralized perfect CSIT is attained, and that for N; < m < Ny the bound is
tight. For the case m < Nj, we can see that there exists a gap between the upper and
the lower bound. It is easy to infer that the upper-bound is loose from the fact that for
m = 0, we obtain that DoF = Ny + 1, but it is known that the DoF of a BC setting with
finite precision CSIT is DoF = Ns. It is noteworthy that, the closer m is to the number
of antennas of any of the RXs, the bigger increment of DoF from m to m + 1. In Fig. 5.2,
we illustrate the DoF as function of the repartition of antennas among the RXs, i.e., for
a fixed size setting with N1 + Ny = M = 20 and m transmit antennas with perfect CSIT,

91



Chapter 5. DoF Analysis of the 2-user Distributed Network MIMO

DoF
90— o Dol for Perfect GSIT_
L el 419125
: - _ -
 FoJ) ERTETTRPTPRTTRONY SPPTPI PP ‘.:.o..-.,.-_?__--o— RS
e
:00/,/
&Og,A"
o
10b"
s : - - - Upper-bound
_ ® Lower-bound .
: : : N
on 12 16 19 2

Figure 5.2 — DoF as function of Ny for the setting (M, m) = (20,12) and Na + Ny = M.

we plot the DoF as function of No. N7 is then obtained as 20 — Ns.

Besides this, the DoF expression obtained for the D-CSIT setting has a noteworthy
similarity with the DoF expression of the C-CSIT setting with hybrid CSIT in which the
TX has perfect CSI for one RX and delayed CSIT for the other RX (denoted as “PD”
setting). We define

DoFDistr — (qPistr gDistry  DoF pair for the D-CSIT scenario considered.

DoFfP = (afP ab’P) DoF pair for Hybrid C-CSIT (Perfect-Delayed) scenario.

By way of example, consider the scenario in which the number of antennas at the TX (M)
is the same as the sum of receive antennas, i.e., M = Ny + Ns. Furthermore, suppose that
the number of transmit antennas with perfect global CSIT (m) satisfies N1 < m < Noa.

This assumption is made so as to consider the interesting bound of

d1 dg*m
<1. 1
min(M,N1+N2)—m+N2—m_ (5.10)

We compare the D-CSIT setting with the MIMO BC with centralized CSIT when the TX
is endowed with perfect CSIT for RX 1’s channel and delayed CSIT for RX 2’s channel.
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The upper-bound for the PD case was found by R. Tandon in [60] and, for the case with
M = N1 + Ns, it writes as
AP abp

+
N1+ Ny Ny

<1 (5.11)

This weighted expression leads to a sum DoF of

Ny
AP +dyP =N1  + No— No—e. 5.12
1 2 1 2= Mo (5.12)
On the other hand, we have obtained that dP#!" 4 @t is given by
AP DS Ny b Ny — (Np — ) (5.13)
1 2 N1+ Ny—m’ '

We can see that there exists an analogy between both settings. In particular:

1. In the PD setting, the loss of DoF due to having delayed CSIT at RX 2 instead of

perfect CSIT is — Ny NljilNQ.

2. In the D-CSIT case, the loss of DoF due to having perfect CSIT only at m antennas

. N
is —(Ng — m)iNl—l-(]\flg—m)‘

Therefore, the D-CSIT is analogous to the PD case where only (N2 — m) have delayed
CSIT instead of perfect CSIT. An intuition behind this result is that, in the D-CSIT
setting, we can apply a change of basis at RX 2 so that the TXs with perfect CSIT are
only listened by m antennas of RX 2. Therefore, even if some of TXs have CSI for the
other No — m antennas, those No — m antennas receive only information for the finite
precision CSIT TXs. Hence, it is analogous to have a delayed CSI, as the CSI cannot be

used instantaneously even if it is already known.

5.4 Achievability for the Case m > N;

We present here the DoF-optimal transmission scheme for N1 < m < Na, i.e., the proof
of Theorem 5.2. The achievable scheme for the case M < Ny (DoF = M) is trivial.
For M > N, the scheme is composed of two phases. The transmission scheme makes
use of the Active-Passive ZF (AP-ZF) introduced in the previous chapter. We refer to
Chapter 4 for details about AP-ZF. Let us first consider the case M = Ni 4+ N, since

the general case follows after a straightforward generalization.
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5.4.1 Achievable Scheme for M = N; + N,

The transmission scheme lasts for N7 + Ny — m Time Slots (TS). During the first N3 TS

we transmit M = Nj + Ny symbols per TS. In particular, we transmit:
e m symbols to RX 2, which are canceled at RX 1 by using AP-ZF (since m > Nj).
e M — m symbols to RX 1 canceled at m antennas of RX 2 using AP-ZF. Thus:
— RX 2 can decode its own symbols since it has m antennas free of interference

and m symbols to decode.

— RX 2 can hence remove the contribution of its own symbols and obtain Ny —m

independent linear combinations of the symbols intended by RX 1.

— By sending those No —m linear combinations in a broadcast mode, we provide
RX 1 with all the equations that it needs to decode its M — m symbols, since

it has already Ny linear combinations.
— Since RX 2 already knows those retransmitted linear combinations, they do

not hurt its DoF because RX 2 can remove them from the received signal.

Note that RX 2 does not need to decode any message of RX 1. In the following No — m TS,
at each TS we send Ny symbols to RX 2 while retransmitting N1 symbols from the
interference received by RX 2 during the first phase.

e The interference retransmitted is removed perfectly at RX 2 because it is composed

of the previously listened signals. Then, RX 2 can decode perfectly its own symbols.
e The symbols transmitted to RX 2 are canceled at RX 1 by AP-ZF.

Consequently, we obtain a sum DoF of

1
N1+ Ny—m

Ny

_. 5.14
Ni+ Ny —m ( )

(N1(N1 + Na) + No(Ny —m)) = Ny + Ny

5.4.2 Achievable Scheme for Ny < M < Ny + N,

We consider now the case for No < M < N7 + No, with N7 < m < N». The transmission
scheme follows the same structure as the M = N + N5 case, but with a different number
of TS and transmitted symbols. Specifically, we first transmit M symbols per TS during
the first N1 TS. Thus, at each TS, we transmit:

e m symbols to RX 2, that are canceled at RX 1 using AP-ZF (since m > Ny).

e M —m symbols to RX 1, that are canceled at m antennas of RX 2 using A-PZF.
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— RX 2 can decode its own symbols since it has m antennas free of interference

and m symbols to decode.

— RX 2 can then remove the contribution of its own symbols and obtain No —m
independent linear combinations of the symbols intended by RX 1.

— If RX 1 obtains M — N; —m independent linear combinations of those Ny —m
interferences, RX 1 will be able to decode its M — m symbols, since it has
already N7 linear combinations.

— Since RX 2 already knows those retransmitted linear combinations, they do

not hurt its DoF because RX 2 can remove them from the received signal.

In the following M — m — N; TS, we send at each TS Ny symbols to RX 2 while

retransmitting N1 symbols from the interference received by RX 2 during the first phase.

e The interference retransmitted is removed perfectly at RX 2 because it is composed

of the previously listened signals. Then, RX 2 can decode perfectly its own symbols.
e The symbols transmitted to RX 2 are canceled at RX 1 by AP-ZF.

We can reconstruct and retransmit the interference created during the first phase at
m > N7 antennas. Therefore we can transmit N independent linear combinations of
them at each TS. Hence, we obtain a sum DoF of

— Ny

ﬁ((erM—m)Nl+(N2)(M—m—N1)) =N2+N1]]\\447m, (5.15)

what concludes the proof of Theorem 5.2. |

5.5 Converse of Theorem 5.1

We prove Theorem 5.1 for real channels. The extension to complex variables is intuitive
but cumbersome, and hence we omit it for sake of conciseness. In Theorem 5.1, the only

particular bound is

d1 d2—m
<1 5.16
min(M,N1+N2)—m+N2—m_ ’ (5.16)

since the other expressions are directly obtained by considering a genie-aided setting with
perfect CSIT at every TX. This genie-aided scenario corresponds with the well-known
centralized Network MIMO with perfect CSIT [96]. Since providing with additional CSI
can not hurt, we obtain (5.5). Hence we consider only the case m < min(Ny, M — Ny).
We split the proof in two sub-regimes: M < Ni 4+ Ny and M > Ny + No.

95



Chapter 5. DoF Analysis of the 2-user Distributed Network MIMO

5.5.1 Converse for the case M < N; + N,

We start by discretizing the channel, what leads to a deterministic channel model
introduced in [124]. It has been shown in [120, Lemma 1] that the DoF of the deterministic

channel model is an upper-bound of the DoF of the general channel model.

Deterministic Channel Model

The discretized model is such that the input signals X;(t) € Z and output signals

Yi(t) € Z are given by

X;t) €{0,1,...,[P]}, Vje€Ny, (5.17)
M

Yi(t) £ | Hi  X;(1)], Vie{1,2). (5.18)
Jj=1

In the following, we obtain an upper-bound for this channel model. From [120], it is also

an upper-bound for the general channel model that we have considered.

Weighted sum rate
We obtain (5.16) by means of bounding the weighted sum rate n(No—m) Ry +n(M —m)Rs.

First of all, we present an instrumental lemma.

Lemma 5.2. Let the number of well-informed transmit antennas (m) satisfy that
m < min(M — Ny, N2). Then,

(No — m)H(YE W) — (M — m)H(YF HI, W,) < o(log P).  (5.19)

Proof. The proof is relegated to Section 5.5.2. |

We start from Fano’s inequality to obtain

n(Ry + Ry) < I(Wy; YYHEM, Wa) + 1(Wo; Y | HIY)
— 7YY | HYY — m(YEN, W) + 2y, W)
— 7Y HE, W, W) .

=0

(5.20)

We recall the fact that the entropy of a random variable is bounded by its support, i.e.,

HY) < nNylog(P). (5.21)
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Lemma 5.2 and (5.21) yield

n(Ny —m)Ry +n(M —m)Ry < (M —m)(H(YY [H) — HYTH, Wy))
2)

+ (No — m)H (Y ER, W, (5.22)
< n (M —m)Nylog P + o(log P).
We can divide by (M — m)(N2 —m) to write
nRy nRs nNo _ _
< . .
M_m+N2_m_Nz_mlogP+0(logP) (5.23)
Since the DoF of RX i is obtained as
d; = lim lim HL (5.24)
P—o0n—00 2 ]og(P)
it follows that
d1 d2 N2
< 5.25
M—m+N2—m_N2—m ( )
d1 dQ —m
<1 2
= M—m+N2—m_ (5.26)
what concludes the proof of (5.4) for M < Ny + Na.
5.5.2 Proof of Lemma 5.2
We prove in the following Lemma 5.2, i.e, that for m < min(M — Ny, Na),
(Ny —m)H(YMHP Wy) — (M — m)H(YTHP, W) < o(log P). (5.27)
We recall that Yl[n] = [}71[711], . ,171.[7\},1,], where
v = L (X0, Xu). (5.28)

Note that the signals X1, ..., X,, are function of the the channel and the messages. We
can apply a rotation matrix at RX 2 such that the m first transmit antennas —(TX, )
are only listened by m of the antennas of RX 2, that we choose w.l.o.g. to be the m first

antennas. Recall that Xy 2 {X,,11,..., Xy} Hence, for any j > m we can define

b[n —[n
Ly (Xp) 2 V3. (5.29)
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Moreover, H(A, B) > H(A) implies that H (YY'[HI, Wa) > H((,.,, Yo' [HP, Wy).
From (5.29), we can write that
H( () %EY wo) =m( () L2 ”] o) [HI W5). (5.30)

j>m j>m

We continue by taking apart (M — N3) negative terms and applying (5.30) to write

(No — m)H (YT HI, W) — (M — m)H (Y HY, W2)
< (BB, ) (R, 1)
— (M — N») (mYn]|H[" W)

j>m

< (N — m) (YT, W) — B (VYT E, 7))

(5.31)

(M = No)H( () Ly (Xo)[HI, W5).

j>m

Let us first describe the intuition behind the proof before deriving the result. We see
in (5.31) that we have Ny — m negative entropy terms, each one of Ny variables, and
other M — Ny negative entropy terms, each one of No —m variables. All the variables are
linear combinations of the M transmit signals (X;). Our goal is to show that all those
negative terms can be reordered so as to create No — m terms of M linear combinations.
If this statement is true, from the fact that H(A) — H(B) < H(A|B) we can remove
the contribution of the Ny — m positive terms H (Y[ln} |H[™, W3), since we can decode
—with high probability— the M signals with M independent linear combinations. In the
following we show rigorously that the previous idea is indeed applicable. Our proof is
based on the following Lemma that was introduced by Davoodi and Jafar in [156] and

that follows from the Aligned Image Set approach [120, 155].

Lemma 5.3 ( [156, Lemma 2]). Consider 8 > 0 and random variables F,gn}, chn}, ke
Ny that satisfy the bounded density assumption. Then, it holds that

K K
H (Z [PBF,L”]X,L"]O <H <Z[P5GL”]X,L"]1) + o(log P). (5.32)

k=1 k=1

From Lemma 5.3 and the fact that H(L(X;)) < H(L*(X;)) [155,156], it follows that

H () Ly (X o) [HIM, Wa) > H () LX), LI(Xo)[HI, W)) + o(log P),  (5.33)
j>m i>m
J#L
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where we have substituted Lb[n]( Xg) by L"(X,). Hereinafter, we omit the o(log P)
terms for ease of notation and because they are irrelevant for the DoF metric. We consider
now the sum H(an”H["}, Wa) +H(N v |H, Ws). it follows that

I>m 2,3
H(YYH, wo) + H( () Y HE, W)
j>m

- H ﬂYVQTILc]’ m Lb[” H[n] W2 +H m L ”] )|H[n]’W2)

k<m j>m ji>m
§ ﬂYﬁ],ﬂLb[n o) [HM W) + H ( ﬂL "(Xg), L (X ) HM, W) (5:34)

k<m j>m j>m

J#

O (M) Yails () L (Xo), LI (X o) [HI, W) + H (1) LN (Xo) [H, W75).

k<m j>m j>m

it

where (a) follows from (5.33) and (b) comes from the sub-modularity property as H (A, B)+
H(B,C) > H(A,B,C) + H(B) [157, Theorem 1]. We can repeat (5.34) as many as
M — N5 times, such that we obtain

H( () Y4 () L9(Xo), L (Xo)[al, wy), (5.35)

k<m ji>m

where L™ (X4) is composed of M — Ny independent linear combinations of X4 (LI"(Xy)).
Hence, in (5.35) we have gathered M independent linear combinations of the transmitted
signals {X;}ien,,, such that it follows that

H(YPEM) () %Y () LX), LI (Xo)[HI, W)

k<m ji>m
<H(Y | () %% ) L(Xe), L(Xo), HIYW,) (5.36)
k<m j>m
< o(n).

Repeating the previously describe derivation up to No — m times, it holds that

(Ny —m)H(YVHP Wo) — (M — m)H(YTHP, W)
< o(n),

(5.37)

what concludes the proof of Lemma 5.2. |
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5.5.3 Converse for the case M > N; + N,

We define N £ Ny + N,. We can split the M transmit antennas as

TX £ [TXy, ..., TXm, TXiga, oo X ] (5.38)
TX TX g

The channel H € CV*M has M — N null space dimensions. Therefore, if we could apply
a rotation matrix R with unit determinant to make HR'’s right M — N columns be zero,
it would lead to an equivalent channel where the RXs do not listen to the last (M — N)
TXs. Defining H £ HR,

H = | H yin Onxui-n) |- (5.39)

To obtain this equivalent channel, we apply an invertible linear transformation at the
transmit antennas by multiplying the transmit signal X by R. Hence, we transmit

X’ £ RX in place of X. After this transformation, the equivalent transmitter TX' is

TX £ [TXy, ..., TXm, TXpt1, - TXNi4n, | (5.40)

and we can derive the upper-bound by applying the same steps as in Section 5.5.1 for
M = Ny + Na, since the RXs only listen to Ny + Ny transmit antennas.

Channel Rotation with Distributed CSIT

Although the previous channel transformation is simply applied in a centralized scenario
where all the transmit antennas are seen as one single entity, it is not straightforward
that it can be applied in our distributed scenario, where every single transmit antenna is
isolated with respect to the others and has to act only based on his own local information.
Thereupon we show that the application of this channel transformation is indeed possible.

In the D-CSIT scenario considered, the matrix multiplication RX must be done

locally. Consequently, the equivalent transmitted signal at TX;, X;, is obtained as
X! =R;X, (5.41)

where R; is the i-th row of R. However, the M — m antennas with finite precision CSIT
are not able to obtain neither R nor the transmit signal from the TXs with CSIT. In
order to deal with this problem, we first let all the TXs in TX, cooperate among them.
Similarly, we let all the non-informed TXs in TX cooperate among them. Since every TX

in TX, already had perfect information of the whole channel, assuming that they are a
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unique TX with m antennas does not affect the analysis. In the same way, assuming that
the M —m TXs with finite precision CSI form a unique TX with M —m antennas does not
give to them any improvement, since they still have only finite precision CSI. Furthermore,
cooperation can not hurt. Therefore, we have an equivalent channel with two TXs, TX,
that transmits Xy, and TXy that transmits Xg4. The channel transformation is applied

as

X; = R[l:m,l:M}X (542)
X% = Ry 1,100 X (5.43)

Composition of the Transformation Matrix

We aim to obtain a matrix R € CV*M guch that H £ HR satisfies

H = [ Hiy . Oveorw) |- (5.44)

In order to obtain (5.44), we need h;,j =0, forany j € {N+1,..., M}, and for any i. In

order to transform the j-th channel column, we solve the following linear system

hl,l h1,2 e hl,N Tl’j —hl’j
: = : . (5.45)
hNJ hN’Q . hN,N ’I”NJ' —hNJ'

From the channel independence assumption, Hy.y 1.n] is full rank almost surely, and

therefore the system has a solution. Hence, the matrix R is defined as

Tl,N+1 v Tl,M
I : -
R 2 N ' SRR (5.46)
TNN+1 --- TNM
O(m—N)xN Lov—nyxi-n)

From (5.46), it holds that H/[1;N LN] = Hi;.y,1:n). Note that the antennas with finite

precision CSIT can obtain their equivalent transmit signals as

X% = Rpmgrm, 100X (5.47)
Rotimtr - Rogim
= : . : Xg. (5.48)
Ramit ... Rasu
Ry
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Therefore, the transformation at the TXs with finite precision depends only on their own
transmit signals and they do not need to know X,. Thus, we can assume that TXy is
genie-aided and provided with the matrix Rg. Note that (5.45) and the finite precision
CSIT assumption imply that TXg can not infer any h; ; from the knowledge of Rg.

5.6 On the Achievability for the Case m < N;

In this section, we analyze the achievability results for the case in which m < Nj. First,
we prove the achievable DoF presented in Proposition 5.1, which serves as lower-bound
for any configuration. After that, we present a particular case that shows that the

lower-bound can be improved.

5.6.1 Proof of Proposition 5.1

Let us consider the case with M = Nj + N> for the sake of simplicity. We have seen
previously that the cases M # Ny + N, follow after a direct generalization. In this case,
we transmit m 4+ Ny symbols per TS during the first m TS. We transmit:

e m symbols to RX 2, that are canceled at m antennas of RX 1 using AP-ZF.
e N> symbols to RX 1, that are canceled at m antennas of RX 2 using AP-ZF .

— RX 2 can decode its own symbols since it has m antennas free of interference

and m symbols to decode.

— RX 2 can then remove the contribution of its own symbols and obtain No —m

independent linear combinations of the symbols intended by RX 1.

— If RX 1 obtains those No — m independent linear combinations of its own
symbols, RX 1 can decode all the N2 symbols, since it has already m linear

combinations free of interference.

— Since RX 2 already knows those retransmitted symbols, they do not hurt its

DoF because RX 2 can remove them from the received signal.

In the following N2 —m TS, at each T'S we send Ny symbols to RX 2 while retransmitting
m symbols from the interference received by RX 2 during the first m TS.

e The interference retransmitted can be removed perfectly at RX 2, then RX 2 can

decode perfectly its own N symbols.

e The symbols intended by RX 2 are canceled at m antennas of RX 1 thanks to
AP-ZF.

e RX 1 has m antennas free of interference and thus it can decote its own m symbols.
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M-m=5 TXy | o | Y1 M=3

m=1 TX, fe e | Y, Ny=3

Figure 5.3 — Equivalent channel for the case (M, N1, Ny,m) = (6,3,3,1).

Consequently, we obtain a DoF of

1 m?
_ N No —m)Ny) = Ny + —. 5.49
m+N2—m(m(m+ 2) + (N2 — m)Ny) 2+N2 (5.49)

5.6.2 Achievability for the Case (M, Ny, Ny) = (6,3,3)

In this section, we consider a particular setting so as to illustrate some achievability results
in the regime with m < Nj transmit antennas with perfect CSIT, for which no tight
upper-bound is known. Let us consider a setting with M = 6 transmit antennas and two
RXs, with Ny = Ny = 3 antennas at each RX. Suppose that only one transmit antenna has
perfect CSI for the whole channel matrix, while the other 5 transmit antennas have only
finite precision CSI. Thus, m = 1. The setting, denoted as (M, N1, No,m) = (6,3,3,1),
is illustrated in Fig. 5.3. We present here a scheme that achieves a sum DoF of 4.
The scheme consists in two phases, each one of 2 Time Slots (TS), and it is presented
in Table 5.1, in which every row represents one antenna. The table is divided in three
horizontal parts: The top part represents the symbols transmitted from each antenna.
The middle part represents the received signal at RX 1 and the bottom part shows the
received signal at TX 2.

Let us disclose the previous table by describing the transmission scheme. We send
18 symbols (a1_g, b1—g, ¢, d). Symbols a; are intended to RX 1 and symbols b; are intended
to RX 2. The functions f, f/, f”, f"”, are such that the corresponding symbols a; or b; are
canceled at the third antenna of the non-intended RX. The function f;, g;-, are defined
such that they represent the received signal at RX ¢. The sub-index j is used to order
and identify the different received signals. f]’-' denotes the received signal during the first
two TS whereas g; denotes the received signal for the last two TS.

First, the messages ag_g and bg_g are easily obtained at the intended RX from the
received signal of ¢t = 3 and ¢t = 4 after decoding d. Furthermore, if RX 1 obtained
equations fZ and f3, it would be able to decode all the a;_5. Similarly, if RX 2 obtained
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Table 5.1 — Description of a transmission scheme achieving the optimal DoF = 4 for the
setting (M, N1, No,m) = (6,3,3,1).

t=1 t=2 t=3 t=4
TX: ¢+ f(a1,a2,a3,a4,a5) ¢+ f'(br,b2,b3,b4,b5) d+f"(as,ar,as) d+f"(bg,br,bs)
TX g1 ay,as,as, ayq,as b1, b2, b3, by, b5 ag, a7, as be, b7, bg
TXg 2 ay,as,as, a4, ds b1, b2, b3, b4, b5 ag, ar,as be, b7, bg
TXgz3 a1,as,a3, a4, as b1, b2, b3,b4, b5 ag, ar, ag be, b7, bs
TX@A ai,a2,0as3,04, 05 bl,bg,bg,b4,b5 ag, a7, as bﬁ,b7,b8
TXz 5 ai,as,as, a4, as b1, b2, b3,b4, b5 ag, ar, ag bs, b7, bg

Yl,l fll(alaa23a3aa4aa5ac) f41(blab27b37b47b57c) g%(a67a77a87d) gi(b67b75b83d)
Yie  filar,a2,a3,a4,a5,¢)  f3(bi,ba,bs3,ba,bs,¢)  gs(as,ar,as,d)  g5(bs, bz, bs, d)
Y1,3 f?}(a17a27a3aa4aa5ac) c g%(aG,a%ag,d) d

fi%(b17b27b37b47b570) g%(a‘67a77a8>d) g%(b67b77b8ad)
ff(blab27b37b47b5a0) g%(aﬁaa7,a8,d) gi(b67b7;b8ad)
fg(blaanb37b47b57C) d gg(b67b7ab8ad)

Y2n  [fi(a1,a2,a3,a4,a5,c¢)
Y22 f22(a1aa2)a3aa4aa5ac)
Y273 C

equations f and fg, it would be able to decode all the by_5. Hence, we select ¢ and d as

d=f3 & fi. (5.51)

Therefore, RX 1 can subtract f} from ¢ and f3 from d and obtain the necessary equations.
On the other hand, RX 2 can subtract fZ from ¢ and f2 from d and obtain also the
necessary equations. Since we have causal CSIT, we can not encode the f} of t =2 in
¢, but we can accept a one-block delay and transmit the received signal of the previous
transmission block. The DoF loss will be negligible if the time considered is long enough.
For t =3 and t = 4, RX 1 obtains d in t = 4 and, after that, it can decode ag, a7, ag from
t = 3. In the same way, RX 2 obtains d in ¢t = 3 and thus it can decode bg, b7, bg at t = 4.
Consequently, we transmit 16 information symbols in 4 TS, and thus DoF = 4. The
general achievable scheme presented in Section 5.6.1 only attains a DoF of 1—3?, whereas
the upper-bound of Lemma 5.1 yields DoF < 4 + %. Interestingly, the DoF of the the
(M, Ny, N2) = (6,3, 3) setting is equal to

DoF =3
4 <DoF <4+ 1

if m=0, ifm=2,

if m > 3.

44+ 1 <DoF<5+1

ifm=1, DoF =6
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5.7. Conclusion

From the previous results for other settings and the intuition that one extra informed
antenna brings out one DoF, we could conjecture that DoF = 4 if m =1 and DoF =5 if

m = 2. However, this characterization remains an open and interesting problem.

5.7 Conclusion

In this chapter, we have analyzed the Network MIMO in which M decentralized trans-
mitted antennas jointly serve two multi-antenna users. We have considered the setting
in which m transmit antennas are endowed with perfect CSI while the other M — m
antennas only have access to finite precision CSI. We have studied the DoF performance
of this setting by deriving upper and lower bounds. Interestingly, we have proven that it
is not necessary to have perfect CSI at every transmit antenna, but only at the number of
antennas of the bigger user. We have derived a tight distributed CSIT upper-bound for
the case of N1 < m, characterizing the loss of DoF obtained from reducing the number of
informed antennas. Nevertheless, there exist many open problems regarding the MIMO
setting with distributed CSIT. Indeed, the upper-bound presented here is one of the first
for the setting considered. We have also shown achievable transmission schemes that
achieve the upper-bound for a certain regime. However, the gap between lower and upper

bound in the regime with m < Nj is not closed.
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Part 111

Performance Analysis of

Distributed Zero-Forcing
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Chapter 6

Rate Gap of the Distributed
CSIT Setting with Random

Vector Quantization

In the previous part, we have analyzed the D-CSIT setting from the perspective of the
DoF and GDoF metrics. The objective was to uncover meaningful insights concerning
the fundamental limits of the D-CSIT setting and to derive optimal schemes. In the
following, we analyze the setting from a different angle. In particular, there are two
main differences with respect to the previous analysis: First, we focus on simple ZF-type
schemes; second, we go beyond the DoF interpretation and study the loss in achievable
rate on account of the distributed structure of the CSI. The emphasis on ZF-type schemes

is due to several considerations:

e 7F schemes represent an important and practical group of schemes that is known
to provide a good compromise between performance and complexity, specially at
the high-SNR regime.

e They allow for analytical tractability.

e As shown in the previous part, ZF precoding is one of the essential components
of the DoF-optimal transmission schemes for the D-CSIT setting. Hence, it is
interesting to analyze which is the aftermath of confronting those schemes to finer

metrics and more practical analysis.
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Due to the aforementioned points, we consider hereinafter a simple linear transmission
scheme without superposition coding or successive interference cancellation. The TXs
transmit a linear combination of the data symbols for all the RXs and aim to cancel the
interference out. Further details are provided in this chapter.

As for the rate loss analysis, we seek to overcome the inherent limitations of the
DoF metric —which were detailed in Section 2.3—. For this reason, we analyze hereinafter
the rate difference between the C-CSIT scenario and the D-CSIT setting. This part is
divided in two chapters, which differ in the size of the network considered and the CSIT

acquisition model:

e The current chapter considers the 2 x 2 single-antenna setting. It also considers
that the CSIT is obtained by means of quantized feedback sent from the RXs. The
quantization at the RXs is carried out by applying Grassmanian Random Vector

Quantization, that will be later explained.

e The next chapter considers the M x K setting with multi-antenna TXs. The CSIT
is modeled such that the estimation noise is distributed as a Gaussian random
variable.

This double distinction is made so as to convey in a compact manner the different
implications that each one of the cases entails. Indeed, assuming two different CSIT
models enables to provide two different approaches to obtain similar high-SNR. regime
results, as well as to show that the results hold for a general set of models. The division
between the simple 2 x 2 case and the general case is interesting because the interpretation

and analysis for the 2x2 setting are specific.

6.1 Preliminaries

6.1.1 Affine Approximation of Rate at High-SNR

We recall that the affine approximation of the rate, introduced in Section 2.3, allows us

to write the rate as
R = DoFlogy(P) — Reo + 0(1). (6.1)

We can observe that in the previous part we had focused on the characterization of the
DoF term. Hereinafter, we wish to characterize completely the expression in (6.1). The
term R, represents the rate offset, i.e., the rate gap with respect to capacity when

P — oo. We recall in Fig. 6.1 the qualitative meaning of the approximation in (6.1).
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Rate [bits/s/Hz]

SNR [dB]

Figure 6.1 — Qualitative illustration of the affine approximation of two different setting
with the same DoF (slope) but different rate offset Ro.

Note that the rate offset is defined as
Reo = Jim DoF logy(P) — R(P). (6.2)
—00

As stated in Section 2.3.4, several works in the literature have focused on characteriz-
ing (6.1) for some settings. Namely, the multiple-antenna point-to-point scenario [29],
the BC with perfect CSIT using Dirty-paper coding and linear precoding [131], and the
BC with imperfect CSIT [132]. Those works are yet focused on the centralized scenario.
For the best of our knowledge, the analysis presented in the next two chapters is the first

attempt to characterize the affine approximation the a distributed setting.

6.1.2 Transmission Model

As in Chapter 3, we consider a single-antenna setting with 2 TXs jointly serving 2 RXs.
The signal received at RX i follows the notation of Section 2.2 such that

yi = hi'x + 2, (6.3)

where hi! € C1*2 is the channel vector for RX i, x € C**! is the transmitted multi-user
signal, and z; € C is the Additive White Gaussian Noise (AWGN) at RX i, being
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independent of the channel and the transmitted signal, and drawn as Ng(0,1). We
further define the channel matrix H € C?*2 as H £ [hy, ho]¥, with its (4, k)-th element
representing the channel coefficient from TX k to RX ¢ and being denoted as h;;. The
channel coefficients are assumed to be i.i.d. as Ng(0,1) such that all the channel
sub-matrices are full rank with probability one.

The transmitted multi-user signal x € C?*! is obtained from the precoding of the
symbol vector s = [s1, s2]T. The symbols s; are i.i.d. as Ac(0,1) and s; denotes the

symbol intended by RX i. Furthermore, the transmit signal can be written as

x & \2 [tl tQ} [Z] . (6.4)

The vector t; € C**! denotes the normalized precoding vector towards RX 4, and thus
T £ [t1, t2] € C?*2. As introduced in Section 2.2, the precoder of TX j is denoted as
trx; = [{t1};, {t2};]. Importantly, we assume a per-TX instantaneous power constraint

for the precoder, i.e.,
ltrx;ll <1, Vj € Na, (6.5)

what also implies that E[||x[|*] < P.

Remark 6.1. The assumption of a per-TX instantaneous power constraint for the precoder
is an important change with respect to Part 11, since we had previously considered an
average power constraint. The reason why this modification is meaningful lies on the
distributed nature of our setting. Indeed, with an average power constraint, the power
normalization is based only on statistical information and thus it can be applied at all
the TXs in a coordinated manner. This fact allowed us to develop robust schemes, as the
interference cancellation can be carried out only by a subset of the TXs. However, with
an instantaneous power constraint, every TX has to compute the power normalization
values based on its own instantaneous CSI. Hence, the previous solutions are not sufficient
under the new assumption, and we need to develop more elaborated strategies to prevent

the performance from sinking. O

6.1.3 Grassmanian Random Vector Quantization

We are interested in analyzing the performance at the high-SNR regime. This regime
has been studied extensively for the centralized setting, for which the rate offset between
Dirty-Paper Coding (DPC), ZF with perfect CSIT, and ZF with imperfect CSIT has been
obtained [131,132]. Indeed, as aforementioned, there is a logical path from theoretical

models to more practical ones in which 1) first the perfect-CSIT setting is analyzed.
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Then, 2) the impact of having imperfect —yet centralized— CSIT is studied, and 3) the
subsequent next setting to consider is the D-CSIT setting.

The first step, i.e., obtaining the rate offset on the BC with perfect CSIT using
linear precoding with respect to the capacity-achieving DPC, was studied in [131]. Jindal
tackled the the second step in [132]. In particular, the author investigated in [132] the
performance of ZF for the case in which the CSIT is imperfect, assuming that the CSIT
is obtained from a quantized version of the channel vector sent from the RXs, and the
quantization is done through Grassmanian Random Vector Quantization (RVQ).

In this chapter we address the 3) step, i.e., we analyze the rate gap between the
BC with imperfect centralized CSIT and with distributed CSIT. Therefore, we follow
the same approach of the reference work [132] and study the performance when RVQ is
applied. For the sake of completeness, we will recall in the following some properties that
will be needed for the proof of our main results. For more details about RVQ), see [43,132].

Let M denote the number of transmit antennas. In RV(Q, a unit-norm channel
vector h € CM is quantized using B bits to a codebook C containing 28 unit-norm vectors
isotropically distributed on the M-dimensional unit sphere. We consider a Grassmanian
quantization scheme such that the quantized estimate —which is denoted by heCM js

obtained to minimize the angle with the true channel, i.e.,

h = argmax [hw|?

wel i (66)

= argmin Sinz(é(ha UJ)),
wel
where we have introduced the angle for unit-norm vectors in CM from «(z,y) =

arccos |xHy|. We define the quantization error as
Z 2 sin®(h, h). (6.7)

Since the elements of the codebook C are independent of h and isotropically distributed,
the quantization error Z is obtained as the minimum of 2” independent beta (M — 1,1)
random variables. Upon defining z = v/Z, and ¥ £ \/1 — Z, we can write the true channel

as a function of its quantized version as

h = *h + 20, (6.8)

where 4 is a unit-norm vector isotropically distributed in the null space of fl, and § and
7 are mutually independent. In this chapter, we consider that the vectors have M = 2
elements, and thus the quantization error Z is distributed as the minimum of 22 standard

uniform random variables [132]. We can see that the estimation model in (6.8) is included
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in the general estimation model introduced in Section 2.4 and stated in (2.13).

6.1.4 Distributed CSIT Model

In this chapter, we consider that the TXs acquire its CSIT from the RXs. Specifically,
we assume that the RXs have perfect and instantaneous knowledge of its own channel
vector. Each RX quantizes its normalized channel with a certain number of bits using
RVQ. In the D-CSIT setting, in contrast with the centralized setting of [132], each TX
receives a quantized version with different number of bits.

In particular, we consider that RX ¢ feeds back to TX j a quantized version of the

normalized vector h; £ II}I?IH € C? using BZ.(j ) bits, denoted as flgj ). We assume that

RX 7 uses random vector quantization codebooks of 28 codewords [132], such that the
codewords are unit-norm vectors uniformly distributed on the 2-dimensional complex
unit sphere. After receiving the feedback from both RXs, TX j obtains a multi-user
channel estimate HU) = [flgj ), flg )]H € C>*2. In order to avoid degenerated conditions,
we assume that the codebooks of different RXs do not share any codeword.

This D-CSIT model, for which the CSIT at TX j is composed of two vectors generated
from codebooks with different size (2B§j) and 2B£j)), could also model a FDD transmission

in which, for example, one of the following feedback mechanisms is applied:

1. The RXs send a rate-adapted feedback to each TX through different feedback

messages.

2. The RXs send a single (broadcast) feedback message using layered encoding [153],
such that each TX decode the message up to a different number of bits.

3. The RXs send a single feedback message to one of the TXs —this is the current
standard mechanism— and each TX sends a compressed version of its CSIT to the
other TX.

Moreover, it is known that, in order to avoid the collapse of DoF in the C-CSIT setting,
the number of feedback bits must scale linearly with log,(P) [120,132]. By extension, we

suppose the same scaling and let the number of bits grow linearly with log,(P) as

Bz-(j) = agj) logy (P). (6.9)
BY — p=o” From [132,

Lemma 1], it follows that the CSI error variance at TX j scales as P~ Under such

This means that the estimation noise variance scales with 2~

feedback condition, the multiplexing gain (DoF) of our setting is equal to

DoF = 1 + min ( max (agj)), max (a(j)), 1)+, (6.10)
J J
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as it can be inferred from Chapter 3 and [82]. The DoF collapses if the number of bits
()

can be restricted to be 0 < oz(j) < 1. The multi-user

i

does not scale linearly with logy(P) [120,132]. Therefore, we assume that all «;”’ are

strictly positive. From (6.10), agj)

D-CSIT configuration is represented through the multi-TX CSIT scaling matrix o defined

s OENG
ol Y1 *
O£§2) 0452)

€ R?*2, (6.11)

6.1.5 Genie-Aided Centralized Setting

In this chapter we consider the second genie-aided scenario introduced in Section 2.5,

whose rigorous definition is presented below.

Definition 6.1 (Genie-aided Centralized Setting). Let us assume a distributed
setting in which each node has a different estimate with different average accuracy.
The Genie-aided Centralized Setting is defined as the setting in which all the TXs

are endowed with the estimate of best average accuracy.

We compare the rate achieved in the distributed scenario described in Section 6.1.4
with the respective genie-aided counterpart. This provides us with a benchmark for the
performance of ZF schemes on the D-CSIT setting.

Remark 6.2. It is important to observe that the genie-aided scenario is such that every
TX owns the best among the available estimates at any TX, instead of its own estimate
—which by definition would have less accuracy—. This is in opposition to the other genie-
aided scenario considered in Part II, in which each TX shares its CSI with any other TX,
such that every TX owns the set of K estimates of the K TXs. We must assume this new
genie-aided setting because the previous one, although instrumental for the DoF analysis,

incurs in an excessive aid from the fact that each TX obtains K different estimates. [

6.2 Centralized Zero-Forcing Precoding

We restrict this chapter to ZF precoding schemes, which are one of the essential com-
ponents to achieve the optimal DoF in the C-CSIT setting [120, 132] and that allow for
analytical tractability. Since in the C-CSIT setting all the TXs share the same CSIT,
the super-index (-)) is not needed. Let us denote the shared channel estimates as h;,
H, where h; is obtained with a feedback rate of B; = a;logy(P) bits. Note that the
centralized case is equivalent to the distributed setting in which flgl) = fl§2) for all ¢ € Na.

Let v} denote a unit-norm ZF precoder for RX i, computed on the basis of the

estimate H. We can write the centralized ZF precoding matrix as T4F £ [1vy, pavsl,

115



Chapter 6. Rate Gap of the D-CSIT Setting with RVQ

where p; € R is a parameter that ensures that the instantaneous power constraint
|trx ;|| <1 is fulfilled, and which will be detailed later in Section 6.3.2. Consider i as
the complementary index of i, such that i = [i mod 2] + 1. From the ZF precoding

definition, v} is a vector satisfying
hilvy =o0. (6.12)

We assume hereinafter that ||v|| = 1, as the norm of the precoder can be incorporated to
1i- In this case, since the estimation vector has a unitary norm from the RVQ properties,
we can write w.l.o.g. that v; = e *?[hz,, —hz]T, where e~*% is an arbitrary phase term.

The precoding matrix can be expressed as

TZF — f{zz BAL? paet O 1 (6.13)
—hg1 —hi; 0 pige" 2

2V ;Kd
In essence, M encloses the power normalization and a possible phase shifting whereas V
encloses the correct interference cancellation introduced in (6.12). Note that the rate is

invariant to any phase-shift e [145].

6.3 Distributed ZF: Hybrid Active-Passive ZF Precoding

Although ZF precoding schemes as the one described in Section 6.2 perform properly
with centralized CSIT, their performance shrinks considerably on the D-CSIT setting.
This comes from the fact that the zero-forcing accuracy is proportional to the worst
quality among the TXs. Thus, conventional ZF does not achieve the centralized DoF,
as it has been shown in Chapter 3. Indeed, if the precoder defined for the centralized

setting in (6.13) were applied naively, we would obtain

}Alg,l% flg?% ] [,ugl) e 11 Iuél)e—wb]

T = A A
i) i) [P foee

(6.14)

where ® denotes the Hadamard (element-wise) product. Note that, since the precoder is
computed locally, the estimated value for u; may be different at each TX, and thence the

change from matrix product to Hadamard product.

The solution proposed in DoF-achieving schemes [82,98,100], as the ones in Chapter 3
and Chapter 4, was that the TX with worse accuracy for a certain channel coefficient

does not use its estimate for computing its precoding vector. This strategy succumbs to
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the assumption of instantaneous power constraint for the precoding vector (||tTx ;| < 1),
since a less restricting average power constraint was considered. The only known scheme
achieving the optimal DoF is obtained from [82] where the transmit power scales in
P/log(P). This leads to a very inefficient power normalization, and hence to a very poor
rate offset (Roo)-

We present a distributed precoding scheme, coined Hybrid Active-Passive ZF Precod-
ing (HAP-ZF), that precludes the worst TX from harming the performance. The key
for attaining such result is an asymmetric ZF scheme and the quantization of the power
control, that allows the TXs to be consistent. We divide the HAP-ZF definition in several
logical steps that help to better comprehend the benefits of the precoder.

6.3.1 Adapting Phase to CSIT Topology

The first step in the building process of the precoding scheme is to adapt the phase of the
precoder to the CSIT configuration. Specifically, the idea is that, since multiplying the
precoding vector by a phase-shift e** does not impact the rate [145], we can adapt this
phase shifting to the CSIT configuration such that the TX with least accurate estimate

for a certain coefficient uses only the absolute value of that coefficient.

Example 6.1. Let TX 2 be the TX with worst accuracy for the channel coefficient
between TX 1 and RX 1 (hy1). From the centralized ZF precoder definition of (6.13),
the precoder of TX 2 for the data symbols of RX 2 is

~ (9 .
too = —M2h§7%€l¢l- (6.15)
Then, €% is selected such that ugﬁﬁeld’i is a real number, i.e., ¢; = —Zflfi, where

Zx represents the phase of x € C. In that case, the precoder applied at TX 2 is

to = —pal{). (6.16)

By doing so, the performance of the precoder would be intuitively improved, as the
limiting node eliminates its sensitivity with respect to the error on the phase of the
coefficient, and it is only affected by the error on the absolute value of the coefficient.
Therefore, the expression of the precoder changes accordingly to the D-CSIT config-
uration. In order to ease the mathematical derivations for the remaining of the chapter,
we make the precoder expression chime with the one in (6.13) for the centralized case,
such that it is decomposed in two matrices: A first matrix, denoted as W = [wy, wa],
that encloses the interference nulling task of (6.12); the second matrix, denoted as A,

carries out the power normalization and is only composed by real values. Then we can
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write that
ROING
W \ ,

A

We have denoted the (j,)-th coefficient of the matrix A by )\Ej ), Then, the precoding
vector has a different structure depending on which TX has the most accurate estimate
for each channel coefficient. All the possible configurations for the precoder of RX 1 are
presented in Table 6.1, whereas the ones for RX 2’s precoder are omitted as they are
obtained by swapping the user indexes in Table 6.1.

We further define the corresponding precoder obtained in the genie-aided C-CSIT
setting where the most accurate estimate is shared as T* = W*A*. Note that, in the
(1) )\1(2)

centralized precoder, A, = and thus the element-wise product can be substituted

by a matrix product such that

AT0
™ =w~*|! : (6.18)
0 X3
—_——
A*
Example 6.2. Let TX 2 be the TX with worst accuracy for the whole channel

matrix. In that case, the precoder matrix can be expressed as

T [ hg) A Dt (D14
= . o | © 5(2) -(2)
i) i8] (e et
[/ ()\—17(1 ~(1)\ =17 (1) 1)1 (1 1)1 (1
_ () Ry (R R [ ihad uéﬂ{l%ﬁl] .
| ! 1| PR kR (6.19)
[/ (=17 (1 ~(1)\ =17 (1) 1 1
TS TRE @I RG] A A
= Ol@ @
1 ST I PYREDY!
A% A

()

)

()

In this specific case, A\;”’ is given by A\’ = ,ugl)|f1§il)\. Furthermore, the equivalent

precoding matrix obtained in the centralized scenario is given by

T =

hy 1ho s B;’}ﬁm] [/\; 0]

~1 ~1 0 A (6.20)

W= A~
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Table 6.1 — Precoder t; = [Agl)wg}%, )\32) W§2%]T for the data symbols of RX 1 according
to the CSIT configuration.

Main TX 1 Main TX 2 Local CSIT Non-local CSIT
1 2 1 2 1 2 1 2
ay) > af’) ay] > af) oy > af) oy < af)
1 2 1 2 1 2 1 2
gy > al) gy > al) sy < al) sy > al)
A (DN =17 (1 A (1) —1 ~ (1
- (hS))'h{} 1 (hY) hy)
S (D131 S (2)y—1 (2
-1 —(h{y) 'hY ~(h$) ~h{)
1 1) (1 1) (1 1) (1 ~ (1 1
AY u{V B uiV B Mg RSy ut)
2 2) 7 (2 2)17 (2 2) 17 (2 (2 2
AP 1B ut? || ui? [05) |15 ut?

It is important to remark that, in the centralized scenario, all the different precoder
expressions obtained from Table 6.1 are equivalent, since the only difference is the phase
shift and it does not affect the rate performance. Note also that for any channel coefficient
there exist two estimates, }All(b) and BZ(-?, and W only depends on the one with higher
accuracy. Indeed, the matrix W matches the precoding matrix for the genie-aided
centralized setting W* and, as consequence, the possible performance loss comes only
from the divergence between A and A*. The idea behind this separation is that the
interference nulling of 6.12 has to be extremely accurate but it can be performed by a
single TX, whereas the power normalization has to be done by both TXs but it can be

computed with a reduced precision, allowing the TXs to be consistent.

Remark 6.3. Table 6.1 illustrates all the possible relations between aéjl;), for all j,k € No.
The precoder for RX 2 has the same number of possible configurations. Nevertheless,
from the CSIT model assumed, not all of them are possible. Indeed, we have assumed
that the RX feeds back its channel vector quantized with RVQ. Then, the CSIT accuracy
at one TX for the whole channel vector is always the same, i.e., aé{ i = ag% This implies
that only the two first cases —in which a TX knows with a better accuracy the full channel
vector of a certain RX— are the only possible ones. However, we have included all the
possible cases for two reasons. The first one is to show the analogy with respect to the
scheme of Chapter 3 which achieves the optimal GDoF. The second reason is because,
if we abstract the mathematical model from the feedback mechanism, it is possible to
assume that each coefficient may have a different accuracy but following the random

distribution arising from RVQ feedback. Then, the results of this chapter still hold. [
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6.3.2 Instantaneous Power Control

We have postponed the explanation about the power parameter for sake of readability,
as it depends on the A matrix and its A; coefficients, which have just been introduced.
The instantaneous power normalization algorithm is the same for the distributed and
the centralized setting. The only difference is the information that each TX owns to
compute it. Consequently, we omit any reference to the super-indexes indicating who is
computing the coefficient —(-)U) or (-)*—.

The power normalization strategy is performed by the parameter u; and follows any
algorithm that belongs to a broad family of functions satisfying the per-TX instantaneous
power constraint [trx ;|| <1, Vj € Na. We recall that the term instantaneous refers only
to the precoding vector power. The power of the transmit signal depends on the power
of the data symbols, and thus it satisfies an average power constraint. We model the

power control as a function A; such that Vi € No,
A = A (H a, P), (6.21)

where \; € R. We assume that A; is C', i.e., all its partial derivatives exist and are
continuous, and that its Jacobian Matrix J, satisfies ||Ja|| < My < co. Moreover, the
probability density function of A;, denoted as fa, is bounded away from infinity such that

max fy, (z) < fA* < oo, (6.22)

From the RVQ feedback assumption, H is distributed as H and hence the marginal PDF
fa,(z) is the same for perfect, imperfect centralized and distributed CSIT. To con-
clude, since the power control acts on the normalized precoder, the instantaneous power

constraint per TX implies that
0< )\ < 1. (6.23)

6.3.3 Discretization of Power Normalization Parameters

Although the previous CSIT-adapted precoder attains better performance that the naive
ZF scheme, it is still governed by the worst CSIT accuracy among the TXs. Indeed, as we
will show in the numerical results section, it does not achieve the DoF of the centralized
CSIT setting. A possible refinement would be to let the best informed TX predict what
is the channel coeflicient estimate at the other TX. However, it is easy to see that the
error on such prediction is proportional to the worst accuracy among the two TXs. In
this way, the performance is not improved.

We are interested in any case in enabling certain consistency between the TXs, such
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that the power control applied at each TX is consistent. We implement this idea by
discretizing the power normalization matrix. In particular, let Q(-) represent the output
of an arbitrary quantizer Q satisfying that Q(x) < x. Hence, after computing the power

parameter AU ), TX j quantizes it to obtain Q()\Ej )). TX 5 applies then the quantized

i
version to the precoding matrix. Consequently, the Hybrid Active-Passive Zero-Forcing

THAP

precoder, denoted by € C?*2  is given by

THAP 2 W (6.24)

o) o)
o) o

where W varies according to the CSIT configuration as illustrated in Table 6.1 and, by
definition, only depends on the most accurate estimate for each channel coefficient.

At first sight, the performance obtained by using (6.24) would be degraded in
comparison with the previous non-quantized precoder, as the quantizer decreases the
accuracy of the parameters. This is not case, as we explain in the following. From (6.24),
two possible cases arise. Namely, either Q()\gl)) = Q()\f)) or not. If the two quantized
estimations do not match, the performance is degraded. However, if they match, the

precoding matrix becomes

(1
THAP 2w [Q(>(\)1 ) Q(?\g))] . (6.25)

Thus, the precoder recovers the original centralized shape of (6.18). This implies that
the interference cancellation is achieved up to the centralized level, as W = W* and the
matrix of power normalization does not break the orthogonality. The only impairment

comes from the reduction of transmitted power, as Q(z) < z.

6.3.4 Properties of the Quantizer

In the following, we summarize some inherent properties of the quantizer Q, as well as
some desired behavior. Note that the condition Q(z) < z is mandatory so as to not
infringe the instantaneous unitary power constraint. Furthermore, )\E] ) e [0,1] from (6.23)

and therefore Q()\Z(»j )) € [0,1]. We assume that it exists Mg < oo such that

[Ejoeso[logs (Q))]| < Mo, (P0)

which is a technical assumption that is satisfied by any non-degenerate quantizer. The
role of Q is to trade-off the accuracy of the power control with the consistency of the

decision at the TXs, since the ZF orthogonality of (6.12) is preserved only if both TXs
A

obtain the same quantization value (Q(A(l)) = Q( i )) In order to emphasize the

(3
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relevance of the quantizer, we define ) as the set of estimates (I:I(l), I:I(Q)) that ensure

that the ZF orthogonality is not violated, excluding degenerate cases, i.e.,
e {(ﬂ(“, H?)| vieN, oY) = o(\?) er* } . (6.26)

In simple words, 2 encloses the cases in which the TXs agree on the power normalization
coefficients for both RXs and they are strictly positive. We further denote the com-
plementary event of 2 as ¢ (the inconsistent cases). We proceed by introducing two

important properties for the quantizers.

Definition 6.2 (Asymptotically Accurate Quantizers). A quantizer Q is said to be

asymptotically accurate if
lim Q(AY) =\ as. Vi,jeN,, (P1)
P—oo

where a.s. stands for almost surely.

Definition 6.3 (Asymptotically Consistent Quantizers). A quantizer Q is said to

be asymptotically consistent if

Pr(QF) = o0 (l()g21(P)> (P2)

Property (P2) implies that inconsistent precoding events are negligible in terms of
asymptotic rate. We exhibit in the following lemma one particular quantizer satisfying
properties (P1)-(P2). Optimizing further this quantizer is crucial to good performance

at finite SNR and its optimization its an interesting topic for future research.

Lemma 6.1. Let apmin = mini7j€N2(a§j)).

interval [0, 1] with a step size of P~ ca , with ¢, > 1, such that

Let Q, be a uniform quantizer in the

— “%min  _ %min

Qu(z) £ P < |P e x| (6.27)

Then, Q, satisfies properties (P0), (P1) and (P2).

Proof. The proof is relegated to Appendix F. |
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6.4 Rate Gap of ZF in the Distributed CSIT Setting

Let us denote the expected sum rate achieved using HAP-ZF precoding in the D-CSIT
setting by RHAP (). Similarly, the expected sum rate attained by the centralized ZF
precoder of Section 6.2 on the basis of the best estimates is denoted as R*F (a*). Note
that

x () ()
- , 6.28
a [;gggal , max o ] (6.28)

Accordingly, the rate gap between those settings is defined as
AR 2 R?(a*) — RUAF(a). (6.29)

For the cases in which Q()\El)) = Q()\Z@)), we refer to both quantized parameters as A2,
i.e.,

given 2, A2 =00, VvjeN,. (6.30)

7

We can now state our main results.

Theorem 6.1. Consider

2
*
)‘i

A | e
I, 2 v

(6.31)

and TAV £ Eq[logs (I';)]. Then, the rate gap of ZF precoding with distributed CSIT
1 upper bounded by

AR < T +T5Y + Pr(Q°) Rige (a”), (6.32)

where ) is defined in (6.26), and it holds that R‘ZQFC(Q(I)) < 2logy (14 P).

The proof is detailed in Section 6.5. This bound depends on the set (2 and thus on
the quantizer selected. Intuitively, a good quantizer has to ensure a high probability of
agreement, so as to make Pr (£2) small. This can be done by enlarging the quantization
step, what will make the first term bigger, as Q()\Ej)) needs to be as close to A} as
possible. This shows why finding the optimal quantizer is a challenging research topic.
Nevertheless, there exists a family of quantizers that behave asymptotically optimal, as

stated in the following theorem.
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Theorem 6.2. Let Q be an arbitrary quantizer satisfying (P0), (P1) and (P2).
Then, taking the limit in Theorem 6.1 as P approaches infinity yields

lim AR < 0. (6.33)

P—oo

Proof. The proof follows from Theorem 6.1. First, note that the sum rate R|ZQFC(a*)

is trivially bounded by twice the interference-free single-user rate to obtain

2
ZF [ E 12
R () <) log, (1+ 5 Ellhi] })

i=1 (6.34)
=2logy (1+ P),
what together with property (P2) implies that
Pr (Q°) R (M) = o(1). (6.35)

Consequently, it only remains to show that limp_, Ejg[logy(I';)] = 0 to conclude
the proof . From the definition of I';, it holds that

Ejallog, (1) =Ejo [logy (A1) — Eya log, (@A) (6.36)

We recall a simple property on conditional probability. The law of total probability
stays that, for any two events A, B,

Ejallogy(z)] = Pr(B | A)Ejanp[logs(z)] + Pr(B® | A)E|snpe[loga(z)].  (6.37)

Consider that 0 <z <1 and that Pr(B | A) > 0. Then, E|4-pc[logy(z)] < 0 and

Bpanalon(@)] > g Eiallosa(a) (6.39)

Therefore, if | 4[logy(z)] exists, also E|sp[logs ()] exists and it is bounded below
by (6.38) and above by 0.

Now, suppose that A and B are given by A = {Q()\Z(»l)) > 0,Vi} and B =
{2\ =0(A?),Vi}. Thus, @ = AN B. Tt follows from (6.38) and (P0) that

Pr(Q(AY) > 0, Vi)
Pr(Q)

Ejallogy (QAM))] > - Mo, (6.39)
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where we have applied the fact that Pr(B|A) = Prp(fa;g). Hence, Em[logz(Q()\z(l)))]

is bounded. The same result follows for E|q[log, ()\51))] from the bounded density
assumption of (6.22). Moreover, from the continuity of the log function and (P1),
logz(Q()\gl))) converges a.s. to logQ()\El)). From all these facts, we can apply
Lebesgue’s Dominated Convergence Theorem [158, Theorem 16.4] to interchange

expectation and limit and show that

: My)] = M
Jlim Ejlogy (QAM))] = Epatogy (\")] (6.40)
and thus limp_,o Ejg[logy(I'1)] = 0, which concludes the proof. [ |

Corollary 6.1 (Rate Offset with HAP precoder). It holds from Theorem 6.2 that
the rate offset Roo —defined in (6.2)— of ZF with D-CSIT is the same as for the
genie-aided centralized setting, whose rate offset was shown to be constant with
respect to Perfect CSIT ZF [132] (and thus with respect to the capacity-achieving
Dirty Paper Coding) for a = 1. Specifically, for a constant b, if the number of bits
is B =logy(P) — logy(b), the rate offset with respect to Perfect CSIT ZF is logy(b).

The key for attaining such performance is the trade-off between consistency and
accuracy that is ruled by the quantizer. The result also implies that the logical separation
between interference cancellation and power adjustment is instrumental: The power
adjustment can be implemented with a low accuracy, as it is more important that the
TXs agree. Conversely, the interference cancellation has to be applied with high accuracy.
Interestingly, Lemma 6.1 illustrates that simple quantizers —as the uniform one— satisfy
the sufficient conditions of convergence if we select the correct number of quantization
levels. Moreover, since this quantizer is applied locally and no information exchange is
done, the granularity of the quantizer does not increase the complexity of the scheme.
Note that, if Q has a single quantization point, it leads to a statistical power control. In
turn, if @ has infinite quantization points the scheme corresponds to the unquantized
scheme. In both cases, part of the DoF is lost.

6.5 Proof of Theorem 6.1

We consider w.l.o.g. the rate difference at RX 1, denoted as ARy, since the proof for
RX 2 is obtained after switching the indexes of the RXs. AR; can be split as

ARl = Pr (Q) AR”Q 4+ Pr (QC) AR”QC. (641)
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First, we focus on AR;q, which encloses the consistent precoding cases. Thus, we
condition on €2, albeit in the following we may omit to mention it explicitly for sake of
concision. Conditioned on € it holds that Q()\gl)) = Q()\Z@), Vi € Ny, and hence we can
use the notation A2 introduced in (6.30). Moreover, it can be observed from (6.25) that,
conditioned on 2, the HAP-ZF precoder satisfies

(HAP _ A2 Ai (7F

)\* i Vi € No. (6.42)

(argmax; a( )

From the definition of the centralized scheme, A7 = A, . Given that Q(x) <
it follows that )\ZQ JAF <1, Vi € Ny. Let us recall that I'; is defined as

: (6.43)

Then, I'; satisfies I'; > 1 Vi € Ny. Conditioned on 2 we can write that the SINR obtained
through HAP-ZF precoding satisfies

4

=1+
1+ £ |nlighar)? 1+

| P i
= 1+ P |LH¢ZF |2 )’
L L+ 7 [bi'td"|
where the first equality follows from (6.42)-(6.43) whereas the last inequality comes from

the fact that 1/T'; < 1 Vi. We can recognize in (6.44) the SINR at RX 1 for the centralized
ZF scheme such that it holds:

% }thZF‘ (6.44)

P11, H{HAP |2
RHAP(a) —F lo 1 + §’h1 tl |
1‘9 |Q 82 1 + £|thHAP|2

(6.45)
> —E|qllogy (I'1)]+ R1|Q< )
Since ARy = R%‘% (a*) — Rﬁép( a ), it follows that
ARyjq < Ejgllog, (T'1)]. (6.46)

Let us now consider the inconsistent precoding cases, i.e., Q2°. Since Rﬁé? (a) > 0, the

rate gap can be bounded by the centralized rate as ARHQC < R1|Qc( a*). Putting these
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results together in (6.41) yields
ARy < Ejgllog, ()] + Pr (%) B2 (D), (6.47)

where we have applied the fact that Pr(£2) < 1. The sum rate gap AR is obtained as
AR = AR; + ARy, what concludes the proof. |

6.6 Analysis of the Power Normalization Parameters )\;

Thus far, we have not focused on the statistics of the power normalization parameters \;,
and we have abstracted them up to the sufficient conditions that they have to fulfill to
prove the assymptotic results. In this section, we discuss them a bit more in detail. This
discussion is motivated because the bound of (6.32) Theorem 6.1 strongly depends on
those statistics. Note that

I = 2K g[log, (\})]— 2E/q [log, (A2)]. (6.48)

In the following, we present the main conclusions. The derivation and further information
is relegated to Appendix GG. We recall that the the CSIT is composed of a quantized version
of the normalized vector h; £ IIEZH € C? using RVQ with ij ) bits. The assumption of
Rayleigh fading (h;  ~ Nc(0,1)) implies that

b x|* ~ Uniform(0, 1), (6.49)
lh; x| ~ Triangular(0, 1), (6.50)
Iy 7 1* =1— [l (6.51)

From RVQ properties, the estimates flgjk) follow the same distributions. We denote the

precoding vector of TX j before normalization as t. ; £ [t9 10 tx o). As indicated
in (6.14), t9x,;; = E%) The final precoder of TX j is then trx ; = [1t3x ;1. HotTx ol
We consider two different power normalizations.

Ay
Hi = max(65 W5 21N ?

1. The coefficient p; is chosen such that , for any ¢ € Na.

2. We transmit P/2 power for each RX stream (symbol), and the precoder of each
symbol is unit-norm. Hence, for any i € No, u; = 1.

2(32 = aU) for all i,k € Ny. We assume

w.l.o.g. that TX 1 is the TX with the most accurate CSIT, i.c., () > o(?). We analyze

separately each one of the power normalization considered. Let f, denote the PDF of

In order to ease the notation, consider that «

the variable x and F, denote the cumulative distribution function (CDF).
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6.6.1 Maximum TX Norm Normalization

We consider here the first power normalization of the two cases mentioned above. Note

that in this case u1 = po but Ay # A9, since \; = ,uZ|lA1g)|, as shown in Table 6.1. Since
the estimates flgjk) have the same distributions as the true channel elements flz‘,k, we omit
the super-index notation. Consequently, \; is given by

|h€,1’

A\ 2 . (6.52)
’ maX(Ht%xﬂl,HtoszH)

Lemma 6.2. For the power normalization of (6.52), it follows that

4x . T 1
o= e~ 2t (T 8): (6:53)
and 3 — 41n(4)
—41n

Proof. The proof is relegated to Appendix G.1. In Fig. 6.2, the PDF of (6.53) is
shown, together with the histogram of a Monte-Carlo based simulation, in order to

verify the results. n

)

Lemma 6.3. Suppose that the quantization of the )\Z(-j parameters is done by the

quantizer of Lemma 0.1, with step size q. Let pg be

02 ! . .
IR (A2 = 0100 = 20\®)) 02
Then,
= n—1
B llogs (A2)] = 52 X Fna) oy (" ) +Ioga(0¥ 1) + o (a) (1~ Fr@).
n=2

Note that, if ~' € Z, the expression is simplified as Eiq [logQ ()\ZQ)} =p? ZN Fy(nq).

n=2

Proof. The proof is relegated to Appendix G.1. |
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3 ‘ ‘
=3 Histogram

2.5 [ amepdf = —2:L‘—|—min((1_“;2)2,z—13) a

4x
(1+22)2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A

Figure 6.2 — Probability density function \; assuming p = max(Prx1, PTXQ)_l/ 2,

6.6.2 Unit-Norm per RX Normalization

We consider now the second normalization, i.e., u; = 1. Therefore, \; £ ‘hg’1|, and thus

A2 ~ Uniform(0, 1), (6.56)
A; ~ Triangular(0,1). (6.57)

Lemma 6.4. For the power normalization of (6.6.2), it follows that

—1
and
—1  ¢*logy(¢*)
2 2
Eiq [log2 ()\ )] = (@) ST (6.59)
Proof. The proof is relegated to Appendix G.2. |
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)

Lemma 6.5. Suppose that the quantization of the Agj parameters is done by the

quantizer of Lemma 6.1, with step size q. Let p? be

1
0 A
p; = - R (6.60)
1-Pr (A2 = 0j00\) = 20\?))
Then,
2 N=2 2 2
q 1—(N—1)%q
Ej[logy (A\2)] = - > logy(ng)(2n + 1) + logy((N — 1)Q)(1_q2)
n=1
Note that, if ¢~ € Z, the expression is simplified as
e N-1
E|q [logy ()\lg)] Tz Z logy(ng)(2n + 1). (6.61)
n=1
Proof. The proof is relegated to Appendix G.2. |

6.7 Numerical Results

We illustrate in the following some numerical results that corroborate the previous insights.
()

Suppose that the quantization of the A\;”’ parameters is computed with a uniform quantizer.

For sake of simplification, we assume a basic power normalization that ensures the per-TX
power constraint: Let t9y £ [t i1 bix ,] denote the precoding vector of TX j before
normalization. The final precoder of TX j is trx; = [/,l,lt%xj’l, ILLQt%Xj’Q]. Then, u; is

chosen as

1

max([|tgx ¢ [|: [t o)

= Vi € Na. (6.62)

Let us start with a simple CSIT configuration. Suppose the per-TX homogeneous CSIT

configuration in which a TX j has the same accuracy for the whole channel matrix, i.e.,

(6.63)

In particular, suppose that o)) = 1 and o? = 0.6. Fig. 6.3 shows the simulated sum

rate for this specific configuration. The simulation is computed by using Monte-Carlo
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Figure 6.3 — Expected sum rate of the proposed scheme for the setting with CSIT scaling
parameters o) = 1, a(?) = 0.6, using the uniform quantizer of Lemma 6.1.

runs and averaging over 1000 random codebooks and 1000 channel realizations. The

quantization step ¢ is selected as
g=p 7" (6.64)

We can see that the proposed HAP-ZF scheme leads to a vanishing rate loss with respect
to the centralized case (where both TXs are provided with the best CSIT, HO in the
simulated case). The lower-bound of Theorem 6.1 is considerably close to the actual
rate. We recall that the only scheme known previously to achieve the centralized DoF in
the D-CSIT setting was presented in [82] and it applies a scaled power normalization of
P/log,(P). Fig. 6.3 shows that, although this scheme achieves the optimal DoF —slope—,
it achieves that property at the cost of a strong loss in rate offset.

EJ)
presented (the so-called HAP-ZF unquantized in Fig. 6.3). It is clear that the unquantized

scheme experiences a loss in terms of DoF. This occurs because, as aforementioned, the

Finally, the performance obtained if we do not quantize the A’ parameters is also

mismatches between the precoding coefficients of each TX break the orthogonality needed
for the interference nulling. Thus, this scheme only achieves a DoF proportional to a(?)

instead of oY), At intermediate SNR, this unquantized scheme outperforms the proposed
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Figure 6.4 — Average sum rate comparison for the CSIT allocation in which the CSIT
about RX 1 is known locally and the CSIT about RX 2 is known non-locally.

HAP-ZF precoding scheme. Yet, this is a consequence of our focus towards analytical
tractability and asymptotic analysis, as the quantization step g has been selected in (6.64)
only so as to satisfy the convergence conditions. Optimizing the precoder for finite SNR
performance will allow to bridge the gap between the two schemes to obtain a scheme
outperforming both of them.

Let us now present a different configuration. Importantly, in this case the quantization
step ¢ is optimized by exhaustive search. We still consider two levels of accuracy, this
time allocated as

(1) (1) TN ¢) (2)
aj =1 a4 =04 ai; =04 aj5=1
ALTX 1 — e . 2 — At TX 2
af] =04 afh=1 1 afl=04 of)=1

Note that this configuration corresponds to the case in which the CSIT about RX 1’s
channel is distributed locally —i.e., each TX has the most accurate estimate for its own
coeflicient—, and the CSIT about RX 1’s channel is allocated in a non-locally way —i.e.,
each TX has the most accurate estimate for the other TX’s coefficient—. Although this
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CSIT allocation may not be found in practical use cases, we select it so as to illustrate
the flexibility of the proposed scheme and the validity of the results. We show in Fig. 6.4
the rate achieved by the proposed HAP-ZF scheme together with three different reference

schemes:

1. The centralized scheme for case in which the best estimate is shared by both TXs.

2. The Naive ZF, where the TXs compute the conventional ZF assuming that the
other TX shares the same information. This scheme is not aware of the distributed
allocation of the CSIT.

3. Simple Time Division Multiplexing (TDM). Only one RX is served at a given time.

We observe that the proposed scheme offers a considerably better performance with
respect to the Naive ZF and TDM. Besides this, it can be seen that the HAP-ZF rate
converges to the upper-bound of the centralized setting.

In the interest of better illustrating the convergence behavior of Theorem 6.1, we
present in Fig. 6.5 the percentage of the centralized upper-bound attained by the proposed
HAP-ZF scheme, for all the possible CSIT configurations. We show side-by-side the
percentage attained at P = 30, 50 and 80dB. It is important to bear in mind that the
values are normalized. The rate achieved by the centralized setting is 15 bits/Hz/s at 30
dB, 28 bits/Hz/s at 50 dB, and 48 bits/Hz/s at 80 dB, what can be seen from Fig. 6.4.
Note that the more the SNR increases, the less percentage attains the Naive ZF scheme.
Furthermore, Fig. 6.5 shows that the HAP-ZF scheme converges at different pace for
each of the possible CSIT configurations. This shows how sensitive the scheme is to the
()

probability distribution of the power parameters )\;”’, since that distribution differs for

different CSIT configurations.

6.8 Conclusions

Considering a decentralized scenario where each TX has a CSI with different SNR, scaling
accuracy, we have shown that there exists a linear precoding scheme that asymptotically
recovers the rate of ZF precoding in the ideal centralized setting in which the best
estimate is shared. Going beyond the setting considered, we have shown how using a
low rate quantization of some parameters (here the power normalization) in combination
with a higher-accuracy distributed decision allows to reach coordination without loosing
precision. The extension of the results to more antennas and more users is considered in
the following chapter. The optimization at finite SNR, as well as the extension of the
main unveiled intuitions concerning distributed settings to diverse cooperative problems,

are interesting and challenging open research problems.
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[ 130dB m==3155dB mm80 dB —e— Naive ZF
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Figure 6.5 — Percentage of the C-CSIT setting rate attained by the HAP-ZF (green) and
the Naive ZF (-e-) schemes, for any possible D-CSIT configuration. The configurations
are described in Table 6.1.
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Chapter 7

Rate Gap of the M xK Network
MISO with Distributed CSIT

In the previous chapter, we have analyzed the performance of distributed ZF schemes
for the 2 x 2 Network MISO setting, with the aftermath that it is possible to recover
asymptotically the rate of the genie-aided centralized setting. Motivated by this result,
we proceed as in Part II and we broaden the rate gap analysis to a more general setting.
In this case, we extend it to the setting in which M multi-antenna TXs jointly serve K
different RXs. In particular, we focus on the cases in which distributed ZF-type schemes
can attain the DoF of the C-CSIT setting. This restriction is due to the fact that we
study the asymptotic regime, and the rate gap for the cases in which the DoF is not

attained grows unboundedly as the SNR increases.

As in the previous part, the schemes that were developed for the simple 2 x 2 case
are not applicable to the general setting, as they rely on the fact that there exists only
an interference constraint to resolve and therefore a single TX is enough to recover the
DoF. Besides this, we consider now a CSIT model with Gaussian estimation noise. This
modification of the estimation model with respect to the previous chapter, in which we
assumed RVQ feedback, is applied so as to extend the scope of the results. Indeed, from
the mathematical demonstrations in both chapters, the results are expected to hold for a
broad set of distributions, since the analysis shows that the parameter that characterizes

the asymptotic performance is the scaling of the noise variance, and not its distribution.
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7.1 Preliminaries

7.1.1 Transmission and System Model

We consider the Network MISO setting in which M TXs jointly serve K single-antenna
RXs. TX j has N; antennas. We denote the total number of transmit antennas as
Np = Zjﬂi 1 N;. The received signal is defined as in Section 2.2. Every RX wishes to
receive a data symbol s;. The data symbols s; are i.i.d. as Ng(0,1). We define the
vector of data symbols as s = [s1,..., sk, such that E[||s||?] = K. We apply a minor

modification to the notation of the channel matrix. The channel matrix is now written as

h; h171 - hLM
H 2 — c (CKXNT' (71)

hy hK,l hK,M

Hence, h; € C'*N7 denotes the global channel vector towards RX 4, and h;; € C™Ni is
the channel vector from TX j to RX i. Note that we have defined the row vectors as h;
and h; ; in place of the usual Hermitian notation h? and hgj. This is done so as to ease
the notation for the remaining of the chapter. The channel coefficients are assumed to be
i.i.d. as Ng(0,1) such that all the channel sub-matrices are full rank with probability
one. The precoding matrix is given by

T1 W11 WK1

)

TM WLM WK7M

hence T; € CNi*K is the precoding matrix applied at TX j, w; € CN7*! is the global
precoding vector for the information symbols of RX i (s;), and w;; € CNi*1 i the
precoding vector applied at TX j for s;. Finally, we denote the coefficient at the n-th
antenna of TX j as w; j,,. The parameter 0 < ¢ < 1 is a power correction value that
will be detailed later. We further define T}, as the precoding vector applied at the
n-th antenna of TX j, with n € Ny,. We assume that the precoder has a per-antenna

instantaneous unit-norm constraint, such that
[Tjnl < 1. (7.3)

The results presented here also hold under the assumption of per-TX instantaneous
constraint (||T;|| < 1). Note that, even if we set || T;|| = 1, the transmit power varies over

the time as the power of the information symbols s; varies. With a huge abuse of notation,

136



7.1. Preliminaries

S |

g
dgﬁ o

Figure 7.1 — Master Base Station with remote radio-heads. It obtains an estimate of the
whole channel matrix, then it transmits noisy or compressed CSI to the auxiliary TXs.

and for sake of concision, we refer hereinafter to the unit-norm constraint of (7.3) as
instantaneous power constraint, although strictly speaking it is an instantaneous power
constraint on the precoding vector. This is done in opposition to the less restrictive average

power constraint on the precoder (E[||T;||] < 1) which has been assumed in Part II.

7.1.2 Distributed CSIT Model

We recall the expression of the channel estimate at TX j, presented in (2.15):
HY 2 Vg, —ZY 0 H+VZ0) 0 AV, (7.4)

This chapter is characterized by the assumption of Gaussian estimation noise. In
particular, besides the assumption of Rayleigh fading, we consider that the elements of
AU are i.id. as Nc(0,1) and they are independent of H. Furthermore, we consider
the Sorted CSIT configuration introduced in Section 2.4.4, as in Chapter 4. We assume
for simplicity the homogeneous accuracy case, such that we can write ZU) = Z0) ¢ R.

Consequently, (7.4) becomes
HY 2 V11— 720 H4+V2Z20HAV), (7.5)

Hence, a TX knows the full channel matrix with the same average accuracy. This model
encloses e.g. a scenario in which a main, multi or massive antenna base station serves a
set of users with the help of some single or multi antenna remote radio-head or simple
TXs, as depicted in Fig. 7.1.
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CSIT accuracy

Following the same reasoning of the previous chapters, our interest in the high-SNR

regime motivates the assumption that the estimation error scales as
i —a(®)
Z0) = p=t (7.6)

where 0 < a¥) < 1. aU) is the accuracy scaling parameter that measures the quality of

estimation of the channel matrix at TX j. Hence, we can order the TXs w.l.o.g. as

1>a®>a@ > >0 > 0, (7.7)

what implies that TX 1 is the best-informed TX, whose CSIT has the highest accuracy.
We define the set of accuracy parameters of the D-CSIT setting as

apn = {a(j)}jGNM' (78)
For further use, we define the estimate for the channel of RX i such that

) 2 50y, 4 0) 5§j)7 (7.9)

1
where z0) 2 p—eW 5(G) & /T (2())2) and ﬁz(j), 5§j), are the i-th row of the matrices
HU), AU respectively. The accuracy parameters ay; are assumed to be long-term
coefficients that vary slowly. Based on that, it is assumed that every TX knows the full

set apy, as it only requires a sharing of few bits over a long period of time.

7.1.3 Genie-Aided Centralized Setting

We consider the same genie-aided centralized setting as in the previous chapter, defined
in Definition 6.1. Hence, all the TXs are endowed with the estimate of best average
accuracy. Note that in the sorted setting, where o) > - .. > a(M) the centralized setting
consists on a BC setting with Np transmit antennas and CSIT H equal to HO.

7.1.4 Affine Approximation of the Achievable Rate

As in the previous chapter, we want to characterize the affine approximation of the rate
presented in (2.11) in the D-CSIT setting. To wit, we aim to find the values DoFy, R%,
such that

R(a) = DoFylogy(P) — RL + o(1). (7.10)
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7.2 Centralized Zero-Forcing Precoding

7.2.1 Centralized Zero-Forcing Schemes (Under ideal CSIT sharing)

Since we base our analysis on the comparison with respect to the well-known centralized
ZF precoding schemes, we first present the set of centralized precoders to which we
restrict this work. In point of fact, the presented results hold for a general type of ZF
precoders, such that we just introduce the requirements that these schemes have to satisfy.
We denote the CSIT accuracy of the centralized case as a*. Hence, the genie-aided
centralized setting for the sorted distributed setting of (7.7) is represented by o* = a,

First, in order to distinguish when the precoding vectors refer to the genie-aided
C-CSIT setting or to the D-CSIT setting, we denote the centralized coefficients as v; .
This is in opposition to the w; ; notation applied in (7.2) for the D-CSIT setting. In
addition, V, v; and T;entr are defined as the centralized counterpart of W, w; and T;.

Hence, the vectors v; are computed from any ZF precoding algorithm satisfying

1) hyve = 0, VO+#i (Zero-Forcing condition) (ZF1)
2)  E[llvignl™'] =0(1) (ZF2)
3) S < ST <0 (zr3)

where h; is the centralized estimate of the channel vector of RX i. Note that (ZF1) is
nothing but the condition that defines ZF schemes, (ZF2) implies that the probability
of precoding with a vanishing power is negligible, and (ZF'3) that the precoding vector
has a bounded probability density function, i.e., that it is neither predetermined nor
constant. Hereinafter, we assume that the centralized precoding scheme satisfies (ZF1),
(ZF2), (ZF3). Furthermore, we assume that the precoding vectors and matrices can be
expressed as a combination of summations, products, and generalized inverses of the
channel estimate. As an example, we can use the typical choice of the projection of the

matched filters onto the null spaces of the interfered users, i.e.,
Vi=A—t P2 (1 - ﬂ?(ﬂ;ﬂ?)—lﬂ;) , (7.11)

where the matrix I:Ig stands for the full channel matrix with the i-th row removed,
and \; is a parameter to satisfy the power constraint of (7.3). Note that, in order to
avoid degenerate cases and increase the performance at low SNR, the inversion in (7.11)
can be regularized. However, as conventional regularized schemes converge to their

non-regularized counterpart at high-SNR, we omit any reference to regularized inverses.
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We further model the precoding scheme as a function of the CSIT, such that V denotes

the function applied to the channel estimate:
VoMt 5 K and V=V(H). (7.12)

7.2.2 ZF on Distributed CSIT Settings

It is known that centralized ZF schemes performance collapses under D-CSIT assumption
[82,100]. The main reason is that the interference cancellation achieved through (ZF1) is
proportional to the worst accuracy among the TXs, a(™) in the sorted case. Thus, the
question is how to prevent the least accurate TXs from harming the transmission.

The first intuitive idea is to apply the strategy that we have developed in Part II. In
that case, those inaccurate TXs do not make use of its instantaneous CSI to precode,
transmitting with a fixed or known precoder based on statistical information. This
solution achieves the centralized DoF under the less restrictive average power constraint
E[||T;||*] < 1. However, under the —here assumed- instantaneous power constraint
[T;nl?> < 1, the best known performance requires a power back-off such that the
best informed TXs have enough power to realign the interference generated by the
fixed-precoder TXs, with the flaw that this power back-off does not vanish at high SNR.

Another possible strategy is that the best informed TX attempts to estimate what is
the CSIT at any TX ¢ (H®) based on its own estimate H(\). However, the error variance
of H® as a function of H®Y scales proportionally to ¥, Thus, trying to correct the
misalignment created by TX ¢ will not succeed.

The two problems described above are the two main barriers that limit the perfor-
mance on D-CSIT settings. We present in the following several definitions that help to

emphasize those two limitations.

Definition 7.1 (Consistency). Consider two TXs, each one endowed with a different
CSI, such that HU) denotes the CSI at TX j. Suppose that they aim to compute
the same function f(x), each one on the basis of its own CSI. The computation is
said to be Consistent if and only if f(HM) = f(H®). Otherwise, it is said to be

Inconsistent.

Definition 7.2 (Power Outage). Let TX j compute its precoding matrix T; such
that, for a given function f and value A, T; fulfills that f(T;) = A. Then, TX j
is said to be in Power Outage if and only if the computed precoder exceeds the

instantaneous power constraint.
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Definition 7.3 (Feasible Consistency). Two TXs apply a Feasible Consistent pre-

coder if the precoding coeflicients are Consistent and there is not Power Outage.

One of our main contributions is to show that these limitations can be overcome by
encouraging consistency among the different TXs, at the cost of reducing the accuracy of

precoding at some TXs.

7.3 Rate Gap of the M x K D-CSIT Network MISO Setting

Our main contributions rely on a novel ZF-type precoding scheme coined Consistent
Decentralized ZF (CD-ZF), which is presented in detail in Section 7.3.2. Briefly, this
scheme is an adaptation to distributed scenarios of the aforementioned centralized ZF
precoding, such that the precoding applied at each TX is different if the TX is the best
informed one or not. Let R(ays) be the expected sum rate for our D-CSIT setting.
Similarly, let R*(oz(l)) be the expected sum rate achieved by a ZF scheme on the genie-
aided C-CSIT setting as described in Section 7.2.1. Accordingly, the rate gap between
those settings is defined as AR 2 R*(a)) — R(ays). We can now state our main

result.

Theorem 7.1. In the Network MISO setting with distributed CSIT, with N1 > K —1
and o™) > 0, the expected sum rate achieved by ZF-type schemes in the genie-aided
Centralized CSIT setting is asymptotically achieved, i.e.,

lim R*(aM) — R(ays) = 0. (7.13)

P—oo

Proof. The proof builds on the proposed CD-ZF precoding scheme, which is presented
in Section 7.3.2, and it is relegated to Section 7.4. |

Corollary 7.1 (Rate-Offset under Distributed CSIT). It holds from Theorem 7.1
that the rate offset R%. —defined in (7.10)— of ZF with distributed CSIT is the same
as for the genie-aided centralized setting, whose rate offset was shown in [132] to
be constant with respect to Perfect CSIT ZF —and thus with respect to the capacity-
achieving Dirty Paper Coding (DPC)—- for the case of a* = 1.

Remarkably, Theorem 7.1 implies that it is possible to achieve not only the multiplexing

gain but also the beamforming gain achieved by the centralized case with Ny antennas,
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even if only Nj antennas are endowed with the maximum accuracy. The constraint
N; > K — 1, i.e., that the TX with the most accurate CSI has a number of antennas at
least equal to the number of interferable RXs, comes from the fact that if N; < K —1 the
use of only ZF is not enough to achieve the DoF of the centralized setting [100], and thus
limp ;0o R*(aM) — R(eps) = co. We have shown in Chapter 4 that, even for the case
with N1 = 1, it is possible to reach the genie-aided DoF in some regimes. However, this is
accomplished by means of an elaborated transmission scheme which comprises interference
quantization and retransmission, superposition coding at the TXs and successive decoding
at the RXs. Since in this work we focus in a simple ZF transmission, we restrict to the
DoF-achieving regime N; > K — 1.

It is known that the optimal DoF of the C-CSIT setting with accuracy a(!) is equal
to 14+ (K — 1)a(1), by means of superposition coding where a common message is broadcast
and intended to be the decoded by all the RXs. It is noteworthy that, in the regime of
interest, N1 > K — 1, the D-CSIT setting performance still converges asymptotically to
the centralized performance even if superposition coding is applied. This comes from
the fact that the instantaneous power applied converges to the one used in the C-CSIT

setting, such that the broadcast common symbol can be sent with the same rate.

7.3.1 Achievability: A Broad View

Theorem 7.1 evidences that the issues associated which feasible consistency between the
TXs —enunciated in Section 7.2.2— can be overtaken. Intuitively, the strategies mentioned
in Section 7.2.2 are the extremes cases of consistency. Particularly, the naive ZF —whose
block diagram is shown in Fig. 7.2a— represents the extreme in which consistency is not
considered, whereas the AP-ZF —shown in Fig. 7.2b— embodies the extreme with perfect
consistency but limited accuracy and possible Power Outage. The main question is if
enforcing partial consistency might help and enhance the performance. Let the TX with
best CSI attempt to estimate the decision of the other TXs. As previously mentioned,
this incurs in an error proportional to the CSI accuracy of the worst TX. Moreover, as
the variables are continuous, the probability of being consistent —estimating exactly what
the other TX knows— is 0.

Nevertheless, we can build on the idea introduced in the previous chapter that
discretizing the decision space of the TXs helps to enforce consistency as, at least, the
probability of discerning what the other TX knows is strictly positive. The application
of this idea is however not straightforward, since the only source of inconsistency in
Chapter 6 was a single scalar power parameter, and no beamforming was possible.
However, the main insight is still valid: By means of discretizing the decision space of

the TXs that do not have the best CSI, we construct a probabilistic hierarchical setting,
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(1)
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TX2: H® —| precoding | (2) — Control T,
Wy

(a) Block diagram of ZF applied naively in the 2x2 D-CSIT scenario (No Consistency).

(1)
. 7F — W1~ — Power | (1
TX1: HW — Precoding | | 4y~ Control T
Wa
H? —x Power Control
ix2 o o (Constant) [ T

(b) Block diagram of AP-ZF applied in the 2x2 D-CSIT scenario (Full Consistency).

Figure 7.2 — Simple strategies for distributed precoding.

in which the best informed TX is able to estimate correctly the action taken by the other
TXs with a certain probability. Interestingly, this discretization —or quantization— can be
applied either to the available information —the channel matrix— or the output parameters
—the precoder—. Both cases are illustrated in Fig. 7.3. This is due to the properties of
linear systems and the asymptotic nature of our analysis. It is however clear that the
performance at low-to-medium SNR can importantly differ for each of the cases.

The key for attaining the surprising result of Theorem 7.1 is the proposed precoding
scheme, whose rigorous description is presented in the following section. Yet, the benefit
from achieving partial consistency is still not explicit and, indeed, it turns out that
there exists a non-trivial compromise between consistency and accuracy that allows
us to asymptotically close the rate gap. The proof of Theorem 7.1 relies on a simple
idea: Let A be a set enclosing the feasible comsistent cases in which the precoders
transmit coordinately, and let A be its complementary event. Hence, the rate gap
AR 2 R*(aM) — R(ajs) can be expressed as

AR = AR, Pr(A) + AR 4 Pr(4°). (7.14)

If ARj4 — 0 and ARj4cPr(A°) — 0, Theorem 7.1 is proven. It turns out that the
transmission scheme has to be both consistent (Pr(A4) — 1) and, for the consistent cases,

it has to be accurate (ARj4 — 0). This is rigorously shown in Section 7.4.
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X a1 7ZF Power 1
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(a) Quantizing input (CSIT).

- ZF Power 1 (1)
X 1: HU — Precoding Control [ Tg ) o Q() I qu
. ZF Power 2) (2)
TX2: HO® Precoding | Control [~ Tg : ] Q) [ Ty,

Continuous =<-*-- Discrete

(b) Quantizing output (precoder).

Figure 7.3 — Two manners of discretizing decision space: At the input (information) or
at the output (action).

7.3.2 Proposed Transmission Scheme: Consistent Distributed ZF

We first explain the Consistent Distributed ZF (CD-ZF) precoding scheme for the case
in which the channel matrix (input) is quantized. The case when the precoding vector
(output) is quantized is presented later. The proposed scheme presents an uneven
structure, such that each TX applies a different strategy depending on who has higher
accuracy. Furthermore, the proposed scheme computes independently the precoder for

the symbols of different RXs, except for the final power normalization.

a) Quantizing the CSI (Q(H)))

The block diagram of this precoding scheme is depicted in Fig. 7.4. We split the description
such that in the first place we explain the precoder at any TX not being the best informed
one (TX 2 to TX M). Later, we present the precoder at the best-informed TX (TX 1).

The main limitation of the distributed precoding is not the error variance at the
restricting TXs, but the impossibility at TX 1 (or the set of TXs with accuracy a(!)) of
knowing what the other TXs are going to transmit. In order to overtake this problem, all

the TXs but TX 1 quantize their estimation matrix with a known quantizer Q. Hence,
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Figure 7.4 — Block diagram of CD-ZF applied in the 2x2 D-CSIT scenario.

for any j > 1, TX j does not use its CSIT HY) to precode, but first pre-processes it. In
other words, TX j applies

HY) = 9(HV)). (7.15)

The characteristics of the quantizer Q will be detailed later. Then, it applies naively a
centralized ZF scheme as described in Section 7.2.1, based on fll(lj ). Since the quantization
transforms the continuous variable H) into a discrete one, it facilitates that the setting
becomes a hierarchical setting, in which the information available at other TXs is
estimated without explicit communication.

We focus now on the precoder at the most accurate TX, which attempts to correct
the error of the previous TXs. Let TX 1 estimate ﬂgj ) based on its own information
H®, e.g. by computing the Maximum A Posteriori estimator (MAP) of I:ng ).

I:Igj)ﬁ(l) = argmax Pr (I:Igj) \ I:I(l)) . (7.16)

I:I{(ZJ')GQ((CKXNT)
It is important to notice that the quantized value ﬂgj ) is not intended to be transmitted,
but it is aimed at helping TX 1 to estimate the CSIT used at TX j, without any explicit
communication between them. For sake of exposition, let us assume that TX 1 correctly

estimates the CSIT at TX j, Vj € Ny, such that
HO<O — gO) (7.17)

We will discuss about the probability that (7.17) happens in the following section. Hence,
we obtain a consistent D-CSIT setting. The goal of TX 1 is to imitate the interference
cancellation performance that the centralized ZF scheme would achieve if every other TX

also owned H. In order to provide some insight, we first describe the 2 x 2 case.
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2x2 case: Leti =i (mod 2)+1. Mathematically, the goal is to have \flgl)wﬂ = |f1§1)v5\,

what can be rewritten as

B ws y + B ws o] = b vs ) + B, (7.18)

1,2 1,

We remind that w stands for the distributed precoder whereas v stands for the centralized
precoder. Under the assumption that TX 1 correctly estimates ﬂéQ), it knows w; 5. Then,

TX 1 computes its precoder such that

(1) (1
Wi = Vi1 T+ (hz(',l))ThE,; (Vig — Wia), (7.19)

&;

where (x)T denotes the pseudo-inverse' of x, which is known to have minimal Frobenius
norm among all the generalized inverses [145]. The term ¢; represents the correction
term that TX 1 has to apply in order to compensate the error introduced by TX 2; note
that (7.19) satisfies (7.18).

M x K case: The generalization follows directly but it needs one more step. Let the
TX 1 have N1 > K — 1 antennas. The goal is again to obtain the same interference

cancellation as for the centralized precoder, such that, Vi € N,

ST hPwer= Y v (7.20)

LeNg\E LeNK\i

This can be attained if flgl)Wg = l:lgl)Vg, Vi, ¢ € Ng,i # £. Let us split the precoding and
(1

i’l) denote the sub-vector corresponding to
(1)
i1 R R
to the antennas of TX 2 to TX M. The sub-matrices H;; and Hy1 are defined in the

same manner. Both sub-matrices are illustrated in Fig. (7.5) for ease of comprehension.
(1)

7

channel vectors in two parts: v, 1, wy 1 and h

the antennas of TX 1, and v, 1, w,7 and h'” represent the sub-vector corresponding

We can expand the condition h Wy = flgl)Vg as a matrix equation in which wy; has to

satisfy
H; o wen = Hy ver + Hpp(ver — wei), (7.21)
where N7 = Np — Nj. The precoding vector at TX 1 is selected as

W1 =Vl + I:I;’JI:IZJ(VE,I — W) (7.22)

B0

'(x)" could also represent the regularized pseudo-inverse.
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Figure 7.5 — Definition of the channel sub-matrices I:Ig’1 and I:Igj.

The dimensionality of the linear system in (7.21) explains the limitation of having

N; > K —1. In (7.21), it is only ensured that the interference received is the same as for

the centralized setting. It is possible also to ensure that the receive signal flgl)WZ‘ is equal
to the one of the centralized setting. However, it would require an extra antenna at TX 1
—since there is an extra equation in the equations system—, and it is not necessary as the
(1)

received intended signal turns out to be statistically equivalent without enforcing fll W

b) Quantizing the precoding coefficients

The scheme proposed above makes use of the quantization of the channel matrix at the
TXs from TX 2 to TX M so as to allow TX 1 to know with a certain probability the
CSIT at those TXs. Then, TX 1 can compute the precoder coefficients obtained at the
other TXs. Another possibility is to apply the quantization at the end of the computation.
In this case, TX 7, j > 2, computes its precoder Ty ) based on its own non-quantized
CSIT H). Then, it quantizes® its precoder to obtain

QY 2 o(T'), (7.23)

which will be the effective precoding vector applied. Then, TX 1 will perform the same
algorithm as in the previous case where the channel matrix was quantized. The difference

is that in this case it directly computes

ng)e(l) = argmax Pr (ng) | ﬂ(1)> , (7.24)
QP eorc )

2Note that we assume an instantaneous power constraint on T;. Hence, in order to prevent possible
infringements of the constraint due to the quantization, if the quantization is done on the precoding
vector it has to be applied by truncating (closer value towards 0).
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such that TX 1 will know —with a certain probability— the precoding vector w; ; applied
at the TX j for RX 7. The asymptotic results of this work hold for both cases (either
quantizing the channel matrix or the precoding vectors). We focus hereinafter in the
scheme that quantizes the channel matrix for sake of a better understanding, as the proof

is less devious, and because the proof for the other case follows the same approach.

Feasibility and Consistency

In the previous description of the scheme, it has been assumed that TX 1 obtains a
feasible consistent precoder, such that it correctly estimates the CSI at the other TXs
and that the obtained precoding vector can be used for transmission. However, the
transmission scheme will suffer from the two main issues described in Section 7.2.2: Power
outage —since it has to satisfy that ||T; .| < 1, Vn € Ny,—, and Consistency —as the
quantization of the CSIT at TX j allows TX 1 to obtain that CSIT only with a certain
probability—. In the following we present some properties that will be instrumental to
deal with those limitations. Let us focus first on the consistency problem. We introduce

a set of quantizers that are essential in the proof of Theorem 7.1.

Definition 7.4 (Asymptotically Consistent Quantizers). A quantizer Q is said to
be Asymptotically Consistent if the probability of correct estimation of the MAP
estimator at TX 1 satisfies

s L 1
e —fgD) = o L ) v
Pr (H HY)) = o (1og2(P))’ Vj € Ny (P1)

Property (P1) implies that it is possible to induce that the probability of having incon-
sistent precoding among TXs vanishes faster than 1/log,(P). This fact implies that the
rate impact of inconsistent precoding events vanishes asymptotically —as we will detail
later—. Clearly, it remains to prove that there exists some quantizer Q. satisfying (P1).

Surprisingly, very simple quantizers as the one presented below satisfy it.
Lemma 7.1. Let Q,(X) be a scalar uniform quantizer with quantization step q =

P~% where o 15 such that ald) > ag > 0,Vj € Ny Then, Q, is an Asymptotically
Consistent Quantizer and Pr (IZL(]J)F(I) # ﬂﬁﬂ)) = O(@); for any j € Nyy.

Proof. The proof is relegated to Appendix H.5. [ |

Note that Q, is a scalar quantizer. Thus, the notation A, = Q,(A), where A is a

matrix, denotes —~with an abuse of notation— that A, is composed of the independent
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scalar quantization of the real and imaginary part of each element in A. Obviously,
a better results would be obtained by applying vector quantization. However, as any
quantizer satisfying (P1) is adequate for proving Theorem 7.1, we present Q, for the
sake of simplicity. The analysis at medium and low SNR —that requires an optimization
on the quantizer used— is an interesting research topic that is delegated to future works.

Let us assume that the uniform quantizer of Lemma 7.1 is applied. Then, the naive
precoder of TX 2 incurs in an error with respect to the centralized precoder that is

proportional to the quantization step, as stated in the following lemma.

Lemma 7.2. Let TX j, 2 < j < M, quantize its CSIT with a scalar uniform
quantizer with quantization step ¢ = P~ , o) > ag > 0. The naive precoder at
TX j satisfies that

E [Hvz‘,j — Wi j ] =0 (Piaq) s (725)
E [Hvi,j = Wi,jHZ] =0 (Piaq) . (726)
Proof. The proof is provided in Appendix H.6. |

Lemma 7.2 is based on error propagation properties of linear systems. Thus, it is expected
to hold for a broad set of noisy estimation models whose error variance scales as P~¢
for any a > 0. For example, it holds for the quantized feedback model of [132], in which
random vector quantization is assumed and the number of quantization bits scales with P,
as shown in Chapter 6. Furthermore, Lemma (7.2) leads to the following corollary. The
proof of this corollary is provided in Appendix H.2.

Corollary 7.2. Let TX j, 2 < j < M, quantize its CSIT with a scalar uniform
quantizer with quantization step ¢ = P~%, oM) > ag > 0. The global precoder
satisfies that

E [||vi — wi|*] = O (P79), (7.27)

and hence E][||v; —w;|]] = O (pfaq)'

Let us focus now on the probability of power outage. Let B, denote the event of power

outage. The precoder at the n-th antenna of TX j is given by T ,. In that case,

BE{ U Il > 1} (7.28)

nENNj
JENN
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and the following lemma holds.

Lemma 7.3. Let p=1—¢, wheree >0, ¢ € O(P~*) and a,, < ag. Then,

Pr(B) = o <log21( P)> . (7.29)

Proof. See Appendix H.1 [ |

Similarly to property (P1), Lemma 7.3 implies that power outage events are negligible in
terms of asymptotic rate. The only TX that may incur in power outage is TX 1, as the
other TXs apply the naive centralized precoder and hence they will always satisfy the

power constraint.

7.3.3 Hierarchical CSIT Setting

Theorem 7.1 shows that it is possible to attain asymptotically the rate of the centralized
setting. Its performance at low-to-medium SNR is however limited by the probability
of obtaining a feasible consistent precoder. This probability depends on the quantizer
applied, the power back-off considered and the values of o), and hence it is challenging
to obtain. As shown in Section 7.3.2, the precoder is computed assuming a correct
estimation of the CSI at the other TXs. Consequently, if the probability of consistency is
low, the scheme does not perform properly and this probability decreases as the network
size increases, since TX 1 needs to estimate correctly more parameters.

This limitation is inherent to the D-CSIT setting here assumed, in which each TX
only knows its own CSI. However, there exists another practical setting with distributed
CSI but in which there is more structure in the network CSI: The Hierarchical CSIT
setting (H-CSIT). In this setting, introduced in Section 2.4.5, each TX is endowed with
its own multi-user CSI HY), as in the D-CSIT setting, but it is also endowed with the
CSI of the TXs having less accuracy than itself. Namely, in the sorted CSI scenario with
a® > ... > oM TX j knows {fl(j),fl(j+1),...,ﬂ(M)}.

This scenario, although it may seem less practical, arises in many heterogeneous
networks. Fig. 7.1 depicts an example: Suppose that the RXs are all connected to the
same main TX (e.g. TX 1), and the other TXs are remote radio-heads that receive a
coarse version of the CSI by means of a wireless link from TX 1. In this use case, TX
1 will know the CSI available at each other TX. If the CSI sharing is done through
dedicated links for each TX, each TX would receive CSI with accuracy proportional to
its own link. If the CSI is broadcast, they may obtain an estimate with different accuracy

if layered encoding [153] or analog feedback [154] is used.
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Corollary 7.3. Theorem 7.1 also holds in the Hierarchical CSIT setting and hence
limp_,oo R*(aM)) — R(apr) = 0.

Proof. The proof follows directly from the proof of Theorem 7.1 in Section 7.4. W

In this setting, TX 1 already knows H Vj € Nj;. Hence, the discretization of
the variables at the other TXs is not needed, and the precoders are consistent with
probability 1. Therefore, the only effect that may restrain TX 1 to achieve the centralized
performance is the power outage. The performance at medium SNR will improve with
respect to the general D-CSIT case, and moreover, it is not affected by the size of the

network, as we will see in the numerical examples of Section 7.6.

7.3.4 Finite Precision CSIT Setting

Previously, it has been assumed that o) > 0 Vj € Nj;. Let us now assume that some
TXs may have a finite precision CSIT, i.e., that 3j € Nys such that a(/) = 0. Since the
TXs are sorted is descending order of the CSIT accuracy, consider w.l.o.g. that a(™) = 0.
In this case, the AP-ZF introduced in Chapter 4 is a more suitable scheme, as the
TXs from TX 2 to TX M do not use its own CSIT for precoding. This scheme can be
seen as a special case of CD-ZF, in which the TXs 2 to M use a known, pre-defined
precoder independent of its CSI. For example, w; ; = \/%1 N;x1 can be chosen for sake
of simplicity, but w;; could also be computed e.g. from a pseudo-random sequence
known at every TX following a Gaussian distribution or the distribution of the centralized
precoder v; ;. Hence, TX 1 knows which is the precoder at the other TXs —similar as in
the Hierarchical CSIT setting— and it can cancel out the interference generated by the
other TXs. Particularly, the AP-ZF precoder for RX ¢ at TX 1 [82,100] is given by

Wil = —ﬂ}lﬂm‘”e,i- (7.30)

Under this assumption of finite precision CSIT, Theorem 7.1 does not hold and the
following corollary is obtained. The proof is relegated to Appendix H.7.

Corollary 7.4. Let Ny > K — 1, and o'™) = 0. In the Network MISO setting with
distributed CSIT or hierarchical CSIT, with instantaneous power constraint for the
precoder, the use of CD-ZF or AP-ZF leads to

lim R*(oM) — R(aus) = . (7.31)

P—oo
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In the D-CSIT setting, it is clear that CD-ZF requires a?) > 0 for all j € Nj; because,
if &9 = 0, the probability of correct estimation at TX 1 does not increase as the
SNR approaches infinity, i.e., Pr (fléj)e(l) = ﬁgj)) = ©(1). For that reason, the rate
achieved with CD-ZF does not converge to the centralized performance. Moreover, for
the Hierarchical CSIT scenario or for the use of AP-ZF precoding the main limitation
consists in the fact that the probability of being in power outage at TX 1 does not vanish,
and hence Pr(R) = O(1) because the distribution of the precoder at the other TXs
remains the same for any P. This is explained more in detail in Appendix H.7.

Let us now relax the power normalization constraint from instantaneous precoder

norm to the common average power constraint, i.e.,

E[IT;nll’] €1,  Vj €Ny, n€Ny,. (7.32)

Theorem 7.2. Let Ny > K — 1, and o) =0, Vj > 1. In the Network MISO setting
with distributed CSIT, under average power constraint, the rate gap is bounded, i.e.,
limp_,0o R* (@) — R(apr) < ¢, with ¢ < co. Furthermore, it holds that

lim R*(a) — R(ur) < K (logy (E [I[F 1]17]) + log; (4K*(K — 1)), (7.33)

P—oo

where IA{KJ represents the first N1 columns of the channel matriz estimate at TX 1.

Proof. The proof is relegated to Appendix H.8. |

The bound in (7.33) is not tight, but it is useful at it shows that the rate gap with respect to
the centralized scenario is bounded when some TXs are endowed with finite precision CSIT
(or no CSIT at all). Note that the gap in (7.33) scales in K as K logy(K). Interestingly,
the gap between capacity-achieving Dirty-Paper Coding (DPC) and centralized ZF with
perfect CSIT was shown in [131] to scale also as K log,(K) when Ny = K.

7.4 Proof of Theorem 7.1

In order to prove Theorem 7.1, we need to demonstrate that the user rate gap AR; =
R (aM) — R,(apr) vanishes. Then, by symmetry, AR = > ien, AR; will also vanish.
The proof is divided in several steps: First, we show that both main issues previously
exposed, power outage and inconsistent precoding, can be made negligible in terms of rate
loss. Then, we prove that the rate gap vanishes by showing that in the distributed setting
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both the interference received and total power received converge to their counterparts of

the centralized setting.

7.4.1 Neglecting Non-Consistent Events

The proof of Theorem 7.1 builds on Lemma 7.1 and Lemma 7.3. Indeed, the proposed
scheme will perform poorly if the precoder is not feasible consistent, as it assumes that it
is. Howbeit, both Lemma 7.1 and Lemma 7.3 illustrate that those events can be made

very unlikely. Let H.. denote the set inconsistent events, i.e., Hx = { UZSJ'SM I;L(]jy_(l) #*

ﬂgj )}. Hence, the probability of having feasible consistent precoding is Pr <7%C N 7—[;)

By means of the law of total probability, we can split the expected sum rate R as
R = Pr (7% U H;&) R|7%U'H¢ + Pr (EC N H;) R|7%CO'H;' (734)

Note that the expected sum rate achieved for any event is O(logy(P)). Hence, it follows

from Lemma 7.1 and Lemma 7.3 that

1
Pr(RUH.) Ripun, = o <log2(P)> O(log(P)), (7.35)
and consequently

Thus, in the remaining of the proof we assume w.l.o.g. that TX 1 knows I:Igj), Vj € Ny,
and that there is not power outage, as both cases become negligible at high SNR. This
implies that the setting becomes hierarchical, as TX 1 correctly estimates the quantized
CSIT of the other TXs. It is important to remark that this simplification is only
possible because of the proposed scheme, in which we apply a correct power back-off
and quantization step. Indeed, the surprising outcome is not (7.36) but the fact that
R‘RCQH; converges to the centralized setting rate. Furthermore, the achievable rate at
low or medium SNR regimes might be increased by means of more complex schemes. For
example, allowing several layers of quantization, such that TX (j — 1) tries to correct the

interference generated by TX j, in a similar manner to the algorithm presented in [137].

7.4.2 Reformulating the Rate Gap

Note that we can rewrite the rate gap for RX i as

P 2 P 2
= |h;v; = |uh;w;
L+ 52 >0 [hivel L+ 2 >0 [hiwyl
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2 p 2

=E [log ( 1+§25€Nk|hivd )] E [log (1+KZ€# Juhywe )} (7.37)

- 2 2 (T
Fp 7

This rewriting of AR; allows us to separate the ratio of received interference power
(Fz) and the ratio of total received power (Fp). In the following, we will prove that
limp_,oo AR; = 0 by showing that limp_,o E[logy(F;)] = 0 for both Fp and Fz. We

start with Fz for simplicity, and later we apply a similar argument to Fp.

7.4.3 Analysis of the Interference Ratio (F7)

We prove the convergence by upper and lower bounding F7 and then showing that both
bounds converge to 0. We recall that we assume that TX 1 is able to transmit the desired
precoding vector of (7.19) since the opposite case only yields an o(1) rate contribution.

Let us start with the upper-bound. Note that, since p <1,

1+ £ >0t |hyw|? 1+ £ >0t lhywl|®
log, > 5 <E |log, 5 5 )| (7.38)
1+ 2 2 [hivel L4 % 20z [hive

~
/
‘/—_I

E

where we have introduced the notation F7 for the sake of readability. Let n be a scalar
0 <n < 1. We can split the expectation under the condition that the term F7 is smaller
than 1 4 n or not. Therefore,

E [logQ (]—"})] =Pr (.7-"} <1+ 7]) EF§<1+77 [logg (]—})}

(7.39)
+ Pr (]:i >1+4+ ’I’]) ]E]'—lzzl'i‘r] [IOgQ (]:%)] .

Now we present the a useful lemma.

Lemma 7.4. Let n = P~¢, with ag > ¢ > 0 and € arbitrarily small. Then,

Pr(f£,>1+n):o<bg21(P)> and Pr<]%>1+n):o<log21(m>. (7.40)

Proof. The proof is relegated to Section 7.5.1. |

Let n = P~¢, with ay > ¢ > 0 and ¢ arbitrarily small. Then, (7.39) becomes

1

(FU>E#£ﬂ+nDW@(}}”

B log: (7)) < Eryca loga (7)] +0 (1

<logy(1+m) + of(1)

(7.41)

154



7.4. Proof of Theorem 7.1

since Ez; >14, [logy (F7)] = O(logy(P)). We now lower-bound the expectation. Note that
E [logy (F7)] > logs(4®) + E [logy (F7)]. (7.42)

Furthermore, lower-bounding (7.42) is equivalent to upper-bound E [log2 (%)} By
e

applying Lemma 7.4 and similar as in (7.41), we obtain that E [logQ (%)} <logy(1 +
e
n) + o(1) and hence

E [log, (F7)] > logy(s*) —logy(1 +1) + o(1). (7.43)
Consequently, the term E [log, (F7)] can be bounded as
logy (1) —logy(1+1) + o(1) < Ellogy (F1)] <logy(1+1) + o(1). (7.44)
Since limp_,oo t = 1, limp_,oo n = 0, and limp_,~, 0(1) = 0, it follows that
Jim B [logy (Fz)] = 0. (7.45)

7.4.4 Analysis of the Received Signal Ratio (Fp)

It remains to prove that the first expectation of (7.37) also converges to zero. As for Fz,

we can write

2
L+ % Y pen, hivel )]
5 )1
1+ % ZEGNK [hiwy|

7

E[log,(Fp)] < logsy <:2> +E [10g2 ( (7.46)

Moreover, the equivalent to Lemma 7.4 also holds for F7,.

Lemma 7.5. Let n = P~¢, with ag > € >0 and € arbitrarily small. Then,

Pr(]—"’DZl+n):o<log21(P)> and Pr(}%)Zl%—n):o(long(P)). (7.47)

Proof. The proof is relegated to Section 7.5.2. |

Thus, applying the same step as in (7.41) we obtain that

E [logy (Fpr)] <logy(1+n) + o(1). (7.48)
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We can lower-bound E[log,(Fp)] similarly to obtain that
—logy(1+1) + o(1) < Eflogy(Fp)] < logy (1/u?) +logy(1+1n) + o(1).  (7.49)
Since limp 0ot = 1, limp_,0on = 0, limp_,, 0(1) = 0, it follows that

Pli_r)nooE[logQ(fD)] =0. (7.50)

7.4.5 Merging Previous Sections

It follows that, since limp_,oo AR = limp_, Zfil AR;,
lim AR = lim K(E[logy(Fp)] + E[logy(F7)])
P—oo P—oo (751)
=0,

what concludes the proof of Theorem 7.1.

7.5 Proof of Lemma 7.4 and Lemma 7.5

In this section we prove Lemma 7.4 and Lemma 7.5, which are instrumental for the proof

of the main results.

7.5.1 Proof of Lemma 7.4

We aim to prove that, for n = P~¢, with ag > € > 0 and € arbitrarily small, it holds that

Pr(Fz>1+n)=o (10g21(P)> , (7.52)

P21 00) =0 (im) (753

We start by noting that h; can be written as h; = U(J) (h(j) 20) é(j)) from the definition

of the estimate in (7.9). Let us introduce the notations z(]) (1]) and z,(l) = ;E;; Hence,

it follows that

|h; | = |V1(r}\2hz ¢ — 26N wy|
O 1200y, WM, 12 WMy, — MMy, (7.54)

Y v, - 27(11)551)(‘”6 = vo)l,
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where (a) and (¢) come from the D-CSIT model of (7.9) and (b) from the precoder

definition in (7.18) since flgl)Vg = flz(l)Wg. Hence, from the triangular inequality it follows

1+ 25, [hiw? . LS (125080 (wy — v) | + 22 v 124780 (we — vi)))

1+§Zz¢i‘hivé|2 B 1+§Ze¢i|hivf|2
(7.55)
Let us recall that
K K c
Pr(ZAch) <Y pr (Akz ?). (7.56)
k=1 k=1
From (7.55) and (7.56), it follows that
Pr (Fz >1+1)
1 1
< ZPI" <§(|Z7(L1)52(1)(W£ - V€)|2 + 2§|hngHz£L )55 )(Wg — Vg)|) S n)
i L+ £ hivel” T K
1 1
<Y P 12560 (wy — vo) 2 + 2/hyve]| 278 (we — v .l (7.57)
e [ K
@ () —1)pr |28 (wy — vo) 2 + 2lhivel |28 6 (we — v S
lh;v|? K
® 2080 (we = vl <2|hive||z£”5<”<w —vo)l _ m >
< (K-1)|Pr ! > —|+Pr : 2o
= )< < [hive|® 2K> hyv|® 2K

© \27(11)5(1)(We — vy n
< — ? >
20K 1)Pr< Divi] 4%.’)’

where (a) comes from symmetry, (b) from (7.56), and (c) because nn < 1. Let us introduce
now a parameter v € R. We can continue as

Pr <‘Zv(zl)5i(1)(we —-vo)l . n

1) 150
> _ ( - > .
[h,v] = 4K> Pr (101" (e = vo) 2 710/ vl

B[ 16 (v, — i) (79

< Pr (|5§1)v£| < P—V) +/

d
N T R

where the first equality comes from the fact that |h;v,| = z£1)|5£1)w\ and the last
inequality from the Law of Total Probability and Markov’s Inequality. f| sMvy,| stands for

the probability density function of ‘551)Vg’. Let us focus first on the first term of (7.58),

Pr (|(5§1)Vg| < 15_7>, which satisfies the following proposition, whose proof is relegated
to Appendix H.3.
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Proposition 7.1. Let v > 0. Then,

Pr <|5i(1)vz\ < ]37'Y> =0 (logj(P)) . (7.59)

On the other hand, the integral term of (7.58) can be rewritten as

fismy(®)
/ E|[6:" (we — Vz)!} 18 vel 7 7 7 dy
161 v > P iKY

_AK T () 1 (7.60)
= E[!Ji (wy vz)|] Eégnvezpw[wz(l)w‘]

4K (1) D
< ) — 2
< E[[&z (wy Vg)|] P,

Now we introduce a useful result, whose proof is relegated to Appendix H.4.

Proposition 7.2. It follows that

E[|6! (we —ve)|| = O(P~0). (7.61)

By introducing Proposition 7.1 and Proposition 7.2 in (7.58), it is straight to see that

Pr(f§21+n)§o< ! >+8K(K_1) &

o5 () T O(Pe)P. (7.62)

Since n = P~¢, with ag > >0,

Pr(Fz>1+n) <o < > + Pro(P~) P, (7.63)

log, (P)

Let us select v such that v > 0 and € + v — a4 < 0. Then, it follows that

Pr(Fz>1+n)=o0 <10g21(P)> : (7.64)

what concludes the proof of the first statement of Lemma 7.4. We prove in the following

the second statement, i.e.,

o (fl 2140) =0 (1w (7.65)
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This is obtained by switching the vectors v, and w, and applying the same steps as in
the proof of the first statement. To begin with, by following the steps in (7.57) we can
easily obtain that

1 1+ L hyv|?
Pr<,21+n>:Pr ;{Zz¢z|1€|221+n
I 1+ 2 g Thiwy]

‘erll)(s(l)(Wg —vy)| n
< — L > — .
< 2AK 1)Pr< lhyw| = 1K

(7.66)

Furthermore, the final expression in (7.66) is equal to the one in (7.57) except from the
fact that the denominator is |h;wy| instead of |h;v,|. Hence, continuing as in (7.58)-(7.63),

we obtain that

o) olte) o

what concludes the proof of Lemma 7.4.

7.5.2 Proof of Lemma 7.5

We aim to prove that, ¥n = P~¢, with ag > € > 0 and € arbitrarily small, it holds that

Pr(Fp>1+n)=o (bgj(P)) : (7.68)
(=) =(iim)

Firstly, we focus on the first statement. Note that, applying similar steps to (7.54), it
holds that

Ihyvel? < [hywe|? + 20060 (wy — vo) |2 + 2w 206 (we — vo)), (7.70)
Ihyvil* < [hywi)? + [hy(w; — vi) |2 + 2 [hywy| [y (w; — v;)] . (7.71)

Hence, following the steps applied in (7.55)-(7.57), we can write that

1+£ h;v 2
1"( I}D(EKGNK| Z£|221_|_77>SPT(D1+D2+D3+D4Z"7)
L+ % > seny hiwe]

4
<> er(piz),
=1

(7.72)
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where we have introduced the notations

py 2y 8 (we vl

(7.73)
, hyw;|?
(+i | 1 Wi
2w 5607 v

o+ [hiwi|

hi W; —V; 2

2 |hywy| [hy(w; —v;
p, & Hhiwil Ihi(wi = vi)| (7.76)

hyw;|?

The first inequality in (7.72) is obtained by applying (7.70)-(7.71) and eliminating the
term 1+ % Dot |hywy|? from the denominator. From the analysis of F7 in the previous
section —see (7.58) it follows easily that, if n = P~¢, with oy > & > 0,

0 w18 (we = v _ n
Pr (Dl Z Z) S ZPI‘ e~ ’hW‘Q 2 E

b (7.77)
1
- ()
logy(P)
Similarly,
(1)
n _ 1 2 hiw| [6; " (Wi —vo)| _ 7
P (D > —) = P > 1
(P22 ) =2 P (Z” w2 = UK
b (7.78)
1
_= O() .
logy(P)
For the two remaining terms, D3 and Dy, note that
Pr(Dy =) 4 Pr(Dy > 1) = pr thi(wi =vi)l” 5
|thz’ 4
(7.79)
<opr (Buwizvil S 0
=2Pr |Bl(v~vl —vi)l > A
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where h = II%H is unit-norm and it is distributed isotropically on the Np-dimensional

unit-sphere [132]. We can continue as in (7.58) to write

Pr (’hz(wl_"m > ’7> < Pr (]Biwi\ < P—V> +/ E[[h;(w; — Vz‘)\]f'ﬁiWi‘(y) dy

T - ~ _ n
[hyw;| 16 |h;w;|>P~7 16Y

< O(P7") + 16 P°E[|h;(w; — v;)|] P7. (7.80)

The fact that ||h;|| = 1 implies that E[|h;(w; — v;)|] < E[||wi — v4]|]. Moreover, Corol-
lary 7.2 states that E[||w; — v;||] = O(P~%). Consequently, by selecting v such that
v>0and €+ v — ay <0, it follows from (7.80) that

py [ Ma(wi — Vi)l > 1) < 0P + PFO(P~9)PY

(7.81)
)
=0 ——= ).
logy (P)
We can introduce the result of (7.81) into (7.79) to obtain from (7.72) that
Pr(Fp>1+n)=o0 <1> . (7.82)
logy (P)

It would remain to prove that Pr (F—l%) >1+ 77) =0 (@). To do so, we just need to
apply the same previous steps, in which w and v are interchanged. Following those steps
and following similar argument as in the proof for Pr <]_%), it is obtained directly. For
this reason, and for sake of concision, we omit the derivation.

7.6 Numerical Results

In this section we provide some performance analysis for the previous asymptotic results.
First, we consider a scenario in which the most-informed TX has a CSI accuracy scaling
parameter o) = 1 for the whole channel matrix, and the rest of TXs have a CSI accuracy
scaling parameter a(/) = 0.6, for any j > 1. Intuitively, this configuration can model a
setting in which a main TX receives a quantized CSI feedback from all the RXs, and
then it shares a compressed version of the CSI to the other auxiliary transmit antennas.

We present the performance of several schemes:

e The ideal C-CSIT setting, in which all the TXs are endowed with the CSI of TX 1.
e The CD-ZF scheme with Hierarchical CSIT —TX 1 knows the other TXs’ CSI-.
e The CD-ZF scheme when the CSIT is non hierarchical —general D-CSIT setting—.
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e The AP-ZF scheme when the CSIT is non hierarchical —general D-CSIT setting—.
e The Naive ZF scheme when the CSIT is non hierarchical —general D-CSIT setting—.
e The performance of transmitting only from TX 1 and turning off the other TXs.

We analyze different network configurations. In Fig. 7.6, we show the rate performance
for a setting with 2 single-antenna TXs and 2 RXs with the assumption of instantaneous
power constraint for the precoder, whereas Fig. 7.7 illustrates a setting with M = 4 TXs,
Ny =3 and Ny = N3 = N4 = 1 transmit antennas, and K = 3 RXs with average power
constraint. The unit of the vertical axis is bits/Hz/s at all the figures. Several insights
emerge from the figures.

First, we observe how the proposed CD-ZF scheme performs almost as good as the
ideal perfect-sharing C-CSIT setting for the H-CSIT configuration. This fact holds for
any network size, yet considering that Ny > K — 1. Besides this, the CD-ZF scheme is
shown to tend towards the centralized rate also for the general D-CSIT setting, where
the CSI at other TXs is not available at TX 1. However, we can see how the convergence
is slow and at practical SNR regimes the CD-ZF scheme outperforms the single-TX
transmission or the Naive ZF only in a slight manner. This is an aftermath of the scheme
definition. Indeed, the CD-ZF scheme performs in an almost optimal manner if TX 1
correctly estimate the CSI at the other TXs; however, the probability of correct estimation
increases slowly. Thus, the performance at medium SNR is limited. It is important to
note that the CD-ZF scheme here presented is not optimized, as our objective was to show
the asymptotic behavior. For example, we assume a scalar quantizer that independently
quantizes every real and imaginary part of each channel coefficient. Considerably higher
probabilities of consistency would be obtained if the quantization phase is optimized,
e.g. by using vector quantization. Nevertheless, the aforementioned points show how
important is to provide the CSI with structure (or hierarchy), as it has been proven
indispensable to boost the performance. Moreover, this CSI structure is sometimes given
by the network configuration, such that it does not imply an extra aspect to develop.
Another point to be considered is that CD-ZF allows to obtain centralized performance
with one informed antenna less than the single-TX transmission. This consideration can
be seen in Fig. 7.6, as the single-TX transmission does not achieve even the centralized
DoF.

In Fig. 7.8, we consider a different CSI configuration. In this case, a(? = 0, i.e.,
the CSI accuracy at TX 2 does not scale with the SNR. We consider a setting with
M =2 TXs, N = 3 and N» = 1 transmit antennas, and K = 4 RXs, with average
power constraint. We do not plot the CD-ZF scheme in this configuration because
the performance collapses, as discussed in the previous sections. This saturation is
due to the fact that the probability of correct estimation of the other TXs’ CSI does
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not increase proportionally to the SNR. As previously mentioned, in this setting the
single-TX transmission does not achieve the centralized DoF because it can only use a
single antenna. We observe how the AP-ZF scheme achieves the centralized DoF, and
moreover it attains a rate within a constant gap with respect to the centralized rate,
what proves Theorem 7.2. Naive ZF, for its part, suffers from its dependency to the

worst-TX accuracy.

7.7 Conclusions

We have presented an achievable scheme for the D-CSIT setting that attains the same
asymptotic rate as the Zero-Forcing-type schemes in the centralized setting where every
TX is endowed with the best estimate among all the TXs. This interesting result reveals
that the performance degradation generated from the CSI mismatches between TXs can
be asymptotically overcome by a properly designed precoding scheme which is aware of the
distributed nature of the setting. Furthermore, it has been shown that the quantization
of the information available at certain nodes is helpful as it facilitates the consistency
of the decision at all the transmitters. This last result could be applied to a broad set
of distributed problems, in which the trade-off between global consistency and local

accuracy has not been deeply analyzed yet.
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Figure 7.6 — Setting with 2 single-
antenna TXs and 2 RXs with instan-
taneous power constraint.
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Figure 7.7 — Setting with M = 4 TXs,
N1:3andN2:N3:N4:1
transmit antennas, and K = 3 RXs
with average power constraint.
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Figure 7.8 — Setting with M = 2 TXs,
Ni; = 3 and Ny = 1 transmit anten-
nas, and K = 4 RXs with average
power constraint and a® =0.



Chapter 8

Conclusions and Perspectives

In this dissertation, we have focused on characterizing the high SNR regime of the
Distributed Network MIMO, in which a set of TXs jointly serve a set of users with the
particularity that the information available at each TX may be different or it can have a
different accuracy. We have looked at this problem from different perspectives. First,
we have analyzed the Generalized Degrees of Freedom metric. We have shown that the
distributed setting attains the GDoF performance of the ideal centralized setting in which
the TXs can perfectly share their CSIT. The case with 2 TXs and 2 RXs is of particular
interest, as it turns out that it does not matter neither which TX has the best estimation
for each link nor the path-loss configuration of the setting. Thus, in this particular
configuration, the performance is robust to decentralization. For the general K x K
setting, we have extended the previous result to a certain regime of CSI accuracy. It is
intuitive that the distributed setting can not attain the ideal centralized performance for
any possible case. However, we show that for any value of K, there exists a certain regime
of CSIT accuracies for which the distributed setting achieves the ideal DoF performance.

Besides the GDoF analysis, we were interested in understanding to what extend the
previous results can be translated to achievable rate, since the GDoF metric only provides
information about the scaling. For that purpose, we have assumed a simple zero-forcing
transmission and analyzed the rate gap between a transmission in our distributed setting
and a transmission in an ideal centralized setting in which the best channel estimate is
perfectly shared among the TXs. Following the same approach as in the GDoF analysis,
we have first considered the 2x2 setting, and later we have extended the analysis to the

M x K setting with multi-antenna TXs. Surprisingly, a similar conclusion as for the GDoF
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analysis is obtained in the rate analysis of the 2x2 case: For any CSIT configuration,
the distributed setting asymptotically attains the ideal centralized rate. We have further
extended this result to the general multi-node setting, showing that for the cases in which
the distributed setting attains the centralized DoF, it also attains —asymptotically— the

centralized rate for a zero-forcing transmission.

Nonetheless, the manner of achieving this asymptotic result is interesting on its own.
It is noteworthy that such optimal performance is obtained by reducing the accuracy
of the precoder. In particular, the main insight derived from the proposed achievable
scheme is that there exists an implicit compromise between the local accuracy at each
TX and the consistency between TXs. Thus, reducing the precision at certain nodes
—normally at those whose accuracy is not the best— allows us to improve the consistency
of the decision taken by all the TXs, since the best informed TXs are able to estimate
those reduced-precision parameters, and thereby correct the interference generated. The
asymptotic convergence implies that the distributed setting attains not only the same
multiplexing gain but also the same beamforming gain. In other words, for a setting with
K single-antenna RXs and Np transmit antennas, we can achieve the beamforming gain

of the Np antennas with only K — 1 well-informed antennas.

In conclusion, we have shown how cooperation gains are less sensitive to CSIT
impairments that what it was usually assumed. The key insight is that we have to develop
schemes that are aware and reactive to the CSIT allocation, since common schemes
induce a significant shrinking of performance. Although we are able to compensate the
decentralization of the information with suitable algorithms in some cases, reaching the
centralized performance is impossible for many distributed settings. A valuable conclusion
of this dissertation is the idea that adding structure to the CSIT configuration boosts
the achievable performance. We have observed this perception in the Hierarchical CSIT
setting. Hence, providing some TXs with the limited CSI available at other TXs can
boost the performance, specially at low-to-medium SNR. Motivated by this behavior,
an interesting analysis to be done is to study how this reduction of performance scales
when confronting it with the reduction of overhead that is implicit in the distributed
settings. Hence, a reduced performance can be advantageous with respect to the ideal
centralized one if the later implies an unfeasible quantity of information to be shared.
The approaches developed to attain the aforementioned results are thought to be useful
in many diverse decentralized settings or team decision problems. Indeed, the trade-off

between consistency and accuracy is an inherent compromise in team decision problems.

The outcomes of this thesis illustrate how coarse limiting metrics as DoF are instru-
mental in the understanding of complex networks, since the main intuitions provided

by them help considerable to develop new approaches applicable in practical scenarios.
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The aftermath of the carried out analysis is constrained by the considered assumptions.
Indeed, the analysis is asymptotic, although the results has proven extensible to the
low-to-medium SNR regime. Even if this aspect can limit the conclusions, it also pro-
vides interesting future research paths. In particular, it is necessary to understand how
dependent are the exposed results to the assumption of perfect sharing of the user’s
information data. The scenario in which the user data is also distributed across the
network is an appealing and challenging problem. Another interesting topic is to shift
the perspective here considered —that of developing the best transmission for a given
CSI allocation— towards the reverse analysis of optimizing the CSI allocation subject
to a certain transmission strategy and feedback protocol. Furthermore, considering the
CSIT sharing load as part of the performance metric is a subsequent step in the analysis
of decentralized networks. In fact, in order to compare distributed settings with its
centralized counterpart in a fair manner, it is necessary to consider two facets of the CSI
sharing overhead: That it impacts the performance, but also that it is a constraint of
infeasibility, as the centralized setting may be unachievable due to delay constraints. The
analysis at low SNR of the scenario considered is also an interesting extension of the
presented work.

To conclude, the future 5G-and-beyond wireless networks are expected to cope with
very heterogeneous scenarios and previously unseen specifications, as a massive number
of devices communicating at the same time, sometimes in a sporadic manner (IoT),
networks with mobile devices moving at very high speed (V2X networks), or exceedingly
demanding delay constraints (URLLC). These scenarios arise as consequence of the
broadening of use cases, as novel paramount applications are envisioned, for example
haptic communications, remote medical services, or industry automation. Thus, the
analysis of other cooperative scenarios, as well as non-cooperative ones where the inclusion
of partial cooperation is possible, is a very appealing topic that can be analyzed in the

future research.
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Appendix A

GDoF of the 2x2 setting:
Achievability of Theorem 3.2

Let us start by denoting best CSIT accuracy across TXs as
agllfx £ max (O%(',lk)a aEQk) (A.1)
We hence define o as

max)

! A : max max max
a; = mm(am y 1 2

and oy £ min(a3' T, 05'8%). (A.2)

Note that o/ and o), are the only a-parameters that impact the GDoF expression of

Theorem 3.2. We can assume w.l.o.g. that 11 is the strongest channel, i.e.,

71,1 > max(y1,2,72,1,72,2)- (A.3)

Hereinafter, we prove that the GDoF expression of Theorem 3.2 is achievable by means
of the proposed S-ZF. The proof is akin to the one for the MISO BC with centralized
CSIT in [50], with the particularity that the interference cancellation is carried out by
the S-ZF scheme. We split the demonstration in two different path-loss regimes in order

to ease the readability. Those two path-loss regimes are

1. Regime 721 < 722: The strongest link of each TX is geared to different RXs.

2. Regime 72,1 > 72,2: In this regime TX 1 owns the strongest link towards both RXs.
We recall that, as explained in Section 3.5.2, the transmitted signal follows the structure

F

x = Pctpespe + Prr(t2F szr1 + 57 szpa) + Pytgsg, (A.4)
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where s4 is a non-zero-forced symbol transmitted with power such that it is only received
by the intended RX, if the path-loss topology allows for that, szp; is intended to RX ¢
and canceled at the other RX using S-ZF precoding, and spc is a broadcast symbol
transmitted with full power, intended to be decoded at both RXs. In the following, we
refer to the syp; symbols as the S-ZF symbols.

Before presenting the transmission scheme, we present a lemma that will be useful
throughout this appendix. Importantly, we can observe from Table 3.2 that the S-ZF
precoding vector for RX ¢ always satisfies that the difference of transmit power at each
TX differs in P27l This comes from the fact that, in order to implement the
zero-forcing of the interference, the received signal at RX ¢ from both TXs has to have
the same power level; hence, each TX needs to transmit with a different power so as to

compensate the different path-loss that they endure.

Lemma A.1. Consider the 2-user D-CSIT Network MISO setting. Suppose a

transmission with S-ZF precoding such that E[|[t3%F|?] = 1. Then, the intended signal
recetved at RX i, satisfies
‘h?tZ.SZF‘Z =0, (P! max( P~ (1 —%2) " P’Yi,Q_(’YE,Z_’YE,l)+))’ (A.5)

whereas the interference at the same RX i satisfies

InfigS7F |° = @, (PminGiyi2) =1l (A.6)

Proof. The scaling of the interference term in (A.6) follows directly from Lemma 3.2.
We focus on the proof of (A.5). Note that hif and t$%F are independent. It follows
that

‘hgltz(,ll)P = @ (P~ lp~iai2)"), (A.7)
Similarly,

(3] = @, (Pra P e i), (A8)
From the fact that ©,(A) + 6,(B) = ©,(max(A, B)), we obtain (A.5). [ |

As main insight, the terms +(v;5 — ;1) in (A.5), as well as the term min(v;1,7i2)
in (A.6), come from the fact that the TX with greater channel strength towards the
interfered RX reduces his power to match the power received from the other TX so as to

be able to cancel the interference.
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A.1 Case 721 < 722
In that case, the sum GDoF expression of Theorem 3.2 reads as
GDoFPP™ (@) = min (y1,1 + (122 = M2+ 0D, o+ 71— 1 +ah).  (A9)

Note that the stronger link for RX 2 has a path-loss exponent of max(fyg,l, 7272) =
Y2,2. Therefore, any signal transmitted with less power than P17722 lies on the noise
floor at RX 2. We can transmit information to RX 1 with power P'=722 and rate

(71,1 — 72,2) logy(P) bits without generating interference at RX 2.

Transmitted signal

Let us define p € [0,1] such that the rate of the S-ZF symbols is plogy(P) bits per

transmission. Omitting the time indexes, the transmitted signal is given by (A.4), where

e spc € Cis a common symbol of rate (y2,2 — p) logy(P) bits that is decoded at both
RXs. The precoder tpc is the uniform multicast precoder tgc = [1, 1]T and Pgc

is given by

VP —2PPt1—22 — Pl=72.2

Ppc = A.10
BC 7 (A.10)

o szrp; € Cis a S-ZF symbol intended to RX i of rate plog,(P) bits, where
p=min ((v22 =712+ 0", 122 =721 +ah). (A.11)

The term tZ-SZF is the normalized S-ZF precoder for RX ¢ introduced in Section 3.3,
such that E[||[t3%F||?] = 1. The transmission power is

Pyp = prii=nz, (A.12)

e s, € Cis asymbol of rate (71,1 —72,2) log,(P) bits that carries information intended
by RX 1 and it does not generate interference at the other RX. ty4 is the matched

precoder with power transmission ]5¢ = P22,

Received signal

The received signal at RX 1 is

y1 = chhlfthsBc + PZFhIl{fEZFSZFl + P¢h11{t¢8¢ + PZFhIffSZFSZFQ . (A.13)

O, (P11 @p(pp+vl,1—72,2) O (P1,1772,2) Op(PY)

173



Appendix A. Achievability of Theorem 3.2

The different power scaling of each symbol can be obtained from Lemma A.1 and the

path-loss topology. In particular, starting from Lemma A.1 we can write that

Pyp ‘hll{t§ZF‘2 ~ 0, (PZFP_I maX(P71,1—(W2,1—“/2,2)+7P71,2—(72,2—’72,1)+))

(2 e, (PP+1—’72,2—1 max(P7, P’Y1,2—(V2,2—’72,1))) (A.14)

— @p <P71,1—72,2+ﬂ) ,

where (a) comes from the fact that (y21 —722)" = 0 and (22 —721)" = 122 — 72.1.
Also due to Lemma A.1, the contribution of the interfering symbol szr o lies on the noise
floor thanks to the S-ZF precoder:

Prr ‘h?thFf (g) (CX (pp+1—72,2p71,2—1—0/1)

(b
= OP(PO)7

(A.15)

where (a) comes from Pzp = PPT17722 and 711 > 12, whereas (b) comes from the
definition of p in (A.11) since it holds that p < 29 — 1,2 + ). The received signal at

RX 2 is analyzed in the same way. Hence

yo = PBchgthSBC + PzphglthFSZI«Q + Pzph2Ht§ZFSZF 1+ P(bhgf“bsd’ . (A.16)

@p(PWQQ) ®p(pp) 09(150) 9@(130)

The power scaling can be derived following the same steps as in (A.14) and (A.15). Then,

Pyp ‘hgthF‘Q — @p (Pp+1—72,2—1 maX(P“/2,1—(V1,1—71,2)’ PWz,z)) (A 17)
=6, (P*).
The scaling for the interfering signal szpq yields
thSZF 2 e\ Pp-i-l—’yz,z—lP’Yz,l—O/Q

= OP (Po)a

where (A.18) comes from the definition of p in (A.11) since p < y22 — V2,1 + .

Decoding and Achievable GDoF

We can see in (A.13) that RX 1 receives the common symbol sgc with a SNR scaling as
P72277 and therefore it can decode spc by treating szr1 and sy as noise. After decoding
the common symbol and removing its contribution to the received signal, szp1 can be

decoded by treating s, as noise, since the SNR scales as P”. And finally, s4 is decoded
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after removing the symbol szr1 from the received signal. Likewise, for the received sigmal
at RX 2, (A.16) shows that the SNR for spc scales with P7227° if szpo is treated as
noise. After decoding spc and removing its contribution from the received signal, szpo
can be decoded as its SNR scales with P”.

The symbols are sent with a rate that is proportional to the SNR scaling, hence they
can be decoded with a vanishing error probability. We decode the common symbol spc
with rate (72,2 — p)logy(P) bits, szr1 and szpo with rate plog,(P) bits and s, with rate
(71,1 — 72,2) logy (P) bits. That allows us to achieve a GDoF of

GDOFDCSIT(CV) = (122 —p) + (111 —72.2) +2p
ot (A.19)
= min(y1,1 + (Y22 — 712 + )22 + 11 — 2,1 + ad).

This corresponds to the GDoF of the C-CSIT setting —see Theorem 3.1— and hence we
attain the upper-bound.

A.2 Case Y2,2 < V2,1
For the second regime, the sum GDoF expression given in Theorem 3.1 is

GDoFP®" (o) = min (71,1 + max ((y22 — 12 + o)) h, (21 — 11 +a))), (A20)

g+ (21 =1+ 2 —22) " + o/2>.

In a similar way as in the previous case, any signal sent with power below P'~721 lies on
the noise floor for RX 2. Thus, we will transmit to RX 1 a non-interfering symbol with

power P17721 and rate (y11 — 72.1) logy(P) bits.

Transmitted signal
Let p € [0,1] be defined as the rate-parameter for the S-ZF symbols, such that the rate
is plogy(P) bits. By omitting the time indexes, the transmitted signal is given by (A.4),
with
e spc is a common symbol of rate (2.2 — p) logy(P) bits that is decoded at both RXs.
The precoder tpc is obtained as tpc = [1, 1]T and Pgc is given by

VP — 2Pp i amin(y1—712, 72,1-72,2) — Pl=r2.1

7 (A.21)

Py =

e sz7p; is a S-ZF symbol intended to RX i of rate plog,(P) bits, where p is given by
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p = min <maX ((7272 —y2+a))t, (21— 1+ ai)*),
(A.22)

ab+ (21 — 1+ 712 — 72,2)+)-

The term tl-SZF is the normalized S-ZF precoder for RX ¢ introduced in Section 3.3,

such that E[|[t$?F|?] = 1. The transmission power is
pZF _ pp+1—72,1+min(’71,1—’71,27 "/2,1—’72,2). (A_23)
e s, is a symbol of rate (71,1 — 72,2) logy(P) bits that carries information intended

by RX 1, and it does not generate interference at the other RX. t, is the matched

precoder with transmission power P¢ = Pl=721,

Received signal

The received signal at RX 1 is

y1 = PBchll—IthsBc + Pzph?t?ZFSZF 1+ P¢h11{t¢8¢ + PZFhIEtEZFSZF 2. (A.24)

Q. (P11 O, (PPT71,1772,1) O, (P11.1772,1) O, (PY)

The different power scaling of each symbol can be obtained from Lemma A.1 and the

path-loss topology. In particular, starting from Lemma A.1 we can write that

Pyp ‘hll{fEZF}? Sy (PZFP_l maX(PW1,1—(72,1—72,2)+,pv1,2—(72,2—72,1)+))

St 69 (Pp+1—72,1+min(71,1—’71,2,’72,1—72,2)—1 maX(P'y1,1—(72,1—’Yz,2)’ P’YLQ))

—~
N

(A.25)
(pp—72,1+min(’y1,1—’71,27 72,1—72,2)+max(’y1,1—'72,1+72,2771,2))

O

=06
— 69 (P’Y1,1—’y2,1+,0)7

where (a) comes from (721 —722)" =721 — 72,2 and (72,2 —72,1)" = 0. The contribution
of the interfering symbol szpo is obtained from the definition of p in (A.22) as

2 _ : _ _ _ 7
PZF‘hIftSZF} :@p (Pp+1 ~2,1+min(y1,1—v1,2,72,1—72,2) Lpr2 al)

(A.26)
= Op(PO)-
Similarly, the received signal at RX 2 can be written as
v2 = Pgchitgesse + Pzrhit5% sz + Prrhit77 syp + Pyhb'tys, - (A.27)

@p(ﬁ‘@,l) @p(}?"p) Op(po) 99(130)

176



A.2. Case y22 < 2,1

The power scaling of the intended signal szpo satisfies that
(P
(P?). (A.28)

Py ’hQHthF‘Q _ p+1—v2,14+min(vy1,1—71,2,72,1—72,2)—1 maX(Pvu—(71,1—71,2)7 pw,z))

O,
O,

The power scaling of the interfering signal szpq satisfies that

‘hgt%ZF|2 _ 69 (Pp+1—’yz,1+min(71,1—’71,2,72,1—72,2)—1]3’72,1—0/2)
(A.29)

Il
S
3

where (A.29) follows from the definition of p in (A.22) since it holds that p < vp1 —

min(y1,1 — 712,721 — 72,2) — V2,1 + .

Decoding and Achievable GDoF
The decoding is applied as for the first regime, with the only difference that the rate

of each symbol is adapted to the topology here considered. Hence, we can decode each
symbol with a rate proportional to the SNR scaling: The common symbol spc can be
decoded with rate (y2,1 — p) logy(P) bits, szr1 and szpo with rate plog,(P) bits and s,
with rate (y1,1 — 72,1) logy(P) bits. That allows us to achieve a GDoF of

GDoFPSM (@) = (421 — p) + (v11 — 72.1) +2p

=711+p (A.30)

min (y1,1 + max ((y2,2 — 1,2 + o), (21 — 11+ ) ),
Y1+ (V2,0 — 1,1 F 12 — 72,2)+ + 0/2) :

The expression in (A.30) corresponds to the GDoF of the Centralized CSIT setting —see
Theorem 3.1— which concludes the proof. |
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Appendix B

Statistics of the average power con-

straint for the 2x2 setting

In this appendix, we analyze the normalization constant A of the Sliced ZF scheme
introduced in Chapter 3. We recall that ); is defined as

A 1
VE (w12 + w22

First of all, we characterize the probability density function and the expected value of

(B.1)

the regularized inverse. Then, based on those results, we prove Proposition (3.3).

B.1 Generic Regularized Inverse Term

For sake of completeness, we consider a generic regularized inverse for a Gaussian variable
with arbitrary variance, and then we particularize for the case of interest in the GDoF
setting. Let us consider a random variable h ~ N¢(0,0?), and an arbitrary regularization

constant n > 0.

B.1.1 Distribution of the Regularized Inverse Term

We wish to obtain the probability density function (PDF) of [h( Ih|? + 77)71 ? as well

as its expected value. Note that the square of the absolute value of a complex Gaussian

distribution with variance o2 follows an exponential distribution of parameter p = %

Therefore, |h|? ~ Exp(-5). Let us introduce the notation

x 2 P ~ Exp( 5 ). (B.2)

o2
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Furthermore, we denote the CDF of x as F,. We obtain in the following the PDF and

expected value of x|(x + 1) ~!|?. For ease of notation we denote
X
=X (B.3)
(x +m)?

The CDF of ¥, is given by Fy(¢) = Prob <(Xfm2 < 1/)). Isolating x yields

0 if 4 < 0

Fy() = { Prob (x < 2oyl VH’W’) + Prob (x > -2t y/I-0 Vlf‘*w’) ifo<y< L
1 if ¢ > ﬁ

Then, we can obtain the PDF of ¥ thanks to the fact that fg(¢) = %F\y(w). Let us

introduce the notation

a1y — 11 a1+ T4
g A ny . o and g2 W;b n

Thus,
d . _
fo(¥) = a(Fx (1/’ )+1_Fx (er))
N
Y1 —dny
For sake of example, consider the case in which n = 1 and ¢? = 10 dB and 20 dB. (We

have enclosed the transmit power in the channel coefficient; this example is equivalent to

Fe () +

having a unit-variance channel and a transmit power of 10 dB and 20 dB.) Fig. (B.1)
shows the PDF (Fig. B.1a-B.1c) and the CDF (Fig. B.1b-B.1d) of these two examples.

B.1.2 Expected value

We continue by calculating the expected value of W. For that, we use the Law of the

unconscious statistician. Hence, the expected value of the regularized inverse is
& x
E[V] = / —— fy(z) dz. (B.4)
o (z+mn)

The PDF of x is given by f,(x) = pe ™, with p = % Considering the change of

variables #’ = x + 7 yields

E[¥] = / l,ue’“(“"mdx’— / T et =) g (B.5)
U n (@)

T
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We follow by integrating the RHS and obtaining

E[¥] = pe™E1(nu) — p(1 — e npEr(nu))

(B.6)
= p(e™ By (np)(1 +np) — 1),
where E(z) is the exponential integral defined as
00 e—zt
Ei(z) 2 / " dt. (B.7)
1

B.1.3 GDoF Path-Loss Model: Proof of Proposition (3.3)

Consider now that the variance of the channel coefficient h is 02 = P71, and that the
regularization parameter is = 1/P. In that case, u = P'=7 and (B.6) becomes

E UhH( Ihf? + n)*lﬂ =PI (P B (P (1 4 PYY) — 1), (B.8)

what gives Proposition (3.3). [

B.2 General Expression of the Normalization Parameter

We focus now on the general expression of the normalization constant for every regime,
which we obtain from (B.6) and the precoder definition. Let aﬁk denote the variance of
the channel from TX j to RX 4 (h; ), and 7 the regularization constant. We consider
the precoder for RX 4’s data symbols. Recall that

1

N = .
VE[WDP + w32

Non-locally Informed TXs: Thi precoding vector does not require inversion and A

is given by
1

A= ——.
C oly+ o7,
Most-informed TX: Suppose that TX 1 is the Most-informed TX. Let =2 be defined

2 A

as 072 = (¢2)71. Then precoding vector writes as

1

A = .
—2
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Locally Informed TXs: In this case, each TX applies the regularized inverse as

precoder, and thus

1
Ai = .
—2 =2 —2 —2 —2 = —2 —2
V o (" B (o7 ) (L o ?) = 1) + 07 (€752 By(no2) (1 +m072) — 1)
25 1
20 0.8
15 0.6
10 0.4
5 0.2
0 0
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
X X
(a) PDF Reg. Inv. with P = 10 dB (b) CDF Reg. Inv. with P = 10 dB
60 1
0.8
40
0.6
0.4
20
0.2
0 — 0
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
X X
(c) PDF Reg. Inv. with P = 20 dB (d) CDF Reg. Inv. with P = 20 dB

Figure B.1 — Probability Density Function (PDF) and Cumulative Density Function
(CDF) for 0% = 10 dB and ¢? = 20 dB, with n = 1.
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Appendix C

Proofs of Chapter 4 and Proper-
ties of AP-ZF

C.1 Properties of AP-ZF

In this appendix, we start by showing some simple but important properties of the
AP-ZF precoder. We consider the precoder for RX ¢’s data symbols. From symmetry,
the precoder satisfies the same properties for any RX, such that we omit hereinafter the

RX’s sub-index ¢ for clarity.

Lemma C.1. Let H € C"*X denote the channel matriz towards the n RXs whose
received interference is canceled. With perfect channel knowledge at all Active TXs,
the AP-ZF precoder with n Active TXs and K — n Passive TXs satisfies

HTAPZF* P—> 0n><(K—n)7 (Cl)
—00
where TAPZY* denotes the AP-ZF precoder according to the description in Sec-
tion 4.4.2 but based on perfect CSIT, and it is given as

TA*

APZFx A yAPZF
TAPZFs & )\ =

(C.2)

Proof. Using the well known Resolvent identity [159, Lemma 6.1], we can write that
-1

1 1 11 1.\""
<H§HA + PI”> — (HyHA) = — (HY{H,) 5 (HEHA + PI”> . (C3)
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We can then compute the leaked interference as

HTAPZF* — )\APZFHATA* + )\APZFHPTP

1

1.\* (C4)
S <HI§HA + PI”> HIHpTY,

@ \APZRg, (HH,)

where equality (a) follows from inserting (C.3) inside the AP-ZF precoder and
simplifying. It follows that the leaked interference tends to zero as the available

power P tend to infinity. |

Lemma C.2. The AP-ZF precoder with n Active TXs and K —n Passive TXs is of

rank K —n.

Proof. The passive precoder was chosen such that T¥ is full rank (rank = K —n). The
precoder TAU) is a linear combination of TF for each j, such that the effective AP-ZF

TAPZF

precoder resulting from distributed precoding is exactly of rank K —n. W

C.2 Proof of Lemma 4.2

Following a similar approach as in [82], we can use once more the resolvent identity [159,

Lemma 6.1] to approximate the matrix inverse and show that, Vj < n,

HTAPZF(J) _ TAPZFx||” _ OP(P_Q(])). (C.5)

F

It then follows that

2 (a) %\ [|2
2 D i (2407 — g )

@< HHH% HTAPZF _ TAPZF*}@)

IA

<of LDV AP

) — min. oy o)
s Op (P je{1,..., } )’

where (a) comes from Lemma C.1 and (b) follows from (C.5).

Remark C.1. The interference attenuation of AP-ZF precoding is only limited by the
worst CSIT accuracy at the Active TXs, and does not depend on the CSI accuracy at
the Passive TXs. O
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C.3 Proof of Corollary 4.1

In this appendix we prove Corollary 4.1, i.e., that the solution of Theorem 4.3 is
composed of two phases (Transmission Modes) at most. This is equivalent to prove that
dk1, ke € IC, n1 < k1, no < ko such that

Yri,k1 > 07 Yo ko > 07 Tnk = O, V(n, k) 7é (nla kl)v <n27 k2)7 (C7>

is always an optimal solution of the maximization problem stated in Theorem 4.3. We
know from the problem definition that the number of variables v, j (denoted as U) of the
problem is Zfi G(i—1) = w To simplify the notation, we apply a unique sub-index
to the variables such that our variables become {7, | v € {1,...,U}}. The index u is
W +n. We recall
the optimization problem to obtain DoFAPZF (a) but, for sake of clarity, we present it in

defined as u = fy(n, k), where f; is a bijective function, e.g. u =

vector notation. For that, let v be the vector containing the time-sharing variables v,
ie, v 2 [v1,%2,...,7v]. Similarly, we define the vector F® as the concatenation of the
effective DoF of each mode in (4.14), such that F® = 1 + (k — 1)a™, with k, n given by
(n,k) = f, ' (u). Finally, the vector of terms d, £ 1 — o™ — k(k —n — 1)a(™ for the

constraint (4.16) is denoted as d. Hence, the problem of Theorem 4.3 can be expressed as

DoF*PZF(q) = maximize F%y (C.8)
¥

subject to  ||y|1 =1, (C.9)

v =0, (C.10)

dv >0, (C.11)

where F¢, d, are constant vectors. Let us remind that if a linear programming problem
has an optimal solution then it is an extreme point of the feasible set [160].

The feasible set given by conditions (C.9)-(C.10), which is denoted by C, is the
probability simplex [161] determined by the unit vectors ei, ..., ey € RY, hence it is
a (U — 1)-dimensional simplex. On the other hand, condition in (C.11) represents a
half-space determined by the vector hyperplane [161] denoted as V and given by dv = 0.
We can have different cases depending on how the probability simplex C and the half-space
determined by the hyperplane V intersect:

1. fCN{y|dvy >0} =C (Cis a subset of the half-space), the feasible region is C and
the extreme points are the unit vectors e,. Then, the solution of the problem uses

only a single mode —because in e, the only non-zero variable is the u-th variable—.

2. IfCn{y | dy >0} =0, there is not feasible solution. However, this is not possible
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since we have shown that this linear program is always feasible, just choosing
Ye—1,k = 1, with k € {2, RN K}

3. IfCn{vy | dv > 0} C C, we need to prove that all the extreme points of the resulting
set satisfy (C.7). Those extreme points either they will be the extreme points of C

or they will belong to the intersection between C and V.

From linear algebra, we know that the intersection of an /-dimensional and an m-

dimensional sub-space in the n-dimensional space R™ has dimension p such that
p=>l+m—n. (C.12)

Thus, in order to obtain the extreme points (p = 0) of the feasible set, we must obtain
the intersection between V (m = U — 1), and the edges of C, i.e., the 1-faces (segments)
that define C, in the space RY. The edges of C are segments that connect two points with
a single non-zero variable —the unit vectors—, and therefore they belong to a line of only
two non-zero variables. Given that the intersection of V with one edge must be a point
of the edge, it holds that all the extreme points satisfy (C.7), and therefore Corollary 4.1
is proven. From the previous analysis, it follows that the feasibility set is convex.
Moreover, as Theorem 4.3 is always composed of at most two Transmission Modes,

it can be expressed as the following integer linear program:

DoFAPZE (o) = rknaxiinize 14+ y(k — Dal™) 4+ (1 —5) (kg — 1)a(™) (C.13)
1,11,R2,N2

subject to ki,ks € {2,..., K}, (C.14)

noef{l,... k—1}, (C.15)

na € {1,. .. ky — 1} | dpyy > 0, (C.16)

where 7 is given by

1 if dpy gy >0
" dny kg )
dng kg =dny ky

[I>

(C.17)
otherwise

C.4 Proof of Proposition 4.1

In this section we prove Proposition 4.1, i.e., that Lemma 4.1 holds for the case where

the different estimates of a certain link are correlated, and both noises and channel are
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drawn from Gaussian distributions. Specifically, we assume that the setting satisfy the

following assumptions.

Assumption.

hip ~N(0,1), Vi ke Ng.
o) ~ N(0,1), Vi k,j € Ng.

hi,k A1 hi’,k/v V(Zv k) 7& (il, k/)

09 L6, VileNk, V(ik)# @ K).

(C.HL)
(C.H2)
(C.H3) BY) = by + kg,
(C.H4)
(CH5) &%

K
(C.H6) Prob (Z a;8\) = o> <1

Jj=1

Assumption (C.H6) implies that none of the noise variables {51(%3 }ieng is a deterministic
linear combination of the others. From (C.H4)-(C.H5), we can restrict ourselves to a
single arbitrary link. Consequently, let h be the channel coefficient of a link between an
arbitrary TX and an arbitrary RX, i.e., h = h;, with ¢« € Ng, & € Ng. Henceforth, we
omit the sub-indexes (i, k) for sake of readability.

Besides the previous assumptions, we consider that the estimation noise at TX j is

correlated with the estimation noise at TX ¢ with a correlation factor p;,, such that
pie 2 cov(8W)5). (C.18)
Note that (C.H6) precludes the cases with |p;¢| = 1. For the sake of completeness, we

recall the following result on multivariate Gaussian distribution.

Theorem C.1. [162, Theorem 23.7.4. p. 484] Let X and Y be centered and jointly
Gaussian with covariance matric Kxx and Kyvy. Assume that Kyy = 0. Then the
conditional distribution of X conditioned on Y = y is a multivariate Gaussian of

mean E [XYH] K{(%{y and covariance matric
Kxx — E [XY"]| K{y E [YX'] (C.19)

In our case, X represents the channel (h) and Y denotes the set of estimates {fl(j)}jeNK.
Applying Theorem C.1, the conditional distribution Phji),... 500 is multivariate Gaussian.

Our goal is to compute the covariance matrix of this conditional distribution, denoted
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by Kx|y. Let us denote the covariance matrix between the noise random variables as
A € CEXK guch that

p-a® . oM —al®)
5 a2 a0 A a® oK)
pLQP « @ pQ’KP « «
_ | (C.20)
P .Kp—a(K)—a(l) P;Q(K)
Let Kyy € CEKXK denote the covariance matrix of Y. It is given by
Kyvy = (1[( + A), (021)

where 1k is the all-ones matrix of size K x K.

Remark C.2. From (C.H6), A is non-singular. This follows because, as explained
in [162, Section 23.4.3. p. 466], a singular covariance matrix implies that there is at least
one component of the random vector such that it is determined with probability one by

an affine function of other components. O

Let Dy € REXE be the diagonal matrix obtained from the vector of error variances, i.e.,
Do £ diag ([P, ..., P="™]). (C.22)

From its structure in (C.20), we can write the matrix A as A = DoPD,, where
P ¢ CK*K is a symmetric matrix that only depends on the correlation coefficients P e

Therefore,
A~'=D 'P D, L. (C.23)

It follows from Remark C.2 that the inverse P~! exists. Thus, the j-th row, ¢-th column

coefficient of the matrix A~1 can be written as

A_l o pa(j).l,_a(Z)P_l

= Iz (C.24)

and thus Aj_gl = O(Pa(j)”‘(l)). Moreover, the all-ones matrix 1x can be expressed as
1k =1k 1?{71. With this notation and by using Theorem C.1, the covariance matrix
Kx|y is then expressed as

-1
Kxiy=1-15, (11l + A) 1k

C.25)
_ _ O (
=1- 1}1A a1+ 1}1A k1),
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where the last equality follows from the Matrix Inversion Lemma [163, Chapter 3.1.1],
specifically because (BCD + A)"!BC = A~!B(C~! + DA"!B)~!. Note that

K K
U A gy => > A (C.26)
j=1¢=1

Applying (C.26) to (C.25) we have

~1
Kxy =1-15, A 1, [1 ¥ 1%71A—11K71]

B 1 (C.27)
1+ Zgl'(:l > Aj_,él

Hence, from (C.27) and (C.24), the conditional probability density function is Gaussian
" guch that it satisfies that

max Fapo oo = O(\/W>, (C.28)

what concludes the proof of Proposition 4.1. |

with the variance of its elements scaling in P™#%
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Appendix D

Proof of Lemma 4.1

In this appendix, we prove Lemma 4.1 —and so Theorem 4.1— for a broad general case,
where the estimation noise random variables are mutually independent and they are
drawn from continuous distributions with density. We first enunciate some definitions
and hypothesis that are taken on the random variables and their PDFs. Later, we prove
the lemma for the case with K = 2 and, to conclude, we prove the general case with
K > 2 by induction. From the independence between different channel coefficients, we

restrict ourselves to an arbitrary link such that we omit the sub-indexes i, k.

D.1 Preliminaries

As opposed to the general notation used throughout this manuscript, in this appendix we
use a different notation for expressing a random variable and its realization. Henceforth,
random variables are denoted by calligraphic upper-case letters (X), and the realization
of the variable X' is denoted by regular lower-case letters (). We recall that the PDF of a

variable X is denoted as fy. Let us first introduce several important definitions.

Definition D.1. For £ > 0, The e-support of a random variable X is defined as

Sy ={z| fr(z) >} (D.1)

Based on the Definition D.1, we present the notion of Bounded Support as follows.

Definition D.2 (Bounded Support). A random variable X" has bounded support if
there exists a constant My < oo such that z < |My| Vo € 85, Ve.
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Definition D.3 (Bounded Probability Density function). A random variable X" has
bounded probability density function if there exists a constant fy'®* < oo such that
fx(x) < f* for any x.

Let X 1L Y denote that the random variables X and ) are independent. We consider the

following assumptions on the random variables.

Assumption.

(D.H1) H, AU)| Vj € N, are continuous random variables with
bounded support and bounded probability density function.

(D.H2) HY) 234 PV AL,

(D.H3) H, AV I P, o).

(D.H4) Hip L Hip, V(i,k) # (0 K).
(D.H5) AY) L AT Wk, g) # (K, ),

We denote the observed values of the aforementioned variables as h ~ H, 60 ~ AU,
h) ~ HY) | and consequently h) 2 4 4 p=a§0), Furthermore, let us consider that
the realizations are in the e-support of their respective variables. As a refresher, and
because we will make extensive use of it, we recall the well-known formula for the PDF

of a random variable multiplied by a positive constant.

Proposition D.1. Let X be a continuous random variable with PDF fx(z), and
let ¢ € R be a constant satisfying ¢>0. Then, the random variable ¢ - X is also a

continuous random variable whose probability density function is given by

fex(z) = %f}c (%) : (D.2)

Furthermore, we present a useful lemma on the convergence of the estimate variables
HY) that will be useful for the proof.

Lemma D.1. Let HY, with j € Nk, be defined from assumptions (D.H1)-(D.H5),
such that !9 > 0. Then, 7 converges almost surely to fa, i.e.,

Pli_{réo a6 (@) = fr(z). (D.3)
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The previous lemma leads to the next corollary for the conditional PDF of the estimation

noise.

Corollary D.1. Assume that oY) > 0. Then,

A faw g o0 @B, B5) = £40) (). (D.4)
Proof. The proof of both lemma and corollary is relegated to Section D.4. |

Finally, we recall here the Lebesgue’s Dominated Convergence Theorem [158].

Theorem D.1 ([158, Theorem 16.4]). Let {f.} be a sequence of functions on the
measure space (0,3, 1), where 0 is a non-empty sample space, ¥ is a o-algebra on

the space Q, and p a measure on (2,%). Suppose that

lim f,(z) = f(x) (D.5)

n—00

almost surely. Further suppose that exists an integrable non-negative function G such
that

|fal@)] < G(z), ¥n, (D.6)

almost surely. Then {f,} and f are integrable and

Tim [ fu(@)du(e) = / £ (@)du(z). (D.7)
Q Q

D.2 Proof for the K=2 estimates Case

Before analyzing the conditional PDF f;) 5a) ), let us introduce two claims on the
PDF of fy,314) and f.;:[(g)l?:[(l). The proof of both claims is relegated at the end of the

section.

Claim D.1. Let H and HY be defined as in (D.H1)-(D.H5). Then,

max f, 50 (b | BY) = 0(P*). (D.8)
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Claim D.2. Let H, HY, and H® be defined as in (D.H1)-(D.H5). Let us define
(D.9)

~ (2 _ (D) -
vp(y) 2 fam (0@ = P27 (6D £ y) f_xw o (wIBD).

vp(y) as
Then,
Facoraon 6 150 = 2 [~ op(y) (D.10)
Furthermore, it holds that
Fa@ (@@ =00 —y)f aw(y)  if oD =a® (D.1la)
if M) > a®  (D.11b)

i ot -
Fa@ (@) foam (v)

For the K = 2 case, Lemma 4.1 states that max fH|7:£<1) q@ = @(Pa(l)) From the
statement of Claim D.1, in order to prove Lemma 4.1 we need to demonstrate that
(D.12)

(b]A®, 5)
— o),

S e

lim =

P fmo (BED)

i.e., that the limit exists and it is bounded away from 0 and oco. Let us start by noting

(h, 50, 52)

~ fuaoae
Fruw g (00, 1)

S a1 (b, 1)
(@) S 70 (b, ﬁ(l))fpfa@)A@) (h® —n)
f7.1<1)(ha))fq;{(z)m(l)(h(z) | h(D)
fﬁ7a<2)A(2) (B(Q) —h)
f;qm)m(l)(h@) | h®)’

that
(D.13)

= S (h|h(™))
where (a) comes from the independence between H, A1) A®). Equation (D.13) yields
A )
(D.14)

(h|f1(1),f1(2)) B Foma® a2 (h(
fmmm(l)(ﬁm) | h(D)

S 7
(h® —h) =

me<1>(h|ﬁ(1))
—a@) A

Hereinafter we focus on the RHS of (D.14). Note that we can write [5
P’O‘(Q)fA(z)(é(z)), what follows from Proposition D.1. From (D.10) in Claim D.2, the
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RHS of (D.14) can be expressed as

~

Fora@aw®® =) £ (@) (D.15)
fﬁ(z)m(l)(ﬁ@) |hM) [ vp(y)dy '

We consider separately the two possible subcases a!) = a(® and o) > o(?:

a) Case all) = o) :

From the Lebesgue’s Dominated Convergence Theorem (Theorem D.1), the bounded
probability density assumption, and (D.11a), the limit exists and it holds that

[e.9]

lim vp(y)dy = f_aq) * fae (0@ — D). (D.16)

P—oo J_

where f % g(x) stands for the convolution (f % g)(x) between f(x) and g(x). From (D.15)
and (D.16), it holds that

lim fp-a® e (® — D) _ fae (8@))
P—oo qu[(2)|7$¢(1)(f1(2) ] ﬁ(l)) foA@ * fA(Q)(5(2) 5y’

(D.17)

From the bounded density assumption, it exists a fi'2%

A
faw (@) < fRE- Then, it holds that

< oo such that, for all =z,

foaw * fae (z) < max(fIG), fAG) (D.18)

Let 1 be the indicator function and let then 7 be

s /_ Z Loest oy % Ligos0-nes: , 4 (D.19)
Then, it follows that
foam * fam (0 = o) > &7 (D.20)
and 7 > 0 if 6(1) € S and 6@ ¢ Si»- From (D.18) and (D.20), (D.17) satisfies
€ - fae (6®) Tat)
max zl(af)(» 21(35))() J_Am * fae (6@ — o) et

This implies (D.12) and thus the proof is concluded for the a® = (V) case.
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a) Case a() > o(?

From the Lebesgue’s Dominated Convergence Theorem, the bounded probability density
assumption, and (D.11b), the limit exists and it holds that

hm vp(y / Fa@ (6P) f_ae (y) dy

(D.21)
= fae (6P).
By applying (D.21) in (D.15) we obtain that
oo g (0B, )
i P D) (D.22)
P—oo me(l)(h\h( )
This concludes the proof of Lemma 4.1 for the 2-estimate case. |

D.2.1 Proof of Claim D.1

Using Bayes’ formula we obtain that

S pma a0 (P8 f(h)

f ;) (h h(l) — P« A _

e D o (R) (D.23)

_ Pa(l) fam (6(1)A)fH(h)
fre ()

where the last equality comes from Proposition D.1. Let us consider separately the cases

where aV) = 0 and where o) > 0.

)

a) o) =0: In this case, (D.23) does not depend on P, since P° =1, ¥P > 0. From
the bounded probability density assumption, f; and f,@) are bounded away from oco.

Moreover, if h(1) e S; then fy ) is also lower-bounded by e. Thus,

(1)

max f, 0 (b [ b)) = © (P). (D.24)

b) o) >0: From Lemma D.1, we have that fj;0) converges almost surely (a.s.) to fy;,
and from the bounded probability density assumption that max fna) < co. Thus, from
(D.23) it holds that

max fr 50 (b | BY) = 0(P*). (D.25)
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D.2.2 Proof of Claim D.2

Since AY) is independent of H, and H?) = ”H(l)—P‘O‘<1)A(1)+P_O‘(2)A(2), it follows that
qu[(2)|7:[(1)(f1(2) ’ ﬁ(l)) — fﬁ(l),p—a(1>A(1)+P*a<2)A(Q)\7.](1)(fl(l) + E(Q) _ ﬁ(l) ’ ﬁ(l))

D.26
(H® — hD) | RO, (D-26)

= fp—a<2>A(2>7p—a(1>A<1>mu)

Note that h® — h() = p=e®§2) _ p=as(1) From the independence of AM and A®),

we can rewrite (D.26) in terms of the convolution as

f7%<2>\7%(1>(f1(2) | b)) = f p- a(lmmmm*fpwu)A(z)(fl(z)—fl(l)!fl(l))

~1) 1) (D.27)
fp a(z)A(2) —h _x)f_pfaﬂ)Au)mu) (z[h'”) dz.
Consider the change of PDF of Proposition D.1. If we apply it to pass from f,p—aU)A(n
to f_a(), We can express f7;l<2)|7;[<1)(h(2) | hM) as
* 5a@) 502 72 (1) 50 50| (1)
P faey (PO (0 =0 —2)) PYf )y (P | b)) da. (D.28)
—00

Changing the integration variable to y = pVy (and thus dz = p—at dy) yields

f¢¢<2)m<1>(ﬁ(2) | b)) = Pa@)/ vp(y)dy (D.29)
where
= (2 _q) N
vp(Yy) £ fae (6@ — P70 (60 4+ 4)) f_y o e (WD) (D.30)

comes from applying hD = h + P=2 6 We have obtained (D.10) of Claim D.2. Let
us obtain the limit of vp(y) as P — oo. This limit is directly obtained from continuity of
fam and fa and Corollary D.1, and it has two possible expressions depending on the
relation between a(!) and a(?. Specifically, it holds that

lim vp(y) = fae (0% 6" —y)f_am (¥) (D-31)

P—oo

if o =@ and that

Aim vp(y) = fae D) f a0 ®) (D.32)
if o > a@, what concludes the proof of Claim D.2. |
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D.3 Proof for K >2 estimates

In this section we prove by induction that Lemma 4.1 also holds for any number K
of estimates. We have proved that it is true for the base cases K = 1 —trivial- and
K = 2. In the following, we prove the induction step. We denote the set of estimates as
G 2 {HW, ..., HE)Y and, consistently, the set of given values as g 2 {h(!) h(F)y,
Let us assume that Lemma 4.1 is verified for a given K. We consider K + 1 estimates.

Then, from the mutual independence of the estimation noise variables A(U) and Bayes

formula we obtain that

INGSRY fH@c (h’ g’C) fP*a(KJrl)A(K-&-l) (E(KH) B h)
fy.”g,C (K +1) (h | g, h ) = = KD . (D,33)
o) Fiacing, (b 9r)
—_——

fmglc(h@;c)

From the induction hypothesis, it holds that max fH@x (h|gx) = @(Po‘(l)). Thus, we

need to prove that

0 < lim fpfa(K+1)A(K+l) (h(K+1) B h)

TR < 00. (D.34)
P—oo fﬁ(mn@,c(h( Dgx)

Let us denote A/ = P~V AK+) _ p=aW A From the equivalence
RUCH) _ (1) pral) 5K+ _ pmal 1), (D.35)
the denominator of the expression in (D.34) can be rewritten as

Frsn g, (D fge) = Fm s A,@K(ﬁmm IENCORMENCY |§K)

(P*&(K+1)5(K+1) a(l) ‘ _ ) (D36)

- fA’@c
Hence, expressing f A/[Gy B8 convolution of PDFs yields
fﬁ(K+1)|§K (h(KJrl)‘gIC) :fp—a(K+1)A(K+l>*f,p—a(UA(l)@ (h(K+1 ‘gIC) (D'37)

Let us introduce the notation 4, £ s+ PO‘(KH)_O‘“)((?(D + y) for ease of reading.

Thus, by applying the same steps as in (D.26)-(D.30), we obtain

fpfa(KJrl)A(K_‘_l) (B(K—i-l) — h) _ A+ (5(K+1))

fyf[(K-H)@,C( h(KH) |9;c) N ffooo facsn (%)ffml)@c (y@c) dy’

(D.38)
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We can see that (D.38) is equivalent to (D.15) with AKX+ in place of A®). Then,
by following the same derivation as in the K = 2 case, i.e., using Corollary D.1 and
Lebesgue’s Dominated Convergence Theorem, we conclude the induction step. From the

base case and the induction step, Lemma 4.1 is proven. |

D.4 Proof of Lemma D.1

Suppose that () > 0. Then,

' - (hU)Y = 1 L
PILI;IéO f’H(J) (h ) PILI;IéO f7-[+P_a(j)A(j)

. ° H—al) ¢(j
= lim / fuh+P 7au) — x)fp—a(j>A(j)($) dz

P—oo

(h+ P~ 50y

< Jim / fH(h+P_a<j)5(j) - 7_a<j)3/)fA(j)(y) dy (D.39)

P—oo

® /oo fr(h) faom (y) dy
= fu(h),

where (a) comes from applying Proposition D.1 to express f 5 as function of f (),

—a@ AG)
and from the change of integration variable y = Py, Finally, (b) follows from applying
Lebesgue’s Dominated Convergence Theorem. Hence, f ;) converges almost surely to f#

and hence Lemma D.1 is proven. In order to prove Corollary D.1, i.e., that

~

Plgnoo fA(1)|7:K<1),,_,,’;:[(K) (y|ﬁ(1)7 T ’h(K)) = fam (), (D.40)

we apply Bayes’ formula such that

~

 Fao, eoiam O, BB faw ()
77777 qu[(l)7.."7:L(K) (fl(l), Ce ,B(K))

) ) (D.41)
Tuno a0 (h,h(2),___,h(K))f W)
- 3 = AW Y)-
Far . oo (W, W)
From (D.39) and the fact that a(!) > 0 we obtain that
I G X
- fH7H(2)7.,,7H(K)(A ) . (D.42)

P00 fml),“,,g(m (hM), ... ,fl(K))
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From (D.42), the limit of (D.41) as P — oo is obtained as

Jim faomo, Ao (y[h™, ..., h5)) = fao(y), (D.43)
what concludes the proof. |

200



Appendix E

CSI Allocation for the Distributed
CSIT Setting

Let us introduce a value A such that the sum of accuracy scaling coefficients « satisfies
that

S al) = 4 (E.1)

We can write (4.51) of Lemma 4.3 as max(DoFgi5,, DoFapy ), where the DoFgi% is the

maximum Dol obtained by using only one Transmission Mode and DoFspy, the maximum
= maxy DoF~ and DoF~

max

DoF with two Transmission Modes. Specifically, DoF

single single single
DOFY, g = maximize 1+ (k — 1)a™ (E.2)
subject to n € {1,...,k—1}, (E.3)
k—1 A
dni >0, Y o) =A (E.4)
j=1

Consider now the one-mode case. Therefore, the best allocation is always to give equal
level of CSIT to the n active TXs and no CSIT to the other £k — n TXs. Then,

ifj<n
(E.5)

A
Qi) =) n
0 ifj>n
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A
Moreover, from d,, , > 0 and a™ = Z we have that

n
A - 1A
1—a™ —k(k—n—-1)a™ >0 n > % (E.6)
From(E.6), DoFfmgle is obtained as
i k ifA>k—1
DOFsin e — . (E7)
kA+1

And therefore DoF:2% is found by choosing the biggest constant among K — 1 possible

single

choices. On the other hand, we have that DoFqy, is given by

d d
DoFgpn = maximize 1+ _Tmeke g )am) - TRl 1)g(n2)
ki,n1, dnz,k‘z - dm,kl dnz,k2 - dm,kl
ka,n2,
«

subject to ki, ks € N,

ny € Nk1 ’ dnl,kl < 0, (ES)
ng € Ny, | dpy iy >0,
K—-1
o) = A.
j=1

where d,; & 1 —a™ —k(k—n—1)a™.
We present in the following some particular cases of Lemma 4.3. We have obtained

the maximum DoF for a given budget A, for any possible allocation a. For this, we

sample the continuous value of a9 with a precision, such that a precision=1 /100 means

that we compute the DoF for all al¥) = ' such that
precision
: (’) : () E
Vi € N ey < precision < oo (E9)
where ar(ﬁi)n, aggx are the extreme values of a¥) for each case (given all<i) n kK, A.L).

Due to the multidimensional nature of the problem —there exist K different a(?)
coefficients—, it is not simple to choose a good way of representing all the possible cases.
We have chosen to do it by hierarchy of TXs: The axis x is ordered such as, for any
possible value of a(!), we draw all the possible values of «(?) in increasing order. Again,
for any of those values of a(?), we draw in increasing order all the possible values of a(®,

and so on. This is represented in Fig. E.1.
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a® =03 a® =04

a® =0.2
1
a) =03 ] | | | ~ o) =05
I T T I T axis
@ o(3=0.15 =025  a(®=0.10 a(®=0.20
o1 =0.2 a®=0.15 a®=0.05  a®=0.10 a®=0
a®=0.2
o) =04

Figure E.1 — Example of the defined axis z for a total CSIT of A = 1.

We have simulated 4 possible cases:

. K =4, A= 0.5, precision = 1/100
. K =4, A= 1.5, precision = 1/100
. K =4, A= 2.5, precision = 1/100
. K =5, A= 2.5, precision = 1/50

N

In Fig. E.2 we present the first case (K =4, A = 0.5, precision = 1/100). In this
picture, as well as in the others, we plot the DoF value in blue, surrounded by the upper
envelope in green (given by the local maxima) and the lower envelope in red (given by
the local minima). Moreover, we plot in vertical orange lines the values of the horizontal

z where a(1) increases. Finally, we plot the total square-difference Zfif(a(i) — alit))2,

DoF for = o = 0.5, K =4, precision=1/100

N \‘MJ-L/*\Z ls/ &ZL/_LKJL_LLLI_ e |

12 —DoF -
——envelope max DoF

E 1 —envelope min DoF | 4
—o o change value
08 a ):;H:‘z((x(i)-(x(i”)) b
i=

0.6 | T

0.4 T

S

P

0 -unuwmmmw

0.167 0227 0257 0.287 0.317 0.347 0377 0407 0497
aMa@a By

Figure E.2 — DoF for the case K =4, A = 0.5, precision = 1/100
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Appendix E. CSI Allocation for the D-CSIT Setting

Fig. .2 shows that the DoF is cyclic for every value of o) For each a(!) we obtain
the maximum DoF' just before it gets the new value. This means —from our definition
of the axis  in Fig. E.1- that the maximum is obtained when a(? gets the maximum
value. We see the same cyclic pattern in Fig. E.3 (A = 1.5), and Fig. E.4 (A = 2.5),
but while in Fig. E.3 the local maximum is also at the end of the cycle, for Fig. E.4 the

maximum is at the beginning, i.e., for smallest values of a(?).

__DoF for = o' =15, K=4, precision=1100

3
25 1
2 Zﬂjﬂ]ﬂ |
—DoF
S 15 ——envelope max DoF
(= — i
envelope min DoF
—o oM change value
1 # ZEI:Q((.LU)-Q(H”)
b
| ]

0.50.59 065068 0.71 0.74 0.77 0.8 0.83 0.86 0.89 0.92 0.950.98
f_‘:“)((_‘((‘?)(f.!(s)(...)))

Figure E.3 — DoF for the case K =4, A = 1.5, precision = 1/100

DoF for &2 o) = 2.5, K = 4, precision=1/100

4
35t & B . 4
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30 L‘A——)A._i\‘_ L, AN /] ™ T
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& 27 —envelope min DoF |
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15 f # Eg:}:‘z(um-um”) B
Al 4
05 -

' 3

W T e A MJ

]
0.833 0.893 0923 0.953 0983 1
a0

Figure E.4 — DoF for the case K =4, A = 2.5, precision = 1/100
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DoF for & o = 0.5, K =4, precision=1/100
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Figure E.5 — Sorted DoF for the case K =4, A = 0.5, precision = 1/100

We observe that there exists a pattern in the difference between a/). To analyze this
behavior, we depict the sorted DoF values together with Zfi (W — a+1)2 . This
representation is shown for the K = 4 case in Fig. E.5 (A = 0.5), Fig. E.6 (A = 1.5),
and Fig. E.7 (A = 2.5). We show two graphs in each of the figures: One depicting
the sum Zfif(a(i) — ™12 and the other with the decoupled differences between
successive | ie., (oY) —a®)? and (a® — a®)2. It is interesting to note that, as
the DoF grows, each difference term tends to either increase or decrease. In Fig. E.6
(A = 1.5) we can easily see that, for the cases with higher DoF, (a(!) — a(®)2 — 0 while
(a® — )2 — (0.75)2. This behavior implies that the optimal allocation is

oV =@ =0.75,
a® = =,

In Fig. E.7 (A = 2.5) this behavior is not so clear because the quantity of CSIT is too
big compared with the number of TXs, i.e.,

0.833 < oM < 1,
0.75 < a® < 1,
0.5 < o(® < 0.833.
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DoF for & a(il = 1.5, K =4, precision=1/100 ordered
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Figure E.6 — DoF for the case K =4, A = 1.5, precision = 1/100

DoF for ¥ o' = 2.5, K =4, precision=1/100 ordered
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Figure E.7 — Sorted DoF for the case K =4, A = 2.5, precision = 1/100
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DoF for &2 ol = 2.5, K = 4, precision=1/100
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Figure E.8 — DoF for the case K =5, A = 2.5.

In Fig. E.8 and Fig. E.9, we show the results for K =5, A = 2.5. We observe the same
insights:

e Fig. [.8: There exists a cyclic pattern for each value of a(Y). In this setting, since
we have more TXs, there are sub-cycles, one for each value of &(?). We conjecture
that this holds for all the a(¥s with j < K — 2.

e Fig. E.9: We observe the same divergence of differences. Moreover, the difference
that increases as the DoF in this case is (a(®) — a(%))2. This implies that the best
performance is obtained when the first three TXs obtain a CSI with the same

accuracy and the other two TXs do not receive any CSI.

Main insights

We have seen that the allocation of CSIT for a given budget is a complex optimization.
However, some interesting patterns turn out from the analysis. The behavior of difference
between values of al?) is probably due to the proposed structure. Since Corollary 4.1
implies that the maximum DoF is obtained with only two Transmission Modes, it holds
that the best strategy is to allocate the CSIT such that we have a two-steps staggered
CSIT allocation; first n; active TXs, second ng active TXs and passive TXs with a(?) = 0.
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DoF for 3 ol = 2.5, K = 4, precision=1/50 ordered
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Figure E.9 — Sorted DoF for the case K =5, A = 2.5.




Appendix F

Asymptotic Properties of Quanti-

zation: Proof of Lemma 6.1

In the following, we prove Lemma 6.1, i.e., that for any ¢, > 1 the quantizer

— “%min _ %“min

Quz) &P @ |P c gz (F.1)

satisfies properties (P0), (P1) and (P2). We first prove property (P1). Afterward, we
demonstrate (P2) and finally (P0). We define o as oy = O‘#‘;“ so as to simplify the

notation. The quantization step is then ¢ = P~%,

F.1 Proof of (P1): Convergence

In order to prove that Q, satisfies (P1), i.e., that

lim QA7) =X\ =0 as. Vi jeN,, (F.2)

P—oo

we demonstrate (F.2) for j = 2, as the case with j = 1 is straightforwardly proved

following the same derivation. Let V(}{) € R®*! be the column vector obtained by stacking

the real and imaginary parts of the elements of HU) one on top of another, such that

[Re flgji |
r(7)
; Im (h
v = [ (F.3)
Im (Bg@)
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Appendix F. Proof of Lemma 6.1

where Re(z) and Im(z) denote the real and imaginary part of x € C, respectively. Let
vi; € R¥<! be the analogous expanded vector for the genie-aided best-estimate channel

H*. We recall the definition of \; as a function in (6.21), and we rewrite it in terms of
(2)

Vi1 as Ai = A;(v};). Therefore, consider the Taylor’s expansion of \;”’ centered in A}.

We can write that
AP = (v i)t VA(VE) + o(IvE = v, (F.4)

i

where (VA;(+))" is the i-th row of the Jacobian Matrix J, introduced in Section 6.3.2.
Let ¥ be defined as

92 AP g (F.5)
From (F.5) and the definition of Q,, in (F.1), it follows that
Qu(A) = xr = P | Po(Ar 4+ 9)| — AL (F.6)
Since for any ¢ € RT it holds that c L%(m + y)J —x <y, we obtain that
2.(\P) =X <. (F.7)

Similarly, since for any ¢ € R™ it holds that ¢ L%(m +y)| —x>c|?] >y—c, wecan
bound (F.6) from below as

QuA) = Ar > 9 — Prow, (F.8)
From (F.7) and (F.8), it is sufficient to prove that

lim ¥ =0 a.s. (F.9)

P—o0

to demonstrate that limp_s o Qu(/\Z@)) = A7 almost surely. To do so, we make use of the

following lemma, whose proof is relegated to Appendix F.4.

Lemma F.1. Let ozgjlg > 0 for any i,j,k € No. Then, it holds that

li 2) _yxi =0 5 F.10
Jim vy’ — v a.s (F.10)

Since we assume that |VA;|| < ||Ja|l < Mj, —see Section 6.3.2—, it holds that

2 * 2 *
0] < V2 — vig| My + Jo(|v — vl (F.11)
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F.2. Proof of (P2): Probability of Agreement

Thus, from Lemma F.1 we obtain that limp_,,, ¥ = 0 almost surely. Consequently, Q,,
satisfies (P1). [ ]

F.2 Proof of (P2): Probability of Agreement

We want to prove that Q,, satisfies

Pr () = 0<1og21(P))’ (F.12)

where Pr () =1 —Pr (Vz’ € N, Q()\gl)) = Q()\l@)) e ]R*). Note that, for any two
events A, B, it holds that

1-Pr(AAB)<1-Pr(A)+1-Pr(B). (F.13)
Suppose w.l.o.g. that the probability of agreement is smaller for A\; than for Ao. Therefore,
Pr(Q°) < 2 (1 —Pr(Qu(\Y) = 0.0\ € Rﬂ) . (F.14)

Moreover, it holds that

1-Pr(Q0f)) = Q) e B ) <Pr(Qun) # Q.0)

(F.15)
+Pr(2.\") =0).
Consider the last term of (F.15). It follows that
Pr(Q.(\") =0) @ Pr (A" < Po)
(F.16)

(b) max p—o
S fAl P q7

where (a) follows from the quantization step size of Q,, and (b) follows from the bounded
density assumption of (6.22). This leads to

Pr(Q.(") =0) =0 <log21(P)> . (F.17)

Consider now the other term of (F.15), the probability of disagreement Pr (Qu()\gl)) #
Qu(AgQ))). In order to prove that this probability is o(1/logy(P)), we need to introduce

first some notation related to the quantization levels.
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Appendix F. Proof of Lemma 6.1

4, Lot lpia

Figure F.1 — Ilustration of a reconstruction level L,, of the quantizer and the two sub-areas
in which we divide it: The central area C,, and the edge area E,.

F.2.1 Edge and Center of the Reconstruction Level

Let £,, be the n-th quantization level of Q,, n € Ny with N = Lf’oﬂ. We assume that
P% ¢ N in order to ease the notation, although the result holds for any P% € R. Let us

define L,, as the input interval that outputs £, i.e.,
Ly, 2 {x| Qu(z) = £,}. (F.18)

L, has a range [L™", LM% such that |L,| £ LM — [0 = P~ (and fy,; = 1). We
split L, in two areas, the edge area F, and the center area C,, as depicted in Fig. F.1.
The edge area is defined as the part of L, that is at most at distance P~%% of the
boundary of the cell, with ¢, > 1. Thus,

E,2{v €L, |x— LM < P v [0 _ g < Pl (F.19)

The center area hence is given by C, = {z € L,\E,}. Intuitively, the probability of
disagreement is high if one estimate lies in the edge area E,, whereas this probability

vanishes in the central area C),. Mathematically, we have that

Pr(Q() # 2.0)) < Pr (A e | Ea)
neNy

neNy

(F.20)

Let us analyze separately the two probabilities in the RHS of (F.20).

F.2.2 Probability of Belonging to the Edge Area

Consider an arbitrary quantization level ¢,,. From the bounded density assumption
of (6.22), the probability that a computed value )\gl) isin E, is

Pr <)\(1) c En> < fmax| g
! A 7| (F.21)
_ f/r\nlax2p—ceamin’
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F.2. Proof of (P2): Probability of Agreement

where |E,| denotes the length of F,,. Since there are N = P% cells, the probability of
being in the edge of any cell is

Pr(AY e (JBa) < Poopmapeees
neNy
_ g e pli—ce)ag (F.22)

“ ()

F.2.3 Probability of Disagreement in the Center Area

Let us focus now on the probability of disagreement in C},. The minimum distance from

any point of C,, to the border of L,, is P~¢%. Therefore,

Pr(Qu) # QO e Jcn) < Pr (] = 2P| = Preea P e | ).

neNy neNy

Given that, for two events A, C, Pr(A | C) < Pr(A)/Pr(C), it follows that

AL € U Cn>

Pr (N = A| 2 Peres)

e a5 2

IN

nelly Pr (A € Upen,, Cn)
) 1 (1) (2) D—Ce(X
S e plies AT S AT 2 PR (F23)
0 1 E[A - 2P
<

9

1— QfIIanaXP(I_Ce)O“I P—2ceaq

where (a) follows from (F.22) and (b) from Chebyshev’s Inequality. In the following, we
obtain the expectation E [{)\gl) — )\](LQ) ’2} . In a similar manner to (F.4), Taylor’s Theorem

leads to
E ]\ -] <& || - Vi) T )]
+E [1o(||vg> - vg”)ﬂ (F.24)
< MIE |Iv7 - vRIP| +E o (IMT - v&IP)] .

where (F.24) comes from the fact that |[VA;|| < ||Ja|| < Mz. We present in the following

a useful lemma whose proof is relegated to Appendix F.5.
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Appendix F. Proof of Lemma 6.1

Lemma F.2. Suppose a(])

Let k be a positive real constant. Then, it holds that

2 1 o
E IV - v II?] = spomn.

It follows from Lemma F.1 and Lemma F.2 than

2 1 s
E o (IvE = vi I1?)| = o(P~omn).
Including Lemma F.2 and (F.26) in (F.24) yields

B[]\ = A7) < magPome 4 0P,

> 0 for any i, j, k € Ny. Consider amin = mlnw kENy O

oW
i,k

(F.25)

(F.26)

(F.27)

Recall that P = v/P and o = 222, Thus, by substituting (F.27) in (F.23) we obtain

2 —Qmin —Qmin
Pr ( ( ) 7é Qu E U C ) RMJP (1_:_)gr§inp —c )L
neNy (1 — 2pax pUme) 58 peeiy

It follows that
K/M}P_amin 4o (p—amm)

(1= 2 PO B pe

(ze 1) min
— o = O(Pe ).
cq )P cq

Let us select an edge size such that c. < ¢4. Hence,

Pr(Qu0fY) # Qu(r relan) = <10g21<p>>

neNy

for any ¢, > 1.

F.2.4 Assembling Probabilities

Plugging (F.17), (F.22) and (F.30) into (F.14) yields

Pr () <2 (Pr(Qu\Y) # Q.(0P)) +Pr(2.(r{") = 0))

= (i)

what concludes the proof for property (P2).
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F.3. Proof of (P0): Bounded Expectation

F.3 Proof of (P0): Bounded Expectation

We show now that there exists a constant M < oo such that for all P it holds that
(4)
|E|Qu(,\§j>)>g [log, (Qu(N))]| < M. (F.32)

Z(j), with 4,7 € Ny, and the quantization step size as ¢ = P~ ¢ .

First, we upper bound the expectation from the fact that 0 < )\Ej ) <1as

Let us denote z £ \

E|g.(2)>0[1082 (Qu(z))] < 0. (F.33)

In order to lower bound it, note that

M
Ejo,(x)>0[1082 (Qu(2))] £ logy(iq) Pr(Qu(x) = iq | Qu(x) > 0), (F.34)

=1

where M = H-‘ — 1 because the quantization level Q,(z) =0 (i = 0) is excluded from
Qu(z) > 0. Besides this, Pr(Q,(z) =iq) = Pr(ig <ax < (i+1)q). The expectation
in (F.34) is bounded for a given finite P because ¢ = P~omin/¢a > (. In the following we

prove that it is bounded also when P — co. We can write that

Pr(Qu(z) =iq)
Pr(Qu(x) > 0)
fmax . (F.35)

Pr(Qu(z) = iq | Qu(x) > 0) =

<

“%min

max (0, 1 —f}faxp cq )

min

The last inequality comes from (F.16) as 1 — Pr(Qy(z) > 0) < fRP ¢ and from
the fact that Pr (Q,(z) = ig) < f***q. There exists a Ppin such that for all P > Py it

holds that 1 — fX‘aXP a > 0. Thus, as we focus on the limit as P — oo, we assume

hereinafter that 1 — fR®P ¢« > 0. We introduce the notation

P 2 — (F.36)
1— fpaxpeq
Hence, since M < % and for any i < % it holds that logs(iq) < 0, we obtain that
» M M
IEIQu(ac)>0 [logQ (Qu(l’))] 2 % (Z; logy (i) — glogz(M)> : (F.37)
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Then, computing the summations yields

- (logy(M!
E|0.(2)>01082 (Qu(®))] > Pluax <()g2]\(4) — logy (M )) : (F.38)
We have that
wD, <M ~ logy(M )) ~ In(2)’ (F-39)

max

what together with the fact that imp_, pl . = fA*** implies that

max

. —JA
what concludes the proof. |
F.4 Proof of Lemma F.1
Let us start noting that
v vl 250 = [{viDYe— {virdel? £50, Ve Ns. (F.41)

It turns out that the only condition needed for this proof is that all agjg are strictly

positive —as we will see in the following—. We recall that we have assumed that the

estimates satisfy that 042(]2 > 0, for any i, j, k € Ny. Hence, we allow ourselves to focus on
the first element of the vector Vg) — vy Let us denote the first element of the vector
v(}]I) € R®! as ﬁg), ie., ﬁg) = Re (BSJ%) Similarly, hy denotes the real part of the

normalized channel coefficient, fm = Re (ﬁLl). From the feedback model it follows that
B —hg? 250 = b0 —hp “50 V) e Na. (F.42)

Let A, = {| X, — X| > €}. Then, the definition of almost sure convergence says that
X, Y5 X <<= Pr(4,i0)=0 Ve>0, (F.43)

where
Ay i.0. 2 {w:w € A, for infinitely many n}

F.44
= limsup A,. ( )
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F.4. Proof of Lemma F'.1

Let X, = ﬁg) —hy and X = 0. We obtain in the following Pr (4,) = Pr (!ﬁg) —hg| > £).
The absolute value of the difference can be bounded as
05— fiw| = |1 = 2 — =0

| . (F.45)
<1-#")+47,

what comes from the estimate model in (6.8) and because |ﬁ§%)] <1 and |6§g)| < 1. The

absolute value is omitted because 0 < zgj ) < 1. Let us remind that é;j b= y/1- (zy ))2

and zgj) = Zgj). The fact that 1 — 1 — 22 < z for 0 < z < 1 yields
09 — | < 2219, (F.46)

As a result,
Pr (yﬁ;?) | > 5) < Pr (2z§” > e)
2) (F.47)

I'( 1 >

i @) ()
The quantization error ij ) is distributed as the minimum of n = 287" = P2i” standard

uniform random variables [43,132]. Upon denoting ¢’ = %, we obtain
Pr (Z{j) > 5’) =(1-e)". (F.48)

By definition —see (F.44)—, Pr (A, i.o.) satisfies

Pr(Ay i.0.) < lim > Pr(4n). (F.49)

m=n

Introducing (F.48) in (F.49) leads to

. . N\
Pr (A, i.0.) < nh_)rgo 2 (1-¢)
@ . (1—e&) ! (F.50)
= lim ~————
n—00 €
=0.

where (a) comes from the application of the geometric series’ formula. This implies that
Pr (A, i.0.) =0 for any € > 0. We can repeat the process for all the elements in the RHS
of(F.41), and thus Lemma F.1 is proven. [
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F.5 Proof of Lemma F.2

In this section we prove Lemma F.2, i.e., that
E|[lv® - vg>||2] < g P Omin, (F.51)

)

Let us consider w.l.o.g. that ﬁﬁ is the estimate whose accuracy scales as amin. As
defined in the previous section, let flg) = Re (ﬁgj i) and flg)cg = Re (l~11,1). We start by
noting that

2 1 (2 ~ (1
E[vi - v§{)||2} <SE [|th> - hggﬂ . (F.52)
The absolute value of the difference can be bounded as

6 — h§| < B — hig| + [hg — B s
<9, (1) (F.53)
<227+ 227,

what follows from (F.46). Since z§2) is drawn from the same distribution as zil) but with

higher variance, it holds that
E |27 +2:Y)°) <E|(420)7] (F.54)

and consequently
B [ ] < 10 ()]

g 16P_amin ,

(F.55)

where (F.55) is obtained from [132, Lemma 1]. This concludes the proof of Lemma F.2. W
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Appendix G

Analysis of the Power Normaliza-

tion Parameters )\;

We prove in this appendix the results presented in Section 6.6. As the parameters \; are
obtained separately for each RX, we consider here only one of them. Consequently, we
omit the sub-index ; in the following. As we consider only one of the two parameters,
the set 2 is defined as

a2 {\ED,H)[Q(\V) = 9(A\®) A (AW) £ 0} (G.1)

Let us consider the extended set 2y as the set including the cases in which the quantized

agreed parameter is 0. It is hence defined as
Qoo 2 {(ﬂ(l)’ﬂ@))l QAW = Q()\(Q))}. (G.2)
We will assume when needed that

Faieue = - (G.3)

This assumption is done so as to simplify the result. It has not been proven, but it is
expected to hold because of the uniformity of the quantizer and the isotropy of the CSIT.
Moreover, it holds that fyio 2% f\ as P approaches infinity. The equality in (G.3) has

been verified by simulations.

We consider the uniform quantizer of Lemma 6.1, denoted by Q, with step size q.

There are N = [1/q] quantization levels. Let define ¢,, as the n-th quantization point.
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Let 4y =0, ¢, =ng,n € {0,..., N — 1}. The quantizer is given by the function
N 1
Qu(r) =¢q L}mJ . (G.4)

Consequently, Pr(Q,(x) = ¢,) = f;;”“ fx(x)dx, where fx(z) is the probability density

function of the input x.

G.1 Maximum TX norm Normalization

Let us first consider the case in which \; = \fl;1| i, with g1 = ps = p, and

s 1

~ - . (G.5)
maX(HtTX1H’ HtTX2H)

"

In this case, (6.49) implies that Fmax([ts. =4 — 2z, x € [1,2], and p satisfies

that, Vo € [@, 1],

sl el
Fy=1-4o%-27%  f, =874z (G.6)

Expected value of A\

In this case A satisfies that, Vz € [0,1],

2

22(1 — 22) 557 if 2 <1/v2

F=21r"2/y (G.7)
1+a? 15— 5 ifz>1/V2
4x x 1
=2 in(————, — .
I 15227 z + min <(1_$2)2,$3> (G.8)
1 1
= E[\] = 6< — 16+ 9v2 + 37 — 3tanh (5)) ~ 0.584763. (G.9)
Moreover A? satisfies that, Vz € [0, 1],
1 2 if v <1/2
P o0 Jen ifesl (G.10)
l1+z 15— ifz>1/2
2 1 1
=  —l4mn(—o,— 11
he =gz 1 Tmin (2(1—$)2’2x2) (G.11)
~In(2) In(3)

= E[\*] = —1 + tanh™*(2) — tanh™!(3) +In(8) ~ 0.386294. (G.12)

2 2
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G.1. Maximum TX norm Normalization

Consider now logs(A\?). From the previous results, it satisfies, Vo € (—oo, 0],

fiog,(32) = In(2) (2””((21,11)2 ~1) + min ((12:1)2 2“)) (G.13)
_ 3—4In(4)

= Ellog,(\?)] = TR —1.83596. (G.14)
Thus, E[logy(A)] = %1?2()4) ~ —0.91798, what proves Lemma 6.2. [ |

Expected value of )\ conditioned on ()

We have analyzed the expected values for the A parameter. Let us consider now the
expectation conditioned on Q. First, note that Pr(A2 = £,,) = F\(¢ny1) — Fa(¢,). Hence,
the assumption in (G.3) yields

Pr (A° = 0|Quo) = Fi(q). (G.15)

Then, from (G.7), we obtain

201 _ 2 ¢ <
Pr (A2 = 00) = LUL=0) | ) 3o if g <1/V2

! (G.16)
1+¢ 15— 5 ifg>1/V2
From the fact that fyo(z) = % if x > ¢, (G.3), and (G.15) it follows that
D) :
Recalling (G.3), we can write
1 0
E[logy (A :/ z fio x). G.18
|Q[ g2 ( )] 1- F\(q) loga (a?) h gQ()@)( ) ( )
L9
Let us introduce the notation a = logy(¢?). Then,
(i (3427 (@ln(2) +1)
4929 (aln(2) — 1) +2In (29 4+ 1) — ﬁ‘ﬁ;ﬁ?) ~2 ifa>-1
o= o (G.19)
3-12In(3)-In(2) =@ gm(1429)
In(64 o In(2 a
" 722%11“52’—1“1(—;“) 2-In(2) _ In(%5%)
+ T (2) m@) @) ifa<—1
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Expected values for the quantized parameter \<

For the quantized parameter, it follows in a similar manner as in (G.17) that, for n > 1,

Pr ()\Q = £n|QUO)
1 - Fx(q)

Pr (A9 =1¢,[Q) = (G.20)
We denote the mass density function (MDF) of a discrete variable x as f;. From the law

of the unconscious statistician and (G.3) we can write that

N-1
Eq [logy (A9)?)] = logy((1n9)*) freja(ng)
n=1
N-1 (G.21)
= logy(nq) fre(ng) .

n=1

~~
A

[

It follows that

N-1
== Z logy (nq) (Fa((n 4 1)q) — Fx(ng))
n=1 (G.22)

>—‘

Z (natoy (") +Toga(¥ — 1) + o (a) (1~ @),

what concludes the proof for Lemma 6.3. |

G.2 Unit-norm per RX Normalization

In this case, we transmit g power for each RX stream (data symbol), and the precoder

of each symbol is unit-norm. Hence, Vi € Ny, p; = p and p = 1.

Expected value of A
Therefore, A; £ |h; ;| and thus

A ~ Uniform(0,1), A ~ Triangular(0, 1). (G.23)

Note that, under such assumptions, A} and A} are i.i.d. The distributions in (G.23)
imply that, Vz € [0, 1],

F\ = 22, fr = 2z, = E[\ = <. (G.24)
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G.2. Unit-norm per RX Normalization

Regarding )2, it follows that for any z € [0, 1]
2 1
Fy =z, fz =1, = E[N?] = 3 (G.25)

Furthermore, log,(A\?) satisfies that, Vo € (—oo, 0],

EogQ(AQ) =27, flogz()\Q) =27 1H(2) (G26)
—1
Eflogy(A\?)] = —— ~ —1.4427. G.27
and also logy(A\) = 0.5logy(A?) and then E[logy()\)] = ﬁ(lz) ~ —0.72135. Hence,

equation (6.58) of Lemma 6.4 is proven.

Expected value of )\ conditioned on (2

In a similar manner as in (G.16), it holds that Pr(A€ = £,,) = Fx({n41) — Fr(£,) and

hence

2.2 e
Pr(A@ = 1) = 1—-(N—-1)%¢* ifn=N-1 (G.28)
(2n + 1)¢? otherwise.

From (G.3), it follows that
Pr (A2 = 4|Quo) = ¢%, Pr (A9 # 4|Qu) =1 —¢* (G.29)
Likewise (G.17), by considering that Pr (A2 # £o|Qu0) = 1 — ¢* and (G.3) we obtain

Faalz) = f,\1|Q_UOq(2x)
o (G-30)

_71—(12’

and thus ) )
Ejq [logy (\?)] :/ 2log2(x)1_7$(]2dx
1 [22@l() -]
Al e, o

_ —1 ¢Plogy(d?)
In(2) 1—¢q% 7’

what concludes the proof of Lemma 6.4. |
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Expected values for the quantized parameter \<

Similar to (G.17) and (G.30), the quantized parameter A< satisfies that

Pr ()\Q =/ )
Q . . n
Pr ()\ = €n|Q) = 2 (G.32)
Thus,
W=D ey = N1
Pr(\%=10,0) =4 , 1% (G.33)
( qu%q otherwise.
Moreover, from the Law of the Unconscious Statistician, it holds that
N-1
Ejq [logy (A9)%)] =2 ) logy(ng) Pr (A€ = ng|Q) . (G.34)
n=1
Therefore,
+ 1) 1— (N —-1)%?
Ejq [logy (( (A2 =2 Z logs ( nq 2 + logy ((NV 1)@)1_—(12
¢ N-2 2.2
1—(N—-1)%q
]
To conclude, the sum ¥ can be expressed as
N-2 N—
U= Z 2nlogy(n) + Z log,(n) + logs (g Z 2n+1)
= 2log, (H n > +logs (N —2)!) + N(N — 2)logy(q) (G.36)

=2 Z nlogy(n) 4 logy (N — 2)!) + N(N — 2)log,(q).
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Appendix H

Proofs for Chapter 7

This appendix encloses all the proofs of the lemmas, corollaries and propositions of

Chapter 7. We present them in demonstrative order.

H.1 Proof of Lemma 7.3 (Probability of Power Outage)

We denote the event of power outage as . Note that
Pr(R) < N1 Pr(||T11] > 1), (H.1)

and T11 = p[wi1,1,W2,1.1,--- ,WK71,1], where w; ; , represents the n-th element of the
precoding vector at TX j for the data symbols of RX 7. Therefore,
Pr(R) < NiPr(|lufwiii, waiy, ..., wiaall > 1)

(a)
<N Pr | llewiiall > [Iviall

1ENg
S NEPr(Jawiall > [vaiall) (H2)
S MK Pr (il + allill > vl
— MK Pr <II¢1H > Lo ) ,
where (a) is obtained from the precoder definition —since ||[vii1 ... vi11]l| < 1+,

(b) because w; 1,1 (resp. v;1.1) is equally distributed for any i € Nk, and (c) from (7.22).

Now, we obtain the probability by conditioning on ||v1 1] and then averaging over the
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Appendix H. Proofs for Chapter 7

distribution of ||vy11]|. Let us denote p/ £ 1% Hence,

Pr(R) < NlK/_ Pr (H(i)l” > ,u’y) fIIV1,1,1||(V) dv. (H.3)

Using Markov’s inequality we obtain that

> El
r <k [ 5w -
H.A4

= NlKE[llcbl||];E[HV1,L1H_1}’

where E[||vy,1,1]|7!] exists from property (ZF2). Let us focus on the first expectation
term of (H.4) (E[||@1]]]). Recalling (7.22), ¢; is defined as

¢ =H! H;i(vi1—w;1) (H.5)

Then,
E (llgil] = B [ I8! Bz (vis — wi )]

(a) PR
<E |:HH£1HZ,1 FlIVi1l — Wz',iH} (HG)

b)
<\ [0 ] v w2

where (a) comes from the sub-multiplicative property of Frobenius norm and (b) from

Cauchy-Schwarz inequality. Let us denote g, = 2 \/E [HHT H ], which is a value
that does not depend on P because the channel estimates are equally distributed for any

estimation error variance. Then, we have that

E{[lil] < gmy/E [Ivi — witl2]. (H.7)
Lemma 7.2 and the fact that E [||v; 1 — w; 1||*] = Z]{QE [IIvij — wi;l|?] yield
E(ll¢ll] = O(P7). (H.8)

Since pp =1 — ¢, with ¢ = O(P~%) and ¢ > 0, the term
From (ZF2), E[||vi,11]/7!] is ©(1). Hence, recalling (H.

1 : 1 b
o = 15, satisfies 5 = ©(P).
4),

Pr(R) < NKE[vi,al ) il o)

— 0(1)0 (P~) ©(P*),
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H.2. Proof of Corollary 7.2 (Error on Distributed Precoder)

what implies that Pr(R) = O (]5%_0“1). By selecting o, < ag, the probability of power
outage vanishes and it holds that

Pr(R) = o (@) , (H.10)

what concludes the proof. |

H.2 Proofof Corollary 7.2 (Error on Distributed Precoder)

In order to prove that E [||v; — w;[|?] = O (P~%), let us recall that the vector w; — v;

can be written as

Wi—vi:[ ¢ ] (H.11)
W 7

where ¢;, which has been defined in (7.22), is the difference at TX 1 and w;1 — v, 1

denotes the difference for the coefficients of all the TXs but TX 1, i.e., w;1 —v;7 =
t

HT I:Ii'i
[(Wi2 —Vi’Q)T, ooy (Wik —VZ‘VK)T]T. Let us define Gy as Gp £ “11 1’1] . From (H.5),

we can rewrite (H.11) as

W; — Vi = GI(Wi,i - Vz‘,I)- (H.12)

From Cauchy-Schwarz inequality, (H.12) implies that

E[w; —vill?] < VEIG1*]Elw; 1 — v 1] (H.13)

Let gs be gs = /E[||G1|[4], which is ©(1). Moreover, the instantaneous power constraint

for the precoder ensures that |v; ; — w; ;||? < 4Nj2. Hence,
M
Efllw; 1 —vizllY] <) E[AN?[wi; — vill] | (H.14)
=2

what, together with Lemma 7.2, means that

M
E[||w: — vill*] <4N7gs > E[lIvij — will*]
=2 (H.15)
= O(P %),
what concludes the proof. |

227



Appendix H. Proofs for Chapter 7

H.3 Proof of Proposition 7.1

We prove in the following that Pr (|(5£1)Vg| < ]5*7) =o0 (@), for any v > 0 and
i,/ € Ng : £ # i. Let us denote the precoder for RX ¢ obtained with perfect knowledge

of H as uy. Then,

Pr (|5§1)v£| <P7)=Pr (|5£1)Ug + 551)(Vg —uy)| < P77)

B (H.16)
<Pr (Hél-(l)ud — ‘61-(1)(Vg —w)|| < P7),

where we have applied the inverse triangle inequality. In order to prove Proposition 7.1
we capitalize the intuition that the term |5Z-(1)11[| is independent of the quality of the
estimate and P, but the value of ‘5£1)(V@ — wy)| is directly proportional to the quality
P~V Before applying this intuition to (H.16), we first analyze the term |(5§1)<Vg —uy)|
to obtain which is the probability Pr (‘51-(1)(Vg — )| > PP), for B < aM). Let us define
the scalar € > 0 such that 3 < 8 +¢ < o). By means of the Cauchy-Schwarz inequality
and the law of total probability we obtain

Pr (|68 (ve —wg)| > P~%) < Pr (|60]/|lve — ue|| > P7)
< Pr (|88 [Ive — el > P2 | ve — gl > P~=5) Pr (|lve — || > P72
+Pr (105 lllve — gl > P~ | [lve — wgl| < P~77%) Pr (||ve — ugl| < P~77°)
<Pr(|ve—wl > P7) + Pr (|60 > P°| v — g < PP79).  (H.17)

The first term Pr (”Vé —wy > ]5*6*8) can be upper-bounded by means of the Markov’s
inequality, such that

Pr (HV@ —uy|| > ]5_5_8) < phte E[||ve — ugll]

= O(Pﬂ-‘ré‘—a(”), (H.18)

where the last step follows directly after applying Lemma 7.2 to vectors whose respective
input estimates differ by a O(p*am) additive error term. For the last term in (H.17),
Pr (|68 > P | |lve — ug|| < P=B=%), it follows that

1) P_e

(1) DE D—0B—¢ Pr (Héz H > )
P . P — <P < = .
PO e =l < P < B, il < P

(H.19)

From (H.18), it holds that Pr (||vy — u,|| < P777¢) =1 — (9(155“_0‘(1)). Besides this,

W2 = Ni 5 2 where s areiid. as Nc(0,1). Consequently, 5W 2 is distributed
) n=11"n n z,n

following a Rayleigh distribution and |]6§1)\\2 ~ T'4(Np,1), where I'y(Nr, 1) denotes the
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H.3. Proof of Proposition 7.1

Gamma distribution. Moreover, I'y(N7, 1) is also called the Erlang distribution, and it
satisfies that

Np—1
Pr(X ~Ty(Np, 1) <az)=1- Y —e "a" (H.20)

*‘6
=0 n.

Hence, it follows that
Pr (6] > P?) = Pr (6% > P%)

Np—1 1
_ P2 —
— § : “e P PQna'
n!

n=0

(H.21)

Since € > 0, it follows that Pr (Hél(l)H > P¢) = o(P"), Va € R, and hence

Pr(fo) > P 1 O( 1 ) (H.22)
Pr(|[ve — w|| < P=6=¢) 1 — O(Pfte—a®) " \log,y(P))’

what together with (H.18)and (H.17) leads to

Pr (‘5§1)<Vg —w)| > 15_5) =0 <log21(P)> (H.23)

for any 8 < a(!). With this result, we can focus back on (H.16), that can be expanded
by means of the Law of total probability such that

Pr (|6 ug| — 161 (ve — wp)|| < P77)
= Pr (|6 u] — 61 (ve —up)|| < P77 [ |81 (ve — ug)| < PP

1 H— 53 1
<P ) P74+ P .
< Pr(id el < P77+ )+0<10g2(p>>

Let us assume w.l.o.g. that 8 < =, such that Pr (|5§1)ug| < P74 P‘ﬁ) <Pr (|5§1)ug\ <
2]5*ﬁ). Therefore, it remains to prove that Pr (‘5£1)u€‘ < 2]5*5) =o0 (@). Let eg
be a scalar such that 0 < eg < 8 and let us define ¢ as the angle satisfying

16w
16|

[

0s(1)) (H.25)
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Then, we use again the Law of Total Probability to obtain

Pr (16| < 2P77) = Pr (61" Jue|| cos() < 2P~ Jlugl] < P~%) Pr(|jug]| < P~)
+ Pr (1161 1wl cos() < 2P~ | lugl) > P~) Pr (|ju]l > P~%)  (H.26)

< Pr(|ju| < P~%) + Pr <||(5Z(1)|| cos(1p) < 2P7P P | |luy|| > P‘eﬁ) .

Importantly, 651) is isotropically distributed (i.e., the normalized value 6;1) / H&El)” is
uniformly distributed in the sphere surface). Besides this, u, is a function of H. Since

(1)

H and 651) are mutually independent, so §; ’ and uy are. Hence, from isotropy of 61-(1),

cos(v) is independent of uy. On this basis, we can select up = [1,01xn,—1] to obtain that
Pr (81 cos(w) < 2P 7 | Jug| > P=%) = Pr (|87, < 2P %), (H27)

where 51(’11)’1 denotes the first element of the vector 551), and it is distributed as N¢(0,1).
Then,

. - 9 2P ="
Pr (|5§1)1|<2P6ﬁ_5) :/ e 2 dx
1 0

2 (H.28)
< ipea—ﬂ
T V2w
On the other hand, the term Pr (|ju,|| < P~%) can be bounded by
—<p
Pr ([l <P / fuuln (H.29)

what follows from (ZF3). By introducing (H.28) and (H.29) in (H.26) we obtain that
Pr <|5§1>u£| < 215—5) = O(Pmax(=es, 5=B)), (H.30)
Note that e satisfies 0 < eg < 5. Hence,

Pr (168" v,| < P77) < Pr (|16 ] — 168 (ve — wp)|| < P7)

_ 1
Pr (|6 2p~F —
<Pr(0; ul <2P77) +o {1 (EL31)
logy(P) )’
what concludes the proof of Proposition 7.1. |
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H.4 Proof of Proposition 7.2
We prove in the following that E[]&l(l)(Wg —vy)|] = O(P~%) for any i,/ € N : £ #4. It
follows that

E[|8{" (we —ve)l] < E[I67[we = vl

= cov (116" llwe = vell) + E (16| Ellwe = velll (.30

<AV 1812| 0y + E 18071 Eflwe = vell

where cov(X,Y) £ E[(X —E(X))(Y —E(Y))] is the covariance between X and Y and o%
represents the variance of the random variable X. The last inequality comes from the fact
that cov(z,y) < 0,0, and 02 < E[2?]. Besides this, it holds from [|6{")||2 ~ T4(Nz, 1)
that E [Hégl)ﬂﬂ = Np. From this and the fact that E[z] < \/E[z?] we can write
1
E[161 (we = vo)l] < VNt (0w, vy + Elllwe — vell)
(a)
< VNp 2VE[[[we = v|?] (H.33)

2o(pe),

where (a) comes from the fact that o, + E[z] < 24/E[z?] and (b) from Corollary 7.2. W

H.5 Proof of Lemma 7.1 (Quantizer Consistency)

The proof of Lemma 7.1 is analogous to the proof of Property P2 in Chapter 6, although
the estimate model and the quantizer are different. Let ¢ £ P~® be the quantization

step size of the quantizer ©,. Then, O, is defined such that, for a scalar value = € R,

Qu(z) 2 ¢ B + ;J . (H.34)

We extend the notation for any complex matrix A € C"*™ such that A, = Q,(A)

denotes the element-wise quantization, i.e.,
(Ag)is = Qu(Re(Ayr)) +1Qu(Tm(Ai)), (H.35)

where Re(x) and Im(z) stand for the real imaginary part of 2 € C, and + £ /—1. In

this appendix we prove that, for a scalar uniform quantizer Q, with ¢ = P~% and
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a) > a, >0, Vj € Ny, it follows that

. ", 1
Pr (W< L GO = - H.
P(EP0 2 H) <o log,(P) )’ (H.36)
where I:Igj) = Q,(HY) and I:Iéjy_(l) is the MAP estimator of I:Igj) given HM. We start
by noting that, by definition of the MAP estimator,

Pr (Y= £ HY)) < Pr (Qu(HD) £ H)). (1.37)
Since Re(ﬂi’lk)) and Im(ﬂzlk)) are i.i.d. for any 4, k, it follows that

Pr(Qu(A®M) £ HY)) < 2K N7 Pr (Qu(Re(H{)) # Qu(Re(HIT))),  (138)

where we have selected w.l.o.g. the real part of the (1,1) channel element. Hence, it is
sufficient to obtain the probability of disagreement for Re(ﬂg{ )). For that purpose, we
follow the same approach of Appendix F.2 and we split each reconstruction level in two
parts: The edge of the cell and the center of the cell. This is done in order to show that,
as P increases, the probability of disagreement vanishes if I:Iﬂ is in the center of the
quantization level and, besides this, that the probability that ﬂgli is in the edge area
also vanishes. We rigorously show that in the following. Before starting, we introduce
the simplified notation h(?) £ Re(I:Ig{ i) to ease the readability. Accordingly, we also

introduce the notation h £ Re(H; 1) and § £ Re((sﬂ) such that h() = 50)h 4 20 §0),

with z() = p=o and 2 = /T — (:0))2. Furthermore, similar to Section 7.5, we
: : () _ 1 (4) _ 2
introduce the notations 2. = Fo) and z;7’ = E(T

H.5.1 Egde and Center of the Reconstruction Level

This division is the same we applied in Appendix F.2.1. We recall it here for convenience.
Let 4,, be the n-th quantization level of Q,,, n € Z, with £y = 0. Let us define L,, as the

input interval that outputs ¢,, i.e.,
Ly, = {x ’ Qu(x) = en} (H39)

L, has a range [LI" M%) such that |L,| & LR — [0 = P~ We split L,, in two
areas, the edge area F, and the center area C,, depicted in Fig. F.1. The edge area is
defined as the part of L, that is at most at distance P~ of the boundary of the cell,
with c. > 1, i.e.,

E,2{x €L, |z — LI < P~%% v LM _ g < Pl (H.40)
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The center area is given by C,, £ {x € L,\E,}. Intuitively, the probability of disagree-
ment is very high if h®") lies in the edge area E,,, whereas this probability vanishes in the

central area C,. Mathematically, we have that

Pr (Qu(hu)) y Qu(hu))> <Pr (hu) el En>

neL

+Pr <Qu(h<l>) # Qu(h) | n e cn)

ne”L

(H.41)

H.5.2 Probability of Belonging to the Edge Area

Suppose an arbitrary quantization level £,. Let f7** be the maximum value of the PDF

of h in L, = {z | Qu(x) = £,}. Then, the probability that h") is in E,, is bounded by

Pr (bW € E,) < f™|E,|

2fmaxpfceaq (H42)
= Ln s

where |E,| denotes the length of E,. The standard normal distribution has a derivative
that is, at most, 1/v/2me. Thus, the probability of being in L,, satisfies

Pr (bW e L,) > (i — 1/v/2me|Ly|) | Ln|

— (fglax _ 1/\/%15—%)?,_%. (H.43)

Hence, the probability that h(®) is in E,, given that it is in Ly, satisfies Vn that

Pr(h® € E,)
Pr (b € Ly,)
2faax Pf(cefl)aq'

< =
T ([P —1/V2mePoa)

2fppax
fRex_1//2reP~a)
from (I1.44) and the fact that >°, ., Pr (b)) € L,,) = 1 we can write

Pr(h® e E,

nel nez Pr (h(l) € L")

< Ga P~ (ce D Z Pr (h(l) € Ly) (H.45)
nez

_ o(p(e1ou).

Pr(bW e E, | L,) =
(H.44)

Let us define gmax 85 Gmax = MaX,c7, ( . Note that gmax = ©(1). Hence,

Pr(b® € L,)
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Consequently, it holds that

Pr(hV e | J En) = 0(log21( P)). (H.46)

neZ

H.5.3 Probability of Disagreement in the Center Area

From (F.23) in Appendix F.2.3, it follows that

' 1 E [|[h®) — h@)
Pr (Qu(h“)) #Qu(m) | hW e [ Cn> = Pr (w0 € U,y Cn) H Pea )
nez nezL =m

In the following, we obtain the expectation E Hh(l) —h0) H Then,
h® — hO) = bW — 50)) 4 ;Mg — )50, (H.47)
From the assumption of Gaussian variables, it holds that

hEO D)) oA (0, W - 50))2) : (H.48)
W5 _ 56 o /\/(o, (z0)2 4 (z(j))2>. (H.49)

Since h() is independent of 61 and 6\ it follows that
hW —h@ ~ N (0,03), (H.50)
where 03 is given by
o2 = (31 — 5002 1 (D)2 4 (;0))2, (H.51)

Substituting the variables for their values yields

05 =2(1= V1= Po® - pral 4 prol-all), (H.52)

Furthermore, if k) — h() is drawn from a zero-mean Normal distribution of variance 02,

Ih® — h()] is distributed as a half-normal distribution of mean

E b0 -n|| = ad\/z. (H.53)
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From (H.52) and the fact that, V0 <z <1, /1 —2 > 1 — z, it follows that

E Uh(l) _ h(j)” < \/i (P—a(“ 4 pald _ P_au)_a(j)) 50

=oP=").

Besides this, it holds from (H.46) that

Pr (h(l) el Cn> —1—Pr (h(1> el En)

nez nez (H.55)
=1 — (P (ceaay,

Both (H.54) and (H.55) lead to

A 1 E [[h® — n®
Pr (Qu(h“)) £ Qum) | n® e | 0n> <5 (4 < Upen ) H P—ceas H
nez r € Unez tn

—0 ( pCeara“)) (HL.56)

“(am)

The last inequality is obtained only if coa; < @), Vj € Ny, Thus, it follows from (H.56)
that it is necessary to satisfy that c.ay < ¥, Vj € Ny;. Since for any g < al) we can
find a ¢, > 1 such that c.ay < o9 any ag < o) will satisfy (H.56) as long as a correct

ce 18 selected.

H.5.4 Assembling Probabilities

Recalling (H.41), we make use of (H.46) and (H.56) to show that

Pr (@) £ 0,09) <o (1), (1.57)

what concludes the proof of Lemma 7.1. |

H.6 Proof of Lemma 7.2 (Error on Naive Precoder)

In this appendix we show that

E [Hvi’g — Wi’QHZ] =0 (Piaq) . (H.58)
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Then, (H.58) is straightforwardly generalized for any E [[|vir — wi?], k € Np/\1. In
order to prove (H.58), we make use of the fact that, as presented in Section 7.2.1, we
assume that the precoding vectors and matrices can be expressed as a combination of
summations, products, and generalized inverses of the channel estimate. Note that with
the previous operations, it is also possible to compute divisions and norms of the channel
estimate coeflicients.

First, note that both w; o and v; 2 are obtained following the same algorithm but
based on different information (input). Specifically, w; 2 is computed on the basis of
ﬁgQ) = Qu(ﬂ@)), where Q,, is a scalar uniform quantizer with quantization step ¢ = P~%,
and v; 2 on the basis of HO. Similar to the previous appendix, let h¢(12) (resp. h() and h)
denote the real or imaginary part of an arbitrary element of the matrix I:IgQ) (resp. HU)
and H). Let us define th) as
h® £ h®? 4 (H.59)

<

where ¢, is distributed as a binary symmetric distribution with points [—g, ¢], independent

of the other variables, such that o*?q = ¢*. Note that the error h((f) —h™ has smaller
or equal variance than h§2) —hM =h® —h® ¢ ¢ . Hence, we can assume that w; o is
computed on the basis of the estimate h§2) as increasing the error variance can only hurt.

Consequently, the error £ £ h£2) —h® has a variance

O'g < 0521 + J?q + QUdqu

(H.60)
= QO(P™ ),
where 03 is given in (H.52). Therefore, we can write that
h® = h® 4 p=oag, (H.61)

where J¢ is a variable with variance ©(1) and bounded density. We continue by showing
that the error variance remains being at most ©(P~%4) after applying addition, product,

inverse or pseudo-inverse operations. Afterward, based on those results, we prove (H.58).

H.6.1 Error in the Addition

Let a?), b?), be distributed as (H.61), i.e., a§2) 2,0 4 ]5_%52, b§2) 2 p() 4 poagh,

where 5?, (5?, are variables with variance ©(1) and bounded density. It is easy to see that,
for any aéz), b§2),
af) + bf) = a4 pmoag? 4 M) 4 proug?

_ (H.62)
— a(l) + b(l) + P % (52 + 5?)
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This implies that the error variance of the sum is also O(P~%).

H.6.2 Error in the Product

It follows that

(2),.(2)
ag "bg

SRR

= abM 4 proe (a4 bW + Pouszot)

what implies that the product also maintains the scaling of the variance as O(P~%).
Moreover, as the sum and product of matrices is a composition of sums and products of

its coefficients, the result extends to any two matrices of suitable dimension.

H.6.3 Error in the Inverse

Let us first assume that Aéz) and A are square matrices with full rank with probability

one, and with coefficients following (H.61). We can then write that

_ —1
(AP = (A<1> + P—%AQ) (H.64)

_ _ —1
= (AM)~1_ proa (A)1AA (A<1> + pos A?) (L.65)

which is obtained from the Woodbury matrix identity [164]. Hence, the error variance
of the inverse is again O(P~%). Once that it is proved that the inverse operation
generates an error with variance O(P~ %), we extend it for the Moore—Penrose inverse
(pseudo-inverse) (A?))T. We assume (as throughout the rest of the document) that each

sub-matrix has maximum rank, i.e.,
rank (A?) € CNXM> = min(N, M). (H.66)
(2

Let us assume that Ag is full row-rank matrix, i.e., N < M. Under this assumption,

the pseudo-inverse is given by

(AD) = (ALY (A@)(A(z))H)‘l , (H.67)

The case in which A?) is full column-rank matrix (N > M) will follow the same steps
and thus we omit it. It follows from (H.63) that A?)(A?))H = AWAMH L prasa,
where Ay has variance O(1). This, together with (H.65), implies that

1 _
+ PTAL,,

(A?)(A(Q))H) L (A(l)(A(l))H>

; (H.68)
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and by applying again (H.63) it holds
-1 — "
(AP = (A (A<1>(A<1))H) +PTOAL (H.69)

where A{, and qu have variance ©(1). As explained in [145], under the assumption that
X is a full row-rank matrix, any generalized inverse may be expressed as X~ =X+P,U.

Hence, similar result could be obtained for a broad set of generalized inverse.

H.6.4 Error Variance of the Difference of Precoders

The centralized precoder v; 2 is based on HD, je., V = V(fl(l)). The distributed
precoder at TX 2 is based on its own quantized CSIT I:L(f), then w; o is obtained from
W = V(fl,gQ)). Based on the previous results and the definition of linear precoders, it
follows that we can write the distributed precoder based on the CSIT of TX 2 (ﬂf)) as

Wio = Vi2 + Pfaqew, (H70)
where E [[lew||?] = O(1). Consequently,

E[Iviz — wi2ll’] =E[[[vig — (viz + P %ew)|?]
=P E [[lew|?] (H.71)
=0 (P %).

Moreover, since E[||x]|] < +/E[||x||?], it follows that
E(llvij — wiglll = O (P~), (H.72)

what concludes the proof of Lemma 7.2. |

H.7 Proof of Corollary 7.4

We show in the following that the use of CD-ZF or AP-ZF in a setting with o) = 0
and instantaneous power constraint leads to limp_,o, R*(a)) — R(aps) = co. The main
limitation that leads to this result is that the power outage probability does not vanish at
high SNR. We assume a per-TX power constraint, i.e., |T;|| = [[u[wij, ..., wgk;]|| <1,
so as to simplify the notation. The proof for a per-antenna power constraint follows
directly.

Let w¢ represent the distributed precoder (CD-ZF or AP-ZF) before taking into

account the instantaneous power constraint and let w; represent the precoder after power
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normalization. This means that

wi if [Ty <1
Wi = Wil 0 o 1T . (H73)
[m7 Wiy - Wi,K] otherwise.

We focus on the rate of RX 1, and the analysis of the rate of other RXs follows by symmetry.
Let Pc denote the event that TX 1 is in power outage and that |phywy|* > ],uh1W§|2 +c,

where ¢ is a constant and ¢ > 0. The rate gap AR; can be decomposed as

AR; = Pr (Pc) AR1|7’C + Pr (P¢g) AR“)%

(H.74)
> Pr (PC) AR‘1|PC7

where we have assumed that the ideal centralized rate is achieved conditioned on Pg.
The achievable rate conditioned on P yields

P 2

% |phiw|
log2<l+1+P|h o2 4 P

= 1 1W2| + KC

1
< Eyp, [logz (1 + - |Mh1W1\2>] .

Ryp, () < Ejp,

(H.75)

From the instantaneous power constraint assumption, this term does not scale as function
of P and it is upper-bounded. Let us define the constant m. < oo such that it satisfies
that Ep,, [logz (1 +ct ]uh1w1|2 )] < m,. Hence, the rate gap conditioned on P¢ is
ARI\'PC = RI\PC (a(l)) - Rl\'Pc (O{)
> Rip,. (V) = m, (H.76)
= 0.
It remains to prove that Pr(Pc) = O(1), i.e., that it does not vanish at high SNR,
since together with (H.76) and (H.74) it implies that the rate gap is unbounded. In the

following, we compute the probability of P, i.e., of having |,uh1W2|2 > |uhlwg|2 +c.

Let 6y, be defined as Oy £ wy — w$§. Hence,

Pr(luhiwsf* = [phyws ] + ¢) = Pr (1P~ 8iwg + a0y 2 - [P orwg? > 5,

which comes from the fact that hywg = P—a(1)5§1)wg. Note that P‘O‘(l)élwg converges

almost surely to 0 [101], what leads to

. 2 2 25 €
Jim P (bl > sl + ) = Pr (6wl > 75). (1.77)
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From (H.73) and the fact that Po = || T > 1,

Pr (\h10w|2 > %) _ Pr< hy Wi [ > %) (HL.78)
p Tall] — n
We recall that the CD-ZF precoder is given in (7.22) by
W1 =Vt ﬂ},lﬂ&i(vﬂ —Wy1) (H.79)
and the AP-ZF precoder [82,100] is given by
Wy1 = *I:IIZII:IEJWEJ. (HSO)

Since the accuracy of w1 does not scale with the SNR, the difference v, 1 —w, 1 of (1.79)
has the same probability distribution for any value of P —conversely to the case with
aM) > (0, where it vanishes—. This implies that the probability distribution of \h171%]2
in (H.78) is not affected by the value of P, and since h; ; is unbounded, there exists an
€ > 0 such that

C C
Pr ( 10,2 > ?) e, Vg0 (H.81)

Hence, the probability does not vanish when P — oo and consequently Corollary 7.4 is

proven. |

H.8 Proof of Theorem 7.2

In this section we prove that, if N > K — 1, and a() = 0 for any j > 1, then, under
average power constraint E [||T;,[*] <1, Vn € Ny;, 7 € Npy, it holds that

lim R*(Oé(l)) — R(our) < logy <E U|ﬂ.Tr<1Hz]> + 10%2(K2) + log, (4(K - 1)) (H.82)

P—oo

Let us assume that the TXs from TX 2 to TX M precode with a known, fixed precoder,

for example

1
Wij = ﬁlexlj (H'83)

for any 7 € Nk, j € Np/\1. The final precoding vector will be pw; ;, where ;p < 1 is an
average parameter to satisfy the power constraint. Note that (H.83) is chosen for sake of
simplicity, but the bound in Theorem 7.2 would be modified if w; ; is defined differently.

In a similar way as in (7.22), TX 1 computes its precoder so as to cancel out the
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interference generated by the other TXs. If |f1§1)wi|2 were statistically equivalent to
\flgl)vilz, it would be enough to ensure that flgl)Wg = flgl)Vg V¢ € Ng\i. However, the
proof of that analogy is still an open and challenging problem. Hence, we design the
precoder so as to ensure that ﬁ(l)wi = fll(.l) v;. The precoder at TX 1 for RX /¢ is

7

A fl(l)v
Wyl = H}a( [ e
Or—1x1

- IiIK,i“’Z,T) ) (H.84)

where H K,1 represents the first N1 columns of the channel matrix —channel from TX 1
towards all the RXs— and H k,1 denotes the remaining Ny — Ni columns —channel
coefficients from the rest of TXs towards all RXs—. The precoder at TX 1 is denoted by
T € CN1*K and the precoding coefficients at the n-th antenna of TX 1 as Ty, € CIxXK,
Let T¢ be defined as T¢ = [Wi1, ..., Wgk]. The precoding coefficients are equally
distributed for every RX (V¢ € N ) and for every antenna at TX 1 (Vn € N;j). Hence, it

follows that 1
E[|T,.I%] = N [1IT2]1%]

K

= EE [”W171||2} .

(H.85)

(CN1 x K

With per-antenna average power constraint, the precoder T € will be given by

T1 =N |:W171 . WKJ} y (HSG)
with p selected to satisfy the power constraint as

VN1
— . H.87
N EEwiaA (H.81)

Note that we can rewrite the rate gap as

P 2
L hv,
logy <1+  [hivil >

£ |uhw; 2

phyw;|

5 5 E[10g2<1+ 5 ki 2)]
1+ % E[;ﬁi hivy| L+ % Zé;éi |[uhywy|

L hvy)? L |hyw;|?
logy |1+ K —E|logy |1+ K1 ~log,(12)
< L+ & gz hivel® L4 £ 3 hiw?

= log,(1/p%), (H.88)

AR; =E

<E

(l)Wg = fl(»l)Vg, for

where the last step follows from the definition of the precoder (since flz ;

all i,¢ € Ng) and the independence between the channel and the estimation noises. It
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remains to bound log,(1/u?). Note that
log,(1/4?) = logy(K) + logy (E [[w1.]%])
K .
T 2
< log, () +logs (E[IF), 1)) (H.89)

+ logy (E[|[hf" (ve — we) |?]) + logs (B[|[Flg 1wy, 1%])-

Let flglrz represent the channel coefficient for the n-th antenna, with n € Ny,.. Given

that we,; = —=1,x1, for any j > 2,

g (B[t weal?) = o ( 1 [Z\ ;lh ). (1190
l n=N1+

Note that g; & S~y . h{)) ~ Ne(0,Np). Hence, ||gil|? = |gil” ~ Exp(z%-). This,
together with the fact that the channel coefficients are i.i.d., leads to
kol 2 K - 1
logy (E[[Hzweill"]) < logs { 2Ng—— ). (H.91)
Moreover,
E[[|hY (v, — wy)[?2] < 2K E[||R¢Y)2
[IIhy " (ve = wo)[I] < v (H.92)
< 2K°.
Introducing (H.91) and (H.92) in (H.89) leads to
2 & AP 2
log, (1/42) < logy ((E [[F}]1%] ) + logy(22) + logy (2(K — 1)). (H.93)
Note that if we remove the condition for the intended received signal flgl)wi = flgl)vi and

NeY NeY

we assume that h; ’w; and h; ’v; are statistically equivalent, we would obtain a tighter
bound as

logy(1/4?) < logy ((E [|FLl,[I7] ) +log, (2(K — 1)). (H.94)
This concludes the proof of Theorem 7.2. |
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a Introduction

Les technologies de communication sans fil ont considérablement évolué au cours de la
derniére décennie. Il est prévu que le déploiement imminent de la technologie de réseau
cellulaire de cinquieme génération (5G) [1] entraine non seulement débits de données
plus élevés, mais aussi un variété de cas d’utilisation inédits et diversifiés. En effet, cette
diversification des services est 'un des principaux objectifs du développement 5G [2]. Trois
cas d’utilisation principaux sont envisagés dans la génération a venir : Communications
robustes et ultra fiables & faible latence (URLLC) [3-5], services a large bande améliorés
(eMBB) [6], et communication machine & machine massive (mMTC) [7,8]. La conjonction
de ces trois cOtés est destinée a contribuer a I’épanouissement de fonctionnalités jamais
vues auparavant telles que I'Internet tactile [9, 10], les réseaux de drones [11,12], les
réseaux automobiles [13,14], ou I'Internet des objets (IoT) [15]. Afin de pouvoir fournir
ces nouvelles applications, le réseau s’appuiera sur des technologies innovantes [16], telles
que les communications & ondes millimétriques [17-19], la mise en cache [20,21], les
communications entre dispositifs [22], ou les communications avec un nombre massive
d’antennes (massive MIMO) [23-26]. En outre, 'augmentation attendue de la densité des
réseaux - en termes de cellules et d’appareils - fait de la gestion des interférences I'un des

problemes essentiels dans des transmissions sans fil [2].

L’une des conséquences qui découle de la description du réseau antérieurement décrite
est 'augmentation de ’hétérogénéité du réseau, soit entre des nceuds communicants ou
entre différents réseaux partageant les mémes ressources. Cette hétérogénéité affecte
également les capacités de backhaul des différents noceuds. Par ailleurs, les situations dans
lesquelles les nceuds communicants se déplacent a grande vitesse sont en plein essor. Les
scénarios hétérogenes et avec mobilité élevée conduisent a I'impossibilité d’avoir une
gestion centralisée des communications sans fil, d’olt la nécessité de comprendre comment

les systemes distribués se comportent et quelles sont leurs limites fondamentales.
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a.l Transmission Coopérative

La densification significative du réseau entraine une nécessité de coopération pour éviter
I’encombrement du canal sans fil. Les réseaux coopératifs multi-utilisateurs et 'ampleur
de ses capacités théoriques ont été analysés en détail dans la littérature [27-31]. La
coopération dans les réseaux sans fil peut prendre de nombreuses formes différentes.
A l'origine, la coopération était réduite a des politiques statiques qui assuraient un
certain fonctionnement, comme la réutilisation partielle des fréquences. Avec 'escalade
de la complexité du réseau, les méthodes de coopération ont évolué pour répondre aux
exigences croissantes [32]. Intuitivement, les gains de coopération sont subordonnés
a I’échange d’informations entre les noeuds de coopération. On peut distinguer deux
catégories d’informations essentielles : L’information de canal —ou de systéme— et les
données de I'utilisateur.

En ce qui concerne les données d’utilisateur, les mécanismes de coopération dépendent
de la disponibilité ou non de ces informations a tous les noeuds. Si les données de
I'utilisateur ne sont pas partagées, étant chaque nceud doté d’informations de données
différentes, la coopération peut étre réalisée par le biais de la formation coordonnée de
faisceaux [33,34] ou de la planification coordonnée [35]. Dans le scénario opposé, avec
partage des données de l'utilisateur, nous pouvons appliquer des stratégies avec une
coopération plus forte que les précédentes. L'une des principales stratégies de coopération
est la transmission coordonnée multipoint (CoMP) [36]. Cette stratégie de transmission,
également connue sous le nom de MIMO coopératif, transmission conjointe, ou réseau-
MIMO, bénéficie du partage des données de sorte que U'interférence peut étre annulée ou
méme transformée en signal utile.

La transmission conjointe multi-utilisateur dans des réseaux sans fil est connue pour
apporter des améliorations multiplicatives dans les débits des réseaux [37], mais seulement
dans I’hypothese d’avoir une information d’état de canal (CSI) parfaite. Ce scénario
idéal a été étudié en profondeur [37-41]. Malheureusement, une acquisition parfaite de la
CSI n’est pas possible dans la plupart des applications réseau actuelles en raison de leur
complexité et de leur consommation de ressources. Par conséquent, la littérature s’est
efforcée d’élucider 'incidence de la CSI imparfaite ou quantifiée sur le rendement des

émetteurs.

a.2 Précodage sous Coopération et Information non-Idéales

Information de I’Etat du Canal Imparfaite

En raison de I'impossibilité d’appliquer ’hypothese idéale précédente, les cas dans lesquels
I'information disponible aux nceuds communicants ne répond pas a 'hypothese de CSI

parfaite ont été étudiés en profondeur. Ainsi, la communauté s’est concentrée sur les
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milieux ou l'information disponible est opportune mais imparfaite [31,42-50], ou lorsque
linformation est retardée [51-57]. Ce sujet de recherche est resté actif au cours de la
derniere décennie, et un grand nombre d’ouvrages ont développé des schémas généralisés
pour le cas de CSIT partialement obsolete [54,58,59], basculant [60], or changeant [61].
La tentative de compréhension du comportement des réseaux actuels a conduit a I’étude
de milieux élaborés et complexes. Par exemple, le canal d’interférence cognitive, dans
lequel seulement certains nceuds ont acces aux informations des autres nceuds [62,63], ou

le réseau de relais [64-68].

Appréciablement, méme si les travaux précités supposaient une acquisition ou une
estimation imparfaite du CSI, ils considerent que tous les nceuds coopérants partagent la
méme information imparfaite. Nous nous référons ci-apreés au scénario ou la transmission
est optimisée sur la base d'une unique estimation de canal imparfaite/dépassée, laquel
est commune a toutes les antennes d’émission, comme réglage CSIT centralisé (C-CSIT).
Néanmoins, les caractéristiques actuelles et futures des réseaux sans fil rendent cette
hypothese de partage parfait impraticable dans de nombreuses applications. Ceci est
da, par exemple, a la prolifération de réseaux hétérogénes pour lesquels certains nceuds
ont une liaison sans fil, fluctuante ou limitée [69-71], ou applications URLLC dans
lesquelles le partage parfait des informations entrainerait un retard inopérable [3,4,72].
Les environnements dans lesquels des dispositifs simples a faibles capacités visent a
communiquer dans un environnement dense —comme dans les applications loT— tombent
également dans les cas d’utilisation dans lesquels le partage de 'information est & la fois
souhaitable et difficile. Cette évolution des différents cas d’utilisation augmente ’'intérét
sur les systemes avec d’information distribuée, dans lesquels I'information disponible aux
nceuds communicants est non seulement imparfaite mais différente d’un noeud a 'autre.
Ce type de scénarios peut étre inclus dans les problemes dits de Décision d’Equipe [73,74],
dans lesquels différents agents visant le méme but tentent de coopérer en ’absence de

communication parfaite entre eux.

Récemment, I'importance croissante de la coopération des émetteurs non co-localisés
—comme, par exemple, dans les réseaux assistés par des dispositifs aériens sans pilote
(UAV) [11]- a conduit & un nombre croissant de travaux contestant cette hypothese de
centralisation de la CSIT. Dans [75,76], des méthodes ont été mises au point pour réduire
la CSIT nécessaire a 'alignement des interférences MIMO (IA), et le régime a haut
rapport signal-a-bruit (SNR) avec CSIT retardée et locale dans le canal interférence (IC)
est également étudié dans plusieurs travaux [77-79]. L’hypothese d’une CSIT centralisé a
également été contestée dans 'analyse de la capacité du canal d’acces multiple [80] et du

canal relais [81], entre autres.
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Précodage avec Information du Canal Décentralisée

L’hypothese du modele C-CSIT peut modéliser un émetteur multi-antenne ou une
transmission conjointe de différents émetteurs non co-localisés si nous supposons un
réseau d’acces radio dans le nuage (C-RAN) idéal [16]. Dans ces cas, on peut supposer que
la CSI imparfaite est parfaitement partagée entre les antennes d’émission non co-localisées.
Néanmoins, les réseaux hétérogenes a venir comprennent une grande variété d’appareils,
tels que les terminaux d’utilisateurs, les relais drones, les pico-stations, etc., qui cherchent
a coopérer malgré I'absence d’une liaison de retour idéale entre eux. D’autres scénarios
mettant en scene des liens backhaul existants peuvent favoriser un traitement local plutot
que centralisé afin de répondre aux fortes contraintes de latence dérivées de la 5G et des

applications pour 'Internet Tactile [9].

Cet aspect permet d’analyser ce qui se passe lorsque la CSI n’est pas parfaitement
partagé entre les dispositifs, c’est-a-dire lorsque chaque nceud peut avoir un CSI différent.
Ce nouveau configuration s’appelle configuration avec CSIT Distribuée (D-CSIT) [82].
Dans cette configuration réseau, chaque noeud est doté d’une information imparfaite
sur 'état du systeme. Cette information peut étre différente d’un noeud a l’autre, et
en outre la précision d’un nceud peut varier d’un parametre a 'autre. L’hétérogénéité
des réseaux sans fil actuels est donc correctement contenue dans ce modele. Dans cette
these, nous nous concentrons sur le réseau MIMO distribué pour étudier I'impact de
ces divergences entre les noeuds coopérants. Bien qu’il ait été suggéré dans la littérature
passée que les réseaux avec CSIT distribuée pourraient souffrir une réduction sévere de
la performance par rapport aux scénarios classiques de CSIT centralisé [82], un probléme
crucial est comprendre comment les émetteurs peuvent coopérer pour combattre le
manque de cohérence entre les différents informations afin de réduire ’écart par rapport

aux performance centralisée du systéme.

Plusieurs travaux se sont concentrés sur cette configuration avec CSIT distribuée [83],
par exemple, I'analyse des performances d’alignement d’interférence [76] ou 'étude de la
performance de Zéro-Forgage conventionnel dans la limite de grand systeme [84]. Toutefois,
bon nombre des questions et des défis posés par ce contexte demeurent des problemes
non résolus. Par conséquent, il y a un intérét évident a examiner le scénario dans lequel
chaque émetteur peut avoir une information différente sur le canal [85]. Il existe un grand
nombre de systémes distribués différents [83,86-91]. Néanmoins, cette theése s’adresse a ce
que l'on appelle le Réseau Distribué MIMO, dans lequel les émetteurs ont acces a toute
I'information & fournir aux utilisateurs, mais ils ne partagent pas la méme CSIT [82]. Ce
modele survient dans les cas ou les données peuvent étre mises en mémoire tampon ou
en antémémoire [92,93,93,94], mais la CSI doit étre disponible avec un treés faible retard,

comme dans des scénarios a haute mobilité, IoT, réseaux V2X, ou communications sur un
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canal rapidement variant mais avec faible débit de transmission [15,95,96]. En général, le
modele comprend tout cas d’utilisation dans lequel les contraintes de latence entravent le

partage efficace de la CSIT pendant le temps de cohérence des canaux.

a.3 Organisation de la Mémoire de la These

Cette mémoire est divisée dans trois parties. Avant de présenter les contributions de
cette these, nous introduisons sa motivation et sa portée dans la premiere partie, qui
est composée de deux chapitres. Le premier chapitre s’engage a motiver 1’étude du sujet
traité, ainsi qu’a fournir un apercu de I’état de I’art et de nos principales contributions. Le
deuxieme chapitre comprend une description complete du modele et des outils considérés.
En particulier, il décrit le modele mathématique pour 'hypothese de l'information
décentralisée, les facteurs de mérite et la notation employée. En outre, le deuxieme
chapitre présente également quelques scénarios pratiques qui motivent et mettent en
ceuvre le modele théorique. Dans chacune des deux autres parties, nous voulons mettre en
lumiere les limites fondamentales de la communication coopérative et décentralisée avec
une perspective différente. La Partie IT cherche a caractériser les degrés de liberté (DoF)
optimaux des réseaux MIMO avec CSIT décentralisée. La Partie III aborde le probleme
d’un point de vue différent, car nous analysons la performance des schémas de pré-codage
Zero-Forcing dans le cadre d’une coopération distribuée. Le choix du Zéro-Forcage est
motivé par sa simplicité et par le fait qu’il est surtout utilisé dans les transmissions

pratiques avec multiplexage spatial.

Partie I1

La caractérisation DoF réalisée dans la Partie II nécessite généralement une double
analyse : L’analyse de faisabilité, dans laquelle nous développons des schémas qui peuvent
atteindre une certaine performance, et I'inverse, dans laquelle nous établissons des limites
supérieures sur la performance réalisable. Cette partie comprend trois chapitres.

Dans Chapitre 3, nous considérons une systeéme simple avec 2 émetteurs (TX) et
2 récepteurs (RX), d’une antenne chacun, et nous étudions la métrique des degrés
de liberté généralisés (GDoF') d’une transmission conjointe dans laquelle les deux TX
sont dotés d’une information de canal différente. Récemment, le GDoF du parametre
centralisé dans lequel les deux TX partagent les informations de canal a été obtenu
dans [50]. La contribution principale de ce chapitre est la caractérisation GDoF pour son
réseau homologue mais décentralisé dans lequel chaque TX peut avoir une estimation de
canal différente. Nous montrons que la performance GDoF centralisée est atteinte pour
n’importe quelle topologie de pertes de canal et quel que soit le TX qui a la meilleure

estimation pour chaque coefficient de canal. Ce résultat intéressant est obtenu gréace a
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un nouveau schéma de précodage qui s’adapte a la configuration décentralisée, et qui
se base sur 'idée qu’un TX n’utilise ses informations de canal instantanées que si ces
informations sont les plus précises parmi les TXs.

Le chapitre précédent bénéficie de la structure du réseau considérée, dans la mesure
ou il n’existe qu’un seul RX brouillé, et donc un seul TX peut gérer I'interférence si nous
concevons un schéma approprié. De ce fait, I’extension de ces résultats a un réseau étendu
avec plus de noeuds n’est pas simple. Dans le Chapitre 4, nous étudions le réseau MISO
K x K avec CSIT distribuée afin de déterminer dans quelle mesure les résultats précédents
sont généralisables. Nos principales contributions sont doubles : Premierement, nous
dérivons une limite supérieure centralisée pour le cadre avec CSIT distribuée. Cette limite
supérieure est basée sur un cadre assisté par un génie dans lequel les TXs sont capables
de partager leur CSIT local avec les autres TXs. Par conséquent, le systéme assisté par le
génie est un scénario centralisé dans lequel chaque TX obtient K estimations différentes.
Nous montrons que ce réglage atteint le méme DoF qu’'un réglage centralisé dans lequel les
TX ne sont dotés que de I'estimation la plus précise parmi les K estimations disponibles.
Deuxiemement, nous développons un schéma réalisable qui augmente considérablement
le DoF atteint par rapport aux approches connues dans la littérature. Ce schéma montre
que, pour un certain régime de précision CSI, il est encore possible d’atteindre le DoF
du réglage assisté par génie pour toute taille de réseau. La clé pour atteindre ce résultat
est d’exploiter I'idée que le brouillage inévitable peut étre utilisé comme information
collatérale sur le récepteur. Le schéma proposé illustre a quel point il est important de
choisir de maniére appropriée qui transmet et de a qui il transmet dans les systemes
coopératifs décentralisés, car il s’avere que le DoF maximum est parfois obtenu seulement
si une partie des TXs ne transmet aucun signal.

Les deux chapitres précédents sont plus axés sur ’analyse de faisabilité, car la limite
supérieure est obtenue a partir d’un cadre centralisé assisté par un génie. Dans Chapitre 5

nous nous intéressons aux bornes supérieures distribuées.

Partie I11

L’analyse de la Partie III est motivée par les résultats de la Partie II, car une des
principales questions soulevées dans les chapitres précédents est de savoir si ces résultats
s’étendent a des métriques plus fines que DoF et GDoF. Pour répondre a cette question,
nous limitons notre analyse a de simples schémas de transmission dy type Zéro-Forcage.
L’objectif est de révéler la perte de performance a cause du fait de ne partager parfaitement
la CSI. Nous étudions donc I’écart de débit du scénario décentralisé par rapport a le
scénario centralisé dans lequel I'information sur les canaux des émetteurs est parfaitement
partagée. Nous considérons dans cette partie que le précodeur satisfait & une contrainte de

puissance instantanée. Ceci est important en raison de la structure décentralisée du réseau
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considéré, car un émetteur ne peut pas connaitre la normalisation de puissance appliquée
a lautre émetteur parce que chacun le calcule sur la base de ses propres informations de

canal, qui peuvent étre différentes. La Partie III comprend deux chapitres différents.

Dans le Chapitre 6, nous considérons le réglage avec 2 TX et 2 RX utilisant une
seule antenne, comme dans le chapitre initial de la Partie II. Cependant, nous analysons
maintenant 1’écart de débit du réglage distribué lorsque la transmission conjointe utilise
des schémas de Zéro-Forcage pour atténuer le brouillage. La contribution de ce chapitre
est multiple. Tout d’abord, nous montrons que le taux obtenu avec la transmission avec
Zéro-Forcage dans le cadre de CSIT distribuée converge vers le taux atteint dans le
cadre du systeme centralisé assisté par un génie ou la meilleure estimation du canal est
partagée entre les émetteurs. Ce résultat implique qu’il n’y a pas d’écart de débit sur le
régime asymptotique. Deuxiémement, nous développons un schéma de précodage de type
Zéro-Forcage adapté a I’environnement distribué. Ce schéma de précodage s’appuie sur les
principales conclusions du Chapitre 3 pour I’analyse DoF. Troisiemement, nous proposons
de nouvelles stratégies de précodage qui permettent d’augmenter considérablement la
performance & un rapport SNR faible ou moyen. Parmi ces stratégies, il convient de noter
qu’une réduction de la précision de 'information de canal a un TX peut améliorer les
performances. Ce comportement résulte d’'un compromis implicite entre ’exactitude de
la décision prise localement par un certain émetteur et la cohérence —ou ’accord— entre

les décisions des deux émetteurs.

Dans le Chapitre 7, nous étendons ’analyse du chapitre précédent pour le réseau
MISO généralisé avec M émetteurs a antennes multiples et K utilisateurs. Dans le
méme ordre d’idées qu’au Chapitre 4, 'objectif de ce chapitre est de comprendre les
principaux apercgus des résultats du cadre simple en confrontant ’analyse a un cas plus
général. La contribution de ce chapitre est de montrer que le débit de la configuration
centralisée assistée par le génie est atteint asymptotiquement pour toutes les configurations
d’information de canal décentralisée dont le DoF centralisé est atteint. En d’autres termes,
le réseau décentralisé permet non seulement d’obtenir le méme gain de multiplexage que
le réseau centralisé, mais aussi le gain de formation de faisceau. Nous étudions ensuite
comment ce résultat s’étend au régime SNR non asymptotique. Nous développons un
schéma de transmission pour atteindre ces résultats. Ce schéma utilise également 1’idée
que la réduction de la précision de 'information a certains noeuds améliore 1’accord
entre tous les émetteurs. Cependant, il differe du schéma du cas 2x2 par le fait que
les émetteurs disposant d’informations plus précises tentent maintenant de corriger le

brouillage généré par les autres émetteurs.

Pour conclure, nous discutons dans le Chapitre 8 des principales conclusions qui se

dégagent des travaux développés au cours de cette these.
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b Enoncé du probléeme et modele de systeme

Nous considérons un réseau sans fil coopératif dans lequel plusieurs émetteurs visent a
desservir conjointement plusieurs utilisateurs. Pour appliquer cette transmission coopéra-
tive multipoint (CoMP), tous les noeuds émetteurs partagent les symboles d’information
destinés a étre décodés sur les récepteurs. Par conséquent, la transmission conjointe a
pour but d’annuler ou d’éviter que le brouillage causé par d’autres utilisateurs n’affecte
la performance. La principale particularité de notre modele est 'hypothese d’une infor-
mation décentralisée sur ’état des canaux. Par conséquent, chaque émetteur possede une
estimation de canal particuliere, éventuellement différente de celle qui est disponible pour

les autres émetteurs.

b.1 Partage Idéal des Données et Acquisition de CSI Imparfaite

Nous nous concentrons dans cette these sur une configuration sans fil dans laquelle les
symboles de données de 1'utilisateur sont disponibles et transmis conjointement a partir
de tous les TX, alors que les estimations du canal n’ont pu étre obtenues que de maniere
imparfaite aux TX. Telles hypotheses, bien qu’apparemment contradictoires a premiere
vue, sont en fait tres pertinentes dans les réseaux sans fil actuels, et encore plus dans les
futurs réseaux 5G et au-dela. La raison principale en est que, dans de nombreux scénarios
intéressants, la contrainte de latence pour la transmission des données est nettement plus
lache que la contrainte d’obsolescence de la CSI, car cette derniere est liée au temps de
cohérence et est donc tres courte dans de nombreux scénarios de mobilité pertinents.
Cette propriété a pour conséquence que le partage de données (ou la mise en cache) entre
les TX peut étre réalisé dans la pratique tandis que 'acquisition et le partage des CSI
deviennent le principal goulet d’étranglement.

Nous supposons qu’'une coopération limitée entre les TX a eu lieu avant la phase de
transmission, conduisant a une certaine configuration de précision CSI. Par conséquent,
nous supposons que lap précision moyenne de la CSIT reste constante pendant un certain
temps. Le probléme de I’étude de la meilleure stratégie de partage de la CSI dans une
communication limitée et restreinte est un probléme de recherche tres intéressant en soi,

et nous ne discutons donc pas du mécanisme d’acquisition exact des CSI.

b.2 Coopération entre les émetteurs sur la liaison descendante

Nous considérons le réseau MISO dans lequel M TXs servent conjointement & K récepteurs
(RXs) a antenne unique, et out TX j a IN; antennes. Nous désignons le nombre total
d’antennes d’émission par Np £ Z]Ai 1 N;. Les TXs cherchent a délivrer des données s; a

chaque RX i. Les données s; sont indépendants et distribués de maniére identique i.i.d.),
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(a) Plusieurs stations de base. Chacun connait (b) Station de base principale avec tétes-radio
mieux le CSI d’un sous-ensemble de RXs. Ils  télécommandées. Il obtient une estimation de
obtiennent une estimation moins précise des la matrice du canal, puis il transmet les CSI
autres RX via les liaisons sans fil TX-TX. bruyants ou compressés aux TX auxiliaires.

FIGURE 1.1 — Exemples de réseau avec CSIT Distribuée.

chacun étant tiré d’une distribution gaussienne complexe & symétrie circulaire N¢(0,1).
Nous introduisons le vecteur s as s £ [s1, ..., sx|’, qui est connu par tous les TXs.
Le canal allant des M TXs aux K RXs est représenté par la matrice de canaux
H € CK*Nr_ Le vecteur des coefficients de canal de TX k & RX i est représenté
par hi},Ik € CY*Ne | Le vecteur des coefficients de canal depuis tous les TXs & RX i est
représenté par hil € C*N7. Les coefficients de canal sont supposés étre tirés dune
distribution avec une densité de sorte que toutes les sous-matrices de canal soient de rang
complet presque stirement. Nous supposons que tous les TXs sont dotés du vector de
données s. Ils précodent le vecteur s avec un précodeur T. Le signal recu aux RXs est

alors donné par .
y £ VPHTSs + n, (b.1)

ou P est la puissance de transmission, y = [V1,- .- ,yK]T est le vecteur de signal regu et
y; est le signal recu au RX 4. Le vecteur n € CX représente le bruit additive Gaussien
distribué comme N¢(0,1).

La matrice de précodage T peut étre décomposée en plusieurs sous-matrices d’intérét.
Ainsi, T;, € CN+*K désigne la matrice de précodage appliquée & TX k. Le vecteur de
précodage global appliqué aux données de RX i est désigné par t; € CN7*!, Le vecteur
de précodage appliqué a TX k pour les données de RX ¢ est représenté par t; ;. Tout au
long de ce manuscrit, nous supposons différentes contraintes de puissance pour le signal
d’émission. En particulier, nous considérons une contrainte de puissance moyenne, telle
qu'il existe une constante ¢ € RT satisfaisant E[| Tx||] < ¢, et une contrainte de norme

unitaire instantanée par TX, telle que || Ty|| < c.
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b.3 Facteurs de Mérite

La principale mesure de performance considérée est la valeur attendue du débit par
utilisateur. En particulier, dans I’hypothese ol les symboles de données sont distribués

de maniere independant et identique comme N¢(0, 1), le débit attendu pour RX 7 est

1 <1 P ) (b.2)
089 . .

Il a été démontré que trouver les limites fondamentales du taux dans les systemes multi-

donné par
Ri(P) = E

utilisateurs complexes est un probleme difficile a résoudre. Pour cette raison, plusieurs
mesures asymptotiques ont été largement utilisées dans la littérature. Nous présentons

ci-apres les parametres asymptotiques que nous considérons.

Le premiér est la métrique des “Degrés-de-Liberté” (DoF), aussi connue comme gain

de multiplexage. Le DoF est defini comme

DoF £ lim ﬂ.

(b.3)
Intuitivement, le DoF' est ’approximation du premier ordre du débit, et il représente la
pente du débit en fonction du logarithme du SNR P lorsque P approche l'infini. Fig. 1.2
illustre sa signification. Malgré le fait que le DoF présente plusieurs limites en tant que
facteur de mérite, il s’est avéré utile dans la caractérisation de problemes complexes, tels
que CSIT retardée [31,112], CSIT distribuée [113,114], CSIT mixte [59,115], Alignement
des interférences [40,116], caching [94,117—119], etc. L'une des faiblesses du DoF est qu’il
ne tient pas compte de la topologie du réseau —nous appelons “topologie du réseau” la

caractérisation de la perte de chemin du systeme—.

Le concept des Degrés de Liberté Généralisés (GDoF) a été introduit dans le but de
surmonter cette limitation et de prendre en compte la topologie de la perte de chemin.
GDoF est une extension du modele DoF ou 'affaiblissement sur le trajet est modélisé en
fonction du SNR. En effet, GDoF a la méme définition du DoF, mais avec un modele de
canal différent : Considérons un coefficient de canal arbitraire h; ;. Dans le modele de
canal GDoF, il est défini comme h; j, £ \/Pprik—l ik, OU g; 1, est tiré d’une distribution
qui ne dépend pas du parametre P, c’est-a-dire, comme h; ;, dans le modele de canal
précédent. Le parametre 7; , € [0, 1] représente la force relative du canal du lien. GDoF
s’est avéré une approche intéressante puisque les schémas optimaux réalisables pour
I’analyse GDoF permettent également d’obtenir des résultats de capacité avec une erreur

borné par un nombre constant de bits [41,123,124].

Le GDoF subit encore 'autre limitation principale de DoF : Que la métrique ne

fournit aucune connaissance bornée sur le débit atteignable. Dans la Figure 1.2, nous
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DoF4 = DoFp

Rate [bits/s/Hz|

SNR [dB]

Fi1GURE 1.2 — Illustration qualitative de I’approximation affine de deux systemes différents
avec le méme DoF (pente) mais un décalage de débit différent R, = DoF L.

montrons comment deux réglages avec le méme DoF —qui représente la pente du débit—
peuvent atteindre des débits considérablement différents. Néanmoins, la métrique peut
étre affinée pour offrir les résultats d’un débit réalisable avec un écart limité. En particulier,
nous considérons 'approximation affine du débit & un rapport SNR élevé, introduite

in [130]. Selon cette approximation, le taux réalisable peut étre exprimé comme suit [29]
R = DoF log,(P) — Reo + 0(1), (b.4)

oll R désigne le décalage de débit. On définit aussi le décalage de puissance Lo, ol

R = DoF L. Une visualisation illustrative est présentée dans la Fig. [.2.

b.4 Modeéle de CSIT Distribuée

La principale particularité de cette theése est la considération que les TX ne partagent
pas parfaitement leur CSI. Dans le scénario avec CSIT centralisée (C-CSIT), il y a une
seule estimation de la matrice de canal H € CK*N7 | partagée par tous les TXs. Ensuite,

I’hypothese de information imparfaite est modélisée de telle sorte que

hin 2 /1= Zig hig +/Zig Oiks (b.5)

ou d ;1 est la variable de bruit additif et Z indique 1’échelle de variance de ce bruit.
Soient 1%, Onxm, la matrice & uns et la matrice a zéros de taille n x m. Basé sur (b.5),
Iestimation de la matrice de canal peut étre écrite comme H 2 V1kxny —Z©H+
VZ ® A, ou ® représente le produit par élément. La variance du bruit est donnée par la
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matrice deterministique Z.

Le modele de CSIT distribuée (D-CSIT) se caractérise par le fait que chaque TX est
doté d’une estimation éventuellement différente. Ainsi, la singularité clé de ce réglage est
que, pour n’importe quel coefficient de canal, il existe autant d’estimations que de TXs,
chacune d’entre elles localement disponible a un seul TX. Notons que I'estimation a TX j
est égale & HU), étant donnée par HU) £ v/ 1Ny — ZW oH+VZO o AW, Ainsi,
chaque TX a un bruit d’estimation différent (AU)) avec une puissance différente (Z)).

On sait que, dans le cas avec CSIT centralisée, le rapport signal/bruit de 1’estima-
tion doit étre proportionel a P%, avec o > 0, afin d’éviter I'effondrement du gain du
multiplexage [50,132]. Par conséquent, nous supposons que la matrice Z) est définie de
telle sorte que son coefficient (i,k) est donné par ijk) = Pia%, avec 0 < agjk) < 1. Le
53,3 est le parametre de mis en schélle de la précision qui mesure la qualité de
I’estimation du canal a TX j. Nous définissons ’ensemble des parametres comme o, de

sorte que o = {agfiz}z’eN K, jkeN, - Les parametres agsz sont supposés des coefficients a

coefficient «

long terme qui varient lentement. Sur cette base, il est supposé que chaque TX connait le
jeu complet a.. Nous appellerons le TX avec le parametre agjk? le plus grand comme “le

plus informé” ou “le mieux informé”.

b.5 Scénario Centralisé Assisté par un Génie

De plus, nous introduisons la notion de ”"scénario centralisé assisté par un génie” qui
sera utilisée tout au long de cette these. Cette scénario idéal est motivé du fait qu’il
est une borne supérieure. Un scénario centralisé assisté par un génie est un réglage
C-CSIT —dans lequel toutes les TX sont dotées du méme CSI- qui est obtenu a partir
d’un réglage D-CSIT en fournissant des informations supplémentaires aux TXs, soit tout
la. CSI disponible dans d’autres TX, soit la CSI la plus précise. De cette facon, nous
sommes en mesure d’analyser quel est 'impact d’avoir I'information décentralisée ou, en

d’autres termes, quel est le cott de ne pas partager la CSI.

¢ Résultats principaux de I’Analyse DoF et GDoF

Notre premier résultat est I’obtention d’une borne supérieure intuitive pour le cas distribué.
Cette borne est dérivée du scénario centralisé assisté par un génie ol chaque TX a acces

aux estimations de tous les TXs.

Theorem 1.1. Dans le réseau MISO distribué avec K TXs et K RXs, tous ayant

une seule antenne, le GDoF optimal est borné en haut par le GDoF d’un scénario
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centralisé dans lequel tous les TXs ont acces a l’ensemble des estimations {ﬂ(j)}jeNK.
Définissons l’ensemble des parametres de mise a I’échelle comme

as {O%(,le}i,j,keNK et at £ {?g@ az(?lc)}i,keNK' (c.6)

Alors, GDoFPCSIT (a) < GDoFC““SIT (o).

Une fois le GDoF est délimité dans sa limité supérieure, nous développons des schémas
de transmission pour essayer d’atteindre ce GDoF optimal. Le premier résultat s’applique

dans le réseau 2x2.

Lemma I.1. Dans le réseau MISO 2 x 2, le réglage distribué atteint le GDoF du
scénario idéal centralisé avec partage parfait de la CSI, de tel sorte que tous les deux
TXs ont acces a l’ensemble {I:I(l),I:I(Q)}. En définissant ’ensemble des paramétres

de mise a l’échelle comme
& (. " *x A (. 7
o = {oy ) Fijken, € o = {Hé%x ;% }ikeNa s (c.7)
b J 2 b

on obtient que GDoFP ST () = GDoFCCST (a¥).

Nous présentons ci-dessous un exemple simple pour illustrer 'intuition principale qui
se cache derriere les résultats précédents. Nous considérons la métrique DoF, c’est-a-dire
que la perte de chemin de canal n’est pas mise a I’échelle comme le SNR P, et on considere

une répartition de CSI telle que, pour p € [0, 1],

(2) _

TX 1 {af!} =025, af) =025, af] =05, af=05 },
% :1—p,a2,2—1—p}.

Dans la Figure 1.3 nous montrons le DoF obtenu par le schéma proposé (S-ZF) en
fonction de p. Nous comparons ce DoF avec celui d’un scénario centralisé avec la qualité
de CSIT oy, = max(ag},g, afk)), Vi, k € Ng, dont DoF est calculé dans [50], ainsi que avec
Zéro-Forcage (ZF) conventionel et Multiplexage par Répartition dans le Temps (TDM).
Comme indiqué auparavant, le schéma proposé atteint le DoF du cas centralisé assisté
par génie, alors que le schéma basé sur ZF conventionnel, qui est optimal dans le scénario
CSIT centralisé, fonctionne mal face aux différences CSI entre les TXs.

Considérons maintenant un réseau avec K TXs et K RXs. Nous considérons dans
ce cas une structure rangée, dans lequel nous pouvons ordonner les TXs de telle sorte
que 1 > ag’lk) > ag?k) > > 04(]\,:[) > 0. Cette hypothese est formulée de maniere a éviter

i’
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F1GURE 1.3 — DoF pour I'exemple illustratif en fonction du parametre p.

I’augmentation incontrolable des régimes possibles de la CSIT. Puisque la structure triée

s’applique & n’importe quel coefficient de canal dans le méme ordre, on peut supposer que
(7)

écrite comme HO) = H+ P2 A0, La configuration CSIT distribuée multi-utilisateurs

peut donc étre représentée par le vecteur de mise & 1’échelle multi-TX o € RE défini

o) = a9, Par conséquent, 1 > o) > ... > aM) >, et 'estimation & TX j peut étre

comme o = {a(l), ey a(K)}. Nous montrons ci-apres les résultats obtenus pour cette
configuration. Nous divisons la limite inférieure en deux régimes CSIT différents, selon

qu’elle correspond a la limite supérieure centralisée ou non.

Theorem 1.2. Supposons que les premieres m TXs ont la méme précision de CSIT,

e, o) =... = o™ m < K. Définissons alveak comme
Weak A 1
o < (c.8)

Alors, si o) < aVeak le DoF du réseau MISO K x K avec CSIT distribuée satisfait
que DoFPSIT (o) = DoFCSIT (1),

Etonnamment, pour m = 1, le cas le plus hétérogene, le DoF ne dépend que de la qualité
CSI a TX 1, mais avec 'inconvénient de réduire la gamme des configurations CSIT
possibles. Le dernier théoreme montre que les configurations CSIT pour lesquelles la
limite supérieure est étroite. Dans ce qui suit, nous présentons un schéma de transmission

robuste qui s’appuie sur le résultat antérieur et qui est étendu pour s’adapter sans
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restriction a toute configuration CSIT.

Theorem 1.3. Dans le K x K D-CSIT réseau MISO avec parameétres de précision cx,

le DoF est borné en bas par DOFAPZF(a), obtenu en résolvant ce probléeme linéaire :

K k-1

DoFA" () =max) > i (1+(k— 1)a(”) (c.9)
" k=2n=1
K k-1

soumis a ZZ’Y”’“ =1, Yxr =0, (c.10)
k=2n=1
K k—1

DD dnkmk 20, (c.11)

k=2 n=1

ol Y 1 est une variable de répartition des temps et dy, i, 21— k(k—n— 1)a(”).

Considérons maintenant le cas avec 2 RXs, avec N1 et N antennes respectivement, ou il
y a k antennes de transmission avec CSI parfaite et M — k antennes de transmission sans
CSI. Nous avons obtenu la région DoF por ce scénario en fonction de la taille du réseau
et la valeur de k.

Theorem 1.4. La région DoF du cas avec 2 utilisateurs, avec m > Ny antennes de

TX avec CSIT parfaite est donnée par

dy < min(M, Ny)

(d1,d2) € { dy < min(M, Ny) (c.12)
d do—
mhﬂﬂﬂAﬁ#ﬁb)—nL+_héAgz < 1

si N1 <m < min(Ng, M — Ny), et

dy < min(M, Ny)
(d1,d2) € { dy < min(M, Ny) (c.13)
di+do < M

st m > min(Na, M — Ny).
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d Résultats principaux de I’Analyse de ZF Distribué

Nous considérons maintenant une transmission simple avec précodage de Zéro-Forgage.
Nous sommes intéressés a analyser comment les résultat théoriques précédents peuvent
étre étendus a d’autres métriques que le DoF. En particulier, nous voulons caractériser
le débit atteignable dans le régime de SNR haut. Dénotons le débit atteignable dans le
cas distribué comme RHAT (). Ce débit est obtenu avec une transmission utilisant un
schéma de précodage distribué développé dans cette these. De maniere similaire, le débit
moyen atteint par le précodeur ZF centralisé sur la base des meilleures estimations est
noté comme RZ(a*). Notez que a* = [max;en, agj), mMaX;eN, agj)]. Donc, I’écart de

débit entre ces deux scénarios est défini comme
AR £ R () — RHAP (). (d.14)

D’abord, nous considérons le cas avec 2 TXs et 2 RXs, tous ayant une seule antenne. Nous
supposons aussi que 'information de canal est obtenue aux TXs par voie des RXs : Les
RXs ont une information parfaite de leur canal. Donc, ils quantifient cette information
avec un nombre de bits proportionnel au SNR, en utilisant quantification vectorielle avec
des livres-codes aléatoires.

Theorem 1.5. Pour tout ozz(]z > 0, le schéma proposé atteint un débit tel que

lim AR < 0. (d.15)

P—oo

Donc, le débit dans le cas décentralisé atteint asymptotiquement le débit du cas idéal
centralisé ou tous les deux TXs partagent la meilleure estimation. Concentrons-nous a
titre d’exemple sur le cas ot 'information de canal du RX 1 est distribuée de maniere

locale et celle de RX 2 de maniére opposée :

(1) (1) 1 (2) (2)
a; ;=1 a5 =04 a1 =04 a;5=1 .
ATx1— b2 o b2 «— ATX?2
ay] =04 afh=1 1 af]=04 of)=1

Notez que cette configuration correspond au cas ou chaque TX a ’estimation la plus
précise pour son propre coefficient vers RX 1, et chaque TX a l’estimation la plus précise
pour le coefficient de 'autre TX vers RX2. Nous constatons dans la Fig. [.4 que le schéma
proposé offre une performance nettement supérieure par rapport au ZF naif et au TDM.

De plus, il converge vers le cas idéal ou les deux TXs partagent la meilleure estimation.
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On présente dans la Fig. 1.5 le pourcentage du débit du ZF centralisé idéal qui est atteint
par le schéma de transmission proposé pour toutes les configurations d’information de

canal possibles. On montre donc cote a cote le pourcentage atteint a P = 30, 50 et 80dB.

50 1
--- ZF Centralisé idéal
—— Schéma Proposé
TDM
N’
am
w30
~
2z
é
= 20|
o
A
10
0 5 | | | | | | | J
0 10 20 30 40 50 60 70 80

P [dB]
FI1GURE 1.4 — Débit total pour le cas ou l'information de canal du RX 1 est « locale » et
celle de RX 2 est « opposée ».

130 dB =55 dB mm80 dB —e—ZF Naif
1 ..........................................................................
] [ ] — e
0.8 | - Lo
Lo
.e_
=.
0.6 Lo
0.4+
0.2+
0
RX1: Locale TX1 TX1 Locale TX1 Oppos.
RX2: Locale Locale TX1 Oppos. Oppos. Oppos.

FI1GURE 1.5 — Pourcentage du débit centralisé « idéal » atteint par le schéma proposé et
par zéro-forgage naif pour P € {30,55,80} dB.
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Motivés par ce résultat, nous étendons le résultat au cas général avec M TXs —ou
TX j a N; antennes— et RX s avec qu'un seule antenne. L’expansion a ce scénario général
n’est pas triviale, dans la mesure que dans ce cas il faut aussi récupérer le gain de
formation de faisceaux.

Nos principales contributions s’appuient sur un nouveau schéma de précodage de
type ZF appelé ZF Décentralisé et Cohérent (CD-ZF). En bref, le précodage appliqué
a chaque TX est différent si le TX est le mieux informé ou non. Soit R(as) le débit
atteignable pour notre scénario distribué. De méme, supposons que R*(a1) soit le
débit obtenu par un schéma ZF sur le scénario idéal assisté par génie comme décrit
auparavant. Par conséquent, I’écart de débit entre ces deux configurations est défini comme

AR £ R*(aM) — R(as).Nous pouvons maintenant énoncer notre résultat principal.

Theorem 1.6. Dans le réseau MISO avec CSIT distribué, ou TX 1 a N1 > K —1
antennes et M) > 0, le débit moyen atteint par les schémas de type ZF dans le
cadre du CSIT centralisé assisté par génie est atteint asymptotiquement. Alors,

lim R*(aY) — R(aus) = 0. (d.16)

P—oo

Remarquablement, ce théoreme implique qu’il est possible d’atteindre non seulement
le gain de multiplexage mais aussi le gain de formation de faisceau obtenu par le cas
centralisé avec N7 antennes, méme si seulement N7 antennes sont dotées de la meilleure
précision. La contrainte N1 > K — 1, c¢’est-a-dire que le TX avec la CSI la plus précise a
un nombre d’antennes au moins égal au nombre de RXs brouillés, provient du fait que si
N1 < K — 1 l'utilisation de ZF n’est pas suffisant pour atteindre le DoF du cas centralisé,

et donc limp_,oo R*(aM)) — R(aps) = oo.

e Conclusions et Perspectives

Dans cette these, nous nous sommes concentrés sur la caractérisation du régime SNR élevé
du réseau distribué MIMO, dans lequel un ensemble de TXs servent conjointement un
ensemble d’utilisateurs avec la particularité que les informations disponibles a chaque TX
peuvent étre différentes ou peuvent avoir une précision différente. Nous avons montré que
I’environnement distribué atteint la performance de I’environnement centralisé idéal dans
lequel les TXs peuvent parfaitement partager leur CSIT. La maniére d’obtenir ce résultat
asymptotique est intéressante en soi. Il convient de noter que ces performances optimales
sont obtenues en réduisant la précision du pré-codeur. En particulier, la principale

conclusion tirée du schéma proposé est qu’il existe un compromis implicite entre la
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précision locale & chaque TX et la cohérence entre les TXs. Ainsi, la réduction de la
précision a certains nceuds —normalement a ceux dont la précision n’est pas la meilleure—
permet d’améliorer la cohérence de la décision prise par tous les TXs, puisque les TXs
les mieux informés sont capables d’estimer ces parametres de précision réduite, et donc

de corriger le brouillage généré.

Nous avons montré que les gains de coopération sont moins sensibles aux déficiences
du CSIT que ce que I'on suppose habituellement. L’idée clé est que nous devons développer
des systémes qui sont conscients et réactifs a ’allocation CSIT, puisque les systemes
communs induisent une diminution significative de la performance. Bien que nous soyons
capables de compenser la décentralisation de I'information avec des algorithmes appropriés
dans certains cas, atteindre la performance centralisée est impossible pour de nombreux
scénarios distribués. Une conclusion intéressante de cette these est 1'idée que 'ajout
d’une structure a la configuration CSIT permet d’augmenter les performances réalisables.
Motivé par ce comportement, une analyse intéressante a faire est d’étudier comment cette
réduction de performance face a la réduction d’overhead implicite dans les environnements
distribués. Ainsi, une performance réduite peut étre avantageuse par rapport a une
performance centralisée idéale si celle-ci implique une quantité d’informations impossible
a partager. Les approches mises au point pour atteindre les résultats susmentionnés sont
jugées utiles dans de nombreux contextes décentralisés ou pour prendre des décisions
d’équipe. En effet, le compromis entre la cohérence et ’exactitude est un compromis

inhérent aux probléemes de décision en équipe.

I1 est nécessaire de comprendre a quel point les résultats exposés sont dépendants
de 'hypothese d'un partage parfait des données d’information de 'utilisateur. Un autre
sujet intéressant est de déplacer la perspective considérée ici —celle du développement
de la meilleure transmission pour une allocation CSI donnée— vers I’analyse inverse de
Poptimisation de l'allocation CSI soumise a une certaine stratégie de transmission et a
un protocole de rétroaction. De plus, la prise en compte du partage de la CSIT dans la

mesure de la performance est une étape ultérieure dans I'analyse des réseaux décentralisés.

En conclusion, on s’attend a ce que les futurs réseaux sans fil 5G et au-dela s’adaptent
a des scénarios tres hétérogenes et a des spécifications inédites, comme I'IoT, des réseaux
a tres haute vitesse (réseaux V2X), ou a des contraintes de délais extrémement exigeantes
(URLLC). Ces scénarios surviennent & la suite de 1’élargissement des cas d’utilisation, &
mesure que de nouvelles applications primordiales sont envisagées, par exemple les com-
munications haptiques, les services médicaux a distance ou ’automatisation industrielle.
Donc, 'analyse d’autres scénarios coopératifs, ainsi que des scénarios non coopératifs ou
I’inclusion d’une coopération partielle est possible, est un sujet tres intéressant qui peut

étre analysé dans la recherche future.
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f Publications

Les publications suivantes sont le résultat des travaux réalisés au cours du doctorat.

f.1 Conférences

f.2

Antonio Bazco, Paul de Kerret, David Gesbert, and Nicolas Gresset, “Generalized
Degrees-of-Freedom of the 2-user MISO Broadcast Channel with Distributed CSIT,”
dans Proc. IEEE International Symposium on Information Theory (ISIT), Juin
2017, pp. 1092-1096.

Antonio Bazco, Paul de Kerret, David Gesbert, and Nicolas Gresset, “Méthode
de transmission robuste au partage imparfait de l'information de canal entre
transmetteurs,” dans Proc. Colloque GRETSI, Septembre 2017.
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