E. Allaire, P. Bruneval, C. Mandet, J. P. Becquemin, and J. B. Michel, The immunogenicity of the extracellular matrix in arterial xenografts, Surgery, vol.122, pp.73-81, 1997.

R. Andriamanalijaona, E. Duval, M. Raoudi, S. Lecourt, J. T. Vilquin et al.,

P. and B. K. , Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture, Osteoarthritis Cartilage, vol.16, pp.1509-1527, 2008.

H. Aoki, N. Tomita, Y. Morita, K. Hattori, Y. Harada et al., Culture of chondrocytes in fibroin-hydrogel sponge, Biomed Mater Eng, vol.13, pp.309-325, 2003.

M. Baccarani-contri, D. Vincenzi, F. Cicchetti, G. Mori, and I. Pasquali-ronchetti,

, Immunocytochemical localization of protéoglycanes within normal elastin fibers, Eur J Cell Biol, vol.53, pp.305-317, 1990.

S. F. Badylak, The extracellular matrix as a scaffold for tissue reconstruction, Semin Cell Develop Biol, vol.13, pp.377-83, 2002.

S. F. Badylak, B. N. Brown, T. W. Gilbert, K. A. Daly, A. Huber et al., Biologic scaffolds for constructive tissue remodeling, Biomaterials, vol.32, pp.316-325, 2011.

S. F. Badylak and T. W. Gilbert, Immune response to biologic scaffold materials, Seminars in Immunology, vol.20, pp.109-125, 2008.

C. Baugé and K. Boumédiene, Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments, Stem Cells Int, p.438026, 2015.

K. Benders, . Weeren-pr-van, S. F. Badylak, D. Saris, W. Dhert et al., Extracellular matrix scaffolds for cartilage and bone regeneration, Trends Biotechnol, vol.3, pp.169-76, 2013.

A. Berghaus, K. Stelter, A. Naumann, and J. M. Hempel, Ear Reconstruction with Porous Polyethylene Implants, Adv Otorhinolaryngol, vol.68, pp.53-64, 2010.

R. Betti, E. Inselvini, L. Gualandri, and C. Crosti, Basal cell carcinomas of the auricular region: a study of 23 cases, J Dermatol, vol.22, pp.655-663, 1995.

B. Brent, Ear reconstruction with an expansile framework of autogenous rib cartilage, Plast Reconstr Surg, vol.53, pp.619-647, 1974.

B. N. Brown and S. F. Badylak, Extracellular matrix as an inductive scaffold for functional tissue reconstruction, Transl Res, vol.163, pp.268-85, 2014.

B. N. Brown, R. Londono, S. Tottey, L. Zhang, K. A. Kukla et al.,

, Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials, Acta Biomater, vol.8, pp.978-87, 2012.

Y. Cao, J. P. Vacanti, K. T. Paige, J. Upton, and C. A. Vacanti, Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear

, Plast Reconstr Surg, vol.100, pp.303-307, 1997.

C. Chang, C. Chen, C. Liao, F. Lin, Y. Hsu et al., Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells, J Biomed Mater Res A, vol.102, pp.2248-57, 2014.

S. C. Chang, G. Tobias, A. K. Roy, C. A. Vacanti, and L. J. Bonassar, Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding, Plast Reconstr Surg, vol.112, pp.793-802, 2003.

G. P. Chen, T. Ushida, and T. Tateishi, Scaffold design for tissue engineering, Macromolecular Bioscience, vol.2, pp.67-77, 2002.

M. Chiou, Y. Xu, and M. T. Longaker, Mitogenic and chondrogenic effects of fibroblast growth factor 2 in adipose-derived mesenchymal cells, Biochem Biophys Res Commun, vol.343, pp.644-52, 2006.

L. Chiu, J. F. Weber, and S. D. Waldman, Engineering of scaffold-free tri-layered auricular tissues for external ear reconstruction, Laryngoscope, vol.129, pp.272-83, 2019.

J. S. Choi, H. J. Yang, B. S. Kim, J. D. Kim, J. Y. Kim et al., Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering, J Control Release, vol.139, pp.2-7, 2009.

M. N. Collins and . Birkinshaw, Hyaluronic acid based scaffolds for tissue engineering -A review, Carbohydr polym, vol.92, pp.1262-79, 2013.

B. S. Conklin, E. R. Richter, K. L. Kreutziger, D. S. Zhong, and C. Chen, Development and evaluation of a novel decellularized vascular xenograft, Med Eng Phys, vol.24, pp.173-83, 2002.

P. M. Crapo, T. W. Gilbert, and S. F. Badylak, An overview of tissue and whole organ decellularization processes, Biomaterials, vol.32, pp.3233-3276, 2011.

N. L. Deep, A. E. Glasgow, E. B. Habermann, J. L. Kasperbauer, and L. M. Carlson, Melanoma of the external ear: A population-based study, Am J Otolaryngol -Head Neck Med Surg, vol.38, pp.309-324, 2017.

J. Duisit, G. Orlando, D. Debluts, L. Maistriaux, D. Xhema et al., Decellularization of the Porcine Ear Generates a Biocompatible, Nonimmunogenic Extracellular Matrix Platform for Face Subunit Bioengineering, Ann Surg, vol.267, pp.1191-201, 2018.

J. Duisit, L. Maistriaux, T. A. Orlando, G. Joris, V. Coche et al.,

G. , V. E. Rieben, R. Gianello, P. Lengelé, and B. , Bioengineering a Human Face Graft: The Matrix of Identity, Ann Surg, vol.266, pp.754-64, 2017.

J. Duisit, H. Amiel, T. Wüthrich, A. Taddeo, A. Dedriche et al.,

D. Magee, E. Vögelin, D. Harriman, C. Dessy, G. Orlando et al., Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering, Acta Biomater, vol.73, pp.339-54, 2018.

J. Dusseldorp, A. Hodges, A. Patel, A. Marchac, and F. Firmin, Reconstruction of Punitive Ear Amputations in Uganda: A Unique Surgical Burden of Disease, J Craniofac Surg, vol.26, pp.1196-1204, 2015.

E. Duval, M. Bouyoucef, S. Leclercq, C. Baugé, and K. Boumédiene, Hypoxia inducible factor 1 alpha down-regulates type I collagen through Sp3 transcription factor in human chondrocytes, IUBMB Life, vol.68, pp.756-63, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354099

E. Duval, C. Baugé, R. Andriamanalijaona, H. Bénateau, S. Leclercq et al., Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering, Biomaterials, vol.33, pp.6042-51, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01149536

E. Duval, S. Leclercq, J. M. Elissalde, M. Demoor, P. Galéra et al., Hypoxia-inducible factor 1alpha inhibits the fibroblast-like markers type I and type III collagen during hypoxiainduced chondrocyte redifferentiation: hypoxia not only induces type II collagen and aggrecan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1alpha-dependent redifferentiation of chondrocytes, Arthritis Rheum, vol.60, pp.3038-3086, 2009.

R. C. Elkins, P. E. Dawson, S. Goldstein, S. P. Walsh, and K. S. Black,

, Ann Thorac Surg, vol.71, pp.428-460, 2001.

A. F. Elsaesser, S. Schwarz, H. Joos, L. Koerber, R. E. Brenner et al., Characterization of a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features and their potential for in vivo cartilage regeneration strategies, Cell Biosci, vol.13, pp.6-11, 2016.

M. J. Fenton, M. W. Vermeulen, S. Kim, M. Burdick, R. M. Strieter et al., Induction of gamma interferon production in human alveolar macrophages by Mycobacterium tuberculosis, Infect Immun, vol.65, pp.5149-56, 1997.

T. L. Fernandes, J. P. Santanna, I. Frisene, J. P. Gazarini, C. Pinheiro et al.,

A. J. Hernandez and D. F. Bueno, Systematic review of human dental pulp stem cells for cartilage regeneration, Tissue Eng Part B Rev, 2019.

F. Firmin, La reconstruction auriculaire en cas de microtie. Principes, méthodes et classification, Ann Chir Plast Esthét, vol.46, pp.447-66, 2001.

F. Firmin and A. Marchac, A novel algorithm for autologous ear reconstruction, Semin Plast Esthet, vol.25, pp.257-64, 2011.

F. Fi-i, M. Ha, and A. , A Chi Plast Esthet, vol.56, p.408

F. Firmin and A. Marchac, Malfo atio s de l'o eille, Ann Chir Plast Esthet, vol.61, pp.420-428, 2016.

I. Fulco, S. Miot, M. D. Haug, A. Barbero, A. Wixmerten et al., Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial, Lancet, vol.384, pp.337-383, 201426.

D. Gault, Post traumatic ear reconstruction, J Plast Reconstr Aesth Surg, vol.61, pp.5-12, 2008.

T. W. Gilbert, J. M. Freund, and S. F. Badylak, Quantification of DNA in biologic scaffold materials, J Surg Res, vol.152, pp.135-144, 2009.

T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, Decellularization of tissues and organs, Biomaterials, vol.27, pp.3675-3683, 2006.

T. W. Gilbert, D. B. Stolz, F. Biancaniello, A. Simmons-byrd, and S. F. Badylak, Production and characterization of ECM powder: implications for tissue engineering applications, Biomaterials, vol.26, pp.1431-1436, 2005.

M. F. Griffin, Y. Premakumar, A. M. Seifalian, M. Szarko, and P. E. Butler, Biomechanical Characterisation of the Human Auricular Cartilages; Implications for Tissue Engineering, Ann Biomed Eng, vol.44, pp.3460-3467, 2016.

H. E. Gruber, G. L. Hoelscher, K. Leslie, J. A. Ingram, and E. N. Hanley, Three-dimensional culture of human disc cells within agarose or a collagen sponge: assessment of proteoglycan production, Biomaterials, vol.27, pp.371-377, 2006.

T. Gründer, C. Gaissmaier, J. Fritz, R. Stoop, P. Hortschansky et al., Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads, Osteoarthritis Cartilage, vol.12, pp.559-67, 2004.

A. Haisch, Ear Reconstruction through Tissue Engineering, Adv Otorhinolaryngol, vol.68, pp.108-127, 2010.

A. Haisch, S. Klaring, A. Gröger, C. Gebert, and M. Sittinger, A tissue-engineering model for the manufacture of auricular shaped cartilage implants, Eur Arch Otorhinolaryngol, vol.259, pp.316-337, 2002.

J. Harris, B. Kallen, and E. Robert, The epidemiology of anotia and microtia, J Med Genet, vol.33, pp.809-813, 1996.

J. M. Hempel, D. Knöbl, A. Berghaus, and T. Braun, Prospective assessment of quality of life after auricular reconstruction with porous polyethylene, HNO, vol.62, pp.564-573, 2014.

C. Henrionnet, G. Liang, E. Roeder, M. Dossot, H. Wang et al., Hypoxia for Mesenchymal Stem Cell Expansion and Differentiation: The Best Way for Enhancing TGFß-Induced Chondrogenesis and Preventing Calcifications in Alginate Beads, Tissue Eng Part A, vol.23, pp.913-922, 2017.

S. Hong and G. Kim, Electrospun micro/nanofibrous conduits composed of poly(epsilon

, Biomed Mater Res B Appl Biomater, vol.94, pp.421-429, 2010.

Y. Hong, K. Takanari, N. J. Amoroso, R. Hashizume, E. P. Brennan-pierce et al., An elastomeric patch electrospun from a blended solution of dermal extracellular matrix and biodegradable polyurethane for rat abdominal wall repair, Tissue Eng Part C Methods, vol.18, pp.122-154, 2012.

N. Horlock, E. Vögelin, E. T. Bradbury, A. O. Grobbelaar, and D. T. Gault, Psychosocial outcome of patients after ear reconstruction: a retrospective study of 62 patients, Ann Plast Surg, vol.54, pp.517-541, 2005.

M. F. Ishak, G. See, C. K. Hui, A. Abdullah, L. Saim et al., The formation of human auricular cartilage from microtic tissue: An in vivo study, Int J Pediatr Otorhinolaryngol, vol.79, pp.1634-1643, 2015.

N. Isogai, S. Asamura, T. Higashi, Y. Ikada, S. Morita et al., Tissue engineering of an auricular cartilage model utilizing cultured chondrocyte-poly(L-lactideepsilon-caprolactone) scaffolds, Tissue Eng, vol.10, pp.673-87, 2004.

N. Isogai, T. Morotomi, S. Hayakawa, H. Munakata, Y. Tabata et al., Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering an auricular cartilage construct, J Biomed Mater Res A, vol.74, pp.408-426, 20051.

Y. H. Jeon, J. H. Choi, J. K. Sung, T. K. Kim, B. C. Cho et al., Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering, J Craniofac Surg, vol.18, pp.1249-58, 2007.

A. L. Johns, R. E. Lucash, D. D. Im, and S. L. Lewin, Pre and post-operative psychological functioning in younger and older children with microtia, J Plast Reconstr Aesth Surg, vol.68, pp.492-499, 2015.

W. Kafienah, M. Jakob, O. Démarteau, A. Frazer, M. D. Barker et al., Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes, Tissue Eng, vol.8, pp.817-843, 2002.

D. A. Keith, M. A. Paz, P. M. Gallop, and M. J. Glimcher, Histologic and biochemical identification and characterization of an elastin in cartilage, J Histochem Cytochem, vol.25, pp.1154-62, 1977.

S. H. Kamil, M. P. Vacanti, C. A. Vacanti, and R. D. Eavey, Microtia chondrocytes as a donor source for tissue-engineered cartilage, Laryngoscope, vol.114, pp.2187-90, 2004.

S. H. Kamil, K. Kojima, M. P. Vacanti, L. J. Bonassar, C. A. Vacanti et al., In vitro tissue engineering to generate a human sized auricle and nasal tip, Laryngoscope, vol.113, pp.90-94, 2003.

H. Karimi, S. A. Emami, and M. K. Olad-gubad, Bone Marrow Stem Cells and Ear Framework Reconstruction, J Craniofac Surg, vol.27, pp.2192-2198, 2016.

H. J. Kim, S. Lee, H. Yun, X. Y. Yin, S. H. Kim et al., In vivo degradation profile of porcine cartilage-derived extracellular matrix powder scaffolds using a non-invasive fluorescence imaging method, J Biomater Sci Polym, vol.27, pp.177-90, 2016.

H. J. Kim, K. K. Kim, I. K. Park, B. S. Choi, J. H. Kim et al., Hybrid scaffolds composed of hyaluronic acid and collagen for cartilage regeneration, Tissue Eng Regen Med, vol.9, pp.57-62, 2012.

S. Kobayashi, T. Takebe, M. Inui, S. Iwai, H. Kan et al., Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium, Proc Natl Acad Sci, vol.108, pp.14479-84, 2011.

M. N. Kolodzynski, M. Kon, S. Egger, and C. C. Breugem, Mechanisms of ear trauma and reconstructive techniques in 105 consecutive patients, Eur Arch Otorhinolaryngol, vol.274, pp.723-731, 2017.

K. Z. Konakci, B. Bohle, R. Blumer, . Hoetzeneckerw, G. Roth et al., Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery, Eur J Clin Invest, vol.35, pp.17-23, 2005.

R. Langer and J. P. Vacanti, Tissue engineering, Science, vol.260, pp.920-926, 1993.

R. Langer, Tissue engineering. Mol Ther, vol.1, pp.12-17, 2000.

S. Lewin, Complications after Total Porous Implant Ear Reconstruction and Their Management, Facial Plast Surg, vol.31, pp.617-642, 2015.

D. Li, W. Chin, J. Wu, Q. Zhang, F. Xu et al., Psychosocial outcomes among microtia patients of different ages and genders before ear reconstruction, Aesthetic Plast Surg, vol.34, pp.570-576, 2010.

T. Li, Z. Sui, A. Matsuno, H. Ten, K. Oyama et al., Fabrication and Evaluation of a Xenogeneic Decellularized Nerve-Derived Material: Preclinical Studies of a New Strategy for Nerve Repair, Neurotherapeutics, 2019.

S. Y. Lim, D. Lee, K. S. Oh, N. B. Bang, S. I. Mun et al.,

, Concealment, depression and poor quality of life in patients with congenital facial anomalies

, J Plast Reconstr Aesthet Surg, vol.63, pp.1982-1991, 2010.

C. H. Lin, I. C. Yang, C. H. Tsai, H. W. Fang, and H. Ma, Auricular Tissue Engineering Using Osteogenic Differentiation of Adipose Stem Cells with Small Intestine Submucosa, Plast Reconstr Surg, vol.140, pp.297-305, 2017.

Y. Liu, K. N. Stewart, E. Bishop, C. J. Marek, D. C. Kluth et al., Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo, J Immunol, vol.180, pp.6270-6278, 2008.

X. Long, N. Yu, J. Huang, and X. Wang, Complication rate of autologous cartilage microtia reconstruction: a systematic review, Plast Reconstr Surg Glob Open, vol.7, pp.57-63, 2013.

L. Longobardi, L. O'rear, and S. Aakula, Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-? sig ali g, J Bo e Mineral Research, vol.21, pp.626-662, 2006.

D. V. Luquetti, C. L. Heike, A. V. Hing, M. L. Cunningham, and T. C. Cox, Microtia: epidemiology and genetics, Am J Med Genet A, vol.158, pp.124-163, 2012.

I. Martin, M. Jakob, and D. J. Schaefer, From Tissue Engineering to Regenerative Surgery

. Ebiomedicine, , vol.28, pp.11-13, 2018.

C. Merceron, C. Vinatier, J. Clouet, C. , S. Weiss et al., Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering, Joint Bone Spine, vol.75, pp.672-676, 2008.

Y. Melgarejo-ramírez, R. Sánchez-sánchez, J. García-lópez, A. M. Brena-molina, and -. Gutiérrez,

C. Gómez, C. Ibarra, and C. Velasquillo, Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies, Cell Tissue Bank, vol.17, pp.481-490, 2016.

M. Mizuno, T. Takebe, S. Kobayashi, S. Kimura, M. Masutani et al., Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes, Transplant Proc, vol.46, pp.1217-1238, 2014.

A. Monroy, K. Kojima, and M. A. Ghanem, Tissue e gi ee ed a tilage ioshell p ote ti e layer for subcutaneous implants, Int J Pediatr Otorhinolaryngol, vol.71, pp.547-52, 2007.

K. A. Morrison, B. P. Cohen, O. Asanbe, X. Dong, A. Harper et al., Optimizing cell sourcing for clinical translation of tissue engineered ears, Biofabrication, vol.9, issue.5, p.15004, 2016.

K. A. Morrisson, B. P. Cohen, O. Asanbe, X. Dong, A. Harper et al., Optimizing cell sourcing for clinical translation of tissue engineering ears, Biofabrication, vol.9, p.15004, 2016.

P. T. Moser, M. Gerli, G. R. Diercks, D. Evangelista-leite, J. M. Charest et al., Creation of Laryngeal Grafts from Primary Human Cells and Decellularized Laryngeal Scaffolds, Tissue Eng Part A, 2019.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, vol.8, pp.958-69, 2008.

H. Muir, The chondrocytes, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules, Bioessays, vol.17, pp.1039-1087, 1995.

H. W. Murray, Interferon-gamma, the activated macrophage, and host defense against microbial challenge, Ann Intern Med, vol.108, pp.595-608, 1988.

S. Nagata, Modification of the stages in total reconstruction of the auricle: part I. Grafting the three-dimensional costal cartilage framework for lobule-type microtia, Plast Reconst Surg, vol.93, pp.221-251, 1994.

S. Nagata, Modification of the stages in total reconstruction of the auricle: part II. Grafting the three-dimensional costal cartilage framework for concha-type microtia, Plast Reconst Surg, vol.93, pp.231-273, 1994.

S. Nagata, Modification of the stages in total reconstruction of the auricle: part III. Grafting the three-dimensional costal cartilage framework for small concha-type microtia, Plast Reconst Surg, vol.93, pp.243-53, 1994.

S. Nagata, Modification of the stages in total reconstruction of the auricle: part IV. Ear elevation for the constructed auricle, Plast Reconst Surg, vol.93, pp.254-66, 1994.

A. Naumann, J. E. Dennis, A. Awadallah, D. A. Carrino, J. M. Mansour et al.,

, Immunochemical and Mechanical Characterization of Cartilage Subtypes in Rabbit, J Histochem Cytochem, vol.50, pp.1049-1058, 2002.

A. Naumann, J. E. Dennis, J. Aigner, J. Coticchia, J. Arnold et al., Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system, Tissue Eng, vol.10, pp.1695-706, 2004.

L. Na-e, K. H. Patel, A. Es-aeili, R. A. Rippel, M. Bi-hall et al., Tissue engineering: revolution and challenge in auricular cartilage reconstruction, Plast Reconstr Surg, vol.129, pp.1123-1160, 2012.

M. W. Neumeister, T. Wu, and C. Chambers, Vascularized Tissue-Engineered Ears, Plast. Reconstr. Surg, vol.117, pp.116-139, 2006.

L. Nimeskern, L. Utomo, L. Lehtoviita, G. Fessel, J. G. Snedeker et al., Tissue composition regulates distinct viscoelastic responses in auricular and articular cartilage, J Biomechanics, vol.49, pp.344-352, 2016.

F. J. O'b-ie, Biomaterials and scaffolds for tissue engineering, Materials Today, vol.14, pp.88-95, 2011.

M. F. O'brien, S. Goldstein, S. Walsh, K. S. Black, R. Elkins et al., The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation, Semin Thorac Cardiovasc Surg, vol.11, pp.194-200, 1999.

H. C. Ott, T. S. Matthiesen, S. K. Goh, L. D. Black, S. M. Kren et al., Perfusiondecellularized matrix: using nature's platform to engineer a bioartificial heart, Nat Med, vol.14, pp.213-234, 2008.

T. D. Patel, O. Y. Chin, S. Baredes, J. A. Eloy, and Y. M. Ying, A Population Based Analysis of Melanoma of the External Ear, Otol Neurotol, vol.39, pp.137-179, 2018.

A. Papadopoulos, D. A. Bichara, and X. Zhao, Injectable and photopolymerizable tissueengineered auricular cartilage using poly(ethylene glycol) dimethacrylate copolymer hydrogels, Tissue Eng Part A, vol.17, pp.161-170, 2011.

S. Pizette and L. Niswander, BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes, Dev Biol, vol.219, pp.237-249, 2000.

M. M. Pleumeekers, L. Nimeskern, W. L. Koevoet, M. Karperien, K. S. Stok et al., Cartilage Regeneration in the Head and Neck Area: Combination of Ear or Nasal Chondrocytes and Mesenchymal Stem Cells Improves Cartilage Production, Plast Reconstr Surg, vol.136, pp.762-74, 2015.

V. C. Quatela, D. A. Sherris, and R. N. Rosier, The Human Auricular Chondrocyte. Responses to Growth Factors, Arch Otolaryngol Head Neck Surg, vol.119, pp.32-37, 1993.

J. Reinisch and Y. Tahiri, Polyethylene ear reconstruction: a state of the art surgical journey

, Plast Reconstr Surg, vol.141, pp.461-70, 2018.

P. B. Saadeh, B. Brent, B. J. Mehrara, D. S. Steinbrech, V. Ting et al., Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development, Ann Plast Surg, vol.42, pp.509-522, 1999.

S. Sart, Y. Schneider, and A. Sn, Ear mesenchymal stem cells: An efficient adult multipotent cell population fit for rapid and scalable expansion, J Biotechnol, vol.139, pp.291-300, 2009.

E. Schipani, Hypoxia and HIF-1 alpha in chondrogenesis, Semin Cell Dev Biol, vol.16, pp.539-585, 2005.

C. Schneider, J. Lehmann, G. J. Van-osch, F. Hildner, A. Teuschl et al., Systematic Comparison of Protocols for the Preparation of Human Articular Cartilage for Use as Scaffold Material in Cartilage Tissue Engineering, Tissue Eng Part C Methods, vol.22, pp.1095-107, 2016.

S. J. Shieh, S. Terada, and J. P. Vacanti, Tissue engineering auricular reconstruction: in vitro and in vivo studies, Biomaterials, vol.25, pp.1545-57, 2004.

Y. S. Shin, J. W. Choi, and J. K. Park, Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold, Ann Biomed Eng, vol.43, pp.1003-1016, 2015.

J. M. Singelyn, J. A. Dequach, S. B. Seif-naraghi, R. B. Littlefield, P. J. Schup-magoffin et al., Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering, Biomaterials, vol.30, pp.5409-5425, 2009.

Y. J. Son, I. S. Yoon, J. H. Sung, H. J. Cho, S. J. Chung et al., Porous hyaluronic acid/sodium alginate composite scaffolds for human adipose-derived stem cells delivery, Int J Biol Macromol, vol.61, pp.175-81, 2013.

T. W. Stapleton, J. Ingram, J. Katta, R. Knight, S. Korossis et al., Development and characterization of an acellular porcine medial meniscus for use in tissue engineering, Tissue Eng Part A, vol.14, pp.505-523, 2008.

G. Staub, M. Revol, P. May, J. C. Bayol, O. Verola et al., Ma ges d'e e se hi u gicale et taux de récidive des carcinomes cutanés. Etude prospective de 844 cas, Ann Chir Plast Esthet, vol.53, pp.389-98, 2008.

S. Stephan and J. Reinisch, Auricular Reconstruction Using Porous Polyethylene Implant Technique, Facial Plast Surg Clin North Am, vol.26, pp.69-85, 2018.

A. Sterodimas and J. De-faria, Human auricular tissue engineering in an immunocompetent animal model, Aesthet Surg J, vol.33, pp.283-292, 2013.

K. R. Stone, G. Ayala, J. Goldstein, R. Hurst, A. Walgenbach et al., Porcine cartilage transplants in the cynomolgus monkey. Transplantation of alpha-galactosidase-treated porcine cartilage, Transplantation, vol.65, pp.1577-83, 1998.

T. B. Strom, P. Roy-chaudhury, R. Manfro, X. X. Zheng, P. W. Nickerson et al., The Th1/Th2 paradigm and the allograft response, Curr Opin Immunol, vol.8, pp.688-93, 1996.

X. Su, J. Wang, H. Kang, G. Bao, and L. Liu, Effects of dynamic radial tensile stress on fibrocartilage differentiation of bone marrow mesenchymal stem cells, Biomed Eng Online, vol.2020, issue.5, pp.8-20

R. C. Tanzer, Total reconstruction of the external ear, Plast Reconstr Surg Transplant Bull, vol.23, pp.1-15, 1959.

V. Ting, C. D. Sims, L. E. Brecht, J. G. Mccarthy, A. K. Kasabian et al., In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes, Ann Plast Surg, vol.40, pp.413-433, 1998.

T. Togo, A. Utani, M. Naitoh, M. Ohta, Y. Tsuji et al., Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction, Lab Investig J Tech Methods Pathol, vol.86, pp.445-57, 2006.

L. Utomo, M. M. Pleumeekers, L. Nimeskern, S. Nürnberger, K. S. Stok et al.,

, Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction, Biomed Mater, vol.10, p.15010, 2015.

J. P. Vacanti and R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation, Lancet, vol.354, issue.1, pp.32-36, 1999.

F. Verrecchia and A. Mauviel, Transforming growth factor-Beta signaling through the smad pathway : role in extracellular matrix gene expression and regulation, J Invest Dermatol, vol.118, pp.211-215, 2002.

M. Wang and L. Yu, Transplantation of adipose-derived stem cells combined with decellularized cartilage ECM: A novel approach to nasal septum perforation repair, Med Hypotheses, vol.82, pp.781-784, 2014.

W. Wu, F. Chen, Y. Liu, Q. Ma, and T. Mao, Autologous injectable tissue-engineered cartilage by using platelet-rich plasma: Experimental study in a rabbit model, J Oral Maxillofac Surg, vol.65, pp.1951-1958, 2007.

J. W. Xu, T. S. Johnson, P. M. Motarjem, G. M. Peretti, M. A. Randolph et al., Tissueengineered flexible ear-shaped cartilage, Plast Reconstr Surg, vol.115, pp.1633-1674, 2005.