U. El-shinnawi and M. Soory, Associations between periodontitis and systemic inflammatory diseases: response to treatment. Recent Pat Endocr Metab Immune Drug Discov, sept, vol.7, issue.3, pp.169-88, 2013.

M. R. Guglielmetti, E. F. Rosa, D. S. Lourenção, G. Inoue, E. F. Gomes et al., Detection and quantification of periodontal pathogens in smokers and never-smokers with chronic periodontitis by real-time polymerase chain reaction, J Periodontol, vol.85, issue.10, pp.1450-1457, 2014.

N. N. Al-hebshi, H. M. Shuga-aldin, A. K. Al-sharabi, and I. Ghandour, Subgingival periodontal pathogens associated with chronic periodontitis in Yemenis, BMC Oral Health, vol.14, p.13, 2014.

T. Imatani, T. Kato, and K. Okuda, Production of inflammatory cytokines by human gingival fibroblasts stimulated by cell-surface preparations of Porphyromonas gingivalis, Oral Microbiol Immunol. avr, vol.16, issue.2, pp.65-72, 2001.

R. S. Lam, N. M. O'brien-simpson, J. A. Holden, J. C. Lenzo, S. B. Fong et al., Unprimed, M1 and M2 Macrophages Differentially Interact with Porphyromonas gingivalis, PloS One, vol.11, issue.7, p.158629, 2016.

S. Hung, N. Lee, C. Chen, Y. Lai, and Y. , Stimulatory effects of glucose and Porphyromonas gingivalis lipopolysaccharide on the secretion of inflammatory mediators from human macrophages, J Periodontol. janv, vol.85, issue.1, pp.140-149, 2014.

J. Mysak, S. Podzimek, P. Sommerova, Y. Lyuya-mi, J. Bartova et al., Porphyromonas gingivalis: major periodontopathic pathogen overview, J Immunol Res, p.476068, 2014.

D. A. Chistiakov, A. N. Orekhov, and Y. V. Bobryshev, Links between atherosclerotic and periodontal disease, Exp Mol Pathol. févr, vol.100, issue.1, pp.220-255, 2016.

A. Bein, A. Zilbershtein, M. Golosovsky, D. Davidov, and B. Schwartz, LPS Induces Hyper-Permeability of Intestinal Epithelial Cells, J Cell Physiol. févr, vol.232, issue.2, pp.381-90, 2017.

C. Huang, C. Shih, N. Tsao, Y. Lin, C. Shih et al., The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression, Am J Transl Res, vol.8, issue.2, pp.384-404, 2016.

L. Li, T. Bian, J. Lyu, D. Cui, L. Lei et al., Human ?-defensin-3 alleviates the progression of atherosclerosis accelerated by Porphyromonas gingivalis lipopolysaccharide, Int Immunopharmacol. sept, vol.38, pp.204-217, 2016.

Z. Wu and H. Nakanishi, Connection between periodontitis and Alzheimer's disease: possible roles of microglia and leptomeningeal cells, J Pharmacol Sci, vol.126, issue.1, pp.8-13, 2014.

Y. Liu, Z. Wu, X. Zhang, J. Ni, W. Yu et al., Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS, Mediators Inflamm, p.407562, 2013.

Y. Huang, J. Zeng, G. Chen, X. Xie, W. Guo et al., Periodontitis contributes to adipose tissue inflammation through the NF-<kappa>B, JNK and ERK pathways to promote insulin resistance in a rat model, Microbes Infect. 23 août, 2016.

C. Vaure and Y. Liu, A comparative review of toll-like receptor 4 expression and functionality in different animal species, Front Immunol, vol.5, p.316, 2014.

B. S. Park and J. Lee, Recognition of lipopolysaccharide pattern by TLR4 complexes, Exp Mol Med, vol.45, p.66, 2013.

S. Ntoufa, M. G. Vilia, K. Stamatopoulos, P. Ghia, and M. Muzio, Toll-like receptors signaling: A complex network for NF-?B activation in B-cell lymphoid malignancies, Semin Cancer Biol. 9 juill, 2016.

Y. Lu, W. Yeh, and P. S. Ohashi, LPS/TLR4 signal transduction pathway, Cytokine. mai, vol.42, issue.2, pp.145-51, 2008.

J. O. Thomas, HMG1 and 2: architectural DNA-binding proteins, Biochem Soc Trans, vol.29, p.3952401, 2001.

J. O. Thomas and A. A. Travers, HMG1 and 2, and related 'architectural' DNAbinding proteins, Trends Biochem Sci, vol.26, p.1672174, 2001.

J. R. Klune, R. Dhupar, J. Cardinal, T. R. Billiar, and A. Tsung, HMGB1: endogenous danger signaling, Mol Med, vol.14, p.4762484, 2008.

U. Andersson and K. J. Tracey, HMGB1 is a therapeutic target for sterile inflammation and infection, Annu Rev Immunol, vol.29, p.1392162, 2011.

B. Bukau and A. L. Horwich, The Hsp70 and Hsp60 chaperone machines, vol.92, pp.351-66, 1998.

F. U. Hartl, Molecular chaperones in cellular protein folding, vol.381, pp.571-580, 1996.

G. Levy-rimler, Type I chaperonins: not all are created equal

M. C. Greenlee, S. A. Sullivan, and S. S. Bohlson, CD93 and related family members: theirrole in innate immunity, Curr. Drug Targets, vol.9, pp.130-138, 2008.

E. Mcgreal and P. Gasque, Structure-function studies of the receptors for complement C1q, 2002.

, Biochem. Soc. Trans, vol.30, pp.1010-1014

S. S. Bohlson, R. Silva, M. I. Fonseca, and A. J. Tenner, CD93 is rapidly shed from the surface of human myeloid cells and the soluble form is detected in human plasma, J. Immunol, vol.175, pp.1239-1247, 2005.

J. Jeon, J. Jung, E. Shin, H. I. Choi, H. Y. Kim et al., Soluble CD93 induces differentiation of monocytes and enhances TLR responses, J. Immunol. Baltim. Md, vol.1950, issue.185, pp.4921-4927, 2010.

J. Wenzel, J. C. Assmann, and M. Schwaninger, Thrombomodulin-a new target fortreating stroke at the crossroad of coagulation and inflammation, Curr. Med. Chem, vol.21, pp.2025-2034, 2014.

K. Abeyama, D. M. Stern, Y. Ito, K. Kawahara, Y. Yoshimoto et al., The N-terminal domain of thrombomodulin sequesters high-mo-bility group-B1 protein, a novel antiinflammatory mechanism, J. Clin. Invest, vol.115, pp.1267-1274, 2005.

N. F. Ng and C. L. Hew, Structure of an antifreeze polypeptide from the sea raven.Disul-fide bonds and similarity to lectin-binding proteins, J. Biol. Chem, vol.267, pp.16069-16075, 1992.

A. I. Derman, W. A. Prinz, D. Belin, and J. Beckwith, Mutations that allow disulfide bondformation in the cytoplasm of Escherichia coli, Science, vol.262, pp.1744-1747, 1993.

W. A. Prinz, F. Aslund, A. Holmgren, and J. Beckwith, The role of the thioredoxin andglutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm, Biochemistry (Mosc), vol.272, pp.5075-5089, 1997.

G. L. Rosano and E. A. Ceccarelli, Recombinant protein expression in microbial systems, Front. Microbiol, vol.5, 2014.

T. Rehm, R. Huber, and T. A. Holak, Application of NMR in structural proteomics:screening for proteins amenable to structural analysis, Struct.Lond. Engl, issue.10, pp.1613-1618, 1993.

A. M. Gronenborn and G. M. Clore, Rapid screening for structural integrity of expressed proteins by heteronuclear NMR spectroscopy, Protein Sci. Publ. Protein Soc, vol.5, pp.174-177, 1996.

A. M. Gronenborn, Rapid screening of E. coli extracts by heteronuclear NMR, 2003.

A. N. Zelensky and J. E. Gready, The C-type lectin-like domain superfamily, Curr.Protoc.Protein Sci, vol.272, pp.6179-6217, 2005.

B. Nativel, Soluble expression of disulfide-bonded C-type lectin like domain of human CD93 in the cytoplasm of Escherichia coli, J. Immunol. Methods, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452891

R. R. Nepomuceno, A. H. Henschen-edman, W. H. Burgess, and A. J. Tenner, cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro, Immunity, vol.6, pp.119-129, 1997.

P. Steinberger, A. Szekeres, S. Wille, J. Stöckl, N. Selenko et al., Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning, J Leukoc Biol, vol.71, pp.133-140, 2002.

M. C. Greenlee, S. A. Sullivan, and S. S. Bohlson, CD93 and related family members: their role in innate immunity, Curr Drug Targets, vol.9, pp.130-138, 2008.

E. Mcgreal and P. Gasque, Structure-function studies of the receptors for complement C1q, Biochem Soc Trans, vol.30, pp.1010-1014, 2002.

O. Petrenko, A. Beavis, M. Klaine, R. Kittappa, I. Godin et al., The molecular characterization of the fetal stem cell marker AA4, Immunity, vol.10, pp.691-700, 1999.

M. C. Greenlee, S. A. Sullivan, and S. S. Bohlson, Detection and characterization of soluble CD93 released during inflammation, Inflamm Res, vol.58, p.909, 2009.

J. Jeon, J. Shin, E. Choi, H. I. Kim, H. Y. Cho et al., Soluble CD93 induces differentiation of monocytes and enhances TLR responses, J Immunol Baltim Md, vol.185, pp.4921-4927, 1950.

D. El-kebir, L. József, W. Pan, L. Wang, and J. G. Filep, Bacterial DNA activates endothelial cells and promotes neutrophil adherence through TLR9 signaling, J Immunol Baltim Md, vol.182, pp.4386-4394, 1950.

A. S. Trevani, A. Chorny, G. Salamone, M. Vermeulen, R. Gamberale et al., Bacterial DNA activates human neutrophils by a CpG-independent pathway, Eur J Immunol, vol.33, pp.3164-3174, 2003.

G. Hartmann and A. M. Krieg, CpG DNA and LPS induce distinct patterns of activation in human monocytes

, Gene Ther, vol.6, pp.893-903, 1999.

F. Takeshita, I. Gursel, K. J. Ishii, K. Suzuki, M. Gursel et al., Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9, Semin Immunol, vol.16, pp.17-22, 2004.

Y. Lu, W. Yeh, and P. S. Ohashi, LPS/TLR4 signal transduction pathway, Cytokine, vol.42, pp.145-151, 2008.

B. L. Lee and G. M. Barton, Trafficking of endosomal Toll-like receptors, Trends Cell Biol, vol.24, pp.360-369, 2014.

S. E. Ewald, B. L. Lee, L. Lau, K. E. Wickliffe, G. Shi et al., The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor, Nature, vol.456, pp.658-662, 2008.

M. H. Lahoud, A. F. Zhang, J. Meuter, S. Policheni, A. N. Kitsoulis et al., DEC-205 is a cell surface receptor for CpG oligonucleotides, Proc Natl Acad Sci U S A, vol.109, pp.16270-16275, 2012.

B. Nativel, A. Figuester, J. Andries, C. Planesse, J. Couprie et al., Soluble expression of disulfidebonded C-type lectin like domain of human CD93 in the cytoplasm of Escherichia coli, J Immunol Methods, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452891

C. Planesse, B. Nativel, T. Iwema, P. Gasque, R. Silva et al., Recombinant human HSP60 produced in ClearColi TM BL21(DE3) does not activate the NF?B pathway, Cytokine, vol.73, pp.190-195, 2015.

E. Lebouder, J. E. Rey-nores, N. K. Rushmere, M. Grigorov, S. D. Lawn et al., Soluble forms of Tolllike receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk, J Immunol Baltim Md, vol.171, pp.6680-6689, 1950.

E. J. Lee and J. H. Park, Receptor for Advanced Glycation Endproducts (RAGE), Its Ligands, and Soluble RAGE: Potential Biomarkers for Diagnosis and Therapeutic Targets for Human Renal Diseases, Genomics Inform, vol.11, pp.224-229, 2013.

E. M. Conway, M. Van-de-wouwer, S. Pollefeyt, K. Jurk, H. Van-aken et al., The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways, J Exp Med, vol.196, pp.565-577, 2002.

M. C. Greenlee, S. A. Sullivan, and S. S. Bohlson, CD93 and related family members: their role in innate immunity, Curr. Drug Targets, vol.9, pp.130-138, 2008.

E. Mcgreal and P. Gasque, Structure-function studies of the receptors for complement C1q, Biochem. Soc. Trans, vol.30, pp.1010-1014, 2002.

O. Petrenko, A. Beavis, M. Klaine, R. Kittappa, I. Godin et al., The molecular characterization of the fetal stem cell marker AA4, Immunity, vol.10, pp.691-700, 1999.

Y. D. Dean, E. P. Mcgreal, H. Akatsu, and P. Gasque, Molecular and cellular properties of the rat AA4 antigen, a C-type lectin-like receptor with structural homology to thrombomodulin, J. Biol. Chem, vol.275, pp.34382-34392, 2000.

G. Løvik, K. Larsen, J. G. Sand, B. Iversen, and . Rolstad, C1qRp Elicits a Ca++ Response in Rat NK Cells but Does not Influence NK-Mediated Cytotoxicity, Scand. J. Immunol, vol.53, pp.410-415, 2001.

Y. D. Dean, E. P. Mcgreal, and P. Gasque, Endothelial cells, megakaryoblasts, platelets and alveolar epithelial cells express abundant levels of the mouse AA4 antigen, a C-type lectin-like receptor involved in homing activities and innate immune host defense, Eur. J. Immunol, vol.31, pp.1370-1381, 2001.

S. S. Bohlson, R. Silva, M. I. Fonseca, and A. J. Tenner, CD93 Is Rapidly Shed from the Surface of Human Myeloid Cells and the Soluble Form Is Detected in Human Plasma, J. Immunol, vol.175, pp.1239-1247, 2005.

J. Jeon, J. Jung, E. Shin, H. I. Choi, H. Y. Kim et al.,

H. Moon, Y. Cho, K. Hoe, Y. Seo, and Y. W. Park, Soluble CD93 induces differentiation of monocytes and enhances TLR responses, J. Immunol. Baltim. Md, vol.185, pp.4921-4927, 1950.

K. Drickamer, C-type lectin-like domains, Curr. Opin.Struct. Biol, vol.9, pp.585-590, 1999.

M. Van-de-wouwer and E. M. Conway, Novel functions of thrombomodulin in inflammation, Crit. Care Med, vol.32, pp.254-261, 2004.

W. J. Rettig, P. Garin-chesa, J. H. Healey, S. L. Su, E. A. Jaffe et al., Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.10832-10836, 1992.

S. Rho, H. Choi, J. Min, H. Lee, H. Park et al., Clec14a is specifically expressed in endothelial cells and mediates cell to cell adhesion, Biochem. Biophys. Res. Commun, vol.404, pp.103-108, 2011.

E. M. Conway, M. Van-de-wouwer, S. Pollefeyt, K. Jurk, H. Van-aken et al., The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways, J. Exp. Med, vol.196, pp.565-577, 2002.

K. Abeyama, D. M. Stern, Y. Ito, K. Kawahara, Y. Yoshimoto et al.,

S. Yamazaki, Y. Yamada, H. Yamamoto, S. Yamamoto, N. Iino et al., The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism, J. Clin. Invest, vol.115, pp.1267-1274, 2005.

H. Yang, D. J. Antoine, U. Andersson, and K. J. Tracey, The many faces of HMGB1: molecular structurefunctional activity in inflammation, apoptosis, and chemotaxis, J. Leukoc. Biol, vol.93, pp.865-873, 2013.

M. C. Greenlee, S. A. Sullivan, and S. S. Bohlson, Detection and characterization of soluble CD93 released during inflammation, Inflamm. Res, vol.58, p.909, 2009.

A. Mälarstig, A. Silveira, D. Wågsäter, J. Öhrvik, A. Bäcklund et al.,

K. Hellenius, T. Leander, M. Olsson, U. Uhlén, P. De-faire et al., Plasma CD93 concentration is a potential novel biomarker for coronary artery disease, J. Intern. Med, vol.270, pp.229-236, 2011.

B. Nativel, A. Figuester, J. Andries, C. Planesse, J. Couprie et al., Soluble expression of disulfide-bonded C-type lectin like domain of human CD93 in the cytoplasm of Escherichia coli, J. Immunol. Methods, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452891

B. Nativel, M. Marimoutou, V. G. Thon-hon, M. K. Gunasekaran, J. Andries et al.,

D. Silva, M. Césari, T. Iwema, P. Gasque, and W. Viranaicken, Soluble HMGB1 is a novel adipokine stimulating IL-6 secretion through RAGE receptor in SW872 preadipocyte cell line: contribution to chronic inflammation in fat tissue, PloS One, vol.8, p.76039, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01196053

E. P. Mcgreal, N. Ikewaki, H. Akatsu, B. P. Morgan, and P. Gasque, Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q, J. Immunol. Baltim. Md, vol.168, pp.5222-5232, 1950.

H. Yang, H. Wang, S. S. Chavan, and U. Andersson, High Mobility Group Box Protein 1 (HMGB1): The Prototypical Endogenous Danger Molecule, Mol. Med, vol.21, pp.6-12, 2015.

H. J. Huttunen, C. Fages, J. Kuja-panula, A. J. Ridley, and H. Rauvala, Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis, Cancer Res, vol.62, pp.4805-4811, 2002.

J. P. Rowell, K. L. Simpson, K. Stott, M. Watson, and J. O. Thomas, HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail, Struct. Lond.Engl, vol.20, pp.2014-2024, 1993.

D. Harhausen, V. Prinz, G. Ziegler, K. Gertz, M. Endres et al.,

W. Dirnagl, G. Nietfeld, . Trendelenburg, and . Fleury, Reactive oxygen species (ROS), which are essential in driving mitochondrial apoptosis, CD93/AA4.1: A Novel Regulator of Inflammation in Murine Focal Cerebral Ischemia, vol.184, pp.722-724, 2002.

,

B. J. Barnes, J. Richards, M. Mancl, S. Hanash, L. Beretta et al., Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection, J. Biol. Chem, vol.279, pp.45194-45207, 2004.

N. Berthet, E. Nakouné, B. Kamgang, B. Selekon, S. Descorps-declère et al., Molecular characterization of three Zika flaviviruses obtained from sylvatic mosquitoes in the Central African Republic.Vector Borne Zoonotic Dis, 2014.

, Larchmt. N, vol.14, pp.862-865

M. Besnard, S. Lastere, A. Teissier, V. Cao-lormeau, D. Musso et al., Evidence ofperinatal transmission of Zika virus, French Polynesia, Am. J. Trop. Med. Hyg, vol.19, pp.380-383, 2013.

G. S. Campos, A. C. Bandeira, S. I. Sardi, A. Catteau, M. P. Courageot et al., Zika Virus outbreak, Bahia, Brazil.Emerg, Prog.Mol. Subcell. Biol, vol.21, pp.171-189, 2004.

M. Courageot, A. Catteau, and P. Desprès, Mechanisms of dengue virus-induced cell death, Adv. Virus Res, vol.60, pp.157-186, 2003.

S. Daffis, K. J. Szretter, J. Schriewer, J. Li, S. Youn et al., 0 -O methylation of the viral mRNA cap evades host restriction by IFIT family members, Nature, vol.2, pp.452-456, 2010.

,

D. Diallo, A. A. Sall, C. T. Diagne, O. Faye, O. Faye et al., Zika virus emergence in mosquitoes in southeastern Senegal, PLoS One, vol.9, 2011.

M. S. Diamond, Mechanisms of evasion of the type I interferon antiviral response by flaviviruses, J. Interferon Cytokine, vol.29, pp.521-530, 2009.

M. R. Duffy, T. Chen, W. T. Hancock, A. M. Powers, J. L. Kool et al., Zika virus outbreak on Yap Island, Federated States of Micronesia, N. Engl. J. Med, vol.360, pp.2536-2543, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00734543

O. Dyer, A. Enfissi, J. Codrington, J. Roosblad, M. Kazanji et al., Zika virus spreads across Americas as concerns mount over birth defects, Zika virus genome from the Americas.Lancet, vol.351, pp.3-9, 2015.

V. Fensterl and G. C. Sen, The ISG56/IFIT1 gene family, J. Interferon Cytokine Res, vol.31, pp.71-78, 2011.

C. Fleury, B. Mignotte, and J. Vayssière, Mitochondrial reactive oxygen speciesin cell death signaling, Biochimie, vol.84, pp.131-141, 2002.

G. Roy, S. Sadigh, B. Datan, E. Lockshin, R. A. Zakeri et al., Regulation of cell survival and death during Flavivirus infections, World J. Biol. Chem, vol.5, pp.93-105, 2014.

G. Grard, M. Caron, I. M. Mombo, D. Nkoghe, S. Mboui-ondo et al., Zika virus in Gabon (Central Africa)-2007: a new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 8, e2681, 2014.

A. M. Green, P. R. Beatty, A. Hadjilaou, and E. Harris, Innate immunity to dengue virus infection and subversion of antiviral responses, J. Mol. Biol, vol.426, pp.1148-1160, 2014.

L. G. Grunnet, R. Aikin, M. F. Tonnesen, S. Paraskevas, L. Blaabjerg et al., Proin-flammatory cytokines activate the intrinsic apoptotic pathway in beta-cells, Diabetes, vol.58, pp.1807-1815, 2009.

R. Hamel, O. Dejarnac, S. Wichit, P. Ekchariyawat, A. Neyret et al., Biology of Zika Virus Infection in human skin cells, J. Virol, vol.89, pp.8880-8896, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228435

,

W. T. Hancock, M. Marfel, and M. Bel, Zika virus, Emerg. Infect. Dis, vol.20, 1960.
URL : https://hal.archives-ouvertes.fr/pasteur-00734543

E. B. Hayes, Zika virus outside Africa, Emerg. Infect. Dis, vol.15, pp.1347-1350, 2009.

N. S. Heaton and G. Randall, Dengue virus and autophagy, Viruses, vol.3, pp.1332-1341, 2011.

K. Honda, H. Yanai, H. Negishi, M. Asagiri, M. Sato et al., , 2005.

N. Mizushima and T. Yoshimori, How to interpret LC3 immunoblotting, Autop-hagy, vol.3, pp.542-545, 2007.

J. Morrison, S. Aguirre, A. Fernandez-sesma, J. L. Muñoz-jordán, and B. L. Fredericksen, How flaviviruses activate and suppress the interferon response, Viruses, vol.4, pp.676-691, 2010.

,

B. Nativel, M. Marimoutou, V. G. Thon-hon, M. K. Gunasekaran, J. Andries et al., Soluble HMGB1 is a novel adipokine stimulating IL-6 secretion through RAGE receptor in SW872 preadipocyte cell line: contribution to chronic inflammation in fat tissue, PLoS One, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01196053

E. Oehler, L. Watrin, P. Larre, I. Leparc-goffart, S. Lastere et al., Zika virus infection complicated byGuillain-Barre syndrome-case report, p.19, 2013.

D. Olagnier, S. Peri, C. Steel, N. Van-montfoort, C. Chiang et al., Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells, PLoS Pathog, vol.10, 2014.

N. C. Reich, A death-promoting role for ISG54/IFIT2, J. Interferon Cytokine, vol.33, pp.199-205, 2013.

M. Sato, H. Suemori, N. Hata, M. Asagiri, K. Ogasawara et al., Distinct and essentialroles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction, Immunity, vol.13, pp.539-548, 2000.

L. A. Sena and N. S. Chandel, Physiological roles of mitochondrial reactive oxygen species, Mol. Cell, vol.48, pp.158-167, 2012.

,

S. A. Susin, H. K. Lorenzo, N. Zamzami, I. Marzo, C. Brenner et al., Mitochondrial Release of Caspase-2 and -9 during the apoptotic process, J. Exp. Med, vol.189, pp.381-394, 1999.

M. S. Suthar, S. Aguirre, and A. Fernandez-sesma, Innate immune sensing of flaviviruses, PLoS Pathog, vol.9, 2013.

M. S. Suthar, M. M. Brassil, G. Blahnik, and M. Gale, Infectious clones of novel Lineage 1 and Lineage 2 West Nile Virus strains WNV-TX02 and WNV-Madagascar, J. Virol, vol.86, pp.7704-7709, 2012.

I. Tanida, T. Ueno, and E. Kominami, LC3 and autophagy, Methods Mol, 2008.

. Clifton, , pp.77-88

D. Tappe, J. V. Pérez-girón, L. Zammarchi, J. Rissland, D. F. Ferreira et al., Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase, Med. Microbiol. Immunol, pp.1-5, 2015.

I. Umareddy, O. Pluquet, Q. Wang, S. G. Vasudevan, E. Chevet et al., Dengue virus serotype infection specifies the activation of the unfolded protein response, Virol. J, vol.4, p.91, 2007.

W. Viranaicken, L. Gasmi, A. Chaumet, C. Durieux, V. Georget et al., L-Ilf3 and L-NF90 traffic to the nucleolus granular compo-nent: alternatively-spliced exon 3 encodes a nucleolar localization motif, 2011.

, PLoS One, vol.6, 22296.

X. Wang, K. Kong, W. Qi, W. Ye, and P. Song, Interleukin-1 beta induction of neuron apoptosis depends on p38 mitogen-activated protein kinase activity after spinal cord injury, Acta Pharmacol.Sin, vol.26, pp.934-942, 2005.

P. M. Winter, N. M. Dung, H. T. Loan, R. Kneen, B. Wills et al., Proinflammatory cytokines and chemokines in humans with Japanese encephalitis, J. Infect. Dis, vol.190, pp.1618-1626, 2004.

P. J. Wong, M. I. Li, C. Chong, L. Ng, and C. Tan, Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore, PLoS Negl. Trop. Dis, vol.7, 2013.

C. Zanluca, V. C. De-melo, A. L. Mosimann, G. I. Santos, C. N. Santos et al., First report of autochthonous transmission of Zika virus in Brazil, Mem. Inst. Oswaldo Cruz, vol.110, pp.569-572, 2015.

C. F. Wenceslau, C. G. Mccarthy, T. Szasz, K. Spitler, S. Goulopoulou et al., Mitochondrial damage-associated molecular patterns and vascular function, Eur Heart J, vol.35, pp.1172-1177, 2014.

D. Tang, R. Kang, C. B. Coyne, H. J. Zeh, and M. T. Lotze, PAMPs and DAMPs: Signal 0s that Spur Autophagy and Immunity, Immunol Rev, vol.249, pp.158-175, 2012.

Q. Zhang, R. Kang, H. J. Zeh, I. Lotze, M. T. Tang et al., DAMPs and autophagy, Autophagy, vol.9, pp.451-458, 2013.

D. S. Pisetsky, The Translocation of Nuclear Molecules During Inflammation and Cell Death, Antioxid Redox Signal, vol.20, pp.1117-1125, 2013.

D. Foell, H. Wittkowski, T. Vogl, and J. Roth, S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules, J Leukoc Biol, vol.81, pp.28-37, 2007.

M. V. Nastase, M. F. Young, and L. Schaefer, Biglycan A Multivalent Proteoglycan Providing Structure and Signals, J Histochem Cytochem, vol.60, pp.963-975, 2012.

S. Basu, R. J. Binder, R. Suto, K. M. Anderson, and P. K. Srivastava, Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NFkappa B pathway, Int Immunol, vol.12, pp.1539-1546, 2000.

P. Scaffidi, T. Misteli, and M. E. Bianchi, Release of chromatin protein HMGB1 by necrotic cells triggers inflammation, Nature, vol.418, pp.191-195, 2002.

A. M. Merendino, F. Bucchieri, C. Campanella, V. Marcianò, A. Ribbene et al., DAMPening Inflammation by Modulating TLR Signalling, DAMPening Inflammation by Modulating TLR Signalling, Mediat Inflamm Mediat Inflamm, vol.5, p.9247, 2010.

H. Frey, N. Schroeder, T. Manon-jensen, R. V. Iozzo, and L. Schaefer, Biological interplay between proteoglycans and their innate immune receptors in inflammation, FEBS J, vol.280, pp.2165-2179, 2013.

L. Schaefer, Complexity of Danger: The Diverse Nature of Damage-associated Molecular Patterns, J Biol Chem, vol.289, pp.35237-35245, 2014.

S. M. Dauphinee and A. Karsan, Lipopolysaccharide signaling in endothelial cells, Lab Investig J Tech Methods Pathol, vol.86, pp.9-22, 2006.

H. Yang, H. Wang, Z. Ju, A. A. Ragab, P. Lundbäck et al., MD-2 is required for disulfide HMGB1-dependent TLR4 signaling, J Exp Med, vol.212, p.5, 2015.

D. Iwaki, C. Nishitani, H. Mitsuzawa, N. Hyakushima, H. Sano et al., The CD14 region spanning amino acids 57-64 is critical for interaction with the extracellular Toll-like receptor 2 domain, Biochem Biophys Res Commun, vol.328, pp.173-176, 2005.

T. Geijtenbeek and S. I. Gringhuis, Signalling through C-type lectin receptors: shaping immune responses, Nat Rev Immunol, vol.9, pp.465-479, 2009.

C. G. Figdor, Y. Van-kooyk, and G. J. Adema, C-type lectin receptors on dendritic cells and Langerhans cells, Nat Rev Immunol, vol.2, pp.77-84, 2002.

S. Yamasaki, E. Ishikawa, M. Sakuma, H. Hara, K. Ogata et al., Mincle is an ITAM-coupled activating receptor that senses damaged cells, Nat Immunol, vol.9, pp.1179-1188, 2008.

A. Cambi and C. Figdor, Necrosis: C-type lectins sense cell death, Curr Biol CB, vol.19, pp.375-378, 2009.

E. J. Lee and J. H. Park, Receptor for Advanced Glycation Endproducts (RAGE), Its Ligands, and Soluble RAGE: Potential Biomarkers for Diagnosis and Therapeutic Targets for Human Renal Diseases, Genomics Inform, vol.11, pp.224-229, 2013.

R. Kokkola, A. Andersson, G. Mullins, T. Ostberg, C. Treutiger et al., Interaction of S100A13 with C2 domain of receptor for advanced glycation end products (RAGE), Biochim Biophys Acta BBA -Proteins Proteomics, vol.61, pp.1718-1728, 2005.

M. Sakaguchi, H. Murata, K. Yamamoto, T. Ono, Y. Sakaguchi et al., Chemical Treatment of Tumors. V. Isolation of the Hemorrhage-Producing Fraction from Serratia marcescens (Bacillus prodigiosus) Culture Filtrate, J Natl Cancer Inst, vol.6, pp.81-97, 1943.

P. F. Mühlradt and J. R. Golecki, Asymmetrical distribution and artifactual reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium, Eur J Biochem, vol.51, pp.343-352, 1975.

S. E. Rollauer, M. A. Sooreshjani, N. Noinaj, and S. K. Buchanan, Outer membrane protein biogenesis in Gramnegative bacteria, Philos Trans R Soc Lond B Biol Sci, vol.370, 2015.

S. M. Galloway and C. R. Raetz, A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis, J Biol Chem, vol.265, pp.6394-6402, 1990.

H. R. Onishi, B. A. Pelak, L. S. Gerckens, L. L. Silver, F. M. Kahan et al., Antibacterial agents that inhibit lipid A biosynthesis, Science, vol.274, pp.980-982, 1996.

C. J. Belunis, T. Clementz, S. M. Carty, and C. R. Raetz, Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli, J Biol Chem, vol.270, pp.27646-27652, 1995.

D. E. Heinrichs, J. A. Yethon, and C. Whitfield, Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica, Mol Microbiol, vol.30, pp.221-232, 1998.

K. Amor, D. E. Heinrichs, E. Frirdich, K. Ziebell, R. P. Johnson et al., Distribution of Core Oligosaccharide Types in Lipopolysaccharides from Escherichia coli, Infect Immun, vol.68, pp.1116-1124, 2000.

O. Holst, Chemical structure of the core region of lipopolysaccharides. Endotoxin in Health and Disease, pp.305-330, 1999.

C. Erridge, E. Bennett-guerrero, and I. R. Poxton, Structure and function of lipopolysaccharides, Microbes Infect, vol.4, pp.837-851, 2002.

F. Kauffmann, The serology of the coli group, J Immunol Baltim Md, vol.57, pp.71-100, 1947.

I. Lerouge and J. Vanderleyden, O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions, FEMS Microbiol Rev, vol.26, pp.17-47, 2002.

K. Brandenburg, M. H. Koch, and U. Seydel, Phase diagram of deep rough mutant lipopolysaccharide from Salmonella minnesota R595, J Struct Biol, vol.108, pp.93-106, 1992.

C. A. Aurell and A. O. Wistrom, Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS), Biochem Biophys Res Commun, vol.253, pp.119-123, 1998.

U. Seydel, M. H. Koch, and K. Brandenburg, Structural polymorphisms of rough mutant lipopolysaccharides Rd to Ra from Salmonella minnesota, J Struct Biol, vol.110, pp.232-243, 1993.

K. Brandenburg, J. Andrä, M. Müller, M. Koch, and P. Garidel, Physicochemical properties of bacterial glycopolymers in relation to bioactivity, Carbohydr Res, vol.338, pp.2477-2489, 2003.

G. Bello, J. Eriksson, A. Terry, K. Edwards, M. J. Lawrence et al., Characterization of the Aggregates Formed by Various Bacterial Lipopolysaccharides in Solution and upon Interaction with Antimicrobial Peptides, Langmuir, vol.31, pp.741-751, 2015.

P. J. Hitchcock, L. Leive, P. H. Mäkelä, E. T. Rietschel, W. Strittmatter et al., Lipopolysaccharide nomenclature--past, present, and future, J Bacteriol, vol.166, pp.699-705, 1986.

O. Westphal and J. K. , Extraction with phenol-water and further applications of the procedure, Carbohydrate Chemistry, pp.83-91, 1965.

O. Westphal, O. Lüderitz, and F. Bister, Über die Extraktion von Bakterien mit Phenol/Wasser, Z Für Naturforschung B, vol.7, pp.148-155, 1952.

C. Galanos, O. Lüderitz, and O. Westphal, A new method for the extraction of R lipopolysaccharides, Eur J Biochem, vol.9, pp.245-249, 1969.

H. Chart and B. Rowe, Purification of lipopolysaccharide from strains of Yersinia enterocolitica belonging to serogroups 03 and 09, FEMS Microbiol Lett, vol.61, pp.341-345, 1991.

H. Lee, J. Lee, and P. S. Tobias, Two Lipoproteins Extracted from Escherichia coli K, vol.12, p.25

, Lipopolysaccharide Are the Major Components Responsible for Toll-Like Receptor 2-Mediated Signaling, J Immunol, vol.168, pp.4012-4017, 2002.

J. Mølvig and L. Baek, Removal of endotoxin from culture media by a polymyxin B sepharose column. The activity of contaminating endotoxin in culture media measured by the interleukin 1 inducing effect on human monocyte cultures and by the Limulus test, Scand J Immunol, vol.26, pp.611-619, 1987.

M. R. Davis and J. B. Goldberg, Purification and visualization of lipopolysaccharide from Gram-negative bacteria by hot aqueous-phenol extraction, J Vis Exp JoVE, 2012.

M. Hirschfeld, Y. Ma, J. H. Weis, S. N. Vogel, and J. J. Weis, Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2, J Immunol Baltim Md, vol.165, pp.618-622, 1950.

R. Chaby, S. R. Sarfati, and L. Szabó, Colorimetric estimation of 3-deoxy-D-manno-octulosonic acid in oligosaccharides with diphenylamine, Anal Biochem, vol.58, pp.123-129, 1974.

J. Macgee and M. Doudoroff, A new phosphorylated intermediate in glucose oxidation, J Biol Chem, vol.210, pp.617-626, 1954.

A. Weissbach and J. Hurwitz, The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification, J Biol Chem, vol.234, pp.705-709, 1959.

J. Levin, F. B. Bang, . The, . Of, . In et al., Bull Johns Hopkins Hosp, vol.115, pp.265-274, 1964.

J. L. Ding and B. Ho, Endotoxin detection--from limulus amebocyte lysate to recombinant factor C, Subcell Biochem, vol.53, pp.187-208, 2010.

P. F. Roslansky and T. J. Novitsky, Sensitivity of Limulus amebocyte lysate (LAL) to LAL-reactive glucans, J Clin Microbiol, vol.29, pp.2477-2483, 1991.

K. Tsuji and K. A. Steindler, Use of magnesium to increase sensitivity of Limulus amoebocyte lysate for detection of endotoxin, Appl Environ Microbiol, vol.45, pp.1342-1350, 1983.

K. Brandenburg, J. Howe, T. Gutsman, and P. Garidel, The expression of endotoxic activity in the Limulus test as compared to cytokine production in immune cells, Curr Med Chem, vol.16, pp.2653-2660, 2009.

O. Dehus, T. Hartung, and C. Hermann, Endotoxin evaluation of eleven lipopolysaccharides by whole blood assay does not always correlate with Limulus amebocyte lysate assay, J Endotoxin Res, vol.12, pp.171-180, 2006.

T. Gutsmann, J. Howe, U. Zähringer, P. Garidel, A. B. Schromm et al., Structural prerequisites for endotoxic activity in the Limulus test as compared to cytokine production in mononuclear cells, Innate Immun, vol.16, pp.39-47, 2010.

S. Eperon, D. De-groote, G. Werner-felmayer, and T. W. Jungi, Human monocytoid cell lines as indicators of endotoxin: comparison with rabbit pyrogen and Limulus amoebocyte lysate assay, J Immunol Methods, vol.207, pp.135-145, 1997.

C. M. Tsai and C. E. Frasch, A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels, Anal Biochem, vol.119, pp.115-119, 1982.

M. Caroff, R. Chaby, D. Karibian, J. Perry, C. Deprun et al., Variations in the carbohydrate regions of Bordetella pertussis lipopolysaccharides: electrophoretic, serological, and structural features, J Bacteriol, vol.172, pp.1121-1128, 1990.

L. Blay, K. Gueirard, P. Guiso, N. Chaby, and R. , Antigenic polymorphism of the lipopolysaccharides from human and animal isolates of Bordetella bronchiseptica, Microbiol Read Engl, vol.143, pp.1433-1441, 1997.

R. Freitag, M. Fix, and O. Brüggemann, Analysis of endotoxins by capillary electrophoresis, Electrophoresis, vol.18, pp.1899-1905, 1997.

L. Dur, A. Chaby, R. Szabó, and L. , Isolation of two protein-free and chemically different lipopolysaccharides from Bordetella pertussis phenol-extracted endotoxin, J Bacteriol, vol.143, pp.78-88, 1980.

C. L. Carty, U. Gehring, J. Cyrys, W. Bischof, and J. Heinrich, Seasonal variability of endotoxin in ambient fine particulate matter, J Environ Monit JEM, vol.5, pp.953-958, 2003.

S. R. Lane, P. J. Nicholls, and R. Sewell, The measurement and health impact of endotoxin contamination in organic dusts from multiple sources: focus on the cotton industry, Inhal Toxicol, vol.16, pp.217-229, 2004.

R. Rylander, Endotoxin in the environment--exposure and effects, J Endotoxin Res, vol.8, pp.241-252, 2002.

G. Cavagna, V. Foà, and E. C. Vigliani, Effects in man and rabbits of inhalation of cotton dust or extracts and purified endotoxins, Br J Ind Med, vol.26, pp.314-321, 1969.

J. Douwes, I. Wouters, H. Dubbeld, L. Van-zwieten, P. Steerenberg et al., Upper airway inflammation assessed by nasal lavage in compost workers: A relation with bio-aerosol exposure, Am J Ind Med, vol.37, pp.459-468, 2000.

J. D. Hasday, R. Bascom, J. J. Costa, T. Fitzgerald, and W. Dubin, Bacterial endotoxin is an active component of cigarette smoke, Chest, vol.115, pp.829-835, 1999.

T. Sandström, L. Bjermer, and R. Rylander, Lipopolysaccharide (LPS) inhalation in healthy subjects increases neutrophils, lymphocytes and fibronectin levels in bronchoalveolar lavage fluid, Eur Respir J, vol.5, pp.992-996, 1992.

R. Kitz, M. A. Rose, A. Borgmann, R. Schubert, and S. Zielen, Systemic and bronchial inflammation following LPS inhalation in asthmatic and healthy subjects, J Endotoxin Res, vol.12, pp.367-374, 2006.

S. Zielen, J. Trischler, and R. Schubert, Lipopolysaccharide challenge: immunological effects and safety in humans, Expert Rev Clin Immunol, vol.11, pp.409-418, 2015.

A. Moreira, T. Texeira, A. B. Ferreira, C. G. Peluzio-m-do, and A. Cg, Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia, Br J Nutr, vol.108, pp.801-809, 2012.

R. Burcelin, E. Luche, M. Serino, and J. Amar, The gut microbiota ecology: a new opportunity for the treatment of metabolic diseases?, Front Biosci Landmark Ed, vol.14, pp.5107-5117, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410160

G. Camus, J. Poortmans, M. Nys, G. Deby-dupont, J. Duchateau et al., Mild endotoxaemia and the inflammatory response induced by a marathon race, Clin Sci Lond Engl, vol.92, pp.415-422, 1979.

R. D. Berg, Bacterial translocation from the gastrointestinal tract, Adv Exp Med Biol, vol.473, pp.11-30, 1999.

R. D. Berg, Bacterial translocation from the gastrointestinal tract, J Med, vol.23, pp.217-244, 1992.

A. Bein, A. Zilbershtein, M. Golosovsky, D. Davidov, and B. Schwartz, LPS Induces Hyper-Permeability of Intestinal Epithelial Cells, J Cell Physiol, vol.232, pp.381-390, 2017.

S. Guo, R. Al-sadi, H. M. Said, and T. Y. Ma, Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14, Am J Pathol, vol.182, pp.375-387, 2013.

P. D. Cani, J. Amar, M. A. Iglesias, M. Poggi, C. Knauf et al., Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes, vol.56, pp.1761-1772, 2007.

N. E. Boutagy, R. P. Mcmillan, M. I. Frisard, and M. W. Hulver, Metabolic endotoxemia with obesity: Is it real and is it relevant?, Biochimie, vol.124, pp.11-20, 2016.

J. Bommer, K. P. Becker, and R. Urbaschek, Potential transfer of endotoxin across high-flux polysulfone membranes, J Am Soc Nephrol JASN, vol.7, pp.883-888, 1996.

M. Trautmann, B. Zauser, H. Wiedeck, K. Buttenschön, and R. Marre, Bacterial colonization and endotoxin contamination of intravenous infusion fluids, J Hosp Infect, vol.37, pp.90251-90257, 1997.

I. P. Lipscomb, A. K. Sihota, and C. W. Keevil, Comparative Study of Surgical Instruments from Sterile-Service Departments for Presence of Residual Gram-Negative Endotoxin and Proteinaceous Deposits, J Clin Microbiol, vol.44, pp.3728-3733, 2006.

M. Ravikumar, D. J. Hageman, W. H. Tomaszewski, G. M. Chandra, J. L. Skousen et al., The effect of residual endotoxin contamination on the neuroinflammatory response to sterilized intracortical microelectrodes, J Mater Chem B, vol.2, pp.2517-2529, 2014.

T. Gautier and L. Lagrost, Plasma PLTP (phospholipid-transfer protein): an emerging role in "reverse lipopolysaccharide transport" and innate immunity, Biochem Soc Trans, vol.39, pp.984-988, 2011.

K. M. Azzam and M. B. Fessler, Crosstalk Between Reverse Cholesterol Transport and Innate Immunity, Trends Endocrinol Metab, vol.23, pp.169-178, 2012.

C. J. Kirschning, J. Au-young, N. Lamping, D. Reuter, D. Pfeil et al., Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins, Infect Immun, vol.46, pp.2321-2326, 1997.

E. Hailman, J. J. Albers, G. Wolfbauer, A. Y. Tu, and S. D. Wright, Neutralization and transfer of lipopolysaccharide by phospholipid transfer protein, J Biol Chem, vol.271, pp.12172-12178, 1996.

K. Emancipator, G. Csako, and R. J. Elin, In vitro inactivation of bacterial endotoxin by human lipoproteins and apolipoproteins, Infect Immun, vol.60, pp.596-601, 1992.

F. J. Carey, A. I. Braude, M. Zalesky, . Studies, . With et al., THE EFFECT OF TOLERANCE ON THE DISTRIBUTION OF RADIOACTIVITY AFTER INTRAVENOUS INJECTION OF ESCHERICHIA COLI ENDOTOXIN LABELED WITH CR511, J Clin Invest, vol.37, pp.441-457, 1958.

W. B. Herring, J. C. Herion, R. I. Walker, and J. G. Palmer, Distribution and clearance of circulating endotoxin, J Clin Invest, vol.42, pp.79-87, 1963.

M. A. Freudenberg, N. Freudenberg, and C. Galanos, Time course of cellular distribution of endotoxin in liver, lungs and kidneys of rats, Br J Exp Pathol, vol.63, pp.56-65, 1982.

N. Freudenberg, M. A. Freudenberg, K. Bandara, and C. Galanos, Distribution and localization of endotoxin in the reticulo-endothelial system (RES) and in the main vessels of the rat during shock, Pathol Res Pract, vol.179, pp.517-527, 1985.

Y. Mimura, S. Sakisaka, M. Harada, M. Sata, and K. Tanikawa, Role of hepatocytes in direct clearance of lipopolysaccharide in rats, Gastroenterology, vol.109, pp.1969-1976, 1995.

L. Bertók, Physico-chemical defense of vertebrate organisms: the role of bile acids in defense against bacterial endotoxins, Perspect Biol Med, vol.21, pp.70-76, 1977.

L. Bertók, Effect of bile acids on endotoxin in vitro and in vivo (physico-chemical defense), Ann N Y Acad Sci, vol.851, pp.408-410, 1998.

S. Sipka and G. Bruckner, The immunomodulatory role of bile acids, Int Arch Allergy Immunol, vol.165, pp.1-8, 2014.

O. Lüderitz, C. Galanos, V. Lehmann, M. Nurminen, E. T. Rietschel et al., Lipid A: chemical structure and biological activity, J Infect Dis, vol.128, pp.17-29, 1973.

C. Galanos, O. Lüderitz, E. T. Rietschel, O. Westphal, H. Brade et al., Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities, Eur J Biochem, vol.148, pp.1-5, 1985.

K. Tanamoto, U. Zähringer, G. R. Mckenzie, C. Galanos, E. T. Rietschel et al., Biological activities of synthetic lipid A analogs: pyrogenicity, lethal toxicity, anticomplement activity, and induction of gelation of Limulus amoebocyte lysate, Infect Immun, vol.44, pp.421-426, 1984.

R. Jerala, Structural biology of the LPS recognition, Int J Med Microbiol IJMM, vol.297, pp.353-363, 2007.

R. R. Schumann, S. R. Leong, G. W. Flaggs, P. W. Gray, S. D. Wright et al., Structure and function of lipopolysaccharide binding protein, Science, vol.249, pp.1429-1431, 1990.

A. Myc, J. Buck, J. Gonin, B. Reynolds, U. Hammerling et al., The level of lipopolysaccharidebinding protein is significantly increased in plasma in patients with the systemic inflammatory response syndrome, Clin Diagn Lab Immunol, vol.4, pp.113-116, 1997.

E. Hailman, H. S. Lichenstein, M. M. Wurfel, D. S. Miller, D. A. Johnson et al., Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14, J Exp Med, vol.179, pp.269-277, 1994.

M. O. Labeta, J. J. Durieux, N. Fernandez, R. Herrmann, and P. Ferrara, Release from a human monocyte-like cell line of two different soluble forms of the lipopolysaccharide receptor, CD14, Eur J Immunol, vol.23, pp.2144-2151, 1993.

E. A. Frey, D. S. Miller, T. G. Jahr, A. Sundan, V. Bazil et al., Soluble CD14 participates in the response of cells to lipopolysaccharide, J Exp Med, vol.176, pp.1665-1671, 1992.

P. S. Tobias, K. Soldau, J. A. Gegner, D. Mintz, and R. J. Ulevitch, Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14, J Biol Chem, vol.270, pp.10482-10488, 1995.

C. J. Thomas, M. Kapoor, S. Sharma, H. Bausinger, U. Zyilan et al., Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response, FEBS Lett, vol.531, pp.184-188, 2002.

A. Haziot, E. Ferrero, F. Köntgen, N. Hijiya, S. Yamamoto et al., Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice, Immunity, vol.4, pp.407-414, 1996.

M. M. Wurfel, B. G. Monks, R. R. Ingalls, R. L. Dedrick, R. Delude et al., Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact, J Exp Med, vol.186, pp.2051-2056, 1997.

R. Dziarski, Cell-bound albumin is the 70-kDa peptidoglycan-, lipopolysaccharide-, and lipoteichoic acid-binding protein on lymphocytes and macrophages, J Biol Chem, vol.269, pp.20431-20436, 1994.

K. Hoshino, O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa et al., Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product, J Immunol Baltim Md, vol.162, pp.3749-3752, 1950.

Y. Nagai, S. Akashi, M. Nagafuku, M. Ogata, Y. Iwakura et al., Essential role of MD-2 in LPS responsiveness and TLR4 distribution, Nat Immunol, vol.3, pp.667-672, 2002.

M. Gangloff and N. J. Gay, MD-2: the Toll "gatekeeper" in endotoxin signalling, Trends Biochem Sci, vol.29, pp.294-300, 2004.

A. Gruber, M. Mancek, H. Wagner, C. J. Kirschning, and R. Jerala, Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition, J Biol Chem, vol.279, pp.28475-28482, 2004.

B. S. Park, D. H. Song, H. M. Kim, B. Choi, H. Lee et al., The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex, Nature, vol.458, pp.1191-1195, 2009.

C. E. Bryant, D. R. Spring, M. Gangloff, and N. J. Gay, The molecular basis of the host response to lipopolysaccharide, Nat Rev Microbiol, vol.8, pp.8-14, 2010.

E. M. Pålsson-mcdermott, O. Neill, and L. , Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4, Immunology, vol.113, pp.153-162, 2004.

J. C. Kagan, T. Su, T. Horng, A. Chow, S. Akira et al., TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta, Nat Immunol, vol.9, pp.361-368, 2008.

N. Tanimura, S. Saitoh, F. Matsumoto, S. Akashi-takamura, and K. Miyake, Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling, Biochem Biophys Res Commun, vol.368, pp.94-99, 2008.

M. Yamamoto, S. Sato, H. Hemmi, K. Hoshino, T. Kaisho et al., Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway, Science, vol.301, pp.640-643, 2003.

H. Björkbacka, K. A. Fitzgerald, F. Huet, X. Li, J. A. Gregory et al., The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades, Physiol Genomics, vol.19, pp.319-330, 2004.

K. Takayama, N. Qureshi, E. Ribi, and J. L. Cantrell, Separation and characterization of toxic and nontoxic forms of lipid A, Rev Infect Dis, vol.6, pp.439-443, 1984.

C. R. Casella and T. C. Mitchell, Inefficient TLR4/MD-2 Heterotetramerization by, Monophosphoryl Lipid A. PLOS ONE, vol.8, p.62622, 2013.

M. A. Apicella, Lipid A Is More than Acyl Chains, Infect Immun, vol.82, pp.2160-2161, 2014.

K. Brandenburg, A. B. Schromm, M. H. Koch, and U. Seydel, Conformation and fluidity of endotoxins as determinants of biological activity, Prog Clin Biol Res, vol.392, pp.167-182, 1995.

A. G. Stöver, D. Silva-correia, J. Evans, J. T. Cluff, C. W. Elliott et al., Structure-activity relationship of synthetic toll-like receptor 4 agonists, J Biol Chem, vol.279, pp.4440-4449, 2004.

T. Pedron, R. Girard, J. Eustache, A. R. Bulusu, I. Macher et al., New synthetic analogs of lipid A as lipopolysaccharide agonists or antagonists of B lymphocyte activation, Int Immunol, vol.4, pp.533-540, 1992.

Y. Kumazawa, M. Nakatsuka, H. Takimoto, T. Furuya, T. Nagumo et al., Importance of fatty acid substituents of chemically synthesized lipid A-subunit analogs in the expression of immunopharmacological activity, Infect Immun, vol.56, pp.149-155, 1988.

F. Bäckhed, S. Normark, E. Schweda, S. Oscarson, and A. Richter-dahlfors, Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications, Microbes Infect, vol.5, pp.1057-1063, 2003.

J. E. Somerville, L. Cassiano, B. Bainbridge, M. D. Cunningham, and R. P. Darveau, A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide, J Clin Invest, vol.97, pp.359-365, 1996.

S. A. Khan, P. Everest, S. Servos, N. Foxwell, U. Zähringer et al., A lethal role for lipid A in Salmonella infections, Mol Microbiol, vol.29, pp.571-579, 1998.

W. Feist, A. J. Ulmer, M. H. Wang, J. Musehold, C. Schlüter et al., Modulation of lipopolysaccharide-induced production of tumor necrosis factor, interleukin 1, and interleukin 6 by synthetic precursor Ia of lipid A, FEMS Microbiol Immunol, vol.4, pp.73-89, 1992.

U. Zähringer, R. Salvetzki, F. Wagner, B. Lindner, and A. J. Ulmer, Structural and biological characterisation of a novel tetra-acyl lipid A from Escherichia coli F515 lipopolysaccharide acting as endotoxin antagonist in human monocytes, J Endotoxin Res, vol.7, pp.133-146, 2001.

H. F. Ding, I. Nakoneczna, and H. S. Hsu, Protective immunity induced in mice by detoxified salmonella lipopolysaccharide, J Med Microbiol, vol.31, pp.95-102, 1990.

E. T. Rietschel, T. Kirikae, F. U. Schade, A. J. Ulmer, O. Holst et al., The chemical structure of bacterial endotoxin in relation to bioactivity, Immunobiology, vol.187, pp.169-190, 1993.

U. Seydel, M. Oikawa, K. Fukase, S. Kusumoto, and K. Brandenburg, Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity, Eur J Biochem, vol.267, pp.3032-3039, 2000.

C. U. Duerr, S. F. Zenk, C. Chassin, J. Pott, D. Gütle et al., O-antigen delays lipopolysaccharide recognition and impairs antibacterial host defense in murine intestinal epithelial cells, PLoS Pathog, vol.5, p.1000567, 2009.

M. W. Hornef, M. J. Wick, M. Rhen, and S. Normark, Bacterial strategies for overcoming host innate and adaptive immune responses, Nat Immunol, vol.3, pp.1033-1040, 2002.

M. Bustin, Revised nomenclature for high mobility group (HMG) chromosomal proteins, Trends Biochem Sci, vol.26, pp.152-153, 2001.

R. Kang, R. Chen, Q. Zhang, W. Hou, S. Wu et al., HMGB1 in health and disease, Mol Aspects Med, vol.40, pp.1-116, 2014.

S. Ferrari, L. Ronfani, S. Calogero, and M. E. Bianchi, The mouse gene coding for high mobility group 1 protein (HMG1), J Biol Chem, vol.269, pp.28803-28808, 1994.

M. Gariboldi, D. Gregorio, L. Ferrari, S. Manenti, G. Pierotti et al., Mapping of the Hmg1 gene and of seven related sequences in the mouse, Mamm Genome Off J Int Mamm Genome Soc, vol.6, pp.581-585, 1995.

M. Bustin, Regulation of DNA-dependent activities by the functional motifs of the high-mobilitygroup chromosomal proteins, Mol Cell Biol, vol.19, pp.5237-5246, 1999.

S. Aizawa, H. Nishino, K. Saito, K. Kimura, H. Shirakawa et al., Stimulation of transcription in cultured cells by high mobility group protein 1: essential role of the acidic carboxyl-terminal region, Biochemistry (Mosc), vol.33, pp.14690-14695, 1994.

K. Stott, M. Watson, F. S. Howe, J. G. Grossmann, and J. O. Thomas, Tail-mediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domains, J Mol Biol, vol.403, pp.706-722, 2010.

R. H. Blair, A. E. Horn, Y. Pazhani, L. Grado, J. A. Goodrich et al., The HMGB1 C-Terminal Tail Regulates DNA Bending, J Mol Biol, vol.428, pp.4060-4072, 2016.

T. Bonaldi, F. Talamo, P. Scaffidi, D. Ferrera, A. Porto et al., Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion, EMBO J, vol.22, pp.5551-5560, 2003.

J. H. Youn and J. Shin, Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion, J Immunol Baltim Md, vol.177, pp.7889-7897, 1950.

I. Ito, J. Fukazawa, and M. Yoshida, Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils, J Biol Chem, vol.282, pp.16336-16344, 2007.

D. Tang, R. Kang, X. W. Wang, H. Calderwood, S. K. Xiao et al., The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages, J Immunol Baltim Md, vol.179, pp.1236-1244, 1950.

D. J. Antoine, H. E. Harris, U. Andersson, K. J. Tracey, and M. E. Bianchi, A Systematic Nomenclature for the Redox States of High Mobility Group Box (HMGB) Proteins, Mol Med, vol.20, pp.135-137, 2014.

E. Venereau, M. Casalgrandi, M. Schiraldi, D. J. Antoine, A. Cattaneo et al., Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release, J Exp Med, vol.209, pp.1519-1528, 2012.

A. Liu, H. Fang, O. Dirsch, H. Jin, and U. Dahmen, Oxidation of HMGB1 causes attenuation of its proinflammatory activity and occurs during liver ischemia and reperfusion, PloS One, vol.7, p.35379, 2012.

J. Li, R. Kokkola, S. Tabibzadeh, R. Yang, M. Ochani et al., Structural basis for the proinflammatory cytokine activity of high mobility group box 1, Mol Med Camb Mass, vol.9, pp.37-45, 2003.

H. Yang, H. S. Hreggvidsdottir, K. Palmblad, H. Wang, M. Ochani et al., A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release, Proc Natl Acad Sci U S A, vol.107, pp.11942-11947, 2010.

H. Yang, P. Lundbäck, L. Ottosson, H. Erlandsson-harris, E. Venereau et al., Redox Modification of Cysteine Residues Regulates the Cytokine Activity of High Mobility Group Box-1 (HMGB1), Mol Med, vol.18, pp.250-259, 2011.

G. Hoppe, K. E. Talcott, S. K. Bhattacharya, J. W. Crabb, and J. E. Sears, Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1, Exp Cell Res, vol.312, pp.3526-3538, 2006.

M. Stros, J. Reich, and A. Kolíbalová, Calcium binding to HMG1 protein induces DNA looping by the HMGbox domains, FEBS Lett, vol.344, pp.201-206, 1994.

L. G. Sheflin, N. W. Fucile, and S. W. Spaulding, The specific interactions of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes, Biochemistry (Mosc), vol.32, pp.3238-3248, 1993.

S. Park and S. J. Lippard, Redox state-dependent interaction of HMGB1 and cisplatin-modified DNA, Biochemistry (Mosc), vol.50, pp.2567-2574, 2011.

H. Yang, H. Wang, S. S. Chavan, and U. Andersson, High Mobility Group Box Protein 1 (HMGB1): The Prototypical Endogenous Danger Molecule, Mol Med, vol.21, pp.6-12, 2015.

M. Bustin and N. K. Neihart, Antibodies against chromosomal HMG proteins stain the cytoplasm of mammalian cells, Cell, vol.16, pp.181-189, 1979.

P. J. Isackson, D. L. Bidney, G. R. Reeck, N. K. Neihart, and M. Bustin, High mobility group chromosomal proteins isolated from muclei and cytosol of cultured hepatoma cells are similar, Biochemistry (Mosc), vol.19, pp.4466-4471, 1980.

L. Kuehl, B. Salmond, and L. Tran, Concentrations of high-mobility-group proteins in the nucleus and cytoplasm of several rat tissues, J Cell Biol, vol.99, pp.648-654, 1984.

S. Calogero, F. Grassi, A. Aguzzi, T. Voigtländer, P. Ferrier et al., The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice, Nat Genet, vol.22, pp.276-280, 1999.

N. Mizushima and B. Levine, Autophagy in mammalian development and differentiation, Nat Cell Biol, vol.12, pp.823-830, 2010.

D. Tang, R. Kang, K. M. Livesey, H. J. Zeh, and M. T. Lotze, High Mobility Group Box 1 (HMGB1) Activates an Autophagic Response to Oxidative Stress, Antioxid Redox Signal, vol.15, pp.2185-2195, 2011.

D. Tang, R. Kang, K. M. Livesey, C. Cheh, A. Farkas et al., Endogenous HMGB1 regulates autophagy, J Cell Biol, vol.190, pp.881-892, 2010.

E. Foglio, G. Puddighinu, A. Germani, M. A. Russo, and F. Limana, HMGB1 Inhibits Apoptosis Following MI and Induces Autophagy via mTORC1 Inhibition, J Cell Physiol, 2016.

M. L. Brezniceanu, K. Völp, S. Bösser, C. Solbach, P. Lichter et al., HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma, FASEB J Off Publ Fed Am Soc Exp Biol, vol.17, pp.1295-1297, 2003.

J. S. Park, J. Arcaroli, H. Yum, H. Yang, H. Wang et al., Activation of gene expression in human neutrophils by high mobility group box 1 protein, Am J Physiol -Cell Physiol, vol.284, pp.870-879, 2003.

A. Rouhiainen, S. Imai, H. Rauvala, and J. Parkkinen, Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation, Thromb Haemost, vol.84, pp.1087-1094, 2000.

J. Merenmies, R. Pihlaskari, J. Laitinen, J. Wartiovaara, and H. Rauvala, 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane, J Biol Chem, vol.266, pp.16722-16729, 1991.

J. Gauley and D. S. Pisetsky, The translocation of HMGB1 during cell activation and cell death, Autoimmunity, vol.42, pp.299-301, 2009.

C. Semino, G. Angelini, A. Poggi, and A. Rubartelli, NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1, Blood, vol.106, pp.609-616, 2005.

H. Wang, J. M. Vishnubhakat, O. Bloom, M. Zhang, M. Ombrellino et al., Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes, Surgery, vol.126, pp.389-392, 1999.

H. Wang, O. Bloom, M. Zhang, J. M. Vishnubhakat, M. Ombrellino et al., HMG-1 as a late mediator of endotoxin lethality in mice, Science, vol.285, pp.248-251, 1999.

M. T. Lotze and K. J. Tracey, High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal, Nat Rev Immunol, vol.5, pp.331-342, 2005.

Y. H. Kim, M. S. Kwak, J. B. Park, S. Lee, J. E. Choi et al., N-linked glycosylation plays a crucial role in the secretion of HMGB1, J Cell Sci, vol.129, pp.29-38, 2016.

S. Gardella, C. Andrei, D. Ferrera, L. V. Lotti, M. R. Torrisi et al., The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway, EMBO Rep, vol.3, pp.995-1001, 2002.

A. Rouhiainen, J. Kuja-panula, E. Wilkman, J. Pakkanen, J. Stenfors et al., Regulation of monocyte migration by amphoterin (HMGB1), Blood, vol.104, pp.1174-1182, 2004.

K. Schroder and J. Tschopp, The inflammasomes, Cell, vol.140, pp.821-832, 2010.

M. Lamkanfi, A. Sarkar, L. Vande-walle, A. C. Vitari, A. O. Amer et al., Inflammasomedependent release of the alarmin HMGB1 in endotoxemia, J Immunol Baltim Md, vol.185, pp.4385-4392, 1950.

S. Nyström, D. J. Antoine, P. Lundbäck, J. G. Lock, A. F. Nita et al., TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis, EMBO J, vol.32, pp.86-99, 2013.

A. Raucci, R. Palumbo, and M. E. Bianchi, HMGB1: A signal of necrosis, Autoimmunity, vol.40, pp.285-289, 2007.

M. Schiller, P. Heyder, S. Ziegler, A. Niessen, L. Claßen et al., During apoptosis HMGB1 is translocated into apoptotic cell-derived membranous vesicles, Autoimmunity, vol.46, pp.342-346, 2013.

H. Kazama, J. Ricci, J. M. Herndon, G. Hoppe, D. R. Green et al., IMMUNE TOLERANCE INDUCTION BY APOPTOTIC CELLS REQUIRES CASPASE-DEPENDENT OXIDATION OF HMGB1, Immunity, vol.29, pp.21-32, 2008.

R. Palumbo, M. Sampaolesi, D. Marchis, F. Tonlorenzi, R. Colombetti et al., Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation, J Cell Biol, vol.164, pp.441-449, 2004.

B. G. Galvez, M. Sampaolesi, S. Brunelli, D. Covarello, M. Gavina et al., Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability, J Cell Biol, vol.174, pp.231-243, 2006.

D. Messmer, H. Yang, G. Telusma, F. Knoll, J. Li et al., High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization, J Immunol Baltim Md, vol.173, pp.307-313, 1950.

I. E. Dumitriu, P. Baruah, B. Valentinis, R. E. Voll, M. Herrmann et al., Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products, J Immunol Baltim Md, vol.174, pp.7506-7515, 1950.

P. Rovere-querini, A. Capobianco, P. Scaffidi, B. Valentinis, F. Catalanotti et al., HMGB1 is an endogenous immune adjuvant released by necrotic cells, EMBO Rep, vol.5, pp.825-830, 2004.

C. Schlueter, H. Weber, B. Meyer, P. Rogalla, K. Röser et al., Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule, Am J Pathol, vol.166, issue.10, pp.62344-62353, 2005.

E. Chavakis, A. Hain, M. Vinci, G. Carmona, M. E. Bianchi et al., High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells, Circ Res, vol.100, pp.204-212, 2007.

S. Mitola, M. Belleri, C. Urbinati, D. Coltrini, B. Sparatore et al., Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine, J Immunol Baltim Md, vol.176, pp.12-15, 1950.

S. Yang, L. Xu, T. Yang, and F. Wang, High-mobility group box-1 and its role in angiogenesis, J Leukoc Biol, vol.95, pp.563-574, 2014.

A. Taguchi, D. C. Blood, G. Del-toro, A. Canet, D. C. Lee et al., Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases, Nature, vol.405, pp.354-360, 2000.

H. J. Huttunen, C. Fages, J. Kuja-panula, A. J. Ridley, and H. Rauvala, Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis, Cancer Res, vol.62, pp.4805-4811, 2002.

F. Limana, A. Germani, A. Zacheo, J. Kajstura, D. Carlo et al., Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation, Circ Res, vol.97, pp.73-83, 2005.

U. Andersson and K. J. Tracey, HMGB1 Is a Therapeutic Target for Sterile Inflammation and Infection, Annu Rev Immunol, vol.29, pp.139-162, 2011.

O. Hori, J. Brett, T. Slattery, R. Cao, J. Zhang et al., The Receptor for Advanced Glycation End Products (RAGE) Is a Cellular Binding Site for Amphoterin MEDIATION OF NEURITE OUTGROWTH AND CO-EXPRESSION OF RAGE AND AMPHOTERIN IN THE DEVELOPING NERVOUS SYSTEM, J Biol Chem, vol.270, pp.25752-25761, 1995.

L. Apetoh, F. Ghiringhelli, A. Tesniere, M. Obeid, C. Ortiz et al., Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nat Med, vol.13, pp.1050-1059, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00316924

J. S. Park, F. Gamboni-robertson, Q. He, D. Svetkauskaite, J. Kim et al., High mobility group box 1 protein interacts with multiple Toll-like receptors, Am J Physiol Cell Physiol, vol.290, pp.917-924, 2006.

J. S. Park, D. Svetkauskaite, Q. He, J. Kim, D. Strassheim et al., Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein, J Biol Chem, vol.279, pp.7370-7377, 2004.

S. Ivanov, A. Dragoi, X. Wang, C. Dallacosta, J. Louten et al., A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA, Blood, vol.110, pp.1970-1981, 2007.

H. Yanai, T. Ban, Z. Wang, M. K. Choi, T. Kawamura et al., HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses, Nature, vol.462, pp.99-103, 2009.

J. R. Klune, R. Dhupar, J. Cardinal, T. R. Billiar, and A. Tsung, HMGB1: endogenous danger signaling, Mol Med Camb Mass, vol.14, pp.476-484, 2008.

Z. A. Ibrahim, C. L. Armour, S. Phipps, and M. B. Sukkar, RAGE and TLRs: Relatives, friends or neighbours?, Mol Immunol, vol.56, pp.739-744, 2013.

Z. Luan, H. Zhang, P. Yang, X. Ma, C. Zhang et al., HMGB1 activates nuclear factor-?B signaling by RAGE and increases the production of TNF-? in human umbilical vein endothelial cells, Immunobiology, vol.215, pp.956-962, 2010.

B. Lv, H. Wang, Y. Tang, Z. Fan, X. Xiao et al., High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1, Thromb Haemost, vol.102, pp.352-359, 2009.

D. J. Weber, Y. M. Allette, D. S. Wilkes, and F. A. White, The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction, Antioxid Redox Signal, vol.23, pp.1316-1328, 2015.

Y. Liang, C. Hou, J. Kong, H. Wen, X. Zheng et al., HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2, Mol Cell Biochem, vol.405, pp.63-71, 2015.

U. Andersson, H. Wang, K. Palmblad, A. C. Aveberger, O. Bloom et al., High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes, J Exp Med, vol.192, pp.565-570, 2000.

C. K. Zetterström, T. Bergman, B. Rynnel-dagöö, E. Harris, H. Soder et al., High mobility group box chromosomal protein 1 (HMGB1) is an antibacterial factor produced by the human adenoid, Pediatr Res, vol.52, pp.148-154, 2002.

F. Wang, P. Zhu, J. Zhou, N. Liu, D. Xiong et al., Overexpression of HMGB1 A-box reduced lipopolysaccharide-induced intestinal inflammation via HMGB1/TLR4 signaling in vitro, World J Gastroenterol, vol.21, pp.7764-7776, 2015.

Q. Gong, J. Xu, H. Yin, S. Liu, L. Duan et al., Protective effect of antagonist of high-mobility group box 1 on lipopolysaccharide-induced acute lung injury in mice, Scand J Immunol, vol.69, pp.29-35, 2009.

W. Gong, Y. Zheng, F. Chao, Y. Li, Z. Xu et al., The anti-inflammatory activity of HMGB1 A box is enhanced when fused with C-terminal acidic tail, J Biomed Biotechnol, p.915234, 2010.

H. S. Hreggvidsdottir, T. Ostberg, H. Wähämaa, H. Schierbeck, A. Aveberger et al., The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation, J Leukoc Biol, vol.86, pp.655-662, 2009.

M. E. Bianchi, HMGB1 loves company, J Leukoc Biol, vol.86, pp.573-576, 2009.

Z. He, Y. Qin, Z. Wang, Y. Chen, Q. Shen et al., HMGB1 acts in synergy with lipopolysaccharide in activating rheumatoid synovial fibroblasts via p38 MAPK and NF-?B signaling pathways, Mediators Inflamm, p.596716, 2013.

Y. Qin, S. Dai, G. Tang, J. Zhang, D. Ren et al., HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products, J Immunol Baltim Md, vol.183, pp.6244-6250, 1950.

J. H. Youn, Y. J. Oh, E. S. Kim, J. E. Choi, and J. Shin, High Mobility Group Box 1 Protein Binding to Lipopolysaccharide Facilitates Transfer of Lipopolysaccharide to CD14 and Enhances Lipopolysaccharide-Mediated TNF-? Production in Human Monocytes, J Immunol, vol.180, pp.5067-5074, 2008.

M. S. Kwak, M. Lim, Y. J. Lee, H. S. Lee, Y. H. Kim et al., HMGB1 Binds to Lipoteichoic Acid and Enhances TNF-a and IL-6 Production through HMGB1-Mediated Transfer of Lipoteichoic Acid to CD14 and TLR2, J Innate Immun, vol.7, pp.405-416, 2015.

H. Wang, H. Yang, C. J. Czura, A. E. Sama, and K. J. Tracey, HMGB1 as a Late Mediator of Lethal Systemic Inflammation, Am J Respir Crit Care Med, vol.164, pp.1768-1773, 2001.

H. Yang, M. Ochani, J. Li, X. Qiang, M. Tanovic et al., Reversing established sepsis with antagonists of endogenous high-mobility group box 1, Proc Natl Acad Sci, vol.101, pp.296-301, 2004.

J. Tian, A. M. Avalos, S. Mao, B. Chen, K. Senthil et al., Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE, Nat Immunol, vol.8, pp.487-496, 2007.

Y. Sha, J. Zmijewski, Z. Xu, and A. E. , HMGB1 Develops Enhanced Proinflammatory Activity by Binding to Cytokines, J Immunol, vol.180, pp.2531-2537, 2008.

M. Schiraldi, A. Raucci, L. M. Muñoz, E. Livoti, B. Celona et al., HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4, J Exp Med, vol.209, pp.551-563, 2012.

A. Rouhiainen, S. Tumova, L. Valmu, N. Kalkkinen, and H. Rauvala, Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin), J Leukoc Biol, vol.81, pp.49-58, 2007.

K. Zimmermann, D. Völkel, S. Pable, T. Lindner, F. Kramberger et al., Native versus recombinant high-mobility group B1 proteins: functional activity in vitro, Inflammation, vol.28, pp.221-229, 2004.

J. Li, H. Wang, J. M. Mason, J. Levine, M. Yu et al., Recombinant HMGB1 with cytokinestimulating activity, J Immunol Methods, vol.289, pp.211-223, 2004.

A. Tissières, H. K. Mitchell, and U. M. Tracy, Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs, J Mol Biol, vol.84, pp.389-398, 1974.

F. Ritossa, A new puffing pattern induced by temperature shock and DNP in drosophila, Experientia, vol.18, pp.571-573, 1962.

F. M. Ritossa, Experimental activation of specific loci in polytene chromosomes of Drosophila, Exp Cell Res, vol.35, pp.601-607, 1964.

G. Pfister, C. M. Stroh, H. Perschinka, M. Kind, M. Knoflach et al., Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy, J Cell Sci, vol.118, pp.1587-1594, 2005.

M. Jäättelä, Heat shock proteins as cellular lifeguards, Ann Med, vol.31, pp.261-271, 1999.

L. Brocchieri and S. Karlin, Conservation among HSP60 sequences in relation to structure, function, and evolution, Protein Sci Publ Protein Soc, vol.9, pp.476-486, 2000.

B. Bukau and A. L. Horwich, The Hsp70 and Hsp60 chaperone machines, Cell, vol.92, pp.351-366, 1998.

A. G. Pockley, M. Muthana, and S. K. Calderwood, The dual immunoregulatory roles of stress proteins, Trends Biochem Sci, vol.33, pp.71-79, 2008.

A. G. Pockley and G. Multhoff, Cell stress proteins in extracellular fluids: friend or foe?, Novartis Found Symp, vol.291, pp.137-140, 2008.

M. Y. Cheng, F. Hartl, J. Martin, R. A. Pollock, F. Kalousek et al., Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria, Nature, vol.337, pp.620-625, 1989.

R. J. Ellis and S. M. Van-der-vies, Molecular chaperones, Annu Rev Biochem, vol.60, pp.321-347, 1991.

P. V. Viitanen, A. A. Gatenby, and G. H. Lorimer, Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins, Protein Sci Publ Protein Soc, vol.1, pp.363-369, 1992.

P. Goloubinoff, A. A. Gatenby, and G. H. Lorimer, GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli, Nature, vol.337, pp.44-47, 1989.

P. Goloubinoff, S. Diamant, C. Weiss, and A. Azem, GroES binding regulates GroEL chaperonin activity under heat shock, FEBS Lett, vol.407, pp.215-219, 1997.

J. F. Hunt, A. J. Weaver, S. J. Landry, L. Gierasch, and J. Deisenhofer, The crystal structure of the GroES cochaperonin at 2.8 A resolution, Nature, vol.379, pp.37-45, 1996.

K. L. Nielsen, N. Mclennan, M. Masters, and N. J. Cowan, A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo, J Bacteriol, vol.181, pp.5871-5875, 1999.

K. L. Nielsen and N. J. Cowan, A single ring is sufficient for productive chaperonin-mediated folding in vivo, Mol Cell, vol.2, pp.93-99, 1998.

R. S. Gupta, Sequence and structural homology between a mouse T-complex protein TCP-1 and the "chaperonin" family of bacterial (GroEL, 60-65 kDa heat shock antigen) and eukaryotic proteins, Biochem Int, vol.20, pp.833-841, 1990.

R. J. Ellis, Molecular Chaperones: The Plant Connection, Science, vol.250, pp.954-959, 1990.

H. H. Kampinga, J. Hageman, M. J. Vos, H. Kubota, R. M. Tanguay et al., Guidelines for the nomenclature of the human heat shock proteins, Cell Stress Chaperones, vol.14, pp.105-111, 2009.

M. B. Yaffe, G. W. Farr, D. Miklos, A. L. Horwich, M. L. Sternlicht et al., TCP1 complex is a molecular chaperone in tubulin biogenesis, Nature, vol.358, pp.245-248, 1992.

O. Llorca, J. Martín-benito, M. Ritco-vonsovici, J. Grantham, G. M. Hynes et al., Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations, EMBO J, vol.19, pp.5971-5979, 2000.

A. Y. Dunn, M. W. Melville, and J. Frydman, Review: Cellular Substrates of the Eukaryotic Chaperonin TRiC/CCT, J Struct Biol, vol.135, pp.176-184, 2001.

A. Y. Yam, Y. Xia, H. Lin, A. Burlingame, M. Gerstein et al., Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies, Nat Struct Mol Biol, vol.15, pp.1255-1262, 2008.

H. Kubota, G. Hynes, and K. Willison, The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol, Eur J Biochem, vol.230, pp.3-16, 1995.

C. Balczun, A. Bunse, C. Schwarz, M. Piotrowski, and U. Kück, Chloroplast heat shock protein Cpn60 from Chlamydomonas reinhardtii exhibits a novel function as a group II intron-specific RNA-binding protein, FEBS Lett, vol.580, pp.4527-4532, 2006.

N. R. Apuya, R. Yadegari, R. L. Fischer, J. J. Harada, J. L. Zimmerman et al., The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene, Plant Physiol, vol.126, pp.717-730, 2001.

B. A. Kaufman, J. E. Kolesar, P. S. Perlman, and R. A. Butow, A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae, J Cell Biol, vol.163, pp.457-461, 2003.

A. M. Czarnecka, C. Campanella, G. Zummo, and F. Cappello, Heat shock protein 10 and signal transduction: a "capsula eburnea" of carcinogenesis?, Cell Stress Chaperones, vol.11, pp.287-294, 2006.

C. C. Deocaris, S. C. Kaul, and R. Wadhwa, On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60, Cell Stress Chaperones, vol.11, pp.116-128, 2006.

L. H. Sigal, S. Williams, B. Soltys, and R. Gupta, H9724, a monoclonal antibody to Borrelia burgdorferi's flagellin, binds to heat shock protein 60 (HSP60) within live neuroblastoma cells: a potential role for HSP60 in peptide hormone signaling and in an autoimmune pathogenesis of the neuropathy of Lyme disease, Cell Mol Neurobiol, vol.21, pp.477-495, 2001.

R. S. Gupta, N. B. Ramachandra, T. Bowes, and B. Singh, Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10, Novartis Found Symp, vol.291, pp.137-140, 2008.

J. H. Christensen, M. N. Nielsen, J. Hansen, A. Füchtbauer, E. Füchtbauer et al., Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice, Cell Stress Chaperones, vol.15, pp.851-863, 2010.

R. Magnoni, J. Palmfeldt, J. H. Christensen, M. Sand, F. Maltecca et al., Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice, Neurobiol Dis, vol.54, pp.12-23, 2013.

J. J. Hansen, P. Bross, M. Westergaard, M. N. Nielsen, H. Eiberg et al., Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter, Hum Genet, vol.112, pp.71-77, 2003.

B. Singh, H. V. Patel, R. G. Ridley, K. B. Freeman, and R. S. Gupta, Mitochondrial import of the human chaperonin (HSP60) protein, Biochem Biophys Res Commun, vol.169, pp.391-396, 1990.

H. Itoh, A. Komatsuda, H. Ohtani, H. Wakui, H. Imai et al., Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration, Eur J Biochem, vol.269, pp.5931-5938, 2002.

K. Kotlo, Y. Xing, S. Lather, J. M. Grillon, K. Johnson et al., PR65A phosphorylation regulates PP2A complex signaling, PloS One, vol.9, p.85000, 2014.

H. Tang, E. Tian, C. Liu, Q. Wang, and H. Deng, Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones, PloS One, vol.8, p.59610, 2013.

M. D. Leach, D. A. Stead, E. Argo, and A. Brown, Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans, Mol Biol Cell, vol.22, pp.687-702, 2011.

C. Choudhary, C. Kumar, F. Gnad, M. L. Nielsen, M. Rehman et al., Lysine acetylation targets protein complexes and co-regulates major cellular functions, Science, vol.325, pp.834-840, 2009.

C. Peng, Z. Lu, Z. Xie, Z. Cheng, Y. Chen et al., The first identification of lysine malonylation substrates and its regulatory enzyme, Mol Cell Proteomics MCP, vol.10, 2011.

D. Hayoun, T. Kapp, M. Edri-brami, T. Ventura, M. Cohen et al., HSP60 is transported through the secretory pathway of 3-MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation

, FEBS J, vol.279, pp.2083-2095, 2012.

W. A. Fenton, Y. Kashi, K. Furtak, and A. L. Horwich, Residues in chaperonin GroEL required for polypeptide binding and release, Nature, vol.371, pp.614-619, 1994.

P. B. Sigler, Z. Xu, H. S. Rye, S. G. Burston, W. A. Fenton et al., Structure and function in GroELmediated protein folding, Annu Rev Biochem, vol.67, pp.581-608, 1998.

A. M. Roseman, S. Chen, H. White, K. Braig, and H. R. Saibil, The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL, Cell, vol.87, pp.241-251, 1996.

N. Murai, Y. Makino, and M. Yoshida, GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps, J Biol Chem, vol.271, pp.28229-28234, 1996.

O. Llorca, J. L. Carrascosa, and J. M. Valpuesta, Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding, J Biol Chem, vol.271, pp.68-76, 1996.

S. Jindal, A. K. Dudani, B. Singh, C. B. Harley, and R. S. Gupta, Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen, Mol Cell Biol, vol.9, pp.2279-2283, 1989.

S. Vilasi, R. Carrotta, M. R. Mangione, C. Campanella, F. Librizzi et al., Human Hsp60 with Its Mitochondrial Import Signal Occurs in Solution as Heptamers and Tetradecamers Remarkably Stable over a Wide Range of Concentrations, PLoS ONE, vol.9, p.97657, 2014.

P. V. Viitanen, G. Lorimer, W. Bergmeier, C. Weiss, M. Kessel et al., Purification of mammalian mitochondrial chaperonin 60 through in vitro reconstitution of active oligomers, Methods Enzymol, vol.290, pp.203-217, 1998.

S. David, F. Bucchieri, S. Corrao, A. M. Czarnecka, C. Campanella et al., Hsp10: anatomic distribution, functions, and involvement in human disease, Front Biosci Elite Ed, vol.5, pp.768-778, 2013.

G. Levy-rimler, P. Viitanen, C. Weiss, R. Sharkia, A. Greenberg et al., The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin

, Eur J Biochem, vol.268, pp.3465-3472, 2001.

Y. Cong, M. L. Baker, J. Jakana, D. Woolford, E. J. Miller et al., 0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement, Proc Natl Acad Sci U S A, vol.107, pp.4967-4972, 2010.

J. Frydman, E. Nimmesgern, H. Erdjument-bromage, J. S. Wall, P. Tempst et al., Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits, EMBO J, vol.11, pp.4767-4778, 1992.

Z. Lin, D. Madan, and H. S. Rye, GroEL stimulates protein folding through forced unfolding, Nat Struct Mol Biol, vol.15, pp.303-311, 2008.

S. Priya, S. K. Sharma, V. Sood, R. Mattoo, A. Finka et al., GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP, Proc Natl Acad Sci U S A, vol.110, pp.7199-7204, 2013.

P. A. Blondin, R. J. Kirby, and S. R. Barnum, The heat shock response and acquired thermotolerance in three strains of cyanobacteria, Curr Microbiol, vol.26, pp.79-84

J. A. Mendoza, E. Rogers, G. H. Lorimer, and P. M. Horowitz, Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese, J Biol Chem, vol.266, pp.13044-13049, 1991.

D. Chandra, G. Choy, and D. G. Tang, Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3, J Biol Chem, vol.282, pp.31289-31301, 2007.

A. Samali, J. Cai, B. Zhivotovsky, D. P. Jones, and S. Orrenius, Presence of a pre-apoptotic complex of procaspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells, EMBO J, vol.18, pp.2040-2048, 1999.

K. M. Lin, B. Lin, I. Y. Lian, R. Mestril, I. E. Scheffler et al., Combined and Individual Mitochondrial HSP60 and HSP10 Expression in Cardiac Myocytes Protects Mitochondrial Function and Prevents Apoptotic Cell Deaths Induced by Simulated Ischemia-Reoxygenation, Circulation, vol.103, pp.1787-1792, 2001.

C. L. Benjamin, S. E. Ullrich, M. L. Kripke, and H. N. Ananthaswamy, p53 tumor suppressor gene: a critical molecular target for UV induction and prevention of skin cancer, Photochem Photobiol, vol.84, pp.55-62, 2008.

D. R. Green, At the gates of death, Cancer Cell, vol.9, pp.328-330, 2006.

J. C. Ghosh, T. Dohi, B. H. Kang, and D. C. Altieri, Hsp60 Regulation of Tumor Cell Apoptosis, J Biol Chem, vol.283, pp.5188-5194, 2008.

S. Gupta and A. A. Knowlton, Cytosolic heat shock protein 60, hypoxia, and apoptosis, Circulation, vol.106, pp.2727-2733, 2002.

H. S. Kim, E. M. Kim, J. Lee, W. H. Yang, T. Y. Park et al., Heat shock protein 60 modified with Olinked N-acetylglucosamine is involved in pancreatic ?-cell death under hyperglycemic conditions, FEBS Lett, vol.580, pp.2311-2316, 2006.

J. C. Ghosh, M. D. Siegelin, T. Dohi, and D. C. Altieri, Heat Shock Protein 60 Regulation of the Mitochondrial Permeability Transition Pore in Tumor Cells, Cancer Res, vol.70, pp.8988-8993, 2010.

A. Pace, G. Barone, A. Lauria, A. Martorana, A. P. Piccionello et al., Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design, Curr Pharm Des, vol.19, pp.2757-2764, 2013.

F. Cappello, C. De-macario, E. Marasà, L. Zummo, G. Macario et al., Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy, Cancer Biol Ther, vol.7, pp.801-809, 2008.

K. Chaiwatanasirikul and A. Sala, The tumour-suppressive function of CLU is explained by its localisation and interaction with HSP60, Cell Death Dis, vol.2, p.219, 2011.

V. Di-felice, S. David, F. Cappello, F. Farina, and G. Zummo, Is chlamydial heat shock protein 60 a risk factor for oncogenesis?, Cell Mol Life Sci CMLS, vol.62, pp.4-9, 2005.

F. Cappello, S. David, F. Rappa, F. Bucchieri, L. Marasà et al., The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase, BMC Cancer, vol.5, p.139, 2005.

M. C. Wick, C. Mayerl, A. Backovic, R. Van-der-zee, W. Jaschke et al., In vivo imaging of the effect of LPS on arterial endothelial cells: molecular imaging of heat shock protein 60 expression, Cell Stress Chaperones, vol.13, pp.275-285, 2008.

R. Cicconi, A. Delpino, P. Piselli, M. Castelli, and D. Vismara, Expression of 60 kDa heat shock protein (Hsp60) on plasma membrane of Daudi cells, Mol Cell Biochem, vol.259, pp.1-7

Y. C. Goh, C. T. Yap, B. H. Huang, A. D. Cronshaw, B. P. Leung et al., Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis, Cell Mol Life Sci CMLS, vol.68, pp.1581-1592, 2011.

L. Lin, S. C. Kim, Y. Wang, S. Gupta, B. Davis et al., HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis, Am J Physiol Heart Circ Physiol, vol.293, pp.2238-2247, 2007.

R. K. Arya, A. Singh, N. K. Yadav, S. H. Cheruvu, Z. Hossain et al., Anti-breast tumor activity of Eclipta extract in-vitro and in-vivo: novel evidence of endoplasmic reticulum specific localization of Hsp60 during apoptosis, Sci Rep, vol.5, p.18457, 2015.

S. Gupta and A. A. Knowlton, HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway, Am J Physiol Heart Circ Physiol, vol.292, pp.3052-3056, 2007.

W. Chen, J. Wang, C. Shao, S. Liu, Y. Yu et al., Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells, Eur J Immunol, vol.36, pp.1598-1607, 2006.

C. Campanella, F. Bucchieri, A. M. Merendino, A. Fucarino, G. Burgio et al., The Odyssey of Hsp60 from Tumor Cells to Other Destinations Includes Plasma Membrane-Associated Stages and Golgi and Exosomal Protein-Trafficking Modalities, PLoS ONE, vol.7, p.42008, 2012.

S. Lehnardt, E. Schott, T. Trimbuch, D. Laubisch, C. Krueger et al., A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS, J Neurosci Off J Soc Neurosci, vol.28, pp.2320-2331, 2008.

A. Shamaei-tousi, A. Steptoe, K. O&apos;donnell, J. Palmen, J. W. Stephens et al., Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors, Cell Stress Chaperones, vol.12, pp.384-392, 2007.

A. G. Pockley, J. Bulmer, B. M. Hanks, and B. H. Wright, Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals, Cell Stress Chaperones, vol.4, pp.29-35, 1999.

Q. Xu, Role of heat shock proteins in atherosclerosis, Arterioscler Thromb Vasc Biol, vol.22, pp.1547-1559, 2002.

J. Lewthwaite, N. Owen, A. Coates, B. Henderson, and A. Steptoe, Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress, Circulation, vol.106, pp.196-201, 2002.

X. Zhang, M. He, L. Cheng, Y. Chen, L. Zhou et al., Elevated heat shock protein 60 levels are associated with higher risk of coronary heart disease in Chinese, Circulation, vol.118, pp.2687-2693, 2008.

Q. Xu, G. Schett, H. Perschinka, M. Mayr, G. Egger et al., Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population, Circulation, vol.102, pp.14-20, 2000.

M. Bassan, R. Zamostiano, E. Giladi, A. Davidson, Y. Wollman et al., The identification of secreted heat shock 60 -like protein from rat glial cells and a human neuroblastoma cell line, Neurosci Lett, vol.250, pp.37-40, 1998.

D. F. Terry, M. Mccormick, S. Andersen, J. Pennington, E. Schoenhofen et al., Cardiovascular disease delay in centenarian offspring: role of heat shock proteins, Ann N Y Acad Sci, vol.1019, pp.502-505, 2004.

I. M. Rea, S. Mcnerlan, and A. G. Pockley, Serum heat shock protein and anti-heat shock protein antibody levels in aging, Exp Gerontol, vol.36, pp.341-352, 2001.

G. Schett, B. Metzler, R. Kleindienst, A. Amberger, H. Recheis et al., Myocardial injury leads to a release of heat shock protein (hsp) 60 and a suppression of the anti-hsp65 immune response, Cardiovasc Res, vol.42, pp.685-695, 1999.

S. B. Flohé, J. Brüggemann, S. Lendemans, M. Nikulina, G. Meierhoff et al., Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype, J Immunol Baltim Md, vol.170, pp.2340-2348, 1950.

C. Habich and V. Burkart, Heat shock protein 60: regulatory role on innate immune cells, Cell Mol Life Sci CMLS, vol.64, pp.742-751, 2007.

A. Kol, T. Bourcier, A. H. Lichtman, and P. Libby, Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages, J Clin Invest, vol.103, pp.571-577, 1999.

R. J. Binder, R. Vatner, and P. Srivastava, The heat-shock protein receptors: some answers and more questions, Tissue Antigens, vol.64, pp.442-451, 2004.

K. Ohashi, V. Burkart, S. Flohé, and H. Kolb, Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex, J Immunol Baltim Md, vol.164, pp.558-561, 1950.

R. M. Vabulas, P. Ahmad-nejad, C. Da-costa, T. Miethke, C. J. Kirschning et al., Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells, J Biol Chem, vol.276, pp.31332-31339, 2001.

T. Märker, J. Kriebel, U. Wohlrab, V. Burkart, and C. Habich, Adipocytes from New Zealand obese mice exhibit aberrant proinflammatory reactivity to the stress signal heat shock protein 60, J Diabetes Res, p.187153, 2014.

K. Rosenberger, P. Dembny, K. Derkow, O. Engel, C. Krüger et al., Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4-and MyD88-dependent pathway, Mol Neurodegener, vol.10, p.5, 2015.

J. J. Bajramovid, M. Bsibsi, S. B. Geutskens, R. Hassankhan, K. C. Verhulst et al., Differential expression of stress proteins in human adult astrocytes in response to cytokines, J Neuroimmunol, vol.106, pp.14-22, 2000.

Y. Wang, L. Chen, N. Hagiwara, and A. A. Knowlton, Regulation of heat shock protein 60 and 72 expression in the failing heart, J Mol Cell Cardiol, vol.48, pp.360-366, 2010.

F. Cappello, G. Caramori, C. Campanella, C. Vicari, I. Gnemmi et al., Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis, PloS One, vol.6, p.28200, 2011.

W. Pei, K. Tanaka, S. C. Huang, L. Xu, B. Liu et al., Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation, Npj Regen Med, vol.1, p.16013, 2016.

J. A. Aalberse, B. Kapitein, S. De-roock, M. R. Klein, W. De-jager et al., Cord blood CD4+ T cells respond to self heat shock protein 60 (HSP60), PloS One, vol.6, p.24119, 2011.

I. De-kleer, Y. Vercoulen, M. Klein, J. Meerding, S. Albani et al., CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype, J Immunol Baltim Md, vol.185, pp.2071-2079, 1950.

N. Atre, L. Thomas, R. Mistry, K. Pathak, and S. Chiplunkar, Role of nitric oxide in heat shock protein induced apoptosis of gammadeltaT cells, Int J Cancer, vol.119, pp.1368-1376, 2006.

R. Ohue, K. Hashimoto, M. Nakamoto, Y. Furukawa, T. Masuda et al., Bacterial heat shock protein 60, GroEL, can induce the conversion of naïve T cells into a CD4 CD25(+) Foxp3-expressing phenotype, J Innate Immun, vol.3, pp.605-613, 2011.

C. Wu, Heat shock transcription factors: structure and regulation, Annu Rev Cell Dev Biol, vol.11, pp.441-469, 1995.

J. A. Van-roon, W. Van-eden, J. L. Van-roy, F. J. Lafeber, and J. W. Bijlsma, Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis, J Clin Invest, vol.100, pp.459-463, 1997.

M. Cohen-sfady, M. Pevsner-fischer, M. R. Cohen, and I. R. , Heat shock protein 60, via MyD88 innate signaling, protects B cells from apoptosis, spontaneous and induced, J Immunol Baltim Md, vol.183, pp.890-896, 1950.

C. Habich, K. Kempe, R. Van-der-zee, R. Rümenapf, H. Akiyama et al., Heat shock protein 60: specific binding of lipopolysaccharide, J Immunol Baltim Md, vol.174, pp.1298-1305, 1950.

M. Tsan and B. Gao, Heat shock proteins and immune system, J Leukoc Biol, vol.85, pp.905-910, 2009.

C. Retzlaff, Y. Yamamoto, S. Okubo, P. S. Hoffman, H. Friedman et al., Legionella pneumophila heatshock protein-induced increase of interleukin-1 beta mRNA involves protein kinase C signalling in macrophages, Immunology, vol.89, p.281, 1996.

M. Galdiero, G. C. Ero, . De, and A. Marcatili, Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins, Infect Immun, vol.65, pp.699-707, 1997.

P. A. Lund, A. T. Large, and G. Kapatai, The chaperonins: perspectives from the Archaea, Biochem Soc Trans, vol.31, pp.681-685, 2003.

B. Gao, M. Tsan, and . Recombinant, Human Heat Shock Protein 60 Does Not Induce the Release of Tumor Necrosis Factor ? from Murine Macrophages, J Biol Chem, vol.278, pp.22523-22529, 2003.

B. Gao and M. Tsan, Endotoxin Contamination in Recombinant Human Heat Shock Protein 70 (Hsp70) Preparation Is Responsible for the Induction of Tumor Necrosis Factor ? Release by Murine Macrophages, J Biol Chem, vol.278, pp.174-179, 2003.

B. Gao and M. Tsan, Induction of cytokines by heat shock proteins and endotoxin in murine macrophages, Biochem Biophys Res Commun, vol.317, pp.1149-1154, 2004.

J. M. Bangen, F. U. Schade, and S. B. Flohé, Diverse regulatory activity of human heat shock proteins 60 and 70 on endotoxin-induced inflammation, Biochem Biophys Res Commun, vol.359, pp.709-715, 2007.

A. Osterloh, F. Meier-stiegen, A. Veit, B. Fleischer, . Bonin-a-von et al., Lipopolysaccharide-free Heat Shock Protein 60 Activates T Cells, J Biol Chem, vol.279, pp.47906-47911, 2004.

A. Osterloh, A. Veit, A. Gessner, B. Fleischer, and M. Breloer, Hsp60-mediated T cell stimulation is independent of TLR4 and IL-12, Int Immunol, vol.20, pp.433-443, 2008.

A. Osterloh, U. Kalinke, S. Weiss, B. Fleischer, and M. Breloer, Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide, J Biol Chem, vol.282, pp.4669-4680, 2007.

M. Tsan and B. Gao, Endogenous ligands of Toll-like receptors, J Leukoc Biol, vol.76, pp.514-519, 2004.

W. I. Weis, M. E. Taylor, and K. Drickamer, The C-type lectin superfamily in the immune system, Immunol Rev, vol.163, pp.19-34, 1998.

K. Drickamer, C-type lectin-like domains, Curr Opin Struct Biol, vol.9, pp.585-590, 1999.

K. Drickamer, Evolution of Ca(2+)-dependent animal lectins, Prog Nucleic Acid Res Mol Biol, vol.45, pp.207-232, 1993.

K. Drickamer and A. J. Fadden, Genomic analysis of C-type lectins, Biochem Soc Symp, pp.59-72, 2002.

A. N. Zelensky and J. E. Gready, The C-type lectin-like domain superfamily, FEBS J, vol.272, pp.6179-6217, 2005.

Y. D. Dean, E. P. Mcgreal, and P. Gasque, Endothelial cells, megakaryoblasts, platelets and alveolar epithelial cells express abundant levels of the mouse AA4 antigen, a C-type lectin-like receptor involved in homing activities and innate immune host defense, Eur J Immunol, vol.31, pp.1370-1381, 2001.

P. J. Norsworthy, P. R. Taylor, M. J. Walport, and M. Botto, Cloning of the mouse homolog of the 126-kDa human C1q/MBL/SP-A receptor, C1qR(p), Mamm Genome Off J Int Mamm Genome Soc, vol.10, pp.789-793, 1999.

T. S. Kim, M. Park, R. R. Nepomuceno, G. Palmarini, S. Winokur et al., Characterization of the murine homolog of C1qR(P): identical cellular expression pattern, chromosomal location and functional activity of the human and murine C1qR(P), Mol Immunol, vol.37, pp.377-389, 2000.

G. Løvik, J. T. Vaage, E. Dissen, C. Szpirer, J. C. Ryan et al., Characterization and molecular cloning of rat C1qRp, a receptor on NK cells, Eur J Immunol, vol.30, pp.12-60, 2000.

R. Malhotra, A. C. Willis, J. C. Jensenius, J. Jackson, and R. B. Sim, Structure and homology of human C1q receptor (collectin receptor), Immunology, vol.78, pp.341-348, 1993.

R. R. Nepomuceno, A. H. Henschen-edman, W. H. Burgess, and A. J. Tenner, cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro, Immunity, vol.6, pp.119-129, 1997.

P. Steinberger, A. Szekeres, S. Wille, J. Stöckl, N. Selenko et al., Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning, J Leukoc Biol, vol.71, pp.133-140, 2002.

E. P. Mcgreal, N. Ikewaki, H. Akatsu, B. P. Morgan, and P. Gasque, Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q, J Immunol Baltim Md, vol.168, pp.5222-5232, 1950.

R. R. Nepomuceno and A. J. Tenner, C1qRP, the C1q receptor that enhances phagocytosis, is detected specifically in human cells of myeloid lineage, endothelial cells, and platelets, J Immunol Baltim Md, vol.160, pp.1929-1935, 1950.

P. J. Norsworthy, L. Fossati-jimack, J. Cortes-hernandez, P. R. Taylor, A. E. Bygrave et al., Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis, J Immunol Baltim Md, vol.172, pp.3406-3414, 1950.

G. H. Danet, J. L. Luongo, G. Butler, M. M. Lu, A. J. Tenner et al., C1qRp defines a new human stem cell population with hematopoietic and hepatic potential, Proc Natl Acad Sci U S A, vol.99, pp.10441-10445, 2002.

M. I. Fonseca, P. M. Carpenter, M. Park, G. Palmarini, E. L. Nelson et al., C1qR(P), a myeloid cell receptor in blood, is predominantly expressed on endothelial cells in human tissue, J Leukoc Biol, vol.70, pp.793-800, 2001.

M. C. Greenlee, S. A. Sullivan, and S. S. Bohlson, CD93 and related family members: their role in innate immunity, Curr Drug Targets, vol.9, pp.130-138, 2008.

E. Mcgreal and P. Gasque, Structure-function studies of the receptors for complement C1q, Biochem Soc Trans, vol.30, pp.1010-1014, 2002.

O. Petrenko, A. Beavis, M. Klaine, R. Kittappa, I. Godin et al., The molecular characterization of the fetal stem cell marker AA4, Immunity, vol.10, pp.691-700, 1999.

S. S. Bohlson, R. Silva, M. I. Fonseca, and A. J. Tenner, CD93 Is Rapidly Shed from the Surface of Human Myeloid Cells and the Soluble Form Is Detected in Human Plasma, J Immunol, vol.175, pp.1239-1247, 2005.

R. R. Nepomuceno, S. Ruiz, M. Park, and A. J. Tenner, C1qRP is a heavily O-glycosylated cell surface protein involved in the regulation of phagocytic activity, J Immunol Baltim Md, vol.162, pp.3583-3589, 1950.

M. Park and A. J. Tenner, Cell surface expression of C1qRP/CD93 is stabilized by O-glycosylation, J Cell Physiol, vol.196, pp.512-522, 2003.

N. Ikewaki, J. K. Kulski, and H. Inoko, Regulation of CD93 cell surface expression by protein kinase C isoenzymes, Microbiol Immunol, vol.50, pp.93-103, 2006.

R. A. Black, C. T. Rauch, C. J. Kozlosky, J. J. Peschon, J. L. Slack et al., A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells, Nature, vol.385, pp.729-733, 1997.

O. Nagano and H. Saya, Mechanism and biological significance of CD44 cleavage, Cancer Sci, vol.95, pp.930-935, 2004.

O. Nagano, D. Murakami, D. Hartmann, D. Strooper, B. Saftig et al., Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation, J Cell Biol, vol.165, pp.893-902, 2004.

M. A. Jutila, L. Rott, E. L. Berg, and E. C. Butcher, Function and regulation of the neutrophil MEL-14 antigen in vivo: comparison with LFA-1 and MAC-1, J Immunol Baltim Md, vol.143, pp.3318-3324, 1950.

T. K. Kishimoto, M. A. Jutila, E. L. Berg, and E. C. Butcher, Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors, Science, vol.245, pp.1238-1241, 1989.

M. W. Boehme, E. Werle, B. Kommerell, and U. Raeth, Serum levels of adhesion molecules and thrombomodulin as indicators of vascular injury in severe Plasmodium falciparum malaria, Clin Investig, vol.72, pp.598-603, 1994.

O. Lohi, S. Urban, and M. Freeman, Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids, Curr Biol CB, vol.14, pp.236-241, 2004.

Y. Kao, S. Jiang, W. Pan, K. Wang, P. Chen et al., The epidermal growth factor-like domain of CD93 is a potent angiogenic factor, PloS One, vol.7, p.51647, 2012.

N. Ikewaki, H. Yamao, J. K. Kulski, and H. Inoko, Flow cytometric identification of CD93 expression on naive T lymphocytes (CD4(+)CD45RA (+) cells) in human neonatal umbilical cord blood, J Clin Immunol, vol.30, pp.723-733, 2010.

J. P. Mckearn, C. Baum, and J. M. Davie, Cell surface antigens expressed by subsets of pre-B cells and B cells, J Immunol Baltim Md, vol.132, pp.332-339, 1950.

S. Chevrier, C. Genton, A. Kallies, A. Karnowski, L. A. Otten et al., CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche, Proc Natl Acad Sci, vol.106, pp.3895-3900, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407824

N. Ikewaki, T. Sonoda, and H. Inoko, Unique properties of cluster of differentiation 93 in the umbilical cord blood of neonates, Microbiol Immunol, vol.57, pp.822-832, 2013.

C. Shi, G. Shi, Y. Chang, H. Han, C. Kuo et al., Evidence of human thrombomodulin domain as a novel angiogenic factor, Circulation, vol.111, pp.1627-1636, 2005.

E. Langenkamp, L. Zhang, R. Lugano, H. Huang, T. Elhassan et al., Elevated Expression of the C-Type Lectin CD93 in the Glioblastoma Vasculature Regulates Cytoskeletal Rearrangements That Enhance Vessel Function and Reduce Host Survival, Cancer Res, vol.75, pp.4504-4516, 2015.

R. S. Olsen, M. Lindh, E. Vorkapic, R. E. Andersson, N. Zar et al., CD93 gene polymorphism is associated with disseminated colorectal cancer, Int J Colorectal Dis, vol.30, pp.883-890, 2015.

M. Orlandini, F. Galvagni, M. Bardelli, M. Rocchigiani, C. Lentucci et al., The characterization of a novel monoclonal antibody against CD93 unveils a new antiangiogenic target, Oncotarget, vol.5, pp.2750-2760, 2014.

F. Galvagni, F. Nardi, M. Maida, G. Bernardini, S. Vannuccini et al., CD93 and dystroglycan cooperation in human endothelial cell adhesion and migration adhesion and migration, Oncotarget, vol.7, pp.10090-10103, 2016.

C. J. Moore and S. J. Winder, Dystroglycan versatility in cell adhesion: a tale of multiple motifs, Cell Commun Signal CCS, vol.8, p.3, 2010.

H. Shimizu, H. Hosokawa, H. Ninomiya, J. H. Miner, and T. Masaki, Adhesion of cultured bovine aortic endothelial cells to laminin-1 mediated by dystroglycan, J Biol Chem, vol.274, pp.11995-12000, 1999.

H. Hosokawa, H. Ninomiya, Y. Kitamura, K. Fujiwara, and T. Masaki, Vascular endothelial cells that express dystroglycan are involved in angiogenesis, J Cell Sci, vol.115, pp.1487-1496, 2002.

N. Ikewaki and H. Inoko, Development and characterization of a novel monoclonal antibody (mNI-11) that induces cell adhesion of the LPS-stimulated human monocyte-like cell line U937, J Leukoc Biol, vol.59, pp.697-708, 1996.

N. Ikewaki, H. Tamauchi, A. Yamada, N. Mori, H. Yamao et al., A unique monoclonal antibody mNI-11 rapidly enhances spread formation in human umbilical vein endothelial cells, J Clin Immunol, vol.20, pp.317-324, 2000.

M. Zhang, S. S. Bohlson, M. Dy, and A. J. Tenner, Modulated interaction of the ERM protein, moesin, with CD93, Immunology, vol.115, pp.63-73, 2005.

S. Tsukita and S. Yonemura, Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins, J Biol Chem, vol.274, pp.34507-34510, 1999.

Y. Hsu, G. Shi, C. Kuo, S. Liu, C. Wu et al., Thrombomodulin is an ezrin-interacting protein that controls epithelial morphology and promotes collective cell migration, FASEB J, vol.26, pp.3440-3452, 2012.

M. D. Galvan, M. C. Greenlee-wacker, and S. S. Bohlson, C1q and phagocytosis: the perfect complement to a good meal, J Leukoc Biol, vol.92, pp.489-497, 2012.

M. C. Greenlee-wacker, C. Briseno, M. Galvan, G. Moriel, P. Velazquez et al., Membrane-Associated CD93 Regulates Leukocyte Migration and C1q-Hemolytic Activity during Murine Peritonitis, J Immunol, vol.187, pp.3353-3361, 2011.

J. Savill and V. Fadok, Corpse clearance defines the meaning of cell death, Nature, vol.407, pp.784-788, 2000.

V. A. Fadok, D. L. Bratton, and P. M. Henson, Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences, J Clin Invest, vol.108, pp.957-962, 2001.

H. L. Wieman, S. R. Horn, S. R. Jacobs, B. J. Altman, S. Kornbluth et al., An essential role for the Glut1 PDZ-binding motif in growth factor regulation of Glut1 degradation and trafficking, Biochem J, vol.418, pp.345-367, 2009.

L. H. Wang, R. G. Kalb, and S. M. Strittmatter, A PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF, J Biol Chem, vol.274, pp.14137-14146, 1999.

D. Vries, L. Lou, X. Zhao, G. Zheng, B. Farquhar et al., GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP, Proc Natl Acad Sci, vol.95, pp.12340-12345, 1998.

F. Jeanneteau, J. Diaz, P. Sokoloff, and N. Griffon, Interactions of GIPC with dopamine D2, D3 but not D4 receptors define a novel mode of regulation of G protein-coupled receptors, Mol Biol Cell, vol.15, pp.696-705, 2004.

S. S. Bohlson, M. Zhang, C. E. Ortiz, and A. J. Tenner, CD93 interacts with the PDZ domain-containing adaptor protein GIPC: implications in the modulation of phagocytosis, J Leukoc Biol, vol.77, pp.80-89, 2005.

S. D. Webster, M. Park, M. I. Fonseca, and A. J. Tenner, Structural and functional evidence for microglial expression of C1qR(P), the C1q receptor that enhances phagocytosis, J Leukoc Biol, vol.67, pp.109-116, 2000.

M. Botto, C. Dell&apos;agnola, A. E. Bygrave, E. M. Thompson, H. T. Cook et al., Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies, Nat Genet, vol.19, pp.56-59, 1998.

C. A. Ogden, A. Decathelineau, P. R. Hoffmann, D. Bratton, B. Ghebrehiwet et al., C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells, J Exp Med, vol.194, pp.781-795, 2001.

M. C. Greenlee, S. A. Sullivan, and S. S. Bohlson, Detection and characterization of soluble CD93 released during inflammation, Inflamm Res, vol.58, p.909, 2009.

C. Shi, G. Shi, H. Hsiao, S. Hsiao, Y. Kao et al., Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response, Blood, vol.112, pp.3661-3670, 2008.

E. M. Conway, M. Van-de-wouwer, S. Pollefeyt, K. Jurk, H. Van-aken et al., The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways, J Exp Med, vol.196, pp.565-577, 2002.

K. Abeyama, D. M. Stern, Y. Ito, K. Kawahara, Y. Yoshimoto et al., The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism, J Clin Invest, vol.115, pp.1267-1274, 2005.

M. Van-de-wouwer, S. Plaisance, D. Vriese, A. Waelkens, E. et al., The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis, J Thromb Haemost JTH, vol.4, pp.1813-1824, 2006.

D. Harhausen, V. Prinz, G. Ziegler, K. Gertz, M. Endres et al., CD93/AA4.1: A Novel Regulator of Inflammation in Murine Focal Cerebral Ischemia, J Immunol, vol.184, pp.6407-6417, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01274623

J. Jeon, J. Shin, E. Choi, H. I. Kim, H. Y. Cho et al., Soluble CD93 induces differentiation of monocytes and enhances TLR responses, J Immunol Baltim Md, vol.185, pp.4921-4927, 1950.

R. Kokkola, J. Li, E. Sundberg, A. Aveberger, K. Palmblad et al., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity, Arthritis Rheum, vol.48, pp.2052-2058, 2003.

T. Östberg, K. Kawane, S. Nagata, H. Yang, S. Chavan et al., Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model, Arthritis Rheum, vol.62, pp.2963-2972, 2010.

P. Lundbäck, J. D. Lea, A. Sowinska, L. Ottosson, C. M. Fürst et al., A novel high mobility group box 1 neutralizing chimeric antibody attenuates drug-induced liver injury and postinjury inflammation in mice, Hepatol Baltim Md, 2016.

H. Schierbeck, P. Lundbäck, K. Palmblad, L. Klevenvall, H. Erlandsson-harris et al., Monoclonal anti-HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models, Mol Med Camb Mass, vol.17, pp.1039-1044, 2011.

W. Ge, J. Fan, Y. Chen, and L. Xu, Expression and purification of functional HMGB1 A box by fusion with SUMO, Mol Med Rep, vol.12, pp.6527-6532, 2015.

C. Zhang, M. Shu, H. Qi, and L. Li, Inhibition of tumor angiogenesis by HMGB1 A box peptide, Med Hypotheses, vol.70, pp.343-345, 2008.

X. Wu, W. Gu, H. Lu, C. Liu, B. Yu et al., Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways, Oxid Med Cell Longev, p.1015390, 2016.

Y. Izushi, K. Teshigawara, K. Liu, D. Wang, H. Wake et al., Soluble form of the receptor for advanced glycation end-products attenuates inflammatory pathogenesis in a rat model of lipopolysaccharide-induced lung injury, J Pharmacol Sci, vol.130, pp.226-234, 2016.

A. K. Bongoni, N. Klymiuk, E. Wolf, D. Ayares, R. Rieben et al., Transgenic Expression of Human Thrombomodulin Inhibits HMGB1-Induced Porcine Aortic Endothelial Cell Activation, Transplantation, vol.100, pp.1871-1879, 2016.

Y. Nakamura, T. Nakano, K. Irie, K. Sano, J. Tanaka et al., Recombinant human soluble thrombomodulin ameliorates cerebral ischemic injury through a high-mobility group box 1 inhibitory mechanism without hemorrhagic complications in mice, J Neurol Sci, vol.362, pp.278-282, 2016.

Y. Takahashi, N. Matsutani, H. Dejima, T. Nakayama, R. Okamura et al., Therapeutic potential of recombinant thrombomodulin for lung injury following pneumonectomy via inhibition of HMGB1 in mice, J Trauma Acute Care Surg, 2016.

T. Kashiwadate, S. Miyagi, Y. Hara, Y. Akamatsu, S. Sekiguchi et al., Soluble Thrombomodulin Ameliorates Ischemia-Reperfusion Injury of Liver Grafts by Modulating the Proinflammatory Role of High-Mobility Group Box 1, Tohoku J Exp Med, vol.239, pp.315-323, 2016.

L. Mollica, D. Marchis, F. Spitaleri, A. Dallacosta, C. Pennacchini et al., Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities, Chem Biol, vol.14, pp.431-441, 2007.

P. Yang, D. Kim, Y. Lee, S. Lee, W. Kang et al., inhibitor of high mobility group box-1, attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling in rats, Respir Res, vol.15, p.148, 2014.

H. Pang, T. Huang, J. Song, D. Li, Y. Zhao et al., Inhibiting HMGB1 with Glycyrrhizic Acid Protects Brain Injury after DAI via Its Anti-Inflammatory Effect, Mediators Inflamm, p.4569521, 2016.

G. Sitia, M. Iannacone, S. Müller, M. E. Bianchi, and L. G. Guidotti, Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice, J Leukoc Biol, vol.81, pp.100-107, 2007.

T. Ostberg, H. Wähämaa, K. Palmblad, N. Ito, P. Stridh et al., Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis, Arthritis Res Ther, vol.10, p.1, 2008.

C. K. Zetterström, W. Jiang, H. Wähämaa, T. Ostberg, A. Aveberger et al., Pivotal advance: inhibition of HMGB1 nuclear translocation as a mechanism for the anti-rheumatic effects of gold sodium thiomalate, J Leukoc Biol, vol.83, pp.31-38, 2008.

Y. Li, P. Xu, K. Xu, Y. Cai, M. Sun et al., Methotrexate affects HMGB1 expression in rheumatoid arthritis, and the downregulation of HMGB1 prevents rheumatoid arthritis progression, Mol Cell Biochem, vol.420, pp.161-170, 2016.

H. Lei, Q. Wen, H. Li, S. Du, J. Wu et al., Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264, Cells. Inflammation, vol.39, issue.7, pp.1177-1187, 2016.

K. Inoue, K. Kawahara, K. K. Biswas, K. Ando, K. Mitsudo et al., HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques, Cardiovasc Pathol Off J Soc Cardiovasc Pathol, vol.16, pp.136-143, 2007.

N. Kalinina, A. Agrotis, Y. Antropova, G. Divitto, P. Kanellakis et al., Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines, Arterioscler Thromb Vasc Biol, vol.24, pp.2320-2325, 2004.

C. Fiuza, M. Bustin, S. Talwar, M. Tropea, E. Gerstenberger et al., Inflammationpromoting activity of HMGB1 on human microvascular endothelial cells, Blood, vol.101, pp.2652-2660, 2003.

C. J. Treutiger, G. E. Mullins, A. Johansson, A. Rouhiainen, H. Rauvala et al., High mobility group 1 B-box mediates activation of human endothelium, J Intern Med, vol.254, pp.375-385, 2003.

A. Porto, R. Palumbo, M. Pieroni, G. Aprigliano, R. Chiesa et al., Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein

, FASEB J Off Publ Fed Am Soc Exp Biol, vol.20, pp.2565-2566, 2006.

P. Kanellakis, A. Agrotis, T. S. Kyaw, C. Koulis, I. Ahrens et al., High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein e-deficient mice, Arterioscler Thromb Vasc Biol, vol.31, pp.313-319, 2011.

G. Basta, Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications, Atherosclerosis, vol.196, pp.9-21, 2008.

E. Harja, D. Bu, B. I. Hudson, J. S. Chang, X. Shen et al., Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/-mice, J Clin Invest, vol.118, pp.183-194, 2008.

X. Hu, H. Jiang, Q. Bai, X. Zhou, C. Xu et al., Increased serum HMGB1 is related to the severity of coronary artery stenosis, Clin Chim Acta Int J Clin Chem, vol.406, pp.139-142, 2009.

T. Kohno, T. Anzai, K. Naito, T. Miyasho, M. Okamoto et al., Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling, Cardiovasc Res, vol.81, pp.565-573, 2009.

M. Andrassy, H. C. Volz, J. C. Igwe, B. Funke, S. N. Eichberger et al., High-mobility group box-1 in ischemia-reperfusion injury of the heart, Circulation, vol.117, pp.3216-3226, 2008.

H. Tzeng, J. Fan, J. G. Vallejo, J. W. Dong, X. Chen et al., Negative inotropic effects of highmobility group box 1 protein in isolated contracting cardiac myocytes, Am J Physiol Heart Circ Physiol, vol.294, pp.1490-1496, 2008.

S. Oozawa, S. Mori, T. Kanke, H. Takahashi, K. Liu et al., Effects of HMGB1 on ischemiareperfusion injury in the rat heart, Circ J Off J Jpn Circ Soc, vol.72, pp.1178-1184, 2008.

T. Kitahara, Y. Takeishi, M. Harada, T. Niizeki, S. Suzuki et al., High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice, Cardiovasc Res, vol.80, pp.40-46, 2008.

X. Hu, H. Jiang, B. Cui, C. Xu, Z. Lu et al., Preconditioning with high mobility group box 1 protein protects against myocardial ischemia-reperfusion injury, Int J Cardiol, vol.145, pp.111-112, 2010.

F. Giallauria, P. Cirillo, R. Lucci, M. Pacileo, D. Agostino et al., Autonomic dysfunction is associated with high mobility group box-1 levels in patients after acute myocardial infarction, Atherosclerosis, vol.208, pp.280-284, 2010.

H. Wang, H. Qu, and H. Deng, Plasma HMGB-1 Levels in Subjects with Obesity and Type 2 Diabetes: A Cross-Sectional Study in China, PLoS ONE, vol.10, 2015.

T. Arrigo, V. Chirico, V. Salpietro, C. Munafò, V. Ferraù et al., High-mobility group protein B1: a new biomarker of metabolic syndrome in obese children, Eur J Endocrinol Eur Fed Endocr Soc, vol.168, pp.631-638, 2013.

M. K. Gunasekaran, W. Viranaicken, A. Girard, F. Festy, M. Cesari et al., Inflammation triggers high mobility group box 1 (HMGB1) secretion in adipose tissue, a potential link to obesity, Cytokine, vol.64, pp.103-111, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01198324

M. Wagner, A Dangerous Duo in Adipose Tissue: High-Mobility Group Box 1 Protein and Macrophages, Yale J Biol Med, vol.87, pp.127-133, 2014.

Y. Chen, F. Qiao, Y. Zhao, Y. Wang, and G. Liu, HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose, Int J Clin Exp Pathol, vol.8, pp.6683-6691, 2015.

M. Li, L. Song, X. Gao, W. Chang, and X. Qin, Toll-like receptor 4 on islet ? cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes, Exp Mol Med, vol.44, pp.260-267, 2012.

J. Kim, C. Kim, E. Sohn, and J. S. Kim, Cytoplasmic translocation of high-mobility group box-1 protein is induced by diabetes and high glucose in retinal pericytes, Mol Med Rep, vol.14, pp.3655-3661, 2016.

R. Guzmán-ruiz, F. Ortega, A. Rodríguez, R. Vázquez-martínez, A. Díaz-ruiz et al., Alarmin high-mobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in ?-cells, Int J Obes, vol.38, pp.1545-1554, 2005.

P. Dandona, H. Ghanim, K. Green, C. L. Sia, S. Abuaysheh et al., Insulin infusion suppresses while glucose infusion induces Toll-like receptors and high-mobility group-B1 protein expression in mononuclear cells of type 1 diabetes patients, Am J Physiol -Endocrinol Metab, vol.304, 2013.

T. Hamada, M. Torikai, A. Kuwazuru, M. Tanaka, N. Horai et al., Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis, Arthritis Rheum, vol.58, pp.2675-2685, 2008.

N. Taniguchi, K. Kawahara, K. Yone, T. Hashiguchi, M. Yamakuchi et al., High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine, Arthritis Rheum, vol.48, pp.971-981, 2003.

R. Kokkola, E. Sundberg, A. Ulfgren, K. Palmblad, J. Li et al., High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis, Arthritis Rheum, vol.46, pp.2598-2603, 2002.

P. Lundbäck, P. Stridh, L. Klevenvall, R. E. Jenkins, M. Fischer et al., Characterization of the Inflammatory Properties of Actively Released HMGB1 in Juvenile Idiopathic Arthritis, Antioxid Redox Signal, vol.24, pp.605-619, 2016.

R. Pullerits, I. Jonsson, M. Verdrengh, M. Bokarewa, U. Andersson et al., High mobility group box chromosomal protein 1, a DNA binding cytokine, induces arthritis, Arthritis Rheum, vol.48, pp.1693-1700, 2003.

Q. Huang, Y. Ma, A. Adebayo, and R. M. Pope, Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis, Arthritis Rheum, vol.56, pp.2192-2201, 2007.

J. Parkkinen and H. Rauvala, Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin, J Biol Chem, vol.266, pp.16730-16735, 1991.

H. Wähämaa, H. Schierbeck, H. S. Hreggvidsdottir, K. Palmblad, A. Aveberger et al., High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts, Arthritis Res Ther, vol.13, p.136, 2011.

C. Grundtman and G. Wick, The autoimmune concept of atherosclerosis, Curr Opin Lipidol, vol.22, pp.327-334, 2011.

I. Gotsman, A. H. Sharpe, and A. H. Lichtman, T-cell costimulation and coinhibition in atherosclerosis, Circ Res, vol.103, pp.1220-1231, 2008.

K. Tse, H. Tse, J. Sidney, A. Sette, and K. Ley, T cells in atherosclerosis, Int Immunol, vol.25, pp.615-622, 2013.

D. Harats, Y. N. Gilburd, B. Shoenfeld, Y. George, and J. , Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions, J Am Coll Cardiol, vol.40, pp.1333-1338, 2002.

R. Maron, G. Sukhova, A. Faria, E. Hoffmann, F. Mach et al., Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice, Circulation, vol.106, pp.1708-1715, 2002.

G. Van-puijvelde, T. Van-es, E. Van-wanrooij, K. Habets, P. De-vos et al., Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis, Arterioscler Thromb Vasc Biol, vol.27, pp.2677-2683, 2007.

G. Wick, R. Kleindienst, H. Dietrich, and Q. Xu, Is atherosclerosis an autoimmune disease?, Trends Food Sci Technol, vol.3, pp.114-119, 1992.

J. C. Ranford, A. Coates, and B. Henderson, Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones, Expert Rev Mol Med, vol.2, pp.1-17, 2000.

A. Shamaei-tousi, D. &apos;aiuto, F. Nibali, L. Steptoe, A. Coates et al., Differential regulation of circulating levels of molecular chaperones in patients undergoing treatment for periodontal disease, PloS One, vol.2, p.1198, 2007.

T. Märker, J. Kriebel, U. Wohlrab, and C. Habich, Heat shock protein 60 and adipocytes: characterization of a ligand-receptor interaction, Biochem Biophys Res Commun, vol.391, pp.1634-1640, 2010.

E. Gülden, T. Märker, J. Kriebel, V. Kolb-bachofen, V. Burkart et al., Heat shock protein 60: evidence for receptor-mediated induction of proinflammatory mediators during adipocyte differentiation, FEBS Lett, vol.583, pp.2877-2881, 2009.

E. Gülden, S. Mollérus, J. Brüggemann, V. Burkart, and C. Habich, Heat shock protein 60 induces inflammatory mediators in mouse adipocytes, FEBS Lett, vol.582, pp.2731-2736, 2008.

V. Vachharajani and D. N. Granger, Adipose tissue: a motor for the inflammation associated with obesity, IUBMB Life, vol.61, pp.424-430, 2009.

P. Trayhurn and I. S. Wood, Signalling role of adipose tissue: adipokines and inflammation in obesity, Biochem Soc Trans, vol.33, pp.1078-1081, 2005.

T. Märker, H. Sell, P. Zillessen, A. Glöde, J. Kriebel et al., Heat shock protein 60 as a mediator of adipose tissue inflammation and insulin resistance, Diabetes, vol.61, pp.615-625, 2012.

S. Devaraj, M. R. Dasu, S. H. Park, and I. Jialal, Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes, Diabetologia, vol.52, pp.1665-1668, 2009.

A. Shamaei-tousi, J. W. Stephens, R. Bin, J. A. Cooper, A. Steptoe et al., Association between plasma levels of heat shock protein 60 and cardiovascular disease in patients with diabetes mellitus, Eur Heart J, vol.27, pp.1565-1570, 2006.

J. Juwono and R. D. Martinus, Does Hsp60 Provide a Link between Mitochondrial Stress and Inflammation in Diabetes Mellitus?, J Diabetes Res, p.8017571, 2016.

M. R. Dasu, S. Devaraj, S. Park, and I. Jialal, Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects, Diabetes Care, vol.33, pp.861-868, 2010.

O. S. Birk, D. C. Douek, D. Elias, K. Takacs, H. Dewchand et al., A role of Hsp60 in autoimmune diabetes: analysis in a transgenic model, Proc Natl Acad Sci, vol.93, pp.1032-1037, 1996.

D. Elias, A. Meilin, V. Ablamunits, O. S. Birk, P. Carmi et al., Hsp60 Peptide Therapy of NOD Mouse Diabetes Induces a Th2 Cytokine Burst and Downregulates Autoimmunity to Various ?-Cell Antigens, Diabetes, vol.46, pp.758-765, 1997.

J. Bockova, D. Elias, and I. R. Cohen, Treatment of NOD Diabetes with a Novel Peptide of the hsp60 Molecule Induces Th2-type Antibodies, J Autoimmun, vol.10, pp.323-329, 1997.

C. M. Pearson, Development of arthritis, periarthritis and periostitis in rats given adjuvants, Proc Soc Exp Biol Med Soc Exp Biol Med N Y N, vol.91, pp.95-101, 1956.

W. J. Cromartie, J. G. Craddock, J. H. Schwab, S. K. Anderle, and C. H. Yang, Arthritis in rats after systemic injection of streptococcal cells or cell walls, J Exp Med, vol.146, pp.1585-1602, 1977.

Y. H. Chang, C. M. Pearson, and C. Abe, Adjuvant polyarthritis. IV. Induction by a synthetic adjuvant: immunologic, histopathologic, and other studies, Arthritis Rheum, vol.23, pp.62-71, 1980.

. Eden-w-van, J. Tholet, . Zee-r-van-der, A. Noordzij, J. Van-embden et al., Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis, Nature, vol.331, pp.171-173, 1988.

E. Hogervorst, C. Boog, J. Wagenaar, M. Wauben, R. Van-der-zee et al., T cell reactivity to an epitope of the mycobacterial 65-kDa heat-shock protein (hsp 65) corresponds with arthritis susceptibility in rats and is regulated by hsp 65-specific cellular responses, Eur J Immunol, vol.21, pp.1289-1296, 1991.

I. M. De-kleer, S. M. Kamphuis, G. T. Rijkers, L. Scholtens, G. Gordon et al., The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30+ T cells directed to human heatshock protein 60 capable of producing the regulatory cytokine interleukin-10, Arthritis Rheum, vol.48, 2001.

J. W. Leavenworth, X. Tang, H. Kim, X. Wang, and H. Cantor, Amelioration of arthritis through mobilization of peptide-specific CD8+ regulatory T cells, J Clin Invest, vol.123, pp.1382-1389, 2013.

M. Dominguez, N. Lorenzo, A. Barbera, G. Darrasse-jeze, M. V. Hernández et al., An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant

, Autoimmunity, vol.44, pp.471-482, 2011.

J. S. Alpert, K. Thygesen, E. Antman, and J. P. Bassand, Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction, J Am Coll Cardiol, vol.36, pp.959-969, 2000.

P. Libby, P. M. Ridker, and G. K. Hansson, Inflammation in atherosclerosis: from pathophysiology to practice, J Am Coll Cardiol, vol.54, pp.2129-2138, 2009.

G. K. Hansson, Inflammation, atherosclerosis, and coronary artery disease, N Engl J Med, vol.352, pp.1685-1695, 2005.

D. Shiffman, J. P. Kane, J. Z. Louie, A. R. Arellano, D. A. Ross et al., Analysis of 17,576 potentially functional SNPs in three case-control studies of myocardial infarction, PloS One, vol.3, p.2895, 2008.

J. B. Van-der-net, D. M. Oosterveer, J. Versmissen, J. C. Defesche, M. Yazdanpanah et al., Replication study of 10 genetic polymorphisms associated with coronary heart disease in a specific high-risk population with familial hypercholesterolemia, Eur Heart J, vol.29, pp.2195-2201, 2008.

A. Mälarstig, A. Silveira, D. Wågsäter, J. Öhrvik, A. Bäcklund et al., Plasma CD93 concentration is a potential novel biomarker for coronary artery disease, J Intern Med, vol.270, pp.229-236, 2011.

J. Youn, H. T. Yu, J. Jeon, H. S. Lee, Y. Jang et al., Soluble CD93 Levels in Patients with Acute Myocardial Infarction and Its Implication on Clinical Outcome, PLoS ONE, vol.9, p.96538, 2014.

F. Antohe, Endothelial cells and macrophages, partners in atherosclerotic plaque progression, Arch Physiol Biochem, vol.112, pp.245-253, 2006.

J. Mestas and K. Ley, Monocyte-endothelial cell interactions in the development of atherosclerosis, Trends Cardiovasc Med, vol.18, pp.228-232, 2008.

D. Cui, E. Thorp, Y. Li, N. Wang, L. Yvan-charvet et al., Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells, J Leukoc Biol, vol.82, pp.1040-1050, 2007.

D. M. Schrijvers, D. Meyer, G. Herman, A. G. Martinet, and W. , Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability, Cardiovasc Res, vol.73, pp.470-480, 2007.

A. J. Lusis, Atherosclerosis. Nature, vol.407, pp.233-241, 2000.

K. Chan, Y. Huang, Q. Meng, C. Wu, A. Reiner et al., Shared Molecular Pathways and Gene Networks for Cardiovascular Disease and Type 2 Diabetes Mellitus in Women Across Diverse Ethnicities, Circ Cardiovasc Genet, vol.7, pp.911-919, 2014.

R. J. Strawbridge, A. Hilding, A. Silveira, C. Österholm, B. Sennblad et al., Soluble CD93 Is Involved in Metabolic Dysregulation but Does Not Influence Carotid Intima-Media Thickness, Diabetes, vol.65, pp.2888-2899, 2016.

M. Bhattacharjee, L. Balakrishnan, S. Renuse, J. Advani, R. Goel et al., Synovial fluid proteome in rheumatoid arthritis, Clin Proteomics, vol.13, p.12, 2016.

A. E. Koch, The role of angiogenesis in rheumatoid arthritis: recent developments, Ann Rheum Dis, vol.59, issue.1, pp.65-71, 2000.

G. B. Lipford, K. Heeg, and H. Wagner, Bacterial DNA as immune cell activator, Trends Microbiol, vol.6, pp.496-500, 1998.

T. Chuang, J. Lee, L. Kline, J. C. Mathison, and R. J. Ulevitch, Toll-like receptor 9 mediates CpG-DNA signaling, J Leukoc Biol, vol.71, pp.538-544, 2002.

J. Vollmer, R. Weeratna, P. Payette, M. Jurk, C. Schetter et al., Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities, Eur J Immunol, vol.34, pp.251-262, 2004.

G. H. Cassell, Infectious Causes of Chronic Inflammatory Diseases and Cancer, Emerging Infectious Disease journal -CDC, vol.4, issue.3, 1998.

M. Karin, T. Lawrence, and V. Nizet, Innate Immunity Gone Awry: Linking Microbial Infections to Chronic Inflammation and Cancer, Cell, vol.124, pp.823-835, 2006.

D. W. Hawman, K. A. Stoermer, S. A. Montgomery, P. Pal, L. Oko et al., Chronic Joint Disease Caused by Persistent Chikungunya Virus Infection Is Controlled by the Adaptive Immune Response, J Virol, vol.87, pp.13878-13888, 2013.

C. Hayashi, C. V. Gudino, F. C. Gibson, . Iii, and C. A. Genco, Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways, Mol Oral Microbiol, vol.25, p.305, 2010.

A. M. Ercolini and S. D. Miller, The role of infections in autoimmune disease, Clin Exp Immunol, vol.155, pp.1-15, 2009.

D. M. See and J. G. Tilles, The pathogenesis of viral-induced diabetes, Clin Diagn Virol, vol.9, pp.85-88, 1998.

T. M. Szopa, P. A. Titchener, N. D. Portwood, and K. W. Taylor, Diabetes mellitus due to viruses--some recent developments, Diabetologia, vol.36, pp.687-695, 1993.

S. Rezania, N. Amirmozaffari, B. Tabarraei, M. Jeddi-tehrani, O. Zarei et al., Extraction, Purification and Characterization of Lipopolysaccharide from Escherichia coli and Salmonella typhi

, Avicenna J Med Biotechnol, vol.3, pp.3-9, 2011.

Y. Cheng, Y. Zheng, and J. S. Vandergheynst, Rapid quantitative analysis of lipids using a colorimetric method in a microplate format, Lipids, vol.46, pp.95-103, 2011.

B. Nativel, A. Figuester, J. Andries, C. Planesse, J. Couprie et al., Soluble expression of disulfide-bonded C-type lectin like domain of human CD93 in the cytoplasm of Escherichia coli, J Immunol Methods, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452891

B. Lee and J. Lee, Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance, Biochim Biophys Acta, vol.1842, pp.446-462, 2014.

A. Rubartelli and M. T. Lotze, Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox, Trends Immunol, vol.28, pp.429-436, 2007.

S. Y. Lim, M. J. Raftery, J. Goyette, K. Hsu, and C. L. Geczy, Oxidative modifications of S100 proteins: functional regulation by redox, J Leukoc Biol, vol.86, pp.577-587, 2009.

C. Volpe and J. A. Nogueira-machado, The dual role of free fatty acid signaling in inflammation and therapeutics, Recent Pat Endocr Metab Immune Drug Discov, vol.7, pp.189-197, 2013.

J. Yin, Y. Peng, J. Wu, Y. Wang, and L. Yao, Toll-like receptor 2/4 links to free fatty acid-induced inflammation and ?-cell dysfunction, J Leukoc Biol, vol.95, pp.47-52, 2014.

S. Cinti, G. Mitchell, G. Barbatelli, I. Murano, E. Ceresi et al., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans, J Lipid Res, vol.46, pp.2347-2355, 2005.

M. Tsan, Heat shock proteins and high mobility group box 1 protein lack cytokine function, J Leukoc Biol, vol.89, pp.847-853, 2011.

E. Lebouder, J. E. Rey-nores, N. K. Rushmere, M. Grigorov, S. D. Lawn et al., Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk, J Immunol Baltim Md, vol.171, pp.6680-6689, 1950.