, the dataset depicted in Fig. 7.1 (left)

T. and P. A. Flach, Evaluation measures for multi-class subgroup discovery, ECML PKDD, pp.35-50, 2009.

M. Adda, L. Wu, and A. Y. Feng, Rare itemset mining, in ICMLA, pp.73-80, 2007.

P. Agarwal, M. Kaytoue, S. O. Kuznetsov, A. Napoli, and A. G. Polaillon, Symbolic galois lattices with pattern structures, Lecture Notes in Computer Science, vol.6743, pp.191-198, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631473

R. Agrawal, T. Imielinski, and A. N. Swami, Mining association rules between sets of items in large databases, SIGMOD Conference, pp.207-216, 1993.

R. Agrawal-and-r and . Srikant, Mining sequential patterns, ICDE, pp.3-14, 1995.

R. Agrawal, R. Srikant, and E. T. Al, Mining sequential patterns, icde, vol.95, pp.3-14, 1995.

A. V. Aho, M. R. Garey, and J. D. Ullman, The transitive reduction of a directed graph, SIAM J. Comput, vol.1, pp.131-137, 1972.

S. Andrews, A new method for inheriting canonicity test failures in close-by-one type algorithms, CEUR Workshop Proceedings, vol.2123, pp.255-266, 2018.

D. D. Angluin-and-p and . Laird, Learning from noisy examples, Machine Learning, vol.2, pp.343-370, 1987.

M. Atzmüller-and-f and . Puppe, Sd-map -A fast algorithm for exhaustive subgroup discovery, PKDD, vol.4213, pp.6-17, 2006.

J. Baixeries, M. Kaytoue, and A. A. Napoli, Computing functional dependencies with pattern structures, CLA, vol.972, pp.175-186, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763748

, Characterizing functional dependencies in formal concept analysis with pattern structures, Ann. Math. Artif. Intell, vol.72, pp.129-149, 2014.

S. D. Bay-and-m and . Pazzani, Detecting group differences: Mining contrast sets, Data Min. Knowl. Discov, vol.5, pp.213-246, 2001.

R. J. Bayardo-and-r and . Agrawal, Mining the most interesting rules, KDD, pp.145-154, 1999.

A. Belfodil, A. Belfodil, and A. M. Kaytoue, Anytime subgroup discovery in numerical domains with guarantees, ECML/PKDD (2), vol.11052, pp.500-516, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02117627

, Mining formal concepts using implications between items, ICFCA, vol.11511, pp.173-190, 2019.

A. Belfodil, S. Cazalens, P. Lamarre, and A. M. Plantevit, Flash points: Discovering exceptional pairwise behaviors in vote or rating data, ECML/PKDD, pp.442-458, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01587041

A. Belfodil, S. O. Kuznetsov, and A. M. Kaytoue, Pattern setups and their completions, CEUR Workshop Proceedings, vol.2123, pp.243-253, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01818740

, On pattern setups and pattern multistructures, 2019.

A. Belfodil, S. O. Kuznetsov, C. Robardet, and A. M. Kaytoue, Mining convex polygon patterns with formal concept analysis, IJCAI, pp.1425-1432, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573841

S. Ben-david, N. Eiron, and P. M. Long, On the difficulty of approximately maximizing agreements, J. Comput. Syst. Sci, vol.66, pp.496-514, 2003.

M. Benado, Les ensembles partiellement ordonnés et le théorème de raffinement de schreier. ii. théorie des multistructures, Czechoslovak Mathematical Journal, vol.5, pp.308-344, 1955.

A. A. Bendimerad, M. Plantevit, and A. C. Robardet, Mining exceptional closed patterns in attributed graphs, Knowl. Inf. Syst, vol.56, pp.1-25, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01625007

C. Berge, Hypergraphs: combinatorics of finite sets, vol.45, 1984.

G. Birkhoff and . Al, Rings of sets, Duke Mathematical Journal, vol.3, pp.443-454, 1937.

A. Bogomolny, Cut The Knot: Perimeters of Convex Polygons, One within the Other, p.2017

P. Boldi-and-s and . Vigna, On the lattice of antichains of finite intervals, 2016.

M. Boley, T. Horváth, A. Poigné, and A. S. Wrobel, Efficient closed pattern mining in strongly accessible set systems, PKDD, vol.4702, pp.382-389, 2007.

, Listing closed sets of strongly accessible set systems with applications to data mining, Theor. Comput. Sci, vol.411, pp.691-700, 2010.

M. Boley, C. Lucchese, D. Paurat, and A. T. Gärtner, Direct local pattern sampling by efficient two-step random procedures, KDD, pp.582-590, 2011.

M. Boley, S. Moens, and A. T. Gärtner, Linear space direct pattern sampling using coupling from the past, KDD, pp.69-77, 2012.

F. Bonchi-and-c and . Lucchese, Extending the state-of-the-art of constraint-based pattern discovery, Data Knowl. Eng, vol.60, pp.377-399, 2007.

J. Bordat, Calcul pratique du treillis de galois d'une correspondance, Mathématiques et Sciences humaines, pp.31-47, 1986.

G. Bosc, J. Boulicaut, C. Raïssi, and A. M. Kaytoue, Anytime discovery of a diverse set of patterns with monte carlo tree search, Data Min. Knowl. Discov, vol.32, pp.604-650, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01418663

S. Boyd-and-l and . Vandenberghe, Convex optimization, 2004.

P. Brito, Order structure of symbolic assertion objects, IEEE Trans. Knowl. Data Eng, vol.6, pp.830-834, 1994.

, Symbolic data analysis: another look at the interaction of data mining and statistics, Wiley Interdiscip. Rev. Data Min. Knowl. Discov, vol.4, pp.281-295, 2014.

A. Buzmakov, Formal Concept Analysis and Pattern Structures for mining Structured Data. (Analyse formelle de concepts et structures de patrons pour la fouille de données structurées, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01751818

A. Buzmakov, E. Egho, N. Jay, S. O. Kuznetsov, A. Napoli et al., On mining complex sequential data by means of FCA and pattern structures, Int. J. General Systems, vol.45, pp.135-159, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01186715

A. Buzmakov, S. O. Kuznetsov, and A. A. Napoli, Fast generation of best interval patterns for nonmonotonic constraints, ECML/PKDD (2), vol.9285, pp.157-172, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186718

, Lecture Notes in Computer Science, vol.9113, pp.200-215, 2015.

, Efficient mining of subsample-stable graph patterns, ICDM, pp.757-762, 2017.

, Mining best closed itemsets for projection-antimonotonic constraints in polynomial time, 2017.

C. J. Carmona, P. González, M. J. Del-jesús, and A. F. Herrera, Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms, Wiley Interdiscip. Rev. Data Min. Knowl. Discov, vol.4, pp.87-103, 2014.

G. Casas-garriga, Summarizing sequential data with closed partial orders, SDM, SIAM, pp.380-391, 2005.

P. Cellier, S. Ferré, O. Ridoux, and A. M. Ducassé, An algorithm to find frequent concepts of a formal context with taxonomy, CLA, pp.226-231, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01119634

L. Cerf, Constraint-Based Mining of Closed Patterns in Noisy n-ary Relations, Fouille Sous Contraintes de Motifs Fermés dans des Relations n-aires Bruitées), 2010.
URL : https://hal.archives-ouvertes.fr/tel-00508534

V. Codocedo, G. Bosc, M. Kaytoue, J. Boulicaut, and A. A. Napoli, A proposition for sequence mining using pattern structures, in ICFCA, 2017.

V. Codocedo-and-a and . Napoli, Lattice-based biclustering using partition pattern structures, Artificial Intelligence and Applications, vol.263, pp.213-218, 2014.

P. Cordero, G. Gutiérrez, J. Martínez, and I. P. De-guzmán, A new algebraic tool for automatic theorem provers, Annals of Mathematics and Artificial Intelligence, vol.42, pp.369-398, 2004.

J. Crampton-and-g and . Loizou, The completion of a poset in a lattice of antichains, International Mathematical Journal, vol.1, pp.223-238, 2001.

B. Crémilleux, A. Giacometti, and A. A. Soulet, How your supporters and opponents define your interestingness, ECML/PKDD (1), vol.11051, pp.373-389, 2018.

B. A. Davey-and-h and . Priestley, Introduction to lattices and order, Cambridge university press, 2002.

K. L. Denecke-and-s and . Wismath, Galois connections and complete sublattices, in Galois Connections and Applications, pp.211-229, 2004.

O. Devillers, On Deletion in Delaunay Triangulations, Proceedings of the Fifteenth Annual Symposium on Computational Geometry, pp.181-188, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01179435

J. Falmagne, Knowledge spaces and learning spaces, 2015.

G. A. Dong and . Li, Efficient mining of emerging patterns: Discovering trends and differences, KDD, pp.43-52, 1999.

W. Duivesteijn, A. Feelders, and A. J. Knobbe, Exceptional model mining -supervised descriptive local pattern mining with complex target concepts, Data Min. Knowl. Discov, vol.30, pp.47-98, 2016.

W. Duivesteijn, A. J. Knobbe, A. Feelders, and A. M. Van-leeuwen, Subgroup discovery meets bayesian networks -an exceptional model mining approach, ICDM, pp.158-167, 2010.

P. H. Edelman-and-r and . Jamison, The theory of convex geometries, Geometriae dedicata, vol.19, pp.247-270, 1985.

C. Everett, Closure operators and galois theory in lattices, Transactions of the American Mathematical Society, vol.55, pp.514-525, 1944.

W. B. Ewald, A source book in the foundations of mathematics, vol.2, 2005.

U. M. Fayyad-and-k and . Irani, Multi-interval discretization of continuous-valued attributes for classification learning, IJCAI, pp.1022-1029, 1993.

U. M. Fayyad, G. Piatetsky-shapiro, and A. P. Smyth, From data mining to knowledge discovery in databases, vol.17, pp.37-54, 1996.

D. R. Feno, Mesures de qualité des règles d'association : normalisation et caractérisation des bases, 2007.

S. Ferré-and-o and . Ridoux, A logical generalization of formal concept analysis, ICCS, vol.1867, pp.371-384, 2000.

V. Finn, On machine-oriented formalization of plausible reasoning in the style of f, Bacon and DS Mill, Semiotika i Informatika, vol.20, pp.35-101, 1983.

, Plausible reasoning in systems of jsm type, vol.15, pp.54-101, 1991.

C. Flament, Mathématiques et Sciences humaines, pp.3-10, 1965.

P. Fournier-viger, J. C. Lin, R. Nkambou, B. Vo, and V. S. Tseng, High-Utility Pattern Mining, 2019.

W. J. Frawley, G. Piatetsky-shapiro, and C. J. Matheus, Knowledge discovery in databases: An overview, vol.13, pp.57-70, 1992.

K. Fukuda and . Al, Frequently asked questions in polyhedral computation, Swiss Federal Institute of Technology, 2004.

J. A. Fürnkranz-and-p and . Flach, ROC 'n' rule learning -towards a better understanding of covering algorithms, Machine Learning, vol.58, pp.39-77, 2005.

E. Galbrun, P. Cellier, N. Tatti, A. Termier, and A. B. Crémilleux, Mining periodic patterns with a MDL criterion, ECML/PKDD, vol.11052, pp.535-551, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01951722

E. Galbrun-and-p and . Miettinen, Redescription mining: An overview, IEEE Intelligent Informatics Bulletin, vol.18, pp.7-12, 2017.

B. Ganter, Two basic algorithms in concept analysis, 1984.

, Order-embedded complete lattices, CEUR Workshop Proceedings, vol.2123, pp.153-165, 2018.

B. O. Ganter-and-s and . Kuznetsov, Pattern structures and their projections, vol.2120, pp.129-142, 2001.

B. Ganter-and-r, . Wille, and . Scaling, Applications of combinatorics and graph theory to the biological and social sciences, pp.139-167, 1989.

B. Ganter-and-r and . Wille, Formal concept analysis -mathematical foundations, 1999.

G. C. Garriga, P. Kralj, and A. N. Lavrac, Closed sets for labeled data, PKDD, vol.4213, pp.163-174, 2006.

, Closed sets for labeled data, Journal of Machine Learning Research, vol.9, pp.559-580, 2008.

A. Gély, A generic algorithm for generating closed sets of a binary relation, ICFCA, vol.3403, pp.223-234, 2005.

L. Geng and H. J. Hamilton, Interestingness measures for data mining: A survey, ACM Comput. Surv, vol.38, p.9, 2006.

A. Giacometti, D. H. Li, P. Marcel, and A. A. Soulet, 20 years of pattern mining: a bibliometric survey, SIGKDD Explorations, vol.15, pp.41-50, 2013.

A. Giacometti-and-a and . Soulet, Dense neighborhood pattern sampling in numerical data, SDM, SIAM, pp.756-764, 2018.

F. Giannotti, M. Nanni, F. Pinelli, and A. D. Pedreschi, Trajectory pattern mining, KDD, pp.330-339, 2007.

H. Grosskreutz, Class relevant pattern mining in output-polynomial time, SDM, pp.284-294, 2012.

H. Grosskreutz-and-s and . Rüping, On subgroup discovery in numerical domains, Data Min. Knowl. Discov, vol.19, pp.210-226, 2009.

H. Grosskreutz, S. Rüping, and A. S. Wrobel, Tight optimistic estimates for fast subgroup discovery, ECML/PKDD (1), vol.5211, pp.440-456, 2008.

J. Guigues-and-v and . Duquenne, Familles minimales d'implications informatives résultant d'un tableau de données binaires, Mathématiques et Sciences humaines, pp.5-18, 1986.

T. Guyet, R. Quiniou, and A. V. Masson, Mining relevant interval rules, CoRR, 2017.

M. R. Hacene, M. Huchard, A. Napoli, and A. P. Valtchev, Relational concept analysis: mining concept lattices from multi-relational data, Ann. Math. Artif. Intell, vol.67, pp.81-108, 2013.
URL : https://hal.archives-ouvertes.fr/lirmm-00816300

J. Han, H. Cheng, D. Xin, and A. X. Yan, Frequent pattern mining: current status and future directions, Data mining and knowledge discovery, vol.15, pp.55-86, 2007.

C. Hébert-and-b and . Crémilleux, A unified view of objective interestingness measures, MLDM, vol.4571, pp.533-547, 2007.

F. Herrera, C. J. Carmona, P. González, and M. J. Del-jesús, An overview on subgroup discovery: foundations and applications, Knowl. Inf. Syst, vol.29, pp.495-525, 2011.

J. Hills, L. M. Davis, and A. J. Bagnall, Interestingness measures for fixed consequent rules, IDEAL, vol.7435, pp.68-75, 2012.

Q. Hu-and-t and . Imielinski, ALPINE: progressive itemset mining with definite guarantees, SDM, SIAM, pp.63-71, 2017.

D. P. Huttenlocher, G. A. Klanderman, and A. W. Rucklidge, Comparing images using the hausdorff distance, IEEE Trans. Pattern Anal. Mach. Intell, vol.15, pp.850-863, 1993.

T. Imielinski-and-h and . Mannila, A database perspective on knowledge discovery, Commun. ACM, vol.39, pp.58-64, 1996.

F. A. Janssen and . Fürnkranz, On trading off consistency and coverage in inductive rule learning, LWA, vol.1, pp.306-313, 2006.

D. S. Johnson, C. H. Papadimitriou, and A. M. Yannakakis, On generating all maximal independent sets, Inf. Process. Lett, vol.27, pp.119-123, 1988.

B. Kavsek, N. Lavrac, and A. V. Jovanoski, APRIORI-SD: adapting association rule learning to subgroup discovery, Lecture Notes in Computer Science, vol.2810, pp.230-241, 2003.

M. Kaytoue, S. O. Kuznetsov, and A. A. Napoli, Revisiting numerical pattern mining with formal concept analysis, IJCAI, IJCAI/AAAI, pp.1342-1347, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00600222

M. Kaytoue, M. Plantevit, A. Zimmermann, A. A. Bendimerad, and A. C. Robardet, Exceptional contextual subgraph mining, Machine Learning, vol.106, pp.1171-1211, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01488732

W. Klösgen, Explora: A multipattern and multistrategy discovery assistant, Advances in Knowledge Discovery and Data Mining, pp.249-271, 1996.

P. Krajca, J. Outrata, and A. V. Vychodil, Advances in algorithms based on cbo, CLA, pp.325-337, 2010.

L. J. Kurgan-and-k and . Cios, Discretization algorithm that uses class-attribute interdependence maximization, pp.980-987, 2001.

S. O. Kuznetsov, A Fast Algorithm for Computing All Intersections of Objects in a Finite Semi-lattice, Nauchno-Tekhnicheskaya Informatsiya, ser, pp.17-20, 1993.

, Learning of simple conceptual graphs from positive and negative examples, PKDD, pp.384-391, 1999.

, INSA de Lyon, tous droits réservés [111] , Machine learning and formal concept analysis, Lecture Notes in Computer Science, vol.2961, pp.287-312, 2004.

, Pattern structures for analyzing complex data, 2009.

S. O. Kuznetsov-and-s and . Obiedkov, Comparing performance of algorithms for generating concept lattices, J. Exp. Theor. Artif. Intell, vol.14, pp.189-216, 2002.

N. Lavrac, P. A. Flach, and A. B. Zupan, Rule evaluation measures: A unifying view, Inductive Logic Programming, 9th International Workshop, ILP-99, vol.1634, pp.174-185, 1999.

N. Lavrac, B. Kavsek, P. A. Flach, and A. L. Todorovski, Subgroup discovery with CN2-SD, vol.5, pp.153-188, 2004.

F. L. Gall, Powers of tensors and fast matrix multiplication, Proceedings of the 39th international symposium on symbolic and algebraic computation, pp.296-303, 2014.

D. Leman, A. Feelders, and A. J. Knobbe, Exceptional model mining, ECML/PKDD (2), vol.5212, pp.1-16, 2008.

F. Lemmerich, M. Atzmueller, and A. F. Puppe, Fast exhaustive subgroup discovery with numerical target concepts, Data Min. Knowl. Discov, vol.30, pp.711-762, 2016.

F. Lemmerich, M. Rohlfs, and A. M. Atzmüller, Fast discovery of relevant subgroup patterns, FLAIRS Conference, 2010.

P. Lenca, P. Meyer, B. Vaillant, and A. S. Lallich, On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid, European Journal of Operational Research, vol.184, pp.610-626, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02316548

B. Liu, W. Hsu, and A. Y. Ma, Integrating classification and association rule mining, KDD, pp.80-86, 1998.

T. Lucas, T. C. Silva, R. Vimieiro, and T. B. Ludermir, A new evolutionary algorithm for mining top-k discriminative patterns in high dimensional data, Appl. Soft Comput, vol.59, pp.487-499, 2017.

L. E. Lumpe-and-s and . Schmidt, Pattern structures and their morphisms, vol.1466, pp.171-179, 2015.

M. Luxenburger, Implications partielles dans un contexte, Mathématiques et Sciences Humaines, pp.35-55, 1991.

M. Mampaey, S. Nijssen, A. Feelders, and A. J. Knobbe, Efficient algorithms for finding richer subgroup descriptions in numeric and nominal data, ICDM, pp.499-508, 2012.

M. Mampaey, S. Nijssen, A. Feelders, R. M. Konijn, and A. J. Knobbe, Efficient algorithms for finding optimal binary features in numeric and nominal labeled data, Knowl. Inf. Syst, vol.42, pp.465-492, 2015.

H. Mannila-and-h and . Toivonen, Levelwise search and borders of theories in knowledge discovery, Data Min. Knowl. Discov, vol.1, pp.241-258, 1997.

J. Martínez, G. Gutiérrez, I. De, A. P. Guzmän, and . Cordero, Multilattices via multisemilattices, Topics in applied and theoretical mathematics and computer science, pp.238-248, 2001.

J. Martínez, G. Gutiérrez, I. P. De-guzmán, and A. P. Cordero, Generalizations of lattices via non-deterministic operators, vol.295, pp.107-141, 2005.

A. Mary, Énumération des dominants minimaux d'un graphe, 2013.

J. W. Moon-and-l and . Moser, On cliques in graphs, Israel journal of Mathematics, vol.3, pp.23-28, 1965.

S. A. Morishita and . Sese, Traversing itemset lattice with statistical metric pruning, ACM SIGMOD-SIGACT-SIGART, pp.226-236, 2000.

S. Muggleton, Inductive logic programming, New Generation Comput, vol.8, pp.295-318, 1991.

P. K. Novak, N. Lavrac, and G. I. Webb, Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining, Journal of Machine Learning Research, vol.10, pp.377-403, 2009.

M. Ohsaki, S. Kitaguchi, K. Okamoto, H. Yokoi, and A. T. Yamaguchi, Evaluation of rule interestingness measures with a clinical dataset on hepatitis, PKDD, vol.3202, pp.362-373, 2004.

J. Outrata-and-v and . Vychodil, Fast algorithm for computing fixpoints of galois connections induced by object-attribute relational data, Inf. Sci, vol.185, pp.114-127, 2012.

O. Oystein, Galois connections, Trans. Amer. Math. Soc, vol.55, pp.494-513, 1944.

B. Özden, S. Ramaswamy, and A. A. Silberschatz, Cyclic association rules, ICDE, pp.412-421, 1998.

N. Pasquier, Y. Bastide, R. Taouil, and A. L. Lakhal, Discovering frequent closed itemsets for association rules, ICDT, vol.1540, pp.398-416, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00467747

Z. Pawlak, Rough sets, International Journal of Parallel Programming, vol.11, pp.341-356, 1982.

G. Piatetsky-shapiro, Discovery, analysis, and presentation of strong rules, pp.229-248, 1991.

, Knowledge discovery in real databases: A report on the IJCAI-89 workshop

. Magazine, , vol.11, pp.68-70, 1991.

M. Plantevit, A. Laurent, D. Laurent, M. Teisseire, and Y. W. Choong, Mining multidimensional and multilevel sequential patterns, vol.4, p.37, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02594280

H. A. Priestley, Ordered sets and complete lattices, in Algebraic and coalgebraic methods in the mathematics of program construction, pp.21-78, 2002.

L. Qin, J. X. Yu, and A. L. Chang, Diversifying top-k results, vol.5, pp.1124-1135, 2012.

C. Raïssi, T. Calders, and A. P. Poncelet, Mining conjunctive sequential patterns, Data Min. Knowl. Discov, vol.17, pp.77-93, 2008.

N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. F. Helm, Turning cartwheels: an alternating algorithm for mining redescriptions, KDD, pp.266-275, 2004.

S. Roman, Lattices and Ordered Sets, 2008.

B. S. Schröder, Ordered sets, vol.29, p.30, 2003.

A. Siebes, Data surveying: Foundations of an inductive query language, KDD, pp.269-274, 1995.

A. Soulet-and-f and . Rioult, Efficiently depth-first minimal pattern mining, PAKDD (1), vol.8443, pp.28-39, 2014.

L. Szathmary, A. Napoli, and A. P. Valtchev, Towards rare itemset mining, in ICTAI (1), pp.305-312, 2007.

L. Szathmary, P. Valtchev, A. Napoli, R. Godin, A. Boc et al., A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes, Ann. Math. Artif. Intell, vol.70, pp.81-105, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101140

P. Tan, V. Kumar, and A. J. Srivastava, Selecting the right interestingness measure for association patterns, KDD, pp.32-41, 2002.

R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput, vol.1, pp.146-160, 1972.

C. The-cgal-project, R. User, and . Manual, , 2016.

T. Uno, M. Kiyomi, A. H. Arimura, and . Ver, 2: Efficient mining algorithms for frequent/closed/maximal itemsets, CEUR Workshop Proceedings, CEUR-WS.org, vol.126, 2004.

M. L. Van-de and . Vel, Theory of convex structures, vol.50, 1993.

M. J. Van-leeuwen-and-a and . Knobbe, Non-redundant subgroup discovery in large and complex data, ECML/PKDD (3), vol.6913, pp.459-474, 2011.

, Diverse subgroup set discovery, Data Min. Knowl. Discov, vol.25, pp.208-242, 2012.

G. I. Webb, OPUS: an efficient admissible algorithm for unordered search, J. Artif. Intell. Res, vol.3, pp.431-465, 1995.

R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in Ordered sets, pp.445-470, 1982.

S. Wrobel, An algorithm for multi-relational discovery of subgroups, PKDD, vol.1263, pp.78-87, 1997.

X. A. Yan and . Han, gspan: Graph-based substructure pattern mining, ICDM, pp.721-724, 2002.

, Closegraph: mining closed frequent graph patterns, KDD, pp.286-295, 2003.

X. Yan, J. Han, A. R. Afshar, and C. , Mining closed sequential patterns in large datasets, SDM, SIAM, pp.166-177, 2003.

Y. Yang, G. I. Webb, and A. X. Wu, Discretization methods, Data Mining and Knowledge Discovery Handbook, pp.101-116, 2010.

M. J. Zaki, SPADE: an efficient algorithm for mining frequent sequences, Machine Learning, vol.42, pp.31-60, 2001.

M. J. Zaki-and-m and . Ogihara, Theoretical foundations of association rules, 3rd ACM SIGMOD workshop on research issues in data mining and knowledge discovery, pp.71-78, 1998.

B. Zalik, An efficient sweep-line Delaunay triangulation algorithm, Computer-Aided Design, vol.37, pp.1027-1038, 2005.

T. Zhang, Association rules, in PAKDD, vol.1805, pp.245-256, 2000.

S. Zilberstein, Using anytime algorithms in intelligent systems, AI Magazine, vol.17, pp.73-83, 1996.

, INSA de Lyon, tous droits réservés MOTS-CLÉS : Découverte de connaissances dans les données, Fouille de Sous-groupes, Fouille de Sous-groupes Discriminants, Théorie de l'ordre, Familles d'ensembles, Analyses de Concepts Formels, 2019.

M. Kaytoue,

, Examinateur Pr. Sergei O. Kuznetsov (Higher School of Economics -Moscow) -Invité Mr