Skip to Main content Skip to Navigation
Theses

Méthodes de sélection de voisinage pour la prévision à court-terme du trafic urbain

Julien Salotti 1, 2
Résumé : Dans le contexte de la ville intelligente, le besoin d’informer, d’anticiper, et d’agir sur l’état du réseau routier est à l'origine du développement de nombreuses méthodes de prévision de trafic. L’augmentation de nos capacités à stocker et à traiter des données, notamment en temps réel, ainsi que le nombre croissant de segments de routes équipés de capteurs sont de nouveaux éléments à considérer lors du choix d’une méthode de prévision. Malgré de nombreux travaux de recherche, nous ne disposons toujours pas d’une compréhension claire des critères permettant de prédire efficacement à l’échelle d’un réseau routier. Dans cette thèse, nous nous appuyons sur deux jeux de données réelles, collectés respectivement sur le réseau urbain de la Métropole de Lyon, et sur les autoroutes urbaines de Marseille. Nous étudions la performance de différentes méthodes issues de la littérature statistiques des séries temporelles (méthodes autorégressives) et de la littérature de l’apprentissage artificiel (machine à vecteurs de support, réseaux de neurones). Nous étudions également l’apport de différentes stratégies de sélection de voisinage (sélection d’un sous-ensemble de capteurs utiles pour la prévision d’un capteur en particulier) pour améliorer la qualité de la prévision, tout en diminuant la complexité des modèles appris. Nous comparons ainsi une approche classique (la sélection Lasso) et testons pour la première fois sur des données de trafic une méthode issue de la théorie de l’information, ayant de très bons résultats sur des problèmes similaires de physique (tigramite). Nos résultats expérimentaux confirment l’utilité de méchanismes de sélection de voisinage et illustrent la complémentarité des approches de prévisions, selon le type de réseau (urbain, autoroute) et l’horizon de prévision (de 6 à 30 minutes)
Document type :
Theses
Complete list of metadatas

Cited literature [128 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02900506
Contributor : Abes Star :  Contact
Submitted on : Thursday, July 16, 2020 - 11:00:12 AM
Last modification on : Friday, July 17, 2020 - 5:11:42 AM

File

these.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02900506, version 1

Citation

Julien Salotti. Méthodes de sélection de voisinage pour la prévision à court-terme du trafic urbain. Intelligence artificielle [cs.AI]. Université de Lyon, 2019. Français. ⟨NNT : 2019LYSEI077⟩. ⟨tel-02900506⟩

Share

Metrics

Record views

27

Files downloads

22