S. Akira and K. Takeda, Toll-like Receptor Signalling, Nature Reviews Immunology, vol.4, issue.7, pp.499-511, 2004.

L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, Recognition of Double-Stranded RNA and Activation of NF-?B by Toll-like Receptor 3, Nature, vol.413, issue.6857, pp.732-770, 2001.

G. M. Barton and J. C. Kagan, A Cell Biological View of Toll-like Receptor Function: Regulation through Compartmentalization, Nature Reviews Immunology, vol.9, issue.8, pp.535-576, 2009.

A. L. Blasius and B. Beutler, Intracellular Toll-like Receptors, Immunity, vol.32, issue.3, pp.305-320, 2010.

A. E. Boitano, J. Wang, R. Romeo, L. C. Bouchez, A. E. Parker et al.,

J. R. Sutton and . Walker, Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells, Science, vol.329, issue.5997, pp.1345-1393, 2010.

O. Bouteiller, E. De, . Merck, A. Uzma, S. Hasan et al., Recognition of Double-Stranded RNA by Human Toll-like Receptor 3 and Downstream Receptor Signaling Requires Multimerization and an Acidic PH, Journal of Biological Chemistry, vol.280, pp.38133-38178, 2005.

D. J. Brat, A. C. Bellail, and E. Meir, The Role of Interleukin-8 and Its Receptors in Gliomagenesis and Tumoral Angiogenesis, Neuro-Oncology, vol.7, issue.2, pp.122-155, 2005.

F. Brentano, O. Schorr, R. E. Gay, S. Gay, and D. Kyburz, RNA Released from Necrotic Synovial Fluid Cells Activates Rheumatoid Arthritis Synovial Fibroblasts via Toll-like Receptor 3, Arthritis and Rheumatism, vol.52, issue.9, pp.2656-65, 2005.

M. M. Brinkmann, E. Spooner, K. Hoebe, B. Beutler, L. Hidde et al., The Interaction between the ER Membrane Protein UNC93B and TLR3, 7, and 9 Is Crucial for TLR Signaling, Journal of Cell Biology, vol.177, issue.2, pp.265-75, 2007.

S. P. Burr, S. H. Ana, G. L. Costa, R. T. Grice, I. T. Timms et al., Mitochondrial Protein Lipoylation and the 2-in Vivo, Nature Communications, vol.6, 2016.

L. Meng, W. Zhu, C. Jiang, X. He, W. Hou et al., Toll-like Receptor 3 Upregulation in Macrophages Participates in the Initiation and Maintenance of Pristane-Induced Arthritis in Rats, Arthritis Research and Therapy, vol.12, issue.3, 2010.

G. R. Merlo, B. Zerega, L. Paleari, S. Trombino, S. Mantero et al., Multiple Functions of Dlx Genes, International Journal of Developmental Biology, vol.44, issue.6, pp.619-645, 2000.

D. W. Nebert, A. L. Roe, M. Z. Dieter, W. A. Solis, Y. Yang et al.,

. Dalton, Role of the Aromatic Hydrocarbon Receptor and (Ah) Gene Battery in the Oxidative Stress Response, Cell Cycle Control, and Apoptosis, Biochemical Pharmacology, vol.59, issue.1, pp.65-85, 2000.

T. Nishiya, E. Kajita, S. Miwa, and A. L. Defranco, , vol.3, p.7, 2005.

, Are Targeted to the Same Intracellular Compartments by Distinct Regulatory Elements, Journal of Biological Chemistry, vol.280, issue.44, pp.37107-37124

L. A. O'neill and A. G. Bowie, The Family of Five: TIR-Domain-Containing Adaptors in Toll-like Receptor Signalling, Nature Reviews Immunology, vol.7, issue.5, pp.353-64, 2007.

. Oganesyan, S. K. Gagik, B. Saha, J. Q. Guo, A. He et al., Critical Role of TRAF3 in the Tolllike Receptor-Dependent and -Independent Antiviral Response, Nature, vol.439, issue.7073, pp.208-219, 2006.

K. Pelka, D. Bertheloot, E. Reimer, K. Phulphagar, S. V. Schmidt et al., The Chaperone UNC93B1 Regulates Toll-like Receptor Stability Independently of Endosomal TLR Transport, Immunity, vol.48, issue.5, pp.911-922, 2018.

S. Pisegna, G. Pirozzi, L. Piccoli-m-frati, A. Santoni, and G. Palmieri, P38 MAPK Activation Controls the TLR3-Mediated up-Regulation of Cytotoxicity and Cytokine Production in Human NK Cells, Blood, vol.104, issue.13, pp.4157-64, 2004.

R. Qi, D. Singh, and C. Kao, Proteolytic Processing Regulates Tolllike Receptor 3 Stability and Endosomal Localization, Journal of Biological Chemistry, vol.287, issue.39, pp.32617-32646, 2012.

U. Rannug, A. Rannug, U. Sjöberg, H. Li, R. Westerholm et al., Structure Elucidation of Two Tryptophan-Derived, High Affinity Ah Receptor Ligands, Chemistry Preferentially Activates the IFN-Promoter in the Toll-Like Receptor Signaling, vol.169, pp.6668-72, 1995.

M. Yamamoto, S. Sato, H. Hemmi, K. Hoshino, T. Kaisho et al., Role of Adaptor TRIF in the MyD88-Independent Toll-like Receptor Signaling Pathway, Science, vol.301, issue.5633, pp.640-683, 2003.

M. Yamashita, S. Chattopadhyay, P. Volker-fensterl, J. L. Saikia, G. C. Wetzel et al., Epidermal Growth Factor Receptor Is Essential for Toll-like Receptor 3 Signaling, Science Signaling, vol.5, issue.233, pp.50-50, 2012.

M. Yilla, A. Tan, K. Itoll, K. Miwall, and H. L. Ploegh, Involvement of the Vacuolar H(+)-ATPases in the Secretory Pathway of HepG2 Cells, Journal of Biological Chemistry, vol.268, issue.26, pp.19092-100, 1993.

S. Zhang, M. Ying, M. J. Herman, R. Ciancanelli, V. Pérez-de-diego et al., TLR3 Immunity to Infection in Mice and Humans, Current Opinion in Immunology, vol.25, issue.1, pp.19-33, 2013.

S. Zhang, E. Ying, S. Jouanguy, A. Ugolini, G. Smahi et al., TLR3 Deficiency in Patients with Herpes Simplex Encephalitis, Science, vol.317, issue.5844, pp.1522-1549, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00297308

Y. Zhou, S. Zhu, C. Cai, P. Yuan, C. Li et al., High-Throughput Screening of a CRISPR/Cas9 Library for Functional Genomics in Human Cells, Nature, vol.509, issue.7501, pp.487-91, 2014.

. Bibliographie,

Y. Abe, K. Fujii, N. Nagata, O. Takeuchi, S. Akira et al., The Toll-Like Receptor 3-Mediated Antiviral Response Is Important for Protection against Poliovirus Infection in Poliovirus Receptor Transgenic Mice, Journal of Virology, vol.86, issue.1, pp.185-94, 2012.

A. A. Ajibade, Y. Helen, R. Wang, and . Wang, Cell Type-Specific Function of TAK1 in Innate Immune Signaling, Trends in Immunology, vol.34, issue.7, pp.307-323, 2013.

S. Akira and K. Takeda, Toll-like Receptor Signalling, Nature Reviews Immunology, vol.4, issue.7, pp.499-511, 2004.

L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, Recognition of Double-Stranded RNA and Activation of NF-?B by Toll-like Receptor 3, Nature, vol.413, issue.6857, pp.732-770, 2001.

L. Andersen, N. Lykke, L. S. Mørk, E. Reinert, and . Kofod-olsen,

K. A. Jørgensen and . Skipper, Functional IRF3 Deficiency in a Patient with Herpes Simplex Encephalitis, The Journal of Experimental Medicine, vol.212, issue.9, pp.1371-79, 2015.

K. V. Anderson, L. Bokla, and C. Nüsslein-volhard, Establishment of Dorsal-Ventral Polarity in the Drosophila Embryo: The Induction of Polarity by the Toll Gene Product, Cell, vol.42, issue.3, pp.90275-90277, 1985.

P. Andersson, J. Mcguire, C. Rubio, K. Gradin, L. Murray et al., A Constitutively Active Dioxin/Aryl Hydrocarbon Receptor Induces Stomach Tumors, Proceedings of the National Academy of Sciences of the United States of America, vol.99, issue.15, pp.9990-95, 2002.

L. Arbibe, J. Mira, N. Teusch, L. Kline, M. Guha et al., Toll-like Receptor 2-Mediate NF-?B Activation Requires a Rac1-Dependent Pathway, Nature, vol.1, pp.533-573, 2000.

L. L. Aylward, C. Robert, G. Brunet, S. M. Carrier, C. A. Hays et al., Concentration-Dependent TCDD Elimination Kinetics in Humans: Toxicokinetic Modeling for Moderately to Highly Exposed Adults from Seveso, Italy, and Vienna, Austria, and Impact on Dose Estimates for the NIOSH Cohort, Journal of Exposure Analysis and Environmental Epidemiology, vol.15, issue.1, pp.51-65, 2005.

D. Bai, L. Ueno, and P. K. Vogt, Akt-Mediated Regulation of NF?B and the Essentialness of NF?B for the Oncogenicity of PI3K and Akt, International Journal of Cancer, vol.125, issue.12, pp.2863-70, 2009.

W. Bai, H. Liu, Q. Ji, Y. Zhou, L. Liang et al., TLR3 Regulates Mycobacterial RNA-Induced IL-10 Production through the PI3K/AKT Signaling Pathway, Cellular Signalling, vol.26, issue.5, pp.942-50, 2014.

J. W. Bauman, T. Goldsworthy, C. Dunn, and T. Fox, Inhibitory Effects of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on Rat Hepatocyte Proliferation Induced by 2/3 Partial Hepatectomy, Cell Prolif, vol.28, issue.8, pp.437-51, 1995.

J. K. Bell, I. Botos, P. R. Hall, J. Askins, J. Shiloach et al., The Molecular Structure of the Toll-like Receptor 3 Ligand-Binding Domain, Proceedings of the National Academy of Sciences, vol.102, issue.31, pp.10976-80, 2005.

J. K. Bell, E. D. Gregory, C. A. Mullen, A. Leifer, . Mazzoni et al.,

D. M. Davies and . Segal, Leucine-Rich Repeats and Pathogen Recognition in Toll-like Receptors, Trends in Immunology, vol.24, issue.10, pp.242-246, 2003.

J. J. Bernard, C. Cowing-zitron, T. Nakatsuji, B. Muehleisen, J. Muto et al., Ultraviolet Radiation Damages Self Noncoding RNA and Is Detected by TLR3, Nature Medicine, vol.18, issue.8, pp.1286-90, 2012.

A. Bessede, M. Gargaro, M. T. Pallotta, D. Matino, G. Servillo et al., Aryl Hydrocarbon Receptor Control of a Disease Tolerance Defence Pathway, Nature, vol.511, issue.7508, pp.184-90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01020294

S. Bhattacharyya, A. Borthakur, P. K. Dudeja, and J. K. Tobacman, Lipopolysaccharide-Induced Activation of NF-?B Non-Canonical Pathway Requires BCL10 Serine 138 and NIK Phosphorylations, Experimental Cell Research, vol.316, pp.3317-3344, 2010.

A. W. Borkowski, K. Park, Y. Uchida, and R. L. Gallo, Activation of TLR3 in Keratinocytes Increases Expression of Genes Involved in Formation of the Epidermis, Lipid Accumulation, and Epidermal Organelles, Journal of Investigative Dermatology, vol.133, issue.8, pp.2031-2071, 2013.

L. A. Boule, C. G. Burke, G. Bi-jin, and B. Lawrence, Aryl Hydrocarbon Receptor Signaling Modulates Antiviral Immune Responses: Ligand Metabolism Rather than Chemical Source Is the Stronger Predictor of Outcome, Scientific Reports, vol.8, issue.1, 2018.

D. J. Brat, A. C. Bellail, and E. Meir, The Role of Interleukin-8 and Its Receptors in Gliomagenesis and Tumoral Angiogenesis, Neuro-Oncology, vol.7, issue.2, pp.122-155, 2005.

. Brázda, J. Václav, . Coufal, C. C. Jack, C. H. Liao et al., Preferential Binding of IFI16 Protein to Cruciform Structure and Superhelical DNA, Biochemical and Biophysical Research Communications, vol.422, issue.4, pp.716-736, 2012.

F. Brentano, O. Schorr, R. E. Gay, S. Gay, and D. Kyburz, RNA Released from Necrotic Synovial Fluid Cells Activates Rheumatoid Arthritis Synovial Fibroblasts via Toll-like Receptor 3, Arthritis and Rheumatism, vol.52, issue.9, pp.2656-65, 2005.

M. M. Brinkmann, E. Spooner, K. Hoebe, B. Beutler, L. Hidde et al., The Interaction between the ER Membrane Protein UNC93B and TLR3, 7, and 9 Is Crucial for TLR Signaling, Journal of Cell Biology, vol.177, issue.2, pp.265-75, 2007.

M. Broemer, D. Krappmann, and C. Scheidereit, Requirement of Hsp90 Activity for I?B Kinase (IKK) Biosynthesis and for Constitutive and Inducible IKK and NF-?B Activation, Oncogene, vol.23, issue.31, pp.5378-86, 2004.

J. Brownell, J. Bruckner, J. Wagoner, E. Thomas, Y. Loo et al., Direct, Interferon-Independent Activation of the CXCL10 Promoter by NF-B and Interferon Regulatory Factor 3 during Hepatitis C Virus Infection, Journal of Virology, vol.88, issue.3, pp.1582-90, 2014.

J. Buchrieser, M. J. Oliva-martin, D. Michael, J. Moore, C. Long et al., RIPK1 Is a Critical Modulator of Both Tonic and TLR-Responsive Inflammatory and Cell Death Pathways in Human Macrophage Differentiation, Cell Death and Disease, 2018.

M. Bugge, B. Bergstrom, O. K. Eide, H. Solli, I. F. Kjønstad et al., Surface Toll-Like Receptor, vol.3, 2017.

, Expression in Metastatic Intestinal Epithelial Cells Induces Inflammatory Cytokine Production and Promotes Invasiveness, Journal of Biological Chemistry

F. M. Burnet and F. Fenner, The Production of Antibodies, vol.66, pp.485-86, 1951.

F. Burnet, Self and Not-Self : Cellular Immunology Book One, 1969.

J. Byun, Y. G. Seok, H. S. Suh, and . Yi, Activation of Toll-like Receptor 3 Attenuates Alcoholic Liver Injury by Stimulating Kupffer Cells and Stellate Cells to Produce Interleukin-10 in Mice, Journal of Hepatology, vol.58, issue.2, pp.342-391, 2013.

J. E. Carette, P. Carla, M. Guimaraes, A. S. Varadarajan, I. Park et al., Haploid Genetic Screens in Human Cells Identify Host Factors Used by Pathogens, Science, vol.326, issue.5957, pp.1231-1266, 2009.

S. E. Carrasco, S. Hu, D. M. Imai, R. Kumar, G. E. Sandusky et al., Toll-like Receptor 3 (TLR3) Promotes the Resolution of Chlamydia Muridarum Genital Tract Infection in Congenic C57BL/6N, 2018.

, Mice, PLoS ONE, vol.13, issue.4

A. Casrouge, Y. Shen, C. Zhang, E. Eidenschenk, A. Jouanguy et al., Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency, Science, vol.314, issue.5797, pp.308-320, 2006.

K. A. Cavassani, M. Ishii, H. Wen, M. A. Schaller, P. M. Lincoln et al., , vol.3, 2008.

, Endogenous Sensor of Tissue Necrosis during Acute Inflammatory Events, The Journal of Experimental Medicine, vol.205, issue.11, pp.2609-2630

D. W. Chan, W. W. Hui, J. J. Wang, M. M. Yung, L. M. Hui et al., DLX1 Acts as a Crucial Target of FOXM1 to Promote Ovarian Cancer Aggressiveness by Enhancing TGF-?/SMAD4 Signaling, Oncogene, vol.36, issue.10, pp.1404-1420, 2017.

M. Chang, W. Jin, and S. Sun, Peli1 Facilitates TRIF-Dependent Tolllike Receptor Signaling and Proinflammatory Cytokine Production, Nature Immunology, vol.10, issue.10, pp.1089-95, 2009.

C. Chen, Y. Feng, L. Zou, L. Wang, H. H. Chen et al., Role of Extracellular RNA and TLR3-Trif Signaling in Myocardial Ischemia-Reperfusion Injury, Journal of the American Heart Association, vol.3, issue.1, 2014.

G. Chen, Nod-like Receptors: Role in Innate Immunity and Inflammatory Disease, Ann. Rev. Pathol, vol.4, 2009.

P. H. Chen, H. Chang, J. T. Chang, and P. Lin, Aryl Hydrocarbon Receptor in Association with RelA Modulates IL-6 Expression in Non-Smoking Lung Cancer, Oncogene, vol.31, pp.2555-65, 1920.

Z. J. Chen, Ubiquitination in Signaling to and Activation of IKK, Immunological Reviews, vol.246, issue.1, pp.95-106, 2012.

L. Cheng, Q. Wang, G. Li, R. Banga, J. Ma et al., TLR3 Agonist and CD40-Targeting Vaccination Induces Immune Responses and Reduces HIV-1 Reservoirs, Journal of Clinical Investigation, 2018.

P. J. Chiao, S. Miyamoto, and I. M. Verma, Autoregulation of I Kappa B Alpha Activity, Proceedings of the National Academy of Sciences, vol.91, issue.1, pp.28-32, 1994.

S. Chiba, K. Takeshita, Y. Imai, K. Kumano, M. Kurokawa et al., Homeoprotein DLX-1 Interacts with Smad4 and Blocks a Signaling Pathway from, 2003.

. Activin-a-in-hematopoietic and . Cells, Proceedings of the National Academy of Sciences, vol.100, issue.26, pp.15577-82

A. I. Chin, A. K. Miyahira, A. Covarrubias, J. Teague, B. Guo et al.,

G. Dempsey and . Cheng, Toll-like Receptor 3-Mediated Suppression of TRAMP Prostate Cancer Shows the Critical Role of Type I Interferons in Tumor Immune Surveillance, Cancer Research, vol.70, issue.7, pp.2595-2603, 2010.

J. Choe, Crystal Structure of Human Toll-Like Receptor 3 (TLR3) Ectodomain, Science, vol.309, issue.5734, pp.581-85, 2005.

K. Clark, M. Peggie, L. Plater, R. J. Sorcek, E. R. Young et al.,

J. Madwed, E. G. Hough, P. Mciver, and . Cohen, Novel Cross-Talk within the IKK Family Controls Innate Immunity, Biochemical Journal, vol.434, issue.1, pp.93-104, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00560693

M. J. Clemens and A. Elia, The Double-Stranded RNA-Dependent Protein Kinase PKR : Structure and Function, JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, vol.524, pp.503-527, 1997.

J. E. Cole, J. Tina, A. J. Navin, M. E. Cross, L. Goddard et al., Unexpected Protective Role for Toll-like Receptor 3 in the Arterial Wall, Proceedings of the National Academy of Sciences, vol.108, issue.6, pp.2372-77, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00609592

N. Cusson-hermance, S. Khurana, T. H. Lee, K. A. Fitzgerald, and M. A. Kelliher, Rip1 Mediates the Trif-Dependent Toll-like Receptor 3-and 4-Induced NF-?B Activation but Does Not Contribute to Interferon Regulatory Factor 3, 2005.

, Activation, Journal of Biological Chemistry, vol.280, issue.44, pp.36560-66

S. Daffis, M. A. Samuel, M. S. Suthar, M. Gale, and M. S. Diamond, Toll-Like Receptor 3 Has a Protective Role against West Nile Virus Infection, Journal of Virology, vol.82, issue.21, pp.10349-58, 2008.

J. Dang, S. K. Tiwari, G. Lichinchi, Y. Qin, S. Veena et al., Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3, Cell Stem Cell, vol.19, issue.2, pp.258-65, 2016.

N. A. Davarinos and R. S. Pollenz, Aryl Hydrocarbon Receptor Imported into the Nucleus Following Ligand Binding Is Rapidly Degraded via the Cytosplasmic Proteasome Following Nuclear Export, Journal of Biological Chemistry, vol.274, issue.40, pp.28708-28723, 1999.

J. David, C. Dominguez, D. Hamilton, and C. Palena, The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance, Vaccines, vol.4, issue.3, p.22, 2016.

A. Didierlaurent, M. Simonet, and J. C. Sirard, Innate and Acquired Plasticity of the Intestinal Immune System, Cellular and Molecular Life Sciences, vol.62, issue.12, pp.1285-87, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00000044

C. Dietrich, Antioxidant Functions of the Aryl Hydrocarbon Receptor, Stem Cells International, 2016.

F. O. Dimayuga, C. Wang, J. M. Clark, E. R. Dimayuga, V. M. Dimayuga et al., SOD1 Overexpression Alters ROS Production and Reduces Neurotoxic Inflammatory Signaling in Microglial Cells, Journal of Neuroimmunology, vol.182, issue.1-2, pp.89-99, 2007.

T. Doan, R. Melvold, S. Viselli, and C. Waltenbaugh, Lippincott's Illustrated Reviews Immunology 2nd Edition, pp.34-169, 2013.

Z. Dogusan, M. García, D. Flamez, L. Alexopoulou, M. Goldman et al., Double-Stranded RNA Induces Pancreatic Beta-Cell Apoptosis by Activation of the Tolllike Receptor 3 and Interferon Regulatory Factor 3 Pathways, Diabetes, vol.57, issue.5, pp.1236-1281, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294097

O. Domínguez-acosta, L. Vega, E. Estrada-muñiz, M. S. Rodríguez, F. J. Gonzalez et al., Activation of Aryl Hydrocarbon Receptor Regulates the LPS/IFN?-Induced Inflammatory Response by Inducing Ubiquitin-Proteosomal and Lysosomal Degradation of RelA/P65, Biochemical Pharmacology, vol.155, pp.141-190, 2018.

P. A. Doucette, J. Lisa, X. Whitson, V. Cao, B. Schirf et al., Dissociation of Human Copper-Zinc Superoxide Dismutase Dimers Using Chaotrope and Reductant: Insights into the Molecular Basis for Dimer Stability, Journal of Biological Chemistry, vol.279, issue.52, pp.54558-66, 2004.

S. E. Doyle, A. Sagar, . Vaidya, O. Ryan, H. Connell et al., IRF3 Mediates a TLR3/TLR4-Specific Antiviral Gene Program, Immunity, vol.17, issue.3, pp.251-63, 2002.

G. Eberl, Immunity by Equilibrium, Nature Reviews Immunology, vol.16, issue.8, pp.524-556, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01402375

C. Ehrhardt, C. Kardinal, W. J. Wurzer, T. Wolff, C. V. Eichel-streiber et al., Rac1 and PAK1 Are Upstream of IKK-? and TBK-1 in the Viral Activation of Interferon Regulatory Factor-3, FEBS Letters, vol.567, issue.2-3, pp.230-268, 2004.

M. A. Ermolaeva, M. Michallet, N. Papadopoulou, O. Utermöhlen, K. Kranidioti et al., Function of TRADD in Tumor Necrosis Factor Receptor 1 Signaling and in TRIF-Dependent Inflammatory Responses, Nature Immunology, vol.9, issue.9, pp.1037-1083, 2008.

S. Esposito, C. G. Molteni, S. Giliani, C. Mazza, A. Scala et al., Toll-like Receptor 3 Gene Polymorphisms and Severity of Pandemic A/H1N1/2009 Influenza in Otherwise Healthy Children, Virology Journal, vol.9, issue.1, p.270, 2012.

Y. Estornes, F. Toscano, F. Virard, G. Jacquemin, A. Pierrot et al., DsRNA Induces Apoptosis through an Atypical Death Complex Associating TLR3 to Caspase-8, Cell Death and Differentiation, vol.19, issue.9, pp.1482-94, 2012.

S. E. Ewald, A. Engel, J. Lee, M. Wang, M. Bogyo et al., Nucleic Acid Recognition by Toll-like Receptors Is Coupled to Stepwise Processing by Cathepsins and Asparagine Endopeptidase, The Journal of Experimental Medicine, vol.208, issue.4, pp.643-51, 2011.

S. E. Ewald, L. Bettina, L. Lee, K. E. Lau, G. P. Wickliffe et al.,

G. M. Chapman and . Barton, The Ectodomain of Toll-like Receptor 9 Is Cleaved to Generate a Functional Receptor, Nature, vol.456, issue.7222, pp.658-62, 2008.

Y. Fan, G. Boivin, E. Knudsen, D. Nebert, Y. Xia et al., The Aryl Hydrocarbon Receptor Functions as a Tumor Suppressor of Liver Carcinogenesis, Cancer Research, vol.70, issue.1, pp.212-232, 2010.

M. Feoktistova, P. Geserick, B. Kellert, D. P. Dimitrova, C. Langlais et al., CIAPs Block Ripoptosome Formation, a RIP1/Caspase-8 Containing Intracellular Cell Death Complex Differentially Regulated by CFLIP Isoforms, Molecular Cell, vol.43, issue.3, pp.449-63, 2011.

R. W. Finberg and E. A. Kurt-jones, CD14: Chaperone or Matchmaker?, Immunity, vol.24, issue.2, pp.127-156, 2006.

K. A. Fitzgerald, M. Sarah, K. L. Mcwhirter, D. C. Faia, E. Rowe et al., IKKE and TBKI Are Essential Components of the IRF3 Signalling Pathway, Nature Immunology, vol.4, issue.5, pp.491-96, 2003.

G. Forte, A. Rega, S. Morello, A. Luciano, C. Arra et al., Polyinosinic-Polycytidylic Acid Limits Tumor Outgrowth in a Mouse Model of Metastatic Lung Cancer, The Journal of Immunology, vol.188, issue.11, pp.5357-64, 2012.

L. Franchi, N. Warner, K. Viani, and G. Nuñez, Function of Nod-like Receptors in Microbial Recognition and Host Defense, Immunological Reviews, vol.227, pp.106-134, 2009.

E. Fritsche, C. Schafer, C. Calles, T. Bernsmann, T. Bernshausen et al., Lightening up the UV Response by Identification of the Arylhydrocarbon Receptor as a Cytoplasmatic Target for Ultraviolet B Radiation, Proceedings of the National Academy of Sciences, vol.104, issue.21, pp.8851-56, 2007.

T. Fukai and M. Ushio-fukai, Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases, Antioxid.Redox.Signal, vol.15, pp.1583-1606, 2011.

K. Funami, M. Matsumoto, H. Oshiumi, T. Akazawa, A. Yamamoto et al., The Cytoplasmic 'linker Region' in Toll-like Receptor 3 Controls Receptor Localization and Signaling, International Immunology, vol.16, issue.8, pp.1143-54, 2004.

J. Gabhann, R. Ní, K. Higgs, W. Brennan, J. E. Thomas et al., Absence of SHIP-1 Results in Constitutive Phosphorylation of Tank-Binding Kinase 1 and Enhanced TLR3-Dependent IFN-? Production, The Journal of Immunology, vol.184, issue.5, pp.2314-2334, 2010.

L. Galluzzi, E. Vacchelli, A. Eggermont, W. Hervé-fridman, J. Galon et al., Trial Watch: Experimental Toll-like Receptor Agonists for Cancer Therapy, OncoImmunology, vol.1, issue.5, pp.699-716, 2012.

A. Garcia-cattaneo, F. Gobert, M. Muller, F. Toscano, M. Flores et al., Cleavage of Toll-like Receptor 3 by Cathepsins B and H Is Essential for Signaling, Proceedings of the National Academy of Sciences, vol.109, issue.23, pp.9053-58, 2012.

M. Glaffig, N. Stergiou, E. Schmitt, and H. Kunz, Immunogenicity of a Fully Synthetic MUC1 Glycopeptide Antitumor Vaccine Enhanced by Poly(I:C) as a TLR3-Activating Adjuvant, ChemMedChem, vol.12, issue.10, pp.722-749, 2017.

R. Goffic, V. Le, M. Balloy, L. Lagranderie, N. Alexopoulou et al., Detrimental Contribution of the Toll-like Receptor (TLR)3 to Influenza A Virus-Induced Acute Pneumonia, PLoS Pathogens, vol.2, issue.6, pp.526-561, 2006.

E. T. Goh, J. Simon, C. Arthur, C. F. Peter, S. Cheung et al., Identification of the Protein Kinases That Activate the E3 Ubiquitin Ligase Pellino 1 in the Innate Immune System, Biochemical Journal, vol.441, issue.1, pp.339-385, 2012.

J. Gohda, T. Matsumura, and J. Inoue, Cutting Edge: TNFR-Associated Factor (TRAF) 6 Is Essential for MyD88-Dependent Pathway but Not Toll/IL-1 Receptor Domain-Containing Adaptor-Inducing IFN-? (TRIF)-Dependent Pathway in TLR Signaling, The Journal of Immunology, vol.173, issue.5, pp.2913-2930, 2004.

. Gopinath, M. V. Smita, T. Kim, P. W. Rakib, M. Wong et al., Microbiota-Independent Antiviral Protection Conferred by Aminoglycoside Antibiotics, BioRxiv, 2018.

C. Goudot, A. Coillard, A. C. Villani, P. Gueguen, A. Cros et al., Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages, Immunity, vol.47, issue.3, pp.582-596, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613828

B. B. Gowen, J. D. Hoopes, M. Wong, K. Jung, K. C. Isakson et al., TLR3 Deletion Limits Mortality and Disease Severity Due to Phlebovirus Infection, The Journal of Immunology, vol.177, issue.9, pp.6301-6308, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00165613

D. Gramatzki, . Pantazis, G. Schittenhelm, C. Tabatabai, . Köhle et al.,

. Weller and . Tritschler, Aryl Hydrocarbon Receptor Inhibition Downregulates the TGF-Beta/Smad Pathway in Human Glioblastoma Cells, Oncogene, vol.28, issue.28, pp.2593-2605, 2009.

L. Guillot, S. Le-goffic, . Bloch, . Escriou, M. Akira et al., Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-Stranded RNA and Influenza A Virus, J Biol Chem, vol.280, issue.7, pp.5571-80, 2005.

Y. Guo, M. Audry, M. Ciancanelli, L. Alsina, J. Azevedo et al., Herpes Simplex Virus Encephalitis in a Patient with Complete TLR3 Deficiency: TLR3 Is Otherwise Redundant in Protective Immunity, The Journal of Experimental Medicine, vol.208, issue.10, pp.2083-98, 2011.

Z. Guo, L. Chen, Y. Zhu, Y. Zhang, S. He et al., Double-Stranded RNA-Induced TLR3 Activation Inhibits Angiogenesis and Triggers Apoptosis of Human Hepatocellular Carcinoma Cells, Oncology Reports, vol.27, issue.2, pp.396-402, 2012.

C. Gutiérrez-vázquez and F. J. Quintana, Regulation of the Immune Response by the Aryl Hydrocarbon Receptor, Immunity, vol.48, issue.1, pp.19-33, 2018.

K. Z. Guyton, . Ivan-rusyn, A. Weihsueh, D. E. Chiu, M. Corpet et al., Application of the Key Characteristics of Carcinogens in Cancer Hazard Identification, Carcinogenesis, vol.39, issue.4, pp.614-636, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02622787

. Haarmann-stemmann, C. Thomas, J. Esser, and . Krutmann, The Janus-Faced Role of Aryl Hydrocarbon Receptor Signaling in the Skin: Consequences for Prevention and Treatment of Skin Disorders, Journal of Investigative Dermatology, vol.135, issue.11, pp.2572-76, 2015.

J. M. Hall, M. A. Barhoover, D. Kazmin, P. Donald, W. F. Mcdonnell et al., Activation of the Aryl-Hydrocarbon Receptor Inhibits Invasive and Metastatic Features of Human Breast Cancer Cells and Promotes Breast Cancer Cell Differentiation, Molecular Endocrinology, vol.24, issue.2, pp.359-69, 2010.

C. Hammerschmidt-kamper, D. Biljes, K. Merches, I. Steiner, T. Daldrup et al., Indole-3-Carbinol, a Plant Nutrient and AhR-Ligand Precursor, Supports Oral Tolerance against OVA and Improves Peanut Allergy Symptoms in Mice, PLoS ONE, vol.12, issue.6, 2017.

W. Handke, R. Oelschlegel, R. Franke, D. H. Kruger, and A. Rang, Hantaan Virus Triggers TLR3-Dependent Innate Immune Responses, The Journal of Immunology, vol.182, issue.5, pp.2849-58, 2009.

H. S. Hardarson, S. Baker, Z. Yang, E. Purevjav, C. Huang et al., Toll-like Receptor 3 Is an Essential Component of the Innate Stress Response in Virus-Induced Cardiac Injury, American Journal of Physiology. Heart and Circulatory Physiology, vol.292, issue.1, pp.251-58, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165354

M. T. Harte, R. Ismar, G. Haga, and . Maloney,

G. L. Bartlett, A. Smith, L. A. Bowie, and . O'neill, The Poxvirus Protein A52R Targets Toll-like Receptor Signaling Complexes to Suppress Host Defense, The Journal of Experimental Medicine, vol.197, issue.3, pp.343-51, 2003.

U. A. Hasan, C. Caux, I. Perrot, A. Doffin, C. Menetrier-caux et al., Cell Proliferation and Survival Induced by Toll-like Receptors Is Antagonized by Type I IFNs, Proceedings of the National Academy of Sciences, vol.104, pp.8047-52, 2007.

M. S. Hayden and S. Ghosh, Shared Principles in NF-?B Signaling, Cell, vol.132, issue.3, pp.344-62, 2008.

, NF-?B, the First Quarter-Century: Remarkable Progress and Outstanding Questions, Genes and Development, vol.26, issue.3, pp.203-237, 2012.

M. Herman, M. Ciancanelli, Y. Ou, L. Lorenzo, M. Klaudel-dreszler et al., Heterozygous TBK1 Mutations Impair TLR3 Immunity and Underlie Herpes Simplex Encephalitis of Childhood, The Journal of Experimental Medicine, vol.209, issue.9, pp.1567-82, 2012.

C. A. Hewson, A. Jardine, R. Michael, V. Edwards, and S. Laza-stanca, Toll-like Receptor 3 Is Induced by and Mediates Antiviral Activity against Rhinovirus Infection of Human Bronchial Epithelial Cells, Journal of Virology, vol.79, pp.12273-79, 2005.

F. Hidaka, . Matsuo, . Muta, . Takeshige, H. Mizukami et al., A Missense Mutation of the Toll-like Receptor 3 Gene in a Patient with Influenza-Associated Encephalopathy, Clin Immunol, vol.119, issue.2, pp.188-94, 2006.

K. Honda, T. Takaoka, and . Taniguchi, Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors, Immunity, vol.25, issue.3, pp.349-60, 2006.

X. Hou, G. Chen, M. Amir, T. Hossini, L. Hu et al., Aryl Hydrocarbon Receptor Modulates the Expression of TNF-? and IL-8 in Human Sebocytes via the MyD88-P65NF-?B/P38MAPK Signaling Pathways, Journal of Innate Immunity, pp.1-11, 2018.

J. Hoving, G. J. Claire, G. D. Wilson, and . Brown, Signalling C-Type Lectin Receptors, Microbial Recognition and Immunity, Cellular Microbiology, vol.16, issue.2, pp.185-94, 2014.

Y. Hu, Y. Zhang, L. Jiang, S. Wang, C. Lei et al., WDFY1 Mediates TLR3/4 Signaling by Recruiting TRIF, vol.16, pp.447-55, 2015.

G. Huang and C. J. Elferink, A Novel Nonconsensus Xenobiotic Response Element Capable of Mediating Aryl Hydrocarbon Receptor-Dependent Gene Expression, Molecular Pharmacology, vol.81, issue.3, pp.338-385, 2012.

J. Huang, T. Liu, D. Liang-guo-xu, Z. Chen, H. B. Zhai et al., SIKE Is an IKK?/TBK1-Associated Suppressor of TLR3-and Virus-Triggered IRF-3, 2005.

, Activation Pathways, EMBO Journal, vol.24, issue.23, pp.4018-4046

T. D. Hubbard, I. A. Murray, and G. H. Perdew, Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation, Drug Metabolism and Disposition, vol.43, issue.10, pp.1522-1557, 2015.

J. Huotari and A. Helenius, Endosome Maturation, EMBO Journal, vol.30, issue.17, pp.3481-3500, 2011.

H. Dr and G. Wf, 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Inhibits DNA Synthesis in Rat Primary Hepatocytes, Mutation Research, vol.333, issue.1-2, pp.89-99, 1995.

M. Hutchens, K. E. Luker, P. Sottile, J. Sonstein, N. W. Lukacs et al., TLR3 Increases Disease Morbidity and Mortality from Vaccinia Infection, The Journal of Immunology, vol.180, issue.1, pp.483-91, 2008.

K. Hyakkoku, J. Hamanaka, K. Tsuruma, M. Shimazawa, H. Tanaka et al., Toll-like Receptor 4 (TLR4), but Not TLR3 or TLR9, Knock-out Mice Have Neuroprotective Effects against Focal Cerebral Ischemia, Neuroscience, vol.171, issue.1, pp.258-67, 2010.

H. Itoh, M. Tatematsu, A. Watanabe, K. Iwano, K. Funami et al., UNC93B1 Physically Associates with Human TLR8 and Regulates TLR8-Mediated Signaling, PLoS ONE, vol.6, issue.12, 2011.

C. A. Janeway, Approaching the Asymptote? Evolution and Revolution in Immunology, Cold Spring Harbor Symposia on Quantitative Biology, vol.54, issue.1, pp.1-13, 1989.

S. Jensen and A. R. Thomsen, Sensing of RNA Viruses: A Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion, Journal of Virology, vol.86, issue.6, pp.2900-2910, 2012.

D. Jia, W. Yang, L. Li, H. Liu, Y. Tan et al., ?-Catenin and NF-?B Co-Activation Triggered by TLR3 Stimulation Facilitates Stem Cell-like Phenotypes in Breast Cancer, Cell Death and Differentiation, vol.22, issue.2, pp.298-310, 2015.

Z. Jiang, W. Tak, G. Mak, X. Sen, and . Li, Toll-like Receptor 3-Mediated Activation of NF-KappaB and IRF3 Diverges at Toll-IL-1 Receptor Domain-Containing Adapter Inducing IFN-Beta, Proceedings of the National Academy of Sciences of the United States of America, vol.101, issue.10, pp.3533-3571, 2004.

Z. Jiang, M. Zamanian-daryoush, H. Nie, A. M. Silva, R. G. Bryan et al., Poly(DI·dC)-Induced Toll-like Receptor, vol.3, issue.TLR3, 2003.

, Mediated Activation of NF?B and MAP Kinase Is through an Interleukin-1 Receptor-Associated Kinase (IRAK)-Independent Pathway Employing the Signaling Components TLR3-TRAF6-TAK1-TAB2-PKR, Journal of Biological Chemistry, vol.278, pp.16713-16732

G. Jin, K. Winans, B. Martin, and . Lawrence, New Insights into the Role of the Aryl Hydrocarbon Receptor in the Function of CD11c(+) Cells during Respiratory Viral Infection, Eur J Immunol, vol.44, issue.6, pp.1685-98, 2014.

I. Johnsen, T. T. Bjellmo, M. Nguyen, A. M. Ringdal, O. Tryggestad et al., Toll-like Receptor 3 Associates with c-Src Tyrosine Kinase on Endosomes to Initiate Antiviral Signaling, EMBO Journal, vol.25, issue.14, pp.3335-3381, 2006.

S. L. Jongbloed, J. Andrew, K. J. Kassianos, G. J. Mcdonald, X. Clark et al., , 2010.

, Dendritic Cells (DCs) Represent a Unique Myeloid DC Subset That Cross-Presents Necrotic Cell Antigens, The Journal of Experimental Medicine, vol.207, issue.6, pp.1247-60

H. Jun and J. Yoon, A New Look at Viruses in Type 1 Diabetes, Diabetes Metab Res Rev, vol.19, pp.8-31, 2003.

Y. Kabe, K. Ando, S. Hirao, M. Yoshida, and H. Handa, Redox Regulation of NF-KappaB Activation: Distinct Redox Regulation between the Cytoplasm and the Nucleus, Antioxidants & Redox Signaling, vol.7, issue.3-4, pp.395-403, 2004.

S. Kado, W. L. William-chang, A. Nguyen-chi, M. Wolny, D. M. Shepherd et al., Aryl Hydrocarbon Receptor Signaling Modifies Tolllike Receptor-Regulated Responses in Human Dendritic Cells, Archives of Toxicology, vol.91, issue.5, pp.2209-2230, 2017.

E. Kajita, T. Nishiya, and S. Miwa, The Transmembrane Domain Directs TLR9 to Intracellular Compartments That Contain TLR3, Biochemical and Biophysical Research Communications, vol.343, issue.2, pp.578-84, 2006.

K. Karikó, H. Ni, J. Capodici, M. Lamphier, and D. Weissman, MRNA Is an Endogenous Ligand for Toll-like Receptor 3, Journal of Biological Chemistry, vol.279, issue.13, pp.12542-50, 2004.

M. Karin, The Regulation of AP-1 Activity by Mitogen-Activated Protein Kinases, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.351, pp.127-161, 1336.

K. Karwacz and C. Bricogne,

M. Bennett, D. Collins, and . Escors, PD-L1 Co-Stimulation Contributes to Ligand-Induced T Cell Receptor down-Modulation on CD8+T Cells, EMBO Molecular Medicine, vol.3, issue.10, pp.581-92, 2011.

H. Kato, O. Takeuchi, E. Mikamo-satoh, R. Hirai, T. Kawai et al., Length-Dependent Recognition of Double-Stranded Ribonucleic Acids by Retinoic Acid-Inducible Gene-I and Melanoma Differentiation-Associated Gene 5, The Journal of Experimental Medicine, vol.205, issue.7, pp.1601-1611, 2008.

T. Kawai, O. Takeuchi, T. Fujita, J. Inoue, P. F. Muhlradt et al., Lipopolysaccharide Stimulates the MyD88-Independent Pathway and Results in Activation of IFN-Regulatory Factor 3 and the Expression of a Subset of Lipopolysaccharide-Inducible Genes, The Journal of Immunology, vol.167, issue.10, pp.5887-94, 2001.

T. Kawai, O. Adachi, T. Ogawa, K. Takeda, and S. Akira, Unresponsiveness of MyD88-Deficient Mice to Endotoxin, Immunity, vol.11, issue.1, pp.80086-80088, 1999.

T. Kawai and S. Akira, Toll-like Receptor and RIG-1-like Receptor Signaling, Annals of the New York Academy of Sciences, vol.1143, pp.1-20, 2008.

T. Kawai, S. Sato, K. J. Ishii, C. Coban, H. Hemmi et al., Interferon-? Induction through Toll-like Receptors Involves a Direct Interaction of IRF7 with MyD88 and TRAF6, Nature Immunology, vol.5, issue.10, pp.1061-68, 2004.

Y. Kim, M. M. Me, M. E. Brinkmann, H. L. Paquet, and . Ploegh, UNC93B1 Delivers Nucleotide-Sensing Toll-like Receptors to Endolysosomes, Nature, vol.452, issue.7184, pp.234-272, 2008.

E. Kindberg, S. Vene, A. Mickiene, Å. Lundkvist, L. Lindquist et al., A Functional Toll-like Receptor 3 Gene (TLR3) May Be a Risk Factor for Tick-Borne Encephalitis Virus (TBEV) Infection, Journal of Infectious Diseases, vol.203, issue.4, pp.523-551, 2011.

J. C. Klein, K. Moses, G. Zelinskyy, S. Sody, J. Buer et al., Combined Toll-like Receptor 3/7/9 Deficiency on Host Cells Results in T-Cell-Dependent Control of Tumour Growth, Nature Communications, vol.8, p.14600, 2017.

M. E. Kleinman, K. Yamada, A. Takeda, V. Chandrasekaran, M. Nozaki et al., Sequence-and Target-Independent Angiogenesis Suppression by SiRNA via TLR3, Nature, vol.452, issue.7187, pp.591-97, 2008.

R. Ko, J. H. Park, H. Ha, Y. Choi, and S. Y. Lee, Glycogen Synthase Kinase 3? Ubiquitination by TRAF6 Regulates TLR3-Mediated pro-Inflammatory Cytokine Production, Nature Communications, vol.6, p.6765, 2015.

N. Kobayashi, Y. Kadono, A. Naito, K. Matsumoto, T. Yamamoto et al., Segregation of TRAF6-Mediated Signaling Pathways Clarifies Its Role in Osteoclastogenesis, EMBO Journal, vol.20, issue.6, pp.1271-80, 2001.

M. Kotecki, P. S. Reddy, and B. H. Cochran, Isolation and Characterization of a Near-Haploid Human Cell Line, Experimental Cell Research, vol.252, issue.2, pp.273-80, 1999.

S. Krishnan, Y. Ding, N. Saedi, M. Choi, V. Gautham et al.,

M. L. Sherr, R. C. Yarmush, A. Alaniz, K. Jayaraman, and . Lee, LGut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages, Cell Reports, vol.23, issue.4, p.172, 2018.

F. G. Lafaille, M. Itai, . Pessach, Y. Shen, M. J. Zhang et al., Impaired Intrinsic Immunity to HSV-1 in Human IPSC-Derived TLR3-Deficient CNS Cells, Nature, vol.491, issue.7426, pp.769-73, 2012.

X. Lahaye, M. Gentili, A. Silvin, C. Conrad, L. Picard et al., NONO Detects the Nuclear HIV Capsid to Promote CGAS-Mediated Innate Immune Activation, Cell, vol.0, issue.0, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02087780

B. Lamothe, A. Besse, A. D. Campos, W. K. Webster, H. Wu et al., Site-Specific Lys-63-Linked Tumor Necrosis Factor Receptor-Associated Factor 6 Auto-Ubiquitination Is a Critical Determinant of I?B Kinase Activation, Journal of Biological Chemistry, vol.282, issue.6, pp.4102-4114, 2007.

B. C. Lampkin, A. Levine, H. Levy, D. Krivit, and . Hammond, Phase II Trial of a Complex Polyriboinosinic-Polyribocytidylic Acid with Poly-L-Lysine and Carboxymethyl Cellulose in the Treatment of Children with Acute Leukemia and Neuroblastoma: A Report from the Children's Cancer Study Group, Cancer Res, vol.45, issue.11, pp.5904-5913, 1985.

L. Larigot, L. Juricek, J. Dairou, and X. Coumoul, AhR Signaling Pathways and Regulatory Functions, Biochimie Open, vol.7, pp.1-9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02196328

B. P. Lawrence, A. Roberts, J. Neumiller, J. Cundiff, and D. Woodland, Aryl Hydrocarbon Receptor Activation Impairs the Priming but Not the Recall of Influenza Virus-Specific CD8+ T Cells in the Lung, J Immunol, vol.177, issue.9, pp.5819-5847, 2006.

T. Lawrence, M. Bebien, G. Y. Liu, V. Nizet, and M. Karin, IKK? Limits Macrophage NF-?B Activation and Contributes to the Resolution of Inflammation, Nature, vol.434, issue.7037, pp.1138-1181, 2005.

B. L. Lee and G. M. Barton, Trafficking of Endosomal Toll-like Receptors, Trends in Cell Biology, vol.24, issue.6, pp.360-69, 2014.

B. L. Lee, J. E. Moon, J. H. Shu, L. Yuan, Z. R. Newman et al., UNC93B1 Mediates Differential Trafficking of Endosomal TLRs, ELife, vol.2013, issue.2, 2013.

H. K. Lee, S. Dunzendorfer, K. Soldau, and P. S. Tobias, Double-Stranded RNA-Mediated TLR3 Activation Is Enhanced by CD14, Immunity, vol.24, issue.2, pp.153-63, 2006.

. Lee, B. Seon-yeong, J. Yoon, Y. Kim, Y. Heo et al., Interleukin-17 Increases the Expression of Toll-like Receptor 3 via the STAT3 Pathway in Rheumatoid Arthritis Fibroblast-like Synoviocytes, Immunology, vol.141, issue.3, pp.353-61, 2014.

B. Lemaitre, E. Nicolas, L. Michaut, J. Reichhart, and J. Hoffmann, The Dorsoventral Regulatory Gene Cassette Spätzle/Toll/Cactus Controls the Potent Antifungal Response in Drosophila Adults, Cell, vol.86, pp.80172-80177, 1996.

J. N. Leonard, R. Ghirlando, J. Askins, J. K. Bell, D. H. Margulies et al., The TLR3 Signaling Complex Forms by Cooperative Receptor Dimerization, Proceedings of the National Academy of Sciences, vol.105, issue.1, pp.258-63, 2008.

A. S. Levine and H. Levy, Phase I-II Trials of Poly IC Stabilized with Poly-L-Lysine, Cancer Treat Rep, vol.62, issue.11, pp.1907-1919, 1978.

J. Li, L. Ye, X. Wang, S. Hu, and W. Ho, Induction of Interferon-?? Contributes to Toll-like Receptor 3-Mediated Herpes Simplex Virus Type 1 Inhibition in Astrocytes, Journal of Neuroscience Research, vol.90, issue.2, pp.399-406, 2012.

K. Li, E. Foy, J. C. Ferreon, M. Nakamura, A. C. Ferreon et al., Immune Evasion by Hepatitis C Virus NS3/4A Protease-Mediated Cleavage of the Toll-like Receptor 3 Adaptor Protein TRIF, Proceedings of the National Academy of Sciences, vol.102, issue.8, pp.2992-97, 2005.

. Li, N. L. Kui, D. Li, S. R. Wei, M. Pfeffer et al., Activation of Chemokine and Inflammatory Cytokine Response in Hepatitis C Virus-Infected Hepatocytes Depends on Toll-like Receptor 3 Sensing of Hepatitis C Virus Double-Stranded RNA Intermediates, Hepatology, vol.55, issue.3, pp.666-75, 2012.

Q. Li, M. M. Harraz, W. Zhou, L. N. Zhang, W. Ding et al., Nox2 and Rac1 Regulate H2O2-Dependent Recruitment of TRAF6 to Endosomal Interleukin-1 Receptor Complexes, Molecular and Cellular Biology, vol.26, issue.1, pp.140-54, 2006.

Y. Li, D. Xu-lin-xu, L. N. Zhao, C. W. Pan, L. J. Huang et al., TLR3 Ligand Poly IC Attenuates Reactive Astrogliosis and Improves Recovery of Rats after Focal Cerebral Ischemia, CNS Neuroscience and Therapeutics, vol.21, issue.11, pp.905-918, 2015.

Y. Li, U. Gang, U. Siripanyaphinyo, N. Tumkosit, . Noranate et al., Poly (I:C), an Agonist of Toll-like Receptor-3, Inhibits Replication of the Chikungunya Virus in BEAS-2B Cells, Virology Journal, vol.9, 2012.

Y. Liang, X. Cao, Q. Ding, Y. Zhao, Z. He et al., Hepatitis C Virus NS4B Induces the Degradation of TRIF to Inhibit TLR3-Mediated Interferon Signaling Pathway, PLoS Pathogens, vol.14, issue.5, p.1007075, 2018.

Q. Lin, D. Fang, J. Fang, X. Ren, X. Yang et al., Impaired Wound Healing with Defective Expression of Chemokines and Recruitment of Myeloid Cells in TLR3-Deficient Mice, The Journal of Immunology, vol.186, issue.6, pp.3710-3727, 2011.

U. M. Litzenburger, C. A. Opitz, F. Sahm, K. J. Rauschenbach, S. Trump et al., Constitutive IDO Expression in Human Cancer Is Sustained by an Autocrine Signaling Loop Involving IL-6, STAT3 and the AHR, Oncotarget, vol.5, issue.4, pp.1038-51, 2014.

B. Liu, X. Wang, T. Zhong-chen, G. Li, C. C. Tan et al., Polarization of M1 Tumor Associated Macrophage Promoted by the Activation of TLR3 Signal Pathway, Asian Pacific Journal of Tropical Medicine, vol.9, issue.5, pp.484-88, 2016.

L. Liu, I. Botos, Y. Wang, J. N. Leonard, J. Shiloach et al., Structural Basis of Toll-like Receptor 3 Signaling with Double-Stranded RNA, Science, vol.320, issue.5874, pp.379-81, 2008.

M. Liu, S. Guo, J. M. Hibbert, V. Jain, N. Singh et al., CXCL10/IP-10 in Infectious Diseases Pathogenesis and Potential Therapeutic Implications, Cytokine and Growth Factor Reviews, vol.22, issue.3, pp.121-151, 2011.

M. Liu, S. Guo, and J. K. Stiles, The Emerging Role of CXCL10 in Cancer, Oncology Letters, vol.2, issue.4, pp.583-89, 2011.

X. Liu, R. Qian, Z. Sheng, and . Hong-qin, The Neuroprotective Mechanism of Brain Ischemic Preconditioning, Acta Pharmacologica Sinica, vol.30, issue.8, pp.1071-80, 2009.

Y. Loo, M. Ming, and . Gale, Immune Signaling by RIG-I-like Receptors, Immunity, vol.34, issue.5, pp.680-92, 2011.

C. Lu, D. Ren, X. Wang, T. Ha, L. Liu et al., Toll-like Receptor 3 Plays a Role in Myocardial Infarction and Ischemia/Reperfusion Injury, Biochimica et Biophysica Acta -Molecular Basis of Disease, vol.1842, issue.1, pp.22-31, 2014.

A. M. Lundberg, K. Stefan, C. Drexler, L. M. Monaco, S. M. Williams et al., Key Differences in TLR3/Poly I:C Signaling and Cytokine Induction by Human Primary Cells: A Phenomenon Absent from, 2007.

, Murine Cell Systems, Blood, vol.110, issue.9, pp.3245-52

S. Lv, J. Li, X. Qiu, W. Li, C. Zhang et al., A Negative Feedback Loop of ICER and NF-?B Regulates TLR Signaling in Innate Immune Responses, Cell Death and Differentiation, vol.24, issue.3, pp.492-99, 2017.

Z. Ma, G. Ni, and B. Damania, Innate Sensing of DNA Virus Genomes, Annual Review of Virology, 2018.

I. Mackay and . Noel-r-rose, The Autoimmune Diseases, The Autoimmune Diseases, 2006.

M. Maira, J. E. Long, A. Y. Lee, S. John-l-r-rubenstein, and . Stifani, Role for TGF-? Superfamily Signaling in Telencephalic GABAergic Neuron Development, Journal of Neurodevelopmental Disorders, vol.2, issue.1, pp.48-60, 2009.

M. Matsumoto, K. Funami, M. Tanabe, H. Oshiumi, M. Shingai et al., Subcellular Localization of Toll-Like Receptor 3 in Human Dendritic Cells, The Journal of Immunology, vol.171, issue.9, pp.4934-4934, 2003.

M. Matsumoto, S. Kikkawa, M. Kohase, K. Miyake, and T. Seya, Establishment of a Monoclonal Antibody against Human Toll-like Receptor 3 That Blocks Double-Stranded RNA-Mediated Signaling, Biochemical and Biophysical Research Communications, vol.293, issue.5, pp.1364-69, 2002.

M. Matsumoto, M. Tatematsu, F. Nishikawa, M. Azuma, N. Ishii et al., Defined TLR3-Specific Adjuvant That Induces NK and CTL Activation without Significant Cytokine Production in Vivo, Nature Communications, vol.6, 2015.

P. Matzinger, Tolerance, Danger, and the Extended Family, Annual Review of Immunology, vol.12, issue.1, pp.991-1045, 1994.

S. M. Mcwhirter, K. A. Fitzgerald, J. Rosains, D. C. Rowe, D. T. Golenbock et al., IFN-Regulatory Factor 3-Dependent Gene Expression Is Defective in Tbk1-Deficient Mouse Embryonic Fibroblasts, Proceedings of the National Academy of Sciences, vol.101, issue.1, pp.233-271, 2004.

R. Medzhitov and C. Janeway, Innate Immune Recognition: Mechanisms and Pathways, Immunological Reviews, vol.173, issue.1, pp.89-97, 2000.

F. Meissner, A. Molawi, and . Zychlinsky, Superoxide Dismutase 1 Regulates Caspase-1 and Endotoxic Shock, Nature Immunology, 2008.

L. Meng, W. Zhu, C. Jiang, X. He, W. Hou et al., Toll-like Receptor 3 Upregulation in Macrophages Participates in the Initiation and Maintenance of Pristane-Induced Arthritis in Rats, Arthritis Research and Therapy, vol.12, issue.3, 2010.

G. R. Merlo, B. Zerega, L. Paleari, S. Trombino, S. Mantero et al., Multiple Functions of Dlx Genes, International Journal of Developmental Biology, vol.44, issue.6, pp.619-645, 2000.

E. Meylan, K. Burns, K. Hofmann, V. Blancheteau, F. Martinon et al., RIP1 Is an Essential Mediator of Toll-like Receptor 3-Induced NF ?B Activation, Nature Immunology, vol.5, issue.5, pp.503-510, 2004.

E. Meylan, F. Martinon, M. Thome, M. Gschwendt, and J. Tschopp, RIP4 (DIK/PKK), a Novel Member of the RIP Kinase Family, Activates NF-?B and Is Processed during Apoptosis, EMBO Reports, vol.3, issue.12, pp.1201-1209, 2002.

M. Miettinen, T. Sareneva, I. Julkunen, and S. Matikainen, IFNs Activate Toll-like Receptor Gene Expression in Viral Infections, Genes and Immunity, vol.2, issue.6, pp.349-55, 2001.

J. Mimura, . Ema, Y. Sogawa, and . Fujii-kuriyama, Identification of a Novel Mechanism of Regulation of Ah (Dioxin) Receptor Function, Genes Dev, vol.13, issue.1, pp.20-25, 1999.

K. S. Mineev, A. Sergey, A. S. Goncharuk, and . Arseniev, Toll-like Receptor 3 Transmembrane Domain Is Able to Perform Various Homotypic Interactions: An NMR Structural Study, FEBS Letters, vol.588, issue.21, pp.3802-3809, 2014.

B. Mordmüller, D. Krappmann, M. Esen, E. Wegener, and C. Scheidereit, Lymphotoxin and Lipopolysaccharide Induce NF-??B-P52 Generation by a Co-Translational Mechanism, EMBO Reports, vol.4, issue.1, pp.82-87, 2003.

M. J. Morgan and Z. Liu, Crosstalk of Reactive Oxygen Species and NF-?B Signaling, Cell Res, vol.21, issue.1, pp.103-118, 2011.

P. Moura-alves, K. Faé, E. Houthuys, A. Dorhoi, A. Kreuchwig et al., AhR Sensing of Bacterial Pigments Regulates Antibacterial Defence, Nature, vol.512, issue.7515, pp.387-92, 2014.

S. Mulero-navarro and P. M. Fernandez-salguero, New Trends in Aryl Hydrocarbon Receptor Biology, Frontiers in Cell and Developmental Biology, vol.4, p.45, 2016.

K. Naka, H. Dansako, N. Kobayashi, M. Ikeda, and N. Kato, Hepatitis C Virus NS5B Delays Cell Cycle Progression by Inducing Interferon-? via Toll-like Receptor 3 Signaling Pathway without Replicating Viral Genomes, Virology, vol.346, issue.2, pp.348-62, 2006.

R. Nandakumar and S. Paludan, Catching the Adaptor--WDFY1, a New Player in the TLR-TRIF Pathway, EMBO Reports, vol.16, issue.4, pp.397-98, 2015.

M. Napolitano and C. Patruno, Aryl Hydrocarbon Receptor (AhR) a Possible Target for the Treatment of Skin Disease, Medical Hypotheses, vol.116, pp.96-100, 2018.

D. W. Nebert, A. Roe, M. Dieter, W. Solis, Y. Yang et al., Role of the Aromatic Hydrocarbon Receptor and [Ah] Gene Battery in the Oxidative Stress Response, Cell Cycle Control, and Apoptosis, Biochem.Pharmacol, vol.59, issue.1, pp.65-85, 2000.

H. Negishi, T. Osawa, K. Ogami, X. Ouyang, S. Sakaguchi et al., A Critical Link between Toll-like Receptor 3 and Type II Interferon Signaling Pathways in Antiviral Innate Immunity, Proceedings of the National Academy of Sciences of the United States of America, vol.105, issue.51, pp.20446-51, 2008.

T. Nishiya, E. Kajita, S. Miwa, and A. L. Defranco, , vol.3, p.7, 2005.

, Are Targeted to the Same Intracellular Compartments by Distinct Regulatory Elements, Journal of Biological Chemistry, vol.280, issue.44, pp.37107-37124

L. A. O'neill and A. G. Bowie, The Family of Five: TIR-Domain-Containing Adaptors in Toll-like Receptor Signalling, Nature Reviews Immunology, vol.7, issue.5, pp.353-64, 2007.

. Oganesyan, S. K. Gagik, B. Saha, J. Q. Guo, A. He et al., Critical Role of TRAF3 in the Tolllike Receptor-Dependent and -Independent Antiviral Response, Nature, vol.439, issue.7073, pp.208-219, 2006.

C. A. Opitz, M. Ulrike, F. Litzenburger, M. Sahm, I. Ott et al., An Endogenous Tumour-Promoting Ligand of the Human Aryl Hydrocarbon Receptor, Nature, vol.478, issue.7368, pp.197-203, 2011.

H. Oshiumi, M. Matsumoto, K. Funami, T. Akazawa, and T. Seya, TICAM-1, an Adaptor Molecule That Participates in Toll-like Receptor 3-Mediated Interferon-? Induction, Nature Immunology, vol.4, issue.2, pp.161-67, 2003.

H. Oshiumi, M. Okamoto, K. Fujii, T. Kawanishi, M. Matsumoto et al., The TLR3/TICAM-1 Pathway Is Mandatory for Innate Immune Responses to Poliovirus Infection, The Journal of Immunology, vol.187, issue.10, pp.5320-5347, 2011.

L. Pan, W. Na, C. Zhu, . Li, L. Xu et al., Toll-like Receptor 3 Agonist Poly I:C Protects against Simulated Cerebral Ischemia in Vitro and in Vivo, Acta Pharmacologica Sinica, vol.33, issue.10, pp.1246-53, 2012.

. Park, M. M. Boyoun, E. Brinkmann, C. C. Spooner, Y. Lee et al., Proteolytic Cleavage in an Endolysosomal Compartment Is Required for Toll-like Receptor 9 Activation, Nature Immunology, vol.9, issue.12, pp.1407-1421, 2009.

M. Patel, K. A. Shirey, L. Pletneva, M. Boukhvalova, A. Garzino-demo et al., Novel Drugs Targeting Toll-like Receptors for Antiviral Therapy, Future Virololgy, vol.9, issue.9, pp.811-840, 2014.

R. D. Patel, A. Iain, C. A. Murray, A. Flaveny, G. H. Kusnadi et al., Ah Receptor Represses Acute-Phase Response Gene Expression without Binding to Its Cognate Response Element, Laboratory Investigation, vol.89, issue.6, pp.695-707, 2009.

A. Paun, T. Jorgen, Z. Reinert, C. Jiang, Y. Medin et al., Functional Characterization of Murine Interferon Regulatory Factor 5 (IRF-5) and Its Role in the Innate Antiviral Response * ? S, J Bio Chem, vol.283, pp.14295-14308, 2008.

K. Pelka, D. Bertheloot, E. Reimer, K. Phulphagar, S. V. Schmidt et al., The Chaperone UNC93B1 Regulates Toll-like Receptor Stability Independently of Endosomal TLR Transport, Immunity, vol.48, issue.5, pp.911-922, 2018.

T. Peng, J. Chen, W. Mao, X. Song, and M. Chen, Aryl Hydrocarbon Receptor Pathway Activation Enhances Gastric Cancer Cell Invasiveness Likely through a C-Jun-Dependent Induction of Matrix Metalloproteinase-9, BMC Cell Biology, vol.10, issue.1, p.27, 2009.

R. Perales-linares and S. Navas-martin, Toll-like Receptor 3 in Viral Pathogenesis: Friend or Foe?, Immunology, vol.140, issue.2, pp.153-67, 2013.

R. Pérez-de-diego, V. Sancho-shimizu, L. Lorenzo, A. Puel, S. Plancoulaine et al., Human TRAF3 Adaptor Molecule Deficiency Leads to Impaired Toll-like Receptor 3 Response and Susceptibility to Herpes Simplex Encephalitis, Immunity, vol.33, issue.3, pp.400-411, 2010.

J. R. Petrulis and G. H. Perdew, The Role of Chaperone Proteins in the Aryl Hydrocarbon Receptor Core Complex, Chemico-Biological Interactions, vol.141, issue.1-2, pp.25-40, 2002.

N. Pirher, K. Ivi?ak, J. Pohar, M. Ben?ina, and R. Jerala, A Second Binding Site for Double-Stranded RNA in TLR3 and Consequences for Interferon Activation, Nature Structural and Molecular Biology, vol.15, issue.7, pp.761-63, 2008.

S. Pisegna, G. Pirozzi, L. Piccoli-m-frati, A. Santoni, and G. Palmieri, P38 MAPK Activation Controls the TLR3-Mediated up-Regulation of Cytotoxicity and Cytokine Production in Human NK Cells, Blood, vol.104, issue.13, pp.4157-64, 2004.

J. Pohar, N. Pirher, M. Ben?ina, M. Man?ek-keber, and R. Jerala, The Role of UNC93B1 Protein in Surface Localization of TLR3 Receptor and in Cell Priming to Nucleic Acid Agonists, Journal of Biological Chemistry, vol.288, issue.1, pp.442-54, 2013.

, The Ectodomain of TLR3 Receptor Is Required for Its Plasma Membrane Translocation, PLoS ONE, vol.9, issue.3, p.92391, 2014.

J. Pott, S. Stockinger, N. Torow, A. Smoczek, C. Lindner et al., Age-Dependent TLR3 Expression of the Intestinal Epithelium Contributes to Rotavirus Susceptibility, PLoS Pathogens, vol.8, issue.5, 2012.

J. P. Pradere, D. H. Dapito, and R. F. Schwabe, The Yin and Yang of Toll-like Receptors in Cancer, Oncogene, vol.33, issue.27, pp.3485-95, 2014.

T. Pradeu, S. Jaeger, and E. Vivier, The Speed of Change: Towards a Discontinuity Theory of Immunity?, Nature Reviews Immunology, vol.13, issue.10, pp.764-69, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01343694

T. Pradeu and E. Vivier, The Discontinuity Theory of Immunity, Science Immunology, vol.1, issue.1, pp.479-0479, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01419724

R. Qi, D. Singh, and C. Kao, Proteolytic Processing Regulates Tolllike Receptor 3 Stability and Endosomal Localization, Journal of Biological Chemistry, vol.287, issue.39, pp.32617-32646, 2012.

F. J. Quintana, A. Basso, A. Iglesias, T. Korn, M. Farez et al., Control of T(Reg) and T(H)17 Cell Differentiation by the Aryl Hydrocarbon Receptor, Nature, vol.453, issue.7191, pp.65-71, 2008.

H. Rabeony, M. Pohin, P. Vasseur, I. Petit-paris, F. Jégou et al., Self-Regulation and Cross-Regulation of Pattern-Recognition Receptor Signalling in Health and Disease, Nature Reviews Immunology, vol.16, issue.1, pp.483-92, 2015.

L. S. Reinert, L. Harder, C. K. Holm, M. B. Iversen, K. A. Horan et al., TLR3 Deficiency Renders Astrocytes Permissive to Herpes Simplex Virus Infection and Facilitates Establishment of CNS Infection in Mice, Journal of Clinical Investigation, vol.122, issue.4, pp.1368-76, 2012.

M. Richer, D. Lavallée, I. Shanina, and M. Horwitz, Toll-like Receptor 3 Signaling on Macrophages Is Required for Survival Following Coxsackievirus B4 Infection, PloS One, vol.4, issue.1, p.4127, 2009.

F. L. Rock, G. Hardiman, J. C. Timans, R. A. Kastelein, and J. F. Bazan, Lippincott's Illustrated Reviews Immunology 2nd Edition, Proceedings of the National Academy of Sciences, vol.95, issue.2, pp.588-93, 1998.

T. Saitoh, M. Yamamoto, M. Miyagishi, K. Taira, M. Nakanishi et al., A20 Is a Negative Regulator of IFN Regulatory Factor 3 Signaling, The Journal of Immunology, vol.174, issue.3, pp.1507-1519, 2005.

B. Salaun, I. Coste, M. Rissoan, S. J. Lebecque, and T. Renno, TLR3 Can Directly Trigger Apoptosis in Human Cancer Cells, The Journal of Immunology, vol.176, issue.8, pp.4894-4901, 2006.

M. L. Salem, N. Andre, D. J. Kadima, W. E. Cole, and . Gillanders, Defining the Antigen-Specific T-Cell Response to Vaccination and Poly, p.3, 2005.

, Signaling: Evidence of Enhanced Primary and Memory CD8 T-Cell Responses and Antitumor Immunity, Journal of Immunotherapy, vol.28, issue.3, pp.220-248

. Sancho-shimizu, R. Vanessa, L. Pérez-de-diego, R. Lorenzo, A. Halwani et al., Herpes Simplex Encephalitis in Children with Autosomal Recessive and Dominant TRIF Deficiency, Journal of Clinical Investigation, vol.121, issue.12, pp.4889-4902, 2011.

N. E. Sanjana, O. Shalem, and F. Zhang, Improved Vectors and Genome-Wide Libraries for CRISPR Screening, Nature Methods, vol.11, issue.8, pp.783-84, 2014.

S. N. Sarkar, L. Kristi, C. P. Peters, S. Elco, S. Sakamoto et al., Novel Roles of TLR3 Tyrosine Phosphorylation and PI3 Kinase in Double-Stranded RNA Signaling, Nature Structural and Molecular Biology, vol.11, issue.11, pp.1060-67, 2004.

S. N. Sarkar, L. Heather, T. M. Smith, G. C. Rowe, and . Sen, Double-Stranded RNA Signaling by Toll-like Receptor 3 Requires Specific Tyrosine Residues in Its Cytoplasmic Domain, Journal of Biological Chemistry, vol.278, issue.7, pp.4393-96, 2003.

M. Sasai, M. Shingai, K. Funami, M. Yoneyama, T. Fujita et al., NAK-Associated Protein 1 Participates in Both the TLR3 and the Cytoplasmic Pathways in Type I IFN Induction, The Journal of Immunology, vol.177, issue.12, pp.8676-83, 2006.

M. Sasai, H. Oshiumi, M. Matsumoto, N. Inoue, F. Fujita et al., Cutting Edge: NF-KappaB-Activating Kinase-Associated Protein 1 Participates in TLR3/Toll-IL-1 Homology Domain-Containing Adapter Molecule-1-Mediated IFN Regulatory Factor 3 Activation, Journal of Immunology, vol.174, issue.1, pp.27-30, 2005.

S. Sato, M. Sugiyama, M. Yamamoto, Y. Watanabe, T. Kawai et al., Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-? (TRIF) Associates with TNF Receptor-Associated Factor 6 and TANK-Binding Kinase 1, and Activates Two Distinct Transcription Factors, NF-?B and IFN-Regulatory Factor-3, in the Toll-Like Receptor, The Journal of Immunology, vol.171, issue.8, pp.4304-4314, 2003.

S. Sato, H. Sanjo, K. Takeda, J. Ninomiya-tsuji, M. Yamamoto et al., Essential Function for the Kinase TAK1 in Innate and Adaptive Immune Responses, Nature Immunology, vol.6, issue.11, pp.1087-95, 2005.

A. Schoenemeyer, B. J. Barnes, M. E. Mancl, E. Latz, N. Goutagny et al., The Interferon Regulatory Factor, IRF5, Is a Central Mediator of Toll-like Receptor 7 Signaling, Journal of Biological Chemistry, vol.280, issue.17, pp.17005-17017, 2005.

K. Schroder and J. Tschopp, The Inflammasomes", vol.140, issue.6, pp.821-853, 2010.

. Schulz, S. S. Oliver, M. Diebold, T. I. Chen, M. A. Näslund et al., Toll-like Receptor 3 Promotes Cross-Priming to Virus-Infected Cells, Nature, vol.433, issue.7028, pp.887-92, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00165709

S. Seong, P. Yong, and . Matzinger, Hydrophobicity: An Ancient Damage-Associated Molecular Pattern That Initiates Innate Immune Responses, Nature Reviews Immunology, vol.4, issue.6, pp.469-78, 2004.

F. E. Sepulveda, S. Maschalidi, R. Colisson, L. Heslop, C. Ghirelli et al., Ana Maria Lennon-Duménil

B. Manoury, Critical Role for Asparagine Endopeptidase in Endocytic Toll-like Receptor Signaling in Dendritic Cells, Immunity, vol.31, issue.5, pp.737-785, 2009.

M. Shi, X. Chen, K. Ye, Y. Yao, and Y. Li, Application Potential of Toll-like Receptors in Cancer Immunotherapy: Systematic Review, Medicine, vol.95, issue.25, p.3951, 2016.

J. -. Shim, C. Hyuck, A. E. Xiao, . Paschal, T. Shannon et al., TAK1, but Not TAB1 or TAB2, Plays an Essential Role in Multiple Signaling Pathways in Vivo, Genes & Development, vol.19, issue.22, pp.2668-81, 2005.

H. Shime, M. Matsumoto, H. Oshiumi, S. Tanaka, A. Nakane et al., Toll-like Receptor 3 Signaling Converts Tumor-Supporting Myeloid Cells to Tumoricidal Effectors, Proceedings of the National Academy of Sciences, vol.109, issue.6, pp.2066-71, 2012.

R. Shinde, K. Hezaveh, M. J. Halaby, A. Kloetgen, A. Chakravarthy et al., Apoptotic Cell-Induced AhR Activity Is Required for Immunological Tolerance and Suppression of Systemic Lupus Erythematosus in Mice and Humans Article, Nature Immunology, vol.19, issue.6, pp.571-82, 2018.

J. Siednienko, A. Halle, K. Nagpal, D. T. Golenbock, and M. Sinéad,

. Miggin, TLR3-Mediated IFN-? Gene Induction Is Negatively Regulated by the TLR Adaptor MyD88 Adaptor-Like, European Journal of Immunology, vol.40, issue.11, pp.3150-60, 2010.

J. Siednienko, A. Maratha, S. Yang, M. Mitkiewicz, M. Sinéad et al., Nuclear Factor ?B Subunits RelB and CRel Negatively Regulate Toll-like Receptor 3-Mediated ?-Interferon Production via Induction of Transcriptional Repressor Protein YY1, Journal of Biological Chemistry, vol.286, issue.52, pp.44750-63, 2011.

A. Siomek, NF-?B Signaling Pathway and Free Radical Impact, Acta Biochim Pol, vol.59, issue.3, pp.323-354, 2012.

W. Song, G. Yuan, L. L. Wang, H. S. Chen, L. Y. Kim et al., A Receptor Kinase-like Protein Encoded by the Rice Disease Resistance Gene, Xa21, Science, vol.270, issue.5243, p.1804, 1995.

A. Sorrentino, N. Thakur, S. Grimsby, A. Marcusson, V. V. Bulow et al., The Type I TGF-? Receptor Engages TRAF6 to Activate TAK1 in a Receptor Kinase-Independent Manner, Nature Cell Biology, vol.10, issue.10, pp.1199-1207, 2008.

J. Stack, I. R. Haga, M. Schröder, N. W. Bartlett, G. Maloney et al., Vaccinia Virus Protein A46R Targets Multiple Toll-like-Interleukin-1 Receptor Adaptors and Contributes to Virulence, The Journal of Experimental Medicine, vol.201, issue.6, pp.1007-1025, 2005.

E. A. Stanford, A. Ramirez-cardenas, Z. Wang, O. Novikov, K. Alamoud et al.,

. Mizgerd, Role for the Aryl Hydrocarbon Receptor and Diverse Ligands in Oral Squamous Cell Carcinoma Migration and Tumorigenesis, Molecular Cancer Research, vol.14, issue.8, pp.696-706, 2016.

B. Stockinger, P. D. Meglio, M. Gialitakis, and J. H. Duarte, The Aryl Hydrocarbon Receptor: Multitasking in the Immune System, Annual Review of Immunology, vol.32, issue.1, pp.403-435, 2014.

D. Strodthoff, Z. Ma, T. Wirström, R. J. Strawbridge, F. J. Daniel et al., Toll-like Receptor 3 Influences Glucose Homeostasis and ?-Cell Insulin Secretion, Diabetes, vol.64, issue.10, pp.3425-3463, 2015.

X. Su, S. Li, M. Meng, W. Qian, W. Xie et al., TNF Receptor-Associated Factor-1 (TRAF1) Negatively Regulates Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-?? (TRIF), 2006.

M. Signaling, European Journal of Immunology, vol.36, issue.1, pp.199-206

K. Tabeta, P. Georgel, E. Janssen, X. Du, K. Hoebe et al., Toll-like Receptors 9 and 3 as Essential Components of Innate Immune Defense against Mouse Cytomegalovirus Infection, Proceedings of the National Academy of Sciences, 2004.

K. Tabeta, K. Hoebe, E. M. Janssen, X. Du, P. Georgel et al., The Unc93b1 Mutation 3d Disrupts Exogenous Antigen Presentation and Signaling via Toll-like Receptors 3, 7 and 9, Nature Immunology, vol.7, issue.2, pp.156-64, 2006.

K. Takahashi, T. Kawai, H. Kumar, S. Sato, S. Yonehara et al., Cutting Edge: Roles of Caspase-8 and Caspase-10 in Innate Immune Responses to Double-Stranded RNA, The Journal of Immunology, vol.176, issue.8, pp.4520-4544, 2006.

A. Takaoka, H. Yanai, S. Kondo, G. Duncan, H. Negishi et al., Integral Role of IRF-5 in the Gene Induction Programme Activated by Toll-like Receptors, Nature, vol.434, issue.7030, pp.243-292, 2005.

Y. Takeda, K. Kataoka, J. Yamagishi, S. Ogawa, T. Seya et al., A TLR3-Specific Adjuvant Relieves Innate Resistance to PD-L1 Blockade without Cytokine Toxicity in Tumor Vaccine Immunotherapy, Cell Reports, vol.19, issue.9, pp.1874-87, 2017.

. Takeshita, K. J. Fumihiko, K. Ishii, Y. Kobiyama, C. Kojima et al., TRAF4 Acts as a Silencer in TLR-Mediated Signaling through the Association with TRAF6 and TRIF, European Journal of Immunology, vol.35, issue.8, pp.2477-85, 2005.

M. Tatematsu, K. Funami, N. Ishii, T. Seya, C. Obuse et al., LRRC59 Regulates Trafficking of Nucleic Acid-Sensing TLRs from the Endoplasmic Reticulum via Association with UNC93B1, The Journal of Immunology, vol.195, issue.10, pp.4933-4975, 2015.

Y. Tian, S. Ke, M. S. Denison, A. B. Rabson, and M. A. Gallo, Ah Receptor and NF-?B Interactions, a Potential Mechanism for Dioxin Toxicity, Journal of Biological Chemistry, vol.274, issue.1, pp.510-525, 1999.

F. Toscano, Y. Estornes, F. Virard, A. Garcia-cattaneo, A. Pierrot et al., Cleaved/Associated TLR3 Represents the Primary Form of the Signaling Receptor, The Journal of Immunology, vol.190, issue.2, pp.764-73, 2013.

T. Touil, D. Fitzgerald, G. Zhang, A. Rostami, and B. Gran, Cutting Edge: TLR3 Stimulation Suppresses Experimental Autoimmune Encephalomyelitis by Inducing Endogenous IFN-?, The Journal of Immunology, vol.177, issue.11, pp.7505-7514, 2006.

S. Trapp, N. R. Derby, R. Singer, A. Shaw, V. G. Williams et al., Double-Stranded RNA Analog Poly(I:C) Inhibits Human Immunodeficiency Virus Amplification in Dendritic Cells via Type I Interferon-Mediated Activation of APOBEC3G, Journal of Virology, vol.83, issue.2, pp.884-95, 2009.

S. Tsai, J. A. Segovia, T. Chang, N. K. Shil, M. Swechha et al.,

J. B. Kannan and . Baseman, Regulation of TLR3 Activation by S100A9, The Journal of Immunology, vol.195, issue.9, pp.4426-4463, 2015.

Y. Tsai, . Ting, . Sui-yuan, C. N. Chang, C. Lee et al., Human TLR3 Recognizes Dengue Virus and Modulates Viral Replication in Vitro, Cellular Microbiology, vol.11, issue.4, pp.604-619, 2009.

P. C. Tumeh, C. L. Harview, J. H. Yearley, I. P. Shintaku, and E. J. ,

L. Taylor, B. Robert, and . Chmielowski, PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance, Nature, vol.515, issue.7528, pp.568-71, 2014.

S. Uematsu, S. Sato, M. Yamamoto, T. Hirotani, H. Kato et al., Interleukin-1 Receptor-Associated Kinase-1 Plays an Essential Role for Toll-like Receptor (TLR)7-and TLR9-Mediated Interferon-? Induction, The Journal of Experimental Medicine, vol.201, issue.6, pp.915-938, 2005.

R. J. Ulevitch, Therapeutics Targeting the Innate Immune System, Nature Reviews Immunology, vol.4, issue.7, pp.512-532, 2004.

C. Uyttenhove, L. Pilotte, I. Théate, V. Stroobant, D. Colau et al., Evidence for a Tumoral Immune Resistance Mechanism Based on Tryptophan Degradation by Indoleamine 2,3-Dioxygenase, Nature Medicine, vol.9, issue.10, pp.1269-74, 2003.

M. Veldhoen, K. Hirota, J. Christensen, A. O. Garra, and B. Stockinger, Natural Agonists for Aryl Hydrocarbon Receptor in Culture Medium Are Essential for Optimal Differentiation of Th17 T Cells, The Journal of Experimental Medicine, vol.206, issue.1, pp.43-49, 2009.

B. Verstak, C. J. Arnot, and N. J. Gay, An Alanine-to-Proline Mutation in the BB-Loop of TLR3 Toll/IL-1R Domain Switches Signalling Adaptor Specificity from TRIF to MyD88, The Journal of Immunology, vol.191, issue.12, pp.6101-6110, 2013.

. Vijay-kumar, H. Matam, J. Wu, . Aitken, L. Vasantha et al., Activation of Toll-like Receptor, vol.3, 2007.

, Protects against DSS-Induced Acute Colitis, Inflammatory Bowel Diseases, vol.13, issue.7, pp.856-64

M. Villa, M. Gialitakis, M. Tolaini, H. Ahlfors, C. J. Henderson et al., Aryl Hydrocarbon Receptor Is Required for Optimal B-cell Proliferation, The EMBO Journal, vol.36, issue.1, pp.116-144, 2017.

C. F. Vogel, E. Sciullo, W. Li, and P. Wong, RelB, a New Partner of Aryl Hydrocarbon Receptor-Mediated Transcription, Molecular Endocrinology, vol.21, issue.12, pp.2941-55, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00268250

C. F. Vogel, D. Wu, S. R. Goth, J. Baek, A. Lollies et al., Aryl Hydrocarbon Receptor Signaling Regulates NF-?B RelB Activation during Dendritic-Cell Differentiation, Immunology and Cell Biology, vol.91, issue.9, pp.568-75, 2013.

C. F. Vogel, E. M. Khan, S. Patrick, M. E. Leung, W. Gershwin et al.,

. Denison, Cross-Talk between Aryl Hydrocarbon Receptor and the Inflammatory Response: A Role for Nuclear Factor-?B, Journal of Biological Chemistry, vol.289, issue.3, pp.1866-75, 2014.

C. F. Vogel, E. Sciullo, and F. Matsumura, Involvement of RelB in Aryl Hydrocarbon Receptor-Mediated Induction of Chemokines, Biochemical and Biophysical Research Communications, vol.363, issue.3, pp.722-748, 2007.

B. A. Vorderstrasse, A. A. Bohn, and B. Lawrence, Examining the Relationship between Impaired Host Resistance and Altered Immune Function in Mice Treated with TCDD, Toxicology, vol.188, issue.1, pp.15-28, 2003.

B. A. Vorderstrasse and B. Lawrence, Protection against Lethal Challenge with Streptococcus Pneumoniae Is Conferred by Aryl Hydrocarbon Receptor Activation but Is Not Associated with an Enhanced Inflammatory Response, vol.74, pp.5679-86, 2006.

M. C. Walsh, K. Gregory, P. L. Kim, E. E. Maurizio, Y. Molnar et al., TRAF6 Autoubiquitination-Independent Activation of the NF?B and MAPK Pathways in Response to IL-1 and RANKL, PLoS ONE, vol.3, issue.12, 2008.

C. Wang, Y. Zhuang, Y. Zhang, Z. Luo, N. Gao et al., Toll-like Receptor 3 Agonist Complexed with Cationic Liposome Augments Vaccine-Elicited Antitumor Immunity by, pp.3-3, 2012.

, Signaling and Type I Interferons in Dendritic Cells, Vaccine, vol.30, issue.32, pp.4790-99

C. Wang, L. Deng, M. Hong, G. R. Akkaraju, J. Ichiro-inoue et al., TAK1 Is a Ubiquitin-Dependent Kinase of MKK and IKK, Nature, vol.412, issue.6844, pp.346-51, 2001.

H. Wang, Y. Wei, and D. Yu, Control of Lymphocyte Homeostasis and Effector Function by the Aryl Hydrocarbon Receptor, International Immunopharmacology, vol.28, issue.2, pp.818-842, 2015.

K. Wang, Y. Li, Y. Jiang, C. Dai, M. S. Patankar et al., An Endogenous Aryl Hydrocarbon Receptor Ligand Inhibits Proliferation and Migration of Human Ovarian Cancer Cells, Cancer Letters, vol.340, issue.1, 2013.

N. Wang, Y. Liang, S. Devaraj, J. Wang, S. M. Lemon et al., Toll-Like Receptor 3 Mediates Establishment of an Antiviral State against Hepatitis C Virus in Hepatoma Cells, Journal of Virology, vol.83, pp.9824-9858, 2009.

T. Wang, T. Town, L. Alexopoulou, J. F. Anderson, E. Fikrig et al., Toll-like Receptor 3 Mediates West Nile Virus Entry into the Brain Causing Lethal Encephalitis, Nature Medicine, vol.10, issue.12, pp.1366-73, 2004.

T. Wang, K. Birsoy, and N. W. Hughes,

E. S. Wei, D. M. Lander, and . Sabatini, Identification and Characterization of Essential Genes in the Human Genome, Science, vol.350, issue.6264, pp.1096-1101, 2015.

T. Wang, J. J. Wei, D. M. Sabatini, and E. S. Lander, Genetic Screens in Human Cells Using the CRISPR-Cas9 System, Science, vol.343, issue.6166, pp.80-84, 2014.

X. Wang, Z. Liu, P. Wang, S. Li, J. Zeng et al., Syncytin-1, an Endogenous Retroviral Protein, Triggers the Activation of CRP via TLR3 Signal Cascade in Glial Cells, Brain, Behavior, and Immunity, vol.67, pp.324-358, 2018.

Y. Wang, L. Liu, D. R. Davies, and D. M. Segal, Dimerization of Toll-like Receptor 3 (TLR3) Is Required for Ligand Binding, Journal of Biological Chemistry, vol.285, issue.47, pp.36836-36877, 2010.

I. E. Wartz, M. Karen, H. O'rourke, M. Zhou, L. Eby et al., De-Ubiquitination and Ubiquitin Ligase Domains of A20, 2004.

N. Downregulate and . Signalling, Nature, vol.430, issue.7000, pp.694-99

A. Westphal, W. Cheng, J. Yu, G. Grassl, M. Krautkrämer et al., Lysosomal Trafficking Regulator Lyst Links Membrane Trafficking to Toll-like Receptor-Mediated Inflammatory Responses, The Journal of Experimental Medicine, vol.214, issue.1, pp.227-271, 2017.

A. J. Whitmarsh and R. J. Davis, Transcription Factor AP-1 Regulation by Mitogen-Activated Protein Kinase Signal Transduction Pathways, Journal of Molecular Medicine, vol.74, issue.10, pp.589-607, 1996.

S. R. Wilson, A. D. Joshi, and C. Elferink, The Tumor Suppressor Kruppel-Like Factor 6 Is a Novel Aryl Hydrocarbon Receptor DNA Binding Partner, J Pharmacol Exp Ther, vol.345, issue.3, pp.419-448, 2013.

M. Wörnle, H. Schmid, B. Banas, M. Merkle, A. Henger et al., Novel Role of Toll-like Receptor 3 in Hepatitis C-Associated Glomerulonephritis, American Journal of Pathology, vol.168, issue.2, pp.370-85, 2006.

B. Wu and S. Hur, How RIG-I like Receptors Activate MAVS, Current Opinion in Virology, vol.12, pp.91-98, 2015.

Y. Xu, X. Tao, B. Shen, T. Horng, R. Medzhitov et al., Structural Basis for Signal Transduction by the Toll/Interleukin-1, 2000.

, Receptor Domains, Nature, vol.408, issue.6808, pp.111-126

M. Yamamoto, S. Sato, H. Hemmi, K. Hoshino, T. Kaisho et al., Role of Adaptor TRIF in the MyD88-Independent Toll-like Receptor Signaling Pathway, Science, vol.301, issue.5633, pp.640-683, 2003.

M. Yamashita, S. Chattopadhyay, P. Volker-fensterl, J. L. Saikia, G. C. Wetzel et al., Epidermal Growth Factor Receptor Is Essential for Toll-like Receptor 3 Signaling, Science Signaling, vol.5, issue.233, pp.50-50, 2012.

M. Yamashita, K. Fatyol, C. Jin, X. Wang, Z. Liu et al., TRAF6 Mediates Smad-Independent Activation of JNK and P38 by TGF-?, Molecular Cell, vol.31, issue.6, pp.918-942, 2008.

Y. Yang, S. Wang, Z. Huang, H. Zou, B. Yan et al., The RNA-Binding Protein Mex3B Is a Coreceptor of Toll-like Receptor 3 in Innate Antiviral Response, Cell Research, vol.26, issue.3, pp.288-303, 2016.

S. D. Yelamanchi, A. Hitendra-singh-solanki, L. Radhakrishnan, J. Balakrishnan, R. Advani et al., Constitutive Aryl Hydrocarbon Receptor Signaling Constrains Type I Interferon-Mediated Antiviral Innate Defense, Nature Immunology, vol.16, issue.1, pp.1-10, 2016.

M. Yoneyama and T. Fujita, Function of RIG-I-like Receptors in Antiviral Innate Immunity, Journal of Biological Chemistry, vol.282, issue.21, pp.15315-15333, 2007.

P. Yu, W. Lübben, H. Slomka, J. Gebler, M. Konert et al., Nucleic Acid-Sensing Toll-like Receptors Are Essential for the Control of Endogenous Retrovirus Viremia and ERV-Induced Tumors, Immunity, vol.37, issue.5, pp.867-79, 2012.

T. Zelante, R. G. Iannitti, C. Cunha, A. Deluca, G. Giovannini et al., Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22, Immunity, vol.39, issue.2, pp.372-85, 2013.

A. N. Zelensky and J. E. Gready, The C-Type Lectin-like Domain Superfamily, FEBS Journal, vol.272, issue.24, pp.6179-6217, 2005.

I. N. Zelko, J. Thomas, R. J. Mariani, and . Folz, Superoxide Dismutase Multigene Family: A Comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) Gene Structures, Evolution, and Expression, Free Radical Biology and Medicine, vol.33, issue.3, pp.337-386, 2002.

H. Zhang, K. Nichols, G. H. Thorgaard, and S. S. Ristow, Identification, Mapping, and Genomic Structural Analysis of an Immunoreceptor Tyrosine-Based Inhibition Motif-Bearing C-Type Lectin from Homozygous Clones of Rainbow Trout (Oncorhynchus Mykiss), Immunogenetics, vol.53, issue.9, pp.751-59, 2001.

J. Zhang, S. Liu, K. V. Rajendran, L. Sun, Y. Zhang et al., Pathogen Recognition Receptors in Channel Catfish: III Phylogeny and Expression Analysis of Toll-like Receptors, Developmental and Comparative Immunology, vol.40, issue.2, pp.185-94, 2013.

. Zhang, M. J. Qian, D. Lenardo, and . Baltimore, 30 Years of NF-?B: A Blossoming of Relevance to Human Pathobiology, Cell, vol.168, issue.1-2, pp.37-57, 2017.

S. Zhang, M. Ying, M. J. Herman, R. Ciancanelli, V. Pérez-de-diego et al., TLR3 Immunity to Infection in Mice and Humans, Current Opinion in Immunology, vol.25, issue.1, pp.19-33, 2013.

S. Zhang, E. Ying, S. Jouanguy, A. Ugolini, G. Smahi et al., TLR3 Deficiency in Patients with Herpes Simplex Encephalitis, Science, vol.317, issue.5844, pp.1522-1549, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00297308

S. Zhang, C. Qin, and S. H. Safe, Flavonoids as Aryl Hydrocarbon Receptor Agonists/Antagonists: Effects of Structure and Cell Context, Environmental Health Perspectives, vol.111, issue.16, pp.1877-82, 2003.

Y. Zhang, C. Liang, and . Dong, Cell Annexe HIV-2-infected macrophages produce and accumulate poorly infectious viral particles resulting in impaired transmission, 2005.

, Philippe Benaroch -philippe.benaroch@curie.fr Keywords: macrophages, vol.932

. Gueudin, It is still unclear whether the specific host immune response contributes to the low viral loads observed in HIV-2 infections. One of the important specific features of HIV-2 particles is that they contain Vpx, an accessory protein that is absent from HIV-1, which efficiently counteracts the restriction factor SAMHD1 by promoting its rapid degradation, SAMHD1 is a cytosolic enzyme, active in resting T cells and dendritic cells (DCs), that depletes the stock of cytosolic dNTPs via its deoxynucleoside triphosphate triphosphohydrolase activity, thus blocking reverse transcription (RT) of lentiviruses, 2000.

. Helft, Duvall et Gag is almost absent from the cytosol, but concentrated in VCCs in HIV-2 infected macrophages Gag staining in HIV-2-infected MDMs appeared to be almost exclusively concentrated in punctate structures and absent from the cytosol (Fig 3A). This was true for both WT R5 and WT X4 HIV-2 (Fig 3A). We confirmed this observation by quantifying cytosolic Gag in infected MDMs on confocal sections, Monocyte-derived DCs (MDDCs) are a widely-used model of in vitro derived DCs often claimed to correspond to inflammatory DCs, 2007.

, Analysis of the Gag signal distribution, shown in pseudocolors to visualize very low levels, confirmed that Gag was mostly absent from the cytosol in HIV-2-infected macrophages and concentrated in VCCs (Fig 4A, bottom row). This conclusion was further supported by quantification of the Gag signal performed on 3D reconstitutions of the HIV-infected MDMs (Fig 4B), We infected MDMs with HIV strains internally tagged with GFP to rule out that the differential distribution of HIV-1 and HIV-2 Gag was due to differential affinity of the H183-H12-5C mAb used for the cytosolic Gag forms, 2011.

. Lahouassa, , 2011.

, Altogether, these data suggest that HIV-2 Gag was more efficiently recruited to VCCs after synthesis in the cytosol

, Ultrastructural analysis of VCCs from HIV-2-infected macrophages We analyzed epon sections of HIV-2-infected macrophages by electron microscopy to further characterize their VCCs (Fig 5), VCCs from MDMs infected with HIV-1 R5 or HIV

, X4 or R5 exhibited highly similar morphologies. In all cases, we observed viral budding profiles at the VCC limiting membranes (see arrowheads), revealing the production of new virions

. Chu, The presence of mature (with the electron dense capsid visible inside) and immature (with the electron dense Gag precursor at the periphery and an electron lucent zone at the center) particles revealed that they were able to mature. Quantification of the viral density in the lumen of the BST-2 regulation in HIV-infected macrophages The low amounts and low infectivity of HIV-2 particles produced by MDMs may result from partial down-regulation of the restriction factor BST-2/Tetherin. BST-2 is an IFNstimulated gene (ISG) and localizes to the VCCs in infected MDMs, Moreover, the VCCs contained mature and immature viral particles in their lumen, 2007.

. R5gfp-g, or HIV-2DEnv X4GFP-G, as a negative control (Fig 8B). Infection by HIV-2DEnv

. X4gfp-g-;-decalf, induced the highest level of BST-2 expression relative to non-infected cells, showing that HIV-2 was detected by MDMs, probably as for HIV-1, contrast, total BST-2 levels were down-regulated in MDMs infected with Env-encoding HIV-2 (Fig 8B), 2017.

. Hauser, Thus, expression of Env from HIV-2 reduced total BST-2 levels in MDMs as previously shown for surface BST-2 levels in HeLa cells, 2010.

, We addressed the role of BST-2 more directly by providing VLP encoding Vpu from HIV-1 fused with mCherry to MDMs together with HIV-2. Vpu decreased BST-2 levels for both HIV-2 (Fig 9A and B)

, HIV-2 X4GFP-G-infected MDM transmission to MT4C5 cells increased upon addition of

, There was no transmission between HIV-2 R5GFP-G-infected MDMs and MT4C5 cells, independently of Vpu, confirming the lower infectious capacity of HIV-2R5 relative to that of the HIV-2X4 strain (Fig 9D). The addition of Vpu had no effect on the infectious capacity of the virions produced nor on their release (not shown). Overall, the low amounts and low infectivity of the HIV-2 produced by, Vpu, but remained lower than that of HIV-1 (Fig 9D)

, Differential CD4+ T-cell susceptibility to HIV-1 and HIV-2

, where all donors signed informed consent allowing the use of their blood for research purposes. Peripheral blood mononuclear cells (PBMC) were separated using Ficoll-Paque (GE Healthcare). Monocytes were isolated by CD14+ positive selection using magnetic microbeads (Miltenyi) and differentiated into macrophages for 7 days in RPMI (Gibco, Life Technologies) supplemented with 5% fetal calf serum (FCS; BioWest), 5% human serum AB (Sigma), The poor infectivity of HIV-2 produced by MDMs could be due to the intrinsic features of HIV-2, reducing their infectious capacity, as well as differing susceptibility of the T cells to HIV-1 and HIV-2

. Immunotools, CD4+ T cells were isolated from PBMC by CD4+ were cultured in RPMI 1640 medium, GlutaMAX complemented with FBS 10%

, On day 2 of culture, cells were washed and additionally cultured with IL-2. HEK293T cells were cultured in DMEM medium, GlutaMAX (Thermo Fisher 61965-026) complemented with FBS 10% (Thermo Fisher 10270-106) and Penicillin/Streptomycin. GHOSTX4R5 and TZM-bl cells were cultured in DMEM medium, GlutaMAX complemented with FBS 10% and Penicillin/Streptomycin. MT4C5 cells were cultured in RPMI medium, GlutaMAX complemented with FBS 10% and Penicillin/Streptomycin, Streptomycin at 106 cells/mL in the presence of 5µg/mL PHA

H. Plasmids, Institut Pasteur, pp.4-7

, AD8 (Freed and Martin, 1995) derived from of NL4-3 with BaL env, HIV-2 ROD9 and HIV-2

, The GFP viruses all harbor GFP instead of Nef, JK( both gift from N. Manel), pp.1-4

. Silvin, HIV-1iGFP (Hübner et al., 2007) and HIV-2 ROD9GagiGFP was generated from HIV-2 ROD9GagiGFP?Env (N. Manel) with EGFP sequence between CA and MA and Gag from this plasmid was, X4GFP (N. Manel), HIV-2 ROD9GFP and HIV-2 ROD9?EnvGFP (both kindly provided by O.T. Keppler), 2017.

(. S. Lai and . Saragosti, Saint Louis Hospital)). The Vpu-Cherry was generated by introducing Cherry in the place of GFP. Vpu-Cherry was cloned to a pDONOR vector and introduced in an adapted to gateway technology version of pCDH-CMV-MCS-EF1-Puro, p.3

, plasmid for Vpx, psPAX2 for lentiviral encapsidation and pDM2G for VSV-G pseudotyping. pSVR?NBDM (Manel) was used to encapsidate HIV-2ROD9iGFP for productive infection

, Mirus Bio) per well. For non-pseudotyped virus 3µg of HIV plasmid were used. For VSV-G pseudotyped virus 0.4µg pDM2G and 2.6µg HIV plasmid were used. For Vpx and Vpu-Cherry lentivectors 0.4µg pDM2G, 1 µg psPAX and 1.6µg Vpx or Vpu-Cherry plasmid were used. For HIV-2*GagiGFP 0.4µg pDM2G, 1 µg pSVR?NBDM and 1.6µg pROD9 iGFP plasmid were used. 16h after transfection, media was removed, and fresh RPMI medium was added. Viral supernatants were harvested 36h later, filtered at 0.45µM, used freshly or aliquoted and frozen at -80°C, HIV-1 and lentiviral production and titration HIV Viral particles were produced by transfection of HEK293T cells in 6-well plates with 3µg DNA and 8µl TransIT-293, 2010.

, Cells were fixed for 20 min in 4% paraformaldehyde (PFA), washed in PBS, and when stained, permeabilized for 30 min in PBS plus 0.2% BSA and 0.05% saponin. Infection was detected by GFP coding viruses and BST2 was detected using a coupled BST2-PE antibody (eBioscience) or IgG1-PE (eBioscience) as a control and analyzed on a FACS Verse (BD). For Vpu-Cherry expressing cells CYTOFLEX cytometer (Beckman Coulter) was used. Recovery of intracellular virus Macrophages in a 24-well plate were washed twice in PBS after supernatant collection and 400µL of media were added and put at -80ºC. After couple of hours the plate was thaw and medium was collected and centrifuged at 15000rpm 1h30 at 4ºC. The pellet was resuspended in 200µL. 100 µL were used for RNA extraction and 100 µL were diluted with 300 µL of PBS for titration into TZM-bl. RNA isolation, reverse transcription, Drugs Azidothymidine (AZT; Sigma) was used at 25µM final concentration and added at time of co-culture with T cells as control or after 24h of co-culture to avoid T-to-T cell transmission

, HIV-2 X4GFP, HIV-2 R5GFP at different MOIs, washed extensively 3 days later, and received 7.5 × 105 CD4+ T lymphocytes/ well in the 96-well plate. The macrophages on 24-well plate were harvested for %of infected cells. The CD4+ T lymphocytes were purified by negative selection (Miltenyi Biotec) from heterologous PBMCs that had been activated 48, For Macrophage-to-T cell transmission, macrophages in 96-well plate and 24-well plate were infected with VSV-G-pseudotyped HIV-1 X4GFP

, 30 U/ml IL2. 25 µM AZT was added at 0 h (as a negative control) or 24 h after the beginning of the co-cultures, p.4

, PFA, permeabilized, stained with PE-Cy7 anti-CD3 (BD), and analyzed on a FACS Verse (BD)

, For Macrophage-to-MT4C5 cell transmission, macrophages were infected 96-well plate and 24-well plate with VSV-G-pseudotyped HIV-1 X4GFP, HIV-2 X4GFP, p.5

, HIV-2?Env X4GFP at MOI 1.5, washed extensively 8 h later and at day 3, when received

, The macrophages on 24-well plate were harvested for % of infected cells, and supernatant was harvested for gRNA and infectivity quantification. 25 µM AZT was added at 24 h after the beginning of the co-cultures, Data were analyzed using FlowJo v10 and Prism v7 for Mac

, Statistics Data were analyzed using using Prism v7 for Mac (GraphPad)

, On Figures 3, 4 and 5 P values were calculated using Kruskal-Wallis multiple comparison non-parametric test

*. ***p<0.001, ;. ***p<0, H. Norrgren, Z. Da-silva, A. Biague et al., For experiments for which n was lower than 4 or uneven numbers on conditions statistics were not included due to lack of power. References Andersson, S

C. Christopherson, G. Biberfeld, A. , and J. , Plasma viral load in HIV-1 and HIV-2 singly and dually infected individuals in Guinea-Bissau, West Africa: significantly lower plasma virus set point in HIV-2 infection than in HIV-1 infection, Arch. Intern. Med, vol.160, pp.3286-3293, 2000.

M. Araínga, B. Edagwa, R. L. Mosley, L. Y. Poluektova, S. Gorantla et al.,

H. E. , A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy, Retrovirology, vol.14, pp.1-13, 2017.

P. Benaroch, E. Billard, R. Gaudin, M. Schindler, J. et al., HIV-1 assembly in macrophages, Retrovirology, vol.7, p.29, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00663901

A. E. Bennett, K. Narayan, D. Shi, L. M. Hartnell, K. Gousset et al.,

T. S. Yoo, D. Bliss, and E. O. Freed, Ion-abrasion scanning electron microscopy reveals surface-connected tubular conduits in HIV-infected macrophages, PLoS Pathog, vol.5, p.1000591, 2009.

S. Berre, R. Gaudin, B. Cunha-de-alencar, M. Desdouits, M. Chabaud et al.,

M. Rabaza-gairi, F. X. Gobert, M. Jouve, and P. Benaroch, CD36-specific antibodies block release of HIV-1 from infected primary macrophages and its transmission to T cells, Journal of Experimental Medicine, vol.210, pp.2523-2538, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02338302

J. Bhattacharya, P. J. Peters, and P. R. Clapham, Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles, J. Virol, vol.78, pp.5500-5506, 2004.

S. J. Bissel and C. A. Wiley, Human immunodeficiency virus infection of the brain: pitfalls in evaluating infected/affected cell populations, Brain Pathol, vol.14, pp.97-108, 2004.

M. A. Chattergoon, R. Latanich, J. Quinn, M. E. Winter, R. W. Buckheit et al.,

D. Pardoll and A. L. Cox, HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon, PLoS Pathog, vol.10, p.1004082, 2014.

L. Chaveau, I. Puigdomènech, D. Bruni, B. Visseaux, D. Descamps et al.,

, HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells

E. Chertova, O. Chertov, L. V. Coren, J. D. Roser, C. M. Trubey et al., Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages, J. Virol, vol.80, pp.9039-9052, 2006.

H. Chu, J. Wang, M. Qi, J. Yoon, X. Chen et al.,

P. Spearman, Tetherin/BST-2 Is Essential for the Formation of the Intracellular Virus-Containing Compartment in HIV-Infected Macrophages, Cell Host Microbe, vol.12, pp.360-372, 2012.

K. L. Clayton, J. V. Garcia, J. E. Clements, and B. D. Walker, HIV Infection of Macrophages: Implications for Pathogenesis and Cure, Pathog Immun, vol.2, pp.179-192, 2017.

S. K. Cribbs, J. Lennox, A. M. Caliendo, L. A. Brown, and D. M. Guidot, , 2015.

, HIV-1-Infected Individuals on Highly Active Antiretroviral Therapy Harbor HIV-1 in Their Alveolar Macrophages, vol.31, pp.64-70

A. Cribier, B. Descours, A. L. Valadão, N. Laguette, and M. Benkirane, , 2013.

, Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV

, CellReports, vol.3, pp.1036-1043

A. L. Cunningham, H. Naif, N. Saksena, G. Lynch, J. Chang et al., HIV infection of macrophages and pathogenesis of AIDS dementia complex: interaction of the host cell and viral genotype, J. Leukoc. Biol, vol.62, pp.117-125, 1997.

F. Damond, M. Gueudin, S. Pueyo, I. Farfara, D. L. Robertson et al., Plasma RNA viral load in human immunodeficiency virus type 2 subtype A and subtype B infections, J. Clin. Microbiol, vol.40, pp.3654-3659, 2002.

J. Decalf, M. Desdouits, V. Rodrigues, F. Gobert, M. Gentili et al.,

C. Chamontin, M. Mougel, B. Cunha-de-alencar, and P. Benaroch, Sensing of HIV, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02141197

, Entry Triggers a Type I Interferon Response in Human Primary Macrophages, J. Virol, vol.91, pp.147-164

S. G. Deeks, R. Tracy, and D. C. Douek, Systemic effects of inflammation on health during chronic HIV infection, Immunity, vol.39, pp.633-645, 2013.

M. Deneka, A. Pelchen-matthews, R. Byland, E. Ruiz-mateos, and M. Marsh, In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53, J. Cell Biol, vol.177, pp.329-341, 2007.

B. Descours, A. Cribier, C. Chable-bessia, D. Ayinde, G. Rice et al.,

O. Schwartz, N. Laguette, and M. Benkirane, SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells, vol.9, p.87, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00750469

M. G. Duvall, K. Loré, H. Blaak, D. A. Ambrozak, W. C. Adams et al.,

C. Geldmacher, J. R. Mascola, A. J. Mcmichael, and A. Jaye, Dendritic cells are less susceptible to human immunodeficiency virus type 2 (HIV-2) infection than to HIV-1 infection, 2007.

, J. Virol, vol.81, pp.13486-13498

M. G. Duvall, M. L. Precopio, D. A. Ambrozak, A. Jaye, A. J. Mcmichael et al.,

M. Roederer, S. L. Rowland-jones, and R. A. Koup, Polyfunctional T cell responses are a hallmark of HIV-2 infection, Eur. J. Immunol, vol.38, pp.350-363, 2008.

S. M. Fernandes, A. R. Pires, C. Ferreira, R. Tendeiro, L. Correia et al., Gut disruption in HIV-2 infection despite reduced viremia, Aids, vol.28, pp.290-292, 2014.

E. O. Freed and M. A. Martin, The role of human immunodeficiency virus type 1, 1995.

, envelope glycoproteins in virus infection, Journal of Biological Chemistry, vol.270, pp.23883-23886

R. Gaudin, S. Berre, B. Cunha-de-alencar, J. Decalf, M. Schindler et al.,

M. Jouve and P. Benaroch, Dynamics of HIV-Containing Compartments in, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01393455

, Macrophages Reveal Sequestration of Virions and Transient Surface Connections, PLoS ONE, vol.8, p.69450

K. Gousset, S. D. Ablan, L. V. Coren, A. Ono, F. Soheilian et al., Real-time visualization of HIV-1 GAG trafficking in infected macrophages, PLoS Pathog, vol.4, 2008.

F. Graziano, M. Desdouits, L. Garzetti, P. Podini, M. Alfano et al., Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages, Proc. Natl. Acad. Sci. U.S.a, vol.112, pp.3265-3273, 2015.

M. Gueudin, F. Damond, J. Braun, A. Taïeb, V. Lemée et al.,

S. Matheron, F. Brun-vézinet, and F. Simon, Differences in proviral DNA load between HIV-1-and HIV-2-infected patients, Aids, vol.22, pp.211-215, 2008.

F. Gyorkey, J. L. Melnick, J. G. Sinkovics, and P. Gyorkey, Retrovirus resembling HTLV in macrophages of patients with AIDS, Lancet, vol.1, p.106, 1985.

H. Hauser, L. A. Lopez, S. J. Yang, and J. E. Oldenburg, Research HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment, 2010.

J. Helft, J. P. Böttcher, P. Chakravarty, S. Zelenay, J. Huotari et al., Alive but Confused: Heterogeneity of CD11c(+) MHC Class II(+) Cells in GM-CSF Mouse Bone Marrow Cultures, Immunity, vol.44, pp.3-4, 2016.

J. A. Hollenbaugh, C. Montero, R. F. Schinazi, J. Munger, K. et al., Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages, Virology, vol.491, pp.106-114, 2016.

J. B. Honeycutt, W. O. Thayer, C. E. Baker, R. M. Ribeiro, S. M. Lada et al., HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy, Nature Medicine, vol.23, pp.638-643, 2017.

J. B. Honeycutt, A. Wahl, C. Baker, R. A. Spagnuolo, J. Foster et al.,

S. Wietgrefe, C. Caro-vegas, V. Madden, and G. Sharpe, Macrophages sustain HIV replication in vivo independently of T cells, J. Clin. Invest, pp.1-14, 2016.

L. Houzet, Z. Morichaud, and M. Mougel, Fully-spliced HIV-1 RNAs are reverse transcribed with similar efficiencies as the genomic RNA in virions and cells, but more efficiently in AZT-treated cells, Retrovirology, vol.4, p.30, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00258943

K. Hrecka, C. Hao, M. Gierszewska, S. K. Swanson, M. Kesik-brodacka et al.,

L. Florens, M. P. Washburn, and J. Skowronski, Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein, Nature, vol.474, pp.658-661, 2011.

W. Hübner, P. Chen, A. Del-portillo, Y. Liu, R. E. Gordon et al., , 2007.

, Sequence of human immunodeficiency virus type 1 (HIV-1) Gag localization and oligomerization monitored with live confocal imaging of a replication-competent, fluorescently tagged HIV-1, J. Virol, vol.81, pp.12596-12607

T. Igarashi, C. R. Brown, Y. Endo, A. Buckler-white, R. Plishka et al.,

V. Hirsch and M. A. Martin, Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans, Pnas, vol.98, pp.658-663, 2001.

A. Jarry, A. Cortez, E. René, F. Muzeau, and N. Brousse, Infected cells and immune cells in the gastrointestinal tract of AIDS patients. An immunohistochemical study of 127 cases, Histopathology, vol.16, pp.133-140, 1990.

M. Jouve, N. Sol-foulon, S. Watson, O. Schwartz, and P. Benaroch, HIV-1 buds and accumulates in "nonacidic" endosomes of macrophages, Cell Host Microbe, vol.2, pp.85-95, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00293133

S. Koenig, H. E. Gendelman, J. M. Orenstein, M. C. Dal-canto, and G. H. Pezeshkpour,

M. Yungbluth, F. Janotta, A. Aksamit, M. A. Martin, and A. S. Fauci, Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science, vol.233, pp.1089-1093, 1986.

R. Kong, H. Li, F. Bibollet-ruche, J. M. Decker, N. N. Zheng et al., Broad and potent neutralizing antibody responses elicited in natural HIV-2 infection, J. Virol, vol.86, pp.947-960, 2012.

H. Koppensteiner, R. Brack-werner, M. Schindler, H. Lahouassa, W. Daddacha et al., SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates, Retrovirology, vol.9, pp.223-228, 2012.

L. Tortorec, A. Neil, and S. J. , Antagonism to and Intracellular Sequestration of, 2009.

, Human Tetherin by the Human Immunodeficiency Virus Type 2 Envelope Glycoprotein, J. Virol, vol.83, pp.11966-11978

L. E. Ludlow, J. Zhou, E. Tippett, W. Cheng, W. Hasang et al.,

A. Jaworowski, HIV-1 Inhibits Phagocytosis and Inflammatory Cytokine Responses of Human Monocyte-Derived Macrophages to P. falciparum Infected Erythrocytes, PLoS ONE, vol.7, p.32102, 2012.

S. Makvandi-nejad, R. , and S. , How does the humoral response to HIV-2 infection differ from HIV-1 and can this explain the distinct natural history of infection with these two human retroviruses?, Immunol. Lett, vol.163, pp.69-75, 2015.

N. Manel, B. Hogstad, Y. Wang, D. E. Levy, D. Unutmaz et al., A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells, Nature, vol.467, pp.214-217, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02193582

D. Marchant, S. J. Neil, and A. Mcknight, Human immunodeficiency virus types 1 and 2 have different replication kinetics in human primary macrophage culture, J. Gen. Virol, vol.87, pp.411-418, 2006.

R. Marlink, P. Kanki, I. Thior, K. Travers, G. Eisen et al.,

M. C. Dia and E. H. Gueye, Reduced rate of disease development after HIV-2 infection as compared to HIV-1, Science, vol.265, pp.1587-1590, 1994.

E. Martinez-steele, A. A. Awasana, T. Corrah, S. Sabally, M. Van-der-sande et al.,

T. Togun, R. Sarge-njie, S. J. Mcconkey, and H. Whittle, Is HIV-2-induced AIDS different from HIV-1-associated AIDS? Data from a West African clinic, Aids, vol.21, pp.317-324, 2007.

J. Mazzolini, F. Herit, J. Bouchet, A. Benmerah, S. Benichou et al., Inhibition of phagocytosis in HIV-1-infected macrophages relies on Nef-dependent alteration of focal delivery of recycling compartments, Blood, vol.115, pp.4226-4236, 2010.

N. Nasr, A. A. Alshehri, T. K. Wright, M. Shahid, B. M. Heiner et al., Mechanism of Interferon Stimulated Gene Induction in HIV-1 Infected Macrophages, J. Virol. JVI, pp.744-761, 2017.

S. J. Neil, V. Sandrin, W. I. Sundquist, and P. D. Bieniasz, An Interferon-?-Induced Tethering Mechanism Inhibits HIV-1 and Ebola Virus Particle Release but Is Counteracted by the HIV-1 Vpu Protein, Cell Host Microbe, vol.2, pp.193-203, 2007.

S. J. Neil, T. Zang, and P. D. Bieniasz, Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu, Nature, vol.451, pp.425-430, 2008.

S. Nyamweya, A. Hegedus, A. Jaye, S. Rowland-jones, K. L. Flanagan et al.,

D. C. , Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis, Rev. Med. Virol, vol.23, pp.221-240, 2013.

A. Pelchen-matthews, S. Giese, P. Mlcochova, J. Turner, and M. Marsh, , p.2, 2012.

A. Pelchen-matthews, B. Kramer, and M. Marsh, Infectious HIV-1 assembles in late endosomes in primary macrophages, J. Cell Biol, vol.162, pp.443-455, 2003.

A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, vol.271, pp.1582-1586, 1996.

R. J. Pomerantz, . La-monte, S. M. De, S. P. Donegan, T. R. Rota et al., Human immunodeficiency virus (HIV) infection of the uterine cervix, 1988.

, Ann. Intern. Med, vol.108, pp.321-327

S. J. Popper, A. D. Sarr, A. Guèye-ndiaye, S. Mboup, M. E. Essex et al., Low plasma human immunodeficiency virus type 2 viral load is independent of proviral load: low virus production in vivo, J. Virol, vol.74, pp.1554-1557, 2000.

S. L. Rowland-jones and H. C. Whittle, Out of Africa: what can we learn from HIV-2 about protective immunity to HIV-1?, Nat Immunol, vol.8, pp.329-331, 2007.

N. Ruffin, V. Brezar, D. Ayinde, C. Lefebvre, J. Schulze-zur-wiesch et al.,

M. Bockhorn, O. Schwartz, H. Hocini, and J. D. Lelievre, Low SAMHD1 expression following T-cell activation and proliferation renders CD4+ T cells susceptible to HIV-1, Aids, vol.29, pp.519-530, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01372413

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

H. Schuitemaker, N. A. Kootstra, R. E. De-goede, F. De-wolf, and F. Miedema,

M. Tersmette, Monocytotropic human immunodeficiency virus type 1 (HIV-1) variants detectable in all stages of HIV-1 infection lack T-cell line tropism and syncytium-inducing ability in primary T-cell culture, J. Virol, vol.65, pp.356-363, 1991.

P. See, C. Dutertre, J. Chen, P. Günther, N. Mcgovern et al.,

M. Beyer, K. Händler, and K. Duan, Mapping the human DC lineage through the integration of high-dimensional techniques, Science, vol.356, p.3009, 2017.

A. Silvin, C. I. Yu, X. Lahaye, F. Imperatore, J. Brault et al.,

W. Kwan, C. Conrad, and M. Maurin, Constitutive resistance to viral infection in human CD141(+) dendritic cells, Science Immunology, vol.2, p.8071, 2017.

R. S. Soares, R. Tendeiro, R. B. Foxall, A. P. Baptista, R. Cavaleiro et al.,

R. Camacho, E. Valadas, M. Doroana, and M. Lucas, Cell-associated viral burden provides evidence of ongoing viral replication in aviremic HIV-2-infected patients, J. Virol, vol.85, pp.2429-2438, 2011.

N. Sunseri, M. O'brien, N. Bhardwaj, and N. R. Landau, , 2011.

, Immunodeficiency Virus Type 1 Modified To Package Simian Immunodeficiency Virus Vpx Efficiently Infects Macrophages and Dendritic Cells, J. Virol, vol.85, pp.6263-6274

S. Swingler, A. M. Mann, J. Zhou, C. Swingler, and M. Stevenson, Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein, PLoS Pathog, vol.3, pp.1281-1290, 2007.

C. Vérollet, S. Souriant, E. Bonnaud, P. Jolicoeur, B. Raynaud-messina et al.,

I. Fourquaux, A. Imle, S. Benichou, and O. T. Fackler, HIV-1 reprograms the migration of macrophages, Blood, vol.125, pp.1611-1622, 2014.

A. Villani, R. Satija, G. Reynolds, S. Sarkizova, K. Shekhar et al., Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, Science, vol.356, p.4573, 2017.

, CD3+GFP+ T cells after co-culture with infected MDM (see in C), n=5 donors from 3 independent experiments with bars representing the mean

, Viral release at 3 dpi in the supernatant of infected MDM evaluated by RT-qPCR. (F) Infectivity of the released viruses was calculated as follows: rate of infection/ HIV RNA copies. (G) Infectivity normalized to HIV-1 for each donor

, EM micrograph of an epon section in the vicinity of HIV-2 X4 VSV-G-infected MDM. Released particles appear tethered. Arrowheads point at visible connections between viral particles. (B) Flow cytometry overlay histograms of BST-2 expression by MDMs infected or not with the indicated HIV. HIV-1 X4GFP-infected MDMs were used as a positive control and HIV-2 ROD9?EnvGFP-infected MDMs as a negative one, Figure 8 BST-2 expression in HIV-infected macrophages. (A)