J. Frery, A. Habrard, M. Sebban, O. Caelen, and L. He-guelton,

, Efficient top rank optimization with gradient boosting for supervised anomaly detection, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.20-35, 2017.

J. Frery, A. Habrard, M. Sebban, O. Caelen, and L. He-guelton,

, Online non-linear gradient boosting in multi-latent spaces, International Symposium on Intelligent Data Analysis, pp.99-110, 2018.

, Optimisation du top rank avec le gradient boosting pour la détection d'anomalies, Conférence francophone sur l'Apprentissage Automatique (CAp-17), 2017.

A. Patent-jordan-frery, M. Habrard, O. Sebban, L. Caelen, and . He-guelton,

J. Frery, A. Habrard, M. Sebban, and L. He-guelton, Non-linear gradient boosting for class-imbalance learning, Second International Workshop on Learning with Imbalanced Domains: Theory and Applications, pp.38-51, 2018.

A. Bibliography and . Abdallah, Mohd Aizaini Maarof, and Anazida Zainal, Journal of Network and Computer Applications, vol.68, p.47, 2016.

S. Abney, R. E. Schapire, and Y. Singer, Boosting applied to tagging and pp attachment, Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, p.16, 1999.

C. Charu and . Aggarwal, Outlier analysis, Data mining, p.44, 2015.

M. Ahmed, A. Naser-mahmood, and J. Hu, A survey of network anomaly detection techniques, Journal of Network and Computer Applications, vol.60, p.44, 2016.

R. Akbani, S. Kwek, and N. Japkowicz, Applying support vector machines to imbalanced datasets, European conference on machine learning, p.51, 2004.

L. Akoglu, H. Tong, and D. Koutra, Graph based anomaly detection and description: a survey, Data mining and knowledge discovery, vol.29, issue.3, p.44, 2015.

. Naomi-s-altman, An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician, vol.46, issue.3, p.36, 1992.

A. Badhe, Click fraud detection in mobile ads served in programmatic inventory, Neural Networks & Machine Learning, vol.1, p.47, 2017.

A. Correa-bahnsen, D. Aouada, A. Stojanovic, and B. Ottersten, Feature engineering strategies for credit card fraud detection, Expert Systems with Applications, vol.51, p.52, 2016.

J. Carlos, C. M. Becker, P. Christoudias, and . Fua, Non-linear domain adaptation with boosting, Advances in Neural Information Processing Systems, pp.485-493, 2013.

Y. Bentz and D. Merunka, Neural networks and the multinomial logit for brand choice modelling: a hybrid approach, Journal of Forecasting, vol.19, issue.3, p.125, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01822273

A. Beygelzimer, E. Hazan, S. Kale, and H. Luo, Online gradient boosting, Advances in Neural Information Processing Systems, vol.92, p.106, 2015.

A. Beygelzimer, S. Kale, and H. Luo, Optimal and adaptive algorithms for online boosting, ICML, vol.105, p.106, 1994.

A. Blum, A. Kalai, and J. Langford, Beating the hold-out: Bounds for k-fold and progressive cross-validation, COLT, p.105, 1999.

D. Böhning, Multinomial logistic regression algorithm, Annals of the institute of Statistical Mathematics, vol.44, p.125, 1992.

J. Richard, D. Bolton, and . Hand, Statistical fraud detection: A review. Statistical science, p.47, 2002.

F. Bonchi, F. Giannotti, G. Mainetto, and D. Pedreschi, A classification-based methodology for planning audit strategies in fraud detection, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, p.47, 1999.

J. Brabec and L. Machlica, Bad practices in evaluation methodology relevant to class-imbalanced problems. Critiquing and Correcting Trends in, Machine Learning NeurIPS, p.69, 2018.

L. Breiman, Classification and regression trees, vol.13, p.35, 1984.

L. Breiman, Bagging predictors, Machine learning, vol.24, issue.2, pp.123-140, 1996.

L. Breiman, Arcing the edge, Statistics Department, vol.19, p.23, 1997.

L. Breiman, Random forests. Machine learning, vol.45, p.74, 2001.

L. Breiman, H. Jerome, and . Friedman, Estimating optimal transformations for multiple regression and correlation, Journal of the American statistical Association, vol.80, issue.391, p.21, 1985.

C. Burges, T. Shaked, and E. Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender, ICML, p.75, 2005.

C. J. Burges, R. Ragno, and Q. V. Le, Learning to rank with nonsmooth cost functions, NIPS, p.78, 2007.

J. C. Christopher and . Burges, From ranknet to lambdarank to lambdamart: An overview. Learning, vol.11, p.79, 2010.

B. Cai, L. Huang, and M. Xie, Bayesian networks in fault diagnosis, IEEE Transactions on Industrial Informatics, vol.13, issue.5, p.46, 2017.

F. James and . Carney, Check fraud detection techniques using encrypted payee information, US Patent, vol.6, p.47, 2001.

X. Carreras and L. Marquez, Boosting trees for anti-spam email filtering, p.16, 2001.

X. Carreras, L. Màrquez, and L. Padró, A simple named entity extractor using adaboost, Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003, vol.4, p.16, 2003.

W. Philip-k-chan, A. L. Fan, S. J. Prodromidis, and . Stolfo, Distributed data mining in credit card fraud detection, IEEE Intelligent Systems and Their Applications, vol.14, issue.6, p.51, 1999.

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM computing surveys (CSUR), vol.41, issue.3, p.44, 2009.

O. Chapelle and Y. Chang, Yahoo! learning to rank challenge overview, vol.74, p.78, 2011.

O. Chapelle, P. Shivaswamy, S. Vadrevu, K. Weinberger, Y. Zhang et al., Boosted multi-task learning, Machine learning, vol.85, issue.1-2, p.93, 2011.

V. Nitesh, K. W. Chawla, L. O. Bowyer, W. P. Hall, and . Kegelmeyer, SMOTE: synthetic minority over-sampling technique, JAIR, vol.36, p.74, 2002.

V. Nitesh, A. Chawla, L. O. Lazarevic, K. W. Hall, and . Bowyer, Smoteboost: Improving prediction of the minority class in boosting, ECML PKDD, p.74, 2003.

V. Nitesh, N. Chawla, A. Japkowicz, and . Kotcz, Special issue on learning from imbalanced data sets, ACM Sigkdd Explorations Newsletter, vol.6, issue.1, p.30, 2004.

C. Chen, A. Liaw, and L. Breiman, Using random forest to learn imbalanced data, vol.110, p.39, 2004.

M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, Disease prediction by machine learning over big data from healthcare communities, IEEE Access, vol.5, p.46, 2017.

H. Shang-tse-chen, C. Lin, and . Lu, An online boosting algorithm with theoretical justifications, ICML, vol.92, p.94, 2012.

T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, SIGKDD, p.27, 2016.

D. Chicco, Ten quick tips for machine learning in computational biology, BioData mining, vol.10, issue.1, p.32, 2017.

M. Collins, R. E. Schapire, and Y. Singer, Logistic regression, adaboost and bregman distances, Machine Learning, vol.48, p.22, 2002.

C. Cortes and V. Vapnik, Support vector machine, Machine learning, vol.20, issue.3, p.12, 1995.

C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang, Adanet: Adaptive structural learning of artificial neural networks, Proceedings of the 34th International Conference on Machine Learning, vol.70, p.111, 2017.

A. Dal and P. , Adaptive machine learning for credit card fraud detection, p.47, 2015.

A. Dal-pozzolo, O. Caelen, S. Waterschoot, and G. Bontempi, Racing for unbalanced methods selection, International Conference on Intelligent Data Engineering and Automated Learning, vol.51, p.61, 2013.

A. Dal-pozzolo, O. Caelen, Y. Borgne, S. Waterschoot, and G. Bontempi, Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications, vol.41, issue.10, p.51, 2014.

A. Dal-pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi, Credit card fraud detection and concept-drift adaptation with delayed supervised information, 2015 international joint conference on Neural networks (IJCNN), p.50, 2015.

A. Dal-pozzolo, O. Caelen, and G. Bontempi, When is undersampling effective in unbalanced classification tasks, ECML PKDD, vol.63, p.74, 2015.

A. Dal-pozzolo, O. Caelen, A. Reid, G. Johnson, and . Bontempi, Calibrating probability with undersampling for unbalanced classification, SSCI, vol.38, p.74, 2015.

A. Dal-pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi, Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems, vol.29, p.61, 2018.

J. Davis and M. Goadrich, The relationship between precision-recall and roc curves, p.69, 2006.

G. Thomas and . Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine learning, vol.40, issue.2, p.17, 2000.

H. Q. Chris, I. Ding, and . Dubchak, Multi-class protein fold recognition using support vector machines and neural networks, Bioinformatics, vol.17, issue.4, p.125, 2001.

H. Drucker and C. Cortes, Boosting decision trees, Advances in neural information processing systems, p.19, 1996.

W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, Adacost: Misclassification cost-sensitive boosting, ICML, vol.16, p.74, 1999.

H. Farvaresh and M. Sepehri, A data mining framework for detecting subscription fraud in telecommunication, Engineering Applications of Artificial Intelligence, vol.24, issue.1, p.47, 2011.

P. Flach and M. Kull, Precision-recall-gain curves: Pr analysis done right, Advances in Neural Information Processing Systems, vol.69, p.90, 2015.

J. Frery, A. Habrard, M. Sebban, O. Caelen, and L. He-guelton, Optimisation du top rank avec le gradient boosting pour la détection d'anomalies, Conférence francophone sur l'Apprentissage Automatique (CAp-17), 2017.

J. Frery, A. Habrard, M. Sebban, O. Caelen, and L. He-guelton, Efficient top rank optimization with gradient boosting for supervised anomaly detection, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.20-35, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613561

J. Frery, A. Habrard, M. Sebban, O. Caelen, and L. He-guelton, Online non-linear gradient boosting in multi-latent spaces, ternational Symposium on Intelligent Data Analysis, pp.99-110, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01889994

J. Frery, A. Habrard, M. Sebban, O. Caelen, and L. He-guelton, Détection par apprentissage automatique d'anomalies dans un ensemble de transactions bancaires par optimisation de la précision moyenne, 2018.

J. Frery, A. Habrard, M. Sebban, and L. He-guelton, Non-linear gradient boosting for class-imbalance learning, Second International Workshop on Learning with Imbalanced Domains: Theory and Applications, pp.38-51, 2018.

Y. Freund, An adaptive version of the boost by majority algorithm, Machine learning, vol.43, issue.3, p.17, 2001.

Y. Freund and R. E. Schapire, A decision-theoretic generalization of online learning and an application to boosting, Journal of computer and system sciences, vol.55, issue.1, p.92, 1997.

Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, Icml, vol.96, p.25, 1996.

Y. Freund, R. Schapire, and N. Abe, A short introduction to boosting, Journal-Japanese Society For Artificial Intelligence, vol.14, p.74, 1999.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences, The Journal of machine learning research, vol.4, p.87, 2003.

J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, vol.28, p.28, 1920.

H. Jerome and . Friedman, Greedy function approximation: a gradient boosting machine, Annals of statistics, vol.87, p.99, 2001.

H. Jerome and . Friedman, Stochastic gradient boosting, Computational Statistics & Data Analysis, vol.38, issue.4, p.80, 2002.

H. Jerome, W. Friedman, and . Stuetzle, Projection pursuit regression, Journal of the American statistical Association, vol.76, issue.376, p.21, 1981.

K. Fu, D. Cheng, Y. Tu, and L. Zhang, Credit card fraud detection using convolutional neural networks, International Conference on Neural Information Processing, p.50, 2016.

W. Gao, R. Jin, S. Zhu, and Z. Zhou, One-pass auc optimization, International Conference on Machine Learning, p.97, 2013.

Z. Gao, C. Cecati, and S. X. Ding, A survey of fault diagnosis and fault-tolerant techniquespart i: Fault diagnosis with model-based and signalbased approaches, IEEE Transactions on Industrial Electronics, vol.62, issue.6, p.46, 2015.

N. García-pedrajas, C. García-osorio, and C. Fyfe, Nonlinear boosting projections for ensemble construction, Journal of Machine Learning Research, vol.8, p.95, 2007.

X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier neural networks, Proceedings of the fourteenth international conference on artificial intelligence and statistics, p.98, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00752497

H. Grabner and H. Bischof, On-line boosting and vision, CVPR, vol.1, p.94, 2006.

H. Guo, L. Herna, and . Viktor, Learning from imbalanced data sets with boosting and data generation: the databoost-im approach, ACM Sigkdd Explorations Newsletter, vol.6, issue.1, p.31, 2004.

G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue et al., Learning from class-imbalanced data: Review of methods and applications, Expert Systems with Applications, vol.73, p.69, 2017.

H. Han, W. Wang, and B. Mao, Borderline-smote: a new oversampling method in imbalanced data sets learning, International Conference on Intelligent Computing, p.36, 2005.

S. Han, Z. Meng, A. Khan, and Y. Tong, Incremental boosting convolutional neural network for facial action unit recognition, NIPS, vol.93, p.95, 2016.

A. James, B. J. Hanley, and . Mcneil, The meaning and use of the area under a receiver operating characteristic (roc) curve, Radiology, vol.143, issue.1, p.76, 1982.

T. Hastie and R. Tibshirani, Generalized additive models, Statistical Science, vol.1, issue.3, pp.297-318, 1921.

H. He, A. Edwardo, and . Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge & Data Engineering, vol.30, issue.9, p.51, 2008.

H. He and Y. Ma, Imbalanced learning: foundations, algorithms, and applications, p.30, 2013.

H. He, Y. Bai, E. A. Garcia, and S. Li, Adasyn: Adaptive synthetic sampling approach for imbalanced learning, IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on, p.36, 2008.

A. Herschtal and B. Raskutti, Optimising area under the roc curve using gradient descent, Proceedings of the twenty-first international conference on Machine learning, p.75, 2004.

J. David, B. S. Hill, and . Minsker, Anomaly detection in streaming environmental sensor data: A data-driven modeling approach, Environmental Modelling & Software, vol.25, issue.9, p.46, 2010.

C. Hines and A. Youssef, Machine learning applied to rotating check fraud detection, Data Intelligence and Security (ICDIS), p.47, 2018.

W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American statistical association, vol.58, issue.301, p.9, 1963.

B. Hooi, N. Shah, A. Beutel, S. Günnemann, L. Akoglu et al., Birdnest: Bayesian inference for ratings-fraud detection, Proceedings of the 2016 SIAM International Conference on Data Mining, p.47, 2016.

H. Hu and W. Sun, Arun Venkatraman, Martial Hebert, and J Andrew Bagnell. Gradient boosting on stochastic data streams, AISTATS, vol.92, p.106, 2017.

T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, Real-time motor fault detection by 1-d convolutional neural networks, IEEE Transactions on Industrial Electronics, vol.63, issue.11, p.46, 2016.

V. Jain, Perspective analysis of telecommunication fraud detection using data stream analytics and neural network classification based data mining, International Journal of Information Technology, vol.9, issue.3, p.47, 2017.

A. Javaid, Q. Niyaz, W. Sun, and M. Alam, A deep learning approach for network intrusion detection system, Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), p.46, 2016.

T. Joachims, Optimizing search engines using clickthrough data, SIGKDD, p.74, 2002.

J. Young-hun, J. Goetz, and A. Tewari, Online multiclass boosting, Advances in Neural Information Processing Systems, vol.92, p.95, 2017.

J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P. Portier et al., Sequence classification for credit-card fraud detection, Expert Systems with Applications, vol.100, p.50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01699528

J. Yeonkook, B. Kim, S. Baik, and . Cho, Detecting financial misstatements with fraud intention using multi-class cost-sensitive learning. Expert systems with applications, vol.62, p.53, 2016.

M. Kirlidog and C. Asuk, A fraud detection approach with data mining in health insurance, Procedia-Social and Behavioral Sciences, vol.62, pp.989-994, 2012.

N. Kotovich and G. Nepomniachtchi, System and method for check fraud detection using signature validation, US Patent, vol.7, p.47, 2007.

K. Kourou, P. Themis, . Exarchos, P. Konstantinos, . Exarchos et al., Machine learning applications in cancer prognosis and prediction, Computational and structural biotechnology journal, vol.13, p.45, 2015.

B. Krawczyk, Learning from imbalanced data: open challenges and future directions, Progress in Artificial Intelligence, vol.5, issue.4, p.44, 2016.

B. Krebs, All about skimmers, 2010.

M. Kubat and S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, Icml, vol.97, p.30, 1997.

P. Kulkarni and R. Ade, Logistic regression learning model for handling concept drift with unbalanced data in credit card fraud detection system, Proceedings of the Second International Conference on Computer and Communication Technologies, vol.50, p.61, 2016.

C. Leistner, A. Saffari, P. Roth, and H. Bischof, On robustness of on-line boosting -a competitive study, 3rd ICCV Workshop on On-line Computer Vision, p.95, 2009.

J. Kevin and . Leonard, Detecting credit card fraud using expert systems, Computers & industrial engineering, vol.25, issue.1-4, p.49, 1993.

N. Li, R. Jin, and Z. Zhou, Top rank optimization in linear time, NIPS, vol.87, pp.1502-1510, 2014.

W. Li, V. Mahadevan, and N. Vasconcelos, Anomaly detection and localization in crowded scenes, IEEE transactions on pattern analysis and machine intelligence, vol.36, p.46, 2014.

J. G. Paulo, B. Lisboa, A. Edisbury, and . Vellido, Business applications of neural networks: the state-of-the-art of real-world applications, World scientific, vol.13, p.56, 2000.

T. Liu, Learning to Rank for Information Retrieval, 2011.

Y. Xu, J. Liu, Z. Wu, and . Zhou, Exploratory undersampling for class-imbalance learning, IEEE Transactions on Systems, Man, and Cybernetics, vol.39, p.40, 2009.

H. Lopata, Fraud resistant credit card system, US Patent, vol.4, 1987.

L. Van-der-maaten and G. Hinton, Journal of machine learning research, vol.9, p.57, 2008.

L. Mason, J. Baxter, L. Peter, . Bartlett, and . Marcus-r-frean, Boosting algorithms as gradient descent, Advances in neural information processing systems, p.27, 2000.

G. Metzler, X. Badiche, B. Belkasmi, E. Fromont, A. Habrard et al., Tree-based cost sensitive methods for fraud detection in imbalanced data, International Symposium on Intelligent Data Analysis, p.53, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01895967

W. T. Eric, Y. Ngai, Y. H. Hu, Y. Wong, X. Chen et al., The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, vol.50, p.47, 2011.

A. Niculescu, -. Mizil, and R. Caruana, Predicting good probabilities with supervised learning, ICML, p.74, 2005.

N. Nikolaou, N. Edakunni, M. Kull, P. Flach, and G. Brown, Cost-sensitive boosting algorithms: Do we really need them? Machine Learning, vol.104, p.61, 2016.

B. Niu, Y. Cai, W. Lu, G. Li, and K. Chou, Predicting protein structural class with adaboost learner. Protein and peptide letters, vol.13, p.16, 2006.

M. Opitz, G. Waltner, H. Possegger, and H. Bischof, Bier-boosting independent embeddings robustly, CVPR, vol.93, p.95, 2017.

C. Nikunj and . Oza, Online bagging and boosting, Systems, man and cybernetics, vol.3, p.94, 2005.

N. T-maruthi-padmaja, . Dhulipalla, S. Raju, P. Bapi, and . Krishna, Unbalanced data classification using extreme outlier elimination and sampling techniques for fraud detection, 15th International Conference on Advanced Computing and Communications (ADCOM 2007), pp.511-516, 2007.

N. Shameem-puthiya-parambath, Y. Usunier, and . Grandvalet, Optimizing f-measures by cost-sensitive classification, Advances in Neural Information Processing Systems, p.38, 2014.

R. Patidar and L. Sharma, Credit card fraud detection using neural network, International Journal of Soft Computing and Engineering (IJSCE), p.49, 2011.

K. Pearson and . Liii, on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and, Journal of Science, vol.2, issue.11, p.57, 1901.

C. Phua, D. Alahakoon, and V. Lee, Minority report in fraud detection: classification of skewed data, Acm sigkdd explorations newsletter, vol.6, issue.1, p.51, 2004.

F. Provost, Machine learning from imbalanced data sets 101, p.38

J. and R. Quinlan, Induction of decision trees, Machine learning, vol.1, issue.1, pp.81-106, 1986.

J. and R. Quinlan, Simplifying decision trees. International journal of man-machine studies, vol.27, pp.221-234, 1987.

E. Ramentol, Y. Caballero, R. Bello, and F. Herrera, SMOTE-RSB *: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory

, Knowl. Inf. Syst, pp.245-265, 2012.

J. Raphson, Analysis aequationum universalis seu ad aequationes algebraicas resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo, deducta ac demonstrata. typis Tho. Braddyll, prostant venales apud Johannem Taylor, ad insigne Navis

V. Rawte and G. Anuradha, Fraud detection in health insurance using data mining techniques, 2015 International Conference on Communication, Information & Computing Technology (ICCICT), p.47, 2015.

A. Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams et al., Deep learning detecting fraud in credit card transactions, Systems and Information Engineering Design Symposium (SIEDS), p.50, 2018.

Y. Sahin, S. Bulkan, and E. Duman, A cost-sensitive decision tree approach for fraud detection, Expert Systems with Applications, vol.40, issue.15, p.52, 2013.

T. Saito and M. Rehmsmeier, The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets, PloS one, vol.10, issue.3, p.69, 2015.

E. Robert and . Schapire, The strength of weak learnability, Machine learning, vol.5, issue.2, p.15, 1990.

E. Robert, Y. Schapire, and . Singer, Improved boosting algorithms using confidence-rated predictions, Machine learning, vol.37, issue.3, p.25, 1999.

Y. Robert-e-schapire, P. Freund, W. Bartlett, and . Sun-lee, Boosting the margin: A new explanation for the effectiveness of voting methods. The annals of statistics, vol.26, p.19, 1998.

J. Schmidhuber, D. Meier, and . Ciresan, Multi-column deep neural networks for image classification, 2012 IEEE Conference on Computer Vision and Pattern Recognition, p.125, 2012.

M. Scholz and R. Klinkenberg, Boosting classifiers for drifting concepts, vol.11, p.93, 2007.

C. Seiffert, M. Taghi, J. Khoshgoftaar, A. Van-hulse, and . Napolitano, Rusboost: A hybrid approach to alleviating class imbalance, Man, and Cybernetics, issue.1, pp.185-197, 2010.

R. Sommer and V. Paxson, Outside the closed world: On using machine learning for network intrusion detection, Security and Privacy (SP), 2010.

, IEEE Symposium on, p.46, 2010.

Y. Sun, S. Mohamed, . Kamel, K. C. Andrew, Y. Wong et al., Costsensitive boosting for classification of imbalanced data, Pattern Recognition, vol.40, issue.12, p.31, 2007.

I. Tomek, An experiment with the edited nearest-neighbor rule, IEEE Transactions on systems, issue.6, p.36, 1976.

I. Triguero, S. Del-río, V. López, J. Bacardit, M. José et al., Rosefw-rf: the winner algorithm for the ecbdl14 big data competition: an extremely imbalanced big data bioinformatics problem. Knowledge-Based Systems, vol.87, p.44, 2015.

C. Tsai, Y. Hsu, C. Lin, and W. Lin, Intrusion detection by machine learning: A review, Expert Systems with Applications, vol.36, issue.10, p.46, 2009.

G. Leslie and . Valiant, A theory of the learnable, Communications of the ACM, vol.27, issue.11, pp.1134-1142, 1984.

C. Véronique-van-vlasselaer, O. Bravo, T. Caelen, L. Eliassi-rad, M. Akoglu et al., Apate: A novel approach for automated credit card transaction fraud detection using network-based extensions, Decision Support Systems, vol.75, p.50, 2015.

T. Véronique-van-vlasselaer, L. Eliassi-rad, M. Akoglu, B. Snoeck, and . Baesens, Gotcha! network-based fraud detection for social security fraud, Management Science, vol.63, issue.9, p.47, 2016.

. Vn and . Vapnik, On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and its Applications, vol.16, pp.264-281, 1971.

S. Viaene, A. Richard, G. Derrig, and . Dedene, A case study of applying boosting naive bayes to claim fraud diagnosis, IEEE Transactions on Knowledge and Data Engineering, vol.16, issue.5, p.16, 2004.

M. Paul-a-viola, Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade, proc. NIPS, pp.1311-1318, 2001.

J. Wallis, J. Playford, R. Davis, and N. Duillier, A Treatise of Algebra, Both Historical and Practical

Y. Wang, W. Xu, ;. Wei, J. Li, L. Cao et al., Leveraging deep learning with lda-based text analytics to detect automobile insurance fraud, Decision Support Systems, vol.105, issue.4, p.44, 2013.

M. Gary and . Weiss, Mining with rarity: a unifying framework, ACM Sigkdd Explorations Newsletter, vol.6, issue.1, p.31, 2004.

C. Whitrow, J. David, P. Hand, . Juszczak, N. M. Weston et al., Transaction aggregation as a strategy for credit card fraud detection, Data Mining and Knowledge Discovery, vol.18, issue.1, p.50, 2009.

H. David and . Wolpert, Stacked generalization, Neural networks, vol.5, issue.2, p.14, 1992.

Q. Wu, J. C. Christopher, K. M. Burges, J. Svore, and . Gao, Adapting boosting for information retrieval measures, Information Retrieval, vol.13, issue.3, p.87, 2010.

M. Xie, S. Han, B. Tian, and S. Parvin, Anomaly detection in wireless sensor networks: A survey, Journal of Network and Computer Applications, vol.34, issue.4, p.46, 2011.

J. Xu and H. Li, Adarank: a boosting algorithm for information retrieval, SIGIR, p.75, 2007.

H. Yu, C. Sun, X. Yang, W. Yang, J. Shen et al., Odoc-elm: Optimal decision outputs compensation-based extreme learning machine for classifying imbalanced data. Knowledge-Based Systems, vol.92, p.38, 2016.

Y. Yue, T. Finley, F. Radlinski, and T. Joachims, A support vector method for optimizing average precision, SIGIR, p.74, 2007.

S. Evangelia-i-zacharaki, S. Wang, D. S. Chawla, R. Yoo, . Wolf et al., Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol.62, issue.6, p.45, 2009.

M. Zareapoor and P. Shamsolmoali, Application of credit card fraud detection: Based on bagging ensemble classifier, Procedia Computer Science, vol.48, p.61, 2015.