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THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON opérée au sein de
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Abstract

Mean Field Game (MFG) systems describe equilibrium configurations in differential
games with infinitely many infinitesimal interacting agents. This thesis is articulated
around three different contributions to the theory of Mean Field Games. The main pur-
pose is to explore the power of this theory as a modeling tool in various fields, and to
propose original approaches to deal with the underlying mathematical questions.

The first chapter presents the key concepts and ideas that we use throughout the
thesis: we introduce the MFG problem, and we briefly explain the asymptotic link with
N-Player differential games when N→∞. Next we present our main results and contri-
butions, that are explained more in details in the subsequent chapters.

In Chapter 2, we explore a Mean Field Game model with myopic agents. In contrast
to the classical MFG models, we consider less rational agents which do not anticipate
the evolution of the environment, but only observe the current state of the system, un-
dergo changes and take actions accordingly. We analyze the resulting system of coupled
PDEs and provide a rigorous derivation of that system from N-Player stochastic differ-
ential games models. Next, we show that our population of agents can self-organize and
converge exponentially fast to the well-known ergodic MFG equilibrium.

Chapters 3 and 4 deal with a MFG model in which producers compete to sell an ex-
haustible resource such as oil, coal, natural gas, or minerals. In Chapter 3, we propose an
alternative approach based on a variational method to formulate the MFG problem, and
we explore the deterministic limit (without fluctuations of demand) in a regime where
resources are renewable or abundant. In Chapter 4 we address the rigorous link between
the Cournot MFG model and the N-Player Cournot competition when N is large.

In Chapter 5, we introduce a MFG model for the optimal execution of a multi-asset
portfolio. We start by formulating the MFG problem, then we compute the optimal exe-
cution strategy for a given investor knowing her/his initial inventory and we carry out
several simulations. Next, we analyze the influence of the trading activity on the ob-
served intraday pattern of the covariance matrix of returns and we apply our results in
an empirical analysis on a pool of 176 US stocks.
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Résumé

Les systèmes de jeux à champ moyen (MFG) décrivent des configurations d’équilibre
dans des jeux différentiels avec un nombre infini d’agents infinitésimaux. Cette thèse
s’articule autour de trois contributions différentes à la théorie des jeux à champ moyen.
Le but principal est d’explorer des applications et des extensions de cette théorie, et de
proposer de nouvelles approches et idées pour traiter les questions mathématiques sous-
jacentes.

Le premier chapitre introduit en premier lieu les concepts et idées clés que nous util-
isons tout au long de la thèse. Nous introduisons le problème MFG et nous expliquons
brièvement le lien asymptotique avec les jeux différentiels à N-joueurs lorsque N → ∞.
Nous présentons ensuite nos principaux résultats et contributions.

Le Chapitre 2 explore un modèle MFG avec un mode d’interaction non anticipatif
(joueurs myopes). Contrairement aux modèles MFG classiques, nous considérons des
agents moins rationnels qui n’anticipent pas l’évolution de l’environnement, mais ob-
servent uniquement l’état actuel du système, subissent les changements et prennent des
mesures en conséquence. Nous analysons le système couplé d’EDP résultant de ce modèle,
et nous établissons le lien rigoureux avec le jeu correspondant à N-Joueurs. Nous mon-
trons que la population d’agents peut s’auto-organiser par un processus d’autocorrection
et converger exponentiellement vite vers une configuration d’équilibre MFG bien connue.

Les Chapitres 3 et 4 concernent l’application de la théorie MFG pour la modélisation
des processus de production et commercialisation de produits avec ressources épuisables
(e.g. énergies fossiles). Dans le le Chapitre 3, nous proposons une approche variation-
nelle pour l’étude du système MFG correspondant et analysons la limite déterministe
(sans fluctuations de la demande) dans un régime où les ressources sont renouvelables
ou abondantes. Nous traitons dans le Chapitre 4 l’approximation MFG en analysant le
lien asymptotique entre le modèle de Cournot àN-joueurs et le modèle de Cournot MFG
lorsque N est grand.

Enfin, le Chapitre 5 considère un modèle MFG pour l’exécution optimale d’un porte-
feuille d’actifs dans un marché financier. Nous explicitons notre modèle MFG et analysons
le système d’EDP résultant, puis nous proposons une méthode numérique pour calculer
la stratégie d’execution optimale pour un agent étant donné son inventaire initial et
présentons plusieurs simulations. Par ailleurs, nous analysons l’influence de l’activité
de trading sur la variation Intraday de la matrice de covariance des rendements des ac-
tifs. Ensuite, nous vérifions nos conclusions et calibrons notre modèle en utilisant des
données historiques des transactions pour un pool de 176 actions américaines.
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CHAPTER 1

General Introduction

The theory of Mean Field Games is a young branch of Dynamic Games that aims at
modeling and analyzing complex decision processes involving a large number of agents,
which have individually a small influence on the overall system, and are influenced by
the behavior of other agents. Examples of such systems might be financial exchanges,
social media, or large flows of pedestrians. The theory was introduced about ten years
ago in series of seminal papers, by Lasry and Lions [86–88], Caines et al. [24, 25], and
in lectures by Pierre-Louis Lions at the Collège de France, which were video-taped and
made available on the internet [91]. Since its inception, the Mean Field Games (MFGs
for short) theory has expanded tremendously, and has become an important tool in the
study of dynamical and equilibrium behavior of large systems.

Mean Field Games describe the evolution of a stochastic differential game with a
continuum of indistinguishable players, and where the choice of any “atomic” player is
affected by other players through a global mean field effect. The “mean field” terminol-
ogy is borrowed from physics and refers to the fact that the influence of all other players
is aggregated in a single averaged effect. In terms of partial differential equations, a MFG
model is typically described by a system of a transport or Fokker-Plank equation for the
distribution of the agents, coupled with a Hamilton-Jacobi-Bellman (HJB) equation gov-
erning the game value function of an “atomic” player.

The starting point of Mean Field Games models is stochastic differential games with
N players and symmetric interactions. Those models arise in many applications such as
in engineering, economics, social science, finance, and management science. However,
it is well known that the computation of equilibria in these games is typically a very
challenging task either analytically or computationally, even for one period deterministic
games. The rationale of MFGs is to search for simplifications by considering the asymp-
totic behavior in the limit N → ∞ of large population, so that the information on the
system is captured only through the statistical distribution – or density – of players in the
space of possible states. This strategy allows to reduce the initial N-body problem into
a one-body problem which simplifies the modeling and considerably reduces the cost of
computations. Thus, Mean Field Games models can be seen as an alternative approxima-
tion to N-Player games at the asymptotic regime N → ∞, which allows to obtain some
insight into the behavior of the system at a relatively low cost. This partially explains the
considerable interest aroused by the theory for many applications.

This thesis deals with three different applications of the theory of Mean Field Games,
where the use of the MFG framework has revealed interesting facts related to the strategic
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2 1. GENERAL INTRODUCTION

behavior of a large number of “rational” agents. Each of these models raises many math-
ematical challenges which are deeply investigated in this manuscript. Several questions
have been treated in this work, while others remain open.

The main purpose of this short introductory chapter, is to introduce the reader to the
key concepts and ideas of Mean Field Games Theory, and to explain our main results and
contributions. We start by formalizing the Mean Field Game problem and extending it
to a general framework where the individual players also interact through their controls.
These models have been referred to as extended Mean Field Games1 in the literature, and
will be used in different parts of this work. Next, we explain, rigorously and in a very
simple framework, the link between mean field games and the corresponding N-Player
games. Namely, we show that MFG models allow to build approximate Nash equilibria
forN-Player stochastic differential games. Finally, we conclude this introductory chapter
by presenting and explaining our main results and contributions.

1. The Mean Field Game Problem

Set (Ω,F,F = (Ft)t>0,P) to be a complete filtered probability space supporting a d-
dimensional Wiener process (Wt)t>0 with respect to F, the filtration F satisfying the usual
conditions. Consider a stochastic differential game with a continuum of indistinguishable
players, where any representative – “atomic” – player is controlling its private state Xt
in Rd at time t ∈ [0, T ], by taking an action αt in a closed convex subset A ⊂ Rd. We
assume that the dynamics of the state of players is driven by Itô’s stochastic differential
equations of the form:

dXt = αt dt+
√

2σdWt, t ∈ [0, T ],

where throughout this part σ is a fixed positive constant. For any individual player,
the choice of a strategy (αt)06t6T is driven by the desire to minimize an expected cost
over the period [0, T ], which is influenced by the state of other players. Therefore, any
individual agent needs to anticipate the state of other players over the time period [0, T ] in
order to set an effective action. The Mean Field Game equilibrium is reached when player’s
anticipation matches reality.

1.1. The Optimal Control Problem. Given an initial distribution of players m0 in
P(Rd), the Mean Field Game problem is articulated in the following way:

(1.i) Anticipating and optimizing: for each anticipated flow of deterministic measures
m = (m(t))06t6T on Rd, solve the standard stochastic optimal control problem:

(1.1) inf
α∈A

Jm(α) with Jm(α) := E

[∫T
0
L(Xm

s ,αs) + F(X
m
s ;m(s)) ds+G(Xm

T ;m(T))

]
,

subject to

(1.2) dXm
t = αt dt+

√
2σdWt, Xm

0 ∼ m0.

(1.ii) Equilibrium: find a flow m = (m(t))06t6T such that L(X̂m
t ) = m(t) for every

t ∈ [0, T ], where X̂m is a solution to the above optimal control problem.

1The name “Mean Field Games of Controls” is also widely used in the literature.
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In all this chapter, A denotes the set of admissible controls; that is the set of F-progressively
measurable A-valued stochastic processes, satisfying the admissibility condition:

E

[∫T
0
|αs|

2 ds

]
<∞.

Given the structure of the cost functional in (1.1), the influence of the system on one’s
actions is captured through the coupling functions F and G. We shall assume that the
dependence of the coupling functions on the measure variable is nonlocal, i.e. for any x
in Rd, we seem→ F(x;m),m→ G(x;m) as a regularizing maps on the set of probability
measures. The first step in (1.i)-(1.ii) provides the best response of a generic player given
the anticipated statistical distribution of the states of the other players. The second step
solves a specific fixed point problem corresponding to equilibrium: anticipations of the
agents turns out to be correct. Therefore, the MFG equilibrium can be interpreted as a
Nash equilibrium configuration for a continuum of indistinguishable agents with mean
field interactions. Notice that we make the strong assumption that the agents share a
common belief on the future behavior of the density of agents.

1.2. The Analytic Approach. The MFG problem can also be formulated by using an
analytical approach. In fact, the first step in (1.i)-(1.ii) consists in solving a standard sto-
chastic optimal control problem by fixing a flow of measures m = (m(t))06t6T . A natural
route is to express the value function (t, x) → u(t, x) of the optimization problem (1.1)
as the solution of the corresponding Hamilton-Jacobi-Bellman equation. Moreover, the
matching problem (1.ii) is resolved by coupling the HJB equation with a Kolmogorov
equation, which is intended to identify the flow m = (m(t))06t6T with the flow of mar-
ginal distributions of the optimal states. Thus, the resulting coupled system of PDEs can
be written as:

(1.3)



− ∂tu− σ∆u+H(x,Du) = F(x;m) in (0, T)× Rd

∂tm− σ∆m− div(mHp(x,Du)) = 0 in (0, T)× Rd

m(0) = m0, u(T , x) = G(x;m(T)) in Rd

where H(x,p) := supv∈A {−p.v− L(x, v)}, and Hp denotes the partial derivative of H
with respect to the second variable. The first equation of (1.3) is the HJB equation of
the stochastic control problem (1.i) when the flow m = (m(t))06t6T is fixed. The second
equation is the Kolmogorov – or Fokker-Planck – equation giving the time evolution of
the flow m = (m(t))06t6T dictated by the dynamics (1.2) of the state of the system, once
we have implemented the optimal feedback function. Notice that the first equation is a
backward equation to be solved from a terminal condition, while the second equation is
forward in time, starting from an initial condition.

Following the seminal works [86, 88], the MFG system (1.3) is usually addressed in a
periodic framework; that is, functions L, F,G are assumed to be Zd-periodic with respect
to the variable ‘x’, and system (1.3) is complemented with periodic boundary conditions.
In this context, we consider the d-dimensional torus Td as the set of possible states, i.e.
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Q = Td. The analysis of system (1.3) in the periodic setting, is addressed in many works
(cf. [33,86,88] among many others). The existence of classical solutions is obtained under
a wide range of sufficient conditions onH, F and G, and uniqueness follows by assuming
uniform convexity of the Hamiltonian with respect to the second variable, and the so
called Lasry-Lions monotonicity conditions:

(1.4a)
∫
Q

(
F(x;m) − F(x;m ′)

)
d(m−m ′)(x) > 0, ∀m,m ′ ∈ P(Q);

(1.4b)
∫
Q

(
G(x;m) −G(x;m ′)

)
d(m−m ′)(x) > 0, ∀m,m ′ ∈ P(Q).

The interpretation of the above monotonicity conditions is that the players dislike con-
gested regions and prefer configurations in which they are scattered. We refer the reader
to [43, Vol I, Section 3.4] for a detailed presentation of the notion of monotonicity and
several examples.

1.3. Stationary MFGs. Other classes of MFG problems have been studied in the lit-
erature, which corresponds to different cost structures. Among the most classical ones is
the case of a long time averaged cost; namely:

(1.5) Jm(α) := lim sup
T→+∞

1

T
E

[∫T
0
L(Xm

s ,αs) + F(X
m
s ;m(s)) ds

]
.

In this case, the MFG system of partial differential equations is stationary, and takes the
following form [12, 59, 86, 87],

(1.6)



− σ∆ū+H(x,Dū) + λ̄ = F(x; m̄) in Q = Td,

− σ∆m̄− div(m̄Hp(x,Dū)) = 0 in Q,

m̄ > 0,

∫
Q

m̄ = 1,

∫
Q

ū = 0.

Here we consider a periodic setting, the unknowns are (λ̄, ū, m̄), where λ̄ ∈ R is the
so-called ergodic constant, and the condition

∫
Q ū = 0 is in force in order to ensure

uniqueness. The solution to the first equation in (1.6) can be interpreted as the equi-
librium value function of a “small” player whose cost depends on the density m̄ of the
other players, while the second equation characterizes the distribution of players at the
equilibrium. It is well known (see e.g. [12, 86, 87]) that there exists a solution (λ̄, ū, m̄) in
R×C2(Q)×W1

s(Q) for all 1 6 s <∞ to (1.6), under a wide range of sufficient conditions
on H, F and initial data. Moreover, uniqueness holds under the monotonicity condition
(1.4a) on F, by assuming that H is uniformly convex with respect to the second variable.

Another well known example of stationary MFG systems, is related to the case where
players aim to minimize a discounted infinite-horizon cost functional, namely:

(1.7) Jm(α) := E
[∫∞

0
e−ρs{L(Xm

s ,αs) + F(X
m
s ;m(s))}ds

]
,
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where ρ > 0. In the periodic setting, one can obtain a stationary solution to the MFG
problem by solving (see e.g. [12], among others):

(1.8)



− σ∆v̄+H(x,Dv̄) + ρv̄ = F(x; µ̄) in Q = Td,

− σ∆µ̄− div(µ̄Hp(x,Dv̄)) = 0 in Q,

µ̄ > 0,

∫
Q

µ̄ = 1.

It is also well known (cf. [6, 10, 12]) that, under several technical conditions on H and F,
there exists a solution (v̄, µ̄) ∈ C2(Q) ×W1

s(Q) for all 1 6 s < ∞ to (1.8). Moreover, if H
has a linear growth, i.e.

|H(x,p)| 6 C(1 + |p|)

for some constant C > 0, system (1.6) is obtained as a limit of system (1.8) when ρ → 0.
Namely, it holds that

(1.9)
(
ρ

∫
Q

v̄, v̄−

∫
Q

v̄, µ̄

)
−→ (λ̄, ū, m̄) in R× C2(Q)× L∞(Q) as ρ→ 0.

Both systems (1.6) and (1.8) describe a stationary MFG equilibrium.

2. Extended Mean Field Games: Interaction Through the Controls

In MFGs presented so far, the players interact through their distribution in the space
of possible states. We extend that framework to the case where players are not only
influenced by the state of competitors, but also by their chosen controls. In this part, we
present an extended Mean Field Game problem by using a more general framework. Two
specific examples will be addressed in Parts II and III.

2.1. The Optimal Control Problem. Given an initial distribution of players’ states
m0 in P(Rd), the extended Mean Field Game problem is articulated in the following
way:

(2.i) Anticipating and optimizing: for each anticipated flow of deterministic measures
µ = (µ(t))06t6T on Rd × A, solve the standard stochastic optimal control prob-
lem:

inf
α∈A

Jµ(α) with Jµ(α) := E

[∫T
0
L(s,Xµ

s ,αs;µ(s)) ds+G(Xµ
T ;m(T))

]
,

subject to

dXµ
t = αt dt+

√
2σdWt, X

µ
0 ∼ m0,

wherem(t) denotes the first marginal of µ(t) on Rd, for all t ∈ [0, T ].
(2.ii) Equilibrium: find a flow µ = (µ(t))06t6T such that L(X̂µ

t , α̂µ
t ) = µ(t) for every

t ∈ [0, T ], if α̂µ ∈ A is a minimizer of Jµ with X̂µ as optimal path.
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Note that G plays the same role as in Section 1: the terminal condition depends only
on the terminal state of a typical agent and the terminal distribution of the states. As
in Section 1, we shall assume that the dependence of the coupling functions L, G on the
measure variable is nonlocal.

2.2. The Analytic Approach. Following Section 1.2, we denote by (t, x) → u(t, x)

the value function of the optimization problem (2.i). When the flow µ = (µ(t))06t6T is
fixed, u is a viscosity solution to the following HJB equation:

−∂tu(t, x)−σ∆u(t, x)+H(t, x,Du(t, x);µ(t)) = 0 in (0, T)×Rd, u(x, T) = G(x;m(T)),

where
H(t, x,p;µ(t)) = sup

v∈A
{−p.v− L(t, x, v;µ(t))} .

Moreover, α̂µ(t, x) = −DpH(t, x,Du(t, x);µ(t)) is – at least formally – the optimal drift
for the agent at position ‘x’ and at time ‘t’. Thus, the population density (m(t))06t6T is
expected to evolve according to the Kolmogorov equation:

∂tm− σ∆m− div(mDpH(t, x,Du(t, x);µ(t))) = 0 in (0, T)× Rd, m(0) = m0.

Hence, for any t ∈ [0, T ], the law of L(X̂µ
t , α̂µ

t ) appears as the pushed forward image of
the law of X̂µ

t , i.e.
L(X̂µ

t , α̂µ
t ) = (Id, α̂µ(t, .)) ]L(X̂µ

t ).

Consequently, the equilibrium condition reads:

(1.10) µ(t) = (Id, α̂µ(t, .)) ]m(t).

To summarize, the Extended MFG problem takes the following analytic form:

(1.11)



− ∂tu− σ∆u+ H(t, x,Du;µ) = 0 in (0, T)× Rd

∂tm− σ∆m− div(mDpH(t, x,Du;µ)) = 0 in (0, T)× Rd

m(0) = m0, u(T , x) = G(x;m(T)) in Rd

µ(t) = (Id, α̂(t, .)) ]m(t) in (0, T)

Apart from the particular structure of the coupling, the new feature in comparison to the
standard MFG of Section 1 is the relationship in (1.10), which provides in equilibrium
an implicit expression for the flow µ = (µ(t))06t6T of the state and the control joint
distributions, in terms of the flow m = (m(t))06t6T of the marginal distributions of the
state. We will discuss later several specific examples of extended MFGs from an analytical
standpoint (c.f. Parts II and III).

Extended Mean Field Games were initiated by Gomes and Voskanyan in [67] and
addressed in various works (cf. [19, 39, 65, 66, 68] among many others). We refer to [39]
for a complete explanation and a detailed analysis of the PDE system (1.11). In that pa-
per, the authors prove well-posedness for system (1.11) under a wide range of sufficient
conditions on H, G and initial data.



3. APPLICATION TO GAMES WITH FINITELY MANY PLAYERS 7

3. Application to Games with Finitely many Players

As we pointed out earlier, Mean Field Games can be seen as an approximation of
N-Player games when N is large. In particular, a MFG equilibrium is expected to be an
approximation of a Nash equilibrium configuration in the correspondingN-Player game
asN→∞. In order to illustrate this feature, we provide a proof to this fact in a very sim-
ple framework: standard MFGs, regular functions and periodic boundary conditions.
This result was first noticed by Caines et al. [24, 25] and further developed in several
other works (see e.g. [42, 81] among many others). We will later on show this result in
a more challenging framework (cf. Chapter 4): extended MFGs, with less regular func-
tions and absorbing boundary conditions. We aim to explain how the optimal feedback
strategies which are computed from the MFG system (1.3), provide an approximate Nash
equilibrium to the correspondingN-Player game. The precise sense of approximate Nash
equilibria will be specified later.

For simplicity, we consider a periodic setting (Q = Td) and we suppose that H is
smooth, globally Lipschitz continuous and satisfies the coercivity condition:

C−1 Id
1 + |p|

6 D2
ppH(x,p) 6 CId, ∀(x,p) ∈ Q× Rd.

In addition, we suppose that F, G, are continuous on Q × P(Q), fulfil the conditions
(1.4a)-(1.4b), and F(.;m),G(.;m) are bounded respectively in C1+α, C2+α, uniformly with
respect to m ∈ P(Q), for some α ∈ (0, 1). Under the above conditions, it is well-known
(cf. [33, 86, 88]) that the MFG system (1.3) has a unique solution such that u ∈ C1,2(QT )

and m ∈ C([0, T ];P(Q)), where QT := (0, T) × Q. Throughout the rest of this chapter,
(u,m) denotes the unique solution to the MFG system (1.3).

At first, we claim that the feedback strategy α̂(t, x) := −DpH(x,Du(t, x)) is optimal
for the optimal stochastic control problem (1.1).

LEMMA 1.1. Let (X̂t)06t6T be the solution to the stochastic differential equation

dX̂t = α̂(t, X̂t) dt+
√

2σdBt, X̂0 ∼ m0.

Define α̂t := α̂(t, X̂t),m(t) := L(X̂t), and m = (m(t))06t6T . Then, it holds that

inf
α∈A

Jm(α) = Jm(α̂) =

∫
Q

u(0, x) dm0(x).

PROOF. This is a verification Theorem whose the proof is standard. One only needs
to check that the candidate solution is indeed optimal by using Itô’s rule and the equa-
tion satisfied by the value function u. We refer the reader to Lemma 4.18 for a similar
approach. �

Let us now address the N-Player version of the mean field game problem (1.3). Con-
sider a system of N agents, where any agent i chooses a strategy αi in A in order to
control her/his private state. The private state of any player i is driven by the following
stochastic differential equations (SDE):

dXit = α
i
t dt+

√
2σdBit, Xi0 ∼ m0,
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where (Bi)16i6N is a family N independent2 F-Wiener processes. We suppose that the
initial condition satisfies the usual assumptions so that the resulting system of SDEs is
well-posed in the classical sense. The expected total cost to player i is:

JNi (α1, ...,αN) = E

[∫T
0
L(Xis,α

i
s) + F

(
Xis; ν̂

i,N
Xs

)
ds+G

(
XiT ; ν̂i,NXT

)]
,

where
ν̂
i,N
Xt

:=
1

N− 1

∑
j6=i

δ
X
j
t
,

and δ is the Dirac mass. The influence of other players on the ith player’s actions, is
captured through the coupling functions F and G. Observe that the players are indistin-
guishable and the game is symmetric with respect to other players influence. Moreover,
when N is large, the influence of any individual player becomes negligible.

Now let us fix α̂it := α̂(t, X̂
i
t) where

dX̂it = α̂(t, X̂
i
t) dt+

√
2σdBit, X̂i0 ∼ m0.

This corresponds to the situation where all the players implement the MFG feedback con-
trol strategy α̂. The following result states that in the above configuration the N-Player
system is “almost” in Nash equilibrium, and quantifies the error when the coupling func-
tions F and G enjoy more regularity.

PROPOSITION 1.2 (ε-Nash equilibrium). Suppose that F and G are Lipschitz continuous
on Q × P(Q). Then the symmetric strategy (α̂1, ..., α̂N) is an ε-Nash equilibrium in the game
JN1 , ..., JNN; namely, there exists C > 0 such that

(1.12) JNi (α̂
1, ..., α̂N) 6 JNi ((α̂j)j6=i,α

i) + CN−1/(d+4)

for any i ∈ {1, ...,N} and αi ∈ A.

PROOF. The problem being symmetrical, it is enough to show that

(1.13) JN1 (α̂1, ..., α̂N) 6 JN1 ((α̂j)j6=1,α) + CN−1/(d+4)

for any α ∈ A.
Note that for any t ∈ [0, T ], (X̂1

t, ..., X̂Nt ) are independent and identically distributed
with law m(t). Thus, we can use the following estimate on product measures due to
Horowitz and Karandikar (see e.g. [103, Theorem 10.2.1]):

E
[
d1(ν

i,N
Xt

,m(t))
]
6 CdN

−1/(d+4),

where d1(., .) is the Kantorowich-Rubinstein distance3. Hence, by using Lipschitz conti-
nuity of F and Gwith respect to the measure variable we obtain:

(1.14) E

[∫T
0

sup
x∈Q

∣∣∣F(x,νi,NXs ) − F(x,m(s))
∣∣∣ ds

]
+ E

[
sup
x∈Q

∣∣∣G(x,νi,NXT ) −G(x,m(T))
∣∣∣]

6 C(d, T)N−1/(d+4).

2When the noise processes are correlated the analysis is much more challenging, cf. [33, 43].
3We refer the reader to Notation Section for a precise definition.
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Now, let us consider an admissible control (αt)06t6T , and define (X1
t)06t6T by:

dX1
t = αt dt+

√
2σdB1

t, X1
0 ∼ m0.

By virtue of (1.14), we have

JN1 ((α̂j)j6=1,α1) = E

[∫T
0
L
(
X1
s,α

1
s

)
+ F

(
X1
s,ν

1,N
Xt

)
ds+G

(
X1
T ,ν1,N

XT

)]

> E

[∫T
0
L(X1

s,α
1
s) + F(X

1
s,m(s)) ds+G(X1

T ,m(T))

]
− CN−1/(d+4)

> JN1 (α̂1, ..., α̂N) − CN−1/(d+4)

where the last inequality follows from the optimality of α̂ (c.f. Lemma 1.1). The proof is
complete. �

We refer the reader to [15,43,73,86] and references therein, for further background on
Mean Field Game theory and applications.

4. Outline of the Thesis

This thesis is articulated around three different contributions to the theory of Mean
Field Games. The main purpose of this thesis is to explore the power of this theory as
a modeling tool in various fields, and to propose new approaches and answers to deal
with the underlying mathematical issues and questions.

In the first part of this dissertation, we introduce a Mean Field Game model with a
new kind of interaction between the agents. The main idea is to drop the assumption of
perfect anticipation, and to introduce a more interactive mechanism of decision making.
In fact, in the classical MFG model of Section 1, agents are supposed to be “very ratio-
nal”, anticipating the exact evolution of the system on the whole time window [0, T ] and
acting accordingly. In addition, they are assumed to share the same belief on the system’s
evolution. In contrast to that model, we consider less rational agents which do not antic-
ipate the evolution of the environment (myopic agents), but only observe the current state
of the system, undergo changes, and take actions accordingly. The actions are chosen in
order to obtain the best future cost given the current situation of the system. We prove
that such an interactive process can give rise to a fast self-organizing process toward a
stable equilibrium configuration.

Chapter 2 is organized as follows: We start by formalizing the MFG problem with
myopic players. We consider a specific cost structure, and provide a wide range of suf-
ficient conditions that ensures the existence and uniqueness of classical solutions to the
corresponding PDEs system. Next, we explain in a rigorous way the link between our
MFG model and the corresponding N-Player game model in the limit of large games
N→∞, by using a coupling argument. Moreover, we prove that the population of non-
anticipating agents self-organizes and converges toward a stationary MFG equilibrium,
when the initial distribution of the players is sufficiently close to the equilibrium. This re-
sult is proved for a coupling function F satisfying the monotonicity condition (1.4a), and
a quadratic Hamiltonian function. Finally, we provide several numerical experiments
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which show in particular that the self-organizing process operates in more general cases.
This raises many open questions for future research.

The second part of this dissertation deals with a specific economic model which be-
longs to the class of extended Mean Field Games. This model describes a mean field game
in which producers compete to sell an exhaustible resource such as oil, coal, natural gas,
or minerals. It models the dynamics of a continuum – or a density – of firms, producing
comparable goods, strategically setting their production rate in order to maximise profit,
and leaving the market as soon as they deplete their capacities. These models has been
widely addressed in the Mathematical Economics literature recently (cf. [49,50,73,92]). In
particular, the authors of [50] use the MFG framework to discuss the sharp oil prices drop
in 2014. This class of models is known as “Bertrand & Cournot Mean Field Games” in the
PDE MFG literature. From a mathematical standpoint, the Bertrand & Cournot MFG sys-
tem consists in a system of a backward Hamilton-Jacobi-Bellman (HJB) equation to model
a representative firm’s value function, coupled with a forward Fokker-Planck equation
to model the evolution of the distribution of the active firms’ states. The exhaustibility
condition gives rise to absorbing boundary conditions at x = 0.

The corresponding N-Player version of Bertrand and Cournot games is a classic of
the Economics literature (see e.g. [77] and references therein), and it is well-known that
the “Dynamic Games” approach produces a N-body problem which is extremely diffi-
cult to solve either analytically or numerically, especially whenN is large. In this specific
case with exhaustible resources, the situation is even worse because of the nonstandard
boundary conditions which are obtained (cf. [77, Section 3.1]). The MFG approach has
proven to be a better alternative as a modeling tool and various efficient numerical meth-
ods have been proposed in several works, in order to compute “approximate” market
equilibria (cf. [49, 50, 92]). Nevertheless, many challenging mathematical questions re-
main open, especially for the rigorous link between Bertrand and Cournot MFGs and the
corresponding N-Player games. The main purpose of the second part of this manuscript
is to provide some answers to these questions.

In Chapter 3, we explore several mathematical features of Bertrand & Cournot MFGs.
Our starting point is the result of Bensoussan and Graber in [70], where the authors show
the existence of smooth solutions to the MFG system and uniqueness under a certain re-
striction. In Chapter 3, we improve this result by showing uniqueness with no restriction.
The rest of Chapter 3 deals with a variant of the Bertrand & Cournot MFG model by con-
sidering a reflecting boundary conditions at x = 0. This situation can correspond to the
case where reserves are exogenously and infinitesimally replenished. We investigate the
new system of coupled PDEs and show that this system can be written as an optimality
condition of a convex minimization problem. Next, we use this variational interpretation
to prove existence and uniqueness of a weak solution to the corresponding first order
system at the deterministic limit σ→ 0. Our analysis shows that the variational interpre-
tation holds true for the original MFG system (with absorbing BCs at x = 0); in fact, the
original PDE problem is also a system of optimality for the same minimization problem,
with an adapted class of admissible solutions. In contrast, the analysis of the determinis-
tic limit σ→ 0 in the case of absorbing BCs at x = 0 remains an open problem.
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The main purpose of Chapter 4 is to explain the large population limit whenN→∞,
in the context of Bertrand & Cournot MFGs. It is well known that in the continuum
mean field setting, Bertrand and Cournot games are identical (cf. Section 1 and [49]).
This equivalence does not hold for the corresponding N-Player models, and therefore
the analysis of the large population limit should be treated separately in order to take
into account the specificity of each model. In Chapter 4, we focus on Cournot compe-
tition and we establish the rigorous link between the Cournot MFG and the N-Player
dynamic Cournot competition. We consider that producers are constrained to choose a
non-negative rate of production in order to manage their production capacity and gen-
erate profit. The constraint on the rate of production is natural form a modeling stand-
point, and produces a coupled system of PDEs which is analogous to [92] and with less
regular Hamiltonian function in comparison to [49, 70]. We start Chapter 4 by proving
well-posedness for the resulting MFG system with initial measure data. The main ingre-
dients are suitable a priori estimates in Hölder spaces and compactness results borrowed
from [102]. Our analysis completes that which is found in Chapter 3 and [70] by treat-
ing the case of a less regular Hamiltonian function and initial measure data. Next, we
show that feedback strategies which are computed from the Mean Field Game system
provide ε-Nash equilibria to the corresponding N-Player Cournot competition, for large
values of N. This is done by showing tightness of the empirical process in the so-called
Skorokhod M1 topology, which is defined for distribution-valued processes. This result
shows that the Cournot MFG model is indeed an approximation to the corresponding
N-Player Cournot game when N is large, and therefore strengthens numerical methods
which are based on the MFG approximation. To the best of the author’s knowledge, this
is the first analysis of the limit of large population N → ∞ in the context of extended
MFGs with absorbing boundary condition.

The last part of this thesis deals with an application of the Mean Field Games theory
to Quantitative Finance. Chapter 5 goes beyond the optimal trading Mean Field Game
model introduced by Pierre Cardaliaguet and Charles-Albert Lehalle in [39], by extend-
ing it to portfolios of correlated instruments. This leads to several original contributions:
first that hedging strategies naturally stem from optimal liquidation schemes on port-
folios. Second we show the influence of trading flows on naive estimates of intraday
volatility and correlations. Focussing on this important relation, we exhibit a closed form
formula expressing standard estimates of correlations as a function of the underlying
correlations and the initial imbalance of large orders, via the optimal flows of our mean
field game between traders. To support our theoretical findings, we use a real dataset
of 176 US stocks from January to December 2014 sampled every 5 minutes to assess the
influence of trading activity on the observed correlations. One of our theoretical findings
backed by our empirical analysis is that the well know intraday shape of the volatility is
far from uniform with respect to the intraday traded flows: given the absolute value of
the traded flows is small, this intraday seasonality flattens out.

We start Chapter 5 by formulating the problem of optimal execution of a multi-asset
portfolio inside a Mean Field Game. We derive the MFG system of PDEs and prove
uniqueness of solutions to that system for a general Hamiltonian function. Then we con-
struct a regular solution in the quadratic framework, that is considered in all the rest of
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that chapter. Next, we provide a convenient numerical scheme to compute the solution
of the MFG system, and present several examples of an agent’s optimal trading path,
and the average trading path of the population. Furthermore, we address the question of
assessing the influence of orders execution on the dependence structure of asset returns.
We show that in the context of a multi-asset portfolio, the strategic interaction between
the agents leads to a nontrivial relationship between the order flows, which in turn gen-
erates a non-trivial impact on the intraday covariance/correlation matrix of asset returns,
especially at the beginning of the trading period (cf. Section 3). Namely, we show that
the “observed” intraday covariance matrix of asset returns is the sum of the “fundamen-
tal” covariance matrix, and an excess covariance generated by the trading activity of the
crowd. Finally, we carry out numerical simulations to illustrate this fact, and compare
our findings with an empirical analysis on a pool of 176 US stocks.

We conclude this Chapter with a more detailed exposition of our results.

4.1. Quasi-Stationary Mean Field Games. Our first contribution is presented in Chap-
ter 2 and deals with self-organizing phenomena in Mean Field Games with myopic play-
ers. For simplicity, we work in a periodic setting in order to avoid issues related to bound-
ary conditions or conditions at infinity. Therefore, we consider functions as defined on
Q := Td (the d-dimensional torus).

Given an initial distribution of players’ states m0 in P(Q), and ρ > 0, the Mean Field
Game problem with myopic players is articulated in the following way:

(1) Observing and scheduling: at any time t > 0, a representative player observes the
global distribution of the players’ statesm(t) and solves

(1.15) inf
αt∈A

Jm(t)(αt),

with Jm(t) corresponding to:

(1.16a) J
m(t)
ρ (αt) := E

[∫∞
t

e−ρsL(Xts,αt(X
t
s)) + F(X

t
s;m(t)) ds

∣∣∣ Ft] ;

or

(1.16b) Jm(t)∞ (αt) := lim inf
τ→+∞ 1

τ
E
[∫τ
t

L(Xts,αt(X
t
s)) + F(X

t
s;m(t)) ds

∣∣∣ Ft] ;

where the state of a representative player evolves according to:

dXt = αt(Xt) dt+
√

2σdWt t > 0, X0 ∼ m0;

and for any t > 0 the process (Xts)s>t models the scheduled – fictitious – future
evolution of the player given her/his state at time t:

dXts = αt(X
t
s) ds+

√
2σ ′ dBs−t s > t, Xtt = Xt;

(2) Equilibirium: the flow (m(t))06t6T satisfies m(t) = L(X̂t) for every t ∈ [0, T ],
where

dX̂t = α̂t(X̂t) dt+
√

2σdWt t > 0, X0 ∼ m0,

and α̂t is a minimizer of (1.15) for any t ∈ [0, T ].
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Here (Wt)t>0 and (Bt)t>0 are two independent F-Wiener processes, and A is a suitably
chosen set of admissible actions (cf. Section 3). At each instant, agents set a strategy
which optimizes their expected future cost by assuming their environment as immutable.
As the system evolves, the players observe the evolution of the system and adapt to their
new environment without anticipating.

From an analytic standpoint, we obtain the following systems of coupled partial dif-
ferential equations which corresponds to (1.16a) and (1.16b) respectively:

(1.17)



− σ ′∆v+H(x,Dv) + ρv = F(x,µ(t)) in (0, T)×Q

∂tµ− σ∆µ− div(µHp(x,Dv)) = 0 in (0, T)×Q

µ(0) = m0 > 0 in Q, < m0 >= 1;

and

(1.18)



− σ ′∆u+H(x,Du) + λ(t) = F(x,m(t)) in (0, T)×Q

∂tm− σ∆m− div(mHp(x,Du)) = 0 in (0, T)×Q

m(0) = m0 > 0 in Q, < m0 >= 1, < u >= 0 in (0, T);

where σ ′, T > 0, H is the Legendre-Fenchel transform of the function L, and all functions
are assumed Zd-periodic. Note that (λ,u) (resp. v) depends on time only through m
(resp. µ). The parameters σ ′ and σ are respectively: the noise level related to the predic-
tion process (the assessment of the future evolution), and the noise level associated to the
evolution of the players. The first equations in (1.18) and (1.17) give the “evolution” of
the game value of a “small” player, and express the adaptation of players choices to the
environment evolution. The evolution of µ and m expresses the actual evolution of the
population density. We refer to Section 1 and Section 3 for more detailed explanations.

We start by proving well-posedness for systems (1.17), (1.18) under several sufficient
conditions on H and F, by considering a smooth initial probability densitym0.

THEOREM 1.3. Under suitable assumptions (c.f. Section 2), there exists a unique solution
(v,µ) (resp. (λ,u,m)) to the problem (1.17) (resp. (1.18)), such that:

• (v,µ) ∈ C1/2
(
[0, T ];C2(Q)

)
× C1,2(QT );

• (λ,u,m) ∈ C1/2 ([0, T ])× C1/2
(
[0, T ];C2(Q)

)
× C1,2

(
QT
)
.

The proofs rely on continuous dependence estimates for Hamilton-Jacobi-Bellman
equations [93], the small-discount approximation and the non-local coupling which pro-
vides compactness and regularity. One should note that in contrast to most MFG systems,
the uniqueness of solutions to systems (1.18) and (1.17) does not require the monotonicity
condition (1.4a) nor the convexity ofHwith respect to the second variable, because of the
forward-forward structure of the systems (cf. Section 2).
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Next, we provide a detailed derivation of systems (1.17) and (1.18) from N-Player
stochastic differential games models. Consider a game with N indistinguishable players
whose states are driven by:

(1.19) dXit = α
i
t(X

i
t) dt+

√
2σdWi

t, Xi0 = Vi, i = 1, ...,N,

where α1
t, ...,αNt ∈ A, (W1

t)t>0, ..., (WN
t )t>0 are N independent F-Wiener processes, and

(Vi)16i6N are i.i.d random variables with law m0. We suppose that any player i aims to
minimize the cost functional:

(1.20) Jiρ
(
t,V, ᾱ1

t, ..., ᾱNt
)
:= E

[∫∞
t

e−ρsL(Xis,t,α
i
t(X

i
s,t)) + F

(
Xis,t; ν̂

i,N
Xt

)
ds
∣∣∣ Ft] ,

or

(1.21) Ji∞ (t,V,α1
t, ...,αNt

)
:= lim inf
τ→+∞ 1

τ
E
[∫τ
t

L(Xis,t,α
i
t(X

i
s,t)) + F

(
Xis,t; ν̂

i,N
Xt

)
ds
∣∣∣ Ft] .

Here

ν̂
i,N
Xt

:=
1

N− 1

∑
j6=i

δ
X
j
t
,

and the scheduled-fictitious trajectories (X1
s,t)s>t, ..., (XNs,t)s>t are driven by

(1.22)

{
dXis,t = α

i
t(X

i
s,t) ds+

√
2σ ′ dBis−t,t s > t,

Xit,t = X
i
t, i = 1, ...,N,

where
{
(B1
s,t)s>0, ..., (BNs,t)s>0

}
t>0

is a family of standard Brownian motions. For any

t > 0, the process (Bis−t,t)s>t represents the noise related to the scheduling of the ith

player, and is assumed to be independent fromW1
t , ...,WN

t .
Let (X1

t)t>0, ..., (XNt )t>0 (resp. (Z1
t)t>0, ..., (ZNt )t>0) be the trajectories associated to

an equilibrium configuration with respect to (Jiρ)16i6N (resp. (Ji∞)16i6N). The exact def-
inition of equilibrium in this specific context is provided in Section 3. Then, the following
hold:

THEOREM 1.4. For any t ∈ [0, T ], it holds that:

lim
N

max
16i6N

d1

(
L
(
Xit
)

,m(t)
)
= 0;

lim
N

max
16i6N

d1

(
L
(
Zit
)

,µ(t)
)
= 0;

lim
N

∥∥u[m(t)] − Eu
[
νNXt
]∥∥∞ = 0;

lim
N

∣∣λ[m(t)] − Eλ
[
νNXt
]∣∣ = 0; and

lim
N

∥∥v[µ(t)] − Ev
[
νNZt
]∥∥∞ = 0.

The proof of Theorem 1.4 relies on the standard coupling arguments [107], and con-
tinuous dependence estimates for HJB equations [93].

Next, we show that the myopic population self-organizes exponentially fast toward
the stationnary MFG equilibria (1.6), (1.8), in the case where H(x,p) = |p|2/2 and the
coupling F satisfies the monotonicity condition (1.4a).
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THEOREM 1.5. Under the above conditions, there exists R0, ε > 0 such that if

‖m0 − m̄‖2 6 R0 and ρ < ε,

then the following hold for some constants K, δ > 0:

|λ(t) − λ̄|+ ‖u(t) − ū‖C2 + ‖m(t) − m̄‖2 6 Ke−δt;

and

‖v(t) − v̄‖C2 + ‖µ(t) − µ̄‖2 6 Ke−δt; for any t > 0.

Theorem 1.5 reveals that the population of myopic agents “learns” a stationary MFG
equilibrium through the process of observation and self-correction. In particular, it shows
that the system can exhibit a large scale structure even if the cohesion between the agents
is only maintained by interactions between neighbours. The proof of Theorem 1.5 relies
on some algebraic observations which are pointed out in [37] and which are specific to
quadratic Hamiltonians. Therefore, the convergence remains an open problem for more
general cases and it is delegated to a future work.

We conclude Chapter 2 by carrying out several numerical experiments. We provide a
suitable numerical scheme inspired by [3] to simulate the long time behavior of solutions
to system (1.18) for various examples. The results suggests that Theorem 1.5 holds under
less restrictive conditions.

4.2. A Variational Approach for Bertrand & Cournot MFGs. As we already pointed
out, the Bertrand & Cournot MFG system consists in a system of a backward HJB equa-
tion to model a representative firm’s value function, coupled with a forward Fokker-
Planck equation to model the evolution of the distribution of the active firms’ capacity.
Namely, the Bertrand & Cournot MFG system reads:

(1.23a)

{
∂tu+ σ∂xxu− ru+ q2

u,m = 0 in QT ,

∂tm− σ∂xxm− ∂x (qu,mm) = 0 in QT ,

where the production function qu,m is given by:

(1.23b) qu,m(t, x) :=
1

2

(
1 − κ

∫ `
0
qu,m(t,y)m(t,y) dy− ∂xu(t, x)

)
,

and κ > 0 is a coefficient that quantifies the substitutability of the produced goods. Note
that the function qu,m is defined as a fixed point in the latter expression. As long as we
consider Bertrand & Cournot MFGs we suppose that production capacity of any player
belongs to [0, `], where ` > 0 is a limit capacity that is unreachable for any producer.
Therefore, QT refers to (0, T) × (0, `) in this context. We refer the reader to Chapter 3 for
a detailed explanation of the MFG model (1.23a)-(1.23b).

Firms disappear a soon as they deplete their capacity and can no longer generate
revenue. This fact is expressed through absorbing boundary conditions for m and u at
x = 0, and for simplicity we consider reflection boundary conditions at x = `. Namely,
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the problem (1.23a)-(1.23b) is complemented with the following boundary conditions :

(1.23c)



m(t, 0) = 0, u(t, 0) = 0, ∂xu(t, `) = 0 in (0, T),

m(0) = m0, u(T , .) = uT , in [0, `],

σ∂xm+ qu,mm = 0 in (0, T)× {`}.

where uT is a positive smooth and non-decreasing function satisfying compatibility con-
ditions on the boundary, andm0 is a smooth probability density satisfying compatibility
conditions as well.

We start by improving the result of [70], by showing the uniqueness of a smooth
solution to (1.23a)-(1.23c) with no restriction on the parameters.

THEOREM 1.6. There exists a unique classical solution to system (1.23a)-(1.23c).

The authors of [70] consider the Bertrand formulation of the problem:

qu,m =
1

2

(
2

2 + κη(t)
+

κ

2 + κη(t)

∫ `
0
∂xu(t,y)m(t,y) dy− ∂xu

)
, η(t) =

∫ `
0
m(t,y) dy,

which is equivalent to the Cournot formulation (1.23b)4, but less convenient for the proof
of uniqueness.

When all players participate at all resource levels, it is possible to replace the absorb-
ing boundary conditions (1.23c) by a reflecting ones. This situation is also considered in
[77] for N-Player dynamic Cournot competition. Reflecting boundary conditions could
also correspond to a situation where reserves are exogenously and infinitesimally replen-
ished. In the rest of Chapter 3, we suppose that system (1.23a)-(1.23b) is endowed with
the following boundary conditions:

(1.24)



∂xu(t, 0) = ∂xu(t, `) = 0, in (0, T),

m(0) = m0, u(T , .) = uT , in [0, `],

σ∂xm+ qu,mm = 0 in (0, T)× {0, `}.

We start by proving well-posedness for the new system (1.23a), (1.23b), (1.24).

THEOREM 1.7. There exists a unique classical solution to system (1.23a), (1.23b), (1.24).

The arguments of the proof in this case are very similar to Theorem 1.6.
Next, we show that system (1.23a), (1.23b), (1.24) is a system of optimality to the

following convex minimization problem:

min
(m,q)∈K

J(m,q),

4This will be clear in Chapter 3.
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such that

(1.25) J(m,q) =

∫T
0

∫ `
0
e−rt

(
q2(t, x) − q(t, x)

)
m(t, x) dxdt

+
κ

2

∫T
0
e−rt

(∫ `
0
q(t,y)m(t,y) dy

)2

dt−

∫ `
0
e−rTuT (x)m(T , x) dx.

The class K on which the minimization problem is considered is defined as follows: We
say that (m,q) ∈ K, if m ∈ L1([0, T ] × [0, `])+, q ∈ L2([0, T ] × [0, `]), and m is a weak
solution to the Fokker-Planck equation

(1.26) ∂tm− σ∂xxm− ∂x(qm) = 0, m(0) = m0,

equipped with Neumann boundary conditions; where weak solutions to (1.26) are de-
fined as in [102]:

• the integrability conditionmq2 ∈ L1([0, T ]× [0, `]) holds, and
• (1.26) holds in the sense of distributions–namely, for all φ ∈ C∞c ([0, T) × [0, `])

such that ∂xφ(t, 0) = ∂xφ(t, `) = 0, for each t ∈ (0, T), we have∫T
0

∫ `
0
(−∂tφ− σ∂xxφ+ q∂xφ)m dxdt =

∫ `
0
φ(0)m0 dx.

Our claim is stated as follows:

THEOREM 1.8. Let (u,m) be a solution to (1.23a), (1.23b), (1.24). Set

q =
1

2

(
2

2 + κ
+

κ

2 + κ

∫ `
0
∂xu(t,y)m(t,y) dy− ∂xu

)
.

Then (m,q) is a minimizer for problem (1.25), that is, J(m,q) 6 J(m̃, q̃) for all (m̃, q̃) in K.
Moreover, if logm0 ∈ L1([0, `]) then the minimizer is unique.

The key argument in the proof of Theorem 1.8 is the change of variable (m,w) :=

(m,mq) (cf. Section 3) that is used in [13] and several works which cite that paper. The
proof of Theorem 1.8 shows that an analogous result to Theorem 1.8 holds for system
(1.23a)-(1.23c) (cf. Remark 3.9). Namely, System (1.23a)-(1.23c), is also a system of op-
timality for the same minimization problem, except this time with Dirichlet boundary
conditions at x = 0 imposed on the Fokker-Planck equation (1.26).

We conclude Chapter 3 by addressing the deterministic limit σ → 0 for the problem
(1.23a), (1.23b), (1.24).

THEOREM 1.9. Assume that σ = 0. Then there exists a unique pair (u,m) which solves the
problem (1.23a), (1.23b), (1.24) in the following sense:

(1) u ∈W1
2([0, T ]× [0, `]) ∩ L∞(0, T ;W1∞(0, `)) is a continuous solution of the Hamilton-

Jacobi equation

(1.27) ∂tu− ru+
1

4
(f(t) − ∂xu)

2 = 0, u(T , x) = uT (x),

equipped with Neumann boundary conditions, in the viscosity sense;
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(2) m ∈ L1 ∩ C([0, T ];P([0, `])) satisfies the continuity equation

(1.28) ∂tm−
1

2
∂x {(f(t) − ∂xu)m} = 0, m(0) = m0,

equipped with Neumann boundary conditions, in the sense of distributions; and
(3) f(t) =

(
2

2+κ + κ
2+κ

∫`
0 ∂xu(t,y)m(t,y) dy

)
for a.e. t ∈ [0, T ].

As usual, existence is obtained by deriving suitable apriori estimates for the solution
of (1.23a), (1.23b), (1.24) with σ > 0, and then taking the limit σ→ 0 by using compactness
arguments. Compactness estimates for m are derived by using the fact that it is the
minimizer for an optimization problem. The proof of uniqueness relies on results for
transport equations with a non-smooth vector field.

4.3. Approximate Equilibria for N-Player Dynamic Cournot Competition. Very lit-
tle is known so far on the rigorous link between the so called Bertrand and Cournot
MFG models and the corresponding N-Player Bertrand and Cournot stochastic differen-
tial games. Indeed, the classical theory cannot be applied to this specific case for two
main reasons: on the one hand, because of the absorbing boundary conditions; and on
the other hand, because these models belong to the class of extended Mean Field Games.
This has motivated the analysis of Chapter 4, in which we address rigorously this ques-
tion for Cournot competition.

We consider a continuum of firms where each firm is constrained to choose a non-
negative production rate in order to manage its production capacity and to generate
profit. In this case the MFG problem is (1.23a), (1.23c) where the function qu,m takes
now the following form:

(1.29) qu,m(t, x) :=
1

2

(
1 − κ

∫ `
0
qu,m(t,y)m(t,y) dy− ∂xu(t, x)

)+

,

where w+ = (w + |w|)/2. In comparison to the previous situation the function qu,m is
less regular. Nevertheless, we will prove that ∂xu is always non-negative so that qu,m

remains bounded for every (t, x) ∈ [0, T ] × [0, `]. This remark plays a crucial role in our
analysis because it provides the stability and compactness which is needed to construct
a suitable solution to system (1.23a),(1.23c), (1.29).

Our first result is the following:

THEOREM 1.10. There exists a unique solution (u,m) to system (1.23a),(1.23c), (1.29)
starting fromm0 ∈ P([0, `]), such that supp(m0) ⊂ (0, `].

By a solution to (1.23a),(1.23c), (1.29) we mean a couple (u,m) where the equation
for u holds in the classical sense, while the equation for m holds in the weak sense (cf.
Section 2). The proof of uniqueness is essentially the same as in Theorem 1.6 and Theorem
1.7. The only difference is the special form of qu,m which makes the computations a
little more tricky. Existence relies on suitable a priori estimates in Hölder spaces and
compactness results borrowed from [102].

Next, we address the link between Cournot MFGs and N-Player dynamic Cournot
competition. Our main result states that the feedback strategies which are computed
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from the MFG system (1.23a),(1.23c), (1.29) allows to build ε-Nash equilibria forN-Player
Cournot competition for large enough N. Let us explain briefly the N-Player dynamic
Cournot game. Given a common time horizon T > 0, consider N indistinguishable
agents where the reserves state of any agent i is modeled by a stopped stochastic pro-
cess

(
Xi
t∧τi

)
t>0

. Here the diffusions (X1
t)t>0, ..., (XNt )t>0 are driven by the following

Skorokhod system:

(1.30)



dXit = −qit dt+
√

2σdWi
t − dξX

i

t ,

Xi0 ∼ m0, i = 1, ...,N,

τi := inf
{
t > 0 : Xit 6 0

}
∧ T ,

where (ξXt )t>0 is the local time associated to the reflected diffusion (Xt)t>0 in x = `; and
(W1

t)t>0, ..., (WN
t )t>0 areN independent F-Wiener processes which models demand fluc-

tuations. The reserves level of any player i can not exceed `, and is gradually depleted
according to a non-negative controlled rate of production

(
qit
)
t∈[0,T ]

. The stopping con-
dition indicates that a firm can no longer replenish its reserves once they are exhausted.
By assuming a linear demand schedule, the profit functional of any producer i is given
by (c.f. Section 3.1):

Ji,Nc (q1, ...,qN) := E

{∫T
0
e−rs

(
1 − κq̄is − q

i
s

)
qis1s<τi ds+ e−rTuT (X

i
τi)

}
,

where
q̄it =

1

N− 1

∑
j6=i

q
j
t1t<τj , for 0 6 t 6 T ,

and uT (0) = 0. Our main result is the following:

THEOREM 1.11. For any N > 1 and i ∈ {1, ...,N}, let us consider the following Skorokhod
problem:

(1.31)

 dX̂it = −qu,m(t, X̂it) dt+
√

2σdWi
t − dξX̂

i

t

X̂i0 ∼ m0, i = 1, ...,N,

and set q̂it := qu,m(t, X̂it). Then for any ε > 0, the strategy profile (q̂1, ..., q̂N) is admissible (c.f.
Section 3), and provides an ε-Nash equilibrium to the game J1,N

c , ..., JN,N
c for large N. Namely:

∀ε > 0, ∃Nε > 1 such that

(1.32) ∀N > Nε,∀i = 1, ...,N, Ji,Nc
(
qi; (q̂j)j6=i

)
6 ε+ Ji,Nc

(
q̂1, ..., q̂N

)
,

for any admissible strategy qi.

The crucial step in the proof of Theorem 1.11 is the analysis of the large population
limit N→∞ for the empirical process:

ν̂Nt :=
1

N

N∑
k=1

δ
X̂kt
1t<τ̂k , ∀t ∈ [0, T ],



20 1. GENERAL INTRODUCTION

where

τ̂i := inf
{
t > 0 : X̂it 6 0

}
∧ T .

We prove a tailor-made (weak) law of large numbers by working in a suitable function
space. Namely, we view the empirical process ν̂N as a random variable on the space
DS ′R

of all càdlàg (right continuous and has left-hand limits) functions, mapping [0, T ]

into the space of tempered distributions. This function space is addressed in [89], where
the authors extend the so called Skorokhod M1 topology on that space, and provide a
convenient characterization of tightness. The topological space (DS ′R

, M1) is also used
in [76] for the analysis of the mean field limit for a stochastic McKean-Vlasov equation
with absorbing boundary conditions. By using the machinery of [76, 89] we prove the
following Lemma which is a crucial step toward the proof of Theorem 1.11:

LEMMA 1.12. As N→∞, the empirical process ν̂N converges in law toward the determin-
istic flowm on (DS ′R

, M1).

The proof of Lemma 1.12 is organized as follows: we start by showing the existence of
sub-sequences (ν̂N

′
) that converges in law to some limiting process ν∗ (c.f. Proposition

4.14). Then, we show that ν∗ is a sub-probability measure that is supported on [0, `] and
satisfying the same equation asm (c.f. Lemma 4.17). Finally, we invoke the uniqueness of
weak solutions to the Fokker-Planck equation to deduce full weak convergence toward
the deterministic flowm.

4.4. Optimal Portfolio Trading Within a Crowded Market. We conclude this thesis
with Chapter 5, where we use the Mean Field Game framework to model the interaction
of a continuum of heterogeneous traders seeking to execute large market orders to man-
age a multi-asset portfolio. Our model is an extension of the Cardaliaguet-Lehalle model
[39] to the case of multi-asset portfolios. For the sake of simplicity, we will not explain the
model here, and we will only present our main results and findings. We refer to Section
2 for a detailed and complete explanation of the Mean Field Game model.

The Mean Field Game system of PDEs associated to our model takes the following
form:

(1.33)



γa

2
q · Σq = ∂tu

a + Aµ · q+
d∑
i=1

ViHi (∂qiu
a(t, q)) in (0, T)× R,

∂tm+

d∑
i=1

Vi∂qi

(
mḢi (∂qiu

a(t, q))
)
= 0 in (0, T)× R×D,

µit =

∫
(q,a)

ViḢi (∂qiu
a(t, q))m(t, dq, da) in [0, T ],

m(0, dq, da) = m0( dq, da), uaT = −Aaq · q,
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whereD is a closed subset of R, the matrix A := diag(α1, ...,αd) characterizes the magni-
tude of the permanent market impact, γa is the risk aversion coefficient for investor a, Σ
is the fundamental covariance matrix of assets returns, Vi is the “typical” daily volume
for asset i, Hi is a function which characterizes liquidity, Ḣi denotes the first derivative
ofHi, and Aa is a diagonal matrix of penalization of large final inventories. Here µi is the
average speed of trading on asset i at the equilibrium,m characterizes the distribution of
agents in R×D, while ua is the value function of a representative investor. We refer the
reader to Section 2.1 for a detailed explanation of the MFG problem.

At first, we address the uniqueness of solutions to system (1.33). We refer the reader
to Section 2.1 for a precise definition of what we mean by a solution to (1.33). For now
we can keep in mind that the equation for ua holds in the classical sense for a.e. a ∈ D,
while the equation form holds in the sense of distributions.

PROPOSITION 1.13. Under assumptions of Section 2.1, the Mean Field Game system (1.33)
has at most one solution.

Next, we show that system (1.33) is well-posed in the case where

(1.34) Hi(p) = |p|2/4ηi, ηi > 0, i = 1, ...,N.

Assumption (1.34) is in force throughout all the rest of Chapter 5. In that particular case,
the solution to (1.33) is constructed by using a suitable ansatz (cf. (5.13)) which reduces
the problem into a simpler system of coupled ODEs. Nevertheless, due to the forward-
backward structure of our system, we need a smallness condition on A in order to con-
struct a solution. This assumption is also considered in [39], and is not problematic from
a modeling standpoint since |A| is generally small in applications (cf. Section 2.3).

THEOREM 1.14. Under suitable assumptions on data (c.f. Section 2.2), there exists α0 > 0

such that, for |A| 6 α0 the Mean Field Game system (1.33) has a unique solution.

By solving the MFG system (1.33) we are able to characterize the optimal trading
strategy of an individual agent given her/his initial inventory. Indeed, we show that the
optimal feedback strategy at the MFG equilibrium has the following form:

v∗a(t, q) = 2VHa(t)q+ 2V
∫T
t

exp

{∫w
t

2Ha(s)V ds

}
Aµw dw

=: v1,∗
a (t, q) + v2,∗

a (t,µ),

where V := diag
(
V1
4η1

, ..., Vd4ηd

)
and (Ha(t))t∈[0,T ] is a Rd×d-valued process characteriz-

ing the optimal trading speed of investor a (c.f. Section 2.2). This expression shows that
the optimal execution strategy of an individual agent is the sum of the classical Almgren-
Chriss strategy v1,∗

a (cf. the Introduction of Chapter 5 and references therein) and an ad-
ditional component v2,∗

a which adjusts the speed based on the anticipated future average
trading (mean field) on the remainder of the trading window [t, T ].

In Section 2.3 we address the case of identical preferences (i.e. D is reduced to a single
point) and provide a convenient numerical scheme to compute the solution of the MFG
system. We present several examples of an agent’s optimal trading path, and the average
trading path of the population (cf. Section 2.3). The simulated examples illustrate some



22 1. GENERAL INTRODUCTION

specific trading strategies to the case of multi-asset portfolio, such as Arbitrage Strategies
(cf. Figure 1(d)) and Hedging strategies (cf. Figure 1(c)).

In the second part of Chapter 5, we use our model to investigate the influence of
large orders execution on the observed covariance matrix of asset returns. We place our-
selves from the point of view of an external observer which aims to estimate the intraday
covariance matrix of asset returns using historical market data.

At first, we suppose that the assets prices (S1
t, ...,Sdt )t∈[0,T ] evolve according to a spe-

cific dynamics; namely, we suppose that

(1.35) dSit = σi dWi
t + αiµ

i
t dt, i = 1, ...,d;

where α1, ...,αd are nonnegative scalars modeling the magnitude of the permanent mar-
ket impact, σ1, ...,σd > 0, (W1

t , ...,Wd
t )t>0 are d correlated Wiener processes, and we

denote by Σ the covariance matrix of the d-dimensional process (σ1W
1
t , ...,σdW

d
t )t∈[0,T ].

Here (µ1
t, ...,µdt )t∈[0,T ] are the optimal trading flows associated the the Mean Field Game

system (1.33) with identical preferences (c.f. Section 2.2). We suppose that the same game
occurs every day with different initial distribution inventories. In other words, we sup-
pose that m0 is a P(R)-valued random variable which takes a given realization on each
day. For simplicity we assume that the observed covariance matrix between tk and tk+1

is estimated by using the following naive estimator:

(1.36) C
i,j
[tk,tk+1]

:=
1

N− 1

N∑
l=1

(
δSi,k,l − δ̂S

i,k
)(
δSj,k,l − δ̂S

j,k
)

,

where δSn,k,l is the increment of the price of asset n in bin k + 1 of day l, and δ̂S
n,k

=

N−1
∑N
l=1 δS

n,k,l. In this case, the intraday covariance matrix of asset returns can be
computed explicitly:

PROPOSITION 1.15. Suppose that m0 is independent from (Wt)t∈[0,T ], then for any i, j in
{1, ...,d} and (tk)k ⊂ [0, T ], it holds that:

C
i,j
[tk,tk+1]

= (tk+1 − tk)Σi,j + αiαj
ηiηj

4ViVj
Λ
i,j
k + εN,

where εN → 0 as N → ∞, and (Λi,j,k)16i,j6d is d× d real matrice which depends on m0 and
the MFG optimal execution strategy (cf. Proposition 5.4).

Proposition 1.15 shows that the realized covariance matrix is the sum of the funda-
mental covariance matrix and an excess realized covariance that is generated endoge-
nously by the execution impact of the crowd of investors. In addition, we show that the
realized covariance can deviate significantly from fundamentals when: the market im-
pact is large, the considered assets are highly non-liquid, the risk aversion coefficient γ is
high, and/or when the standard deviation ofm0 is large. We carry out several numerical
experiments in order to illustrate this fact.

Next, we conduct an empirical analysis of the covariance matrix of asset returns by
considering a pool of d = 176 US stocks. The data consists of five-minute binned trades
and quotes information from January 2014 to December 2014. We show that the aver-
age intraday volatility, and the average intraday covariance between stocks, exhibits the
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well-known “left-slanted smile” shape, which is consistent with our model. Moreover,
by conditioning our estimations to low trade imbalances (relatively small orders), the av-
erage intraday volatility and covariance patterns flattens out (cf. Figures 4(a) and 4(b)),
which fits well the findings of our theoretical analysis. Finally, we propose a toy model
based approach to calibrate our MFG model on data.





Part I

Self-Organization in Mean Field Games





CHAPTER 2

Quasi-Stationary Mean Field Games

This work is published in “Applied Mathematics and Optimization” under the title “On Quasi-
Stationary Mean Field Games Models”, except the last section on numerical experiments

1. Introduction

In this chapter, we introduce a Mean Field Game model with a non-anticipating
decision-making mechanism. Our agents anticipate no evolution, undergo changes in
their environment and adjust their actions given the available information. This frame-
work is well suited to a context in which agents have poor – or no – visibility on the
evolution of the system and only manage the ongoing situation. We introduce the MFG
model, then we explain the link with the corresponding N-Player game. Finally, we an-
alyze the formation of equilibria configurations for this type of interaction systems and
assess the rate at which these systems converge towards these equilibria.

Let us consider a continuum of indistinguishable players whose states are driven by
a stochastic differential equation. The players are non-anticipating – myopic – and take
actions given a picture of the environment at time t, aiming to get the best possible fu-
ture cost (s > t). From a mathematical standpoint, a generic player chooses at any time
t a drift vector field αt(.) that has a suitable regularity. This action is chosen in order to
minimize a cost functional which depends on the current – observed – state of the sys-
tem, and on a evaluation of the future path (s > t) of the player given her/his choice
at time t. Thus, choosing the optimal αt(.) at time t, amounts to schedule optimally the
future evolution of the player, by fixing the state of the system at time t. Players follow
their planned evolution and adjust their drift according to the observed moves of oppo-
nents. The ongoing process of adapting the drift describes a process of self-correction.
We should note that this process intrinsically implies the existence of two time scales: a
fast time scale which is linked to the optimization of the expected future cost; and a slow
time scale linked to the actual evolution of the system. In this work, we shall consider two
kinds of cost functionals: a long time average cost functional, and a long run discounted
cost functional.

For simplicity, we work in a periodic setting in order to avoid issues related to bound-
ary conditions or conditions at infinity. Therefore functions are assumed to be Zd-periodic
with respect to the state variable ‘x’, and considered as defined on Q := Td (the d-
dimensional Torus). Given an initial distribution of players’ statesm0 in P(Q), and ρ > 0,
the Mean Field Game problem with myopic players is articulated in the following way:

27
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(1) Observing and scheduling: at any time t > 0, a representative player observes the
global distribution of the players’ statesm(t) and solves

(2.1) inf
αt∈A

Jm(t)(αt),

with Jm(t) corresponding to:

(2.2a) J
m(t)
ρ (αt) := E

[∫∞
t

e−ρsL(Xts,αt(X
t
s)) + F(X

t
s;m(t)) ds

∣∣∣ Ft] ;

or

(2.2b) Jm(t)∞ (αt) := lim inf
τ→+∞ 1

τ
E
[∫τ
t

L(Xts,αt(X
t
s)) + F(X

t
s;m(t)) ds

∣∣∣ Ft] ;

where the state of a representative player evolves according to:

dXt = αt(Xt) dt+
√

2σdWt t > 0, X0 ∼ m0;

and for any t > 0 the process (Xts)s>t models the predicted – fictitious – future
evolution of the player given her/his state at time t:

dXts = αt(X
t
s) ds+

√
2σ ′ dBs−t s > t, Xtt = Xt;

(2) Equilibirium: the flow (m(t))06t6T satisfies m(t) = L(X̂t) for every t ∈ [0, T ],
where

dX̂t = α̂t(Xt) dt+
√

2σdWt t > 0, X0 ∼ m0,

and α̂t is a minimizer of (2.1) for any t ∈ [0, T ].

Here σ,σ ′ > 0, (Wt)t>0 and (Bt)t>0 are two independent Wiener processes, and A is the
set of admissible vector fields which will be explained precisely in Section 3. Moreover,
Ft := σ {X0, Wu, u 6 t} is the information available to the players at time t. The exact
regularity of functions L and Fwill be specified latter.

Note that ‘t’ is a slow time scale which is related to the evolution of the population,
while ‘s’ is a fast time scale which is related to the scheduling. Given the structure of the
cost functionals (2.2a), (2.2b), the agents take into account the actual picture of the system
through the coupling function F, and build a long-run strategy according to an evaluation
of their future path emanating from that choice. As the distribution of the players m(t)

evolves in time, players schedule an effective response by adjusting their αt.
From an analytic standpoint, we obtain the following systems of coupled partial dif-

ferential equations (cf. Proposition 2.14) which corresponds to (2.2a) and (2.2b) respec-
tively:

(2.3a)



− σ ′∆v+H(x,Dv) + ρv = F(x,µ(t)) in (0, T)×Q

∂tµ− σ∆µ− div(µHp(x,Dv)) = 0 in (0, T)×Q

µ(0) = m0 > 0 in Q,

∫
Q

m0 = 1;
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and

(2.3b)



− σ ′∆u+H(x,Du) + λ(t) = F(x,m(t)) in (0, T)×Q

∂tm− σ∆m− div(mHp(x,Du)) = 0 in (0, T)×Q

m(0) = m0 > 0 in Q,

∫
Q

m0 = 1,

∫
Q

u = 0,

The first equations in (2.3b) and (2.3a) give the “evolution” of the game value function
of an “atomic” player, and express the adaptation of players choices to the environment
evolution. The evolution of µ and m expresses the actual evolution of the population
density. We refer to Section 3 for more detailed explanations and the derivation of these
systems from N-Player games. We shall see that for any time t, (λ(t),u(t)) (resp. v(t))
characterizes a local Nash equilibrium related to a long time average cost (2.2b) (resp. a
discounted cost (2.2a)). Note that the long time averaging with respect to the fast scale
‘s’ provides a “stationary” structure for the first equation in (2.3a)-(2.3b), which depends
on the slow time scale ‘t’ because of the process of self-correction. Because of this par-
ticular structure we shall say that the MFG systems (2.3a)-(2.3b) are quasi-stationary. The
main purpose of this chapter is to provide some insight on the behaviour of multi-agent
systems with myopic interaction by analyzing the MFG systems (2.3a)-(2.3b).

In contrast to most MFG systems, the uniqueness of solutions to systems (2.3a) and
(2.3b) does not require the monotonicity condition (1.4a) nor the convexity of H with
respect to the second variable. This fact is essentially related to the forward-forward
structure of the systems. We also show that the small-discount approximation (1.9) holds
for quasi-stationary models under the same conditions as for the stationary ones. Under
the monotonicity condition (1.4a), we prove in Section 4 that for a quadratic Hamiltonian,
a solution (λ,u,m) to (2.3b) converges exponentially fast in some sense to the unique
equilibrium (λ̄, ū, m̄) of (1.6) as t → +∞, provided that m0 − m̄ is sufficiently small
and σ = σ ′. An analogous result holds also for systems (1.8)-(2.3a) when the discount
rate ρ is small enough. This asymptotic behavior is interpreted by the emergence of
a self-organizing phenomenon and a phase transition in the system. Note that this entails in
particular that our systems can exhibit a large scale structure even if the cohesion between
the agents is only maintained by interactions between neighbors. The techniques used
to prove this asymptotic results rely on some algebraic properties pointed out in [37]
specific to the quadratic Hamiltonian. On the other hand, one can not use the usual
duality arguments to show convergence for general data. Therefore the convergence
remains an open problem for more general cases.

Similar asymptotic results were established for the MFG system in [37, 38] for local
and nonlocal coupling. Long time convergence of forward-forward MFG models is also
discussed in [1, 64]. Self-Organizing and phase transition in Mean Field Games were
addressed in [97–99], for applications in neuroscience, biology, economics, and engineer-
ing. For an overview on collective motions and self-organization phenomena in mean
field models, we refer to [58] and the references therein. The derivation of the Mean Field
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Games system was addressed in [59, 86, 87] for the ergodic case (long time average cost).
More general cases were analyzed in the important recent paper [33] on the master equa-
tion and its application to the convergence problem in Mean Field Games. The reader will
notice in Section 3 that the analysis of the mean-field limit in our case is very similar to
that of the McKean-Vlasov equation. Therefore the proof of convergence is less technical
than in [33] and is based on the usual coupling arguments (see e.g. [96, 100, 107], among
others). MFG models with myopic players are briefly addressed in [1] for applications to
urban settlements and residential choice. However, the sense given to “myopic players”
is different from the one we are considering in this work: indeed, “myopic players” in
[1] corresponds to individuals which compute their cost functional taking only into ac-
count their very close neighbours, while in this manuscript ”myopic players” refers to
individuals which anticipate nothing and only undergo the evolution of their environ-
ment. In [53], the authors introduce a model for the study of crowds dynamics, that is
very similar to the one addressed in this chapter: in Section 2.2.2, the authors consider a
situation where at any time pedestrians build the optimal path to destination, based on
the observed state of the system. Although the approaches are different, the two models
have many similarities.

Local Nash equilibria for mean field systems of rational agents were also considered
in [55–57]. The authors use the “Best Reply Strategy approach” to derive a kinetic equa-
tion and provide applications to the evolution of wealth distribution in a conservative
[56] and non-conservative [57] economy. The link between Mean Field Games and the
“Best Reply Strategy approach” is analyzed in [54].

This chapter is organized as follows: In Section 2, we give sufficient conditions for
the existence and uniqueness of classical solutions for systems (2.3a)-(2.3b). The proofs
rely on continuous dependence estimates for Hamilton-Jacobi-Bellman equations [93],
the small-discount approximation, and the non-local coupling which provides compact-
ness and regularity. Section 3 is devoted to a detailed derivation of systems (2.3a) and
(2.3b) from N-Player stochastic differential games models. In Section 4, we prove that a
solution (λ,u,m) to (2.3b) converges exponentially fast in some sense to the unique solu-
tion (λ̄, ū, m̄) of (1.6) as t→ +∞. We prove this result under the monotonicity condition
(1.4a), for a quadratic Hamiltonian, when m0 − m̄ is sufficiently small and σ = σ ′. We
also show that an analogous result holds for systems (1.8)-(2.3a) when the discount rate
ρ is small enough. We conclude this chapter by carrying out several numerical experi-
ments. We provide a suitable numerical scheme inspired by [3] to simulate the long time
behavior of solutions to system (1.18) for various examples.

Throughout all this chapter, γ ∈ (0, 1) is a fixed parameter.

2. Analysis of the Quasi-Stationary MFG Systems

This section is devoted to the analysis of systems (2.3a) and (2.3b). A detailed deriva-
tion of these systems from a N-Player differential game will be given in Section 3.

We shall use the following conditions:
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(H1) the operator m → F(.;m) is defined from P(Q) into Lip(Q) := C0+1(Q), and
satisfies

(2.4) sup
m∈P(Q)

‖F(.;m)‖Lip <∞;

(H2) the Hamiltonian H : Q × Rd −→ R is locally Lipschitz continuous, and Zd-
periodic with respect to the first variable;

(H3) Hp exists and is locally Lipschitz continuous;
(H4) DxHp and Hpp exist and are locally Lipschitz continuous;
(H5) there exists a constant κF > 0 such that, for anym,m ′ ∈ P(Q),

‖F(.;m) − F(.;m ′)‖∞ 6 κF d1(m,m ′);

(H6) m0 is a probability measure, absolutely continuous with respect to the Lebesgue
measure, and its densitym0 belongs to C2+γ(Q).

The Hamiltonian H satisfies one of the following sets of conditions:

C1. H grows at most linearly in p, i.e., there exists κH > 0, such that

|H(x,p)| 6 κH (1 + |p|) , ∀x ∈ Q, ∀p ∈ Rd;

C2. H is superlinear in p uniformly in x, i.e.,

inf
x∈Q

|H(x,p)|/|p|→ +∞ as |p|→ +∞,

and there exists θ ∈ (0, 1), κ > 0, such that a.e x ∈ Q and |p| large enough,

(2.5) 〈DxH,p〉+ θ.H2 > −κ|p|2.

Condition (C1.) arises naturally in control theory when the controls are chosen in a
bounded set, whereas under condition (C2.) the control variable of each player can take
any orientation in states space and can be arbitrary large with a large cost. As it is pointed
out in [12, 86, 87], the condition (2.5) is interpreted as a condition on the oscillations of H
and plays no role when d = 1.

A triplet (λ,u,m) is a classical solution to (2.3b), ifm : [0, T ]×Rd −→ R is continuous,
of class C2 in space, and of class C1 in time, u : (0, T) × Rd −→ R is of class C2 in space,
and (λ,u,m) satisfies (2.3b) in the classical sense. Similarly, a couple (v,µ) is a classical
solution to (2.3a), if µ : [0, T ]× Rd −→ R is continuous, of class C2 in space, of class C1 in
time, v : (0, T) × Rd −→ R is of class C2 in space and (v,µ) satisfies (2.3a) in the classical
sense.

In this section, we give an existence and uniqueness result of classical solutions for
system (2.3a) and (2.3b) under condition (C1.). In addition, we show that system (2.3b) is
also well-posed under condition (C2.).

We start by dealing with the case where the Hamiltonian has a linear growth (con-
dition (C1.)). Let us consider the quasi-stationary approximate problem (2.3a). We start by
analyzing the first equation in (2.3a).

LEMMA 2.1. Under assumptions (H1), (H2) and (C1.), for any µ ∈ P(Q) and ρ > 0, the
problem

(2.6) − σ ′∆v+H(x,Dv) + ρv = F(x;µ) in Q
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has a unique solution vρ[µ] ∈ C2+γ(Q). In addition, there exists constants κ0 > 0 and θ ∈ (0, 1],
such that for any µ ∈ P(Q) and ρ > 0, the following estimates hold

(2.7a) ‖ρvρ[µ]‖∞ 6 ‖F‖∞ + κH,

(2.7b) ‖vρ[µ] − 〈vρ[µ]〉 ‖C2+θ 6 κ0.

PROOF. The proof of existence and uniqueness for equation (2.6) relies on regularity
results and a priori estimates from elliptic theory. A detailed proof to this result is given
in [12, Theorem 2.6] in a more general framework. By looking at the extrema of v[µ],
one easily gets (2.7a). The second bound is proved by contradiction using the strong
maximum principle. The details of the proof are given in [12, Theorem 2.5]. Condition
(2.4) ensures that the constant κ0 does not depend on µ. �

REMARK 2.2. Note that the well-posedness of equation (2.6) still holds under the
following condition on H (the so-called natural growth condition),

∃κ ′H > 0, |H(x,p)| 6 κ ′H
(

1 + |p|2
)

, ∀x ∈ Q,∀p ∈ Rd;

which is less restrictive than (C1.).

We now state a continuous dependence estimate due to Marchi [93], which plays a
crucial role.

LEMMA 2.3. Assume (H1)-(H3), and (C1.). For any µ,µ ′ ∈ P(Q) and ρ > 0, we have that

(2.8a) ‖vρ[µ] − vρ[µ ′]‖∞ 6 ρ−1‖F(.;µ) − F(.;µ ′)‖∞.

Moreover, for any M > 0, there exists a constant χM > 0, such that for any ρ ∈ (0,M) and
µ,µ ′ ∈ P(Q), the following holds

(2.8b) ‖wρ[µ] −wρ[µ ′]‖C2 6 χM‖F(.;µ) − F(.;µ ′)‖∞,

where wρ = vρ − 〈vρ〉.

PROOF. Note that

v± := vρ[µ
′]± ρ−1‖F(.;µ) − F(.;µ ′)‖∞,

are respectively a super- and a sub-solution to equation (2.6) with the coupling term
F(.;µ). Thus, estimate (2.8a) follows thanks to the comparison principle.

The proof of (2.8b) is similar to [93, Theorem 2.2]. Nevertheless we give a proof to this
result because in this particular framework we do not need to fulfill all the conditions of
[93]. We shall proceed by contradiction assuming that there exists sequences (ρn) in
(0,M), (µn), (µ ′n) ∈ P(Q), such that for any n > 0,

(2.9) cn > n‖F(.;µn) − F(.;µ ′n)‖∞,

where cn := ‖wρn [µn] −wρn [µ ′n]‖C2 , and limn ρn = 0. Note that the function

Wn := c−1
n

(
wρn [µn] −wρn [µ

′
n]
)

satisfies the following equation

Rn − σ ′∆Wn + fn.DWn = 0,
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where

Rn := ρnWn + c−1
n ρn

〈
vρn [µn] − vρn [µ

′
n]
〉
+ c−1

n

(
F(.;µn) − F(.;µ

′
n)
)

,

and

fn(x) :=

∫1

0
Hp
(
x, sDwρn [µn] + (1 − s)Dwρn [µ

′
n]
)

ds.

Using (2.9) and (2.8a), one checks that limn ‖Rn‖∞ = 0. In addition, (H3) and (2.7b) en-
tails that ‖fn‖Lip is uniformly bounded. Moreover, invoking standard regularity theory
for linear elliptic equations (see e.g. [63]), the sequence (Wn) is uniformly bounded in
C2+θ ′(Q) for some θ ′ ∈ (0, 1]. We infer that (fn,Wn) converge uniformly to some (f,W)

in C(Q)× C2(Q) which satisfies

−σ ′∆W + f.DW = 0, ‖W‖C2 = 1,

∫
Q

W = 0.

Since W is periodic, we deduce from the strong maximum principle that W must be
constant; this provides the desired contradiction. �

COROLLARY 2.4. Under (H5) and assumptions of Lemma 2.3, for any ρ > 0 there exists a
constant κρ > 0 such that,

(2.10a) ‖vρ[µ] − vρ[µ ′]‖C2 6 κρ d1(µ,µ ′)

for any µ,µ ′ ∈ P(Q).

We shall give now an existence and uniqueness result for system (2.3a).

THEOREM 2.5. Under conditions (H1)-(H6) and (C1.), there exists a unique classical solu-
tion (v,µ) in C1/2

(
[0, T ];C2(Q)

)
× C1,2(QT ) to the problem (2.3a).

PROOF. Existence : For a constant δ > 0 large enough to be chosen below, let Xδ be
the set of maps µ ∈ C([0, T ];P(Q)) such that

sup
s6=t

d1(µ(t),µ(s))

|t− s|1/2
< δ.

Note that Xδ is compact thanks to Ascoli’s Theorem, and the compactness of (P(Q), d1).
We aim to prove our claim using Schauder’s fixed point theorem (see e.g. [105, p. 25]).
Set for any (x,ν) ∈ Q× P(Q),

Ψ(x;ν) := Hp(x,Dvρ[ν](x)).

Note that Ψ and DxΨ are uniformly bounded thanks to (H3), (H4), and the uniform
bound (2.7b). We define an operator

T : Xδ → Xδ,

such that, for a given ν ∈ Xδ, Tν := µ is the solution to the following “McKean-Vlasov”
equation

(2.11) ∂tµ− σ∆µ− div(µΨ(x;ν(t))) = 0, µ(0) = m0.

Let us check that T is well defined. Note that the above equation can be written as

∂tµ− σ∆µ− 〈Dµ,Ψ(x;ν(t))〉− µdiv (Ψ(x;ν(t))) = 0.
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Using assumption (H3) and estimate (2.10a), we have for any t 6= s and x ∈ Q

|Ψ(x;ν(t)) − Ψ(x;ν(s))| 6 Cρ,Hp d1(ν(t),ν(s)),

so that

sup
x∈Q

sup
t 6=s

|Ψ(x;ν(t)) − Ψ(x;ν(s))|

|t− s|1/2
6 Cδ,ρ,Hp <∞.

In the same way, one checks that functions (x, t)→ Ψ(x;ν(t)) and (x, t)→ div [Ψ(x;ν(t))]

are in Cγ
′/2,γ ′(QT ), where γ ′ = min(γ, θ), thanks to Lemma 2.1 and (H4). Here γ and θ

are the Hölder exponents appearing in (H6) and (2.7b) respectively. We infer that prob-
lem (2.11) has a unique solution µ ∈ C1+γ ′/2,2+γ ′(QT ) which satisfies

(2.12) ‖µ‖C1+γ ′/2,2+γ ′ 6 C‖Ψ‖
C1
‖m0‖C2+γ ′ ,

owing to existence and uniqueness theory for parabolic equations in Hölder spaces [85,
Theorem IV.5.1 p. 320]. Furthermore, using classical properties of Fokker-Planck equa-
tion (see Lemma A.1), it follows that

d1(µ(t),µ(s)) 6 CT (1 + ‖Ψ‖∞) |t− s|1/2.

Therefore µ ∈ Xδ for big enough δ, since ‖Ψ‖∞ and CT does not dependent on ν nor on
δ. In particular, the operator T is well defined form Xδ into Xδ ∩ C1+γ ′/2,2+γ ′(QT ).

Let us check now that T is continuous. Given a sequence νn → ν in Xδ, let

µn := Tνn, and µ := Tν.

Invoking Ascoli’s Theorem, estimate (2.12) and the uniqueness of the solution to (2.11), it
holds that

lim
n
‖µn − µ‖C1,2 = 0.

The convergence is then easily proved to be in C([0, T ],P(Q)). Thus, by Schauder fixed
point theorem the map T : Xδ → Xδ has a fixed point µ ∈ C1,2(QT ) and (vρ[µ],µ) is a clas-
sical solution to (2.3a). In addition, estimate (2.10a) entails that vρ[µ] ∈ C1/2

(
[0, T ];C2(Q)

)
.

Uniqueness : Let (v,µ) and (v ′,µ ′) be two solutions to the system (2.3a), w := v − v ′

and ν := µ− µ ′. One checks that{
∂tν− σ∆ν− div(νHp(x,Dv)) = div

(
µ ′
(
Hp(x,Dv) −Hp(x,Dv

′)
))

,

νt=0 = 0.

By standard duality techniques, we deduce that

1

2

d

dt
‖ν(t)‖22+σ‖Dν(t)‖22 = −

(∫
Q

νDν.Hp(x,Dv) +

∫
Q

µ ′Dν.
(
Hp(x,Dv) −Hp(x,Dv

′)
))

,

so that

(2.13)
1

2

d

dt
‖ν(t)‖22 +

σ

2
‖Dν(t)‖22 6 C

(
‖G‖∞‖ν(t)‖22 +

∫
Q

|µ ′Dw|2
)

.

From (2.10a) and (2.12), we infer that∫
Q

|µ ′Dw|2 6 C‖m0‖2C2+γ d1(µ,µ ′)2 6 C‖m0‖2C2+γ‖ν(t)‖22.
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Plugging this into (2.13) provides

‖ν(t)‖22 6 C
∫t

0
‖ν(s)‖22 ds,

which implies that ν ≡ 0, and so w ≡ 0 thanks to (2.10a). The proof is complete. �

Let us now deal with system (2.3b). We shall start by proving the well-posedness for
the first equation in (2.3b) and by giving a continuous dependence estimate.

LEMMA 2.6. Under conditions (H1)-(H3), (H5) and (C1.), for any measure m ∈ P(Q),
there exists a unique solution (λ[m],u[m]) ∈ R× C2(Q) to the problem

(2.14) − σ ′∆u+H(x,Du) + λ = F(x;m) in Q, < u >= 0.

Moreover, for anym,m ′ ∈ P(Q), the following estimates hold

(2.15a)
∣∣λ[m] − λ[m ′]

∣∣ 6 κF d1(m,m ′),

(2.15b)
∥∥u[m] − u[m ′]

∥∥
C2 6 χ1κF d1(m,m ′).

PROOF. It is well known (see e.g. [6, 10]) that for a given m ∈ P(Q), there exists a
unique periodic solution (λ[m],u[m]) in R × C(Q) to (2.14). Regularity of the solution,
and estimates (2.15a), (2.15b) follow from Lemma 2.3, and small-discount approximation
techniques (see e.g. [6, 10, 12]). �

REMARK 2.7. It is possible to show more regularity for the maps m → λ[m], m →
u[m] under additional regularity assumptions on F and H. For instance, if Hpp > κeId
for some κe > 0, and F satisfies

sup
m 6=m ′

d1(m,m ′)−1

∥∥∥∥ δFδm(.,m, .) −
δF

δm
(.,m ′, .)

∥∥∥∥
C0×C1

<∞,

then u[.] and λ[.] are of class C1 in P(Q). We refer to [33] for the definition of derivatives
in P(Q) and notations. In addition, we have that

δu

δm
(m)(ν) := w(m,ν) and

δλ

δm
(m)(ν) := δ(m,ν)

for any m in P(Q) and any signed measure ν on Q, where (δ,w) is the solution to the
following problem

−σ ′∆w+Hp (x,Du[m]) .Dw+ δ =
δF

δm
(m)(ν) in Q, and

∫
Q

w = 0.

One has also an analogous result for the map vρ[.] defined in Lemma 2.1. We omit the
details and invoke [33, Proposition 3.8] for a similar approach.

We prove now well-posedness for system (2.3b).

THEOREM 2.8. Under assumptions (H1)-(H6) and (C1.), there exists a unique classical
solution (λ,u,m) in C1/2 ([0, T ]) × C1/2

(
[0, T ];C2(Q)

)
× C1,2

(
QT
)

to system (2.3b). This
result holds if one replaces condition (C1.) by condition (C2.).
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PROOF. The proof of existence relies on small-discount approximation techniques.
We give here an adaptation of these techniques for the quasi-stationary case. The crucial
point in this proof is estimates (2.7a) and (2.7b).

Assume first that H satisfies condition (C1.). Let (vρ,µρ) be the unique classical solu-
tion to (2.3a), and set wρ := vρ − 〈vρ〉. Invoking (2.7a) and (2.7b), we have

(2.16)



− σ ′∆wρ +H(x,Dwρ) + ρwρ = F(x;µρ(t)) − ρ < vρ > in QT ,

∂tµ
ρ − σ∆µρ − div (Hp(x,Dv

ρ)µρ) = 0 in QT , µρ(0) = m0 in Q,

sup
06t6T

‖wρ(t)‖C2+θ 6 κ0, sup
06t6T

‖ρvρ[µ(t)]‖∞ 6 ‖F‖∞ + κH.

On the other hand, recall that according to [85, Theorem IV.5.1 p. 320] it holds that

(2.17) ‖µρ‖C1+γ ′/2,2+γ ′ 6 C1‖m0‖C2+γ ′ ,

where γ ′ = min(γ, θ), and the constant C1 > 0 is independent of ρ thanks to (2.7b).
Hence, one can extract a subsequence ρn → 0 such that for any t ∈ [0, T ]

(2.18)
(ρn 〈vρn(t)〉 ,wρn(t),µρn)→ (λ(t),u(t),m) in R× C2(Q)× C1,2(QT ) as n→∞,

where (λ,u,m) is a classical solution to (2.3b). In addition, for any t, s ∈ [0, T ], estimates
(2.15a) and (2.15b) provide

‖u[m(t)] − u[m(s)]‖C2 6 χ1κF d1(m(t),m(s)),

and
|λ[m(t)] − λ[m(s)]| 6 κF d1(m(t),m(s)).

Thus, u[m] ∈ C1/2
(
[0, T ];C2(Q)

)
and λ[m] ∈ C1/2 ([0, T ]). The proof of uniqueness is

identical to Theorem 2.5. Hence, the proof of well-posedness under (C1.) is complete.
If we suppose that H satisfies only (C2.), then by virtue of (2.4) one can derive the

following uniform bound using Bernstein’s method (see [86, 87] and [12, Theorem 2.1]):

(2.19) ∃κB > 0, ∀ν ∈ P(Q)N, ‖Du[ν]‖∞ 6 κB.

Thus, by a suitable truncation of H one reduces the problem to the previous case. �

REMARK 2.9. All the results of this section hold true if one replaces the elliptic parts
of the equations with a more general operator L of the following form:

L := −Tr
(
ψ(x)D2

)
,

where ψ is Zd-periodic, ‖ψ‖Lip <∞, and there exists κψ > 0 such that ψ(x) > κψId.

3. N-Player Games & Mean Field Limit

We provide in this section a rigorous interpretation for the quasi-stationary systems
(2.3a) and (2.3b) in terms of N-Player stochastic differential games. We shall start by
writing systems of equations for N players, then we pass to the limit when the number
of players goes to infinity assuming that all the players are identical. Throughout this
section, we employ the notations introduced in Lemma 2.1 and Lemma 2.6.
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3.1. The N-Player Stochastic Differential Game Model. We consider a game of N-
players where at each time agents choose their strategy

- assuming no evolution in their environment;
- according to an evaluation of their future situation emanating from the choice.

Observing the evolution of the system, players adjust their strategies without anticipat-
ing. More precisely, each player observe the state of the system at time t and chooses
the best drift vector field αt(.) which optimize her/his future evolution (s > t). The
player adapts and corrects her/his choice as the system evolves. This situation amounts
to resolving at each moment an optimization problem which consists in finding the vec-
tor field (strategy) which guarantees the best future cost. Our agents are myopic: they
anticipate no evolution and only undergo changes in their environment.

Let us now give a mathematical formalism to our model. Let (Wj)16j6N be a family
of N independent Brownian motions in Rd over some probability space (Ω,F,P), and
(Ai)16i6N be closed subsets of Rd. We suppose that the probability space (Ω,F,P) is
rich enough to fulfill the assumptions that will be formulated in this section. Let V :=

(V1, ...,VN) be a vector of i.i.d random variables with values in Rd that are independent
of (Wj)16j6N and let

Ft := σ
{
Vj,Wj

u, 1 6 j 6 N, u 6 t
}

be the information available to the players at time t. We suppose that Ft contains the
P-negligible sets of F.

Consider a system driven by the following stochastic differential equations

(2.20) dXit = α
i
t(X

i
t) dt+

√
2σi dWi

t, Xi0 = Vi, i = 1, ...,N.

For any t > 0, the i-th player choses αit in the set of admissible strategies denoted by Ai,
that is, the set of Zd-periodic processes αi defined on Ω, indexed by Rd with values in
Ai, such that

(2.21) sup
ω∈Ω

‖αi(ω, .)‖Lip <∞,

and (αit)t∈[0,T ] is progressively measurable with respect to (Ft)t∈[0,T ]. The reason of
considering condition (2.21) will be clear in (2.23) below. At each time t > 0, player i
faces an optimization problem for choosing αit(.) ∈ Ai which insures the best future cost.

These instant choices give rise to a global (in time) strategies (α1
t, ...,αNt )t>0 which

does not necessarily guarantee the well-posedness of equations (2.20) in a suitable sense.
Hence we need to introduce the following definitions:

DEFINITION 2.10. Let T > 0 and i = 1, ...,N. We say that the i-th equation of (2.20) is
well-posed on [0, T ], if there exists a process Xi, unique a.s, with continuous sample paths
on [0, T ] which satisfies the following properties:

(i) (Xi)t∈[0,T ] is (Ft)t∈[0,T ]-adapted;
(ii) P

[
Xi0 = Vi

]
= 1;

(iii) P
[∫t

0

∣∣αis(Xis)∣∣ ds <∞] = 1 ∀t ∈ [0, T ];
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(iv) for any t ∈ [0, T ], the following holds

Xit = V
i +

∫t
0
αis(X

i
s) ds+

√
2σiW

i
t a.s .

System (2.20) is well-posed if all equations are.

DEFINITION 2.11. Let T > 0 and i = 1, ...,N. We say that the global strategy (αit)t>0

is feasible on [0, T ], if the i-th equation of (2.20) is well-posed on [0, T ].

Note that in contrast to standard optimal control situations, the optimal global strat-
egy is not a solution to a global (in time) optimization problem, but it is the history of
all the choices made during the game. The agents plan and correct their plans as the
game evolves, and the global strategy is achieved through this process of planning and
self-correction.

The case of a long time average cost. Consider the case where the i-th player seeks to
minimize the following long time average cost:

(2.22) Ji∞ (t,V,α1
t, ...,αNt

)
:= lim inf
τ→+∞ 1

τ
E
[∫τ
t

Li(Xis,t,α
i
t(X

i
s,t)) + F

i(Xis,t;X
−i
t ) ds

∣∣∣ Ft] ,

where Li : Rd × Ai → R and Fi : Rd × Rd(N−1) → R are continuous and Zd- periodic
with respect to the first variable. At any time t > 0, the process (Xis,t)s>t represents the
possible future trajectory of player i, related to the chosen strategy (vector field) αit ∈ Ai.
In other words, (Xis,t)s>t is what is likely to happen (in the future s > t) if player i plays
αit at the instant t. Mathematically, we consider that (Xis,t)s>t are driven by the following
(fictitious) stochastic differential equations

(2.23)

 dXis,t = α
i
t(X

i
s,t) ds+

√
2σ ′i dBis−t,t s > t,

Xit,t = X
i
t, i = 1, ...,N,

where {(Bi.,t)16i6N}t>0 is a family of standard Brownian motions, and for any t > 0, the
process (Bis−t,t)s>t represents the noise related to the future prediction (or guess) of the
i-th player. For simplicity, we assume that for any i ∈ {1, ...,N}, t > 0, and s > t,

(2.24) Bis−t,t is independent from Ft.

Observe that system (2.23) is well-posed in the strong sense, and that the definition of
(Xis,t)s>t introduces a fast (instantaneous) scale ‘s’ related to the projection in future,
which is different from the real (slow) scale ‘t’.

The cost functional (2.22) is an evaluation of the future cost of player i, given the in-
formation available at time t. The cost structure expresses the fact that agents are myopic:
they anticipate no future change and act as if the system will remain immutable. As they
adjust, they undergo changes and do not anticipate them.

We now give a definition of Nash equilibrium for our game.

DEFINITION 2.12. We say that a vector of global strategies (α̂1
t, ..., α̂Nt )t>0 is a Nash

equilibrium of the N-person game on [0, T ], for the initial position V = (V1, ...,VN), if for
any i = 1, ...,N,

(α̂it)t>0 is feasible on [0, T ],
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and
α̂it = arg max

αi∈Ai
Ji∞ (t,V, α̂1

t, ..., α̂i−1
t ,αi, α̂i+1

t , ..., α̂Nt
)

a.s ∀t ∈ [0, T ].

In other words, a Nash equilibrium on [0, T ] is the history of local Nash equilibria, which
is feasible on [0,T].

Next we provide a verification result that produces a Nash equilibrium for the N-
Player game associated to the cost functional (2.22). Let us introduce the following nota-
tion for empirical measures:

ν̂MY :=
1

M

M∑
i=1

δYi , ∀Y = (Yi) ∈ RMd.

For any i = 1, ...,N, we suppose that Fi depends only on x ∈ Q and on the empirical
density of the other variables. Namely, for any x ∈ Q and Y = (Y1, ...,YN−1) ∈ Rd(N−1),

Fi (x; Y) := Fi
(
x; ν̂N−1

Y

)
.

Set for (x,p) ∈ Q× Rd,

Hi(x,p) := sup
α∈Ai

{
−p.α− Li(x,α)

}
.

Throughout this section, we assume that assumptions of Theorem 2.8 hold for Hi and Fi,
and that the supremum is achieved at a unique point ᾱi in the definition of Hi, for all
(x,p), so that

(2.25) Hip(x,p) = −ᾱi(x,p) := arg max
α∈Ai

{
−p.α− Li(x,α)

}
.

We also employ the notations introduced in Lemma 2.6: namely, for any π ∈ P(Q), we
denote by (λi[π],ui[π]) the unique solution to

− σ ′i∆u
i +Hi(x,Dui) + λi = Fi(x;π) in Q, < u >= 0.

REMARK 2.13. It is possible to consider a more general form for the drift in system
(2.23). For instance, one can replace α by the following (more general) affine form:

fi(x,α) := gi(x) +Gi(x)α,

where Gi ∈ Lip(Q)d×d and gi ∈ Lip(Q)d. Then

Hi(x,p) = −p.gi + sup
α∈Ai

{
−p.Gi(x)α− Li(x,α)

}
.

If Li is Lipschitz in x, uniformly as α varies in any bounded subset, and asymptotically
super-linear, i.e.

lim
|α|→+∞ inf

x∈Q
Li(x,α)/|α| = +∞,

then the supremum in the definition of Hi is attained. Uniqueness of the supremum
holds if Li is strictly convex with respect to the second variable.

The following result characterizes a Nash equilibrium on [0, T ] associated to the cost
functional (2.22).
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PROPOSITION 2.14.

(1) The following system of equations is well-posed on [0, T ],

(2.26) dX̄it = ᾱ
i
(
X̄it,Du

i
[
ν̂N−1
X̄−i
t

]
(X̄it)

)
dt+

√
2σi dWi

t, X̄i0 = Vi, i = 1, ...,N.

(2) Let for x ∈ Q and t ∈ [0, T ]

ᾱit(x) := ᾱ
i
(
x,Dui

[
ν̂N−1
X̄−i
t

]
(x)
)

, i = 1, ...,N.

The vector (ᾱ1
t, ..., ᾱNt )t>0 defines a Nash equilibrium on [0, T ] for any initial data.

(3) The following holds

λi
[
ν̂N−1
X̄−i
t

]
= lim inf
τ→+∞ 1

τ
E
[∫τ
t

Li(X̄is,t, ᾱ
i
t(X̄

i
s,t)) + F

i
(
X̄is,t; ν̂

N−1
X̄−i
t

)
ds
∣∣∣ Ft] ,

where (X̄is,t)s>t are obtained by solving dX̄is,t = ᾱ
i
t(X̄

i
s,t) ds+

√
2σ ′i dBis−t,t, s > t,

X̄it,t = X̄
i
t, i = 1, ...,N.

PROOF. Assertion (1) is a consequence of the regularity results of Lemma 2.6, while
assertions (2) and (3) follows by standard verification arguments (see e.g. [12, Theorem
3.4], among many others). For any τ > t > 0 and i ∈ {1, ..,N} one has

ui(X̄iτ,t) = u
i(X̄it,t) +

∫τ
t

Dui(X̄is,t).ᾱ
i
t(X̄

i
s,t) ds+

∫τ
t

σ ′i∆u
i(X̄is,t) ds

+
√

2σ ′i

∫τ
t

Dui(X̄is,t) dBis−t,t,

where here ui ≡ ui
[
ν̂N−1
X̄−i
t

]
in order to simplify the presentation. Owing to (2.25) one

gets

ui(X̄iτ,t) = u
i(X̄it,t) +

∫τ
t

(
−Hi(X̄is,t,Du

i(X̄is,t)) + σ
′
i∆u

i(X̄is,t)
)

ds

+
√

2σ ′i

∫τ
t

Dui(X̄is,t) dBis−t,t −

∫τ
t

Li(X̄is,t, ᾱ
i
t(X̄

i
s,t)) ds

= ui(X̄it,t) −

∫τ
t

{
Li(X̄is,t, ᾱ

i
t(X̄

i
s,t)) + F

i(X̄is,t; X̄
−i
t )
}

ds

+ (τ− t)λi +
√

2σ ′i

∫τ
t

Dui(X̄is,t) dBis−t,t.

Hence, from (2.24) we infer that

τ−1E
[
ui(X̄iτ,t) | Ft

]
= (1 − tτ−1)λi + τ

−1E
[
ui(X̄it,t) | Ft

]
− τ−1E

[∫τ
t

Li(X̄is,t, ᾱ
i
t(X̄

i
s,t)) + F

i
(
X̄is,t; ν̂

N−1
X̄−i
t

)
ds
∣∣∣ Ft] .
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Note that estimate (2.15b) provides a uniform bound on ui [.]. Thus, by taking the limit
in the last expression one gets

λi

[
ν̂N−1
X̄−i
t

]
= lim inf
τ→+∞ 1

τ
E
[∫τ
t

Li(X̄is,t, ᾱ
i
t(X̄

i
s,t)) + F

i
(
X̄is,t; ν̂

N−1
X̄−i
t

)
ds
∣∣∣ Ft] .

On the other hand, one easily checks that (ᾱ1
t, ..., ᾱNt )t>0 is a Nash equilibrium for any

initial data V = (V1, ...,VN) owing to (2.25). �

REMARK 2.15. Note that the problem structure decouples the “fictitious” dynamics
(2.23), and allows to compute the controls.

The case of a discounted cost functional. Set ρ1, ..., ρN > 0. We consider now the case
where the i-th player seeks to minimize the following discounted cost functional:

(2.27) Jiρi
(
t,V, ᾱ1

t, ..., ᾱNt
)
:= E

[∫∞
t

e−ρ
isLi(Xis,t,α

i
t(X

i
s,t)) + F

i
(
Xis,t; ν̂

N−1
X−i
t

)
ds
∣∣∣ Ft] ,

where all the functions are defined in the same way as in the previous case, with anal-
ogous notations and assumptions. One checks that a similar result to Proposition 2.14
holds, i.e. that the following problem:

(2.28) dZ̄it = ᾱ
i
(
Z̄it,Dv

i
ρ

[
ν̂N−1
Z̄−i
t

] (
Z̄it
))

dt+
√

2σi dWi
t, Z̄i0 = Vi, i = 1, ...,N,

characterizes a Nash equilibrium on [0, T ] associated to the cost functional (2.27).

3.2. The Large Population Limit. We address now the convergence problem when
the number of players goes to infinity, assuming that all the players are indistinguishable.

Assume that: Ai = A; ρi = ρ; σi = σ; σ ′i = σ ′; Fi = F; Hi = H; and ᾱi = ᾱ so that
Li = H∗ for all 1 6 i 6 N, where H∗ is the Legendre transform of H with respect to the p
variable. We suppose also that

L(Vi) = m0 ∈ C2+γ(Q) for any i = 1, ...,N.

For simplicity we shall use the notations Xt :=
(
X1
t, ...,XNt

)
and Zt :=

(
Z1
t, ...,ZNt

)
instead

of X̄t :=
(
X̄1
t, ..., X̄Nt

)
and Z̄t :=

(
Z̄1
t, ..., Z̄Nt

)
. Under the above assumptions, systems (2.26)

and (2.28) are rewritten respectively on the following form:

(2.29)

 dXit = −Hp

(
Xit,Du

[
ν̂N−1
X−i
t

]
(Xit)

)
dt+

√
2σdWi

t, 0 6 t 6 T ,

Xi0 = Vi, i = 1, ...,N;

and

(2.30)

 dZit = −Hp

(
Zit,Dvρ

[
ν̂N−1
Z−i
t

]
(Zit)

)
dt+

√
2σdWi

t, 0 6 t 6 T ,

Zi0 = Vi, i = 1, ...,N.

Our main result in this section says that at the mean field limit N→∞, one recovers
the quasi-stationary systems (2.3b) and (2.3a), which respectively correspond to (2.29)
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and (2.30). Note that systems (2.3b) and (2.3a) can be rewritten on the form of Mckean
Vlasov equations:

(2.3b)

{
∂tm− σ∆m− div (mHp (x,Du[m(t)])) = 0 in QT ,

m(0) = m0 in Q,

and

(2.3a)

{
∂tµ− σ∆µ− div (µHp (x,Dvρ[µ(t)])) = 0 in QT ,

µ(0) = m0 in Q.

Thus, one can use the usual coupling arguments (see e.g. [96, 100, 107]) to deduce the
convergence. The main theorem of this section is the following:

THEOREM 2.16. For any t ∈ [0, T ], it holds that:

lim
N

max
16i6N

d1

(
L
(
Xit
)

,m(t)
)
= 0;

lim
N

max
16i6N

d1

(
L
(
Zit
)

,µ(t)
)
= 0;

lim
N

∥∥u[m(t)] − Eu
[
ν̂NXt
]∥∥∞ = 0;

lim
N

∣∣λ[m(t)] − Eλ
[
ν̂NXt
]∣∣ = 0; and

lim
N

∥∥vρ[µ(t)] − Evρ
[
ν̂NZt
]∥∥∞ = 0.

The analysis of the limit transition N → +∞ is essentially based on continuous de-
pendence estimates, and therefore the mean field analysis is identical for both systems.
Thus, we shall give the details only for system (2.29).

Let us introduce the following artificial systems:

(2.31)


dYi = −Hp

(
Yit,Du [m(t)] (Yit)

)
dt+

√
2σdWi

t, 0 6 t 6 T ,

Yi0 = Vi, i = 1, ...,N;

and

(2.32)


dX̃i = −Hp

(
X̃it,Du

[
ν̂NXt
]
(X̃it)

)
dt+

√
2σdWi

t, 0 6 t 6 T ,

X̃i0 = Vi, i = 1, ...,N.

Observe that systems (2.31)-(2.32) are well-posed, and that the uniqueness of the solution
to (2.3b) provides that

L
(
Y1
t , ...,YNt

)
= ⊗Ni=1m(t).

On the other hand, note that

(2.33) L
(
X̃
ξ(1)
t , ..., X̃

ξ(N)
t

)
= L

(
X̃1
t, ..., X̃Nt

)
is fulfilled for any permutation ξ, and any t ∈ [0, T ]. In addition, one checks that

(2.34) max
16i6N

sup
06t6T

E
∣∣∣Xit − X̃it∣∣∣ 6 CT

N− 1
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holds thanks to the continuous dependence estimate (2.15b), since

sup
06t6T

max
16i6N

d1

(
ν̂NXt , ν̂

N−1
X−i
t

)
6

C

N− 1
.

Next we compare the trajectories of (2.31) and (2.32), and show that they are increas-
ingly close on [0, T ] when N→ +∞.

PROPOSITION 2.17. Under assumptions of this section, it holds that

max
16i6N

sup
06t6T

E
∣∣∣X̃it − Yit∣∣∣ 6 CTN−1/(d+8).

PROOF. For any i ∈ {1, ...,N} and t ∈ [0, T ], one has
d

dt

[
X̃it − Y

i
t

]
= Hp

(
Yit,Du[m(t)](Yit)

)
−Hp

(
X̃it,Du

[
ν̂NXt
]
(X̃it)

)
= T1(t) + T2(t) + T3(t) + T4(t),

where
T1(t) := Hp(Y

i
t,Du[m(t)](Yit)) −Hp(Y

i
t,Du

[
ν̂NYt
]
(Yit)),

T2(t) := Hp(Y
i
t,Du

[
ν̂NYt
]
(Yit)) −Hp(Y

i
t,Du

[
ν̂NXt
]
(Yit)),

T3(t) := Hp(Y
i
t,Du

[
ν̂NXt
]
(Yit)) −Hp(X̃

i
t,Du

[
ν̂NXt
]
(Yit)),

and
T4(t) := Hp(X̃

i
t,Du

[
ν̂NXt
]
(Yit)) −Hp(X̃

i
t,Du

[
ν̂NXt
]
(X̃it)).

Using the continuous dependence estimate (2.15b) one gets

|T2(t)| 6
C

N

N∑
j=1

|X̃
j
t − Y

j
t|, and |T1(t)| 6 C d1(m(t), ν̂NYt).

On the other hand, the following holds

|T3(t) + T4(t)| 6 C|X̃
i
t − Y

i
t|.

The key step is the estimation the non-local term Ed1(m, ν̂NY ); we use the following
estimate due to Horowitz and Karandikar (see [103, Theorem 10.2.7]):

Ed1(m(t), ν̂NYt) 6 κdN
−1/(d+8) ∀t ∈ [0, T ],

where the constant κd > 0 depends only on d. Using the symmetry of the joint probabil-
ity law (2.33) and the last estimate, we infer that

E
∣∣∣X̃it − Yit∣∣∣ 6 C ∫t

0

(
1

N1/(d+8)
+ E

∣∣∣X̃is − Yis∣∣∣) ds,

which concludes the proof. �

Recall the following definition and characterizations of chaotic measures [107].

DEFINITION 2.18. Let πN be a symmetric joint probability measure on QN and π in
P(Q). We say that πN is π-chaotic if for any k > 1 and any continuous functionsφ1, ...,φk
on Q one has

lim
N

∫ k∏
l=1

φl dπN =

k∏
l=1

∫
φl dπ.
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LEMMA 2.19. Let XN be a sequence of random variables on QN whose the joint probability
law πN is symmetric, and π ∈ P(Q). Then the following assertions are equivalent:

(i) πN is π-chaotic;
(ii) the empirical measure ν̂NXN converges in law toward the deterministic measure π;

(iii) for any continuous function φ on Q, it holds that

lim
N

E
∣∣∣∣∫ φ d

(
ν̂NXN − π

)∣∣∣∣ = 0.

Combining Lemma 2.19 and Proposition 2.17, we deduce the propagation of chaos for
system (2.32).

PROPOSITION 2.20. For any t ∈ [0, T ], if mN(t) is the joint probability law of X̃t :=

(X̃jt)16j6N, thenmN(t) ism(t)-chaotic.

PROOF. Let φ be a Lipschitz continuous function on Q. From Proposition 2.17, we
have that

E
∣∣∣∣∫ φ d(ν̂N

X̃t
− ν̂NYt)

∣∣∣∣ 6 ‖φ‖Lip

N

N∑
k=1

E
∣∣∣X̃it − Yit∣∣∣ 6 ‖φ‖LipCT

N1/(d+8)
.

Invoking the fact that L(Yt) = ⊗Ni=1m(t) and Lemma 2.19, it holds that

lim
N

E
∣∣∣∣∫ φ d(m(t) − ν̂NYt)

∣∣∣∣ = 0.

The claimed result follows from

E
∣∣∣∣∫ φ d(ν̂N

X̃t
−m(t))

∣∣∣∣ 6 E
∣∣∣∣∫ φ d(ν̂N

X̃t
− ν̂NYt)

∣∣∣∣+ E
∣∣∣∣∫ φ d(m(t) − ν̂NYt)

∣∣∣∣ .
�

We are now in position to prove Theorem 2.16.

PROOF OF THEOREM 2.16. Observe that for any two random variables X, Y, one has

d1 (L(X),L(Y)) 6 E |X− Y| .

Hence, combining Proposition 2.17 and estimate (2.34) we obtain that

lim
N

max
16i6N

d1

(
L
(
Xit
)

,m(t)
)
= 0.

On the other hand, we have

lim
N

∣∣∣λ[m(t)] − Eλ
[
ν̂N
X̃t

]∣∣∣ = 0 and lim
N

∥∥∥u[m(t)] − Eu
[
ν̂N
X̃t

]∥∥∥∞ = 0,

thanks to Proposition 2.20 and Lemma 2.19. In fact, pointwise convergence is a conse-
quence of assertion (ii) in Lemma 2.19, and the convergence is actually uniform since
u [P(Q)] is compact in C(Q). We conclude the proof for (λ,u,m) by invoking (2.34) and
the continuous dependence estimates (2.15a)-(2.15b). The results for (v,µ) follows using
similar steps as for (λ,u,m). �

REMARK 2.21. Note that the two main arguments in the proof of Theorem 2.16 are
the continuous dependence estimate, and symmetry with respect to states of the other
players.
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4. Exponential Convergence to the Ergodic MFG Equilibrium

We prove in this section the exponential convergence of the quasi-stationnary sys-
tem (2.3b) to the ergodic equilibrium assuming that σ ′ = σ and H(x,p) = |p|2/2. The
proofs rely on algebraic properties of the equations, the continuous dependence esti-
mates (Lemma 2.14), and the monotonicity condition (1.4a). Throughout this section we
suppose that assumptions (H1),(H5), and (H6) are fulfilled. In addition, we assume that
the coupling F satisfies the monotonicity condition:

(1.4a) ∀m,m ′ ∈ P(Q),

∫
Q

(
F(x;m) − F(x;m ′)

)
d(m−m ′)(x) > 0.

For the sake of simplicity we set σ = σ ′ = 1.
In this framework the quasi-stationary MFG system (2.3b) takes the following form,

(2.35)



λ(t) − ∆u+
1

2
|Du|2 = F(x;m(t)) in (0,∞)×Q,

∂tm− ∆m− div(mDu) = 0 in (0,∞)×Q,

m(0) = m0 in Q,

∫
Q

u = 0 in (0,∞).

System (2.35) has a unique global (in time) classical solution thanks to Theorem 2.8. Con-
sider the following ergodic Mean Field Games problem:

(2.36)



λ̄− ∆ū+
1

2
|Dū|2 = F(x; m̄) in Q,

− ∆m̄− div(m̄Dū) = 0 in Q,

m̄ > 0 in Q,

∫
Q

m̄ = 1,

∫
Q

ū = 0.

Under the monotonicity condition (1.4a), uniqueness holds for system (2.36). In all this
section (λ̄, ū, m̄) denotes the unique solution to (2.36). Observe that m̄ ≡ e−ū/

∫
Q e

−ū,

so that the following holds

(2.37) 1/κ̄ 6 m̄ 6 κ̄

for some constant κ̄ > 0.
The main result of this section is the following:

THEOREM 2.22. There exists R0 > 0 such that if

‖m0 − m̄‖2 6 R0,

then the following holds for some constants K, δ > 0:

|λ(t) − λ̄|+ ‖u(t) − ū‖C2 + ‖m(t) − m̄‖2 6 Ke−δt for any t > 0.
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This convergence result reveals that our decision-making mechanism lead to the emer-
gence of a Mean Field Games equilibrium, under the conditions mentioned above. This
can also be interpreted as a phase transition from a non-equilibrium state to an equi-
librium state (see also [97, 99]). Agents reach this equilibrium by adjusting and self-
correcting. We believe that this convergence result holds true in more general cases.
For instance, one can show that an analogous convergence result holds for system (2.3a)
when the discount rate ρ is small enough (c.f. Remark 2.25).

Let (λ,u,m) be the solution to (2.35), and set

(2.38) δ := λ− λ̄, w := u− ū, and π := m− m̄.

The triplet (σ,w,π) is a solution to the following system of equations:

(2.39)



δ(t) − ∆w+ 〈Dū,Dw〉+ 1

2
|Dw|2 = F(x; m̄+ π(t)) − F(x; m̄) in (0,∞)×Q,

∂tπ− ∆π− div(πDū) − div(m̄Dw) − div(πDw) = 0 in (0,∞)×Q,

π(0) = m0 − m̄ in Q,

∫
Q

w = 0 in (0,∞).

The following preliminary Lemma states the dependence of w and σ on π in the first
equation of (2.39).

LEMMA 2.23. Let $ be a probability measure on Q which is absolutely continuous with
respect to the Lebesgue measure, and such that

$ = m̄+ π,

where π ∈ L2(Q). Then there exists a unique periodic solution (δ[π],w[π]) in R × C2(Q) to the
following problem:

(2.40)


δ− ∆w+ 〈Dū,Dw〉+ 1

2
|Dw|2 = F(x;$) − F(x; m̄) in (0,∞)×Q∫

Q

w = 0 in (0,∞).

Moreover, the following estimates hold

(2.41a) |δ[π]| 6 C‖π‖2,

(2.41b) ‖w[π]‖C2 6 C ′‖π‖2.

PROOF. Existence and uniqueness of regular solutions to such problems are discussed
in Section 2. Estimates (2.41a)-(2.41b) are a direct consequence of the uniqueness and the
continuous dependence estimates (2.15a)-(2.15b). �

Next we give the following technical Lemma.

LEMMA 2.24. There exists a constant κ > 0 such that

‖π/m̄‖2 6 κ‖D(π/m̄)‖2,
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for any π ∈ V1,2(Q) :=
{
π ∈W1

2(Q) :
∫
Q π = 0

}
.

PROOF. As usual, the result is obtained by contradiction. In fact, if our claim is not
satisfied one can find a sequence (πn) ∈ V1,2(Q) such that for any n > 1,

(2.42) ‖πn/m̄‖2 = 1 and
1

n
> ‖D(πn/m̄)‖2.

By Sobolev embeddings, (πn/m̄)n converges (up to a subsequence) to some π̄ in L2(Q).
Using (2.42) it follows that π̄ is constant, i.e. π̄ ≡ C. Moreover,

C =

∫
Q

m̄π̄ = lim
n

∫
Q

πn = 0;

this provides the desired contradiction owing to (2.42). �

Combining these elements one can prove the main Theorem of this section.

PROOF OF THEOREM 2.22. Let (δ,w,π) be a smooth solution to (2.39). Recall that

Dm̄ = −
e−ūDū∫
Q e

−ū
= −m̄Dū,

so that

(2.43) D
( π
m̄

)
=
Dπ+ πDū

m̄
,

and

(2.44) div(m̄Dw) = m̄∆w+ 〈Dm̄,Dw〉 = −m̄ (−∆w+ 〈Dū,Dw〉) .

We infer that

div(m̄Dw) = −m̄

(
−δ(t) −

1

2
|Dw|2 + F(x; m̄+ π(t)) − F(x; m̄)

)
,

which provides in particular

∂tπ−∆π−div(πDū)+ m̄

(
−δ(t) −

1

2
|Dw|2 + F(x; m̄+ π(t)) − F(x; m̄)

)
−div(πDw) = 0.
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Hence, using (2.43), (2.41b) and the monotonicity of F, one has

d

dt

∫
Q

π2

2m̄
=

∫
Q

π

m̄

[
∆π+ div(πDū) + div(πDw)

−m̄

(
−δ(t) −

1

2
|Dw|2 + F(x; m̄+ π(t)) − F(x; m̄)

)]
=

∫
Q

{
−
|Dπ+ πDū|2

m̄
+
π|Dw|2

2
−
π〈Dπ,Dw〉

m̄
−
π2〈Dū,Dw〉

m̄

}
−

∫
Q

π (F(x; m̄+ π(t)) − F(x; m̄))

6
∫
Q

−m̄

∣∣∣∣D(π(t)m̄
)∣∣∣∣2 + C‖π(t)‖32 + 1/κ̄‖Dπ(t)‖2‖π(t)‖22.

6 −1/κ̄

∫
Q

∣∣∣∣D(π(t)m̄
)∣∣∣∣2 + C (‖π(t)‖2 + ‖Dπ(t)‖2) ‖π(t)‖22.

(2.45)

Using Lemma 2.24, one easily checks that

(2.46) ‖π(t)‖2 + ‖Dπ(t)‖2 6 C
∥∥∥∥D(π(t)m̄

)∥∥∥∥
2

.

Thus the following holds

(2.47)
d

dt
‖π(t)2/m̄‖1 6 −1/C0‖π(t)2/m̄‖1 +M‖π(t)2/m̄‖21,

for some C0,M > 0, thanks to (2.37) and Young’s inequality. For any R0 <
1√

κ̄MC0
, the

last differential inequality entails that

‖π(t)2/m̄‖1 6
1/MC0

1 +
(

1
MC0‖π(0)2/m̄‖1 − 1

)
et/C0

for any t > 0.

Estimates of Lemma 2.23 conclude the proof. �

REMARK 2.25. One notices that the previous proof can be adapted to show that (2.3a)
converges exponentially fast to (1.8) when the discount rate ρ is small enough, under
the same assumptions of Theorem 2.22. In fact, setting π̃ := µ − µ̄, the same arguments
leading to (2.47) also provide

d

dt
‖π̃(t)2/µ̄‖1 6 −1/C̃0‖π̃(t)2/µ̄‖1 + M̃‖π̃(t)2/µ̄‖21 + Cρ‖π̃(t)2/µ̄‖1.

Therefore, the same conclusion holds when ρ is small enough.

REMARK 2.26. In practice, this convergence results can help to understand the emer-
gence of highly-rational equilibria in situations with myopic decision-making mecha-
nisms. For instance in [53, Section 2.2.2] the authors consider a decision-making mech-
anism for pedestrian dynamics that is very similar to the mechanism described in this
chapter. Theorem 2.22 can apply for this kind of models, in the case of a quadratic
running cost, and a monotonous coupling function (pedestrians dislike congested areas)
which satisfies (H1) and (H5).
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5. Numerical Experiments

In the previous section, we saw that, at least under certain conditions, the population
of myopic agents self-organizes exponentially fast toward a highly-rational MFG equilib-
rium. The main purpose of this section is to explore the limits of Theorem 2.22 by using
numerical simulation. We address only system (2.3b) since system (2.3a) is approxima-
tively equivalent when ρ is small.

Consider the following example of coupling functions:

(2.48) F(x;m) = Aψ(x) + Bφ(x)

∫
Q

φ(y)m(y) dy,

where A,B > 0, ψ,φ are non-negative smooth functions. One easily checks that F fulfills
(H1),(H5), and (1.4a). The shape of the functions ψ,φ and the relative magnitude of the
coefficients A,B characterize the relative preference of the agents. In all this section, we
consider a periodic setting, and for simplicity we take Q = [0, 1]2, 0 6 φ 6 1 to be a
smooth function that vanishes on the boundary ofQ, Ψ = 1−φ, and σ = σ ′ = 1. Namely,
we take φ to be a non-negative function which is maximal at (1/2, 1/2) and which is
supported in Q.

We start by presenting the numerical method of [3] to approximate the solution for
the ergodic MFG system (1.6). Next, we build an adapted numerical scheme to approx-
imate the solutions of the quasi-stationary MFG system (2.3b), and we carry out several
numerical experiments to observe the asymptotic behaviour of the solutions for various
examples of H and different values of ‖m0 − m̄‖2.

5.1. Simulation of the Stationary System. We discretizeQ into a uniform grid (xi,j),
1 6 i, j 6 Nh, with a mesh step h = N−1

h , where Nh is a positive integer. The values of
ū, m̄ at xi,j are approximated by ui,j, mi,j, and the value of λ̄ is approximated by λ
according to the following scheme:

(2.49)



λ− (∆hu)i,j +Hh

(
xi,j, [Dhu]i,j

)
= Fh(xi,j;m),

(∆hm)i,j + Ti,j(m,u) = 0,

∑
16i,j6Nh

ui,j = 0,
∑

16i,j6Nh

mi,j = h
−2, 1 6 i, j 6 Nh,

where
(∆hw)i,j = −h−2

(
4wi,j −wi+1,j −wi−1,j −wi,j+1 −wi,j−1

)
;

[Dhw]i,j =
(
D1wi,j,D1wi−1,j,D2wi,j,D2wi,j−1

)
;

D1wi,j = h
−1
(
wi+1,j −wi,j

)
, and D2wi,j = h

−1
(
wi,j+1 −wi,j

)
;

Hh (x,p1,p2,p3,p4) = H

(
x,
√
|p−1 |2 + |p−3 |2 + |p+2 |2 + |p+4 |2

)
;

Fh(xi,j;m) = A(1 − φ(xi,j)) + h
2B

∑
16k,`6Nh

mi,jφ(xk,`)φ(xi,j);
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and

Ti,j(u,m) = −mi−1,j∂p1Hh

(
xi−1,j, [Dhu]i−1,j

)
+mi+1,j∂p2Hh

(
xi+1,j, [Dhu]i+1,j

)
−mi,j−1∂p3Hh

(
xi,j−1, [Dhu]i,j−1

)
+mi,j+1∂p4Hh

(
xi,j+1, [Dhu]i,j+1

)
mi,j

{
∂p1Hh

(
xi,j, [Dhu]i,j

)
+ ∂p3Hh

(
xi,j, [Dhu]i,j

)}
−mi,j

{
∂p2Hh

(
xi,j, [Dhu]i,j

)
+ ∂p4Hh

(
xi,j, [Dhu]i,j

)}
.

We refer the reader to [3] for more explanations, and a detailed analysis of the numerical
scheme (2.49). In our simulation, we use Newton’s fixed point scheme to compute the
solution of system (2.49). The results are shown in Figures 1(a) - 1(b).
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(a) Equilibrium configuration for A/B = 50
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(b) Equilibrium configuration for A/B = 2.10−4

FIGURE 1. Simulated examples of the ergodic mass m̄ forH(x,p) = |p|2/2

and different values of A/B.

As expected, the agents are congested around the centre (1/2, 1/2) when A > B,
whereas they are more distant from the centre when A << B. As it is already pointed
out, the equilibrium configuration that is computed in Figures 1(a) - 1(b) corresponds to
a situation where agents have anticipated the right distribution of other agents and op-
timized their state accordingly. By virtue of [36], we know that such a situation occurs
when the population of agents is “experienced”, and have learned from past experiences
in the same game. Indeed, the authors of [36] show under some restrictions, that a given
population can learn the MFG equilibria by repeating the same game a sufficient number
of times. Our work shows that the population can reach the MFG equilibrium config-
uration through an alternative process. In fact, Theorem 2.22 shows that even with a
“non-experienced” population, the crowd of players self-organizes during the game and
reaches exponentially fast the MFG equilibrium by observing the other players states and
acting accordingly.
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(a) The considered initial distributionm0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A/B= 2.10
-4

A/B= 50

(b) The evolution of ‖m− m̄‖2

FIGURE 2. An example of m0 and the simulated evolution of ‖m − m̄‖2
for H(x,p) = |p|2/2.

5.2. Simulation of the Quasi-Stationary System. In order to simulate examples of
the self-organizing phenomena, we start by computing an approximate solution to the
Quasi-Stationary MFG system (2.3b). We discretize Q into a uniform grid (xi,j)16i,j6Nh
with a the mesh step h = N−1

h , and given some T > 0 we discretize uniformly [0, T ] into
NT+1 distinct points. HereNT is a positive integer. The values ofu,m at (kT/NT , xi,j) are
approximated by uki,j,m

k
i,j, and the value of λ at kT/NT is approximated by λk according

to the following scheme:

(2.50)



λk − (∆hu
k)i,j +Hh

(
xi,j,

[
Dhu

k
]
i,j

)
= Fh(xi,j;m

k),

mk+1
i,j −mki,j − T/NT

{
(∆hm

k+1)i,j + Ti,j(m
k,uk)

}
= 0,

m0
i,j = m0(xi,j),

∑
16i,j6Nh

uki,j = 0,
∑

16i,j6Nh

mki,j = h
−2,

k = 0, ...,NT , 1 6 i, j 6 Nh,

where the finite difference operators∆h,Dh and the discrete functionsHh, Fh, (Ti,j)i,j are
defined as for (2.49). Given mk, k = 0, ...,NT , we start by computing the root (λk,uk) of
the discrete HJB equation by using Newton’s method, then mk+1 is generated according
to the second equation of (2.50). The computation is accelerated by using (λk,uk) as an
initial guess in the computation of (λk+1,uk+1).

In order to test (2.50) we generate a random probability density on the square Q
(c.f. Figure 2(a)) and simulate the evolution of system (2.3b), in the case of a quadratic
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(a) H(x,p) = |p|2/2
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(b) H(x,p) = (sin(2πx2) + sin(2πx1) + cos(4πx1))|p|
3/3
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(c) H(x,p) = |p|3/3
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(d) H(x,p) = (sin(2πx2)+sin(2πx1)+cos(4πx1))|p|
3/3+

(1 + cos(2πx1))|p|
2/2

FIGURE 3. Simulated examples of the evolution of ‖m − m̄‖2. We choose
A = 2.10−1 and B = 103.

Hamiltonian, for a sufficiently large time. Figure 2(b) shows that the system converges
exponentially fast toward the ergodic MFG equilibrium. One observes that the speed of
convergence does not depend on the choice of the parameter A/B.

Now, we want to explore the limits of Theorem 2.22. Namely, we simulate the long
time behavior of the system for various examples ofH and large values of ‖m0−m̄‖2/‖m̄‖2.
From a practical standpoint, generating a probability densitym0 so that ‖m0−m̄‖2 is very
large is a tedious task. In fact, because of the constraint m0 − m̄ > −m̄, choosing large
values for Nh is necessary to obtain the desired large magnitude of ‖m0 − m̄‖2. There-
fore, we allow m0 to take negative values in order to reduce the computation cost. From
a theoretical standpoint, this has no impact since the proof of Theorem 2.22 involve the
square ofm0 − m̄.
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Figures 3(a), 3(b), 3(c) and 3(d) show the evolution of ‖m− m̄‖2 for various examples
of H and different values of ‖m0 − m̄‖2, in the case where A = 2.10−1 and B = 103.
The simulation shows that the self-organizing effect still holds even for large values of
‖m0 − m̄‖2 and more general Hamiltonian functions H. Nevertheless, one can note some
differences in the speed of convergence, especially when ‖m0 − m̄‖2 is very large.
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CHAPTER 3

A Variational Approach for Bertrand & Cournot Mean-Field
Games

Joint work with P. Jameson Graber, published in “PDE Models of Multi-Agent Phenomena”
(2018), vol. 28 of the Springer INdAM Series, under the title “Variational mean field games for
market competition”.

1. Introduction

The main purpose of this introductory section is to provide a general introduction
to Bertrand & Cournot Mean Field Games, and to introduce the questions which are
addressed in this chapter.

Bertrand & Cournot MFGs is a family of models introduced by Guéant, Lasry, and
Lions [73] as well as by Chan and Sircar in [49, 50] to describe a mean field game in which
producers compete to sell an exhaustible resource such as oil, coal, natural gas, or miner-
als. Here we view the producers as a continuum of rational agents whose state is given
by a density function m in the space of possible reserves, and any individual producer
must solve an optimal control problem in order to maximize profit.

Let us explain more precisely the Bertrand & Cournot MFG model. Let t be time,
and x be the producer’s reserves so that the space of possible states is Q = R+. Given
an initial distribution of reserves m0 ∈ P(Q), the reserves dynamics of a representative
producer is given by the following stochastic differential equation:

Xt = X0 −

∫t
0
qs1Xs>0 ds+

√
2σ

∫t
0
1Xs>0dWs, X0 ∼ m0,

where σ > 0 and (Wt)t>0 is a standard Brownian motion. Reserves level (Xt)t>0 de-
creases at a controlled production rate (qt)t>0, and also has random increment which
models production uncertainties and/or the fluctuation of market demand [49]. The in-
dicator function 1Xt>0 introduces a stopping condition which means that production
must be shut down, whenever reserves run out, Xt = 0. Given a common horizon T > 0,
a representative producer who starts with initial reserves level Xt = x ∈ R+, at time
t ∈ [0, T ], has the following profit functional:

JBC(t, x,m) := E

{∫T
t

e−r(s−t)psqs1Xs>0 ds+ e−r(T−t)uT (XT )1Xs>0

∣∣∣ Xt = x
}

,

where r > 0 is a discount rate, uT is the profit at the end of the trading period, and (pt)t>0

is the market price. The indicator function 1Xt>0 introduces a stopping condition which
means that producers can no longer earn revenue as soon as they deplete their reserves.
The difference between Bertrand [18] and Cournot [52] point of view is related to the

57
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choice of the control variable. Indeed, in Cournot competition firms choose their rate of
production (qt)t>0 and the market price (pt)t>0 is obtained through the supply-demand
equilibrium. While in a Bertrand model, firms set prices (pt)t>0 and receive demand
(qt)t>0 accordingly.

In our work we suppose a linear demand schedule and we suppose that the produced
goods are differentiated. In this case, Bertrand and Cournot competition are given by the
following:

• Cournot: given the rate of production q(t, x) that is chosen by a representative
producer with reserves x at time t, the received price is given by:

(3.1) p(t, x) = 1 − κ

∫
Q

q(t,y)m(t,y) dy− q(t, x),

where κ > 0 is a substitutability coefficient in proportion to which abundant
total production will put downward pressure on all the prices.
• Bertrand: given the price p(t, x) that is chosen by a representative producer with

reserves x at time t, the received demand is given by:

(3.2) q(t, x) =
1

1 + κη(t)
+

κ

1 + κη(t)

∫
Q

p(t,y)m(t,y) dy− p(t, x),

where η(t) =
∫
R+ m(t,u) du. The coefficient κ > 0 measures products sub-

stitutability, so that κ → 0 corresponds to a monopoly situation with no com-
petition pressure on the chosen price, while k → ∞ corresponds to a highly
competitive market.

We refer the reader to [49, 50] and references therein for further explanations on the eco-
nomic model. An example of Cournot competition might be oil, coal and natural gas in
the energy market, while in a Bertrand model might be competition between food pro-
ducers where consumers have preference for one type of food, but reduce their demand
for it depending on the average price of substitutes.

Now we formalize the optimization problem form Cournot’s standpoint. Let us de-
fine the value function: uC(t, x) = supq JBC(t, x,m), where p is given by (3.1). The
optimal production rate q∗C(t, x) satisfies the first order condition:

(3.3) q∗C(t, x) =
1

2

(
1 − κ

∫
Q

q∗C(t,y)m(t,y) dy− ∂xuC(t, x)

)
,

and the corresponding price p∗C(t, x) is given by:

p∗C(t, x) =
1

2

(
1 − κ

∫
Q

q∗C(t,y)m(t,y) dy+ ∂xuC(t, x)

)
.

In the same way we define the value function for Bertrand competition: uB(t, x) =

supp JBC(t, x,m), where q is given by (3.2). The optimal price p∗B(t, x) satisfies the first
order condition:

p∗B(t, x) =
1

2

(
1

1 + κη(t)
+

κ

1 + κη(t)

∫
Q

p∗B(t,y)m(t,y) dy+ ∂xuB(t, x)

)
,
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while the corresponding demand q∗B(t, x) is given by:

(3.4) q∗B(t, x) =
1

2

(
1

1 + κη(t)
+

κ

1 + κη(t)

∫
Q

p∗B(t,y)m(t,y) dy− ∂xuB(t, x)

)
.

By integrating (3.4) with respect to m(t, .), and after a little algebra one recovers the fol-
lowing identity

1

1 + κη(t)
+

κ

1 + κη(t)

∫
Q

p∗B(t,y)m(t,y) dy = 1 − κ

∫
Q

q∗B(t,y)m(t,y) dy,

which entails

(3.5) q∗B(t, x) =
1

2

(
1 − κ

∫
Q

q∗B(t,y)m(t,y) dy− ∂xuB(t, x)

)
.

By noting the similarity between (3.5) and (3.3), we deduce that Cournot and Bertrand
MFG models are equivalent, in the sense that they result in the same equilibrium prices and
quantities. Therefore, we will note for simplicity qu,m := q∗B = q∗C, and u = uB = uC
throughout this chapter. Moreover, by using the identities above, note that qu,m can be
explained; namely:

(3.6a) qu,m =
1

2

(
2

2 + κη(t)
+

κ

2 + κη(t)

∫
Q

∂xu(t,y)m(t,y) dy− ∂xu(t, x)

)
.

Consequently, an analytic approach leads to the following system of coupled PDEs:

(3.6b)



∂tu+ σ∂xxu− ru+ q2
u,m = 0, 0 < t < T , x ∈ Q

∂tm− σ∂xxm− ∂x {mqu,m} = 0, 0 < t < T , x ∈ Q

m(0, .) = m0, u(T , .) = uT , x ∈ Q̄,

where the first HJB equation governs the value function a representative producer at
time t with reserves x, the second equation is the Fokker-Planck equation describing
the evolution of the distribution of active producers, and uT is a smooth non-decreasing
function with uT (0) = 0. Rather than taking Q = R+, we suppose that Q := (0, `) where
` > 0 is an upper limit on the capacity of any given producer. This assumption is in
force throughout this manuscript and is more convenient for the analysis of Bertrand &
Cournot PDE system (3.6b). From a modeling standpoint, this assumption is expected
to have a weak impact when one chooses ` sufficiently large in comparison to the upper
bound of the support ofm0. We suppose that the PDE system (3.6b) is endowed with the
following boundary conditions:

(3.6c)
{

m(t, 0) = u(t, 0) = ∂xu(t, `) = 0, 0 6 t 6 T
σ∂xm(t, `) +m(t, `)qu,m(t, `) = 0, 0 6 t 6 T .

The absorbing condition at x = 0 expresses the fact that producers disappears as soon as
they deplete their capacity and can no longer generate revenue. In particular, the density
of players is a non-increasing function [70]. Moreover, we consider reflecting boundary
conditions at x = ` in order to be sure that all players’ reserves are below `.
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The analysis of system (3.6a)-(3.6c) for smooth data is addressed in [70], where the
authors construct a smooth solution to that system and prove uniqueness for small κ. In
Section 2, we improve this result by showing uniqueness with no restriction. We refer to
[49, 92] for numerical methods and simulations.

The major part of this chapter deals with the following coupled system of partial
differential equations:

(3.7)



(i) ∂tu+ σ∂xxu− ru+ q2
u,m = 0, 0 < t < T , 0 < x < `

(ii) ∂tm− σ∂xxm− ∂x {mqu,m} = 0, 0 < t < T , 0 < x < `

(iii) m(0, x) = m0(x), u(T , x) = uT (x), 0 6 x 6 `

(iv) ∂xu(t, 0) = ∂xu(t, `) = 0, 0 6 t 6 T

(v) σ∂xm(t, x) + qu,m(t, x)m(t, x) = 0, 0 6 t 6 T , x ∈ {0, `}

where qu,m is given by (3.6a). By contrast with system (3.6a)-(3.6c), we explore a reflect-
ing boundary condition at x = 0. In terms of the model, we assume that players do not
leave the game during the time period [0, T ] so that the number of producers in the mar-
ket remains constant. This corresponds to a regime where all players participate at all
resource levels. This situation is also considered in [77] for N-Player dynamic Cournot
competition. Reflecting boundary conditions can also correspond to a situation where
reserves are exogenously and infinitesimally replenished. In this particular case, the den-
sity of players is a probability density for all the times, i.e. η(t) = 1 for any 0 6 t 6 T ,
which considerably simplifies the analysis of the system of equations. In particular, it
holds that

qu,m =
1

2

(
2

2 + κ
+

κ

2 + κ

∫ `
0
∂xu(t,y)m(t,y) dy− ∂xu(t, x)

)
.

Let us now outline our main results: Inspired by [70], we show in Section 2 that there
exists a unique classical solution to system (3.7). Because of the change in boundary
conditions, many of the arguments becomes considerably simpler and stronger results
are possible. We show in Section 3 that (3.7) has an interpretation as a system of opti-
mality for a convex minimization problem. Although this feature has been noticed and
exploited for mean field games with congestion penalization (see [14] for an overview),
here we show that it is also true for certain extended mean field games (cf. [69]). Finally,
in Section 4 we give an existence result for the first order case where σ = 0, using a
“vanishing viscosity” argument by collecting a priori estimates from Sections 2 and 3.

As long as system (3.7) is considered, we suppose that the following assumptions are
in force:

• uT andm0 are function in C2+γ([0, `]) for some γ > 0.
• uT and m0 satisfy compatible boundary conditions : u̇T (0) = u̇T (`) = 0 and
m0(0) = ṁ0(0) = m0(`) = ṁ0(`) = 0.
• m0 is a probability density, and uT > 0.
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2. Analysis of the PDE System

In this section we give a proof of existence and uniqueness for system (3.7). Note that
most results of this section are an adaptation of those of [70, section 2]. However, unlike
the case addressed in [70], we provide uniform bounds on u and ux which do not depend
on σ. We start by providing some a priori bounds on solutions to (3.7), then we prove
existence and uniqueness using the Leray-Schauder fixed point theorem.

Let us start with some basic properties of the solutions.

PROPOSITION 3.1. Let (u,m) be a pair of smooth solutions to (3.7). Then, for all t ∈ [0, T ],
m(t) is a probability density, and

(3.8) u(t, x) > 0 ∀t ∈ [0, T ],∀x ∈ [0, `].

Moreover, for some constant C > 0 depending on the data, we have

(3.9)
∫T

0

∫ `
0
m∂xu

2 6 C.

PROOF. Using (3.7)(ii) and (3.7)(v), one easily checks thatm(t) is a probability density
for all t ∈ [0, T ]. Moreover, the arguments used to prove (3.8) and (3.9) in [70] hold also
for the system (3.7). �

LEMMA 3.2. Let (u,m) be a pair of smooth solution to (3.7), then

(3.10) ‖u‖∞ + ‖∂xu‖∞ 6 C,

where the constant C > 0 does not depend on σ. In particular we have that

(3.11) ∀t ∈ [0, T ],

∣∣∣∣∣
∫ `

0
∂xu(t,y)m(t,y) dy

∣∣∣∣∣ 6 C,

where C > 0 does not depend on σ.

PROOF. As in [70, Lemma 2.3, Lemma 2.7], the result is a consequence of using the
maximum principle for suitable functions. We give a proof highlighting the fact that C
does not depend on σ. Set

f(t) :=
2

2 + κ
+

κ

2 + κ

∫ `
0
∂xu(t,y)m(t,y) dy,

so that
−∂tu− σ∂xxu+ ru 6

1

2

(
f2(t) + ∂xu

2
)

.

Owing to Proposition 3.1, f ∈ L2(0, T). Moreover, if

w := exp

{
1

2σ

(
u+

1

2

∫t
0
f(s)2 ds

)}
− 1,

then we have
−wt − σwxx 6 0.

In particular w satisfies the maximum principle, and w 6 µ everywhere, where

µ = max
06x6`

exp

{
1

2σ

(
uT +

1

2

∫T
0
f(s)2 ds

)}
− 1.
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Whence, 0 6 u 6 2σ ln(1 + µ), so that

‖u‖∞ 6 ‖uT‖∞ +
1

2

∫T
0
f(s)2 ds.

On the other hand, we have that

max
ΓT

|∂xu| 6 ‖u̇T‖∞, ΓT := ([0, T ]× {0, `}) ∪ ({T }× [0, `]),

so by using the maximum principle for the functionw(t, x) = ∂xu(t, x)e−rt, we infer that

‖∂xu‖∞ 6 erT‖u̇T‖∞.

�

REMARK 3.3. Unlike in [70], where more sophisticated estimates are performed, the
estimation of the nonlocal term

∫`
0 ∂xu(t,y)m(t,y) dy follows easily in this case, owing

to (3.10) and the fact thatm is a probability density.

PROPOSITION 3.4. There exists a constant C > 0 depending on σ and data such that, if
(u,m) is a smooth solution to (3.7), then for some 0 < α < 1,

(3.12) ‖u‖C1+α/2,2+α(QT )
+ ‖m‖C1+α/2,2+α(QT )

6 C.

PROOF. See [70, Proposition 2.8]. �

We now prove the main result of this section.

THEOREM 3.5. There exists a unique classical solution to (3.7).

PROOF. The proof of existence is the same as in [70, Theorem 3.1] and relies on Leray-
Schauder fixed point theorem. Let (u1,m1) and (u2,m2) be two solutions of (3.7), and set
u = u1 − u2 andm = m1 −m2. Define

Gi :=
1

2

(
2

2 + κ
+

κ

2 + κ

∫ `
0
∂xui(t,y)mi(t,y) dy− ∂xui

)
.

Note that Gi can be written

Gi =
1

2

(
1 − κḠi − ∂xui

)
, where Ḡi :=

∫ `
0
Gi(t,y)mi(t,y) dy.

Integration by parts yields
(3.13)[
e−rt

∫ `
0
u(t,y)m(t,y) dy

]T
0

=

∫T
0
e−rt

∫ `
0
(G2

2−G
2
1−G1∂xu)m1+(G2

1−G
2
2+G2∂xu)m2 dy dt.

The left-hand side of (3.13) is zero. As for the right-hand side, we check that

G2
2 −G

2
1 −G1∂xu = (G2 −G1)

2 + κG1(Ḡ1 − Ḡ2)

and, similarly,
G2

1 −G
2
2 +G2∂xu = (G2 −G1)

2 − κG2(Ḡ1 − Ḡ2).
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Then (3.13) becomes

(3.14) 0 =

∫T
0
e−rt

∫ `
0
(G1 −G2)

2(m1 +m2) dxdt+ κ

∫T
0
e−rt(Ḡ1 − Ḡ2)

2 dt.

It follows that Ḡ1 ≡ Ḡ2. Then by uniqueness for parabolic equations with quadratic
Hamiltonians [85, Chapter V], it follows that u1 ≡ u2. From uniqueness for the Fokker-
Planck equation it follows thatm1 ≡ m2. �

We conclude this part by improving the result of [70], using the idea of the proof of
Theorem 3.5. (The proof is in fact much simpler than in [70].)

THEOREM 3.6. There exists a unique classical solution to system (3.6a)-(3.6c).

PROOF. Existence was given in [70]. For uniqueness, let (u1,m1), (u2,m2) be two
solutions, and define u = u1 − u2,m = m1 −m2, and

Gi =
1

2

(
2

2 + κηi(t)
+

κ

2 + κηi(t)

∫ `
0
∂xui(t,y)mi(t,y)dy− ∂xui

)
,

ηi(t) :=

∫ `
0
mi(t,y) dy.

Note that Gi can also be written

Gi =
1

2
(1 − κḠi − ∂xui), where Ḡi :=

∫ `
0
Gi(t,y)mi(t,y) dy.

Then integrating by parts as in the proof of Theorem 3.5, we obtain

(3.15) 0 =

∫T
0
e−rt

∫ `
0
(G1 −G2)

2(m1 +m2) dxdt+ κ

∫T
0
e−rt(Ḡ1 − Ḡ2)

2 dt.

We conclude as before. �

3. Optimal Control of Fokker-Planck Equation

The purpose of this section is to prove that (3.7) is a system of optimality for a convex
minimization problem. It was first noticed in the seminal paper by Lasry and Lions [86]
that systems of the form (1.3) have a formal interpretation in terms of optimal control.
Since then this property has been made rigorous and exploited to obtain well-posedness
in first-order [32,34,40] and degenerate cases [35]; see [14] for a nice discussion. However,
all of these references consider the case of congestion penalization, which results in an a
priori summability estimate on the density. There is no such penalization in (3.7). Hence,
the optimality arguments used in [32], for example, appear insufficient in the present case
to prove existence and uniqueness of solutions to the first order system. Furthermore, it
is very difficult in the present context to formulate the dual problem, which in the afore-
mentioned works was an essential ingredient in proving existence of an adjoint state.
Nevertheless, aside from its intrinsic interest, we will see in Section 4 that optimality
gives us at least enough to pass to the limit as σ→ 0.
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Consider the optimization problem of minimizing the objective functional

(3.16) J(m,q) =

∫T
0

∫ `
0
e−rt

(
q2(t, x) − q(t, x)

)
m(t, x) dxdt

+
κ

2

∫T
0
e−rt

(∫ `
0
q(t,y)m(t,y) dy

)2

dt−

∫ `
0
e−rTuT (x)m(T , x) dx

for (m,q) in the class K, defined as follows. Letm ∈ L1([0, T ]× [0, `]) be non-negative, let
q ∈ L2([0, T ]× [0, `]), and assume thatm is a weak solution to the Fokker-Planck equation

(3.17) ∂tm− σ∂xxm− ∂x{qm} = 0, m(0) = m0,

equipped with Neumann boundary conditions, where weak solutions are defined as in
[102]; namely:

• the integrability conditionmq2 ∈ L1([0, T ]× [0, `]) holds, and
• (3.17) holds in the sense of distributions–namely, for all φ ∈ C∞c ([0, T) × [0, `])

such that ∂xφ(t, 0) = ∂xφ(t, `) = 0 for each t ∈ (0, T), we have∫T
0

∫ `
0
(−∂tφ− σ∂xxφ+ q∂xφ)m dxdt =

∫ `
0
φ(0)m0 dx.

Then we say that (m,q) ∈ K. We refer the reader to [102] for properties of weak so-
lutions of (3.17), namely that they are unique and that they coincide with renormalized
solutions and for this reason have several useful properties. One property which will be
of particular interest to us is the following lemma:

LEMMA 3.7 (Proposition 3.10 in [102]). Let (m,q) ∈ K, i.e. letm be a weak solution of the
Fokker-Planck equation (3.17). Then ‖m(t)‖L1([0,`]) = ‖m0‖L1([0,`]) for all t ∈ [0, T ]. Moreover,
if logm0 ∈ L1([0, `]), then

(3.18) ‖ logm(t)‖L1([0,`]) 6 C(‖ logm0‖L1([0,`]) + 1) ∀t ∈ [0, T ],

where C depends on ‖q‖L2 and ‖m0‖L1 . In particular, if logm0 ∈ L1([0, `]) and (m,q) in K,
thenm > 0 a.e.

THEOREM 3.8. Let (u,m) be a solution of (3.7). Set

q =
1

2

(
2

2 + κ
+

κ

2 + κ

∫ `
0
∂xu(t,y)m(t,y) dy− ∂xu

)
.

Then (m,q) is a minimizer for problem (3.16), that is, J(m,q) 6 J(m̃, q̃) for all (m̃, q̃) satisfying
(3.17). Moreover, if logm0 ∈ L1([0, `]) then the minimizer is unique.

PROOF. It is useful to keep in mind that the proof is based on the convexity of J
following a change of variables. By abuse of notation we might write

J(m,w) =

∫T
0

∫ `
0
e−rt

(
w2(t, x)

m(t, x)
−w(t, x)

)
dxdt

+
κ

2

∫T
0
e−rt

(∫ `
0
w(t,y) dy

)2

dt−

∫ `
0
e−rTuT (x)m(T , x) dx,
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cf. the change of variables used in [13] and several works which cite that paper. However,
in this context we prefer a direct proof.

Using the algebraic identity

q̃2m̃− q2m = 2q(q̃m̃− qm) − q2(m̃−m) + m̃(q̃− q)2,

we have

(3.19)

J(m̃, q̃) − J(m,q) =
κ

2

∫T
0
e−rt

(∫ `
0
q̃m̃− qm dy

)2

dt−

∫ `
0
e−rTuT (x)(m̃−m)(T , x) dx

+ κ

∫T
0
e−rt

(∫ `
0
q̃m̃− qm dy

)(∫ `
0
qm dy

)
dt

+

∫T
0

∫ `
0
e−rt

(
(qm− q̃m̃) + 2q(q̃m̃− qm) − q2(m̃−m) + m̃(q̃− q)2

)
dxdt.

Now using the fact that u is a smooth solution of

(3.20) ∂tu+ σ∂xxu− ru+ q2 = 0, u(T) = 0, ∂xu|0,` = 0

and since

∂t(m̃−m) − σ∂xx(m̃−m) − ∂x(q̃m̃− qm) = 0, (m̃−m)(0) = 0

in the sense of distributions, it follows that∫T
0

∫ `
0
e−rtq2(m̃−m) dxdt+

∫ `
0
e−rTuT (x)(m̃−m)(T , x) dx

= −

∫T
0

∫ `
0
e−rt(q̃m̃− qm)∂xu dxdt.

Putting this into (3.19) and rearranging, we have

(3.21) J(m̃, q̃) − J(m,q) =

∫T
0

∫ `
0
e−rt(qm− q̃m̃)

(
1 − 2q− κ

∫ `
0
qm dy− ∂xu

)
dxdt

+

∫T
0

∫ `
0
e−rtm̃(q̃− q)2 dxdt+

k

2

∫T
0
e−rt

(∫ `
0
q̃m̃− qm dx

)2

dt.

To conclude that J(m̃, q̃) > J(m,q), it suffices to prove that

(3.22) 1 − 2q− κ

∫ `
0
qm dy− ∂xu = 0.

Recall the definition

q =
1

2

(
2

2 + κ
+

κ

2 + κ

∫ `
0
∂xu(t,y)m(t,y) dy− ∂xu

)
.

Integrate both sides againstm and rearrange to get∫
m∂xu dy = 1 − (κ+ 2)

∫
qm dy.
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Plugging this into the definition of q proves (3.22). Thus (m,q) is a minimizer.
On the other hand, suppose logm0 ∈ L1([0, `]) and that (m̃, q̃) is another minimizer.

Then (3.21) implies that

(3.23)
∫T

0

∫ `
0
e−rtm̃(q̃− q)2 dxdt+

κ

2

∫T
0
e−rt

(∫ `
0
q̃m̃− qm dx

)2

dt = 0.

Now by Lemma 3.7, we have m̃ > 0 a.e. Therefore (3.23) implies q̃ = q. By uniqueness for
the Fokker-Planck equation, we conclude that m̃ = m as well. The proof is complete. �

REMARK 3.9 (Extension to system (3.6a)-(3.6c)). A similar argument shows that Sys-
tem (3.6a)-(3.6c), with Dirichlet boundary conditions on the left-hand side, is also a sys-
tem of optimality for the same minimization problem, except this time with Dirichlet
boundary conditions (on the left-hand side) imposed on the Fokker-Planck equation. We
omit the details.

4. First-Order Case

In this section we use a vanishing viscosity method to prove that (3.7) has a solution
even when we plug in σ = 0. We need to collect some estimates which are uniform in σ
as σ→ 0. From now on we will assume 0 < σ 6 1, and whenever a constant C appears it
does not depend on σ.

LEMMA 3.10. ‖∂tu‖2 6 C.

PROOF. We first prove that σ‖∂xxu‖2 6 C. For this, multiply

(3.24) ∂xtu− r∂xu+ σ∂xxxu− qu,m∂xxu = 0

by ∂xu and integrate by parts. We get, after using Young’s inequality and (3.10),

4σ2

∫T
0

∫ `
0
∂xxu

2 dxdt 6 4

∫T
0

∫ `
0
(qu,m∂xu)

2 dxdt+ 4σ

∫ `
0
u̇T (x)

2 dx 6 C,

as desired.
Then the claim follows from (3.7)(i) and Lemma 3.2. �

LEMMA 3.11. ‖u‖C1/3 6 C.

PROOF. Since ‖∂xu‖∞ 6 C it is enough to show that u is 1/3-Hölder continuous in
time. Let t1 < t2 in [0, T ] be given. Set η > 0 to be chosen later. We have, by Hölder’s
inequality,

(3.25) |u(t1, x) − u(t2, x)| 6 Cη+
1

η

∫x+η
x−η

|u(t1, ξ) − u(t2, ξ)|dξ

6 Cη+
1

η

∫x+η
x−η

∫t2
t1

|∂tu(s, ξ)|ds dξ

6 Cη+
1

η
‖∂tu‖2

√
2η|t2 − t1| 6 Cη+ C|t2 − t1|

1/2η−1/2.

Setting η = |t2 − t1|
1/3 proves the claim. �



4. FIRST-ORDER CASE 67

To prove compactness estimates form, we will first use the fact that it is the minimizer
for an optimization problem. Let us reintroduce the optimization problem from Section
3 with σ > 0 as a variable. We first define the convex functional

(3.26) Ψ(m,w) :=


|w|2

m ifm 6= 0,

0 if w = 0,m = 0,

+∞ if w 6= 0,m = 0.

Now we rewrite the functional J, with a slight abuse of notation, as

(3.27) J(m,w) =

∫T
0

∫ `
0
e−rt (Ψ(m(t, x),w(t, x)) −w(t, x)) dxdt

+
κ

2

∫T
0
e−rt

(∫ `
0
w(t,y) dy

)2

dt−

∫ `
0
e−rTuT (x)m(T , x) dx,

and consider the problem of minimizing over the class Kσ, defined here as the set of all
pairs (m,w) ∈ L1((0, T)× (0, `))+ × L1((0, T)× (0, `);R) such that

(3.28) ∂tm− σ∂xxm− ∂xw = 0, m(0) = m0

in the sense of distributions. By Proposition 3.8, for every σ > 0, J has a minimizer
in Kσ given by (m,w) = (m,qu,mm) where (u,m) is the solution of System (3.7). Since
(m,w) is a minimizer, we can derive a priori bounds which imply, in particular, thatm(t)

is Hölder continuous in the Kantorovich-Rubinstein distance on the space of probability
measures, with norm bounded uniformly in σ. We recall that the Kantorovich-Rubinstein
metric on P(Ω), the space of Borel probability measures onΩ, is defined by

d1(µ,ν) = inf
π∈Π(µ,ν)

∫
Ω×Ω

|x− y|dπ(x,y),

where Π(µ,ν) is the set of all probability measures on Ω × Ω whose first marginal is µ
and whose second marginal is ν. Here we considerΩ = (0, `).

LEMMA 3.12. There exists a constant C independent of σ such that

‖|w|2/m‖L1((0,T)×(0,`)) 6 C.

As a corollary, m is 1/2-Hölder continuous from [0, T ] into P((0, `)), and there exists a constant
(again denoted C) independent of σ such that

(3.29) d1(m(t1),m(t2)) 6 C|t1 − t2|
1/2.

PROOF. To see that ‖|w|2/m‖L1((0,T)×(0,`)) 6 C, use (m0, 0) ∈ K as a comparison. By
the fact that J(m,w) 6 J(m0, 0) we have∫T

0

∫ `
0
e−rt

|w|2

2m
dxdt+

κ

2

∫T
0
e−rt

(∫ `
0
wdx

)2

dt

6
∫ `

0
e−rTuT (m(T) −m0) dx+

1

2

∫T
0

∫ `
0
e−rtm dxdt 6 C.

The Hölder estimate (3.29) follows from [35, Lemma 3.1]. �
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We also have compactness in L1, which comes from the following lemma.

LEMMA 3.13. For every K > 0, we have

(3.30)
∫
m(t)>2K

m(t) dx 6 2

∫ `
0
(m0 − K)

+ dx

for all t ∈ [0, T ].

PROOF. Let K > 0 be given. We define the following auxiliary functions:
(3.31)

φα,δ(s) :=


0 if s 6 K,
1
6(1 + α)αδα−2(s− K)3 if K 6 s 6 K+ δ,
1
6(1 + α)αδα+1 + 1

2(1 + α)αδα(s− K) + (s− K)1+α if s > K+ δ,

where α, δ ∈ (0, 1) are parameters going to zero. For reference we note that

(3.32) φ̇α,δ(s) =


0 if s 6 K,
1
2(1 + α)αδα−2(s− K)2 if K 6 s 6 K+ δ,
1
2(1 + α)αδα + (1 + α)(s− K)α if s > K+ δ,

and

(3.33) φ̈α,δ(s) =


0 if s 6 K,

(1 + α)αδα−2(s− K) if K 6 s 6 K+ δ,

(1 + α)α(s− K)α−1 if s > K+ δ.

Observe that φ̈α,δ is continuous and non-negative. Multiply (3.7)(ii) by φ̇α,δ(m) and
integrate by parts. After using Young’s inequality we have

(3.34)
∫ `

0
φα,δ(m(t)) dx 6

∫ `
0
φα,δ(m0) dx+

‖qu,m‖2∞
4σ

∫t
0

∫ `
0
φ̈α,δ(m)m2 dxdt.

Since φ̈α,δ(s) 6 (1 + α)αδ−2, after taking α→ 0 we have

(3.35)
∫ `

0
φδ(m(t)) dx 6

∫ `
0
φδ(m0) dx,

where φδ(s) = (s− K)χ[K+δ,∞)(s). Now letting δ→ 0 we see that

(3.36)
∫ `

0
(m(t) − K)+ dx 6

∫ `
0
(m0 − K)

+ dx,

where s+ := (s+ |s|)/2 denotes the positive part. Whence

(3.37)
∫ `

0
(mσ(t) − K)

+ dx 6
∫ `

0
(m0 − K)

+ dx,

which also implies (3.30). �

We also have a compactness estimate for the function t 7→
∫`

0 ∂xu(t,y)m(t,y) dy.

LEMMA 3.14. σ
(∫T

0

∫`
0
|∂xm|2

m+1 dxdt
)1/2

6 C.
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PROOF. Multiply the Fokker-Planck equation by log(m + 1) and integrate by parts.
After using Young’s inequality, we obtain

σ2

2

∫T
0

∫ `
0

|∂xm|2

m+ 1
dxdt 6 2σ

∫ `
0
((m0 + 1) log(m0 + 1) −m0) dx+ ‖qu,m‖2∞

∫T
0

∫ `
0

m2

m+ 1

6
∫ `

0
((m0 + 1) log(m0 + 1) −m0) dx+ ‖qu,m‖2∞

∫T
0

∫ `
0
m dxdt 6 C.

�

LEMMA 3.15. Let ζ ∈ C∞c ((0, `)). Then the function

t 7→
∫ `

0
m(t,y)ζ(y)∂xu(t,y) dy

is 1/2-Hölder continuous, and in particular,

(3.38)

∣∣∣∣∣∣
[∫ `

0
m(t,y)ζ(y)∂xu(t,y) dy

]t2
t1

∣∣∣∣∣∣ 6 Cζ|t1 − t2|1/2

where Cζ is a constant that depends on ζ but not on σ.

PROOF. Integration by parts yields

(3.39)

[
e−rt

∫ `
0
m(t,y)ζ(y)∂xu(t,y) dy

]t2
t1

= −2σ

∫t2
t1

e−rs
∫ `

0
∂xm(s,y)ζ̇(y)∂xu(s,y) dy ds−σ

∫t2
t1

e−rs
∫ `

0
m(s,y)ζ̈(y)∂xu(s,y) dy ds

−
1

2

∫t2
t1

{(
2

2 + κ
+

κ

2 + κ

∫ `
0
∂xu(s)m(s)

) ∫ `
0
ζ̇m(s)∂xu(s) −

∫ `
0
ζ̇m(s)∂xu

2(s)

}
ds.

On the one hand,∣∣∣∣∣σ
∫t2
t1

e−rs
∫ `

0
m(s, x)ζ̈(x)∂xu(s, x) dxds

∣∣∣∣∣ 6 ‖∂xu‖∞‖ζ̈‖∞2
|t1 − t2| 6 C‖ζ̈‖∞|t1 − t2|,

and∣∣∣∣∣
∫t2
t1

{(
2

2 + κ
+

κ

2 + κ

∫ `
0
m(s)∂xu(s)

) ∫ `
0
ζ̇m(s)∂xu(s) −

∫ `
0
ζ̇m(s)∂xu

2(s)

}
ds

∣∣∣∣∣
6 C‖ζ̇‖∞‖∂xu‖2∞|t1 − t2|.
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On the other hand, by Hölder’s inequality and Lemma 3.14 we get∣∣∣∣∣2σ
∫t2
t1

e−rs
∫ `

0
∂xm(s, x)∂xu(s, x)ζ̇(x) dxds

∣∣∣∣∣
6 ‖∂xu‖∞‖ζ̇‖∞2σ

(∫t2
t1

∫ `
0

|∂xm|2

m+ 1
dxds

)1/2(∫t2
t1

∫ `
0
(m+ 1) dxds

)1/2

6 C‖ζ̇‖∞(`+ 1)1/2|t1 − t2|
1/2.

�

COROLLARY 3.16. The function

t 7→
∫ `

0
m(t, x)∂xu(t, x) dx

is uniformly continuous with modulus of continuity independent of σ.

PROOF. Let δ ∈ (0, `) and fix ζ ∈ C∞c ((0, `)) be such that 0 6 ζ 6 1 and ζ ≡ 1 on
[δ, `− δ]. Notice that for any t1, t2 ∈ [0, T ]

(3.40)∣∣∣∣∣∣
[∫ `

0
m(t, x)(1 − ζ(x))∂xu(t, x) dx

]t2
t1

∣∣∣∣∣∣ 6 ‖∂xu‖∞
∫
[0,`]\[δ,`−δ]

[m(t1, x) +m(t2, x)] dx.

Now by Lemma 3.13 we have

(3.41)
∫
[0,`]\[δ,`−δ]

m(t, x) dx

6
∫
{m(t)<2K}∩[0,`]\[δ,`−δ]

m(t, x) dx+

∫
{m(t)>2K}

m(t, x) dx 6 4Kδ+ 2

∫ `
0
(m0 − K)

+ dx

for all t ∈ [0, T ]. Combine (3.40) and (3.41) with Lemmas 3.15 and 3.2 to get
(3.42)∣∣∣∣∣∣
[∫ `

0
m(t, x)∂xu(t, x) dx

]t2
t1

∣∣∣∣∣∣ 6 Cζ|t1 − t2|1/2 + CKδ+ C

∫ `
0
(m0 − K)

+ dx ∀t1, t2 ∈ [0, T ].

Let η > 0 be given. Set K large enough such that C
∫`

0(m0 − K)+ dx < η/3, then pick δ
small enough that CKδ < η/3. Finally, fix ζ as described above. Equation (3.42) implies

that if |t1 − t2| < η
2/(9C2

ζ), we have
∣∣∣∣[∫`0m(t, x)∂xu(t, x) dx

]t2
t1

∣∣∣∣ < η. Thus the function

t 7→
∫`

0m(t, x)∂xu(t, x) dx is uniformly continuous, and since none of the constants here
depend on σ, the modulus of continuity is independent of σ. �

We are now in a position to prove an existence result for the first-order system.

THEOREM 3.17. Suppose that σ = 0, then there exists a unique pair (u,m) which solves
System (3.7) in the following sense:
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(1) u ∈W1
2([0, T ]× [0, `]) ∩ L∞(0, T ;W1∞(0, `)) is a continuous solution of the Hamilton-

Jacobi equation

(3.43) ∂tu− ru+
1

4
(f(t) − ∂xu)

2 = 0, u(T , x) = uT (x),

equipped with Neumann boundary conditions, in the viscosity sense;
(2) m ∈ L1 ∩ C([0, T ];P([0, `])) satisfies the continuity equation

(3.44) ∂tm−
1

2
∂x((f(t) − ∂xu)m) = 0, m(0) = m0,

equipped with Neumann boundary conditions, in the sense of distributions; and
(3) f(t) = 2

2+κ + κ
2+κ

∫`
0m(t, x)∂xu(t, x) dx a.e.

PROOF. Existence: Collecting Lemmas 3.2, 3.10 3.11, 3.12, 3.13, and Corollary 3.16, we
can construct a sequence σn → 0+ such that if (un,mn) is the solution corresponding to
σ = σn, we have

• un → u uniformly, so that u ∈ C([0, T ]× [0, `]), and also weakly in W1,2([0, T ]×
[0, `]);
• ∂xun ⇀ ∂xu weakly∗ in L∞;
• mn → m in C([0, T ];P([0, `])), so that m(t) is a well-defined probability measure

for every t ∈ [0, T ], mn ⇀ m weakly in L1([0, T ] × [0, `]), and mn(T) ⇀ m(T)

weakly in L1([0, `]);
• mn∂xun ⇀ wweakly in L1; and
• fn(t) := 2

2+κ + κ
2+κ

∫`
0m

n(t,y)∂xu
n(t,y) dy→ f(t) in C([0, T ]).

Since un → u and fn → f uniformly, by standard arguments, we have that (3.43) holds
in a viscosity sense. Moreover, since ∂xun ⇀ ∂xu weakly∗ in L∞, we also have

(3.45) ∂tu− ru+
1

4
(f(t) − ∂xu)

2 6 0

in the sense of distributions, i.e. for all φ ∈ C∞([0, T ]× [0, `]) such that φ > 0, we have

(3.46)
∫ `

0
e−rTuT (x)φ(T , x) dx−

∫ `
0
e−rTu(0, x)φ(0, x) dx

−

∫T
0

∫ `
0
e−rtu(t, x)∂tφ(t, x) dxdt+

1

4

∫T
0

∫ `
0
(f(t) − ∂xu(t, x))

2φ(t, x) dxdt 6 0.

(This follows from the convexity of ∂xu 7→ ∂xu
2.)

Sincemn ⇀ m andmn∂xun ⇀ wweakly in L1, it also follows that

(3.47) ∂tm−
1

2
∂x(f(t)m−w) = 0, m(0) = m0

in the sense of distributions. For convenience we define υ := 1
2(f(t)m − w). Extend the

definition of (m,υ) so that m(t, x) = m(T , x) for t > T , m(t, x) = m0(x) for t 6 0, and
m(t, x) = 0 for x /∈ [0, `]; and so that υ(t, x) = 0 for (t, x) /∈ [0, T ] × [0, `]. Now let ξδ(t, x)
be a standard convolution kernel (i.e. a C∞, positive function whose support is contained
in a ball of radius δ and such that

∫∫
ξδ(t, x) dxdt = 1). Set mδ = ξδ ∗m and υδ = ξδ.
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Then mδ,υδ are smooth functions such that ∂tmδ = ∂xυδ in [0, T ] × [0, `]; moreover mδ
is positive. Usingmδ as a test function in (3.46) we get∫ `

0
e−rTuT (x)mδ(T , x) dx−

∫ `
0
e−rTu(0, x)mδ(0, x) dx

+

∫T
0

∫ `
0
e−rtυδ∂xu dxdt+

1

4

∫T
0

∫ `
0
(f(t) − ∂xu)

2mδ dxdt 6 0.

Using the continuity ofm(t) in P([0, `]) from Lemma 3.12, we see that

lim
δ→0+

∫ `
0
e−rTuT (x)mδ(T , x) dx =

∫ `
0
e−rTuT (x)m(T , x) dx,

and limδ→0+
∫`

0 e
−rTu(0, x)mδ(0, x) dx =

∫`
0 e

−rTu(0, x)m0(x) dx. Since mδ → m and
υδ → υ in L1, we have∫ `

0
e−rTuT (x)m(T , x) dx−

∫ `
0
e−rTu(0, x)m0(x) dx

+

∫T
0

∫ `
0
e−rtυ∂xu dxdt+

1

4

∫T
0

∫ `
0
(f(t) − ∂xu)

2m dxdt 6 0,

or

(3.48)
∫ `

0
e−rTuT (x)m(T , x) dx−

∫ `
0
e−rTu(0, x)m0(x) dx

+

∫T
0

∫ `
0
e−rt

(
1

4
m∂xu

2 −
1

2
w∂xu

)
dxdt+

1

4

∫T
0

∫ `
0
f2(t)m dt 6 0.

Recall the definition of Ψ(m,w) from (3.26). From (3.48) we have

(3.49)
∫ `

0
e−rTuT (x)m(T , x) dx−

∫ `
0
e−rTu(0, x)m0(x) dx

+
1

4

∫T
0

∫ `
0
f2(t)m dt 6

1

4

∫T
0

∫ `
0
e−rtΨ(m,w) dxdt.

On the other hand, for each nwe have

(3.50)
∫ `

0
e−rTuT (x)m

n(T , x) dx−

∫ `
0
e−rTun(0, x)m0(x) dx

+
1

4

∫T
0

∫ `
0
f2n(t)m

n dt =
1

4

∫T
0

∫ `
0
e−rtmn∂xu

2 dxdt =
1

4

∫T
0

∫ `
0
e−rtΨ(mn,mn∂xu

n) dxdt.

Since (mn,mn∂xu
n) ⇀ (m,w) weakly in L1 × L1, it follows from weak lower semiconti-

nuity that

(3.51)
∫ `

0
e−rTuT (x)m(T , x) dx−

∫ `
0
e−rTu(0, x)m0(x) dx

+
1

4

∫T
0

∫ `
0
f2(t)m dt >

1

4

∫T
0

∫ `
0
e−rtΨ(m,w) dxdt.
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From (3.48), (3.49), and (3.51) it follows that∫T
0

∫ `
0
e−rt(Ψ(m,w) +m∂xu

2 − 2w∂xu) dxdt = 0,

where Ψ(m,w) +m∂xu
2 − 2w∂xu is a non-negative function, hence zero almost every-

where. We deduce that w = m∂xu almost everywhere.
Finally, by weak convergence we have for a.e t ∈ [0, T ],

f(t) =
2

2 + κ
+

κ

2 + κ
lim
n→∞

∫ `
0
mn(t, x)∂xu

n(t, x) dx

=
2

2 + κ
+

κ

2 + κ

∫ `
0
w(t, x) dx

=
2

2 + κ
+

κ

2 + κ

∫ `
0
m(t, x)∂xu(t, x) dx

Which entails the existence part of the Theorem.
Uniqueness: The proof of uniqueness is essentially the same as for the second or-

der case, the only difference is the lack of regularity which makes the arguments much
more subtle invoking results for transport equations with a non-smooth vector field. Let
(u1,m1) and (u2,m2) be two solutions of system (3.7) in the sense given above, and let us
set u := u1 −u2 andm = m1 −m2. We use a regularization process to get the energy esti-
mate (3.14). Then we get that u1 ≡ u2 and

∫`
0m1∂xu1 =

∫`
0m2∂xu2 in {m1 > 0}∪{m2 > 0},

so thatm1 andm2 are both solutions to

∂tm−
1

2
∂x((f1(t) − ∂xu1)m) = 0, m(0) = m0,

where f1(t) := 2
2+κ + κ

2+κ

∫`
0m1(t, x)∂xu1(t, x) dx. In orded to conclude that m1 ≡ m2,

we invoke the following Lemma:

LEMMA 3.18. Assume that v is a viscosity solution to

∂tv− rv+
1

4
(f1(t) − ∂xv)

2 = 0, v(T , x) = uT (x),

then the transport equation

∂tm−
1

2
∂x((f1(t) − ∂xv)m) = 0, m(0) = m0

possesses at most one weak solution in L1.

The proof of Lemma 3.18 (see e.g. [31, Section 4.2]) relies on semi-concavity estimates
for the solutions of Hamilton-Jacobi equations [30], and Ambrosio superposition princi-
ple [7, 8]. �





CHAPTER 4

Approximate Equilibria for N-Player Dynamic Cournot
Competition

Joint work with P. Jameson Graber, accepted for publication in “ESAIM: Control, Optimisation
and Calculus of Variations”.

1. Introduction

In the previous chapter, we introduced briefly the Bertrand & Cournot Mean Field
Game model using the framework of [49], and we addressed several mathematical fea-
tures of this model by completing the analysis which is found in [70].

As we already pointed out, the Bertrand and Cournot Mean Field Game model is
intended to be an approximation of the N-Player dynamic Bertrand and Cournot com-
petition respectively. However, very little is known so far on the rigorous link between
the MFGs models and the N-Player dynamic games models in this context. Indeed, the
classical theory cannot be applied to this specific case for two main reasons: on the one
hand, because of the absorbing boundary conditions; and on the other hand, because
the MFGs models belongs to the class of extended Mean Field Games (c.f. Section 2 and
[15,39,65,66]). This has motivated the present work, in which we analyse rigorously this
question in the specific context of Cournot competition.

We investigate the Large Population approximation for N-Player dynamic Cournot
game with linear price schedule, and exhaustible resources. In this context, the produc-
ers’ state variable is the reserves level, and the strategic variable is the rate of production.
Producers disappear from the market as soon as they deplete their reserves, and the re-
maining active producers set continuously a non-negative rate of production, in order to
manage their remaining reserves and maximize sales profit. Market demand is assumed
to be linear so that the received price by any representative producer is given by (3.1).

From Cournot’s standpoint, we can constraint the producers to choose a non-negative
rate of production. In fact, choosing a negative rate of production is irrelevant from a
modeling standpoint. Therefore, by using notations of Chapter 3-Section 1, the game
value function u in this context is:

u(t, x) := sup
q>0

JBC(t, x,m).

Hence, the optimal production rate qu,m(t, x) is given by:

(4.1) qu,m(t, x) :=
1

2

(
1 − κ

∫
Q

qu,m(t,y)m(t,y) dy− ∂xu(t, x)

)+

,

75
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and the corresponding price pu,m(t, x) is obtained by plugging (4.1) in (3.1). Note that in
contrast to (3.6a), the optimal feedback production rate is less regular in this context and
can not be explained as a functional of u and m as in (3.6a). Nevertheless, we will prove
that the function qu,m enjoys several features which play a key role in our analysis.

We shall start by studying the Cournot Mean Field Game system (3.6b),(3.6c),(4.1).
We prove existence and uniqueness of regular solutions to that system by deriving suit-
able a priori estimates. We shall assume that the initial data is a probability measure that
is supported on (0, `], which entails that all producers start with positive reserves. Our
analysis completes that which is found in Chapter 3 and [70], by treating the case of a less
regular production function qu,m and initial measure data. Next, we prove that the feed-
back control given by the solution of the Mean Field Game system, provides an ε-Nash
equilibrium (cf. Definition 4.9) to the corresponding N-Player Cournot game, where the
error ε is arbitrary small for large enoughN. We refer the reader to Section 3 for a defini-
tion of ε-Nash equilibria. This result shows that the Cournot MFG model is indeed a good
approximation to the dynamic Cournot competition with finitely many players, and re-
inforces numerical methods based on the MFG approach. As in the classical theory, the
key argument in the proof of this result is a suitable law of large numbers. In our context,
the main mathematical challenge comes from the fact that agents interact through the
boundary behaviour, and are coupled by means of their chosen production strategies. To
prove a tailor-made law of large numbers, we employ a compactness method borrowed
from [76, 89], by showing tightness of the empirical process in the space of distribution
valued càdlàg processes, endowed with Skorokhod’s M1 topology [89]. In contrast to the
classical tools used so far, this method does not provide an exact quantification of the
error ε, which is its main downside. Nevertheless, this approach has proven to be conve-
nient for studying systems with absorbing boundary conditions. We also believe that it
could be extended to the case of a systemic common noise, just as [89] contains an anal-
ysis of a stochastic McKean-Vlasov equation. However, we do not address this case here,
finding the analysis of the stochastic HJB/FP-system somewhat out of reach under our
assumptions on the data (Cf. [33, Section 4] and the hypotheses found there).

For background on Skorokhod’s topologies for real valued processes, we refer the
reader to [108] and references therein. The M1 topology is extended to the space of tem-
pered distributions, and to more general spaces in [89]. The fact that the feedback MFG
control provides ε-Nash equilibria for the corresponding differential games with a large
(but finite) number of players, was first noticed by Caines et al. [24, 25] and further de-
veloped in several works (see e.g.[42, 81] among others). A simple class of MFGs with
absorbing boundary conditions is also addressed in [26], where the authors also show
that a solution of the mean field game equations induces approximate Nash equilibria
for the corresponding N-player games. Cournot games with exhaustible resources and
finite number of agents is investigated by Harris et al. in [77], and the corresponding MFG
models were studied in [49,50,73,92] with different variants, and numerical simulations.

This chapter is organized as follows: In Section 2 we introduce the Cournot Mean
Field Game system, prove existence and uniqueness of regular solutions to that system
by deriving suitable Hölder estimates. In Section 3 we explain the corresponding N-
Player Cournot game, and show that the feedback control that is computed from the MFG
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system, is an ε-Nash equilibrium to the N-Player game. For that purpose, we start by
showing the weak convergence of the empirical process with respect to the M1 topology,
then we deduce the main result by recalling the interpretation of the MFG system in
terms of games with a continuum of agents and “mean field” interactions.

Preliminaries Throughout this chapter we fix ` > 0, define Q := (0, `), and QT :=

(0, T) × (0, `). For a subset D ⊂ QT , we define W1,2
s (D) to be the space of elements of

Ls(D) having weak derivatives of the form ∂
j
t∂
k
x with 2j + k 6 2, endowed with the

following norm:

‖w‖
W

1,2
s

:=
∑

2j+k62

‖∂jt∂
k
xw‖Ls .

Moreover, we set C0(D) to be the space of all continuous functions on D that vanish at
infinity (C0(D) = C(D) when D is compact).

The space of R-valued Radon measures on D is denoted M(D), which we identify
with C0(D)∗ endowed with weak∗ topology, and P(D), P̃(D) are respectively the convex
subset of probability measures on D, and the convex subset of sub-probability measures:
that is the set of positive radon measures µ, s.t. µ(D) 6 1. For any measure µ ∈ M(D),
we denote by supp(µ) the support of µ.

For simplicity, we fix a complete filtered probability space (Ω,F,F = (Ft)t>0,P), and
suppose that is rich enough to fulfil the assumptions that will be formulated in this part,
and we denote by uT a smooth function on Q̄ such that the first derivative of uT denoted
by u̇T fulfils :

(H 1) u̇T > 0 and uT (0) = u̇T (`) = 0.

Let us recall a few basic facts on stochastic differential equation with reflecting bound-
ary in a half-line. Given a random variable V that is supported on (−∞, `], we look for a
pair of a.s. continuous and adapted processes (Xt)t>0 and (ξXt )t>0 such that:

Xt = V +

∫t
0
b(s,Xs) ds+

√
2σWt −

∫t
0
1{Xs=`} dξXs ∈ (−∞, `],

ξXt =

∫t
0
1{Xs=`} dξXs ,(4.2a)

X0 = V, ξX0 = 0, and ξX is nondecreasing,

where (Wt)t>0 is a F-Wiener process that is independent of V . The random process
(Xt)t>0 is the reflected diffusion, (ξXt )t>0 is the local time, and the above set of equations
is called the Skorokhod problem. Throughout this chapter, we shall write problem (4.2a) in
the following simple form:

dXt = b(t,Xt) dt+
√

2σdWt − dξXt , X0 = V.

Suppose that the function b is bounded, and satisfies for some K > 0 the following con-
dition:

(4.2b) |b(t, x) − b(t,y)| 6 K|x− y|
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for all t ∈ [0, T ], and x,y ∈ (−∞, `]. Then, it is well-known (see e.g. [9, 61]) that under
these conditions, problem (4.2a) has a unique solution on [0, T ]. Moreover, this solution
is given explicitly by:

(4.2c) Xt := Γt(Y), ξXt := Yt − Γt(Y);

where the process (Yt)t∈[0,T ] is the solution to

(4.2d) Yt = V +

∫t
0
b(s, Γs(Y)) ds+

√
2σWt,

and where Γ is the so called Skorokhod map, that is given by

Γt(Y) := Yt − sup
06s6t

(`− Ys)
− .

Furthermore, notice that

(4.2e) ξXt − ξXt+h > inf
v∈[0,h]

(Yt − Yt+v)

for any t ∈ [0, T) and h ∈ (0, T − t). In fact, when ξXt < ξ
X
t+h, then

0 < ξXt+h := sup
06s6t+h

(`− Ys)
− = sup

t6s6t+h
(`− Ys)

− = (Yv0 − `)

for some t 6 v0 6 t+ h. Therefore

ξXt − ξXt+h = sup
06s6t

(`− Ys)
− − sup

06s6t+h
(`− Ys)

−

> (Yt − `) − (Yv0 − `) > inf
v∈[0,h]

(Yt − Yt+v).

This entails (4.2e) since the last inequality still holds when ξXt = ξXt+h.
Now we consider a boundary value problem for the Fokker-Planck equation. Let b in

L2(QT ),m0 ∈ P(Q̄), and consider the following Fokker-Planck equation

(4.3a)

{
∂tm− σ∂xxm− ∂x(bm) = 0 in QT
m(0) = m0 in Q,

complemented with the following mixed boundary conditions:

(4.3b) m(t, 0) = 0, and σ∂xm(t, `) + b(t, `)m(t, `) = 0 on (0, T).

Then we define a weak solution to (4.3a)-(4.3b) to be a function m ∈ L1(QT )+ such that
m|b|2 in L1(QT ), and

(4.3c)
∫T

0

∫ `
0
m(−∂tφ− σ∂xxφ+ b∂xφ) dxdt =

∫ `
0
φ(0, .) dm0

for every φ ∈ C∞c ([0, T)×Q) satisfying

(4.3d) φ(t, 0) = ∂xφ(t, `) = 0, ∀t ∈ (0, T).

This is the definition given by Porretta in [102]. The only difference is that here we con-
sider mixed boundary conditions and measure initial data.

When m0 ∈ L1(Q)+, the problem (4.3a) endowed with periodic, Dirichlet or Neu-
mann boundary conditions has several interesting features that were pointed out in [102,
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Section 3]. In particular, they are unique [102, Corollary 3.5] and enjoy some extra regular-
ity [102, Proposition 3.10]. Note that these results still hold in the case of mixed boundary
conditions (4.3b). Throughout this chapter, we shall use the results of [102, Section 3] for
(4.3a)-(4.3b).

In the case where b is bounded, we shall use the fact that (4.3a)-(4.3b) admits a unique
weak solution, for any m0 ∈ P(Q̄). In fact, one can construct a solution by considering a
suitable approximation of m0, and then use the compactness results of [102, Proposition
3.10] in order to pass to the limit in L1(QT ). The uniqueness is obtained by considering
the dual equation, and using the same steps as for [102, Corollary 3.5] (we refer the reader
to Proposition A.2).

2. Analysis of Cournot MFG System

This section is devoted to the analysis of the following coupled system of parabolic
partial differential equations:

(4.4)



∂tu+ σ∂xxu− ru+ q2
u,m = 0 in QT ,

∂tm− σ∂xxm− ∂x {qu,mm} = 0 in QT ,

m(t, 0) = 0, u(t, 0) = 0, ∂xu(t, `) = 0 in (0, T),

m(0) = m0, u(T , x) = uT (x), in [0, `],

σ∂xm+ qu,mm = 0 in (0, T)× {`},

where the function qu,m involved in the system is given by:
(4.5)

qu,m(t, x) :=
1

2
(1 − κq̄(t) − ∂xu(t, x))

+ , where q̄(t) :=

∫ `
0
qu,m(t, x)m(t, x) dx,

and κ > 0. We focus in Section 2 on the mathematical analysis of the PDE system (4.4).
Let us assume that:

(H2) m0 ∈ P(Q̄), and supp(m0) ⊂ (0, `].

We shall say that a pair (u,m) is a solution to (4.4), if

(i) u ∈ C1,2(QT ), u,∂xu ∈ C(QT );
(ii) m ∈ C([0, T ];M(Q̄)) ∩ L1(QT )+, and ‖m(t)‖L1 6 1 for every t ∈ (0, T ];

(iii) the equation for u holds in the classical sense, while the equation for m holds in
the weak sense (4.3c).

2.1. Preliminary Estimates. We start by giving an alternative convenient expression
for the production rate function qu,m. We aim to write qu,m as a functional of ux,m and
the market price function pu,m, that is given by (3.1), namely:

(4.6) pu,m(t, x) := 1 − (qu,m(t, x) + κq̄(t)).
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The latter expression means that the price pu,m(t, x) received by an atomic player with
reserves x at time t, is a linear and nonincreasing function, of the player’s production rate
qu,m(t, x), and the aggregate production rate across all producers q̄(t).

We use a convenient ad-hoc Bertrand formulation for our problem. For any µ ∈M(Q̄),
we define

(4.7) a(µ) :=
1

1 + κη(µ)
; c(µ) := 1 − a(µ); η(µ) :=

∫ `
0

d|µ|

and set

(4.8a) p(t) :=
1

η(m(t))

∫ `
0
pu,m(t, x)m(t, x) dx.

By integrating (4.6) with respect tom and after a little algebra one recovers the following
identity

a (m(t)) + c (m(t))p(t) = 1 − κq̄(t),

which entails

(4.8b) pu,m(t, x) = a (m(t)) + c (m(t))p(t) − qu,m(t, x),

and

(4.8c) qu,m(t, x) =
1

2
{a (m(t)) + c (m(t))p(t) − ux(t, x)}

+ .

One can see this formulation as a Bertrand and Cournot equivalence (c.f. Chapter 3). For
convenience, we shall often use (4.8c) as a definition for qu,m.

In contrast to the MFG system studied in Chapter 3 and [49, 70], pu,m has no explicit
formula and is only defined as a fixed point through (4.8a)-(4.8c). The following Lemma
makes that statement clear and point out a few facts on the market price function.

LEMMA 4.1. Let u ∈ L∞ (0, T ;C1(Q̄)
)
, m ∈ L1(QT )+, and κ > 0. Then the market price

function pu,m is well-defined through (4.8a)-(4.8c), belongs to L∞(0, T ;C(Q̄)), and satisfies

(4.9) − ‖∂xu‖∞ 6 pu,m 6 1.

Moreover, if ∂xu is non-negative, then pu,m is non-negative as well.

PROOF. Let f : R2 → R be given by f(x,y) = x− 1
2(x− y)

+. Note that f is 1-Lipschitz
in the first variable, and 1

2 -Lipschitz in the second. For any p,w ∈ X := L∞(0, T ;C(Q̄)),
define

L(m,p)(t) := a (m(t)) + c (m(t))p(t), where p(t) :=
1

η(m(t))

∫ `
0
p(t, x)m(t, x) dx,

and

Λ(w,m,p)(t, x) := f (L(m,p)(t),w(t, x)) .
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We note the following inequalities for future reference:∣∣L(m,p)(t) − L(m,p ′)(t)
∣∣ 6 κ

1 + κ

∥∥p(t, ·) − p ′(t, ·)∥∥∞ ,(4.10a) ∥∥Λ(w,m,p)(t, ·) −Λ(w,m,p ′)(t, ·)
∥∥∞ 6 κ

1 + κ

∥∥p(t, ·) − p ′(t, ·)∥∥∞ ,(4.10b) ∣∣Λ(w,m,p)(t, x) −Λ(w ′,m,p)(t, x)
∣∣ 6 1

2

∣∣w(t, x) −w ′(t, x)∣∣ ,(4.10c) ∣∣Λ(w,m,p)(t, x) −Λ(w,m ′,p)(t, x)
∣∣ 6 ∣∣L(m,p)(t) − L(m ′,p)(t)

∣∣ .(4.10d)

We aim to use Banach fixed point Theorem to show that

(4.11) p = a(m) + c(m)p̄−
1

2
{a(m) + c(m)p̄− ∂xu}

+

has a unique solution pu,m ∈ X, which satisfies (4.9). For any p ∈ X, let us set

ψ(p) := Λ(∂xu,m,p) = a(m) + c(m)p̄−
1

2
{a(m) + c(m)p̄− ∂xu}

+ .

Observe that ψ(X) ⊂ X, and p 6 1 entails ψ(p) 6 1. Moreover, if we suppose that
p > −‖∂xu‖∞, then it holds that

ψ(p) > −c(m)‖∂xu‖∞,

so that ψ(p) > −‖∂xu‖∞, since c(m) < 1. On the other hand, by appealing to (4.10b) we
have

‖ψ(p1) −ψ(p2)‖X 6
κ

1 + κ
‖p1 − p2‖X ∀p1,p2 ∈ X.

Therefore by invoking Banach fixed point Theorem, and the estimates above we deduce
the existence of a unique solution pu,m ∈ X to problem (4.11) satisfying (4.9).

When ∂xu is non-negative, note that p > 0 entails ψ(p) > 0, so that the same fixed
point argument yields pu,m > 0. �

Next, we collect some facts related to the Fokker-Planck equation (4.3a)-(4.3b).

LEMMA 4.2 (regularity of η). Letm be a weak solution to (4.3a)-(4.3b), starting from some
m0 satisfying (H2). Suppose that b is bounded, and satisfies (4.2b). Then the map t → η(t) :=

η(m(t)) is continuous on [0, T ].
Moreover, if in additionm0 belongs to L1(Q), then we have:

(i) the function t→ η(t) is locally Hölder continuous on (0, T ]; namely, there exists γ > 0

such that

(4.12a) |η(t1) − η(t2)| 6 C(t0, ‖b‖∞) |t1 − t2|γ ∀t1, t2 ∈ [t0, T ]

for all t0 ∈ (0, T);
(ii) for any α > 0 and φ ∈ Cα(Q̄), there exists β > 0 such that

(4.12b)∣∣∣∣∣
∫ `

0
φ(x) (m(t1, x) −m(t2, x)) dx

∣∣∣∣∣ 6 C(t0, ‖b‖∞, ‖φ‖Cα)|t1 − t2|β ∀t1, t2 ∈ [t0, T ]

for all t0 ∈ (0, T).
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REMARK 4.3. This lemma shows that t 7→ m(t) is locally Hölder continuous in time
in (0, T ] with respect to the (Cα)∗ topology; this is useful later to get equicontinuity for
construction of a fixed point (cf. Section 2.3). Our method of proof does not allow us to
show Hölder continuity on all of [0, T ], because it is based on heat kernel estimates, which
degenerate as t → 0 (cf. Equation (4.21)). However, we find it nontrivial to construct a
counterexample.

PROOF. The proof requires several steps and lies on the probabilistic interpretation
ofmwhich we recall briefly here, and use in other parts of this chapter.

Step 1 (probabilistic interpretation): Consider the reflected diffusion process governed
by

(4.13a) dXt = −b(t,Xt) dt+
√

2σdWt − dξXt , X0 ∼ m0,

where X0 is F0-measurable, (Wt)t∈[0,T ] is a F-Wiener process that is independent of X0,
and set

(4.13b) τ := inf{t > 0 : Xt 6 0} ∧ T .

By virtue of the regularity assumptions on b, equation (4.13a) is well-posed in the classi-
cal sense. Furthermore, since the process (ξXt )t>0 is monotone, (Xt)t∈[0,T ] is a continuous
semimartingale. Hence, by means of Itô’s rule and the optional stopping theorem, we
have for any test function φ ∈ C∞c ([0, T)×Q) satisfying (4.3d):

E [φ(0,X0)] = E
[∫τ

0
(−∂tφ(v,Xv) − σ∂xxφ(v,Xv) + ∂xφ(v,Xv)b(v,Xv)) dv

]
.

and thus the law of Xt is a weak solution to the Fokker-Planck equation. The function b
being bounded, one sees that

E

[∫T
0
b(s,Xs)

2 ds

]
<∞.

Therefore, by virtue of the uniqueness for (4.3a)-(4.3b) (cf. Proposition A.2), we obtain:

(4.13c)
∫
A

m(t, x) dx = P(t < τ;Xt ∈ A)

for every Borel set A ∈ Q̄ and for a.e. t ∈ (0, T).
Step 2: Now, let us show that t → P(t < τ) is right continuous on [0, T ]. In fact, we

have for any ε > 0 and t ∈ [0, T ]

P(t < τ) − P(t+ h < τ) = P(t+ h > τ; t < τ)(4.14a)

6 P(t+ h > τ;Xt > ε) + P(t < τ;Xt < ε).

On the one hand, for every t ∈ [0, T ]

(4.14b) lim
ε→0+

P(t < τ;Xt < ε) 6 lim
ε→0+

P (0 < Xt < ε) = 0,
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thanks to the bounded convergence theorem. On the other hand

P(t+ h > τ;Xt > ε) 6 P
(

inf
v∈[t,t+h]

Xv − Xt 6 −ε

)
6 P

(
inf

v∈[0,h]

√
2σ(Wt+v −Wt) + (ξXt − ξXt+h) 6 −ε+ h‖b‖∞

)
,

where we have used the fact that the local time is nondecreasing and b is bounded. Fur-
thermore, by using (4.2e), it holds that

ξXt − ξXt+h > inf
v∈[0,h]

(Yt − Yt+v) >
√

2σ inf
v∈[0,h]

(Wt −Wt+v) − h‖b‖∞.

Therefore

P(t+ h > τ;Xt > ε) 6 P

(
sup
v∈[0,h]

Bv − inf
v∈[0,h]

Bv >
ε− 2h‖b‖∞√

2σ

)
,

where (Bt)t>0 is a Wiener process.
Now, choose ε = ε(h) := h1/2 log(1/h). We have ε(h) → 0 as h → 0+, and by using

Markov’s inequality and the distribution of the maximum of Brownian motion we get:

(4.14c) P(t+ h > τ;Xt > ε) 6
2
√

2σ

ε(h) − 2h‖b‖∞E |Bh| 6
2
√

2σ

log(1/h) − 2‖b‖∞h1/2
.

Thus 0 6 P(t < τ) − P(t+ h < τ)→ 0 as h→ 0+.
Step 3 (Hölder estimates): Now, we prove (4.12a)-(4.12b). At first, note that (4.13c)

entails

(4.15)
∫ `

0
φ(x)m(t, x) dx = E [φ(Xt)1t<τ]

for a.e. t ∈ (0, T) and for any φ ∈ C(Q̄). Actually (4.15) holds for every t ∈ [0, T ], since the
RHS and LHS of (4.15) are both right continuous on [0, T ], and m0 is supported on (0, `].
Indeed, on the one hand t→

∫`
0φ(x)m(t, x) dx is continuous on [0, T ] for any continuous

function φ on Q̄, since m ∈ C([0, T ];L1(Q)) (cf. [102, Theorem 3.6]). On the other hand,
for any φ ∈ C(Q̄)

(4.16) E |φ(Xt+h)1t+h<τ − φ(Xt)1t<τ|

6 ‖φ‖∞(P(t < τ) − P(t+ h < τ)) + E |φ(Xt+h) − φ(Xt)| ,

so that

lim
h→0+

E |φ(Xt+h)1t+h<τ − φ(Xt)1t<τ| = 0

thanks to (4.14a)-(4.14c), and the bounded convergence theorem.
Now, let us fix ε > 0 and define φε = φε(x) to be a smooth cut-off function on [0, `],

which satisfies the following conditions:

(4.17) 0 6 φε 6 1; 0 6 φ̇ε 6 2/ε; φε1[0,ε] = 0; φε1[2ε,`] = 1.
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As a first step, we aim to derive an estimation of the concentration of mass at the origine.
Namely, we want to show that for an arbitrary k > 1,

(4.18)
∫ `

0
(1 − φε(x))m(t, x) dx 6 C(k, ‖b‖∞)(1 − e−π

2t/4`2
)−1/2k

ε1/2k ∀t ∈ (0, T ].

Given (4.15), this is equivalent to showing that

(4.19) E [(1 − φε(Xt))1t<τ] 6 C(k, ‖b‖∞)(1 − e−π
2t/4`2

)−1/2k
ε1/2k ∀t ∈ (0, T ]

holds for any k > 1. Apply Girsanov’s Theorem with the following change of measure:

dQ
dP

∣∣∣∣
Ft

= exp

{
−(2σ)−1/2

∫t
0
b(s,Xs) dWs −

σ−1

4

∫t
0
b(s,Xs)

2 ds

}
=: Ψt.

Under Q, the process (Xt)t∈[0,T ] is a reflected Brownian motion at `, with initial condition
X0, thanks to (4.2c). Moreover, by virtue of Hölder inequality, we have for every k > 1:

EP [(1 − φε(Xt))1t<τ]

= EQ
[
Ψ−1
t (1 − φε(Xt))1t<τ

]
6 EQ[Ψ

−k ′

t ]1/k
′
EQ
[
(1 − φε(Xt))

k1t<τ
]1/k

6 EP[Ψ
1−k ′

t ]1/k
′
EQ
[
(1 − φε(Xt))

k1t<τ
]1/k

6 EP

[
exp

{
C(k,σ)

∫t
0
b(s,Xs)

2 ds

}]1/2k ′

EQ
[
(1 − φε(Xt))

k1t<τ
]1/k

.

Indeed, one checks that

EP[Ψ
1−k ′

t ]1/k
′
6 EP [Zt]

1/2k ′ EP

[
exp

{
2

(
1 − k ′

σ

)2 ∫t
0
b(s,Xs)

2 ds

}]1/2k ′

,

where (Zt)t>0 is a super-martingale. Using the fact that b is bounded, we obtain

(4.20) EP [(1 − φε(Xt))1t<τ] 6 C(k, ‖b‖∞)EQ
[
(1 − φε(Xt))

k1t<τ
]1/k

.

Now

EQ
[
(1 − φε(Xt))

k1t<τ
]
=

∫ `
0
(1 − φε(x))

kw(t, x) dx,

where w solves

∂tw =
1

2
∂xxw, w(t, 0) = 0, ∂xw(t, `) = 0,w|t=0 = m0.

We can compute w via Fourier series, namely

w(t, x) =
∑
n>1

Ane
−λ2nt/2 sin(λnx), An :=

2

`

∫ `
0

sin(λny) dm0(y), λn :=
(2n− 1)π

2`
.
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Note that ∫ `
0
(1 − φε(x))

kw(t, x) dx 6 (2ε)1/2‖w(t, ·)‖L2

6 ε1/2

∑
n>1

`|An|
2e−λ

2
nt

1/2

(Parseval)

6 ε1/2

(
4

`(1 − e−π
2t/4`2)

)1/2

.

So (4.20) now yields

(4.21) EP [(1 − φε(Xt))1t<τ] 6 C(k, ‖b‖∞)
(

4

`(1 − e−π
2t/4`2)

)1/2k

ε1/2k

which is (4.19). This in turn implies (4.18).
Furthermore, note that for any 1 < s < 3/2,

(4.22) ‖m(t1) −m(t2)‖W−1
s
6 C

(
‖m0‖L1 , ‖m|b|2‖L1

)
|t1 − t2|

1−1/s ∀t1, t2 ∈ [0, T ],

where W−1
s (Q) is the dual space of W1,s ′

0 (Q) :=
{
v ∈W1

s ′(Q) : v(0) = 0
}

. This claim
follows from [102, Proposition 3.10(iii)], where we obtain the estimate

(4.23) ‖m‖L∞(0,T ;L1(Q)) + ‖∂xm‖Ls(QT ) + ‖m‖Lv(QT ) + ‖∂tm‖Ls(0,T ;W−1
s (Q))

6 C
(
‖m0‖L1 , ‖m|b|2‖L1

)
for any s up to 3/2 and v up to 3. In particular, (4.22) follows from the estimate on
‖∂tm‖Ls(0,T ;W−1

s (Q)). Now, fix 0 < t1 6 t2 6 T , and let φε be the cut-off function that is
defined in (4.17). Based on the specifications of (4.17), observe that

‖φε‖W1
s ′
6 Cε−1/s.

Since φε satisfies Neumann boundary conditions at x = ` and Dirichlet at x = 0, it is a
valid test function and we can appeal to the estimates above to obtain for any k > 1,

(4.24) |η(t1) − η(t2)| =

∣∣∣∣∣
∫ `

0
{(1 − φε(x)) + φε(x)} (m(t1, x) −m(t2, x)) dx

∣∣∣∣∣
6
∫ `

0
|1 − φε(x)||m(t1, x) −m(t2, x)|dx+

∣∣∣∣∣
∫ `

0
φε(x)(m(t1, x) −m(t2, x)) dx

∣∣∣∣∣
6
∫ `

0
(1 − φε(x))(m(t1, x) +m(t2, x)) dx+

∣∣∣∣∣
∫ `

0
φε(x)(m(t1, x) −m(t2, x)) dx

∣∣∣∣∣
6 C(k, ‖b‖∞)(1 − e−π

2 t1/4`2
)−1/2k

ε1/2k + ‖φε‖W1
s ′
‖m(t1) −m(t2)‖W−1

s

6 C(k, ‖b‖∞)(1 − e−π
2t1/4`2

)−1/2k
ε1/2k + Cε−1/s|t1 − t2|

1−1/s.

Given 0 < γ < (s−1)/(s+2), we take ε = |t1 − t2|
s(1−γ)−1 and then set k =

s(1−γ)−1
2γ > 1

to obtain (4.12a).
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Finally, let φ ∈ Cα(Q̄) for some α > 0, an let t0 ∈ (0, T). In view of (4.15), we have for
every t1, t2 ∈ [t0, T ],∣∣∣∣∣
∫ `

0
φ(x)(m(t1, x) −m(t2, x)) dx

∣∣∣∣∣ 6 E |φ(Xt1)1t1<τ − φ(Xt2)1t2<τ|

6 ‖φ‖Cα (|η(t1) − η(t2)|+ E |Xt1 − Xt2 |
α) .

Hence, by using (4.12a) and the Burkholder-Davis-Gundy inequality [104, Thm IV.42.1],
we deduce the desired result:∣∣∣∣∣

∫ `
0
φ(x)(m(t1, x) −m(t2, x)) dx

∣∣∣∣∣ 6 C(t0, ‖b‖∞)‖φ‖Cα |t1 − t2|β ,

for some β > 0.
Step 4 (general data): Now, we suppose that m0 is a probability measure satisfying

(H2), and not necessarily an element of L1(Q). Let us choose a sequence (mn0 ) ⊂ L1(Q)+,
which converges weakly (in the sense of measures) tom0, such that

(4.25) ‖mn0 ‖L1 6
∫ `

0
dm0 6 1,

and letmn to be the weak solution to (4.3a)-(4.3b) starting frommn0 . The function b being
bounded, we can use [102, Proposition 3.10] to extract a subsequence of (mn), which
converges tom in L1(QT ). Owing to (4.12a), the sequence ηn := η(mn) is equicontinuous.
Hence, one can extract further a subsequence to deduce that η is continuous on (0, T ].
Combining this conclusion with the fact that t → P(t < τ) is right continuous on [0, T ]

and (4.13c), we deduce in particular that

(4.26) η(t) = P(t < τ), ∀t ∈ (0, T ].

Now, since m0 is supported on (0, `] one has η(m0) = η(0) = P(0 < τ) = 1, which in
turn entails that η is continuous on [0, T ] thanks to (4.14a)-(4.14c) and (4.26). The proof is
complete. �

REMARK 4.4. When m0 satisfies (H2) and does not necessarily belong to L1(Q), the
probabilistic characterisation (4.15) still holds for every t ∈ [0, T ]. In fact, using the same
approximation techniques as in Lemma 4.2- Step 4, and appealing to (4.12b) and (4.13c),
it holds that ∫ `

0
φ(x)m(t, x) dx = E [φ(Xt)1t<τ]

for every t ∈ [0, T ], α > 0 and φ ∈ Cα(Q̄). Thus, (4.15) ensues by using density argu-
ments.

2.2. A Priori Estimates. Now, we collect several a priori estimates for system (4.4).

LEMMA 4.5. Suppose that (u,m) satisfies the system (4.4) such that m ∈ L1(QT )+, and u
belongs toW1,2

s (QT ) for large enough s > 1. Then, we have:
(i) the maps u and ∂xu are non-negative; in particular

(4.27) 0 6 qu,m 6 1/2;
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(ii) there exists θ > 0 and a constant c0 > 0 such that

(4.28) ‖u‖Cθ(QT ), ‖∂xu‖Cθ(QT ) 6 c0

where c0 depends only on T and data. In addition, we have

‖∂xxu‖Cθ(Q ′),6 c1(Q
′, θ) ∀Q ′ ⊂⊂ (0, T)× (0, `];

If in additionm0 belongs to L1(Q), then there exists a Hölder exponent θ > 0 such that

‖pu,m‖Cθ([t0,T ]×[0,`]) 6 c2(t0, θ), ∀t0 ∈ (0, T),

and
‖∂tu‖Cθ(Q ′) 6 c2(Q

′, θ) ∀Q ′ ⊂⊂ (0, T)× (0, `].

PROOF. For large enough s > 1, we know that u,∂xu ∈ C(QT ) thanks to Sobolev-
Hölder embeddings. In view of

−∂tu− σ∂xxu+ ru > 0,

one easily deduces that u > e−rT minx uT , which entails in particular that u > 0 thanks to
(H 1). Thus, the minimum is attained at u(t, 0) = 0, so that ∂xu(t, 0) > 0 for all t ∈ [0, T ].
Differentiating the first equation in (4.4) we have that ∂xu is a generalised solution (cf.
[85, Chapter III]) of the following parabolic equation:

∂xtu+ σ∂xxxu− r∂xu− qu,m∂xxu = 0.

By virtue of the maximum principle [85, Theorem III.7.1] we infer that ∂xu > 0, since
∂xu(t, 0), ∂xu(t, `) and u̇T are all non-negative functions. Therefore (4.27) follows straight-
forwardly from (4.8c) thanks to Lemma 4.1.

Note that u solves a parabolic equation with bounded coefficients. Since compatibil-
ity conditions of order zero are fulfilled thanks to (H 1), then from [85, Theorem IV.9.1]
we have an estimate on u inW1,2

k (QT ) for arbitrary k > 1, namely
(4.29)

‖u‖
W

1,2
k (QT )

6 C

(
‖qu,m‖Lk(QT ) + ‖uT‖

W
2− 2
k

k (QT )

)
6 C

(
‖qu,m‖L∞(QT ) + ‖uT‖

W
2− 2
k

k (QT )

)
.

This estimate depends only on T , k and data, thanks to (4.27). We deduce (4.28) thanks to
Sobolev-Hölder embeddings.

Now, let φ ∈ C∞c ((0, T)× (0,+∞)). Observe that w = φ∂xu satisfies

∂tw+σ∂xxw− rw−qu,m∂xw = ∂tφ∂xu+ 2σ∂xφ∂xxu+σ∂xxφ∂xu−qu,m∂xφ∂xu.

For any k > 1, the right-hand side is bounded in Lk(QT ) with a constant that depends
only on φ, and previous estimates. Since w has homogeneous boundary conditions, we
deduce from [85, Theorem IV.9.1] that ‖∂xw‖Cθ(QT ) is bounded by a constant depending
only on the norm of φ and previous estimates. The local Hölder estimate on ∂xxu then
follows.

Let p(t, x) = pu,m(t, x). Recall that p(t, x) = f(L(m,p)(t),∂xu(t, x)) where f(x,y) :=
x − 1

2(x − y)
+ (cf. Lemma 4.1). Since f is 1-Lipschitz in the first variable and 1

2 -Lipschitz
in the second, we deduce that

(4.30) |p(t1, x1) − p(t2, x2)| 6 |L(m,p)(t1) − L(m,p)(t2)|+
1

2
|∂xu(t1, x1) − ∂xu(t2, x2)|.
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In particular, for each t,

(4.31) |p(t, x1) − p(t, x2)| 6
1

2
|∂xu(t, x1) − ∂xu(t, x2)|

which, by (4.28), implies that p(t, ·) is Hölder continuous for every t.
Now, we further assume that m0 ∈ L1(Q)+ to use (4.12a)-(4.12b). We shall use the

following function which is introduced in Lemma 4.1:

`(m,p)(t) = a (m(t)) + c (m(t))p(t), where p(t) =
1

η(m(t))

∫L
0
p(t, x)m(t, x) dx.

Fix t0 ∈ (0, T) and for t1, t2 in [t0, T ] write

(4.32) L(m,p)(t1) − L(m,p)(t2) = a(m(t1)) − a(m(t2))

+ κ(a(m(t1)) − a(m(t2)))

∫ `
0
p(t1, .) dm(t1)

+ κa(m(t2))

∫ `
0
p(t1, .) d(m(t1) −m(t2))

+ κa(m(t2))

∫ `
0
(p(t1, .) − p(t2, .)) dm(t2),

where we have used the fact that c(m) = κa(m)η(m). Observe that η → 1
1+κη is κ-

Lipschitz in the η variable, and recall that p(t1, ·) is Hölder continuous. Moreover, by
virtue of (4.28) we know that qu,m satisfies (4.2b). Therefore, using the upper bound on
a(m), c(m) and (4.12a)-(4.12b) we infer that

(4.33) |L(m,p)(t1) − L(m,p)(t2)| 6 C|t1 − t2|
β +

κ

1 + κ
‖p(t1, ·) − p(t2, ·)‖∞.

Note that the constant in (4.33) depend only on c0 and κ thanks to (4.27), (4.28) and
Lemma 4.1. Using now (4.33) in (4.30), and choosing θ small enough, we deduce

(4.34)
1

1 + κ
‖p(t1, ·)−p(t2, ·)‖∞ 6 C|t1−t2|β+ 1

2
‖∂xu(t1, ·)−∂xu(t2, ·)‖∞ 6 C|t1−t2|θ.

Putting together (4.31) and (4.34) we infer that p has a Hölder estimate, whereupon by
(4.33) so does L(m,p). Thus qu,m also has a Hölder estimate, and so does ∂tu by the HJB
equation satisfied by u. �

2.3. Well-Posedness. We are now in position to prove the main result of this section:

THEOREM 4.6. There exists a unique solution (u,m) to system (4.4).

PROOF OF THEOREM 4.6. The proof requires several steps, the key arguments being
precisely the estimates collected in Lemmas 4.1-4.5.

Step 1 (data in L1): We suppose thatm0 is an element of L1(Q) satisfying (H 1). Define
X to be the space of couples (ϕ,ν), such that ϕ and ∂xϕ are globally continuous on QT ,
and ν belongs to L1(QT )+. The functional space X endowed with the norm:

‖(ϕ,ν)‖X := ‖ϕ‖∞ + ‖∂xϕ‖∞ + ‖ν‖L1
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is a Banach space. Consider the map T : (ϕ,ν, λ) ∈ X × [0, 1] → (w,µ) where (w,µ) are
given by the following parametrized system of coupled partial differential equations:

(4.35)



(i) ∂tw+ σ∂xxw− rw+ λ2q2
ϕ,ν = 0 in QT ,

(ii) ∂tµ− σ∂xxµ− ∂x {λqϕ,νµ} = 0 in QT ,

(iii) µ(t, 0) = 0, w(t, 0) = 0, ∂xw(t, `) = 0 in [0, T ],

(iv) µ(0) = λm0, w(T , x) = λuT (x) in [0, `],

(v) σ∂xµ+ λqϕ,νµ = 0 in [0, T ]× {`}.

By virtue of Lemma 4.1, the map qϕ,ν is well-defined for any (ϕ,ν) ∈ X, and satisfy

(4.36) |qϕ,ν| 6 C(1 + ‖∂xϕ‖∞).
In view of [85, Theorem IV.9.1], the functionw exists and is bounded inW1,2

s (QT ) for
any s > 1, by a constant which depends on ‖∂xϕ‖∞ and data. Note that the required
compatibility conditions hold owing to (H 1). Although [85, Theorem IV.9.1] is stated
for Dirichlet boundary conditions, its proof is readily adapted to Neumann or mixed
boundary conditions as in the present context; cf. the discussion in the first paragraph of
[85, Section IV.9]). We deduce that

‖w‖Cα + ‖∂xw‖Cα 6 C(T , `,uT , ‖∂xϕ‖∞)
for some α > 0. On the other hand, it is well known (see e.g. [85, Chapter III]) that for any
(ϕ,ν) ∈ X, equation (4.35)(ii) has a unique weak solution µ. Therefore, T is well-defined.
Let us now prove that T is continuous and compact. Suppose (ϕn,νn, λn) is a a bounded
sequence in X× [0, 1] and let (wn,µn) = T(ϕn,νn, λn). To prove compactness, we show
that, up to a subsequence, (wn,µn) converges to some (w,µ) in X. Since ∂xϕn is uni-
formly bounded, by virtue of [102, Proposition 3.10], the sequence µn is relatively com-
pact in L1(QT )+, thanks to (4.36) (cf. (4.37) below where more details are given). Since
wn and ∂xwn are uniformly bounded in Cα(QT ), by the Ascoli-Arzelà Theorem and uni-
form convergence of the derivative there exists some w such that w,∂xw are continuous
in QT and, passing to a subsequence, wn → w and ∂xwn → ∂xw uniformly, where in
fact wn ⇀ wweakly inW1,2

s (QT ) for any s > 1. This is what we wanted to show.
To prove continuity, we assume (ϕn,νn, λn) → (ϕ,ν, λ) in X × [0, 1]. It is enough to
show that, after passing to a subsequence, T(ϕn,νn, λn) → T(ϕ,ν, λ). By the pre-
ceding argument, we can assume T(ϕn,νn, λn) → (w,µ). We can also use estimates
(4.10b)-(4.10d) to deduce that qϕn,νn → qϕ,ν a.e. (cf. the proof of Equation (4.40) below),
and since qϕn,νn is uniformly bounded we can also assert qϕn,νn → qϕ,ν in Ls for any
s > 1. Then we deduce that (w,µ) is a solution of (4.35) for the given (ϕ,ν, λ). Therefore,
(w,µ) = T(ϕ,ν, λ), as desired.
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Now, let (u,m) ∈ X and λ ∈ [0, 1] so that (u,m) = T(u,m, λ). Then (u,m) satisfies
assumptions of Lemma 4.5 with m0,uT ,qu,m replaced by λm0, λuT and λqu,m, respec-
tively. Since the bounds of Lemma 4.5 carry through uniformly in λ ∈ [0, 1] we infer
that

‖(u,m)‖X 6 1 ∨ c0,

where c0 > 0 is the constant of Lemma 4.5. In addition, for λ = 0 we have T(u,m, 0) =

(0, 0). Therefore, by virtue of Leray-Schauder fixed point Theorem (see e.g. [63, Theorem
11.6]), we deduce the existence of a solution (u,m) in X to system (4.4).

Step 2 (measure data): We deal now with general m0, i.e. a probability measure that
is supported on (0, `]. Let (mn0 ) ⊂ L1(Q)+ be a sequence of functions, which converges
weakly (in the sense of measures) tom0, and such that

‖mn0 ‖L1 6
∫ `

0
dm0 6 1, and supp(mn0 ) ⊂ (0, `].

For any n > 1, define (un,mn) to be a solution in X to system (4.4) starting frommn0 .
In view of [102, Proposition 3.10 (iii)] and (4.27), the corresponding solutions mn to

the non-local Fokker-Planck equation lie in a relatively compact set of L1(QT ). Moreover,
it holds that

(4.37) mn > 0 and sup
06t6T

‖mn(t)‖L1 6
∫ `

0
dm0.

Passing to a subsequence we have mn → m in L1(QT ), mn(t) → m(t) in L1(Q) for a.e. t
in (0, T), andmn → m for a.e. (t, x) in QT . It follows thatm ∈ L1(QT )+ and

(4.38) ‖m(t)‖L1 6 1 for a.e. t ∈ (0, T).

In addition, we know that qu,m fulfils the assumptions of Lemma 4.2. Thus t→ ‖m(t)‖L1
is continuous on (0, T ], so that (4.38) holds for avery t ∈ (0, T ]. Furthermore, we can
appeal to the probabilistic characterisation (4.15), thanks to Remark 4.4, to get∣∣∣∣∣
∫ `

0
φ(x)(m(t+ h, x) −m(t)) dx

∣∣∣∣∣ 6 E |φ(Xt+h)1t+h<τ − φ(Xt)1t<τ|

6 ‖φ‖∞|η(t) − η(t+ h)|+ E |φ(Xt+h) − φ(Xt)|

for every φ ∈ C(Q̄), and t ∈ [0, T ]. Now owing to Lemma 4.2, η is continuous on [0, T ].
Hence, by taking the limit in the last estimation we infer that

lim
h→0

∫ `
0
φ(x)(m(t+ h, x) −m(t)) dx = 0

thanks to the bounded convergence theorem. Consequently the map t→ m(t) is contin-
uous on [0, T ] with respect to the strong topology of M(Q̄).

On the other hand, by Lemma 4.5 we have that un, ∂xun are uniformly bounded in
Cθ(QT ), and ∂tun, ∂xxun are uniformly bounded in Cθ(Q ′) for eachQ ′ ⊂⊂ (0, T)×(0, `].
Thus, up to a subsequence we obtain that u,∂xu ∈ C(QT ), and

(4.39) un → u ∈ C1,2((0, T)× (0, `])

where the convergence is in the C1,2 norm on arbitrary compact subsets of (0, T)× (0, `].
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To show that the Hamilton-Jacobi equation holds in a classical sense and the Fokker-
Planck equation holds in the sense of distributions, it remains to show that

(4.40) qun,mn → qu,m a.e.

at least on a subsequence. Set pn = pun,mn = Λ(∂xu
n,mn,pn) and p = pu,m =

Λ(∂xu,m,p), with Λ defined in Lemma 4.1. Using (4.10b)-(4.10d) we get

(4.41) ‖pn(t, ·) − p(t, ·)‖∞ 6 ‖Λ (∂xu
n,mn,pn) (t, ·) −Λ (∂xu,mn,pn) (t, ·)‖∞

+‖Λ(∂xu,mn,pn)(t, ·)−Λ(∂xu,mn,p)(t, ·)‖∞+‖Λ(∂xu,mn,p)(t, ·)−Λ(∂xu,m,p)(t, ·)‖∞
6

1

2
‖∂xun − ∂xu‖∞ +

κ

1 + κ
‖pn(t, ·) − p(t, ·)‖∞ + |L (mn,p) (t) − L (m,p) (t)|

which means

(4.42) ‖pn(t, ·)−p(t, ·)‖∞ 6 1 + κ

2
‖∂xun−∂xu‖∞+(1+κ)|L (mn,p) (t)−L (m,p) (t)|.

Noting that (up to a subsequence) mn(t) → m(t) in L1(Q) a.e., we use the fact that
a(m), c(m),η(m) are all continuous with respect to this metric to deduce that

(4.43) |L(mn,p)(t) − L(m,p)(t)|→ 0 a.e. t ∈ (0, T)

from which we conclude that

(4.44) ‖pn(t, ·) − p(t, ·)‖∞ → 0 a.e. t ∈ (0, T).

Now from (4.44) and (4.10a) we have

(4.45) |L(m,pn)(t) − L(m,p)(t)|→ 0 a.e. t ∈ (0, T).

Combining (4.43) and (4.45) we see that L(mn,pn)→ L(m,p) a.e. We deduce (4.40) from
the definition (4.8c). Therefore (un,mn) converges to some (u,m) which is a solution to
(4.4) with initial datam0.

Step 3 (uniqueness): Let (ui,mi), i = 1, 2 be two solutions of (4.4). We set

Gi := qui,mi
and Ḡi :=

∫ `
0
qui,mi

(t,y) dmi(t).

From (4.5), we know that

(4.46) Gi =
1

2

(
1 − κḠi − ∂xui

)+
.

Let u = u1 −u2,m = m1 −m2,G = G1 −G2, Ḡ = Ḡ1 − Ḡ2. Using (t, x)→ e−rtu(t, x)

as a test function in the equations satisfied bym1,m2, with some algebra yields

(4.47) 0 =

∫T
0
e−rt

∫ `
0
(G2

2 −G
2
1 −G1∂xu)m1 + (G2

1 −G
2
2 +G2∂xu)m2 dxdt

=

∫T
0
e−rt

∫ `
0
(G1 −G2)

2(m1 +m2) dxdt+

∫T
0
e−rt

∫ `
0
(2G+ ∂xu)(G2m2 −G1m1) dxdt.
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Now since G2 = 0 on the set where 1 − κḠ2(t) − ∂xu2 < 0, we can write

(2G+ ∂xu)G2 =
((

1 − κḠ1 − ∂xu1

)+
−
(
1 − κḠ2(t) − ∂xu2

)
+ ∂xu1 − ∂xu2

)
G2

=
(
−κḠ+

(
1 − κḠ1 − ∂xu1

)−)
G2.

Similarly we can write

(2G+ ∂xu)G1 =
((

1 − κḠ1 − ∂xu1

)
−
(
1 − κḠ2(t) − ∂xu2

)+
+ ∂xu1 − ∂xu2

)
G1

=
(
−κḠ−

(
1 − κḠ2 − ∂xu2

)−)
G1.

Thus we compute∫ `
0
(2G+ ∂xu)(G2m2 −G1m1) dxdt = κḠ2 +

∫ `
0

(
1 − κḠ1 − ∂xu1

)−
G2m2 dxdt

+

∫ `
0

(
1 − κḠ2 − ∂xu2

)−
G1m1 dxdt > κḠ2.

So from (4.47) we conclude

(4.48)
∫T

0
e−rt

∫ `
0
(G1 −G2)

2(m1 +m2) dxdt+ κ

∫T
0
e−rt(Ḡ1 − Ḡ2)

2 dt = 0.

In particular, Ḡ1 ≡ Ḡ2. We can then appeal to uniqueness for the Hamilton-Jacobi equa-
tion to get u1 ≡ u2 (cf. [85, Chapter V]). By (4.46), this entails that G1 ≡ G2, and so
m1 ≡ m2 by uniqueness for the Fokker-Planck equation. �

3. Application of the MFG Approach

In this section, we present the N-Player Cournot game with limited resources, and
build an approximation of Nash equilibria to that game whenN is large, by means of the
Mean Field Game system (4.4). Namely, we show that the optimal feedback strategies,
computed from the MFG system (4.4), provides an ε-Nash equilibria for the N-Player
Cournot game, where the error ε is arbitrarily small as N→∞.

Throughout this section (u,m) is the solution to (4.4) starting from some probability
measurem0 satisfying (H 1), and the function qu,m is given by (4.8c).

3.1. Cournot Game with Linear Demand and Exhaustible Resources. We start by
introducing theN-Player Cournot game. Consider a market withN producers of a given
good, whose strategic variable is the rate of production and where raw materials are
in limited supply. Concretely, one can think of energy producers that use exhaustible
resources, such as oil, to produce and sell energy. Firms disappear from the market as
soon as they deplete their reserves of raw materials.

Let us formalize this model in precise mathematical terms. Let
(
Wj
)

16j6N be a fam-
ily of N independent F-Wiener processes on R, and consider the following system of
Skorokhod problems:

(4.49)

{
dXit = −qit dt+

√
2σdWi

t − dξX
i

t ,

Xi0 = Vi, i = 1, ...,N.
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Here (V1, ...,VN) is a vector of i.i.d and F0-measurable random variables with law m0,
such that V1, ...,VN are independent of W1, ...,WN respectively. Let us fix a common
horizon T > 0, and set

τi := inf
{
t > 0 : Xit 6 0

}
∧ T .

The stopped random process
(
Xi
t∧τi

)
t∈[0,T ]

models the reserves level of the ith producer
on the horizon T , which is gradually depleted according to a non-negative controlled
rate of production

(
qit
)
t∈[0,T ]

. The stopping condition indicates that a firm can no longer
replenish its reserves once they are exhausted. The Wiener processes in (4.49) model the
idiosyncratic fluctuations related to production. We consider ` to be an upper bound on
the reserves level of any player. This latter assumption is also considered in Chapter 3
and [70], and is taken into account by considering reflected dynamics in (4.49). Since the
rate of production is always non-negative, note that reflection has practically no effect
when ` is large compared to the initial reserves.

REMARK 4.7 (State constraints). Instead of reflecting boundary conditions, one could
insist upon a hard state constraint of the form Xit 6 `. Some recent work on MFG with
state constraints suggests this is possible [27–29], provided one correctly interprets the
resulting system of PDE. In this work we take a more classical approach, for which prob-
abilistic tools are more readily available.

The producers interact through the market. We assume that demand is linear, so that
the price pi received by the firm i reads:

(4.50) pit = 1 − (qit + κq̄
i
t), where q̄it =

1

N− 1

∑
j6=i

q
j
t1t<τj , for 0 6 t 6 T .

Here κ > 0 expresses the degree of market interaction, in proportion to which abundant
total production will put downward pressure on all the prices. Note that only firms with
nonempty reserves at t ∈ [0, T ] are taken into account in (4.50). The other firms are no
longer present on the market. The producer i chooses the production rate qi in order to
maximize the following discounted profit functional:

Ji,Nc (q1, ...,qN) := E

{∫T
0
e−rs

(
1 − κq̄is − q

i
s

)
qis1s<τi ds+ e−rTuT (X

i
τi)

}
.

Observe that firms can no longer earn revenue as soon as they deplete their reserves. We
refer to [50, 77] for further explanations on the economic model and applications.

We denote by Ac the set of admissible controls for any player; that is the set of Markov-
ian feedback controls, i.e. qit = q

i
(
t,X1

t, ...,XNt
)

; such that (qit)t∈[0,T ] is positive, satisfies

E

[∫T
0
|qis|

21s<τi ds

]
<∞,

and the ith equation of (4.49) is well-posed in the classical sense. Restriction to Markov-
ian controls rules out equilibria with undesirable properties such as non-credible threats
(cf. [62, Chapter 13]).

Now, we give a definition of Nash equilibria to this game:
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DEFINITION 4.8 (Nash equilibrium). A strategy profile
(
q1,∗, ...,qN,∗) in

∏N
i=1 Ac is

a Nash equilibrium of the N-Player Cournot game, if for any i = 1, ...,N and qi ∈ Ac

Ji,Nc
(
qi; (qj,∗)j6=i

)
6 Ji,Nc

(
q1,∗, ...,qN,∗) .

In words, a Nash equilibrium is a set of admissible strategies such that each player
has taken an optimal trajectory in view of the competitors’ choices.

The existence of Nash equilibria for the N-Player Cournot game with exhaustible
resources is addressed in [77]. In particular, the authors show the existence of a unique
Nash equilibrium in the static (one period) case, and study numerically a specific duopoly
example by using a convenient asymptotic expansion. In general, the analysis of equilib-
ria for N-Player Cournot games is a challenging task both analytically and numerically,
especially when N is large. In the case of exhaustible resources, the dynamic program-
ming principle generates an even more complex PDE system because of the nonstandard
boundary conditions which are obtained (cf. [77, Section 3.1]).

To remedy this problem several works have rather considered a Mean-Field model
[49,50,73,77,92] as an approximation to the initialN-Player game, whenN is large. More
precisely, we introduce the following:

DEFINITION 4.9 (ε-Nash equilibrium). Let ε > 0, and let (q̂1, ..., q̂N) be an admissi-
ble strategy profile (i.e. an element of

∏N
i=1 Ac). We say (q̂1, ..., q̂N) provides an ε-Nash

equilibrium to the game J
1,N
c , ..., JN,N

c provided that, for any i = 1, ...,N and qi ∈ Ac,

Ji,Nc
(
qi; (q̂j)j6=i

)
6 ε+ Ji,Nc

(
q̂1, ..., q̂N

)
.

In words, an ε-Nash equilibrium is a set of admissible strategies such that each player
has taken an almost optimal trajectory in view of the competitors’ choices, where ε mea-
sures the distance from optimality.

The main purpose of this section is to construct an ε-Nash equilibrium by using the
MFG system (4.4). Namely, our main result is the following:

THEOREM 4.10. For any N > 1 and i ∈ {1, ...,N} let

(4.51)

{
dX̂it = −qu,m(t, X̂it) dt+ σdWi

t − dξX̂
i

t

Xi0 = Vi,

and set q̂it := qu,m(t, X̂it). Then for any ε > 0, the strategy profile (q̂1, ..., q̂N) is admissible, i.e.
belongs to

∏N
i=1 Ac, and provides an ε-Nash equilibrium to the game J1,N

c , ..., JN,N
c for largeN.

Namely: ∀ε > 0, ∃Nε > 1 such that

(4.52) ∀N > Nε, ∀i = 1, ...,N, Ji,Nc
(
qi; (q̂j)j6=i

)
6 ε+ Ji,Nc

(
q̂1, ..., q̂N

)
,

for any admissible strategy qi ∈ Ac.

The rest of this section is devoted to the proof of Theorem 4.10.

3.2. Tailor-Made Law of Large Numbers. Let us set

τ̂i := inf
{
t > 0 : X̂it 6 0

}
∧ T ,
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and define the following process:

(4.53) ν̂Nt :=
1

N

N∑
k=1

δ
X̂kt
1t<τ̂k , ∀t ∈ [0, T ],

where δx denotes the Dirac delta measure of the point x ∈ R. Observe that the above defi-
nition makes sense because the stochastic dynamics (X̂1, ..., X̂N) exists in the strong sense
owing to Lemma 4.5. In particular, the strategy profile

(
q̂1, ..., q̂N

)
defined in Theorem

4.10 belongs to
∏N
i=1 Ac. Moreover, by using the probabilistic characterization (4.13c),

note that for any measurable and bounded function φ on Q̄we have

(4.54) E

[∫ `
0
φ dν̂Nt

]
=

∫ `
0
φ dm(t), for a.e. t ∈ (0, T).

The above identity is not strong enough to show Theorem 4.10 and we need a stronger
condition (cf. (4.71)). Therefore, we need to work harder in order to get more information
on the asymptotic behavior of the empirical process (4.53) when N→∞.

We aim to prove that the empirical process
(
ν̂N
)
N>1

converges in law to the determin-
istic measurem in a suitable function space, by using arguments borrowed from [76, 89].
For this, we start by showing the existence of sub-sequences (ν̂N

′
) that converges in law

to some limiting process ν∗. Then, we show that ν∗ belongs to P̃(Q̄) and satisfies the same
equation asm. Finally, we invoke the uniqueness of weak solutions to the Fokker-Planck
equation to deduce full weak convergence towardm.

The crucial step consists in showing that the sequence of the laws of
(
ν̂N
)
N>1

is
relatively compact on a suitable topological space. This is where the machinery of [89]
is convenient. In order to use the analytical tools of that paper, we view the empirical
process as a random variable on the space of càdlàg (right continuous and has left-hand
limits) functions, mapping [0, T ] into the space of tempered distributions. This function
space is denoted DS ′R

and is endowed with the so called Skorokhod’s M1 topology. Note
that there are no measurability issues owing to [89, Proposition 2.7]. Moreover, by virtue
of [101], the process

(
ν̂Nt
)
t∈[0,T ]

has a version that is càdlàg in the strong topology of
S ′R for every N > 1, since ν̂Nt (φ) :=

∫
Rφ dν̂Nt is a real-valued càdlàg process, for every

φ ∈ SR and N > 1. We refer the reader to [89] for the construction of (DS ′R
, M1), and to

[108] for general background on Skorokhod’s topologies. We shall denote by (DR, M1)

the space of R-valued càdlàg functions mapping [0, T ] to R, endowed with Skorokhod’s
M1 topology.

The main strengths of working with the M1 topology in our context, are based on the
following facts:

• tightness on (DS ′R
, M1) implies the relative compactness on (DS ′R

, M1) thanks to
[89, Theorem 3.2]);
• the proof of tightness on (DS ′R

, M1) is reduced through the canonical projection
to the study of tightness in (DR, M1), for which we have suitable characteriza-
tions [89, 108];
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• bounded monotone real-valued processes are automatically tight on (DR, M1);
this is an important feature, that enables to prove tightness of the sequence of
empirical process laws, by using a suitable decomposition.

It is also important to note that this approach could be generalized to deal with the case
of a systemic noise, by using a martingale approach as in [76, Lemma 5.9]. We do not
deal with that case in this chapter.

More generally, one can replace S ′R by any dual space of a countably Hilbertian nuclear
space (cf. [89] and references therein). Although the class S ′R seems to be excessively large
for our purposes, we recover measure-valued processes by means of Riesz representation
theorem (cf. [76, Proposition 5.3] for an example in the same context).

Throughout this part, we shall use the symbol ⇒ to denote convergence in law. The key
technical lemma of this section is the following:

LEMMA 4.11. As N → ∞, we have ν̂N ⇒ m on (DS ′R
, M1), i.e. for every continuous

bounded real-valued function Ψ on (DS ′R
, M1), it holds that

lim
N

E
[
Ψ
(
ν̂N
)]

= Ψ(m).

The bulk of this section is devoted to the proof of Lemma 4.11. The proof of Theorem
4.10 is completed in Section 3.3.

Tightness. At first, we aim to prove the tightness of (ν̂N)N>1 on the space (DS ′R
, M1);

that is, for every φ ∈ SR and for all ε > 0, there exists a compact subset K of (DR, M1)

such that:
P
(
ν̂N(φ) ∈ K

)
> 1 − ε for all N > 1.

For that purpose, we shall use a convenient characterization of tightness in (DR, M1) (cf.
[108, Theorem 12.12.3]).

We start by controlling the concentration of mass at the origin:

LEMMA 4.12. For every t ∈ [0, T ], we have

sup
N>1

Eν̂Nt (0, ε)→ 0, as ε→ 0.

PROOF. Let us fix ε > 0. Note that, for every t ∈ [0, T ]

Eν̂Nt (0, ε) =
1

N

N∑
i=1

P
(
X̂it ∈ (0, ε); t < τ̂i

)
.

Thus, on the one hand

sup
N>1

Eν̂N0 (0, ε) =

∫ε
0

dm0 → 0, as ε→ 0,

owing to the dominated convergence theorem. On the other hand, we have for every
t ∈ (0, T ]

(4.55) sup
N>1

Eν̂Nt (0, ε) 6 sup
N>1

N−1
N∑
i=1

E
[
(1 − φε(X̂

i
t))1t<τ̂i

]
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where φε is the cut-off function defined in (4.17). Thus, by virtue of (4.21) we obtain

sup
N>1

Eν̂Nt (0, ε) 6 C(`, t, ‖qu,m‖∞)ε1/4,

which entails the desired result. �

The second ingredient is the control of the mass loss increment:

LEMMA 4.13. For every t ∈ [0, T ] and λ > 0

lim
h→0

lim sup
N

P
(∣∣η (ν̂Nt )− η (ν̂Nt+h)∣∣ > λ) = 0,

where the map µ→ η(µ) is defined in (4.7).

PROOF. The proof is inspired by [76, Proposition 4.7]. Let ε,h > 0 and t ∈ [0, T ], we
have

(4.56) P
(
η
(
ν̂Nt
)
− η

(
ν̂Nt+h

)
> λ

)
6 P

(
ν̂Nt (0, ε) > λ/2

)
+ P

(
η
(
ν̂Nt
)
− η

(
ν̂Nt+h

)
> λ; ν̂Nt (0, ε) < λ/2

)
.

The reason why we use the latter decomposition will be clear in (4.57). Owing to Markov’s
inequality and Lemma 4.12, one has

lim sup
N

P(ν̂Nt (0, ε) > λ/2) 6 2λ−1 sup
N

Eν̂Nt (0, ε)→ 0, as ε→ 0.

Now we deal with the second part in estimate (4.56). Define It to be the following ran-
dom set of indices:

It :=
{

1 6 i 6 N : X̂it > ε
}

;

then, we have

P
(
η
(
ν̂Nt
)
− η

(
ν̂Nt+h

)
> λ; ν̂Nt (0, ε) < λ/2

)
6

∑
#I>N(1−λ/2)

P
(
η
(
ν̂Nt
)
− η

(
ν̂Nt+h

)
> λ | It = I)P(It = I

)
,

where #I denotes the number of elements of I ⊆ {1, 2, . . . ,N}. Thus, we reduce the
problem to the estimation of the dynamics increments; using the same steps as for (4.14c)
we have

(4.57) P
(
η
(
ν̂Nt
)
− η

(
ν̂Nt+h

)
> λ | It = I

)
6 P

(
#

{
i ∈ I : inf

s∈[t,t+h]
X̂is − X̂

i
t 6 −ε

}
> λN/2

∣∣∣ It = I

)
6 P

(
#

{
i ∈ I : sup

s∈[0,h]
Bis − inf

s∈[0,h]
Bis >

ε− h√
2σ

}
> λN/2

)
,

where we have used the uniform bound on qu,m of Lemma 4.5, and where (Bi)16i6N is
a family of independent Wiener processes. By symmetry, this final probability depends
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only on #I, so that the right hand side above is maximized when I = {1, ...,N}. We infer
that

P
(
η
(
ν̂Nt
)
− η

(
ν̂Nt+h

)
> λ; ν̂Nt (0, ε) < λ/2

)
6 P

(
1

N

N∑
i=1

1{
sups∈[0,h]B

i
s−infs∈[0,h]Bis>

ε−h√
2σ

} > λ/2
)

.

In the same way as for (4.14c), we choose ε(h) = h1/2 log(1/h) so that limh→0+ ε(h) = 0,
and use Markov’s inequality to get

P
(
η
(
ν̂Nt
)
− η

(
ν̂Nt+h

)
> λ; ν̂Nt (0, ε) < λ/2

)
6

2
√
σ

λ(log(1/h) − h1/2)
.

This entails the desired result by taking the limit h→ 0+.
Now we deal with the case of a left hand limit. Let t ∈ (0, T ] and h 7→ ε(h) as defined

above. Using a similar decomposition as before, we have for small enough h > 0

P
(
η
(
ν̂Nt−h

)
− η

(
ν̂Nt
)
> λ

)
6 P

(
ν̂Nt−h(0, ε) > λ/2

)
+ P

(
η
(
ν̂Nt−h

)
− η

(
ν̂Nt
)
> λ; ν̂Nt−h(0, ε) < λ/2

)
.

Appealing to Markov’s inequality, estimate (4.55), and estimate (4.21) of Section 2, we
have for small enough h > 0

P
(
ν̂Nt−h(0, ε) > λ/2

)
6 2λ−1Eν̂Nt−h(0, ε) 6 2Cλ−1

(
1 − e−π

2t/8`2
)−1/4

ε1/4,

whence
lim
h→0+

lim sup
N

P
(
ν̂Nt−h(0, ε(h)) > λ/2

)
= 0.

On the other hand, we show by using the same steps as in (4.57) that

P
(
η
(
ν̂Nt−h

)
− η

(
ν̂Nt
)
> λ; ν̂Nt−h(0, ε) < λ/2

)
6

2
√
σ

λ(log(1/h) − h1/2)
.

This entails the desired result by taking the limit h→ 0+. �

We are now in position to show tightness on (DS ′R
, M1).

PROPOSITION 4.14 (Tightness). The sequence of the laws of (ν̂N)N>1 is tight on the space
(DS ′R

, M1).

PROOF. We present a brief sketch to explain the main arguments, and refer to [76,
Proposition 5.1] for a similar proof.

Thanks to [89, Theorem 3.2], it is enough to show that the sequence of the laws of(
ν̂N(φ)

)
N>1

is tight on (DR, M1) for anyφ ∈ SR. To prove this, one can use the conditions
of [108, Theorem 12.12.3], which can be rewritten in a convenient form by virtue of [11].
From [89, Proposition 4.1] , we are done if we achieve the two following steps:

(1) find α,β, c > 0, such that

P
(
HR
(
ν̂Nt1(φ), ν̂

N
t2
(φ), ν̂Nt3(φ)

)
> λ

)
6 cλ−α|t3 − t1|

1+β,

for any N > 1, λ > 0 and 0 6 t1 < t2 < t3 6 T , where

HR (x1, x2, x3) := inf
06γ61

|x2 − (1 − γ)x1 − γx3| for x1, x2, x3 ∈ R;
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(2) show that

lim
h→0+

lim
N

P

(
sup
t∈(0,h)

|ν̂Nt (φ) − ν̂
N
0 (φ)|+ sup

t∈(T−h,T)
|ν̂NT (φ) − ν̂

N
t (φ)| > λ

)
= 0.

The key step is to consider the following decomposition [89, Proposition 4.2]:

(4.58) ν̄Nt (φ) :=
1

N

N∑
k=1

φ(X̂kt∧τ̂k) = ν̂
N
t (φ) + φ(0)E

N
t ,

where

ENt := 1 − η
(
ν̂Nt
)

is the exit rate process, which quantifies the fraction of firms out of market. Since
(
ENt
)
t∈[0,T ]

is monotone increasing we have

inf
06γ61

∣∣ENt2 − (1 − γ)ENt1 − γE
N
t3

∣∣ = 0,

so that

HR
(
ν̂Nt1(φ), ν̂

N
t2
(φ), ν̂Nt3(φ)

)
6
∣∣ν̄Nt1(φ) − ν̄Nt2(φ)∣∣+ ∣∣ν̄Nt2(φ) − ν̄Nt3(φ)∣∣ .

Thus, by virtue of Markov’s inequality

P
(
HR
(
ν̂Nt1(φ), ν̂

N
t2
(φ), ν̂Nt3(φ)

)
> λ

)
6 8λ−4

(
E
∣∣ν̄Nt1(φ) − ν̄Nt2(φ)∣∣4 + E

∣∣ν̄Nt2(φ) − ν̄Nt3(φ)∣∣4) .

Therefore, we deduce requirement (1) from the following estimate:

(4.59) ∀s, t ∈ [0, T ],

E
∣∣ν̄Nt (φ) − ν̄Ns (φ)∣∣4 6 ‖φ‖4C1

1

N

N∑
k=1

E|X̂kt∧τ̂k − X̂
k
s∧τ̂k |

4 6 C‖φ‖4C1 |t− s|
2;

where we have used Hölder’s inequality and the Burkholder-Davis-Gundy inequality
[104, Thm IV.42.1].

The second requirement is also obtained by using the latter estimate, decomposition
(4.58), and Lemma 4.13. In fact, we have

P

(
sup
t∈(0,h)

|ν̂Nt (φ) − ν̂
N
0 (φ)| > λ

)

6 P

(
sup
t∈(0,h)

|ν̄Nt (φ) − ν̄
N
0 (φ)| > λ/2

)
+ P

(
|φ(0)|ENh > λ/2

)
,

so that the desired result follows thanks to (4.59), and Lemma 4.13. By the same way, we
deal with the second term P

(
supt∈(T−h,T) |ν̂

N
T (φ) − ν̂

N
t (φ)| > λ

)
. �
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Full convergence. We arrive now at the final ingredient for the proof of Lemma 4.11.
Let us set

Ctest :=
{
φ ∈ C∞c ([0, T)× Q̄)

∣∣ φ(t, 0) = ∂xφ(t, `) = 0, ∀t ∈ (0, T)
}

.

We start by deriving an equation for (ν̂Nt )t∈[0,T ].

PROPOSITION 4.15. For every N > 1 and φ ∈ Ctest, it holds that∫ `
0
φ(0, .) dν̂N0 =

∫T
0

∫ `
0
(−∂tφ− σ∂xxφ+ qu,m∂xφ) dν̂Ns ds+ IN(φ) a.s.,

where

IN(φ) := −

√
2σ

N

N∑
k=1

∫T
0
∂xφ

(
s, X̂ks

)
1s<τ̂k dWk

s .

PROOF. Let us consider φ ∈ Ctest. First observe that for any k ∈ {1, ...,N}, and
t ∈ [0, T ]

X̂kt∧τ̂k = Vk −

∫t
0
q̂ks1s<τq̂k ds+

√
2σWk

t∧τq̂
k − ξ

X̂k

t .

Hence, for any k ∈ {1, ...,N}, the random process
(
X̂k
t∧τ̂k

)
t∈[0,T ]

is a continuous semi-

martingale, and by applying Itô’s rule we have:

φ(T , X̂kτ̂k) − φ(0,Vk) +

∫T
0
∂xφ

(
s, X̂ks∧τ̂k

)
dξX̂

k

s

=

∫T
0

{
σ∂xxφ(s, X̂

k
s ) − qu,m(s, X̂ks )∂xφ(s, X̂

k
s )
}
1s<τ̂k ds

+

∫T
0
∂tφ

(
s, X̂ks∧τ̂k

)
ds+

√
2σ

∫T
0
∂xφ

(
s, X̂ks

)
1s<τ̂k dWk

s .

By using the boundary conditions satisfied by φ, and noting that ∂tφ(t, 0) = 0 for any
t ∈ (0, T), we deduce that

− φ(0,Vk) −
√

2σ

∫T
0
∂xφ

(
s, X̂ks

)
1s<τ̂k dWk

s

=

∫T
0

{
∂tφ

(
s, X̂ks

)
+ σ∂xxφ

(
s, X̂ks

)
− qu,m(s, X̂ks )∂xφ

(
s, X̂ks

)}
1s<τ̂k ds

The desired result follows by summing over k ∈ {1, ...,N} and multiplying by N−1. �

By virtue of [89, Theorem 3.2], the tightness of the sequence of laws of (ν̂N)N>1 en-
sures that this sequence is relatively compact on (DS ′R

, M1). Consequently, Proposition
4.14 entails the existence of a subsequence (still denoted (ν̂N)N>1) such that

ν̂N ⇒ ν̂∗, on (DS ′R
, M1).

Thanks to [89, Proposition 2.7 (i)],

∀φ ∈ SR, ν̂N(φ)⇒ ν̂∗(φ), as N→∞, on (DR, M1).
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To avoid possible confusion about multiple distinct limit points, we will denote ν̂∗

any limiting processes that realizes one of these limiting laws. First, we note that ν̂∗ is a
P̃(Q̄)-valued process:

PROPOSITION 4.16. For every t ∈ [0, T ], ν̂∗t is almost surely supported on Q̄ and belongs to
P̃(Q̄).

PROOF. This follows from the Portmanteau theorem [20] and the Riesz representation
theorem. We omit the details and refer to [76, Proposition 5.3]. �

Next, we recover the partial differential equation satisfied by the process (ν̂∗t)t∈[0,T ].

LEMMA 4.17. For every φ ∈ Ctest, it holds that∫ `
0
φ(0, .) dm0 +

∫T
0

∫ `
0
(∂tφ+ σ∂xxφ− qu,m∂xφ) dν̂∗s ds = 0 a.s.

PROOF. Let us consider φ ∈ Ctest and set:

µ(φ) :=

∫ `
0
φ(0, .) dm0 +

∫T
0

∫ `
0
(∂tφ+ σ∂xxφ− qu,m∂xφ) dν̂∗s ds;

and

µN(φ) :=

∫ `
0
φ(0, .) dm0 +

∫T
0

∫ `
0
(∂tφ+ σ∂xxφ− qu,m∂xφ) dν̂Ns ds.

Owing to Proposition 4.15 we have

µN(φ) = IN(φ) +

∫ `
0
φ(0, .) d(m0 − ν̂

N
0 ).

Note that
EIN(φ)2 6 C‖∂xφ‖2∞N−1.

Hence, by appealing to Horowitz-Karandikar inequality (see e.g. [103, Theorem 10.2.1])
we deduce that

Eµ2
N(φ) 6 C‖∂xφ‖2∞N−2/5.

Consequently, to conclude the proof it is enough to show that

µN(φ)⇒ µ(φ) as N→∞.

Let A be the set of elements inDS ′R
that take values in P̃(Q̄), and consider a sequence

(ψN) ⊂ A which converges to some ψ in A with respect to the M1 topology. Let qu,m be
a continuous function on [0, T ]× R, which satisfies the following conditions:
(4.60a)

qu,m|QT
≡ qu,m; ‖qu,m‖∞ = ‖qu,m‖∞; ∀t ∈ [0, T ], supp qu,m(t, .) ⊂ (−`, 2`).

We also define the sequence

(4.60b) qnu,m(t, x) := (qu,m(t, .) ∗ ξn) (x), n > 1,

where ξn(x) := nξ(nx) is a compactly supported mollifier on R.
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We have

J :=

∣∣∣∣∣
∫T

0

∫ `
0
qu,m∂xφ dψNs ds−

∫T
0

∫ `
0
qu,m∂xφ dψs ds

∣∣∣∣∣
=

∣∣∣∣∣
∫T

0

∫
R
qu,m∂xφ dψNs ds−

∫T
0

∫
R
qu,m∂xφ dψs ds

∣∣∣∣∣
6 2‖∂xφ‖∞ ∥∥qnu,m − qu,m

∥∥∞
+

∣∣∣∣∣
∫T

0

∫
R
qnu,m∂xφ d(ψNs −ψs) ds

∣∣∣∣∣ =: J1 + J2.

Since qnu,m(s, .)∂xφ(s, .) ∈ SR for any s ∈ [0, T ], then J2 vanishes asψN → ψ . On the other
hand, note that J1 also vanishes as n→ +∞ so that we obtain limN J = 0. Moreover, one
easily checks that∫T

0

∫ `
0
FdψNs ds→

∫T
0

∫ `
0
Fdψs ds, F ≡ ∂tφ,∂xxφ as N→ +∞.

Therefore, by virtue of the continuous mapping theorem, we obtain that µN(φ)⇒ µ(φ),
which concludes the proof. �

We are now in position to prove Lemma 4.11.

PROOF OF LEMMA 4.11. From Lemma 4.17, we know that dν∗ = dν̂∗t dt and dm =

dm(t) dt both satisfy (almost surely) the same Fokker-Planck equation in the sense of
measures (cf. Appendix 2). By invoking the uniqueness of solutions to that equation
(cf. Proposition A.2), we deduce that ν̂∗ ≡ m almost surely. Since all converging sub-
sequences converge weakly towardm, we infer that ν̂N ⇒ m, on (DS ′R

, M1). �

3.3. Large Population Approximation. By virtue of the analytical tools of the pre-
vious section, we are now in position to show Theorem 4.10. We start by recalling an
important fact related to the Mean Field Game system (4.4), then we prove Theorem 4.10.

The mean-field problem. In this part, we recall briefly the interpretation of system (4.4)
in terms of games with a continuum of players a “mean field” interactions. We refer the
reader to Chapter 3 and [49,70,73,92] for more background. Let us consider a continuum
of agents, producing and selling comparable goods. At time t = 0, all the players have a
positive capacity x ∈ (0, `], and are distributed on (0, `] according tom0.

The remaining capacity (or reserves) of any atomic producer with a production rate
(ρ)t>0 depletes according to

dXρt = −ρt1t<τρ dt+
√

2σ1t<τρ dWt − dξX
ρ

t ,

where
τρ := inf{t > 0 : Xρt 6 0} ∧ T ,

and (Wt)t∈[0,T ] is a F-Wiener process. A generic player which anticipates the total pro-
duction q̄ =

∫`
0 qu,m dm, expects to receive the price

p := 1 − (κq̄+ ρ)
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and solves the following optimization problem:

(4.61) max
ρ>0

Jc(ρ) := max
ρ>0

E

{∫T
0
e−rs (1 − κq̄s − ρs) ρs1s<τρ ds+ e−rTuT

(
X
ρ
τρ

)}
,

The maximum in (4.61) is taken over all F-adapted and non-negative processes (ρt)t∈[0,T ],
satisfying

E

[∫T
0
|ρs|

21s<τρ ds

]
<∞

and (Xρt )t∈[0,T ] exists in the classical sense. We claim that the feedback MFG strategy
qu,m is optimal for the stochastic optimal control problem (4.61):

LEMMA 4.18. Let ρ∗t := qu,m(t,Xρ
∗

t ), then it holds that:

(4.62) max
ρ>0

Jc(ρ) = Jc(ρ
∗) =

∫ `
0
u(0, .) dm0.

PROOF. This kind of verification results is standard: one checks that the candidate
optimal control is indeed the maximum using the equation satisfied by u; which is the
value function. Let ρ be an admissible control (F-adapted and satisfying the constraints).
Since the local time is monotone, then Xρ is a semimartingale and with the use of Itô’s
rule we obtain

E
[
e−rTuT

(
X
ρ
τρ

)]
=

E

[
u(0,Xρ0 ) +

∫τρ
0
e−rs {∂tu(s,X

ρ
s ) − ru(s,X

ρ
s ) − ρs∂xu(s,X

ρ
s ) + σ∂xxu(s,X

ρ
s )} ds

]

= E

[
u(0,Xρ0 ) −

∫τρ
0
e−rs

{
q2
u,m(s,Xρs ) + ρs∂xu(s,X

ρ
s )
}

ds

]
,

where we have used the boundary value problem satisfied byu and the fact that ∂tu,∂xu,∂xxu

are continuous on (0, T)× (0, `] (cf. (4.39)).
By using definition (4.5), note that

q2
u,m =

1

4
|(1 − κq̄− ∂xu)∨ 0|2 = sup

ρ>0
ρ(1 − κq̄− ρ− ∂xu) = qu,m(1− κq̄− qu,m − ∂xu).

Therefore

E
[
e−rTuT

(
X
ρ
τρ

)]
6 E

[
u(0,Xρ0 ) −

∫τρ
0
e−rsρs(1 − κq̄− ρs) ds

]
,

so that∫ `
0
u(0, .) dm0 = E

[
u(0,Xρ0 )

]
> E

[∫τρ
0
e−rs(1 − κq̄− ρs)ρs ds+ e−rTuT

(
X
ρ
τρ

)]
.
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By virtue of Lemma 4.5, we know that the process
(
X
ρ∗

t

)
t∈[0,T ]

exists in the strong sense.

Replacing ρ by ρ∗ in the above computations, inequalities become equalities and we eas-
ily infer that

Jc(ρ
∗) =

∫ `
0
u(0, .) dm0.

Thus (4.62) is proved. �

Proof of Theorem 4.10. We start by collecting the following technical result:

LEMMA 4.19. Fix n > 1, define A to be all elements in DS ′R
that take values in P̃(Q̄), and

let Ψm (resp. Ψnq ) be the map defined from DS ′R
into DS ′R

(resp. from A into DR) such that

Ψm(ν)(t) := ν(t) −m(t) and Ψnq (ν)(t) :=

∣∣∣∣∫
R
qnu,m(t, .) dν(t)

∣∣∣∣ .
Then Ψm,Ψnq are continuous with respect to the M1 topology.

PROOF. Throughout the proof, we shall use notations of [89, 108].
Step 1 (continuity in S ′R): By virtue of Theorem 4.6, we know that t→ m(t) is continu-

ous on [0, T ] with respect to the strong topology of S ′R. Let φ ∈ S ′R, we aim to compute the
modulus of continuity of t →

∫
Rφ dm(t). For this, we shall appeal to the probabilistic

characterization (4.15), thanks to Remark 4.4. We have for any h > 0

(4.63)
∣∣∣∣∫

R
φ d(m(t+ h) −m(t))

∣∣∣∣ 6 E |φ(Xt+h)1t+h<τ − φ(Xt)1t<τ|

6 C‖φ‖C1 (P(t < τ) − P(t+ h < τ) + E |Xt+h − Xt|) .

Following the same steps as for (4.14a)-(4.14c), and using Burkholder-Davis-Gundy in-
equality, we obtain for small enough h > 0∣∣∣∣∫

R
φ d(m(t+ h) −m(t))

∣∣∣∣ 6 C‖φ‖C1ωm(h),

where

ωm(h) := h1/2 +
(

log(1/h) − h1/2
)−1

+ sup
s∈[0,T ]

∫ `
0
(1 − φh1/2 log(1/h)(x))m(s, x) dx,

and φε is the cut-off function defined in (4.17). In order to get limh→0+ ωm(h) = 0, we
need to prove that

lim
h→0+

sup
s∈[0,T ]

∫ `
0
(1 − φh1/2 log(1/h)(x))m(s, x) dx = 0.

This ensues easily from Dini’s Lemma, by choosing the sequence (φε)ε>0 to be mono-
tonically increasing.

Step 2 (continuity of Ψm): Let ε > 0, x,y ∈ DS ′R
, B be any bounded subset of SR, and

λx := (zx, tx), λy := (zy, ty) be a parametric representations of the graphs of x and y
respectively, such that

gB(λx, λy) := sup
s∈[0,1]

pB(zx(s) − zy(s))∨ |tx(s) − ty(s)| 6 ε,
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where pB(ν) := supx∈B |ν(x)|. Note that λx, λy depend on ε, but we do not use the
subscript ε in order to simplify the notation. We have

gB(λx, λy) > sup
s∈[0,1]

pB (zx(s) −m(tx(s)) − zy(s) +m(ty(s)))∨ |tx(s) − ty(s)|

− sup
s∈[0,1]

maxpB(m(tx(s)) −m(ty(s)))∨ |tx(s) − ty(s)| .

Since the map t→ m(t) ∈ S ′R is continuous, observe that

λ ′v : s→ (zv(s) −m(tv(s)), tv(s)) , v ≡ x,y

is a parametric representation of the graph

γ ′v :=
{
(w, t) ∈ S ′R × [0, T ] : w ∈

[
v(t−) −m(t), v(t) −m(t)

]}
, v ≡ x,y.

Consequently

(4.64)
dB,M1 (Ψm(x),Ψm(y)) 6 gB(λx, λy) + sup

s∈[0,1]
pB(m(tx(s)) −m(ty(s)))∨ |tx(s) − ty(s)|

6 2ε+ sup
s∈[0,1]

pB(m(tx(s)) −m(ty(s))).

Hence, by using the estimation of Step 1, we infer that:

(4.65) dB,M1 (Ψm(x),Ψm(y)) 6 C(B)ωm(ε),

which in turn implies that Ψm is continuous.
Step 3 (continuity of Ψnq ): Let us fix n > 1. Note that qnu,m maps [0, T ] into SR, and the

following holds:

(4.66) sup
t∈[0,T ]

sup
x∈R

∣∣xα∂βx qnu,m(t, x)
∣∣ 6 C(`,α)nβ ∫

R

∣∣∂βxξ(y)∣∣ dy, ∀α,β ∈ N.

Owing to (4.66), we have qnu,m([0, T ]) ⊂ Bn, where Bn is a bounded subset of SR. Let
ε > 0, x,y ∈ A, and λx := (zx, tx), λy := (zy, ty) be a parametric representations of the
graphs of x and y respectively such that

gBn(λx, λy) 6 ε.

We have

gBn(λx, λy) > sup
s∈[0,1]

∣∣∣∣∣
∫ `

0
qnu,m(tx(s), .) d(zx(s) − zy(s))

∣∣∣∣∣∨ |tx(s) − ty(s)|

> sup
s∈[0,1]

∣∣∣∣∣
∫ `

0
qnu,m(tx(s), .) dzx(s) −

∫ `
0
qnu,m(ty(s), .) dzy(s)

∣∣∣∣∣∨ |tx(s) − ty(s)|

− sup
s∈[0,1]

∣∣∣∣∣
∫ `

0

(
qnu,m(tx(s), .) − qnu,m(ty(s), .)

)
dzy(s)

∣∣∣∣∣∨ |tx(s) − ty(s)| .
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Thus, it holds that

sup
s∈[0,1]

∣∣∣∣∣
∫ `

0
qnu,m(tx(s), .) dzx(s) −

∫ `
0
qnu,m(ty(s), .) dzy(s)

∣∣∣∣∣∨ |tx(s) − ty(s)|

6 2ε+ sup
s∈[0,1]

∣∣∣∣∣
∫ `

0

(
qnu,m(tx(s), .) − qnu,m(ty(s), .)

)
dzy(s)

∣∣∣∣∣ 6 2ε+ωn2 (ε).

whereωn2 is the continuity modulus of qnu,m. By noting that

λ ′′v : s→

(∫ `
0
qnu,m(tv(s), .) dzv(s), tv(s)

)
, v ≡ x,y

is a parametric representation of the graph

γ ′′v :=

{
(w, t) ∈ S ′R × [0, T ] : w ∈

[∫ `
0
qnu,m(t−, .) dv(t−),

∫ `
0
qnu,m(t, .) dv(t)

]}
, v ≡ x,y,

we deduce that
dM1

(
Ψnq (x),Ψ

n
q (y)

)
6 2ε+ωn2 (ε).

The proof is complete. �

Let us now explain the proof of Theorem 4.10. We shall proceed by contradiction,
assuming that (4.52) does not hold. Then there exists ε0 > 0, a sequence of integers Nk
such that limkNk = +∞, and sequences (ik) ⊂ {1, ...,Nk}, (qik) ⊂ Ac, such that

(4.67) Jik,Nk
c

(
qik ; (q̂j)j6=ik

)
> ε0 + Jik,Nk

c

(
q̂1, ..., q̂N

)
, ∀k > 0.

We derive a contradiction by estimating the difference between J
ik,Nk
c and the mean field

objective Jc. Using Lemma 4.11, we will show that this difference goes to zero.
Let us set for any k > 0, dXikt := −qikt dt+

√
2σdWik

t − dξX
ik

t , Xik0 = Vik ,

τik := inf{t > 0 : Xikt 6 0} ∧ T ,

and define

Zk1,T :=

∫T
0
qiks 1s<τik ds, and Zk2,T :=

∫T
0

∣∣qiks ∣∣2 1s<τik ds.

Recall that all elements of Ac are non-negative, so that Zk1,T > 0 for any k > 0. We start

by collecting estimates on
(
Zik1,T

)
k>0

and
(
Zik2,T

)
k>0

. Observe that for any t ∈ [0, T ],

Xik
t∧τik

= Vk −

∫t
0
qiks 1s<τik ds+

√
2σWik

t∧τik
− ξX

ik

t , ∀k > 0.

Since the local time is nondecreasing, we infer that

0 6 Zk1,T 6 Vik − X
ik
τik

+
√

2σWik
τik

, ∀k > 0

holds almost surely. By means of the optional stopping theorem, we deduce that

(4.68) sup
k>0

E
[
Zk1,T

]
6 `.
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Moreover, recall that

Jik,Nk
c

(
qik ; (q̂j)j6=ik

)
= E

{∫T
0
e−rs

(
1 − κq̂s

ik
− qiks

)
qiks 1s<τik ds+ e−rTuT (X

ik
τik

)

}
,

where for any k > 0

q̂s
ik

=
1

Nk − 1

∑
j6=ik

qu,m(s, X̂js)1s<τ̂j .

Thus, for any k > 0

e−rTE
[
Zk2,T

]
6 ‖uT‖∞ + E

{∫T
0
e−rs

∣∣∣1 − κq̂s
ik
∣∣∣qiks 1s<τik ds

}
− Jik,Nk

c

(
qik ; (q̂j)j6=ik

)
.

By virtue of (4.67) and the uniform bound on qu,m that is given in (4.27), we deduce that

e−rTE
[
Zk2,T

]
6 2‖uT‖∞ + (κ+ 1) sup

k>0
E
[
Zk1,T

]
+ C(κ, T),

so that

(4.69) sup
k>0

E
[
Zk2,T

]
6 C(T , κ, ‖uT‖∞, `).

On the other hand, we have for any k > 0,

Jik,Nk
c

(
qik ; (q̂j)j6=ik

)
6 E

{∫T
0
e−rs

(
1 − κ

∫ `
0
qu,m(s, .) dν̂Nks − qiks

)
qiks 1s<τik ds+ e−rTuT (X

ik
τik

)

}

+ κ

(
Nk

Nk − 1
− 1

)
+
κ

Nk
sup
k>0

E
[
Zik1,T

]
.

Thus, for any k > 0

Jik,Nk
c

(
qik ; (q̂j)j6=ik

)
− Jc(q

ik) − CN−1
k

6 κE

[∫T
0
e−rsqiks 1s<τqik

∣∣∣∣∫
R
qu,m(s, .) d

(
m(s) − ν̂Nks

)∣∣∣∣ ds

]

6 κE

[∫T
0
e−rsqiks 1s<τqik

∣∣∣∣∫
R
qnu,m(s, .) d

(
m(s) − ν̂Nks

)∣∣∣∣ ds

]

+ κE

[∫T
0
e−rsqiks 1s<τqik

ds

]∥∥qnu,m − qu,m

∥∥∞ ,

where Jc is defined in Lemma 4.18, and qu,m, qnu,m are given by (4.60a)-(4.60b).
Let us fix ε > 0. Since

(
qnu,m

)
n>1

converges uniformly toward qu,m on [0, T ]× R, we
can choose n large enough and independently of k > 0 so that

(4.70) Jik,Nk
c

(
qik ; (q̂j)j6=ik

)
− Jc(q

ik)

6 κE
[
Zk2,T

]1/2 E

[∫T
0

∣∣∣∣∫
R
qnu,m(s, .) d

(
ν̂Nks −m(s)

)∣∣∣∣2 ds

]1/2

+ κεE
[
Zk1,T

]
+ CN−1

k .
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Appealing to Lemma 4.11, Lemma 4.19 and the continuous mapping theorem we have

(4.71) lim
N

E

[∫T
0

∣∣∣∣∫
R
qnu,m(s, .) d

(
ν̂Nks −m(s)

)∣∣∣∣2 ds

]
= 0.

Thus, by combining (4.68), (4.69), and (4.70):

Jik,Nk
c

(
qik ; (q̂j)j6=ik

)
− Jc(q

ik) 6 C(T , κ, ‖uT‖∞, `)ε

for big enough k > 0. Whence, by means of Lemma 4.18:

Jik,Nk
c

(
qik ; (q̂j)j6=ik

)
6 C(T , κ, ‖uT‖∞, `)ε+ Jc(ρ

∗)

for big enough k > 0. In the same manner, one can show that

Jc(ρ
∗) 6 Cε+ Jik,Nk

c

(
q̂1, ..., q̂N

)
holds for big enough k > 0. Hence, going back to (4.67) and using the above estimates,
we obtain

ε0 < C(T , κ, ‖uT‖∞, `)ε.

We deduce the desired contradiction by choosing ε suitably small.
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CHAPTER 5

A Mean Field Game of Portfolio Trading And Its Consequences
On Perceived Correlations

Joint work with Charles-Albert Lehalle, submitted to “SIAM Journal on Financial Mathematics”.

1. Introduction

Optimal execution deals with the optimization of a trading path from a given initial
position to zero in a given time window. This problem is regularly faced by traders or
brokers, when large institutional investors 1 decide to buy or to sell a large number of
shares or contracts on the market. As the number of assets is significantly larger than
the average size of a “normal” trade, it is probably not a good idea to try to execute all
the assets in a one single transaction, since the willingness to buy or sell in the market
(liquidity) is limited. Hence, the agent execution strategy often boils down to breaking up
the large order (parent order) into small orders (child orders), and try to execute each one
of these child orders over a period of time. The execution process has to be spread out
over time to avoid large execution costs due to the limited liquidity, but fast enough to
minimize adverse price movements over the course of the execution process.

Optimal liquidation emerged as an academic field with two seminal papers: one [5]
focussed on the balance between trading fast (to minimize the uncertainty of the obtained
price) and trading slow (to minimize the “market impact”, i.e. the detrimental influence of
the trading pressure on price moves) for one representative instrument; while the other
[17] focussed on a portfolio of tradable instruments, shedding light on the interplay with
correlations of price returns and market impact. The last twenty years have seen a lot
of proposals to sophisticate the single instrument case (see these reference books [23,
47, 71] for typical models and references) but very few on extending it to portfolios of
multiple assets (with the notable exception of [75]). Moreover, the usual framework for
optimal execution is the one of one large privileged agent facing a “mean-field” or a
“background noise” made of the sum of behaviours of other market participants, and
academic literature seldom tackles the strategic interaction of many market participants
seeking to execute large orders.

More recently, game theory has been introduced in this field. First around cases with
few agents, like in [106], and then by [39, 60, 79] relying on Mean Field Games (MFG)
to get rid of the combinatorial complexity of games with few players, considering a lot
of agents, such that their aggregated behaviour reduces to a “anonymous mean field of
liquidity”, shared by all of them.

1Such as pension funds, hedge funds, mutual funds, and sovereign funds.
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In this paper, we clearly start within the framework and results obtained by [39] and
extend them to the case of a portfolio of tradable instruments. Our agents are the same
as in this paper: optimal traders seeking to buy and sell positions given at the start of
the day. That for, they rely on the stochastic control problem well defined for one instru-
ment in [47], which result turns to be deterministic because of its linear-quadratic nature:
minimize the cost of the trading under risk-averse conditions and a terminal cost. This
framework can be compared to the one used by [17] in their section on portfolio, with a
diagonal matrix for the market impact, and in a game played by a continuum of agents.
Note that in all these papers, including ours, the time scale is large enough to not take
into account orderbook dynamics, and small enough to be used by traders and deal-
ing desks; our typical terminal time goes from one hour to several days, and time steps
have to be read in minutes. In their paper, Cardaliaguet and Lehalle have shown how
a continuum of such agents with heterogenous preferences can emulate a mix of typical
brokers (having a large risk aversion and terminal cost), and opportunistic traders (with
a low risk aversion). It will be the same for us. But while their paper only addresses
the strategic behavior of investors on a one single financial instrument this one handles
the case of a portfolio of correlated assets. In the real applications, a financial instrument
is rarely traded on its own; most investors construct diversified or hedged portfolios or
index trackers by simultaneously buying and selling a large number of assets.

This has motivated the present work in which we introduce an extension of the initial
Cardaliaguet-Lehalle framework to the case of a multi-asset portfolio. On the one hand,
this extension allows to cover a new type of trading strategies, such as Program Trading
(executing large baskets of stocks), Arbitrage Strategies (which aims to benefit from dis-
crepancies in the dynamics of two or more assets), Hedging Strategies (where a round
trip on a second asset – typically a very liquid one – can be used to partially hedge the
price risk in the execution process of a given asset), and Index Tracking (i.e. following the
composition given by a formula, like in factor investing, or simply following the market
capitalization of a list of instruments). On the other hand, it enables us to understand the
dependence structure between the market orders flows at “equilibrium”, and assess their
influence on standard estimates of the covariance (or correlation) matrix of asset returns.
These questions were independently raised by some authors and studied in seldom em-
pirical and theoretical works (see e.g. [16, 21, 51, 78, 95] and references therein).

Following the seminal paper [39], we assume that the market impact is either instan-
taneous or permanent, and that the public prices – of all assets – are influenced by the
permanent market impact of all market participants. Conversely, since the agents are af-
fected by the public prices, they aim to anticipate the “market mean field” (i.e. the market
trend due to the market impact of the mean field of all agents) by using all the information
they have in order to minimize their exposition to the other agents’ impact. As explained
in [39] this leads to a Nash equilibrium configuration of MFG type, in which all agents
anticipate the average trading speed of the population and adjust their execution accord-
ingly. We refer the reader to Section 2 for a more detailed explanation of the Mean Field
Game model. In the context of a MFG with multi-asset portfolio, the strategic interaction
between the agents during a trading day leads to a non-trivial relationship between the
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assets’ order flows, which in turn generates a non-trivial impact on the intraday covari-
ance (or correlation) matrix of asset returns. In Section 3, we provide an exact formula for
the excess covariance matrix of returns that is endogenously generated by the trading ac-
tivity, and we show that the magnitude of this effect is more significant when the market
impact is large. This means for a highly crowded market, illiquid products or large initial
orders (cf. Section 3). These results can be related to the ones of [51], except that in this
paper we do not focus our attention on distressed sells only; we are able to capture the
influence of the usual variations of trading flows to deformations of the naive estimate
of the covariance matrix of a portfolio of assets that are simultaneously traded. We also
carry out several numerical simulations and apply our results in an empirical analysis
which is conducted on a database of market data from January to December 2014 for a
pool of 176 US stocks. At first, we exhibit the theoretical relation between the intraday
covariance matrix of net traded flows and the standard intraday covariance matrix is in-
creasing, then we use this relation to estimate some parameters of our model, including
the market impact coefficients (cf. Section 3). Next, we normalize the covariance matrix
of returns to compute the intraday median diagonal pattern (across diagonal terms), and
the intraday median off-diagonal pattern (across off-diagonal terms) (cf. Section 3.3), as a
way of characterizing the typical intraday evolution for diagonal and off-diagonal terms.
It allows us to obtain empirically the well-known intraday pattern of volatility that is in
line with our model, and we show that it flattens out as the typical size of transactions
diminishes. In such a case the empirical volatility is close to its “fundamental” value (cf.
Figure 4). Finally, we propose a toy model based approach to calibrate our MFG model
on data.

This paper is structured as follows: in Section 2 we formulate the problem of optimal
execution of a multi-asset portfolio inside a Mean Field Game. We derive a MFG system
of PDEs and prove uniqueness of solutions to that system for a general Hamiltonian
function. Then we construct a regular solution in the quadratic framework, which will
be considered throughout the rest of the paper. Next, we provide a convenient numerical
scheme to compute the solution of the MFG system, and present several examples of an
agent’s optimal trading path, and the average trading path of the population. Section 3 is
devoted to the analysis of the crowd’s trading impact on the intraday covariance matrix
of returns. At the MFG equilibrium configuration, we derive a formula for the impact
of assets’ order flows on the dependence structure of asset returns. Next, we carry out
numerical simulations to illustrate this fact, and apply our results in an empirical analysis
on a pool of 176 US stocks.

2. Optimal Portfolio Trading Within The Crowd

2.1. The Mean Field Game Model. Consider a continuum of investors (agents), that
are indexed by a parameter a. Each agent has to trade a portfolio corresponding to in-
structions given by a portfolio manager. Think about a continuum of brokers or dealing
desks executing large orders given by their clients. The portfolios are made of desired
positions in a universe of d different stocks (or any financial assets). The initial position
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of any agent a is denoted by qa0 := (q1,a
0 , ...,qd,a

0 ). For any i, when the initial inven-
tory qi,a0 is positive, it means the agent has to sell this number of shares (or contracts)
whereas when it is negative, the agent has to sell this amount. Given a common horizon
T > 0, we suppose that all the investors have to sell or buy within the trading period
[0, T ]. This means the agent has to sell this number of shares (or contracts) whereas when
it is negative, the agent has to buy this amount.

The intraday position of each investor a is modeled by a Rd-valued process (qat )t∈[0,T ]

which has the following dynamics:

dqat = vat dt, qa(0) = qa0 .

The investor controls its trading speed (vat )t := (v1,a
t , ..., vd,a

t )t through time, in order
to achieve its trading goal. Following the standard optimal liquidation literature, we
assume that, for each stock, the dynamics of the mid-price can be written as:

(5.1) dSit = σi dWi
t + αiµ

i
t dt, i = 1, ...,d;

where σi > 0 is the arithmetic volatility of the ith stock, and α1, ...,αd are nonnegative
scalars modeling the magnitude of the permanent market impact. Here (W1

t , ...,Wd
t )t>0

are d correlated Wiener processes, and the process (µt)t∈[0,T ] := (µ1
t, ...,µdt )t corresponds

to the average trading speed of all investors across the portfolio of assets. Throughout,
we shall denote by Σ the covariance matrix of the d-dimensional process (Wt)t∈[0,T ] :=

(σ1W
1
t , ...,σdW

d
t )t∈[0,T ] and suppose that Σ is not singular.

The performance of any investor a is related to the amount of cash generated through-
out the trading process. Given the price vector (St)t∈[0,T ] := (S1

t, ...,Sdt )t∈[0,T ], we shall
assume that the amount of cash (Xat )t∈[0,T ] on the account of the trader a is given by:

Xat = −

∫t
0
vas · Ss ds−

d∑
i=1

∫t
0
ViLi

(
v
i,a
s

Vi

)
ds,

where the positive scalars V1, ...,Vd denotes the magnitude of daily market liquidity (in
practice the average volume traded each day can be used as a proxy for this parameter)
of each asset. Here L1, ...,Ld are the execution cost functions (similar to the ones of [75]),
modelling the instantaneous component of market impact, which takes part in the aver-
age cost of trading. The family of functions Li : R→ R are assumed to fulfil the following
set of assumptions:

• Li(0) = 0;
• Li is strictly convex and nonnegative;
• Li is asymptotically super-linear, i.e. lim|p|→+∞ Li(p)

|p| = +∞.

The initial Cardaliaguet-Lehalle model [39], corresponds to d = 1, and a quadratic
liquidity function of the form L(p) = κ|p|2.

In this chapter, we consider a reward function that is similar to [39], and correspond-
ing to Implementation Shortfall (IS) orders. In this specific case the reward function of any
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investor a is given by:

(5.2)

Ua(t, x, s, q;µ) := sup
v

Ex,s,q

(
XaT + qaT · (ST −AaqaT ) −

γa

2

∫T
t

qas · Σqas ds

)
,

where Aa := diag(Aa1 , ...,Aad), A
a
i > 0, and γa is a non-negative scalar which quantifies

the investor’s tolerance toward market risk. That is when γa = 0 the investor is indiffer-
ent about holding inventories through time, while when γa is large the investor attempt
to liquidate as quick as possible. The quadratic term qaT · (ST −AaqaT ) penalizes non-zero
terminal inventories. One should note that the expression of the profit functional (5.2) is
derived by considering that agents are risk-averse with CARA utility function. We omit
the details and refer the reader to [71, Chapter 5].

The Hamilton-Jacobi equation associated to (5.2) is

0 = ∂tU
a −

γa

2
q · Σq+ 1

2
Tr
(
ΣD2

sU
a
)
+ Aµ · ∇sU

a

+ sup
v

{
v · ∇qU

a −

(
v · s+

d∑
i=1

ViLi

(
vi

Vi

))
∇xUa

}
,

with the terminal condition

Ua(T , x, s, q;µ) = x+ q · (s−Aaq).

In all this chapter we set A := diag(α1, ...,αd). Due to the simplifications that we will
obtain afterwards, we suppose that µ = (µt)t∈[0,T ] is a deterministic process, so that the
HJB equation above is deterministic. When µ is a random process, that is adapted to
the natural filtration of (Wt)t∈[0,T ], we obtain a stochastic backward HJB equation which
requires a specific treatment (cf. [33]).

Following the approach of [39], we consider the following ansatz:

Ua(t, x, s, q;µ) = x+ q · s+ ua(t, q;µ),

which entails the following HJB equation for ua:

(5.3)
γa

2
q · Σq = ∂tu

a + Aµ · q+ sup
v

{
v · ∇qua −

d∑
i=1

ViLi

(
vi

Vi

)}
,

endowed with the terminal condition:

uaT = −Aaq · q.

For any i = 1, ...,d, let Hi be the Legendre-Fenchel transform of the function Li that
is given by

Hi(p) := sup
ρ
pρ− Li(ρ).

Since the maps (Li)16i6d are strictly convex, (Hi)16i6d are functions of class C1, and the
optimal feedback strategies associated to (5.3) are given by

vi,a(t, q) := ViḢi (∂qiu
a(t, q)) ,
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where Ḣi denotes the first derivative of Hi. Therefore, the Mean Field Game system
associated to the above problem reads:

(5.4)



γa

2
q · Σq = ∂tu

a + Aµ · q+

d∑
i=1

ViHi (∂qiu
a(t, q))

∂tm+

d∑
i=1

Vi∂qi

(
mḢi (∂qiu

a(t, q))
)
= 0

µit =

∫
(q,a)

ViḢi (∂qiu
a(t, q))m(t, dq, da)

m(0, dq, da) = m0( dq, da), uaT = −Aaq · q.

The Mean Field Game system (5.4) describes a Nash equilibrium configuration, with in-
finitely many well-informed market investors: any individual player anticipates the right
average trading flow on the trading period [0, T ], and computes his optimal strategy ac-
cordingly. Observe that we make a strong assumption by supposing that the considered
group of investors has a precise knowledge of market mean field. In reality this knowl-
edge is only partial and/or approximate.

Well-posedness for system (5.4) is investigated in [39] within the general framework
of Mean Field Games of Controls. In this work, we provide simpler arguments to deal with
the specific cases of our study. We shall suppose that (Hi)16i6d are of class C2 and satisfy
the following condition:

(5.5) ∀i = 1, ...,d, ∀p ∈ R, C−1
0 6 Ḧi(p) 6 C0,

for some C0 > 0, and m0 is a probability density with a finite second order moment. More-
over, we suppose that the investors’ index varies in a closed subset D ⊂ R.

We say that (ua,m)a∈D is a solution to the MFG system (5.4) if the following hold:

• ua ∈ C1,2([0, T ]× R), for a.e a ∈ D, andm in C([0, T ];L1(R×D));
• the equation for ua holds in the classical sens, while the equation form holds in

the sense of distribution;
• for any t ∈ [0, T ],

(5.6)
∫
R×D

|q|dm(t, dq, da) <∞, and |∇qua(t, q)| 6 C1(1 + |q|),

for some C1 > 0.

Let us start with the following remark on the uniqueness of solutions to (5.4).

PROPOSITION 5.1. Under the above assumptions, system (5.4) has at most one solution.

PROOF. Let (ua1 ,m1)a∈D and (ua2 ,m2)a∈D be two solutions to (5.4), and set ūa :=

ua1 − ua2 , m̄ := m1 − m2. At first, let us assume that m1, m2 are smooth so that the
computations below holds. By using system (5.4), we have:
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(5.7)

d

dt

∫
(q,a)

ūam̄ = −

∫
(q,a)

m̄

{
d∑
i=1

Vi (Hi (∂qiu1) −Hi (∂qiu2)) + A(µ1 − µ2) · q

}

−

∫
(q,a)

ū

{
d∑
i=1

Vi

(
∂qi

(
m1Ḣi (∂qiu1)

)
− ∂qi

(
m2Ḣi (∂qiu2)

))}
,

where µ1, µ2 correspond respectively to (ua1 ,m1)a∈D and (ua2 ,m2)a∈D.
On the one hand, note that∫

(q,a)
m̄A(µ1 − µ2) · q =

1

2

d

dt
AĒ · Ē, where Ē(t) :=

∫
(q,a)

qdm̄(t).

This follows from
d

dt
Ē = µ1 − µ2,

which is in turn obtained from system (5.4) after an integration by parts.
On the other hand, by virtue of (5.5) we have

d∑
i=1

Vi

∫ (
m̄ (Hi (∂qiu1) −Hi (∂qiu2)) − ∂qiū

(
m1Ḣi (∂qiu1) −m2Ḣi (∂qiu2)

))

= −

d∑
i=1

Vi

∫ (
m1

(
Hi (∂qiu2) −Hi (∂qiu1) − Ḣi (∂qiu1)∂qi(u2 − u1)

))

−

d∑
i=1

Vi

∫ (
m2

(
Hi (∂qiu1) −Hi (∂qiu2) − Ḣi (∂qiu2)∂qi(u1 − u2)

))
6 − min

16i6d
Vi

∫
(q,a)

(m1 +m2)

2C0
|∇qu1 −∇qu2|

2 .

Therefore, (5.7) provides

(5.8) min
16i6d

Vi

∫T
0

∫
(q,a)

|∇qu1(s) −∇qu2(s)|
2 d(m1 +m2) ds+

C

2
AĒ(T) · Ē(T) = 0.

By using a standard regularization process, identity (5.8) holds true for any solutions
(ua1 ,m1)a∈D and (ua2 ,m2)a∈D of (5.4). Thus, one can use this identity to deduce that
∇qu1 ≡ ∇qu2 on {m1 > 0} ∪ {m2 > 0}, so thatm1,m2 solve the same transport equation:

∂tν+

d∑
i=1

Vi∂qi

(
νḢi (∂qiu

a
1 (t, q))

)
= 0, νt=0 = m0.

This entailsm1 ≡ m2 and so u1 ≡ u2, by virtue of our regularity assumptions. �
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2.2. Quadratic Liquidity Functions. In practice the liquidity function is often chosen
as strictly convex power function of the form: L(p) = η|p|1+φ+ω|p|, with η,φ,ω > 0. The
additional term ω|p| captures proportional costs such as the bid-ask spread, taxes, fees
paid to brokers, trading venues and custodians [71]. The quadratic case (φ = 1) – that is
also considered in [39] – is particularly interesting because it induces some considerable
simplifications and allows to compute the solutions at a relatively low cost. Throughout
the rest of this chapter, we suppose that the liquidity functions take the following simple
form:

(5.9) Li(p) = ηi|p|
2 where ηi > 0, i = 1, ...,d.

Following the approach of [39], we start by setting m̄0( da) :=
∫
qm0( dq, da). We

shall suppose that

(5.10) m̄0(a) 6= 0, for a.e a ∈ D,

and that investors do not change their preference parameter a over time. Thus, we always
have

∫
qm(t, dq, da) = m̄0( da), so that we can disintegratem into

m(t, dq, da) = ma(t, dq)m̄0( da),

where ma(t, dq) is a probability measure in q for m̄0-almost any a. Let us now define
the following process which plays an important role in our analysis:

Ea(t) :=

∫
q

qma(t, dq) ∀t ∈ [0, T ], for a.e a ∈ D,

and we shall denote by Ea,1, ...,Ea,d the components of Ea. By virtue of the PDE satisfied
bym, observe that Ea satisfies the following:

Ėa(t) =

∫
q

q ∂tm
a(t, dq)(5.11)

=

∫
q

(
Vi
2ηi

∂qiu
a(t, q)

)
16i6d

ma(t, dq),

so that

(5.12) µt =

∫
a

Ėa(t) dm̄0(a).

Due to the existence of linear and quadratic terms in the equation satisfied by ua, we
expect the solution to have the following form:

(5.13) ua(t, q) = ha(t) + q ′ ·Ha(t) +
1

2
q ′ ·Ha(t) · q

where ha(t) is R-valued function, Ha(t) := (Hia(t))16i6d is Rd-valued function, and
the map Ha(t) := (Hi,ja (t))16i,j6d take values in the set of Rd×d-symmetric matrices.
Inserting (5.13) in the HJB equation of (5.4) and collecting like terms in q leads to the
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following coupled system of BODEs:

(5.14)



ḣa = −VHa ·Ha
Ḣa = −Aµ− 2HaVHa
Ḣa = −2HaVHa + γaΣ

ha(T) = 0, Ha(T) = 0, Ha(T) = −2Aa,

where V := diag
(
V1
4η1

, ..., Vd4ηd

)
. In order to solve completely (5.14) we need to know µ,

or the process Ėa thanks to (5.12). Thus, one needs an additional equation to completely
solve the problem.

By virtue of (5.11), we have

(5.15) Ėa = 2VHa + 2VHaEa.

By combining this equation with system (5.14) one obtains the following FBODE:

(5.16)


Ëa = −2VA

∫
a

Ėa dm̄0(a) + 2γaVΣEa

Ea(0) = Ea0 :=

∫
q

qm0(q,a)/m̄0(a)

Ėa(T) + 4VAaEa(T) = 0.

This system is a generalized form of the one that is studied in [39], and summarizes the
whole market mean field. Observe that the permanent market impact acts as a friction
term while the market risk terms act as a pushing force toward a faster execution. The
investors heterogeneity is taken into account in the first derivative term, which means
that the contribution of all the market participants to the average trading flow is already
anticipated by all agents.

System (5.16) is our starting point to solve the MFG system (5.4) in the quadratic case.
Due to the forward-backward structure of system (5.16), we need a smallness condition
on A in order to construct a solution. This assumption is also considered in [39], and is
not problematic from a modeling standpoint since |A| is generally small in applications
(cf. Section 3.3). Let us present the construction of solutions to system (5.16).

PROPOSITION 5.2. Suppose that Aa,γa ∈ L∞(D), then there exists α0 > 0 such that, for
|A| 6 α0, the following hold:

(i) there exists a unique process Ea in L1
m̄0

(D;C1([0, T ])) which solves system (5.16);
(ii) there exists a constant C2 > 0, such that

(5.17) sup
06w6T

|µw| 6 C2

(
1 +

∫
a

|Ea0 |dm̄0

)
eC2T ,

where (µt)t∈[0,T ] is given by (5.12).

PROOF. At first, note that the solution Ha to the matrix Riccati equation in (5.14)
exists on [0, T ], is unique, depends only on data, and satisfies (see e.g. [83])

(5.18) − 2Aa − TγaΣ 6 Ha 6 0,
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where the order in the above inequality should be understood in the sense of positive
symmetric matrices. Moreover, note that ΣV and VΣ are both diagonalizable with non-
negative eigenvalues. Thus by using the ODE satisfied by Ha, we know that HaV and
VHa are both diagonalizable with a constant change of basis matrix. In particular, it holds
that

(5.19)
[
Ha(t)V,

∫w
t

Ha(u)V du

]
=

[
VHa(t),

∫w
t

VHa(u) du

]
= 0

for any 0 6 t,w 6 T , where the symbol [B,A] denotes the Lie Bracket: [B,A] = BA−AB.
Given Ha, we aim to construct Ėa in L1

m̄0
(D;C([0, T ])) by solving a fixed point rela-

tion, and then deduce Ea. For that purpose, we start by deriving a fixed point relation
for Ėa. By virtue of (5.19), observe that any solution Ea to (5.16) fulfills (5.15) with (see
e.g. [94])

Ha(t) =

∫T
t

exp

{∫w
t

2Ha(s)V ds

}
A
∫
a

Ėa(w) dm̄0(a) dw,

so that

Ea(t) = exp

{∫t
0

2VHa(w) dw

}
Ea0

+ 2V
∫t

0
exp

{∫t
τ

2VHa(w) dw

}∫T
τ

exp

{∫w
τ

2Ha(s)V ds

}
A
∫
a

Ėa(w) dm̄0(a) dwdτ.

By combining this relation with (5.15), we deduce that Ėa satisfies the following fixed
point relation:

(5.20) xa(t) = ΦA(x
a)(t) := 2VHa(t) exp

{∫t
0

2VHa(w) dw

}
Ea0

+4VHa(t)V
∫t

0
exp

{∫t
τ

2VHa(w) dw

}∫T
τ

exp

{∫w
τ

2Ha(s)V ds

}
A
∫
a

xa(w) dm̄0(a) dwdτ

+ 2V
∫T
t

exp

{∫w
t

2Ha(w)V dw

}
A
∫
a

xa(w) dm̄0(a) dw.

Conversely, one checks that if xa is a solution to the fixed point relation (5.20), for a.e.
a ∈ D, then Ea(t) = Ea0 +

∫t
0 x
a(s) ds is a solution to system (5.16).

To solve the fixed point relation (5.20), one just uses Banach fixed point Theorem on
ΦA : X→ X, where X := L1

m̄0
(D;C([0, T ])). It is clear that ΦA is a contraction for |A| small

enough: indeed, given x, y ∈ X, it holds that:

|ΦA(x
a)(t) −ΦA(y

a)(t)| 6 C|A| ‖x− y‖X
where C > 0 depends only on T , ‖γ‖∞, ‖A‖∞, |V| and |Σ|. Thus, given the solution xa to
(5.20), the function Ea(t) = Ea0 +

∫t
0 x
a(s) ds solves (5.16), and belongs to L1

m̄0
(D;C([0, T ]))

given that m0 have a finite first order moment. Estimate (5.17) ensues from Grönwall’s
Lemma. �

We are now in position to solve the MFG system (5.4) in the case of quadratic liquidity
functions (5.9).
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THEOREM 5.3. Under (5.9), (5.10), and assumptions of Proposition 5.2, the Mean Field
Game system (5.4) has a unique solution.

PROOF. Since (5.16) is solvable thanks to Proposition 5.2, we can now solve com-
pletely system (5.14) and deduce ua(t, q;µ) thanks to (5.13). In fact, owing to (5.19) we
know that (cf. [94]): 

Ha(t) =

∫T
t

exp

{∫w
t

2Ha(s)V ds

}
Aµw dw

ha(t) =

∫T
t

VHa(w) ·Ha(w) dw,

so that the function ua(t, q;µ), that is given by (5.13), is C1,2([0, T ]× R). Furthermore, by
virtue of (5.17)-(5.18), note that

(5.21) |∇qua(t, q)| 6 C(1 + |q|)

for some constant C > 0 which depends only on T and data.
Now, as ua is regular and satisfies (5.21), we know that the transport equation

∂tm
a +

d∑
i=1

Vi
2ηi

∂qi (m
a∂qiu

a(t, q)) = 0, ma(0, dq) = m0( dq, da)/m̄0(a)

has a unique weak solution ma ∈ C([0, T ];L1(R)) for a.e a ∈ D, so that m := mam̄0

solves, in the weak sense, the following Cauchy problem:

∂tm+

d∑
i=1

Vi
2ηi

∂qi (m∂qiu
a(t, q)) = 0, m(0, dq, da) = m0( dq, da).

In addition, one easily checks thatm belongs to C([0, T ];L1(R×D)).
By invoking the uniqueness of solutions to (5.16), we have

Ea(t) =

∫
q

qma(t,q) dq for a.e a ∈ D.

Thus through the same computations as in (5.11) we obtain

µit =

∫
(q,a)

Vi
2ηi

∂qiu
a(t, q)ma(t, q)m̄0(a) dadq, i = 1, ...,d,

so that (ua,m)a∈D solves the MFG system (5.4).
By virtue of Proposition 5.1, any constructed solution is unique. So to conclude the

proof, it remains to show that:∫
R×D

|q|m(t, q,a) dqda <∞.

For that purpose, let us set

Ψε(t) :=

∫
R×D

|q|2
(
1 + |q/ε|2

)−1
m(t, q,a) dqda, ∀ε > 0.
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One easily checks that Ψε(t) < ∞ for every t ∈ [0, T ] and ε > 0. After differentiating Ψε
and integrating by parts, we obtain the following ODE that is satisfied by Ψε:

Ψε(t) = Ψε(0) + 4

∫t
0

∫
R×D

(V∇qu
a · q)

(
1 + |q/ε|2

)−2
m(w, q,a) dqdadw.

Hence, by virtue of (5.21) it holds that

|Ψε(t)| 6 |Ψε(0)|+A+ B

∫t
0
|Ψε(w)|dw,

where A,B are positive constants. Now, we use Grönwall’s Lemma and take ε → ∞ by
invoking Fatou’s Lemma and the fact that m0 has a finite second order moment. This
leads to ∫

R×D
|q|2m(t, q,a) dqda <∞ ∀t ∈ [0, T ],

which in turn entails the desired result. �

2.3. Stylized Facts & Numerical Simulations. Let us now comment our results and
highlight several stylized facts of the system. By virtue of (5.13), the optimal trading
speed v∗a is given by:

v∗a(t, q) = 2VHa(t)q+ 2VHa(t)(5.22)

= 2VHa(t)q+ 2V
∫T
t

exp

{∫w
t

2Ha(s)V ds

}
Aµw dw

=: v1,∗
a (t, q) + v2,∗

a (t;µ).

The above expression shows that the optimal trading speed is divided into two distinct
parts v1,∗

a , v2,∗
a . The first part v1,∗

a corresponds to the classical Almgren-Chriss solution in
the case of a complexe portfolio (cf. [71]). The second part v2,∗

a adjusts the speed based
on the anticipated future average trading on the remainder of the trading window [t, T ].
Since the matrix Ha is negative, note that the strategy gives more weight to the current
expected average trading. Moreover, the contribution of the corrective term decreases as
we approach the end of the trading horizon. The correction term aims to take advantage
of the anticipated market mean field.

Let us set

(5.23) Ga(t,w) := exp

{∫w
t

2Ha(s)V ds

}
A.

Note that the matrix Ga is not necessarily symmetric and could have a different structure
than Ha. In view of the market price dynamics, the trading speed expression shows that
an action of an individual investor or trader on asset i could have a direct impact on the
price of asset j, at least when the two assets are fundamentally correlated, i.e. Σi,j 6= 0.
This phenomenon of cross impact is related to the fact that other traders already anticipates
the market mean field and aim to take advantage from that information, especially when
asset j is more liquid than asset i (or vice versa). Thus, if an investor is trading as the
crowd is expecting her/him to trade, then she/he is more likely to get a “cross-impact”
through the action of the other traders. This fact is empirically addressed in [16, 78].
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Another expression of the optimal trading speed can also be derived thanks to (5.15).
In fact, we have that:

(5.24) v∗a(t,q) = Ėa + 2VHa(t)(q− Ea).

The above formulation shows that an individual investor should follow the market mean
field but with a correction term which depends on the situation of her/his inventory
relative to the population average inventory.

In order to simplify the presentation, we ignore from now on investors heterogeneity
and assume that market participants have identical preferences. Under this assumption,
system (5.16) simply reads:

(5.25)

{
Ë = −2VAĖ+ 2γVΣE

E(0) = E0, Ė(T) + 4VAE(T) = 0.

Given a discretization step δt = N−1, the solution of (5.25) is approached by a sequence
(xk,yk)06k6N according to the following implicit scheme:

x0 = E0

xk − xk−1 − δtyk−1 = 0, k = 1, ...,N

yk − yk−1 − δt (2γVΣxk − 2VAyk) = 0, k = 1, ...,N

4VAxN + yN = 0.

Hence, computing an approximate solution to system (5.25) reduces to solving a straight-
forward linear system. One checks that under conditions of Proposition 5.2, the above
numerical scheme converges and is stable.

Now, we can present some examples by using the above numerical method. We con-
sider a portfolio containing three assets (Asset 1, Asset 2, Asset 3) with the following
characteristics:

• σ1 = σ3 = 0.3 $.day−1/2.share−1, σ2 = 1 $.day−1/2.share−1;
• V1 = 2, 000, 000 share.day−1, V2 = V3 = 5, 000, 000 share.day−1;
• η1 = η2 = 0.1 $.share−1, η3 = 0.4 $.share−1, A1 = A2 = 2.5 $.day−1.share−1;
• α1 = α2 = 8× 10−4 $.share−1, α3 = 6× 10−4 $.share−1.

In Figure 1(a)-1(d), we consider a market with the initial average inventories E1
0 =

100, 000, E2
0 = 50, 000, and E3

0 = −25, 000 shares, for Asset 1, Asset 2, and Asset 3 respec-
tively. In this example, we suppose that the correlation between the price increments of
Asset 1 and Asset 2 is 80 %, and we set γ = 5× 10−5 $−1 except for Figure 1(c).

Figure 1(a) shows that changing the permanent market impact prefactors (αk)16k63

has a significant influence on the average execution speed. This fact was pointed out in
[39], and is essentially related to the fact that the higher the permanent market impact
parameter the more the anticipated influence of the other market participants become
important. Namely, when αk is large, traders anticipate a more significant pressure on
the price of Asset k, and adjust their trading speed. On the other hand, dynamics of Asset
2 shows that the higher the market liquidity the faster is the execution. This is expected
since the more liquid the faster assets are traded. Finally, dynamics of Asset 3 shows that
traders accelerate their execution on volatile asset. It corresponds to a natural reaction



124 5. A MEAN FIELD GAME OF PORTFOLIO TRADING

due to risk aversion; a trader will try to reduce his exposure to the more risky (hence
volatile) assets in priority.
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(b) Optimal trading of an individual investor with:
q1
0 = 40, 000, q2

0 = 0, and q3
0 = 110, 000
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(c) Market mean field with high risk aversion
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FIGURE 1. Simulated examples of the dynamics of E and optimal trading
curves of an individual investor. The dashed lines in Figure 1(a) corre-
spond to: α1 = 6 × 10−4 $.share−1, V2 = 7, 000, 000 share.day−1, and
σ3 = 5 $.day−1/2.share−1.

Figure 1(c) illustrates the behavior of the crowd of investors with an increasing risk
aversion (higher γ). In the two presented scenarios, one can observe that Asset 2 is liqui-
dated very quickly, then a short position is built (around t = 0.05 for γ = 5 × 10−2 $−1)
and it is finally progressively unwound. This exhibits the emergence of a Hedging Strat-
egy: indeed, since Asset 1 and Asset 2 are highly correlated, investors can slow down
the execution process for the less liquid asset (Asset 1) to reduce the transaction costs, by
using the more liquid asset (Asset 2) to hedge the market risk associated to Asset 1. The
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trader has an incentive to use such a strategy as soon as the cost of the roundtrip in Asset
2 is smaller than the corresponding reduction of the risk exposure (seen from its reward
function Ua(t, x, s, q;µ) defined by equality (5.2)).

Now, we provide examples of individual players’ optimal strategies. We consider two
examples: an individual investor with initial inventory q1

0 = 40, 000, q2
0 = 0, and q3

0 =

110, 000 in Figure 1(b); and an individual investor with initial inventory q1
0 = 100, 000,

and q2
0 = q3

0 = 0 in Figure 1(d).
In Figure 1(d) the considered investor starts from q1

0 = E1
0. Hence, by virtue of (5.24)

her liquidation curve follows exactly the market mean field. Moreover, the investor takes
advantage of the anticipated evolution of the market by building favorable positions on
Asset 2 and Asset 3: building a short (resp. a long) position on Asset 2 (resp. Asset 3), and
buying (resp. selling) back in order to take advantage of price drop (resp. raise) induced
by the massive liquidation (resp. purchase). The trading strategies on Asset 2 and Asset
3 are related to the term v2,∗ in (5.22). This strategy can be described as a “Liquidity
Arbitrage Strategy”.

Figure 1(b) shows two interesting facts: on the one hand, the individual player builds
a short position on Asset 1 after achieving her goal (complete liquidation) in order to take
advantage of the market selling pressure; on the other hand, by taking into account the
market buying pressure on Asset 1, the investor slows down her liquidation to reduce
execution costs since she anticipates no sustainable price decline.

3. The Dependence Structure of Asset Returns

The main purpose of this section is to analyze the impact of large transactions on
the observed covariance matrix between asset returns, by using the Mean Field Game
framework of Section 2. For that purpose, we assume a simple model where a continuum
of players trade a portfolio of assets on each day, and where the initial distribution of
inventories across the investorsm0 changes randomly from one day to another according
to some given law of probability. We assume that the price dynamics is given by (5.1),
and we consider the problem of estimating the covariance matrix of asset returns given
a large dataset of intraday observations of the price. For the sake of simplicity, we ignore
investors heterogeneity and assume that market participants have identical preferences.
Next, we compare our findings with an empirical analysis on a pool of 176 US stocks
sampled every 5 minutes over year 2014 and calibrate our model to market data.

Throughout this section, we denote by
〈
X2
〉

the variance of X, and 〈X, Y〉 the covari-
ance between X and Y, for any two random variables X, Y. Moreover, we will call a “bin”
a slice of 5 minutes. We focused on continuous trading hours because the mechanism of
call auctions (i.e. opening and closing auctions is specific). Since US markets open from
9h30 to 16h, our database has 78 bins per day. They will be numbered from 1 to M and
indexed by k.

3.1. Estimation using Intraday Data. We suppose that E0 is a random variable with
a given realization on each trading period [0, T ], where T = 1 day (trading day); and
we consider the problem of estimating the covariance matrix of asset returns given the
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following observations of the price:{(
Snt1,1 , ...,Snt1,M

)
,
(
Snt2,1 , ...,Snt2,M

)
, ....,

(
SntN,1

, ...,SntN,M

)}
, n = 1, ...,d

where Snt`,k is the price of asset n in bin k of day `. We suppose that t`,1 = 0, t`,M = T , for
any 1 6 ` 6 N, and t`,k = t` ′,k = tk for any 1 6 k 6M, 1 6 `, ` ′ 6 N.

For simplicity, we suppose that the covariance matrix of asset returns between tk and
tk+1 is estimated form data by using the following “naive” estimator :

(5.26) C
i,j
[tk,tk+1]

:=
1

N− 1

N∑
l=1

(
δSi,k,l − δS

i,k
)(
δSj,k,l − δS

j,k
)

,

where δSn,k,l = Sntl,k+1
− Sntl,k and δSn,k

= N−1
∑N
l=1 δS

n,k,l, n = i, j. We define the
correlation matrix as follows:

(5.27) R
i,j
[tk,tk+1]

:=
C
i,j
[tk,tk+1](

C
i,i
[tk,tk+1]

C
j,j
[tk,tk+1]

)1/2
.

Suppose that the price dynamics is given by (5.1), then the following proposition pro-
vides an exact computation of Ci,j[tk,tk+1]

.

PROPOSITION 5.4. Assume that E0 is independent from the process (Wt)t∈[0,T ], then for
any 1 6 k 6M− 1 and 1 6 i, j 6 d, the following hold:

(5.28) C
i,j
[tk,tk+1]

= (tk+1 − tk)Σi,j + αiαj
ηiηj

4ViVj
Λ
i,j
k + εN,

where εN → 0 as N→∞,

Λ
i,j
k :=

∑
16`,` ′6d

〈
θ
i,`
k , θj,`

′

k

〉
+
∑

16`,` ′6d

〈
π
i,`
k , θj,`

′

k

〉
+
∑

16`,` ′6d

〈
θ
i,`
k ,πj,`

′

k

〉
+
∑

16`,` ′6d

〈
π
i,`
k ,πj,`

′

k

〉
,

and

π
n,`
k :=

∫tk+1

tk

Hn,`(s)E`(s) ds, θ
n,`
k :=

∫tk+1

tk

∫T
s

Gn,`(s,w)µ`(w) dwds.

PROOF. Use the exact expression of the price dynamics (5.1), the law of large num-
bers, and the independence between E0 and (Wt)t∈[0,T ] to obtain:

(5.29) C
i,j
[tk,tk+1]

= εN + (tk+1 − tk)Σi,j

+ αiαj(N− 1)−1
N∑
l=1

∫tk+1

tk

(
µi,ls − µ̄is

)
ds

∫tk+1

tk

(
µ
j,l
s ′ − µ̄

j
s ′

)
ds ′,

where µ̄nu = N−1
∑N
l=1 µ

n,l
u , and µl,El are respectively the realizations of µ,E in day l.

Now, owing to (5.22)-(5.23), we know that

µlt = 2VH(t)El(t) + 2V
∫T
t

G(t,w)µlw dw =: ν1,l(t) + ν2,l(t).
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Thus by setting

ν̃
n,l
k :=

∫tk+1

tk

(
νn,l(s) −N−1

N∑
l=1

νn,l(s)

)
ds, n = 1, 2,

we deduce that∫tk+1

tk

(
µi,`s − µ̄is

)
ds

∫tk+1

tk

(
µ
j,`
s ′ − µ̄

j
s ′

)
ds ′ =

(
ν̃

1,l,i
k + ν̃2,l,i

k

)(
ν̃

1,l,j
k + ν̃2,l,j

k

)
.

The desired result ensues by noting the existence of estimation noises ε1
N, ε2

N, ε3
N and ε4

N,
such that:

(N− 1)−1
N∑
l=1

ν̃
1,l,i
k ν̃

1,l,j
k =

ηiηj

4ViVj

∑
16`,` ′6d

〈
π
i,`
k ,πj,`

′

k

〉
+ ε1

N;

(N− 1)−1
N∑
l=1

ν̃
2,l,i
k ν̃

2,l,j
k =

ηiηj

4ViVj

∑
16`,` ′6d

〈
θ
i,`
k , θj,`

′

k

〉
+ ε2

N;

(N− 1)−1
N∑
l=1

ν̃
1,l,i
k ν̃

2,l,j
k =

ηiηj

4ViVj

∑
16`,` ′6d

〈
π
i,`
k , θj,`

′

k

〉
+ ε3

N;

(N− 1)−1
N∑
l=1

ν̃
1,l,j
k ν̃

2,l,i
k =

ηiηj

4ViVj

∑
16`,` ′6d

〈
θ
i,`
k ,πj,`

′

k

〉
+ ε4

N.

The proof is complete. �

REMARK 5.5. One can easily derive an analogous result for
(
C
i,j
[0,T ]

)
16i,j6d

. Namely,

it holds that:

(5.30) C
i,j
[0,T ] = TΣi,j + αiαj

ηiηj

4ViVj
Λi,j + εN,

where εN → 0 as N→∞,

Λi,j :=
∑

16`,` ′6d

〈
θi,`, θj,`

′
〉
+
∑

16`,` ′6d

〈
πi,`, θj,`

′
〉

+
∑

16`,` ′6d

〈
θi,`,πj,`

′
〉

,+
∑

16`,` ′6d

〈
πi,`,πj,`

′
〉

,

and

πn,` :=

∫T
0
Hn,`(s)E`(s) ds, θn,` :=

∫T
0

∫T
s

Gn,`(s,w)µ`(w) dwds.

Identities (5.28) and (5.30) show that the realized covariance matrix is the sum of the
fundamental covariance and an excess realized covariance matrix generated by the impact
of the crowd of institutional investors’ trading strategies. Note on the one hand that the
diagonal terms Ci,i are always deviated from fundamentals because of the contribution
of
〈
(πi,i)2

〉
and

〈
(θi,i)2

〉
. On the other hand, since H and G inherit a structure similar to

Σ, the excess of realized covariance in the off-diagonal terms is non-zero as soon as one –
or both – of the conditions below is satisfied:
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• there exists i0 6= j0 such that Σi0,j0 6= 0;

• there exists i0 6= j0 such that
〈
Ei00 ,Ej00

〉
6= 0.

Moreover, (5.28) and (5.30) show that the excess realized covariance can deviate sig-
nificantly from fundamentals when: the market impact is large (high crowdedness), the con-
sidered assets are highly liquid (small ηi/Vi), the risk aversion coefficient γ is high, and/or when
the standard deviation of E0 is large. In addition, since the contribution of θn,`

k and πn,`
k

vanishes as we approach the end of the trading horizon, observe that

(5.31) C
i,j
[tk,tk+1]

∼ (tk+1 − tk)Σi,j, as tk+1 → T ,

which means that one converges to market fundamentals at the end of the trading period.
This is due to the fact that, in our model, all traders have high enough risk aversions so
that their trading speeds go to zero close to the terminal time T .

By virtue of (5.28), one can also explain the realized correlation matrix in terms of the
fundamental correlations ρi,j := Σi,j/(Σi,iΣj,j)1/2. Namely, it holds that:

(5.32)

R
i,j
[tk,tk+1]

= ρi,j

(tk+1 − tk)
2Σi,iΣj,j

C
i,i
[tk,tk+1]

C
j,j
[tk,tk+1]

1/2

+
αiαjηiηjΛ

i,j
k

4ViVj

(
C
i,i
[tk,tk+1]

C
j,j
[tk,tk+1]

)1/2
+ εN

=: ρi,jA
i,j
k + Bi,jk + εN

for any 1 6 i < j 6 d. This expression shows that the deviation of the realized correlation
from fundamentals is a linear map. The numerator of the multiplicative part Ai,jk does
not depend on the off-diagonal terms of H while it is the case for the additive part Bi,jk .

3.2. Numerical Simulations. In this part, we conduct several numerical experiments
in order to illustrate the influence of trading activity on the structure of the covariance/correlation
matrix of asset returns.

We consider the example of Section 2.3 by choosing ρ1,2 = 60%, ρ1,3 = 30% and
ρ2,3 = 5%. For simplicity, we suppose that E0 is a centered Gaussian random vector with
a covariance matrix Γ that is given by:

Γ := λ2.

 1 0.2 −0.1

0.2 1 0.3

−0.1 0.3 1

 ,

where λ = 10, 000 share. We fix a time step δt = 10−2 day (∼ 4 min), set tk+1 − tk = δt,
and estimate

(
C
i,j
[tk,tk+δt]

)
16i6j63

16k6M−1

and
(
R
i,j
[tk,tk+δt]

)
16i<j63

16k6M−1

by generating a sample

of N = 10, 000 observations using the numerical method of Section 2.3.
Figures 2(a)-2(d) show that the observed covariance and correlation matrices are sig-

nificantly deviated from fundamentals and especially at the beginning of the trading day.
Figures 2(b)-2(d) also illustrates the sensitivity of the deviation relative to the change of
the standard deviation of initial inventories: as λ diminishes, the influence of trading
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FIGURE 2. Simulated examples of intraday covariance and correlation
matrices using (5.1).

activity is lower and the covariance and correlation matrices converge toward funda-
mentals.

On the other hand, we observe that the beginning of the trading period is dominated
by the dependence structure of initial inventories. This is due to the domination of the
additive terms (Bi,jk )16i<j63; in fact, given the relative high magnitude of denominator
terms, (Ai,jk )16i<j63 are very small when tk → 0. Furthermore, we note that all the ob-
served quantities converge toward fundamentals at the end of the trading period, which
is in line with (5.31).

3.3. Empirical Application. Now, we carry out an empirical analysis on a pool of
d = 176 stocks. The data consists of five-minute binned trades (δt = 5 min) and quotes
information from January 2014 to December 2014, extracted from the primary market of
each stock (NYSE or NASDAQ). We only focus on the beginning of the continuous trading
session removing 30 min after the open and the last 90 min before the close, in order to avoid
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the particularities of trading activity in these periods and target close strategies. Thus,
the number of days is N = 252 and the number of bins per day is M = 55. Days will be
labelled by l = 1, ...,N, bins by k = 1, ...,M, and for simplicity we note Ci,jk instead of
C
i,j
[tk−δt,tk]

for any 1 6 i, j 6 d.
Our goal is to empirically assess the the influence of trading activity on the intra-

day covariance matrix of asset returns, and then compare the obtained models with our
previous theoretical observations. Given our analysis in Sections 3.1 and 3.2, we expect
an excess in the observed covariance matrix of asset returns and especially at the begin-
ning of the trading period. Moreover, we expect the magnitude of this effect to be an
increasing function of the typical size of market orders as it is noticed in Figures 2(b) and
2(d).

Market Impact. Let us start by assessing the relationship between the intraday vari-
ance of asset returns and the intraday variance of net exchanged flows (Fi,ik )16i6d, that
is defined by:

F
i,i
k :=

1

N− 1

N∑
l=1

(
νik,l − ν̄

i
k

) (
νik,l − ν̄

i
k

)
for any 1 6 i 6 d and k = 1, ...,M; where νik,l is the net sum of exchanged volumes
between tk−δt and tk for stock i in day l, and ν̄ik = N−1

∑N
l=1 ν

i
k,l (i.e. ν̄ik is an estimate

of the expectation of νik,l regardless of the day). As a by-product, we obtain estimates
for the permanent market impact factors. Though ν does not represent exactly the same
quantity as the variable µ of Section 3.1, both variables are an indicator of market order
flows and for simplicity we shall use ν as a proxy for µ.
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FIGURE 3. Dependence structure between (Ci,ik )16k6M and (Fi,ik )16k6M.
Figure 3(a) displays the relationship between (Ci,ik )16k6M and
(Fi,ik )16k6M for GOOG. Figure 3(b) exhibits the histogram of corre-
lations denoted Corr (C, F).
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Figure 3(a) shows a strong positive correlation between (Ci,ik )16k6M and (Fi,ik )16k6M
for GOOG. Figure 3(b) shows that this is true for almost all the stocks and reinforces our
findings in Sections 3.1 and 3.2. Furthermore, as (5.29) suggests, we suppose a linear
relationship between (Ci,ik )16k6M and (Fi,ik )16k6M; thus for every 1 6 i 6 d we fit the
following regression:

(5.33) Ci,i = ε+ δt · Σ+ α2 · Fi,i

where ε is the error term (assumed normal), the coefficient Σ is related to the “funda-
mental” covariance matrix of asset returns and the square root of the coefficient α2 is
homogeneous to the market impact factor (cf. (5.29)). In Table 1 we show estimates of
α, Σ and the correlation between (Ci,ik )16k6M and (Fi,ik )16k6M (denoted Corr (C, F)) for
several examples. In particular, we obtain estimates for the permanent market impact α̂.

AAPL BMRN GOOG INTC

α̂ (bp) 0.8 8.43 2.5 0.01

α̂2 6.41× 10−11 7.11× 10−9 6.25× 10−8 1.79× 10−12

std. (4.15× 10−12) (3.98× 10−10) (3.17× 10−9) (1.58× 10−13)

p-value 0.01% 0.01% 0.01% 0.01%

Σ̂ 0.16 −0.01 0.15 5.5× 10−3

std. (0.05) (0.05) (0.49) (2× 10−4)

p-value 0.01% 60% 75% 2%

Corr (C, F) 90% 92% 94% 84%

TABLE 1. Estimates for α, Σ and the realized correlation between
(Ci,ik )16k6M and (Fi,ik )16k6M for Nasdaq stocks. For each estimate the
standard deviation (std.) is shown in parentheses and the p-value is given
in the third row. Numbers in bold are significant at a level of at least 99%.

The Typical Intraday Pattern. Next, we are interested in the intraday evolution of the
diagonal and off-diagonal terms of the covariance matrix of returns, and in the way this
evolution is affected when the typical size of trades diminishes. For that purpose, we
compute the intraday covariance matrix of returns for our pool of US stocks and we nor-
malize each term (Ci,jk )16k6M by its daily average, then we consider the median value of
diagonal terms and off-diagonal terms as a way of characterizing the evolution of a typi-
cal diagonal term and a typical off-diagonal term respectively. The impact of the relative
size of orders on the intraday patterns is assessed by conditioning our estimations.



132 5. A MEAN FIELD GAME OF PORTFOLIO TRADING

More exactly, we start by defining the matrix of trade imbalances for each stock n in
order to be able to compare the relative size of trades. Namely, for any n,k, l, we set:

wnk,l :=
νnk,l

mean
16l6N

∑
k |ν

n
k,l|

,

where meann∈A{xn} denotes the average of (xn) as n varies in A. This mean is an esti-
mate of the expectation of the sum of the absolute values of νnk,l over a day; it can be seen
as a renormalizing constant, enabling us to mix different stocks on Figure 4.

Next, we define the conditioned intraday covariance matrix
(
C
i,j
k (λ)

)
16i,j6d
16k6M

for every

λ > 0 as follows:

(5.34) C
i,j
k (λ) :=

1

#E
i,j
k (λ) − 1

∑
l∈Ei,jk (λ)

(
δSi,k,l − δS

i,j,k
λ

)(
δSj,k,l − δS

j,i,k
λ

)
,

where:

• the set Ei,jk (λ) corresponds to a conditioning: it contains only days for which this
5 min bins (indexed by k) for this pair of stocks (indexed by (i, j), note that we
can have i = j) is such that the renormalized net volumes are (in absolute value)
below λ. It is strictly defined as follows:

E
i,j
k (λ) :=

{
1 6 l 6 N : |wik,l| 6 λ and |w

j
k,l| 6 λ

}
;

• δSn,k,l is the price increment defined as for (5.26) and is computed from the
historic stock prices;
• δSi,j,kλ is the average price increment over selected days, given by: δSi,j,kλ =(∑

l∈Ei,jk (λ)
δSi,k,l

)
/
(

#E
i,j
k (λ)

)
;

• #E
i,j
k (λ) denotes the number of elements of Ei,jk (λ): the number of selected days.

Note that the stricter the conditioning (i.e. the smaller λ), the less days in the
selection, and hence the smaller #E

i,j
k (λ).

Here
(
C
i,j
k (λ)

)
16i,j6d
16k6M

represents the intraday covariance matrix of returns conditioned

on trade imbalances between −λ and λ. In all our examples, the coefficient λ is chosen
to have enough days in the selection (for obvious statistical significance reasons), i.e. so
that #E

i,j
k (λ)� 1 for any 1 6 i, j 6 d and 1 6 k 6M.

Now we define the median diagonal pattern Cdiag(λ) :=
(
C
diag
k (λ)

)
16k6M

and the

median off-diagonal pattern Coff(λ) :=
(
Coffk (λ)

)
16k6M as follows:

C
diag
k (λ) := median

16i6d

{
C
i,i
k (λ)/mean

16k6M

{
C
i,i
k (1)

}}
and

Coffk (λ) := median
16i<j6d

{
C
i,j
k (λ)/mean

16k6M

{
C
i,j
k (1)

}}
,
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(b) The median off-diagonal pattern

FIGURE 4. Plots of the median diagonal pattern Cdiag(λ) and the median
off-diagonal pattern Coff(λ) for diverse values of λ. The secondary axis
corresponds to the number of observations for each 5 minutes bin after
the conditioning.

for any k = 1, ...,M and λ > 0. Here the notation mediann∈A{xn} denotes the median
value of (xn) as n varies in A. One should note that the choice of the normalization con-
stant (i.e. the mean over bins ofCi,jk (1)) will allow us to compare the different curves with
respect to the reference case, i.e. without conditioning. In fact, it turns out that λ = 1 re-
moves all conditionings: 1 is above the maximum value of our renormalized flows. More-
over, we set #E

diag
k (λ) := median

16i6d

{
#E

i,i
k (λ)

}
and #Eoffk (λ) := median

16i<j6d

{
#E

i,j
k (λ)

}
.

We take medians instead of means to have robust estimates of the expectations. We
do not want our estimates to be polluted by few days of potential erratic market data,
that could for instance be due to trading interruptions.

Figures 4(a) and 4(b) displays representations of Cdiag(λ) and Coff(λ) for various
values of λ. Observe that Cdiag(1) and Coff(1) exhibits a pattern that is very similar to
our simulation in Figures 2(b) and 2(d), especially between the beginning of the trading
period and 13 : 00. Indeed, the observed quantities are high at the beginning of the
trading period, lower as the day progresses until it reaches a minimum around 13 : 00,
followed by a slight increase until market close. The general shape of these curves (left-
slanted smile) is well-known (see e.g. [47] and references therein).

Our core observation is that: given the absolute value of the net flows are small, this average
curve flattens out, even at the beginning of the day. At our knowledge, it is the first time that
this conditioning is mentioned, and it is perfectly in line with our simulated Figures 2(b)
and 2(d). This suggests the slopes of the “averaged volatility curves” comes essentially
from the days during which there is a large positive or negative imbalance of large orders,
that are “optimally” executed. We believe that this analysis should be completed by
using a larger data set.
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A Toy Model Calibration. Now, we use historical data to fit our MFG model to some
examples of traded stocks. For that purpose, we use a very simple approach by reducing
as much as possible the number of parameters:

(S1) We suppose that E0 is a centered Gaussian random vector with a covariance
matrix Γ . Moreover, as suggested by (5.12) , we use Corr

(∑
k ν
i
k,
∑
k ν
j
k

)
as a

proxy for Corr
(
Ei0,Ej0

)
, and which is in turn estimated from data by using the

standard estimator :

1

N− 1

N∑
l=1

(∑
k

νik,l −
∑
k

νik,l

)(∑
k

ν
j
k,l −

∑
k

ν
j
k,l

)
,

where
∑
k ν
i
k,l = N

−1
∑
l

∑
k ν
i
k,l.

(S2) As suggested by Figures 4(a)-4(b) we choose

δtΣi,j = 0.2× mean
16k6M

{
C
i,j
k (1)

}
,

and we shift upward the simulated curves by δ = 0.3× mean
16k6M

{
C
i,j
k (1)

}
;

(S3) Finally, we fix the penalization parametersAi = A = 10, and choose ki := Vi/ηi,
γ, and Γi,i by minimizing the L2-error between the simulated curves and real
curves.
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FIGURE 5. Comparison between the simulated curves and the real curves
for two examples. Figure 5(a) corresponds to i ≡ j ≡ GOOG and Figure
5(b) corresponds to (i, j) ≡ (GOOG,AAPL).

Figures 5(a)-5(b) show illustrative examples by considering the two-stocks portfolio:
Asset 1 ≡ GOOG; Asset 2 ≡ AAPL. For that example, the parameters of our model are
presented in Table 2.
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Estimated using the regression (5.33) of Section 3.3 and (S1)-(S2)

Corr
(
E1

0,E2
0

)
= 20% , α1 = 2.5× 10−4, σ1 = 1.55,

ρ1,2 = 0.5%, α2 = 7.9× 10−5, σ2 = 0.43,

Calibrated on curves of Figure 5(a) and 5(b)

Γ1,1 = 3.6× 109, Γ2,2 = 2.02× 109, γ = 10−3,

k1 = 2× 107, k2 = 8× 108.

TABLE 2. The MFG model parameters for the two-stocks portfolio: Asset
1 ≡ GOOG; Asset 2 ≡ AAPL.

Here Γ1,2, α1, α2, σ1, σ2, ρ1,2 are estimated from data (cf. Table 1 and Figures 4(a)-4(b)),
while Γ1,1, Γ2,2, γ, k1, k2 are computed by minimizing the L2-error between the simulated
curves and real curves. Following this approach, one requires 2d + 1 parameters to fit a
portfolio of d stocks (i.e. d(d+ 1)/2 curves).





APPENDIX A

On the Fokker-Planck Equation

1. Estimates in the Kantorowich-Rubinstein Distance

Let V : [0, T ] × Q → R be a given bounded vector field, which is continuous in time
and Hölder continuous in space, and we consider the following Fokker-Planck equation:

(A.1)

{
∂tm− σ∆m− div(mV) = 0 in (0, T)×Q,

m(0) = m0 in Q;

and the following stochastic differential equation:

(A.2) dXt = V(t,Xt) dt+
√

2σdBt t ∈ (0, T ], X0 = Z0,

where (Bt) is a standard d-dimensional Brownian motion over some probability space
(Ω,F,P) and Z0 ∈ L1(Ω) is random and independent of (Bt). We suppose that all func-
tions are Zd-periodic and that system (A.1) is complemented with periodic boundary
conditions. Under these assumptions, there is a unique solution to (A.2) and the follow-
ing hold:

LEMMA A.1. If m0 = L(Z0) then, m(t) = L(Xt) is a weak solution to (A.1) and there
exists a constant CT > 0 such that, for any t, s ∈ [0, T ],

d1(m(t),m(s)) 6 CT (1 + ‖V‖∞)|t− s|1/2.

PROOF. The first assertion is a straightforward consequence of Itô’s formula. On the
other hand, for any 1-Lipschitz continuous function φ and any t > s, one has∫

Td
φ(x) d(m(t) −m(s))(x) 6 E|φ(Xt) − φ(Xs)| 6 E|Xt − Xs|

6 E
[∫t
s

|V(u,Xu)|du+
√

2σ|Bt − Bs|

]
6 ‖V‖∞(t− s) +√2σ(t− s).

�

2. Boundary Conditions and Uniqueness for Solutions

In this part, we show that problem (4.3a)-(4.3b) admits at most one weak solution in
a wide class of positive Radon measures. We believe that this result is well-known, and
we explain the proof for lack of precise reference.

Let us start by generalizing the notion of weak solution that is given in (4.3c). For
any m0 ∈ P([0, `]), ` > 0, we define a measure-valued weak solution to (4.3a)-(4.3b) to be a
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measure m on QT := [0, T ]× [0, `] of the type

dm = dm(t) dt,

withm(t) ∈ P̃([0, `]) (a sub-probability measure on [0, `]) for all t ∈ [0, T ], and t→ m(t,A)

measurable on [0, T ] for any Borel set A ⊂ [0, `]; such that

‖b‖2L2m :=

∫T
0

∫ `
0
|b|2 dm <∞

and

(A.3)
∫T

0

∫ `
0
(−∂tφ− σ∂xxφ+ b∂xφ) dm =

∫ `
0
φ(0, .) dm0

for every φ ∈ Ctest. We claim that such a solution is unique:

PROPOSITION A.2. There is at most one measure-valued weak solution to (4.3a)-(4.3b).

PROOF. Our approach is similar to [102, Section 3.1]. Let m be a measure-valued
weak solution to (4.3a)-(4.3b), and consider the following dual problem:

(A.4)



− ∂tw− σ∂xxw+ b∂xw = ψ in QT ,

w(t, 0) = ∂xw(t, `) = 0 in (0, T),

w(T , x) = 0 in Q,

where ψ, b ∈ C∞(QT ). Let w be a smooth solution to (A.4). Since w2 is smooth, we have:∫T
0

∫ `
0

{
−∂t(w

2) − σ∂xx(w
2) + b∂x(w

2)
}

dm =

∫ `
0
w2(0, .) dm0.

By (A.4) we thus have∫T
0

∫ `
0
w(ψ− b∂xw) dm− σ

∫T
0

∫ `
0
|∂xw|

2 dm+ σ

∫T
0

∫ `
0
bw∂xwdm =

∫ `
0
w2(0, .) dm0,

so that
σ

2

∫T
0

∫ `
0
|∂xw|

2 dm 6 C

(
‖w‖2∞

∫T
0

∫ `
0
|b− b|2 dm+ ‖ψ‖∞‖w‖∞

)
.

Hence, from the maximum principle:

(A.5)
∫T

0

∫ `
0
|∂xw|

2 dm 6 C‖ψ‖2∞
(

1 + ‖b− b‖2L2m
)

.

Now, let m1,m2 be two measure-valued weak solutions to (4.3a)-(4.3b). We know that

b ∈ L2
m1

(QT ) ∩ L2
m2

(QT ).

Thus, b ∈ L2
m(QT ), where m = m1 +m2. Let bε be a sequence of smooth functions con-

verging to b in L2
m(QT ). Since m is regular, note that such a sequence exists by density of

smooth functions in L2
m(QT ). The measures m1,m2 being positive, bε converges toward

b in L2
m1

(QT ) ∩ L2
m2

(QT ) as well. Now, let us consider wε to be a solution to the dual



problem that is obtained by replacing b by bε in (A.4). By usingwε as a test function, we
obtain

(A.6)
∫T

0

∫ `
0
ψd(m1−m2) =

∫T
0

∫ `
0
(b−bε)∂xw

ε dm2−

∫T
0

∫ `
0
(b−bε)∂xw

ε dm1 =: Iε2 − I
ε
1 .

By virtue of (A.5), we have for j = 1, 2:

‖∂xwε‖L2mj 6 C‖ψ‖∞
(

1 + ‖b− bε‖L2mj
)
6 C,

so that ∣∣Iεj ∣∣ 6 ‖∂xwε‖L2mj‖b− bε‖L2mj 6 C‖b− bε‖L2mj → 0, as ε→ 0.

Consequently, for any smooth function ψ∫T
0

∫ `
0
ψd(m1 −m2) = 0,

which entails m1 ≡ m2 and concludes the proof. �





Notation

Basic Notation.

– The usual inner product on Rd is denoted by x.y or < x,y >.
– For x ∈ Rd, |x| is the usual Euclidian norm.
– For any vector x := (xj)16j6d, we set x−i = (xj)j6=i.
– For any x,y ∈ R we set the following notation for the minimum and maximum,

respectively:

x∧ y :=
1

2
(x+ y− |x− y|) , and x∨ y :=

1

2
(x+ y+ |x− y|) .

– We denote by Td the d-dimensional torus.
– We denote by R+ the open set of positive real numbers.
– Unless otherwise stated, Q is considered to be a bounded domain in Rd, and Q̄

is the topological closure of Q.
– For any T > 0, QT is the cylinder (0, T)×Q; i.e. the set of points (t, x) such that
t ∈ (0, T) and x ∈ Q.

Probabilistic Notation.

– (Ω,F,F = (Ft)t>0,P) is a complete filtered probability space.
– L(X) denotes the law of X.
– E[X] is the expectation of X (with the respect to the “standard” probability mea-

sure P).
– EQ[X] is the expectation of Xwith respect to another probability measure Q.
– We use X ∼ µ to define a random variable X such that L(X) = µ.
–
〈
X2
〉

denotes the variance of X, and 〈X, Y〉 the covariance between X and Y, for
any two random variables X, Y.

Notation for Functions.

– We define the indicator function by:

1A :=

{
1 if x ∈ A
0 otherwise

– For any R-valued function w we define the positive and negative parts of w,
respectively:

w+ :=
1

2
(|w|+w), and w− :=

1

2
(|w|−w).
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– For any function w : R → Rd, ẇ and ẅ denote respectively the first and second
derivative of w.

– For any distribution µ, we denote by supp(µ) the support of µ.
• Function spaces

– (Ls(Q), ‖.‖s), 1 6 s < ∞, is the set of s-summable Lebesgue measurable
functions on Q.

– (L∞(Q), ‖.‖∞) is the set of a.e bounded, and Lebesgue measurable functions
on Q.

– Ls(Q)+ is the set of elements w ∈ Ls(Q) such that w(x) > 0 for a.e. x ∈ Q.
– Wk

s (Q), k ∈ N, 1 6 s 6 ∞, is the Sobolev space of functions having a weak
derivatives up to order k which are s-summable on Q.

– C(Q) is the space of continuous functions on Q.
– Cθ(Q) is the space of Hölder continuous functions with exponent θ on Q.
– Ck+θ(Q), k ∈ N, θ ∈ (0, 1], the set of functions having k-th order derivatives

which are θ-Hölder continuous.
– C∞c (Q) is the set of smooth functions whose support is a compact included

in Q.
– C0(Q) is the space of all continuous functions on Q that vanish at infinity

(C0(Q) = C(Q) when Q is compact).
– SR denotes the space of rapidly decreasing functions, and S ′R the space of

tempered distributions.
– C1,2(QT ) is the set of all functions on Q which are locally continuously dif-

ferentiable in t and twice locally continuously differentiable in x.
– W1,2

s (QT ) is the space of elements of Ls(Q) having weak derivatives of the
form ∂

j
t∂
k
x with 2j+ k 6 2, endowed with the following norm:

‖w‖
W

1,2
s

:=
∑

2j+k62

‖∂jt∂
k
xw‖Ls .

– Cθ/2,θ(Q̄T ), θ > 0, is the parabolic Hölder space, endowed with the norm
‖.‖Cθ/2,θ , as defined in [85].

– For any Lipschitz continuous function w, we may use the following nota-
tion:

‖w‖Lip := sup
x 6=y

|w(x) −w(y)|

|x− y|
.

– M(Q) is the space of R-valued Radon measures onQ, and P(Q), P̃(Q) are re-
spectively the convex subset of probability measures on Q, and the convex
subset of sub-probability measures: that is the set of positive radon mea-
sures µ, s.t. µ(Q) 6 1. The set P(Q) is endowed with the Kantorowich-
Rubinstein distance, that is given by:

d1(π,π ′) := inf
ν∈Π(π,π ′)

∫
Q×Q

|x− y|dν(x,y), ∀π,π ′ ∈ P(Q)

where Π(π,π ′) is the set of all probability measures on Ω × Ω whose first
marginal is π and whose second marginal is π ′.
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