, 2017-1836 du 30 décembre 2017 de financement de la sécurité sociale pour, 2018.

L. Gross, A Broken Trust: Lessons from the Vaccine-Autism Wars, PLoS Biol, vol.7, 2009.

, Toxicité de l'aluminium vaccinal : l'état des connaissances scientifiques

S. Riedel and . Edward, Jenner and the history of smallpox and vaccination, Proc. Bayl. Univ. Med. Cent, vol.18, pp.21-25, 2005.

V. E. Schijns, Immunological concepts of vaccine adjuvant activity, Curr. Opin. Immunol, vol.12, pp.456-463, 2000.

J. Chiron, P. Coursaget, B. P. Yvonnet, and . Maupas, Rev. Hist. Pharm, vol.86, pp.279-292, 1998.

M. Skwarczynski and I. Toth, Peptide-Based Subunit Nanovaccines, Curr. Drug Deliv, vol.8, pp.282-289, 2011.

N. Burdin, B. Guy, and P. Moingeon, Immunological Foundations to the Quest for New Vaccine Adjuvants, BioDrugs, vol.18, pp.79-93, 2004.

I. J. Lebish and R. M. Moraski, Mechanism of Immunomodulation by drugs, Toxicologic Pathology, vol.15, pp.338-345, 1987.

M. Lehtinen, I. Baussano, J. Paavonen, S. Vänskä, and J. Dillner, Eradication of human papillomavirus and elimination of HPV-related diseases -scientific basis for global public health policies, Expert Rev. Vaccines, vol.18, pp.153-160, 2019.

O. J. Finn, The dawn of vaccines for cancer prevention, Nat. Rev. Immunol, vol.18, pp.183-194, 2017.

Z. Hu, P. A. Ott, and C. J. Wu, Towards personalized, tumour-specific, therapeutic vaccines for cancer, Nat. Rev. Immunol, vol.18, pp.168-182, 2017.

P. K. Nagarathna, K. Reena, R. Sriram, and W. Johnson, Review on Immunomodulation and Immunomodulatory Activity of Some Herbal Plants, Int. J. Oharm. Sci. Rev. Res, vol.22, pp.223-230, 2013.

A. Pasquale, S. Preiss, F. Silva, and N. Garçon, Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines, vol.3, pp.320-343, 2015.

A. W. Purcell, J. Mccluskey, and J. Rossjohn, More than one reason to rethink the use of peptides in vaccine design, Nat. Rev. Drug Discov, vol.6, pp.404-414, 2007.

H. Marcotte and L. Hammarström, Passive Immunization, Mucosal Immunology, pp.1403-1434, 2015.

J. Owen, J. Punt, S. Stranford, L. Immunologie, J. Cours-de et al., , pp.7-141, 2013.

R. Clark and T. Kupper, Old Meets New: The Interaction Between Innate and Adaptive Immunity, J. Invest. Dermatol, vol.125, pp.629-637, 2005.

N. W. Palm and R. Medzhitov, Pattern recognition receptors and control of adaptive immunity, Immunol. Rev, vol.227, pp.221-233, 2009.

Z. Chang, Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th Anniversary of the 1908 Nobel Prize in Physiology or Medicine, Biol. Cell, vol.101, pp.709-721, 2009.

J. Kwak, M. Mamura, J. Barlic-dicen, and E. Grage-griebenow, Pathophysiological Roles of Cytokine-Chemokine Immune Network, J. Immunol. Res, pp.1-2, 2014.

C. H. Marzabadi and R. W. Franck, Small-Molecule Carbohydrate-Based Immunostimulants, Chem. -Eur. J, vol.23, pp.1728-1742, 2017.

I. Mellman and R. M. Steinman, Dendritic cells: specialized and regulated antigen processing machines, Cell, vol.106, pp.255-258, 2001.

M. Sioud, G. Skorstad, and A. Mobergslien, Saebøe-Larssen, S. A novel peptide carrier for efficient targeting of antigens and nucleic acids to dendritic cells, FASEB J, vol.27, pp.3272-3283, 2013.

, British Society for Immunology

R. V. Luckheeram, R. Zhou, A. D. Verma, B. Xia, and . Cd4-+-t-cells, Differentiation and Functions. Clin. Dev. Immunol, vol.2012, pp.1-12, 2012.

J. Charles-a-janeway, P. Travers, M. Walport, and M. J. Shlomchik, B-cell activation by armed helper T cells, 2001.

D. Ricklin, G. Hajishengallis, K. Yang, and J. D. Lambris, Complement: a key system for immune surveillance and homeostasis, Nat. Immunol, vol.11, pp.785-797, 2010.

J. Charles-a-janeway, P. Travers, M. Walport, and M. J. Shlomchik, The complement system and innate immunity, 2001.

G. Dranoff, Cytokines in cancer pathogenesis and cancer therapy, Nat. Rev. Cancer, vol.4, pp.11-22, 2004.

S. T. Hollmig, K. Ariizumi, and P. D. Cruz, Recognition of non-self-polysaccharides by C-type lectin receptors dectin-1 and dectin-2, Glycobiology, vol.19, pp.568-575, 2009.

I. Chlubnová, Chemo-Enzymatic synthesis of bioactive furanosyl containing glycoconjugates, 2010.

S. G. Reed, S. Bertholet, R. N. Coler, and M. Friede, New horizons in adjuvants for vaccine development, Trends Immunol, vol.30, pp.23-32, 2009.

T. B. Geijtenbeek, J. Den-dunnen, and S. I. Gringhuis, Pathogen recognition by DC-SIGN shapes adaptive immunity, Future Microbiol, vol.4, pp.879-890, 2009.

S. H. Kaufmann, The contribution of immunology to the rational design of novel antibacterial vaccines, Nat. Rev. Microbiol, vol.5, pp.491-504, 2007.

M. Yin and R. S. Ochs, Mechanism for the paradoxical inhibition and stimulation of calcineurin by the immunosuppresive drug tacrolimus (FK506), Arch. Biochem. Biophys, vol.419, pp.207-213, 2003.

J. E. Smith-garvin, G. A. Koretzky, and M. S. Jordan, Cell Activation. Annu. Rev. Immunol, vol.27, pp.591-619, 2009.

J. M. Stewart and B. G. Keselowsky, Combinatorial drug delivery approaches for immunomodulation, Adv. Drug Deliv. Rev, vol.114, pp.161-174, 2017.

Y. Jia, B. Akache, L. Deschatelets, H. Qian, R. Dudani et al., A comparison of the immune responses induced by antigens in three different archaeosome-based vaccine formulations, Int. J. Pharm, vol.561, pp.187-196, 2019.

C. M. Ribeiro and V. E. Schijns, Immunology of Vaccine Adjuvants, Vaccine Adjuvants, vol.626, pp.1-14, 2010.

V. E. Schinjs, Immunological concepts of vaccine adjuvant activity, Currunt Opinion in Immunology, vol.12, pp.456-463, 2000.

M. Ça?da?, A. D. Sezer, and S. Bucak, Liposomes as Potential Drug Carrier Systems for Drug Delivery. Application of Nanotechnology in Drug Delivery, 2014.

D. Felnerova, J. Viret, R. Glück, and C. Moser, Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs, Curr. Opin. Biotechnol, vol.15, pp.518-529, 2004.

N. Singh, S. Gautam, N. Kumari, R. Kaur, and M. Kaur, Virosomes as Novel drug delivery System: An Overview, vol.5, pp.47-55, 2017.

A. Koh and R. Gross, Molecular editing of sophorolipids by esterification of lipid moieties: Effects on interfacial properties at paraffin and synthetic crude oil-water interfaces, Colloids Surf. Physicochem. Eng. Asp, vol.507, pp.170-181, 2016.

N. Lourith and M. Kanlayavattanakul, Natural surfactants used in cosmetics: glycolipids, Int. J. Cosmet. Sci, vol.31, pp.255-261, 2009.

P. Jiménez-peñalver, M. Castillejos, A. Koh, R. Gross, A. Sánchez et al., Production and characterization of sophorolipids from stearic acid by solid-state fermentation, a cleaner alternative to chemical surfactants, J. Clean. Prod, vol.172, pp.2735-2747, 2018.

M. Zheng, M. Ahuja, D. Bhattacharya, T. Clement, J. Hayworth et al., Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500, Life Sci, vol.95, pp.108-117, 2014.

M. Schofield, T. Renga, and R. Gross, Modified sophorolipids for the inhibition of plant pathogens, pp.20130085067-1, 2012.

S. Sen, S. N. Borah, A. Bora, and S. Deka, Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb, Cell Factories, vol.16, p.95, 2017.

I. Mnif, S. Ellouz-chaabouni, D. G. Ghribi, and . Biosurfactants, Main Classes, Functional Properties and Related Potential Applications in Environmental Biotechnology, J. Polym. Environ, vol.26, pp.2192-2206, 2018.

M. Deb, N. Mandal, M. Sathiavelu, and S. Arunachalam, Application and future aspects of microbial biosurfactants -review, RJPBCS, vol.7, pp.2803-2812, 2016.

K. Furukawa, K. Ohkawa, Y. Yamauchi, K. Hamamura, and Y. Ohmi, Fine tuning of cell signals by glycosylation, J. Biochem, vol.151, pp.573-578, 2012.

S. Tsuji, J. Uehori, M. Matsumoto, Y. Suzuki, A. Matsuhisa et al., Human Intelectin Is a Novel Soluble Lectin That Recognizes Galactofuranose in Carbohydrate Chains of Bacterial Cell Wall, J. Biol. Chem, vol.276, pp.23456-23463, 2001.

C. M. Whitman, M. R. Bond, J. J. Kohler, and . Glycobiology, Comprehensive Natural Products, pp.175-224, 2010.

S. Deng, L. Bai, R. Reboulet, R. Matthew, D. Engler et al., A peptide-free, liposome-based oligosaccharide vaccine, adjuvanted with a natural killer T cell antigen, generates robust antibody responses in vivo, Chem Sci, vol.5, pp.1437-1441, 2014.

P. Stallforth, B. Lepenies, A. Adibekian, P. H. Seeberger, and . Carbohydrates, A Frontier in Medicinal Chemistry, J. Med. Chem, vol.52, pp.5561-5577, 2009.

A. Engering, M. Cella, D. Fluitsma, M. Brockhaus, E. Hoefsmit et al., The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells, Eur. J. Immunol, vol.27, pp.2417-2425, 1997.

M. Tan, A. Mommaas, J. Drijfhout, R. Jordens, J. Onderwater et al., Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells, Eur. J. Immunol, vol.27, pp.2426-2435, 1997.

W. Zhang, M. An, J. Xi, and H. Liu, Targeting CpG Adjuvant to Lymph Node via Dextran Conjugate Enhances Antitumor Immunotherapy, Bioconjug. Chem, vol.28, 1993.

X. Xu, Z. Jin, Y. Liu, H. Gong, Q. Sun et al., Carbohydrate-based adjuvants activate tumor-specific Th1 and CD8+ T-cell responses and reduce the immunosuppressive activity of MDSCs, Cancer Lett, pp.94-105, 2019.

B. Sedaghat, R. Stephenson, A. Giddam, S. Eskandari, S. Apte et al., Synthesis of Mannosylated Lipopeptides with Receptor Targeting Properties, Bioconjug. Chem, vol.27, pp.533-548, 2016.

J. Gao, P. Chen, Y. Singh, X. Zhang, Z. Szekely et al., Novel Monodisperse PEGtide Dendrons: Design, Fabrication, and Evaluation of Mannose Receptor-Mediated Macrophage Targeting, Bioconjug. Chem, vol.24, pp.1332-1344, 2013.

K. Descroix, V. Ferrieres, F. Jamois, J. Yvin, and D. Plusquellec, Recent Progress in the Field of beta-(1,3)-Glucans and New Applications, Mini-Rev. Med. Chem, vol.6, pp.1341-1349, 2006.

L. Legentil, F. Paris, C. Ballet, S. Trouvelot, X. Daire et al., Molecular Interactions of ?-(1?3)-Glucans with Their Receptors, Molecules, vol.20, pp.9745-9766, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01160140

G. Kogan, 1?3,1?6)-?-D-glucans of yeasts and fungi and their biological activity, Studies in Natural Products Chemistry, vol.23, pp.107-152, 2000.

G. D. Brown and S. Gordon, Fungal ?-Glucans and Mammalian Immunity, Immunity, vol.19, pp.311-315, 2003.

H. Tanaka, T. Kawai, Y. Adachi, S. Hanashima, Y. Yamagushi et al., Synthesis of ?(1,3) oligoglucans exhibiting a Dectin-1 binding affinity and their biological evaluation, Bioorg. Med. Chem, vol.20, pp.3898-3914, 2012.

J. Herre, Dectin-1 and its role in the recognition of ?-glucans by macrophages, Mol. Immunol, vol.40, pp.869-876, 2004.

G. C. Chan, .. Chan, W. K. Sze, D. M. , and .. , The effects of ?-glucan on human immune and cancer cells, J. Hematol. Oncol.J Hematol Oncol, vol.2, p.25, 2009.

D. Xiang, V. R. Sharma, C. E. Freter, and J. Yan, Anti-Tumor Monoclonal Antibodies in Conjunction with β-Glucans: A Novel Anti-Cancer Immunotherapy, Curr. Med. Chem, vol.19, pp.4298-4305, 2012.

B. Sylla, L. Legentil, S. Saraswat-ohri, A. Vashishta, R. Daniellou et al., ? 3)-glucans: Impact of Thio-Bridges on Immunostimulating Activities and the Development of Cancer Stem Cells, J. Med. Chem, vol.57, issue.1, pp.8280-8292, 2014.

P. J. Tacken, M. Ter-huurne, R. Torensma, and C. G. Figdor, Antibodies and carbohydrate ligands binding to DC-SIGN differentially modulate receptor trafficking: Antigen processing, Eur. J. Immunol, vol.42, 1989.

E. W. Adams, D. M. Ratner, P. H. Seeberger, and N. Hacohen, Carbohydrate-Mediated Targeting of Antigen to Dendritic Cells Leads to Enhanced Presentation of Antigen to T Cells, ChemBioChem, vol.9, pp.294-303, 2008.

J. Geurtsen, N. N. Driessen, and B. J. Appelmelk, Mannose-fucose recognition by DC-SIGN, Microbial Glycobiology, pp.673-695, 2010.

Y. C. Lee and R. T. Lee, Carbohydrate-Protein Interactions: Basis of Glycobiology, Acc. Chem. Res, vol.28, pp.321-327, 1995.

L. L. Kiessling and J. C. Grim, Glycopolymer probes of signal transduction, Chem. Soc. Rev, vol.42, p.4476, 2013.

H. Charville, J. Jin, C. W. Evans, M. A. Brimble, and D. E. Williams, The synthesis and lectinbinding properties of novel mannose-functionalised polymers, RSC Adv, vol.3, p.15435, 2013.

J. J. Lundquist and E. J. Toone, The Cluster Glycoside Effect, Chem. Rev, vol.102, pp.555-578, 2002.

R. T. Lee and Y. C. Lee, Affinity enhancement by multivalent lectin-carbohydrate interaction, Glycoconj. J, vol.17, pp.543-551, 2000.

I. Chlubnová, B. Králová, H. Dvo?áková, V. Spiwok, D. Fillip et al., Biocatalyzed synthesis of difuranosides and their ability to trigger production of TNF-?, Bioorg. Med. Chem. Lett, vol.26, pp.1550-1553, 2016.

A. Cavaliere, K. C. Probst, A. D. Westwell, and M. Slusarczyk, Fluorinated nucleosides as an important class of anticancer and antiviral agents, Future Med. Chem, vol.9, pp.1809-1833, 2017.

A. A. Berger, J. Völler, N. Budisa, and B. Koksch, Deciphering the Fluorine Code-The Many Hats Fluorine Wears in a Protein Environment, Acc. Chem. Res, vol.50, pp.2093-2103, 2017.

S. Purser, P. R. Moore, S. Swallow, and V. Gouverneur, Fluorine in medicinal chemistry, Chem Soc Rev, vol.37, pp.320-330, 2008.

G. Réthoré, T. Montier, T. Le-gall, P. Delépine, S. Cammas-marion et al., Archaeosomes based on synthetic tetraether-like lipids as novel versatile gene delivery systems, Chem Commun, vol.20, pp.2054-2056, 2007.

G. Shinde, P. Kumbhani, V. Gophane, G. Bangale, and K. S. Rajesh, Archaeosomes : modified potential liposomes (from archeal lipids), Indo American Journal of Pharmaceutical Research, vol.5, pp.3667-3673, 2015.

K. Haq, Y. Jia, and L. Krishnan, Archaeal lipid vaccine adjuvants for induction of cell-mediated immunity, Expert Rev. Vaccines, vol.15, pp.1557-1566, 2016.

L. Krishnan, L. Deschatelets, F. C. Stark, K. Gurnani, and G. D. Sprott, Archaeosome Adjuvant Overcomes Tolerance to Tumor-Associated Melanoma Antigens Inducing Protective CD8 + T Cell Responses, Clin. Dev. Immunol, vol.2010, pp.1-13, 2010.

L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, The Potent Adjuvant Activity of Archaeosomes Correlates to the Recruitment and Activation of Macrophages and Dendritic Cells In Vivo, J. Immunol, vol.166, pp.1885-1893, 2001.

F. Stark, B. Akache, A. Ponce, R. Dudani, L. Deschaetelets et al., Archaeal glycolipid adjuvanted vaccines induce strong influenzaspecific immune responses through direct immunization in young and aged mice or through passive maternal immunization, 2019.

P. Leão, H. Nakamura, M. Costa, A. Pereira, R. Martins et al., Biosynthesis-Assisted Structural Elucidation of the Bartolosides, Chlorinated Aromatic Glycolipids from Cyanobacteria, Angew. Chem. Int. Ed, vol.54, pp.11063-11067, 2015.

K. Bock, J. Arnarp, and J. Lonngren, The Preferred Conformation of Oligosaccharides Derived from the Complex-Type Carbohydrate Portions of Glycoproteins, Eur. J. Biochem, vol.129, pp.171-178, 1982.

Y. Marcus, The properties of solvents, 1998.

J. J. Reina and J. Rojo, Glycodendritic structures: tools to interact with DC-SIGN. Braz, J. Pharm. Sci, vol.49, pp.109-124, 2013.

, C: 166.2 (COPh), 165.5 (COPh), vol.105

, C-2), 78.1 (C-3), 70.8 (C-5), vol.84

, HRMS: Calcd for C36H46O12F2Na

. Rf=0, CHex/AcOEt, vol.6, issue.5

, HRMS: Calcd for C30H37O8FNa

. Rf=0, Chex:AcOEt, vol.9, issue.4

. Nmr-in-cdcl3,

, H: 8.10-8.03 (m, 4H, Harom), 7.62-7.56 (m, 2H, Harom), 7.49-7.43 (m, 4H, Harom), 5.57 (dq, J5,6a=16.9 Hz, J5,6b=5.0 Hz, 1H, H-5), 5.47-5.43 (m, 2H, pp.3-7

1. Hz, , pp.3-53

, C: 170.1 (CO), 165.6 (CO), vol.165, p.5

. Trifuranoside, , vol.67

, Trisaccharide 67 was obtained according to procedure A (table 13, entry 4) and procedure B (table 14, entry 2) and isolated as a white solid

, HRMS: Calcd for C82H79O23FNa

. Rf=0, CHex/AcOEt, vol.6, issue.6

Y. Yang, X. Zhang, and B. Yu, O-Glycosylation methods in the total synthesis of complex natural glycosides, Nat. Prod. Rep, vol.32, pp.1331-1355, 2015.

J. P. Yasomanee and A. V. Demchenko, Effect of Remote Picolinyl and Picoloyl Substituents on the Stereoselectivity of Chemical Glycosylation, J. Am. Chem. Soc, vol.134, 2012.

A. Imamura, H. Ando, H. Ishida, and M. Kiso, Di-tert-butylsilylene-Directed ?-Selective Synthesis of 4-Methylumbelliferyl T-Antigen, Org. Lett, vol.7, pp.4415-4418, 2005.

L. Bohé, Crich, D. 6.01 Synthesis of Glycosides. in Comprehensive Organic Synthesis, pp.1-33, 2014.

A. Demchenko, 1,2-cis O-Glycosylation: Methods, Strategies, Principles, Curr. Org. Chem, vol.7, pp.35-79, 2003.

W. Mackie and A. S. Perlin, Pyranose-Furanose and anomeric equilibria : Influence of Solvent and Partial methylation, Can. J. Chem, vol.44, pp.2039-2049, 1966.

R. K. Ness, H. G. Fletcher, and C. S. Hudson, 1,4-Anhydro-D-galactitol, J. Am. Chem. Soc, vol.73, pp.3742-3744, 1951.

N. B. D'accorso, I. M. Thiel, and M. Schüller, Proton and C-13 nuclear magnetic resonance spectra of some benzoylated aldohexoses, Carbohydr. Res, vol.124, pp.177-184, 1983.

R. E. Lee, K. Mikusova, P. J. Brennan, and G. S. Besra, Synthesis of the Arabinose Donor .beta.-D-Arabinofuranosyl-1-monophosphoryldecaprenol, Development of a Basic Arabinosyl-Transferase Assay, and Identification of Ethambutol as an Arabinosyl Transferase Inhibitor, J. Am. Chem. Soc, vol.117, pp.11829-11832, 1995.

L. Baldoni and C. Marino, Facile Synthesis of per-O-tert-Butyldimethylsilyl-?-d-galactofuranose and Efficient Glycosylation via the Galactofuranosyl Iodide, J. Org. Chem, vol.74, 1994.

R. Dureau, L. Legentil, R. Daniellou, and V. Ferrières, Two-Step Synthesis of per-O-acetylfuranoses: Optimization and Rationalization, J. Org. Chem, vol.77, pp.1301-1307, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00904715

O. Varela, C. Marino, and R. M. De-lederkremer, Synthesis of p-nitrophenyl ?-d-galactofuranoside. A convenient substrate for ?-galactofuranosidase, Carbohydr. Res, vol.155, pp.247-251, 1986.

R. M. De-lederkremer and M. I. Litter, The formation of an unsaturated lactone derivative on benzoylation of D-galactonolactone, Carbohydr. Res, vol.20, pp.442-444, 1971.

O. J. Varela, A. F. Cirelli, and R. M. De-lenderkremer, Synthesis of 3,6-dideoxy L-arabino-hexose (ascarylose), Carbohydr. Res, vol.70, pp.27-35, 1979.

J. W. Green and E. Pacsu, Glycofuranosides and Thioglycofuranosides. I. A Method of Preparation and its Application to Galactose and Glucose, J. Am. Chem. Soc, vol.59, pp.1205-1210, 1937.

A. Imamura and T. Lowary, Chemical Synthesis of Furanose Glycosides, Trends Glycosci. Glycotechnol, vol.23, pp.134-152, 2011.

J. C. Mcauliffe and O. Hindsgaul, Use of Acyclic Glycosyl Donors for Furanoside Synthesis, J. Org. Chem, vol.62, pp.1234-1239, 1997.

G. C. Completo and T. L. Lowary, Synthesis of Galactofuranose-Containing Acceptor Substrates for Mycobacterial Galactofuranosyltransferases, J. Org. Chem, vol.73, pp.4513-4525, 2008.

S. K. Madhusudan and A. K. Misra, Facile exchange of glycosyl S,S-acetals to their O,O-acetals and preparation of glycofuranosides from acyclic glycosyl S,S-acetals under metal-free reaction conditions in the presence of 1,3-dibromo-5,5-dimethylhydantoin, Carbohydr. Res, vol.340, pp.497-502, 2005.

M. S. Timmer, B. L. Stocker, and P. H. Seeberger, De Novo Synthesis of Aceric Acid and an Aceric Acid Building Block, J. Org. Chem, vol.71, pp.8294-8297, 2006.

V. B. Krylov, D. Argunov, D. Vinnitskiy, S. Verkhnyatskaya, A. Gerbst et al., Pyranoside-into-Furanoside Rearrangement: New Reaction in Carbohydrate Chemistry and Its Application in Oligosaccharide Synthesis, Chem. -Eur. J, vol.20, pp.16516-16522, 2014.

V. B. Krylov, Z. Kaskova, D. Vinnitskiy, N. Ustyuzhanina, A. Grachev et al., Acid-promoted synthesis of per-O-sulfated fucooligosaccharides related to fucoidan fragments, Carbohydr. Res, vol.346, pp.540-550, 2011.

W. Klotz and R. R. Schmidt, AnomericO-alkylation, 11. AnomericO-Alkylation ofO-Unprotected Hexoses and Pentoses -Convenient Synthesis of Decyl, Benzyl, and Allyl Glycosides, Liebigs Ann. Chem, pp.683-690, 1993.

V. Ferrières, J. Bertho, and D. Plusquellec, A convenient synthesis of alkyl D-glycofuranosiduric acids and alkyl D-glycofuranosides from unprotected carbohydrates, Carbohydr. Res, vol.311, pp.25-35, 1998.

V. Ferrières, J. Bertho, and D. Plusquellec, A new synthesis of O-glycosides from totally Ounprotected glycosyl donors, Tetrahedron Lett, vol.36, pp.2749-2752, 1995.

P. Peltier, R. Euzen, R. Daniellou, C. Nugier-chauvin, and V. Ferrières, Recent knowledge and innovations related to hexofuranosides: structure, synthesis and applications, Carbohydr. Res, vol.343, pp.1897-1923, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00403381

J. Barbeau, L. Lemiègre, A. Quelen, V. Malard, H. Gao et al., Synthesis of a trimannosylated-equipped archaeal diether lipid for the development of novel glycoliposomes, Carbohydr. Res, vol.435, pp.142-148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398046

D. Lim, M. A. Brimble, R. Kowalczyk, A. J. Watson, and A. J. Fairbanks, Protecting-Group-Free One-Pot Synthesis of Glycoconjugates Directly from Reducing Sugars, Angew. Chem. Int. Ed, vol.53, pp.11907-11911, 2014.

M. Noguchi, T. Tanaka, H. Gyakushi, A. Kobayashi, and S. Shoda, Efficient Synthesis of Sugar Oxazolines from Unprotected N -Acetyl-2-amino Sugars by Using Chloroformamidinium Reagent in Water, J. Org. Chem, vol.74, pp.2210-2212, 2009.

R. Dureau, F. Robert-gangneux, J. Gangneux, C. Nugier-chauvin, L. Legentil et al., Synthetic UDP-furanoses inhibit the growth of the parasite Leishmania, Carbohydr. Res, vol.345, pp.1299-1305, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00660320

H. Byun, L. He, and R. Bittman, Cyclic Sulfites and Cyclic Sulfates in Organic Synthesis, Tetrahedron, vol.56, pp.7051-7091, 2000.

J. Fuentes, M. Angulo, and M. Angeles-pradera, Completely regioselective synthesis of 5-and 6-amino and fluoro-hexofuranoses via cyclic sulphates, Tetrahedron Lett, vol.39, pp.7149-7152, 1998.

I. Chlubnová, Chemo-Enzymatic synthesis of bioactive furanosyl containing glycoconjugates, 2010.

B. G. Davis, Recent developments in oligosaccharide synthesis, J. Chem. Soc, vol.14, pp.2137-2160, 2000.

P. J. Garegg, Thioglycosides as Glycosyl Donors in Oligosaccharide Synthesis, Advances in Carbohydrate Chemistry and Biochemistry, vol.52, pp.179-205, 1997.

H. M. Christensen, S. Oscarson, and H. H. Jensen, Common side reactions of the glycosyl donor in chemical glycosylation, Carbohydr. Res, vol.408, pp.51-95, 2015.

P. T. Jørgensen, E. B. Pedersen, and C. Nielsen, A Surprising Ring Opening Mechanism in the Formation of ?-D-Arabinofuranosyl Nucleosides from 5-Substituted Uracils, Synthesis, pp.1299-1306, 1992.

E. Larsen, T. Kofoed, and E. B. Pedersen, Synthesis of 2,3'-Anhydro-2'-deoxyuridines and 2',3'-Didehydro-2',3'-dideoxyuridines Using Polymer Supported Fluoride, Synthesis, pp.1121-1125, 1995.

Y. Cheng, A. Guo, and D. Guo, Recent Progress in Synthesis and Applications of Fluorinated Carbohydrates, Curr. Org. Chem, vol.14, pp.977-999, 2010.

B. S. Publisher, Fluorinated Carbohydrates, Advances in Organic Synthesis, vol.2, pp.381-429, 2012.

E. Durantie, C. Bucher, and R. Gilmour, Fluorine-Directed ?-Galactosylation: Chemical Glycosylation Development by Molecular Editing, Chem. -Eur. J, vol.18, pp.8208-8215, 2012.

A. Sadurní, G. Kehr, M. Ahlqvist, J. Wernevik, H. Sjögren et al., Fluorine-Directed Glycosylation Enables the Stereocontrolled Synthesis of Selective SGLT2 Inhibitors for Type II Diabetes, Chem. -Eur. J, vol.24, pp.2832-2836, 2018.

Y. Ito, S. Hagihara, M. A. Arai, I. Matsuo, and M. Takatani, Synthesis of fluorine substituted oligosaccharide analogues of monoglucosylated glycan chain, a proposed ligand of lectinchaperone calreticulin and calnexin, Glycoconj. J, vol.21, pp.257-266, 2004.

A. Morgenstern, T. R. Wilson, and M. E. Eberhart, Predicting Chemical Reactivity from the Charge Density through Gradient Bundle Analysis: Moving beyond Fukui Functions, J. Phys. Chem. A, vol.121, pp.4341-4351, 2017.

P. Fuentealba, P. Pérez, and R. Contreras, On the condensed Fukui function, J. Chem. Phys, vol.113, pp.2544-2551, 2000.

J. Mao, Atomic Charges in Molecules: A Classical Concept in Modern Computational Chemistry, PostDoc Journal, vol.2, pp.15-18, 2014.

C. Fonseca-guerra, J. Handgraaf, E. J. Baerends, and F. M. Bickelhaupt, Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis, J. Comput. Chem, vol.25, pp.189-210, 2004.

K. Yu and J. N. Kizhakkedathu, Synthesis of Functional Polymer Brushes Containing Carbohydrate Residues in the Pyranose Form and Their Specific and Nonspecific Interactions with Proteins, Biomacromolecules, vol.11, pp.3073-3085, 2010.

L. Legentil, Y. Cabezas, O. Tasseau, C. Tellier, F. Daligault et al., Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms, J. Org. Chem, vol.82, pp.7114-7122, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578548

V. Ferrières, M. Roussel, M. Gelin, and D. Plusquellec, A new Approach to a disaccharidic hapten containing a galactofuranosyl entity, J. Carbohydr. Chem, vol.20, pp.855-865, 2001.

T. Benvegnu and L. Lemiegre, Cammas-Marion, S. New Generation of Liposomes Called Archaeosomes Based on Natural or Synthetic Archaeal Lipids as Innovative Formulations for Drug Delivery. Recent Pat, Drug Deliv. Formul, vol.3, pp.206-220, 2009.

T. Benvegnu, M. Brard, and D. Plusquellec, Archaeabacteria bipolar lipid analogues: structure, synthesis and lyotropic properties, Curr. Opin. Colloid Interface Sci, vol.8, pp.469-479, 2004.

K. Haq, Y. Jia, and L. Krishnan, Archaeal lipid vaccine adjuvants for induction of cell-mediated immunity, Expert Rev. Vaccines, vol.15, pp.1557-1566, 2016.

D. L. Tolson, R. K. Latta, G. B. Patel, and G. D. Sprott, Uptake of Archaeobacterial Liposomes and Conventional Liposomes by Phagocytic Cells, J. Liposome Res, vol.6, pp.755-776, 1996.

D. Sprott, G. Patel, and L. Krishnan, Archaeobacterial Ether Lipid Liposomes as Vaccine Adjuvants, Methods Enzymol, vol.373, 2003.

M. De-rosa and A. Gambacorta, The lipids of archaebacteria, Prog. Lipid Res, vol.27, pp.153-175, 1988.

M. F. Siliakus, J. Van-der-oost, and S. W. Kengen, Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure, Extremophiles, vol.21, pp.651-670, 2017.

M. De-rosa, A. Gambacorta, and A. Gliozzi, Structure, biosynthesis, and physicochemical properties of archaebacterial lipids, Microbiol. Rev, vol.50, pp.70-80, 1986.

P. B. Comita, R. B. Gagosian, H. Pang, and C. E. Costello, Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii, J. Biol. Chem, vol.259, pp.15234-15241, 1984.

G. D. Sprott, B. J. Agnew, and G. B. Patel, Structural features of ether lipids in the archaeobacterial thermophiles Pyrococcus furiosus , Methanopyrus kandleri , Methanothermus fervidus , and Sulfolobus acidocaldarius, Can. J. Microbiol, vol.43, pp.467-476, 1997.

T. A. Langworthy, Long-chain diglycerol tetraethers from Thermoplasma acidophilum, Biochim. Biophys. Acta BBA -Lipids Lipid Metab, vol.487, pp.37-50, 1977.

J. S. Damsté, S. Schouten, E. C. Hopmans, A. C. Van-duin, and J. A. Geenevasen, Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota, J. Lipid Res, vol.43, pp.1641-1651, 2002.

P. J. Quinn, Lipid-lipid interactions in bilayer membranes: Married couples and casual liaisons, Prog. Lipid Res, vol.51, pp.179-198, 2012.

A. Caforio and A. J. Driessen, Archaeal phospholipids: Structural properties and biosynthesis, Biochim. Biophys. Acta BBA -Mol. Cell Biol. Lipids, vol.1862, pp.1325-1339, 2017.

W. Shinoda, K. Shinoda, T. Baba, and M. Mikami, Molecular Dynamics Study of Bipolar Tetraether Lipid Membranes, Biophys. J, vol.89, pp.3195-3202, 2005.

G. Shinde, P. Kumbhani, V. Gophane, G. Bangale, and K. S. Rajesh, Archaeosomes : modified potential liposomes (from archeal lipids), Indo American Journal of Pharmaceutical Research, vol.5, pp.3667-3673, 2015.

W. Febo-ayala, S. L. Morera-félix, C. A. Hrycyna, and D. H. Thompson, Functional Reconstitution of the Integral Membrane Enzyme, Isoprenylcysteine Carboxyl Methyltransferase, Synthetic Bolalipid Membrane Vesicles, vol.45, pp.14683-14694, 2006.

W. Shinoda, M. Mikami, T. Baba, and M. Hato, Molecular Dynamics Study on the Effect of Chain Branching on the Physical Properties of Lipid Bilayers: Structural Stability, J. Phys. Chem. B, vol.107, pp.14030-14035, 2003.

M. De-rosa, E. Esposito, A. Gambacorta, B. Nicolaus, and J. D. Bu'lock, Effects of temperature on ether lipid composition of Caldariella acidophila, Phytochemistry, vol.19, pp.827-831, 1980.

J. L. Gabriel and P. L. Chong, Molecular modeling of archaebacterial bipolar tetraether lipid membranes, Chem. Phys. Lipids, vol.105, pp.193-200, 2000.

M. Brard, W. Richter, T. Benvegnu, and D. Plusquellec, Synthesis and Supramolecular Assemblies of Bipolar Archaeal Glycolipid Analogues Containing a cis -1,3-Disubstituted Cyclopentane Ring, J. Am. Chem. Soc, vol.126, pp.10003-10012, 2004.

J. L. Van-de-vossenberg, A. J. Driessen, and W. N. Konings, The essence of being extremophilic: the role of the unique archaeal membrane lipids, Extremophiles, vol.2, pp.163-170, 1998.

D. Nichols, M. Miller, N. Davies, A. Goodchild, M. Raftery et al., Cold Adaptation in the Antarctic Archaeon Methanococcoides burtonii Involves Membrane Lipid Unsaturation, J. Bacteriol, vol.186, pp.8508-8515, 2004.

P. M. Oger and A. Cario, Adaptation of the membrane in Archaea, Biophys. Chem, vol.183, pp.42-56, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02122759

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol, vol.37, pp.911-917, 1959.

H. F. Sturt, R. E. Summons, K. Smith, M. Elvert, and K. Hinrichs, Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology, Rapid Commun. Mass Spectrom, vol.18, pp.617-628, 2004.

C. Huguet, A. Schimmelmann, R. Thunell, L. Lourens, J. Sinninghe-damsté et al., A study of the TEX 86 paleothermometer in the water column and sediments of the, A high resolution record, vol.22, p.3003, 2007.

C. Turich, K. Freeman, M. Bruns, M. Conte, A. Jones et al., Lipids of marine Archaea: Patterns and provenance in the water-column and sediments, Geochim. Cosmochim. Acta, vol.71, pp.3272-3291, 2007.

C. Huguet, W. Martens-habbena, H. Urakawa, D. A. Stahl, and A. E. Ingalls, Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples: Extraction methods for quantitative analysis of GDGTs, Limnol. Oceanogr. Methods, vol.8, pp.127-145, 2010.

M. Hanif, Y. Atsuta, K. Fujie, and H. Daimon, Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge, Int. J. Mol. Sci, vol.13, pp.3022-3037, 2012.

Y. Koga and H. Morii, Special methods for the analysis of ether lipid structure and metabolism in archaea, Anal. Biochem, vol.348, pp.1-14, 2006.

T. Yokoi, K. Isobe, T. Yoshimura, and H. Hemmi, Archaeal Phospholipid Biosynthetic Pathway Reconstructed in Escherichia coli, Archaea, vol.2012, pp.1-9, 2012.

K. Isobe, T. Ogawa, K. Hirose, T. Yokoi, T. Yoshimura et al., Geranylgeranyl Reductase and Ferredoxin from Methanosarcina acetivorans are required for the synthesis of fully reduced Archaeal membrane lipid in Escherichia coli cells, J. Bacteriol, vol.196, pp.417-423, 2014.

H. Minamikawa and M. Hato, Phase Behavior of Synthetic Phytanyl-Chained Glycolipid/Water Systems, Langmuir, vol.13, pp.2564-2571, 1997.

C. Ballet, Vectorisation de galactosylcéramides par des archaeosomes et des liposomes en immunothérapie du cancer, Rennes, vol.1, 2014.

T. Eguchi, T. Terachi, and K. Kakinuma, The first synthesis of an archaebacterial 36-membered macrocyclic diether lipid, J. Chem. Soc. Chem. Commun, p.137, 1994.

C. Lainé, E. Mornet, L. Lemiègre, T. Montier, S. Cammas-marion et al., Folate-Equipped Pegylated Archaeal Lipid Derivatives: Synthesis and Transfection Properties, Chem. -Eur. J, vol.14, pp.8330-8340, 2008.

L. C. Stewart and M. Kates, Synthesis and characterization of deuterium-labelled dihexadecylglycerol and diphytanylglycerol phospholipids, Chem. Phys. Lipids, vol.50, pp.23-42, 1989.

A. Jacquemet, L. Lemiègre, O. Lambert, and T. Benvegnu, How the Stereochemistry of a Central Cyclopentyl Ring Influences the Self-Assembling Properties of Archaeal Lipid Analogues: Synthesis and CryoTEM Observations, J. Org. Chem, vol.76, pp.9738-9747, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00753605

J. Cui, S. Kawatake, Y. Umegawa, S. Lethu, M. Yamagami et al., Stereoselective synthesis of the head group of archaeal phospholipid PGP-Me to investigate bacteriorhodopsin-lipid interactions, Org. Biomol. Chem, vol.13, pp.10279-10284, 2015.

M. Yamagami, H. Tsuchikawa, J. Cui, . Umegawa, Y. Umegawa et al., Average Conformation of Branched Chain Lipid PGP-Me That Accounts for the Thermal Stability and High-Salinity Resistance of Archaeal Membranes, Biochemistry (Mosc.), vol.58, pp.3869-3879, 2019.

D. Thompson, K. Wong, R. Humphry-baker, J. Wheeler, J. Kim et al., Tetraether bolaform amphiphiles as models of archaebacterial membrane lipids: Raman spectroscopy, phosphorus-31 NMR, x-ray scattering, and electron microscopy, J. Am. Chem. Soc, vol.114, pp.9035-9042, 1992.

F. M. Menger, X. Y. Chen, S. Brocchini, H. P. Hopkins, and D. Hamilton, Synthesis and thermotropic properties of macrocyclic lipids related to archaebacterial membranes, J. Am. Chem. Soc, vol.115, pp.6600-6608, 1993.

T. Eguchi, K. Arakawa, T. Terachi, and K. Kakinuma, Total Synthesis of Archaeal 36-Membered Macrocyclic Diether Lipid, J. Org. Chem, vol.62, pp.1924-1933, 1997.

T. Eguchi, K. Ibaragi, and K. Kakinuma, Total Synthesis of Archaeal 72-Membered Macrocyclic Tetraether Lipids, J. Org. Chem, vol.63, pp.2689-2698, 1998.

J. Barbeau, L. Lemiègre, A. Quelen, V. Malard, H. Gao et al., Synthesis of a trimannosylated-equipped archaeal diether lipid for the development of novel glycoliposomes, Carbohydr. Res, vol.435, pp.142-148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398046

G. D. Sprott, D. L. Tolson, and G. B. Patel, Archaeosomes as novel antigen delivery systems, FEMS Microbiol. Lett, vol.154, pp.17-22, 1997.

L. Krishnan and G. Dennis-sprott, Archaeosomes as Self-adjuvanting Delivery Systems for Cancer Vaccines *, J. Drug Target, vol.11, pp.515-524, 2003.

G. D. Sprott, A. Yeung, C. J. Dicaire, S. H. Yu, and D. M. Whitfield, Synthetic Archaeosome Vaccines Containing Triglycosylarchaeols Can Provide Additive and Long-Lasting Immune Responses That Are Enhanced by Archaetidylserine, Archaea, vol.2012, pp.1-9, 2012.

Y. Jia, M. Mc-cluskie, D. Zhang, R. Monette, U. Iqbal et al., In vitro evaluation of archaeosome vehicles for transdermal vaccine delivery, J. Liposome Res, vol.28, pp.305-314, 2018.

G. D. Sprott, C. J. Dicaire, J. Côté, and D. M. Whitfield, Adjuvant potential of archaeal synthetic glycolipid mimetics critically depends on the glyco head group structure, Glycobiology, vol.18, pp.559-565, 2008.

B. Akache, F. Stark, Y. Jia, L. Deschatelets, R. Dudani et al., Sulfated archaeol glycolipids: Comparison with other immunological adjuvants in mice, PLOS ONE, vol.13, p.208067, 2018.

Y. Jia, B. Akache, L. Deschatelets, H. Qian, R. Dudani et al., A comparison of the immune responses induced by antigens in three different archaeosome-based vaccine formulations, Int. J. Pharm, vol.561, pp.187-196, 2019.

L. H. Higa, P. Schilrreff, A. Perez, M. Iriarte, D. Roncaglia et al., Ultradeformable archaeosomes as new topical adjuvants, Nanomedicine Nanotechnol. Biol. Med, vol.8, pp.1319-1328, 2012.

A. T. Caimi, F. Parra, M. De-farias, R. Portugal, A. Perez et al., Topical vaccination with super-stable ready to use nanovesicles, Colloids Surf. B Biointerfaces, vol.152, pp.114-123, 2017.

M. Brard, C. Lainé, G. Réthoré, I. Laurent, C. Neveu et al., Synthesis of Archaeal Bipolar Lipid Analogues: A Way to Versatile Drug/Gene Delivery Systems, J. Org. Chem, vol.72, pp.8267-8279, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00403987

K. Gutbrod, J. Romer, and P. Dörmann, Phytol metabolism in plants, Prog. Lipid Res, vol.74, pp.1-17, 2019.

S. Heck, N. Klein, H. Komp, C. Bohr, N. Hubner et al., Preparation of unsaturated palm oil fatty alcohols by the distillation and hydrogenation of unsaturated palm fatty acid methyl esters, p.9925673, 1998.

M. Zhao, J. Li, E. Mano, Z. Song, D. Tschaen et al., Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by TEMPO and Bleach, J. Org. Chem, vol.64, pp.2564-2566, 1999.

, Couplage de la plateforme à la partie lipidique la réaction, suivi d'un léger excès de triéthylamine. A la suite d'une purification sur colonne de gel de silice, le composé 121 a été isolé avec un rendement de 10%, inférieur à celui obtenu avec le couple DCC/DMAP. Cette voie de synthèse étant plus compliquée à mettre en oeuvre, elle n'a pas été optimisée et nous avons préféré suivre la première approche, Schéma, vol.50

O. La-chaîne-courte, Enfin, la présence de la plateforme est confirmée par les signaux des protons aromatiques entre 7,28 et 6,84 ppm, par les différents signaux déblindés des protons en alpha d'atomes d'oxygène (triplet à 3,55 ppm et massif entre 3,50 et 3,40 ppm) ainsi que par le quintuplet à 1,81 ppm. Ce composé a été obtenu avec un rendement modéré de 37%, qui s'explique en partie par la formation du co-produit 139 (schéma 52). L'excès de motif saccharidique a pu être récupéré sans aucune dégradation ainsi que le composé 121 qui n'a pas réagi, Les chaînes lipidiques sont également facilement repérables avec les multiplets blindés entre 1,54 et 0,80 ppm, vol.52

, Suite à la validation de la réaction click avec le dérivé mannopyranosidique, nous avons effectué, en suivant le même protocole, la cycloaddition à partir des dérivés galactofuranosidiques 15 et 16

, Avec le composé non fluoré 15, nous avons pu obtenir 8,3 mg de produit 26 (figure 64) ce qui

, 7 ainsi que par l'exploitation de spectres RMN. Ainsi, le singulet du triazole à 8,00 ppm intègre pour 3 protons. Le cycle aromatique est également facilement repérable avec les deux multiplets entre 7,30 et 6,80 ppm. Le spectre COSY a permis ainsi de facilement identifier chaque pic du sucre. Les autres déplacements chimiques de la plateforme lipidique possèdent des déplacements similaires à ceux obtenus pour le composé 121, De la même manière que pour les composés 139 et 140, nous avons pu confirmer l'obtention du composé 26 par MS avec un [M+Na] + de 1760, vol.64

, et à partir des mêmes réactifs a été menée avec le dérivé galactofuranosidique 16, fluoré en position 6. Cependant, la réaction n'a pas été concluante et la formation d'aucun composé fluoré n'a pu être observée. Le saccharide 16 a été isolé après purification du milieu réactionnel. L'abscence de réaction pourrait être dûe à la présence du fluor, La même réaction click, dans les mêmes conditions de temps, de température

, Un second essai a été mené, cette fois-ci en laissant la réaction 24 heures à 50 °C. Après purification, le composé 141 tri-antenné (figure 65) a été isolé avec un rendement de 16%. Comme lors de la synthèse du produit mannosylé 140, 6% de co-produit di-substitué 142 (figure 65) a été isolé, p.4

, 3 mmol) in dry pyridine (50 mL) was added trityl chloride (17.3 g, 60.5 mmol). The reaction mixture was left 2 h at 20 °C. Ice and Et2O (100 mL) were reduced pressure, vol.40

, HRMS: Calcd for C26H22O2Na

. Nmr-in-cdcl3,

, H: 7.57-7.51 (m, 6H, Harom), 7.36-7.30 (m, 6H, Harom), 7.2-7.25 (m, 5H, Harom)

, HRMS: Calcd for C33H34O6Na

, CHex:AcOEt, vol.6, issue.4

. Nmr-in-cdcl3,

, H: 7.53-7.48 (m, 6H, Harom), 7.36-7.21 (m, 11H, Harom), vol.6, pp.92-98

, 3-hydroxypropyl)-[(p-trityloxymethyl)phenyl]-pentaerythritol (136)

M. ). , At 0 °C, NaOH (0.9 mL, 3 M) and H2O2 (0.2 mL, 10 M) were washed with brine (15 mL), dried over MgSO4, and concentrated under reduced pressure, Flash chromatography (CHex:AcOEt:MeOH gradient from, vol.50

. Nmr-in-cdcl3,

, H: 7.53-7.48 (m, 6H, Harom), 7.34-7.21 (m, 11H, Harom), vol.6, p.3

, CH2O), 67.6 (CH2OPh), 65.6 (CH2OTr), 61.4 (3 CH2O), 44.8 (Cq), CH2O), vol.70

, °C, water was slowly added. The mixture was extracted with AcOEt (4 x 10 mL). The combined organic layers were washed with water (3 x 10 mL) and brine (10 mL)

, H: 7.54-7.48 (m, 6H, Harom), 7.36-7.21 (m, 11H, Harom), 6.92-6.86 (m, 2H, Harom)

, 0 (CqPh3), CqCH), vol.87, issue.1

, 15-tetramethylhexadecyl)oxy)-1-hexadecyloxy propanoate)phenyl]-pentaerythritol (121), vol.7

, To a solution of acid 23 (140 mg, 0.23 mmol) in dry DCM (1.5 mL) was added DMAP (39 mg

, 5 mL) was slowly added to the mixture followed by 88 mg of DCC (0.42 mmol). The mixture was first stirred for 5 min at 0°C then 24 h at room temperature. DCM was added to the mixture which was then extracted with HCl 5% (2 x 10 mL), NaHCO3 (2x 10 mL) and brine (10mL). The combined organic layers were dried over MgSO4 and concentrated under reduced pressure, At 0°C, a solution of alcohol 22 (99 mg, 0.19 mmol) in dry DMC

, HRMS: Calcd for C30H42O8Na [M+Na] + 1145.5866; found 1145, vol.8568

, Rf= 0.1 (DCM:MeOH 9:1) NMR in CDCl3

, H: 7.29-7.24 (m, 2H, Harom), 6.91-6.86 (m, 2H, Harom), 5.13 (d, 4 J=3.9 Hz, vol.2

, CH2, 4 CH), 0.92-0.82 (m, 18H, vol.6, p.3

, CqCH), 79.2 (C-8), 69.6 (C-10), vol.80

, HRMS: Calcd for C82H146N6O23Na

, NMR in, vol.3, p.18

, 2H, Harom), 6.92-6.83 (m, 2H, Harom), 5.08 (d, 4 J=5.4 Hz, 2H, H-16, vol.4

, C-2), 70.0 (C-19), C-11), 67.6 (C-15), vol.70, pp.61-69

, CH), 32.6 (CH2), 32.3 (C-12'), 30.2 (CH), vol.36

, 29.8, 29.7 (CH2), vol.28

, HRMS: Calcd for C96H163N9O29Na

. Nmr-in-cdcl3,

, 115.1 (C6H4), vol.100

, 71.6 (C-18), vol.72, pp.69-77

C. , C-10), vol.64, pp.66-66

, MS: Calcd for C87H151N9O26Na

. Nmr-in-cdcl3,

, H: 8.00 (s, 3H, 3 H-7), 7.27-7.22 (m, 2H, Harom), 6.89-6.84 (m, 2H, Harom), 6.05 (d, J1,2=2.9 Hz, vol.3

, CH), 32.4, 30.2 (CH2), 30.1 (C-10), vol.63, pp.64-67

, MS: Calcd for C87H148F3N9O23Na

. Nmr-in-cdcl3,

. Hz, , vol.6

, 1 (C6H4), 95.1 (C-1), C: 171.4 (CO), 133.7, 130.9 (C6H4), 123.0 (C-7), vol.115, pp.69-77

, CH), 32.4, 30.3 (CH2), 30.2 (C-10), 69.6 (d, JC,F=19.8 Hz, C-5), 67.5 (C-13), vol.67, pp.68-72

, HRMS: Calcd for C78H136F2N6O19Na

. Nmr-in-cdcl3,

, H: 7.98 (s, 2H, 2 H-7), 7.27-7.21 (m, 2H, Harom), 6.89-6.83 (m, 2H, Harom), 6.05 (d, J1,2=3.0 Hz, vol.2

J. C. and F. , C-6), 81.1 (C-2), 79.2 (C-15), C-12), 68.3 (C-11), vol.114, pp.31-39

J. Barbeau, L. Lemiègre, A. Quelen, V. Malard, H. Gao et al., Synthesis of a trimannosylated-equipped archaeal diether lipid for the development of novel glycoliposomes, Carbohydr. Res, vol.435, pp.142-148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398046

P. Leão, H. Nakamura, M. Costa, A. Pereira, R. Martins et al., Biosynthesis-Assisted Structural Elucidation of the Bartolosides, Chlorinated Aromatic Glycolipids from Cyanobacteria, Angew. Chem. Int. Ed, vol.54, pp.11063-11067, 2015.

M. Mammen, S. Choi, and G. M. Whitesides, Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors, Angew. Chem. Int. Ed Engl, vol.37, pp.2754-2794, 1998.

Y. C. Lee and R. T. Lee, Carbohydrate-Protein Interactions: Basis of Glycobiology, Acc. Chem. Res, vol.28, pp.321-327, 1995.

C. A. Hunter and H. L. Anderson, What is Cooperativity?, Angew. Chem. Int. Ed, vol.48, pp.7488-7499, 2009.

Y. Lee, R. Townsend, M. Hardy, J. Lönngren, J. Arnap et al., Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin. Dependence on fine structural features, J. Biol. Chem, vol.258, pp.199-202, 1983.

F. Sansone and A. Casnati, Multivalent glycocalixarenes for recognition of biological macromolecules: glycocalyx mimics capable of multitasking, Chem. Soc. Rev, vol.42, p.4623, 2013.

G. Ercolani, L. Schiaffino, C. Allosteric, and I. Cooperativity, Angew. Chem. Int. Ed, vol.50, pp.1762-1768, 2011.

P. I. Kitov and D. R. Bundle, On the Nature of the Multivalency Effect: A Thermodynamic Model, J. Am. Chem. Soc, vol.125, pp.16271-16284, 2003.

S. Bhatia, M. Dimde, and R. Haag, Multivalent glycoconjugates as vaccines and potential drug candidates, Med Chem Commun, vol.5, pp.862-878, 2014.

A. Berzi, J. Reina, R. Ottria, I. Sutkeviciute, P. Antonazzo et al., A glycomimetic compound inhibits DC-SIGN-mediated HIV infection in cellular and cervical explant models, AIDS, vol.26, pp.127-137, 2012.

J. J. Reina and J. Rojo, Glycodendritic structures: tools to interact with DC-SIGN. Braz, J. Pharm. Sci, vol.49, pp.109-124, 2013.

S. Sattin, A. Daghetti, M. Thépaul, A. Berzi, A. Sànchez-navarro et al., Inhibition of DC-SIGN-Mediated HIV Infection by a Linear Trimannoside Mimic in a Tetravalent Presentation, ACS Chem. Biol, vol.5, pp.301-312, 2010.

O. Martínez-Ávila, K. Hijazi, M. Marradi, C. Clavel, C. Campion et al., Multivalent Systems to Block HIV-1 gp120 Binding to the Lectin DC-SIGN, vol.15, pp.9874-9888, 2009.

R. Amon, O. Grant, S. Leviatan-ben-arye, S. Makeneni, A. Nivedha et al., A combined computational-experimental approach to define the structural origin of antibody recognition of sialyl-Tn, a tumor-associated carbohydrate antigen, Sci. Rep, vol.8, p.10786, 2018.

T. Buskas, P. Thompson, and G. Boons, Immunotherapy for cancer: synthetic carbohydrate-based vaccines, Chem. Commun, p.5335, 2009.

G. Ragupathu, F. Koide, P. Livingston, Y. Cho, A. Endo et al., Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates, J. Am. Chem. Soc, vol.128, pp.2715-2725, 2006.

S. Slovin, G. Ragupathi, C. Fernandez, M. Diani, M. Jefferson et al., A polyvalent vaccine for high-risk prostate patients: 'are more antigens better?, Cancer Immunol. Immunother, vol.56, pp.1921-1930, 2007.

Q. Qin, Z. Yin, X. Wu, K. M. Haas, and X. Huang, Valency and density matter: Deciphering impacts of immunogen structures on immune responses against a tumor associated carbohydrate antigen using synthetic glycopolymers, Biomaterials, vol.101, pp.189-198, 2016.

A. Parry, N. Clemson, J. Ellis, S. Bernhard, B. Davis et al., Multicopy Multivalent' Glycopolymer-Stabilized Gold Nanoparticles as Potential Synthetic Cancer Vaccines, J. Am. Chem. Soc, vol.135, pp.9362-9365, 2013.

W. Lu, W. Du, V. Somovilla, G. Yu, D. Haksar et al., Enhanced Inhibition of Influenza A Virus Adhesion by Di-and Trivalent Hemagglutinin Inhibitors, J. Med. Chem, vol.62, pp.6398-6404, 2019.

H. M. Branderhorst, R. M. Liskamp, G. M. Visser, and R. J. Pieters, Strong inhibition of cholera toxin binding by galactose dendrimers, Chem. Commun, vol.47, pp.5043-5045, 2007.

S. A. Khan, A. Adak, R. Vasudeva-murthy, and R. Kikkeri, Recent advances in the metalloglycodendrimers and its potential applications, Inorganica Chim. Acta, vol.409, pp.26-33, 2014.

C. Pifferi, N. Berthet, and O. Renaudet, Cyclopeptide scaffolds in carbohydrate-based synthetic vaccines, Biomater. Sci, vol.5, pp.953-965, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01639570

I. Otsuka, B. Blanchard, R. Borsali, A. Imberty, and T. Kakuchi, Enhancement of Plant and Bacterial Lectin Binding Affinities by Three-Dimensional Organized Cluster Glycosides Constructed on Helical Poly(phenylacetylene) Backbones, ChemBioChem, vol.11, pp.2399-2408, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02114620

C. Fasting, C. Schalley, M. Weber, O. Seitz, S. Hecht et al., Multivalency as a Chemical Organization and Action Principle, Angew. Chem. Int. Ed, vol.51, pp.10472-10498, 2012.

D. Diwan, K. Shinkai, T. Tetsuka, B. Cao, H. Arai et al., Synthetic Assembly of Mannose Moieties Using Polymer Chemistry and the Biological Evaluation of Its Interaction towards Concanavalin A, Molecules, vol.22, p.157, 2017.

E. Kolomiets, E. M. Johansson, O. Renaudet, T. Darbre, and J. Reymond, Neoglycopeptide Dendrimer Libraries as a Source of Lectin Binding Ligands, Org. Lett, vol.9, pp.1465-1468, 2007.

C. Ganneau, C. Simenel, E. Emptas, T. Courtiol, Y. Coïc et al., Large-scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti-cancer vaccine candidate, Org. Biomol. Chem, vol.15, pp.114-123, 2017.

S. Deng, L. Bai, R. Reboulet, R. Matthew, D. Engler et al., A peptide-free, liposome-based oligosaccharide vaccine, adjuvanted with a natural killer T cell antigen, generates robust antibody responses in vivo, Chem Sci, vol.5, pp.1437-1441, 2014.

M. Brard, W. Richter, T. Benvegnu, and D. Plusquellec, Synthesis and Supramolecular Assemblies of Bipolar Archaeal Glycolipid Analogues Containing a cis -1,3-Disubstituted Cyclopentane Ring, J. Am. Chem. Soc, vol.126, pp.10003-10012, 2004.

P. Kitov, J. Sadowska, G. Mulvey, G. Armstrong, H. Ling et al., Shigalike toxins are neutralized by tailored multivalent carbohydrate ligands, Nature, vol.403, pp.669-672, 2000.

A. Imberty, Y. M. Chabre, and R. Roy, Glycomimetics and Glycodendrimers as High Affinity Microbial Anti-adhesins, Chem. Eur. J, vol.14, pp.7490-7499, 2008.

R. S. Gomes, G. A. Jardim, R. L. De-carvalho, M. H. Araujo, and E. N. Da-silva-júnior, Beyond copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition: Synthesis and mechanism insights, Tetrahedron, vol.75, pp.3697-3712, 2019.

V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes, Angew. Chem. Int. Ed Engl, vol.41, pp.2596-2599, 2002.

C. W. Tornøe, C. Christensen, and M. Meldal, Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides, J. Org. Chem, vol.67, pp.3057-3064, 2002.

S. Shankar, E. P. Damodaran, and B. Chemistry, Chemical Biology and Photophysics of Certain New Chromene-Triazole-Coumarin Triads as Fluorescent Inhibitors of CDK2 and CDK4 Induced Cancers, New J. Chem, vol.35, pp.13863-13872, 2019.

A. V. Lipeeva, D. Zakharov, L. Burova, T. Frolova, D. Baev et al., Synthesis and Antibacterial Activity of Coumarin-1, vol.2, p.2126, 2019.

B. T. Worrell, J. A. Malik, and V. V. Fokin, Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions, Science, vol.340, pp.457-460, 2013.

K. Bozorov, J. Zhao, and H. Aisa, A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview, Bioorg. Med. Chem, vol.27, pp.3511-3531, 2019.

V. Janganati, J. Ponder, M. Balasubramaniam, P. Bhat-nakshatri, E. Bar et al., MMB triazole analogs are potent NF-?B inhibitors and anti-cancer agents against both hematological and solid tumor cells, Eur. J. Med. Chem, vol.157, pp.562-581, 2018.

K. Lal, P. Yadav, A. Kumar, A. Kumar, and A. K. Paul, Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids, Bioorganic Chem, vol.77, pp.236-244, 2018.

R. Périon, V. Ferrières, M. Garcia-moreno, C. Ortiz-mellet, R. Duval et al., ,3-Triazoles and related glycoconjugates as new glycosidase inhibitors, Tetrahedron, vol.61, pp.9118-9128, 2005.

S. K. Avula, A. Khan, N. Rehman, M. Anwar, Z. Al-abri et al., Synthesis of 1H-1,2,3-triazole derivatives as new ?-glucosidase inhibitors and their molecular docking studies, Bioorganic Chem, vol.81, pp.98-106, 2018.

E. W. Adams, D. M. Ratner, P. H. Seeberger, and N. Hacohen, Carbohydrate-Mediated Targeting of Antigen to Dendritic Cells Leads to Enhanced Presentation of Antigen to T Cells, ChemBioChem, vol.9, pp.294-303, 2008.

M. François-heude, A. Méndez-ardoy, V. Cendret, P. Lafite, R. Daniellou et al., Synthesis of High-Mannose Oligosaccharide Analogues through Click Chemistry: True Functional Mimics of Their Natural Counterparts Against Lectins?, Chem. -Eur. J, vol.21, 1978.

L. Moignic, A. Malard, V. Benvegnu, T. Lemiègre, L. Berchel et al., Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells, J. Controlled Release, vol.278, pp.110-121, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01774851

K. Van-der-jeught, S. De-koker, L. Bialkowski, C. Heirman, P. Tjok-joe et al., Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety, ACS Nano, vol.12, pp.9815-9829, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01889829

F. Nisic and A. Bernardi, Stereoselective synthesis of N-galactofuranosyl amides, Carbohydr. Res, vol.346, pp.465-471, 2011.

A. ?timac and J. Kobe, Studies on the origin of stereoselectivity in the synthesis of 1,2-trans glycofuranosyl azides, Carbohydr. Res, vol.324, pp.149-160, 2000.

S. Espuelas, C. Thumann, B. Heurtault, F. Schuber, and B. Frisch, Influence of Ligand Valency on the Targeting of Immature Human Dendritic Cells by Mannosylated Liposomes, Bioconjug. Chem, vol.19, pp.2385-2393, 2008.

K. Bock, J. Arnarp, and J. Lonngren, The Preferred Conformation of Oligosaccharides Derived from the Complex-Type Carbohydrate Portions of Glycoproteins, Eur. J. Biochem, vol.129, pp.171-178, 1982.

Y. Marcus, The properties of solvents, 1998.

R. Rabie, M. M. Hammouda, and K. M. Elattar, Cesium carbonate as a mediated inorganic base in some organic transformations, Res. Chem. Intermed, vol.43, 1979.

T. Chappie, C. Helal, B. Kormos, J. Tuttle, and P. Verhoest, Imidazo-triazine derivates as PED10 inhibitors, 2014.

S. N. Shmakov, Y. Jia, and E. Pinkhassik, Selectively Initiated Ship-In-A-Bottle Assembly of Yolk-Shell Nanostructures, Chem. Mater, vol.26, pp.1126-1132, 2014.

I. A. Gorodetskaya, T. Choi, and R. H. Grubbs, Hyperbranched Macromolecules via Olefin Metathesis, J. Am. Chem. Soc, vol.129, pp.12672-12673, 2007.

D. Lim, M. A. Brimble, R. Kowalczyk, A. J. Watson, and A. J. Fairbanks, Protecting-Group-Free One-Pot Synthesis of Glycoconjugates Directly from Reducing Sugars, Angew. Chem. Int. Ed, vol.53, pp.11907-11911, 2014.

X. Creary, A. Anderson, C. Brophy, F. Crowell, and Z. Funk, Method for Assigning Structure of 1,2,3-Triazoles, J. Org. Chem, vol.77, pp.8756-8761, 2012.

M. Walter, M. Wiegand, and T. K. Lindhorst, Synthesis of Cluster Mannosides Carrying a Photolabile Diazirine Group, Eur. J. Org. Chem, pp.719-728, 2006.

, Rôles de DC-SIGN a) Migration des cellules dendritiques et interaction avec les LTs

, Ils permettent de phosphoryler plusieurs espèces et de stimuler l'augmentation de la concentration de calcium dans le cytoplasme des DCs, ce qui module leur activation. 12 Une fois dans les ganglions lymphatiques, les DCs présentent les antigènes aux LTs. C'est l'interaction de DC-SIGN avec ICAM-3 (une protéine présente à la surface des LTs) qui permet aux DCs de se lier aux LTs, L'interaction de DC-SIGN avec une glycoprotéine des cellules endothéliales induit la différenciation des DCs. 11 Cela entraine leur migration vers les ganglions lymphatiques afin d'initier la réponse immunitaire

, DC-SIGN une porte d'entrée pour les pathogènes

, Bien que les fonctions de DC-SIGN soient de détecter les pathogènes pour les internaliser au sein des DCs afin d'activer le système immunitaire

L. Vih, C'est d'ailleurs en étudiant comment le VIH infectait le corps humain que DC-SIGN a été découvert. 2 L'une des protéines de l'enveloppe virale du VIH (gp120) possède une grande affinité pour DC-SIGN, Le virus est donc internalisé dans les DCs et transporté jusqu'aux organes lymphoïdes où il est

, Il semble même que l'interaction avec DC-SIGN favorise la survie du VIH au sein des DCs, ce qui lui permet de contaminer les LTs même après plusieurs jours. 13 De nombreuses études sont menées afin de synthétiser des agonistes de la gp120 afin d, Contrairement aux autres virus, le VIH n'est pas dégradé au sein des DCs et DC-SIGN n'interagit pas avec l'ICAM-3 des LTs, vol.14, p.15

H. Hofmann, S. Pöhlmann, and . Dc-sign, Access Portal for Sweet Viral Killers, Cell Host Microbe, vol.10, pp.5-7, 2011.

E. Soilleux, DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin) and DC-SIGN-related DCSIGNR): Friend or foe?, Clin Sci, vol.4, pp.437-446, 2003.

W. I. Weis, M. E. Taylor, and K. Drickamer, The C-type lectin superfamily in the immune system, Immunol. Rev, vol.163, pp.19-34, 1998.

T. B. Geijtenbeek, J. Den-dunnen, and S. I. Gringhuis, Pathogen recognition by DC-SIGN shapes adaptive immunity, Future Microbiol, vol.4, pp.879-890, 2009.

M. B. Zeisel, H. Barth, C. Schuster, and T. F. Baumert, Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy, Front. Biosci. Landmark Ed, vol.14, pp.3274-3285, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00516944

C. P. Alvarez, F. Lasala, J. Carrillo, O. Muniz, A. Corbi et al., C-Type Lectins DC-SIGN and L-SIGN Mediate Cellular Entry by Ebola Virus in cis and in trans, J. Virol, vol.76, pp.6841-6844, 2002.

B. Tassaneetrithep, T. Burgess, A. Granelli-piperno, C. Trumpfheller, J. Finke et al., DC-SIGN (CD209) Mediates Dengue Virus Infection of Human Dendritic Cells, J. Exp. Med, vol.197, pp.823-829, 2003.

R. Celerino-da-silva, L. Segat, and S. Crovella, Role of DC-SIGN and L-SIGN receptors in HIV-1 vertical transmission, Hum. Immunol, vol.72, pp.305-311, 2011.

H. Feinberg, Structural Basis for Selective Recognition of Oligosaccharides by DC-SIGN and DC-SIGNR, Science, vol.294, pp.2163-2166, 2001.

A. Berzi, S. Ordanini, B. Joosten, D. Trabattoni, A. Cambi et al., Pseudo-Mannosylated DC-SIGN Ligands as Immunomodulants. Sci. Rep, vol.6, p.35373, 2016.

A. Engering, T. Geijtenbeek, S. Van-vliet, M. Wijers, E. Van-liemps et al., The Dendritic Cell-Specific Adhesion Receptor DC-SIGN Internalizes Antigen for Presentation to T Cells, J. Immunol, vol.168, pp.2118-2126, 2002.

E. Caparrós, P. Munoz, E. Sierra-filardi, D. Serrano-gomez, A. Puig-kröger et al., DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production, Blood, vol.107, pp.3950-3958, 2006.

S. Turville, J. Wilkinson, P. Cameron, J. Dable, and A. L. Cunningham, The role of dendritic cell Ctype lectin receptors in HIV pathogenesis, J. Leukoc. Biol, vol.74, pp.710-718, 2003.

A. Berzi, J. Reina, R. Ottria, I. Sutkeviciute, P. Antonazzo et al., A glycomimetic compound inhibits DC-SIGN-mediated HIV infection in cellular and cervical explant models, AIDS, vol.26, pp.127-137, 2012.

S. Sattin, A. Daghetti, M. Thépaut, A. Berzi, M. Sànchez-navarro et al., Inhibition of DC-SIGN-Mediated HIV Infection by a Linear Trimannoside Mimic in a Tetravalent Presentation, ACS Chem. Biol, vol.5, pp.301-312, 2010.

K. P. Van-gisbergen, C. A. Aarnoudse, G. A. Meijer, T. B. Geijtenbeek, and Y. Van-kooyk, Dendritic Cells Recognize Tumor-Specific Glycosylation of Carcinoembryonic Antigen on Colorectal Cancer Cells through Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin, Cancer Res, vol.65, pp.5935-5944, 2005.

K. Tarte, Role of the microenvironment across histological subtypes of NHL, Hematology, vol.2017, pp.610-617, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01785597

R. Amin, F. Mourcin, F. Uhel, C. Panault, P. Ruminy et al., DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma, Blood, vol.126, pp.1911-1920, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187301

P. Amé-thomas and K. Tarte, The yin and the yang of follicular lymphoma cell niches: Role of microenvironment heterogeneity and plasticity, Semin. Cancer Biol, vol.24, pp.23-32, 2014.

F. Roubinet, G. Cassar, and B. Gleizes, Principes de la cytométrie en flux, Anales de Recherches Vétérinaires, vol.20, pp.221-222, 1989.

, Conclusion ge ne rale et pespectives