S. J. Kang, Sintering: Densification Grain Growth and Microstructure, p.261, 2005.

S. L. Gallet, J. C. Nièpce, and G. Fantozzi, Science et Technologies Céramiques, p.834, 2010.

D. Bernache-assolant, Chimie-physique du frittage, p.348, 1993.

R. Defay and I. Prigogine, Tension superficielle et adsorption, 1951.

L. C. De-jonche and M. N. Rahaman, Sintering of ceramics, Handbook of Advanced, vol.4, pp.187-264, 2003.

A. Akash and M. J. Mayo, Pore Growth during Initial-Stage Sintering, Journal of the American Ceramic Society, vol.82, pp.2948-2952, 1999.

J. R. Groza and N. , NanoStructured Materials, vol.12, pp.987-992, 1999.

C. E. Hoge and J. A. Pask, Thermodynamic and geometric considerations of solid state sintering, Ceramurgia International, vol.3, pp.95-99, 1977.

G. Mchale, S. M. Rowan, and M. I. Newton, Frenkel's method and the spreading of small spherical droplets, Journal of Applied Physics, vol.27, pp.2619-2623, 1994.

G. C. Kuczynski, Self-Diffusion in Sintering of Metallic Particles, Transaction of the AIME, vol.85, pp.169-178, 1949.

J. R. Groza and N. , NanoStructured Materials, vol.12, pp.987-992, 1999.

M. F. Ashby, A first report on sintering diagrams, vol.22, pp.275-289, 1974.

G. Kuczynski, Physics and chemistry of sintering, Advances in Colloid and Interface Science, vol.3, pp.275-330, 1972.

C. A. Handwerker, Sintering and grain growth of MgO, Thèse, Massachusetts institute of technology, 1983.

G. M. Torrie and J. P. Valleau, Nonphysical sampling distribution in Monte Carlo free-energy estimation: Umbrella Sampling, Journal of computational physics, vol.23, pp.187-199, 1977.

G. N. Hassold and D. J. Srolovitz, Computer simulation of grain growth with mobile particles, Scripta Metallurgica and Materialia, vol.32, pp.1541-1547, 1995.

J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, p.169, 1964.

S. Bordère and D. Bernard, Full resolution of the Monte Carlo time scale demonstrated through the modelling of two-amorphous-particles sintering, Computational Materials Science, vol.43, pp.1074-1080, 2008.

M. K. Akhtar, G. G. Lipscomb, and S. E. Pratsinis, Monte Carlo simulation of particle coagulation and sintering, Aerosol Science and Technology, vol.21, pp.83-93, 1994.

H. Zhou and J. J. Derby, Three-Dimensional Finite-Element Analysis of Viscous Sintering, Journal of the American Ceramic Society, vol.81, pp.533-540, 1998.

F. Qui, T. A. Egerton, and I. L. Cooper, Monte Carlo simulation of nano-particle sintering, Powder Technology, vol.182, pp.42-50, 2008.

H. Pan and S. H. Ko, The solid state neck growth mechanisms in low energy laser sintering of gold nanoparticles: A molecular dynamics simulation study, Journal of Heat Transfer, vol.130, pp.1-7, 2008.

W. Zhang and J. H. Schneibel, Sintering of two particles by surface and grain boundary diffusion -A two dimensional numerical study, Acta Metallurgica et Materialia, vol.43, pp.4377-4386, 1995.

L. Ding, R. L. Davidchack, and J. Pan, A molecular dynamics study of sintering between nanoparticles, Computational Materials Science, vol.45, pp.247-256, 2009.

R. L. Coble, Effect of particle size distributions in initial-stage sintering, Journal of the American Ceramic Society, vol.56, pp.461-466, 1963.

R. Bjork, V. Tikare, H. L. Frandsen, and N. Pryds, The effect of particle size distributions on the microstructural evolution during sintering, Journal of the American Ceramic Society, vol.96, pp.103-110, 2013.

K. Shinagawa, Simulation of grain growth and sintering process by combined phase field / discrete element method, Acta Materialia, vol.66, pp.360-369, 2014.

H. N. Chang and J. Pan, Sintering of particles of different sizes, Acta Materialia, vol.55, pp.813-824, 2007.

J. Pan, H. Le, S. Kucherenko, and J. A. Yeomans, A model for the sintering of spherical particles of different sizes by solid state diffusion, Acta Materialia, vol.46, pp.4671-4690, 1998.

O. Dimitrov, La migration des joints intergranulaires, Journal de Physique Colloques, vol.36, pp.319-332, 1975.
URL : https://hal.archives-ouvertes.fr/jpa-00216338

A. L. Maximenko and E. A. Olevsky, Effective diffusion coefficients in solid state sintering, Acta Materialia, vol.52, pp.2953-2963, 2004.

S. Martin, R. Parekh, M. Guessasma, J. Lechelle, J. Fortin et al., Study of the sintering kinetics of bimodal powders. A parametric DEM study, Powder Technology, vol.270, pp.637-645, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02430256

C. G. Cardona, V. Tikare, B. R. Patterson, and E. Olevsky, On sintering stress in complex powder compacts, Journal of the American Ceramic Society, vol.95, pp.2372-2382, 2012.

J. Léchelle, R. Boyer, and M. Trotabas, A mechanistic approach of the sintering of nuclear fuel ceramics, Materials Chemistry and Physics, vol.67, pp.120-132, 2001.

S. Vaudez, C. Marlot, and J. Lechelle, Influence of Chemical Composition Variations on Densification During the Sintering of, MOx Materials, Metallurgical and Materials Transactions E, vol.3, pp.107-111, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02431820

I. Chapitre,

J. Léchelle and M. Trotabas, Proceedings of the IAEA Technical Committee on Advanced Methods of Process/Quality Control in Nuclear Reactor Fuel Manufacture, Lingen, IAEA-TECDOC-1166, pp.65-78, 1999.

J. Banerjee, T. R. Kutty, A. Kumar, H. S. Kamath, and S. Banerjee, Densification behaviour and sintering kinetics of ThO2-4%UO2 pellet, Journal of Nuclear Materials, vol.408, pp.224-230, 2011.

J. Blancher, Finite element modelling of the pressing of nuclear oxide powders to predict the shape of LWR fuel pellets after die compaction and sintering, Advanced fuel pellet materials and designs for water cooled reactors, p.21, 2004.

M. Bogdan, MSC -DFEM Model for the Sintering of Ceramic Nuclear Fuels, 2012.

A. G. Elliot and Z. A. Munir, The sintering of Nikel/Aluminium spheres to Nickel plate, Journal of Materials Science, vol.3, pp.150-157, 1968.

G. Herrmann, H. Gleiter, and G. Baro, Investigation of low energy grain boundaries in metals by sintering technique, Acta Metallurgica, vol.24, pp.353-359, 1975.

E. B. Slamovich and F. F. Lange, Densification behavior of single crystal and polycrystalline spherical particles zirconia, Journal of the American Ceramic Society, vol.73, pp.3368-3375, 1990.

H. J. Kleebe, W. Braue, H. Schmidt, G. Pezzottic, and G. Ziegler, Transmission Electron Microscopy of Microstructures in Ceramic Materials, Journal of the European Ceramic Society, vol.16, pp.339-351, 1996.

G. Thomas, Electron Microscopy and Microanalysis of Ceramics, Journal of the European Ceramic Society, vol.16, pp.323-338, 1996.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy -A Textbook for Materials Science, p.757, 2009.

M. ,

J. C. Yeadon, R. S. Yang, J. W. Averback, J. M. Bullard, and . Gibson, Sintering of silver and copper nanoparticles on (001) copper observed by in situ ultrahigh vacuum Transmission electron microscopy, Nano Structured Materials, vol.10, pp.731-739, 1998.

X. Chen, K. W. Noh, J. G. Wen, and S. J. Dillon, In situ electrochemical wet cell transmission electron microscopy characterization of solid-liquid interactions between Ni and aqueous NiCl2, Acta Materialia, vol.60, pp.192-198, 2012.

N. Lu, J. Wang, H. C. Floresca, and M. J. Kim, In situ studies on the shrinkage and expansion of graphene nanopores under electron beam irradiation at temperatures in the range of 400-1200 °C, Carbon, vol.50, pp.2961-2965, 2012.

A. T. Delariva, T. W. Hansen, S. R. Challa, and A. K. Datye, situ Transmission Electron Microscopy of catalyst sintering, vol.308, pp.291-305, 2013.

M. A. Asoro, D. Kovar, and P. J. Ferreira, In-situ Transmission Electron Microscopy Observations of Sublimation in Silver Nanoparticles, ACS Nano, vol.7, pp.7844-7852, 2013.

M. A. Asoro, D. Kovar, Y. Shao-horn, L. F. Allard, and P. J. Ferreira, Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM, vol.7, pp.7844-7852, 2010.

M. A. Asoro, D. Kovar, and P. J. Ferreira, Effect of surface carbon coating on sintering of silver nanoparticles: in situ TEM observations, Chemical Communications, vol.50, pp.4835-4838, 2014.

R. Sharma, Experimental set up for in situ transmission electron microscopy observations of chemical processes, Micron, vol.43, pp.1147-1155, 2012.

D. J. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM), p.221, 2008.

Y. Lu, Y. Yin, and Y. Xia, Three-Dimensional Photonic Crystals with Non-spherical Colloids as Building Blocks, Advanced Materials, vol.13, pp.415-420, 2001.

D. Hudry, C. Griveau, . Apostolidis, E. Walter, G. Colineau et al., Thorium/uranium mixed oxide nanocrystals: Synthesis, structural characterization and magnetic properties, vol.7, pp.119-131, 2014.

Z. Guo, F. Jian, and F. Du, A simple method to controlled synthesis of CeO2 hollow microspheres, Scripta Materialia, vol.61, pp.48-51, 2009.

A. S. Karakoti, N. A. Monteiro-riviere, R. Aggarwal, J. P. Davis, R. J. Narayan et al., Nanoceria as antioxidant: Synthesis and biomedical applications, Journal of the Minerals, Metals, and Materials Society, vol.60, pp.33-37, 2008.

J. F. Chen, H. M. Ding, J. X. Wang, and L. Shao, Preparation and characterization of porous hollow silica nanoparticles for drug delivery application, Biomaterials, vol.25, pp.723-727, 2004.

H. Daniels, S. Neumeier, A. A. Bukaemskiy, G. Modolo, and D. Bosbach, Fabrication of oxidic uranium-neodymium microspheres by internal gelation, Progress in Nuclear Energy, vol.57, pp.106-110, 2012.

Z. Shen, J. Liu, F. Hu, S. Liu, N. Cao et al., Nanoceria as antioxidant: Bottomup synthesis of cerium-citric acid coordination polymers hollow microspheres with tunable shell thickness and their corresponding porous CeO2 hollow spheres for Pt-based electrocatalysts, CrystEngComm, vol.16, pp.3387-3394, 2014.

J. Li, G. Lu, H. Li, Y. Wang, Y. Guo et al., Facile synthesis of 3D flowerlike CeO2 microspheres under mild condition with high catalytic performance for CO oxidation, Journal of Colloid and Interface Science, vol.360, pp.93-99, 2011.

D. Hudry, C. Apostolidis, O. Walter, T. Gouder, E. Courtois et al., Controlled Synthesis of Thorium and Uranium Oxide Nanocrystals, vol.19, pp.5297-5305, 2013.

V. N. Vaidya, Status of sol-gel process for nuclear fuels, Journal of Sol-Gel Science and Technology, vol.46, pp.369-381, 2008.

A. S. Karakoti, N. A. Monteiro-riviere, R. Aggarwal, J. P. Davis, R. J. Narayan et al., Nanoceria as antioxidant: Synthesis and biomedical applications, Journal of the Minerals, metals, and Materials Society, vol.60, pp.33-37, 2008.

J. F. Chen, H. M. Ding, J. X. Wang, and L. Shao, Preparation and characterization of porous hollow silica nanoparticles for drug delivery application, Biomaterials, vol.25, pp.723-727, 2004.

A. S. Karakoti, N. A. Monteiro-riviere, R. Aggarwal, J. P. Davis, R. J. Narayan et al., Nanoceria as antioxidant: Synthesis and biomedical applications, vol.60, pp.33-37, 2008.

R. Podor, J. Ravaux, and H. P. Brau, Situ Experiments in the Scanning Electron Microscope Chamber-Scanning Electron Microscopy, Viacheslav Kazmiruk Eds, pp.31-51, 2012.

H. Ichinose and G. G. Kuczynski, Role of grain boundaries in sintering, Acta Metallurgica, vol.10, pp.209-213, 1962.

F. Wakai and K. A. Brakke, Mechanics of sintering for coupled grain boundary and surface diffusion, Acta. Materialia, vol.59, pp.5379-5387, 2011.

G. L. Selman, M. R. Spender, and A. S. Darling, The Wetting of Platinum and Its Alloys by Glass. II-Rhodium-Platinum Alloys and The Influence of Gold Platinum Metals, Platinum Metals Review, vol.9, pp.92-99, 1965.

G. Herrmann, H. Gleiter, and G. Baro, Investigation of low energy grain boundaries in metals by sintering technique, Acta Metallurgica, vol.24, pp.353-359, 1975.

E. B. Slamovich and F. F. Lange, Densification behavior of single crystal and polycrystalline spherical particles zirconia, Journal of the American Ceramic Society, vol.73, pp.3368-3375, 1990.

S. Diewald and C. Feldmann, In situ observation of the melting and sintering of submicron-sized bismuth particles, Nanotechnology, vol.20, pp.125704-125712, 2009.

. Références,

G. I. Bouala, N. Clavier, J. Léchelle, A. Mesbah, N. Dacheux et al., situ HT-ESEM study of crystallites growth within CeO2 microspheres, Ceramic International, vol.41, p.14703, 2015.

G. I. Bouala, N. Clavier, S. Martin, J. Léchelle, J. Favrichon et al., From in Situ HT-ESEM Observations to Simulation: How Does polycrystallinity Affects the Sintering of CeO2 Microspheres?, vol.120, pp.386-395, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01252614

G. I. Bouala, N. Clavier, J. Léchelle, J. Monnier, C. Ricolleau et al., Hightemperature electron microscopy study of ThO2 microspheres sintering, Journal of the European Ceramic Society, vol.37, pp.727-738, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01996134

D. Bernache-assolant, Chimie-physique du frittage, p.348, 1993.

G. C. Kuczynski, Self-Diffusion in Sintering of Metallic Particles, Transaction of the AIME, vol.85, pp.169-178, 1949.

S. Martin, Modélisation phénoménologique granulaire du frittage à une échelle représentative de la pastille de matériau, 2014.

J. Léchelle, R. Boyer, and M. Trotabas, A mechanistic approach of the sintering of nuclear fuel ceramics, Materials Chemistry and Physics, vol.67, pp.120-132, 2001.

E. A. Anumol, B. Viswanath, P. G. Ganesan, Y. Shi, G. Ramanath et al., Surface diffusion driven nanoshell formation by controlled sintering mesoporous nanoparticle aggregates, Nanoscale, vol.2, pp.1423-1425, 2010.

J. Pascau and J. M. Pérez, Image Processing with ImageJ, 2013.

J. Favrichon and . Imageju, , 2016.

F. Wakai, Modeling and Simulation of Elementary Processes in Ideal Sintering, Journal of the American Ceramic Society, vol.89, pp.1472-1484, 2006.

L. Ding, R. L. Davidchack, and J. Pan, A molecular dynamics study of sintering between nanoparticles, Computational Materials Science, vol.45, pp.247-256, 2009.

S. J. Kang, Sintering: Densification Grain Growth and Microstructure, p.261, 2005.

E. B. Slamovich and F. F. Lange, Densification behavior of single crystal and polycrystalline spherical particles zirconia, Journal of the American Ceramic Society, vol.73, pp.3368-3375, 1990.

F. F. Lange, Densification of powder compacts: An unfinished story, Journal of the European Ceramic Society, vol.28, pp.1509-1516, 2008.

W. K. Lee, R. L. Eadie, G. C. Weatherly, and K. T. Aust, A Study of the Sintering of Spherical Silver Powder-II. The Initial Stage, Acta Metallurgica, vol.26, pp.1837-1843, 1978.

R. M. German, Sintering: from Empirical Observations to Scientific Principles, 2014.

G. C. Kuczynski, Physics and chemistry of sintering, Advances in Colloid and Interface Science, vol.3, pp.275-330, 1972.

N. Clavier, R. Podor, L. Deliere, J. Ravaux, and N. Dacheux, Combining in situ ESEM observations and dilatometry: An original and fast way to the sintering map of ThO2, Materials Chemistry and Physics, vol.137, pp.742-749, 2013.

R. Podor, N. Clavier, J. Ravaux, L. Claparède, N. Dacheux et al., Dynamic aspects of cerium dioxide sintering: HT-ESEM study of grain growth and pore elimination, Journal of the European Ceramic Society, vol.32, pp.353-362, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00638087

D. Z. De-florio, V. Esposito, E. Traversa, R. Muccillo, and F. C. Fonseca, Master sintering curve for Gd-doped CeO2 solid electrolytes, Journal of thermal analysis and calorimetry, vol.97, pp.143-147, 2009.

P. L. Chen and I. Chen, Grain Growth in CeO2: Dopant Effects, Defect Mechanism, and Solute Drag Journal of the American Ceramic Society, vol.79, pp.1793-1800, 1996.

J. Zhang, F. Huang, and Z. Lin, Progress of Nanocrystalline Growth Kinetics Based on Oriented Attachment, Nanoscale, vol.2, pp.18-34, 2009.

R. L. Penn and J. F. Banfield, Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals, Science, vol.281, pp.969-971, 1998.

P. Scardi, M. Leoni, M. Mueller, and R. D. Maggio, In situ size-strain analysis of nanocrystalline ceria growth, Materials Science and Engineering: A, vol.528, pp.77-82, 2010.

T. Zhang, P. Hing, H. Huang, and J. Kilner, Early-stage Sintering Mechanisms of Fe-doped CeO2, Journal of Materials Science, vol.37, pp.997-1003, 2002.

T. Zhang, P. Hing, H. Huang, and J. Kilner, Sintering and Grain Growth of CoO-doped CeO2 Ceramics, Journal of the European Ceramic Society, vol.22, pp.27-34, 2002.

G. H. Gessinger, Volume diffusion as densification rate-controlling step in sintering, Scripta Metallurgica, vol.4, pp.673-675, 1970.

R. L. Coble, Initial sintering of alumina and hematite, Journal of the American Ceramic Society, vol.41, pp.55-61, 1958.

M. F. Ashby, A first report on sintering diagrams, vol.22, pp.275-289, 1974.

C. Herring, Effect of Change of Scale on Sintering Phenomena, Journal of Applied Physics, vol.21, pp.301-303, 1950.

N. C. Kothari, The effect of particle size on sintering kinetics in alumina powder, Journal of Nuclear Materials, vol.17, pp.43-53, 1965.

M. Lequitte and D. Autissier, Synthesis and sintering of nanocrystalline erbium oxide, Nanostructured Materials, vol.6, pp.333-336, 1995.

M. Ajdour, Développement d'un code de calcul pour la simulation du frittage en phase solide, 2006.

M. Ajdour, J. Léchelle, F. Valdivieso, P. Goeuriot, K. Saikouk et al., Sintering simulation at a scale lower than the grain size, Advances in Science and Technology, vol.45, pp.516-521, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01265011

I. W. Chen, Grain boundary kinetics in oxide ceramics with the cubic fluorite crystal structure and its derivatives, Interface Science, vol.8, pp.147-156, 2000.

M. Jin, E. Shimada, and Y. Ikuma, Atomic Force Microscopy Study of Surface Diffusion in Polycrystalline CeO2 via Grain Boundary Grooving, Journal of the Ceramic Society of Japan, vol.108, pp.456-461, 2000.

C. Feral-martin, Influence de la morphologie d'oxydes à base de cérium sur les relations (micro) structures / propriétés, p.1, 2010.

G. Kuczynski, The mechanism of densification during sintering of metallic particles, Acta Metallurgica, vol.4, pp.58-61, 1956.

F. B. Swinkels and M. F. Ashby, A second report on sintering diagrams, Acta Metallurgica, vol.29, pp.259-281, 1981.

D. Kuroiwa, A study of ice sintering, Tellus, vol.13, pp.252-259, 1961.

T. R. Kutty, K. B. Khan, P. V. Hegde, J. Banerjee, A. K. Sengupta et al., Development of a master sintering curve for ThO2, Journal of Nuclear Materials, vol.327, pp.211-219, 2004.

H. Matzke, Diffusion processes and surface effects in non-stoichiometric nuclear fuel oxides UO2+x and (U, Pu)O2 ±x, Journal of Nuclear Materials, vol.114, pp.121-135, 1983.

Y. Minamidate, S. Yin, and T. Sato, Synthesis of monodispersed rod-like and spherical CeO2 particles by mild solution process, Materials Science and Engineering, vol.1, p.12003, 2009.

L. Wang, R. Zhao, X. W. Wang, L. Mei, L. Y. Yuan et al., Sizetunable synthesis of monodisperse thorium dioxide nanoparticles and their performance on the adsorption of dye molecules, CrystEngComm, vol.16, pp.10469-10475, 2014.

E. Kelly, Generation IV International Forum: a decade of progress through international cooperation, vol.77, pp.240-246, 2014.

J. Martinez, N. Clavier, T. Ducasse, A. Mesbah, F. Audubert et al., From uranium (IV) oxalate to sintered UO2 : Consequences of the powders' thermal history on the microstructure, Journal of the European Ceramic Society, vol.35, pp.4535-4546, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02045286

M. J. Bannister and W. J. Buykx, Sintering mechanism in UO2+x, Journal of Nuclear Materials, vol.64, pp.57-65, 1977.

C. Ganguly and U. Basak, Fabrication of high-density UO2 fuel pellets involving Sol-Gel microsphere pelletization and low-temperature sintering, Journal of Nuclear Materials, vol.178, pp.179-183, 1991.

B. Arab-chapelet, S. Grandjean, G. Nowogrocki, and F. Abraham, Synthesis of new mixed actinides oxalates as precursors of actinides oxide solid solutions, Journal of Alloys and Compounds, vol.444, pp.387-390, 2007.

K. E. Knope and C. L. Cahill, Hydrothermal synthesis of a novel uranium oxalate / glycolate via insitu ligand formation, Inorganic chemistry, vol.46, pp.6607-6612, 2007.

G. D. White, L. A. Bray, and P. E. Hart, Optimization of thorium oxalate precipitation conditions relative to derived oxide sinterability, Journal of Nuclear Materials, vol.96, pp.305-313, 1981.

, 10 -15 m 2 .s -1 après formation de UO2,1 à environ 1500 °C. Ces études permettent donc d'observer que la stoechiométrie de l'oxyde d'uranium impacte son comportement lors du frittage. Dans le cas de cette étude, l'oxyde obtenu après oxydation de l'uranium (IV) étant U3O8, le coefficient de diffusion de l'uranium au sein de cet oxyde est probablement supérieur à celui mesuré dans UO2 stoechiométrique. Cette augmentation du coefficient de diffusion de l'uranium permet d'expliquer la détermination d, vol.86

, Diagramme d'Arrhenius déterminé après frittage des microsphères d'oxyde d'uranium entre 800 °C et 1000 °C sous 200 Pa d'air (soit 40 Pa environ d'oxygène) avec des grains polycristallins, Figure, vol.96

, Ces résultats préliminaires montrent donc que l'oxydation de l'uranium lors du frittage, influence fortement l'évolution globale du système, même à une échelle microscopique, ce qui permet d'obtenir des oxydes plus denses à basse température, vol.26, p.30

, Harada [31] a observé, lors de l'étude du frittage des pastilles de UO2, que l'oxydation de l'uranium (IV) au cours de la densification permettait d'augmenter la croissance granulaire ainsi que la densité finale des compacts frittés

, Les premières observations du stade initial du frittage des microsphères polycristallines de dioxyde d'uranium ont été réalisées in situ par MEBE-HT en travaillant sous vide dans la chambre du microscope avec un support en alumine. Ces conditions expérimentales ont permis de suivre le frittage des microsphères de UO2, en s'affranchissant d'une réaction entre les microsphères

, Le traitement d'images MEBE a ensuite permis de quantifier les modifications morphologiques observées en déterminant l'évolution des paramètres d'intérêt. L'exploitation des courbes obtenues, en utilisant une loi exponentielle (? = a0.exp(k.t)+ ?0), a ensuite permis de déterminer une énergie d'activation d'environ 335 ± 116 kJ.mol -1 qui est associée à des mécanismes de, Les résultats préliminaires obtenus ont permis de démontrer la faisabilité d'une telle étude expérimentale, à partir d'un oxyde d'actinide ayant un comportement chimique complexe, notamment en terme de redox

, Contrairement au cas de ThO2, l'évolution microstructurale de ces microsphères et l'allure des courbes obtenues sont assez similaires à celles décrites lors de la modélisation de ce stade du frittage

, Cette différence peut s'expliquer par la différence entre les précurseurs synthétisés dans les deux cas, ThO2.2H2O et UO2.3H2O, qui conduit à l'obtention de microsphères de porosités différentes après conversion thermique en oxyde

, Pa d'air, soit 40 Pa d'O2), l'influence de l'oxydation sur le frittage d'UO2 a pu être observée. Lors de cette étude, l'oxydation de l'uranium (IV) a conduit à une modification de la morphologie des microsphères, qui tend vers une forme plus ovale. Les résultats préliminaires obtenus ont montré d'une part que l'oxydation de l'uranium (IV) conduit à une diminution de la température de frittage, En travaillant ensuite sous atmosphère oxydante

, D'autre part que la vitesse de formation et de croissance du pont augmente de manière significative après oxydation. L'énergie d'activation déterminée dans ces conditions, d'environ 120 ± 10 kJ.mol -1 , est plus faible que celle d'UO2. La pression partielle en oxygène peut donc permettre de moduler la densification des échantillons d

V. I. Chapitre, Etude du stade initial du frittage des oxydes d'uranium

G. I. Bouala, N. Clavier, S. Martin, J. Léchelle, J. Favrichon et al., From in Situ HT-ESEM Observations to Simulation: How Does polycrystallinity Affects the Sintering of CeO2 Microspheres?, Journal of Physical Chemistry C, vol.120, pp.386-395, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01252614

G. I. Bouala, N. Clavier, J. Léchelle, J. Monnier, C. Ricolleau et al., Hightemperature electron microscopy study of ThO2 microspheres sintering, Journal of the European Ceramic Society, vol.37, pp.727-738, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01996134

Z. Yang, L. Liu, H. Liang, H. Yang, and Y. Yang, One-pot hydrothermal synthesis of CeO2 hollow microspheres, Journal of Crystal Growth, vol.312, pp.426-430, 2010.

G. I. Bouala, N. Clavier, R. Podor, J. Cambedouzou, A. Mesbah et al.,

. Dacheux, Preparation and characterisation of uranium oxides with spherical shape and hierarchical structure, CrystEngComm, vol.16, pp.6944-6954, 2014.

M. Iwasaki, T. Sakurai, N. Ishikawa, and Y. Kobayashi, Oxidation of UO2 Pellets in Air: Effect of Heat-Treatment of Pellet on Particle Size Distribution of Powders Produced, Journal of Nuclear Science and Technology, vol.5, pp.652-653, 1968.

E. Bus and J. A. Van-bokhoven, Hydrogen chemisorption on supported platinum, gold, and platinumgold-alloy catalysts, Physical Chemistry Chemical Physics, vol.9, pp.2894-2902, 2007.

M. W. Breiter, Hydrogen adsorption on heterogeneous platinum-gold alloys in sulphuric acid solution, Transactions of the Faraday Society, vol.61, pp.749-754, 1965.

G. T. Furukawa, T. B. Douglas, R. E. Mccoskey, and D. C. Ginnings, Thermal Properties of Aluminum Oxide From 0 to 1200 K, Journal of Research of the National Bureau of Standards, vol.57, pp.67-82, 1956.

A. D. Whapham and B. E. Sheldon, Transmission electron microscope study of irradiation effects in sintered uranium dioxide, Journal of Nuclear Materials, vol.10, pp.157-162, 1963.

E. A. Anumol, B. Viswanath, P. G. Ganesan, Y. Shi, G. Ramanath et al., Surface diffusion driven nanoshell formation by controlled sintering mesoporous nanoparticle aggregates, Nanoscale, vol.2, pp.1423-1425, 2010.

G. I. Bouala, N. Clavier, J. Léchelle, A. Mesbah, N. Dacheux et al., situ HT-ESEM study of crystallites growth within CeO2 microspheres, vol.41, p.14703, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02000073

R. Podor, Working with the ESEM at high temperature Proceeding from EMAS 2016 -12th Regional workshop on electron probe microanalysis today, 2016.

S. J. Kang, Sintering: Densification Grain Growth and Microstructure, p.261, 2005.

F. Wakai, Modeling and Simulation of Elementary Processes in Ideal Sintering, Journal of the American Ceramic Society, vol.89, pp.1472-1484, 2006.

J. S. Raut, R. B. Bhagat, and K. A. Fichthorn, Sintering of alumina nanoparticles: A molecular dynamics study, Nano Structured Materials, vol.10, pp.837-851, 1998.

W. K. Lee, R. L. Eadie, G. C. Weatherly, and K. T. Aust, A Study of the Sintering of Spherical Silver Powder-II. The Initial Stage, Acta Metallurgica, vol.26, pp.1837-1843, 1978.

P. Dehaudt, L. Bourgeois, and H. Chevrel, Activation energy of UO2 and UO2+ x sintering, Journal of Nuclear Materials, vol.299, pp.250-259, 2001.

D. Lahiri, S. V. Rao, G. V. Hemantha-rap, and R. K. Srivastava, Study on sintering kinetics and activation energy of UO2 pellets using three different methods, Journal of Nuclear Materials, vol.357, pp.88-96, 2006.

J. Zhang, F. Huang, and Z. Lin, Progress of Nanocrystalline Growth Kinetics Based on Oriented Attachment, Nanoscale, vol.2, pp.18-34, 2009.

R. L. Penn and J. F. Banfield, Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals, Science, vol.281, pp.969-971, 1998.

J. Williams, E. Barnes, R. Scott, and A. Hall, Sintering of uranium oxides of composition UO2 to U3O8 in various atmospheres, Journal of Nuclear Materials, vol.1, pp.28-38, 1959.

H. Chevrel, P. Dehaudt, B. François, and J. F. Baumard, Influence of surface phenomena during sintering of over stoichiometric uranium dioxide UO2+ x, Journal of Nuclear Materials, vol.189, pp.175-182, 1992.

I. Amato, R. L. Colombo, and A. M. Protti, Influence of Stoichiometry on the Rate of Grain Growth of UO2, Journal of the American Ceramic Society, vol.46, pp.407-408, 1963.

T. R. Kutty, P. V. Hegde, K. B. Khan, U. Basak, S. N. Pillai et al., Densification behaviour of UO2 in six different atmospheres, Journal of Nuclear Materials, vol.305, pp.159-168, 2002.

D. G. Leme and H. Matzke, The diffusion of uranium in U3O8, Journal of Nuclear Materials, vol.115, pp.350-353, 1983.

J. Gao, X. Yang, R. Li, Y. Wang, and F. Zhong, Low-temperature sintering mechanism on uranium dioxide, Journal of Materials Science, vol.42, pp.5936-5940, 2007.

H. Matzke, On uranium self-diffusion in UO2 and UO2+ x, Journal of Nuclear Materials, vol.30, pp.26-35, 1969.

J. Martinez, N. Clavier, T. Ducasse, A. Mesbah, F. Audubert et al., From uranium (IV) oxalate to sintered UO2: Consequences of the powders' thermal history on the microstructure, Journal of the European Ceramic Society, vol.35, pp.4535-4546, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02045286

J. Belle, Oxygen and uranium diffusion in uranium dioxide, Journal of Nuclear Materials, vol.30, pp.3-15, 1969.

K. W. Song, K. S. Kim, Y. M. Kim, and Y. H. Jung, Sintering of mixed UO2 and U3O8 powder compacts, Journal of Nuclear Materials, vol.277, pp.123-129, 2000.

H. Harada, UO2 sintering in controlled oxygen atmospheres of three-stage process, Journal of Nuclear Materials, vol.245, pp.217-223, 1997.