C. W. Team, R. K. Pachauri, and L. A. Meyer, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014.

D. P. Van-vuuren, The representative concentration pathways: An overview, Clim. Change, vol.109, pp.5-31, 2011.

F. Orecchini, The era of energy vectors, Int. J. Hydrogen Energy, vol.31, issue.14, 1951.

I. Dincer and C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy, vol.40, issue.34, pp.11094-11111, 2015.

O. Bi?áková and P. Straka, Production of hydrogen from renewable resources and its effectiveness, Int. J. Hydrogen Energy, vol.37, issue.16, pp.11563-11578, 2012.

I. Dincer, Green methods for hydrogen production, Int. J. Hydrogen Energy, vol.37, issue.2, 1954.

S. Mekhilef, R. Saidur, and A. Safari, Comparative study of different fuel cell technologies, Renew. Sustain. Energy Rev, vol.16, issue.1, pp.981-989, 2012.

N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci, vol.72, pp.141-337, 2015.

A. J. Appleby, Fuel cell technology: Status and future prospects, Energy, vol.21

, , pp.521-653, 1996.

A. B. Stambouli, Fuel cells : The expectations for an environmental-friendly and sustainable source of energy, Renew. Sustain. Energy Rev, vol.15, issue.9, pp.4507-4520, 2011.

S. P. Badwal, S. Giddey, C. Munnings, and A. Kulkarni, Review of progress in high temperature solid oxide fuel cells, J. Aust. Ceram. Soc, vol.50, issue.1, pp.23-37, 2014.

P. E. Dodds, Hydrogen and fuel cell technologies for heating: A review, Int. J. References Hydrogen Energy, vol.40, issue.5, pp.2065-2083, 2015.

N. Q. Minh, Solid oxide fuel cell technology -features and applications, Solid State Ionics, vol.174, issue.1-4, pp.271-277, 2004.

Y. Zhao, Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels, Int. J. Hydrogen Energy, vol.38, issue.36, pp.16498-16517, 2013.

E. D. Wachsman and K. T. Lee, Lowering the temperature of solid oxide fuel cells, Sci, vol.334, issue.6058, pp.935-939, 2011.

B. C. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ionics, vol.129, issue.1-4, pp.319-326, 2000.

L. J. Gauckler, Solid oxide fuel cells: Systems and materials, Chim, vol.58, issue.12, pp.837-850, 2004.

G. Constantin, C. Rossignol, J. P. Barnes, and E. Djurado, Interface stability of thin, dense CGO film coating on YSZ for solid oxide fuel cells, Solid State Ionics, vol.235, pp.36-41, 2013.

S. Takahashi, S. Nishimoto, M. Matsuda, and M. Miyake, Electrode properties of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2, and 3), as intermediatetemperature solid oxide fuel cells, J. Am. Ceram. Soc, vol.93, issue.8, pp.2329-2333, 2010.

H. Zhao, F. Mauvy, C. Lalanne, J. M. Bassat, S. Fourcade et al., New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2-xNiO4+?, Solid State Ionics, vol.179, pp.35-36, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00344075

G. Amow and S. J. Skinner, Recent developments in Ruddlesden-Popper nickelate systems for solid oxide fuel cell cathodes, J. Solid State Electrochem, vol.10, pp.538-546, 2006.

V. Vibhu, A. Rougier, C. Nicollet, A. Flura, J. C. Grenier et al., La2-xPrxNiO4+? as suitable cathodes for metal supported SOFCs, Solid State Ionics, vol.278, pp.32-37, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01171838

S. B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev, vol.104, issue.10, pp.4791-4843, 2004.

Y. Takeda, R. Kanno, M. Noda, Y. Tomida, and O. Yamamoto, Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia, J. Electrochem. Soc, vol.134, issue.11, pp.2656-2661, 1987.

J. Laurencin and J. Mougin, High Temperature Steam Electrolysis, Hydrogen Production by Electrolysis, pp.191-272, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01624821

C. Lefrou, P. Fabry, and J. Poignet, Electrochemistry: The Basics, with Examples, 2012.

V. S. Bagotsky, Fundamentals of Electrochemistry, 2006.

V. Ramani, Fuel Cells, Electrochem. Soc. Interface, pp.41-44, 2006.

S. B. Adler, J. A. Lane, and B. C. Steele, Electrode kinetics of porous mixedconducting oxygen electrodes, J. Electrochem. Soc, vol.143, issue.11, pp.3554-3564, 1996.

S. N. Ruddlesden and P. Popper, The compound Sr3Ti2O7 and its structure, Acta Crystallogr, vol.11, issue.1, pp.54-55, 1958.

M. Greenblatt, Ruddlesden-Popper Lnn+1NinO3n+1 nickelates: Structure and properties, Curr. Opin. Solid State Mater. Sci, vol.2, issue.2, pp.80062-80071, 1997.

A. Tarancón, M. Burriel, J. Santiso, S. J. Skinner, and J. A. Kilner, Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells, J. Mater. Chem, vol.20, pp.3799-3813, 2010.

K. Yakal-kremski, L. V. Mogni, A. Montenegro-hernández, A. Caneiro, and S. A. Barnett, Determination of electrode oxygen transport kinetics using electrochemical impedance spectroscopy combined with three-dimensional microstructure measurement: Application to Nd2NiO4+?, J. Electrochem. Soc, vol.161, issue.14, pp.1366-1374, 2014.

G. Amow, I. J. Davidson, and S. J. Skinner, A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode References applications, Solid State Ionics, vol.177, pp.1205-1210, 2006.

R. K. Sharma, S. K. Cheah, M. Burriel, L. Dessemond, J. M. Bassat et al., Design of La2-xPrxNiO4+? SOFC cathodes: A compromise between electrochemical performance and thermodynamic stability, J. Mater. Chem. A, vol.5, pp.1120-1132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611329

V. Vibhu, J. Bassat, A. Flura, C. Nicollet, J. Grenier et al., Influence of La/Pr ratio on the ageing properties of La2-XPrxNiO4+ as cathodes in IT-SOFCs, ECS Trans, vol.68, issue.1, pp.825-835, 2015.

A. Montenegro-hernández, J. Vega-castillo, L. Mogni, and A. Caneiro, Thermal stability of Ln2NiO4+? (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes, Int. J. Hydrogen Energy, vol.36, issue.24, pp.15704-15714, 2011.

S. Nishimoto, S. Takahashi, Y. Kameshima, M. Matsuda, and M. Miyake, Properties of La2-xPrxNiO4 cathode for intermediate-temperature solid oxide fuel cells, J. Ceram

. Soc and . Japan, , vol.119, pp.246-250, 2011.

A. J. Jacobson, New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells, 2004.

J. C. Park, D. K. Kim, S. H. Byeon, and D. Kim, XANES study on Ruddlesden-Popper phase, Lan+1NinO3n+1 (n = 1, 2 and ?), J. Synchrotron Radiat, vol.8, issue.2, pp.704-706, 2001.

Z. Lou, High performance La3Ni2O7 cathode prepared by a facile sol-gel method for intermediate temperature solid oxide fuel cells, Electrochem. commun, vol.22, pp.97-100, 2012.

R. K. Sharma, M. Burriel, and E. Djurado, La4Ni3O10-? as an efficient solid oxide fuel cell cathode: Electrochemical properties versus microstructure, J. Mater. Chem. A, vol.3, pp.23833-23843, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02012983

R. K. Sharma, M. Burriel, L. Dessemond, J. Bassat, and E. Djurado, Lan+1NinO3n+1 (n = 2 and 3) phases and composites for solid oxide fuel cell cathodes: Facile synthesis and electrochemical properties, J. Power Sources, vol.325, pp.337-345, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01426056

Y. Wang, W. Li, L. Ma, W. Li, and X. Liu, Degradation of solid oxide electrolysis cells: phenomena, mechanisms, and emerging mitigation strategies -a review, J. Mater. Sci. Technol, 2019.

J. Laurencin, Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-?/Gd0.1Ce0.9O2-? composite electrode operated under solid oxide electrolysis and fuel cell conditions, Electrochim. Acta, vol.241, pp.459-476, 2017.

T. L. Skafte, J. Hjelm, P. Blennow, and C. R. Graves, Quantitative review of degradation and lifetime of solid oxide cells and stacks, Proceedings of 12th

S. European and . Forum, , pp.8-27, 2016.

Q. Fang, L. Blum, and D. Stolten, Electrochemical performance and degradation analysis of an SOFC short stack for operation of more than 100,000 hours, ECS Trans, vol.91, issue.1, pp.687-696, 2019.

S. J. Kim, K. J. Kim, A. M. Dayaghi, and G. M. Choi, Polarization and stability of La2NiO4+? in comparison with La0.6Sr0.4Co0.2Fe0.8O3?? as air electrode of solid oxide electrolysis cell, Int. J. Hydrogen Energy, vol.41, issue.33, pp.14498-14506, 2016.

N. Coppola, Structural and electrical characterization of sputter-deposited Gd0.1Ce0.9O2?? thin buffer layers at the Y-stabilized zirconia electrolyte interface for IT-solid oxide cells, Catalysts, vol.8, issue.12, 2018.

A. Shutka, G. Mezinskis, and A. Pludons, Preparation of dissimilarly structured ferrite compounds by sol-gel auto-combustion method, Chemine Technol, vol.54, issue.1, pp.41-46, 2010.

L. Shi, C. Zeng, Y. Jin, T. Wang, and N. Tsubaki, A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis, Catal. Sci. Technol, vol.2, pp.2569-2577, 2012.

C. Chen, Thin-Film Components for Lithium-Ion Batteries, 1998.

C. H. Chen, E. M. Kelder, M. J. Jak, and J. Schoonman, Electrostatic spray deposition of thin layers of cathode materials for lithium battery, Solid State Ionics, vol.86, issue.2, pp.1301-1306, 1996.

A. M. Gañán-calvo, J. M. López-herrera, M. A. Herrada, A. Ramos, and J. M. Montanero, Review on the physics of electrospray: From electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray

, Aerosol Sci, vol.125, pp.32-56, 2018.

G. I. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. Lond. A. Math. Phys. Sci, vol.280, issue.1382, pp.383-397, 1964.

J. Russell, Biosurfactants in electrospinning, 2015.

A. M. Gañán-calvo, J. Davila, and A. Barrero, Current and droplet size in the electrospraying of liquids. Scaling laws, J. Aerosol Sci, vol.28, issue.2, pp.249-275, 1997.

D. Marinha, C. Rossignol, and E. Djurado, Influence of electrospraying parameters on the microstructure of La0.6Sr0.4Co0.2F0.8O 3-? films for SOFCs, J. Solid State Chem, vol.182, issue.7, pp.1742-1748, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417170

T. Nguyen and E. Djurado, Deposition and characterization of nanocrystalline tetragonal zirconia films using electrostatic spray deposition, Solid State Ionics, vol.138, issue.3-4, pp.191-197, 2001.

L. ?zden-Çelikbilek, E. Dessemond, and . Djurado, State-of-the-art La0.6Sr0.4Co0.2Fe0.8O3-? cathode for SOFC: Microstructural and electrochemical properties, ECS Trans, vol.78, issue.1, pp.747-758, 2017.

R. K. Sharma, M. Burriel, L. Dessemond, J. M. Bassat, and E. Djurado, Design of interfaces in efficient Ln2NiO4+? (Ln = La, Pr) cathodes for SOFC applications
URL : https://hal.archives-ouvertes.fr/hal-01426062

, Mater. Chem. A, vol.4, pp.12451-12462, 2016.

R. K. Sharma, Highly efficient architectured Pr6O11 oxygen electrode for solid oxide fuel cell, J. Power Sources, vol.419, pp.171-180, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02054823

R. K. Sharma, M. Burriel, L. Dessemond, V. Martin, J. Bassat et al., An innovative architectural design to enhance the electrochemical performance of La2NiO4+? cathodes for solid oxide fuel cell applications, J. Power Sources, vol.316, pp.17-28, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01296342

L. A. Giannuzzi and F. A. Stevie, A review of focused ion beam milling techniques for References TEM specimen preparation, Micron, vol.30, issue.3, pp.197-204, 1999.

J. Gierak, Focused ion beam nano-patterning from traditional applications to single ion implantation perspectives, Nanofabrication, vol.1, pp.35-52, 2014.

H. Moussaoui, Stochastic geometrical modeling of solid oxide cells electrodes validated on 3D reconstructions, Comput. Mater. Sci, vol.143, pp.262-276, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01655845

F. Usseglio-viretta, J. Laurencin, G. Delette, J. Villanova, P. Cloetens et al., Quantitative microstructure characterization of a Ni-YSZ bi-layer coupled with simulated electrode polarisation, J. Power Sources, vol.256, pp.394-403, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01667107

J. Laurencin, R. Quey, G. Delette, H. Suhonen, P. Cloetens et al., Characterisation of Solid Oxide Fuel Cell Ni-8YSZ substrate by synchrotron X-ray nano-tomography: From 3D reconstruction to microstructure quantification, J. Power Sources, vol.198, pp.182-189, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858097

O. M. Pecho, 3D microstructure effects in Ni-YSZ anodes: Prediction of effective transport properties and optimization of redox stability, Materials (Basel), vol.8, issue.9, pp.5554-5585, 2015.

J. Rodríguez, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B, vol.192, issue.1-2, p.90108, 1993.

M. Hubert, Role of microstructure on electrode operating mechanisms for mixed ionic electronic conductors: From synchrotron-based 3D reconstruction to electrochemical modeling, Solid State Ionics, vol.294, pp.90-107, 2016.

T. Tao, J. S. Ro, J. Melngailis, Z. Xue, and H. D. Kaesz, Focused ion beam induced deposition of platinum, J. Vac. Sci. Technol. B, vol.8, issue.6, p.1826, 1990.

G. Ashiotis, The fast azimuthal integration Python library: pyFAI, J. Appl. Crystallogr, vol.48, pp.510-519, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01572879

W. De-nolf and K. Janssens, Micro X-ray diffraction and fluorescence tomography for the study of multilayered automotive paints, Surf. Interface Anal, vol.42, issue.5, pp.411-418, 2010.

W. De-nolf, F. Vanmeert, and K. Janssens, XRDUA: Crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction, J. Appl. Crystallogr, vol.47, issue.3, pp.1107-1117, 2014.

, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edi, 2005.

D. Vladikova, The technique of the differential impedance analysis part I: Basics of the impedance spectroscopy, Proceedings of the International Workshop "Advanced Techniques for Energy Sources Investigation and Testing, pp.8-9, 2004.

M. R. Somalu, A. Muchtar, W. R. Daud, and N. P. Brandon, Screen-printing inks for the fabrication of solid oxide fuel cell films: A review, Renew. Sustain. Energy Rev, vol.75, pp.426-439, 2017.

M. Wegener, M. Kato, K. Kakimoto, S. Spallek, E. Spiecker et al., PVP a binder for the manufacture of ultrathin ITO/polymer nanocomposite films with improved electrical conductivity, J. Mater. Sci, vol.50, pp.6124-6133, 2015.

D. Marinha, L. Dessemond, and E. Djurado, Electrochemical investigation of oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3-? cathodes deposited by electrostatic spray deposition, J. Power Sources, vol.197, pp.80-87, 2012.

?. Çelikbilek, Optimisation de la cathode pour pile à oxyde électrolyte solide: approches expérimentale et numérique, 2016.

D. Marinha, J. Hayd, L. Dessemond, E. Ivers-tiffée, and E. Djurado, Performance of (La,Sr)(Co,Fe)O3-x double-layer cathode films for intermediate temperature solid oxide fuel cell, J. Power Sources, vol.196, issue.11, pp.5084-5090, 2011.

F. Ciucci, Modeling electrochemical impedance spectroscopy, Curr. Opin. Electrochem, vol.13, pp.132-139, 2019.

W. Lai and S. M. Haile, Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: A case study of ceria, J. Am. Ceram. Soc, vol.88, issue.11, pp.2979-2997, 2005.

,. E. ?zden-Çelikbilek, D. Siebert, C. L. Jauffrès, E. Martin, and . Djurado, Influence of sintering temperature on morphology and electrochemical performance of LSCF/GDC composite films as efficient cathode for SOFC, Electrochim. Acta, vol.246, pp.1248-1258, 2017.

J. Fleig, On the current-voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes, Phys. Chem. Chem. Phys, vol.7, issue.9, pp.2027-2037, 2005.

B. A. Boukamp, Electrochemical impedance spectroscopy in solid state ionics: Recent advances, Solid State Ionics, vol.169, issue.1-4, pp.65-73, 2004.

T. Jacobsen, P. V. Hendriksen, and S. Koch, Diffusion and conversion impedance in solid oxide fuel cells, Electrochim. Acta, vol.53, issue.25, pp.7500-7508, 2008.

C. Chen, E. M. Kelder, P. J. Van-der-put, and J. Schoonman, Morphology control of thin LiCoO2 films fabricated using the electrostatic spray deposition (ESD) technique, J. Mater. Chem, vol.6, issue.5, pp.765-771, 1996.

P. Li, A novel La2NiO4+?-La3Ni2O7-?-Ce0.55La0.45O2-? ternary composite cathode prepared by the co-synthesis method for IT-SOFCs, Int. J. Hydrogen Energy, vol.42, issue.27, pp.17202-17210, 2017.

F. Zurlo, La0.8Sr0.2Fe0.8Cu0.2O3-? as 'cobalt-free' cathode for La0.8Sr0.2Ga0.8Mg0.2O3-? electrolyte, J. Power Sources, vol.271, pp.187-194, 2014.

R. J. Woolley and S. J. Skinner, Novel La2NiO4+? and La4Ni3O10-? composites for solid oxide fuel cell cathodes, J. Power Sources, vol.243, pp.790-795, 2013.

M. Cimenti, A. C. Co, V. I. Birss, and J. M. Hill, Distortions in electrochemical impedance spectroscopy measurements using 3-electrode methods in SOFC. I-effect of cell geometry, Fuel Cells, vol.7, issue.5, pp.364-376, 2007.

A. Hauch, S. H. Jensen, S. Ramousse, and M. B. Mogensen, Performance and durability of solid oxide electrolysis cells, J. Electrochem. Soc, vol.153, issue.9, pp.1741-1747, 2006.

J. Hjelm, M. Søgaard, M. Wandel, M. Menon, M. B. Mogensen et al., Electrochemical impedance studies of SOFC cathodes, ECS Trans, vol.7, issue.1, pp.1261-1270, 2007.

G. Chiodelli and L. Malavasi, Electrochemical open circuit voltage (OCV) characterization of SOFC materials, Ionics (Kiel), vol.19, pp.1135-1144, 2013.

M. A. Laguna-bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, J. Power Sources, vol.203, pp.4-16, 2012.

A. Bertei, G. Arcolini, J. P. Ouweltjes, Z. Wuillemin, P. Piccardo et al., Physically-based deconvolution of impedance spectra: Interpretation, fitting and validation of a numerical model for lanthanum strontium cobalt ferrite-based solid oxide fuel cells, Electrochim. Acta, vol.208, pp.129-141, 2016.

V. Thangadurai, R. A. Huggins, and W. Weppner, Mixed ionic-electronic conductivity in phases in the praseodymium oxide system, J. Solid State Electrochem, vol.5, pp.531-537, 2001.

B. M. Abu-zied, Y. A. Mohamed, and A. M. Asiri, Fabrication, characterization, and electrical conductivity properties of Pr6O11 nanoparticles, J. Rare Earths, vol.31, issue.7, pp.60345-60352, 2013.

S. Shrestha, C. M. Yeung, C. Nunnerley, and S. C. Tsang, Comparison of morphology and electrical conductivity of various thin films containing nano-crystalline praseodymium oxide particles, Sensors Actuators A, vol.136, issue.1, pp.191-198, 2007.

J. Schefold, A. Brisse, and H. Poepke, 23,000 h steam electrolysis with an electrolyte supported solid oxide cell, Int. J. Hydrogen Energy, vol.42, issue.19, pp.13415-13426, 2017.

F. Tietz, D. Sebold, A. Brisse, and J. Schefold, Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation, J. Power Sources, vol.223, pp.129-135, 2013.

V. Vibhu, Stability and ageing studies of Praseodymium-based nickelates as cathodes for Solid Oxide Fuel Cells, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01424845

B. G. Hyde, D. J. Bevan, and L. Eyring, On the praseodymium+oxygen system, Philos. Trans. R. Soc. A, vol.259, issue.1106, pp.583-614, 1966.

B. J. Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp.17-43, 2016.

B. D. Cullity, Elements Of X-Ray Diffraction, 1956.

S. T. Misture, In situ X-ray diffraction studies of electroceramics, J. Electroceramics, vol.16, pp.167-178, 2006.

, APPENDIX A: Scanning electron microscopy