M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol.55, 1964.

R. Alexandre, Y. Morimoto, S. Ukai, C. Xu, and T. Yang, Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal, vol.198, issue.1, pp.39-123, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01116729

P. and A. , Quadratic differential equations: partial Gelfand-Shilov smoothing effect and nullcontrollability, Journal of the Institute of Mathematics of Jussieu, pp.1-53, 2020.

P. Alphonse and J. Bernier, Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01888835

P. Alphonse and J. Bernier, Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02280971

D. Applebaum, Lévy processes and stochastic calculus, vol.116, 2009.

H. F. Baker, Alternants and Continuous Groups, Proc. London Math. Soc, issue.2, pp.24-47, 1905.

K. Beauchard, M. Egidi, and K. Pravda-starov, Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02272856

K. Beauchard, P. Jaming, and K. Pravda-starov, Spectral inequality for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01766300

K. Beauchard and K. Pravda-starov, Null-controllability of non-autonomous Ornstein-Uhlenbeck equations, J. Math. Anal. Appl, vol.456, issue.1, pp.496-524, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01355812

K. Beauchard and K. Pravda-starov, Null-controllability of hypoelliptic quadratic differential equations, J. Éc. polytech. Math, vol.5, pp.1-43, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01301604

J. Bernier, F. Casas, and N. Crouseilles, Splitting methods for rotations : application to vlasov equations, to appear in SIAM, J. Sci. Comp, p.2178952

A. Boulkhemair, L 2 estimates for Weyl quantization, J. Funct. Anal, vol.165, issue.1, pp.173-204, 1999.

M. Bramanti, G. Cupini, E. Lanconelli, and E. Priola, Global L p estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z, vol.266, issue.4, pp.789-816, 2010.

M. Bre?ar, Introduction to noncommutative algebra, 2014.

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011.

M. Cappiello, T. Gramchev, and L. Rodino, Entire extensions and exponential decay for semilinear elliptic equations, J. Anal. Math, vol.111, pp.339-367, 2010.

M. Cappiello, T. Gramchev, S. Pilipovic, and L. Rodino, Anisotropic Shubin operators and eigenfunction expansions in Gelfand-Shilov spaces, J. Anal. Math, vol.138, issue.2, pp.857-870, 2019.

E. Carypis and P. Wahlberg, Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians, J. Fourier Anal. Appl, vol.23, issue.3, pp.530-571, 2017.

J. Coron, Control and nonlinearity, vol.136, 2007.

G. Da-prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal, vol.131, issue.1, pp.94-114, 1995.

G. Da-prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol.44, 1992.

N. Dunford and J. T. Schwartz, Linear operators. Part I, Wiley Classics Library, 1988.

M. Egidi and I. Veseli?, Sharp geometric condition for null-controllability of the heat equation on R d and consistent estimates on the control cost, Arch. Math. (Basel), issue.1, pp.85-99, 2018.

Y. Egorov, Subelliptic pseudodifferential operators, Dokl. Akad. Nauk SSSR, vol.188, pp.20-22, 1969.

Y. Egorov, Subelliptic operators, Uspehi Mat. Nauk, vol.30, pp.57-104, 1975.

B. Farkas and L. Lorenzi, On a class of hypoelliptic operators with unbounded coefficients in R N , Commun, Pure Appl. Anal, vol.8, issue.4, pp.1159-1201, 2009.

B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures, J. Math. Pures Appl, issue.9, pp.310-321, 2006.

T. Gramchev, A. Lecke, S. Pilipovi?, and L. Rodino, Gelfand-Shilov type spaces through Hermite expansions, Pseudo-differential operators and generalized functions, vol.245, pp.95-105, 2015.

T. Gramchev, S. Pilipovic, and L. Rodino, Eigenfunction expansions in R n, Proc. Amer. Math. Soc, vol.139, issue.12, pp.4361-4368, 2011.

P. Gressman and R. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc, vol.24, issue.3, pp.771-847, 2011.

F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie, Berichte der Sächsischen Akad. der Wissensch, vol.58, pp.19-48, 1906.

F. Hérau and K. Pravda-starov, Anisotropic hypoelliptic estimates for Landau-type operators, J. Math. Pures Appl, issue.9, pp.513-552, 2011.

M. Hitrik and K. Pravda-starov, Spectra and semigroup smoothing for non-elliptic quadratic operators, Math. Ann, vol.344, issue.4, pp.801-846, 2009.

M. Hitrik and K. Pravda-starov, Semiclassical hypoelliptic estimates for non-selfadjoint operators with double characteristics, Comm. Partial Differential Equations, vol.35, issue.6, pp.988-1028, 2010.

M. Hitrik and K. Pravda-starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics, Ann. Inst. Fourier (Grenoble), vol.63, issue.3, pp.985-1032, 2013.

M. Hitrik, K. Pravda-starov, and J. Viola, Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators, Bull. Sci. Math, vol.141, issue.7, pp.615-675, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01219734

M. Hitrik, K. Pravda-starov, and J. Viola, From semigroups to subelliptic estimates for quadratic operators, Trans. Amer. Math. Soc, vol.370, issue.10, pp.7391-7415, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01219682

L. Hörmander, Subelliptic operators, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, vol.91, pp.127-208

L. Hörmander, The analysis of linear partial differential operators, vol.III, 1985.

L. Hörmander, The analysis of linear partial differential operators, vol.IV, 1985.

L. Hörmander, The analysis of linear partial differential operators, vol.I, 1990.

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, vol.219, issue.3, pp.413-449, 1995.

R. A. Horn and C. R. Johnson, Matrix analysis, 1990.

T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band, vol.132, 1966.

A. Koenig, Non-null-controllability of the Grushin operator in 2D, C. R. Math. Acad. Sci. Paris, vol.355, issue.12, pp.1215-1235, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01654043

A. Koenig, Non-null-controllability of the fractional heat equation and of the Kolmogorov equation, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01829289

A. Kolmogoroff, Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), pp.116-117, 1934.

O. Kovrijkine, Some results related to the Logvinenko-Sereda theorem, Proc. Amer. Math. Soc, vol.129, issue.10, pp.3037-3047, 2001.

E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, vol.52, issue.1, pp.29-63, 1994.

J. L. Rousseau and I. Moyano, Null-controllability of the Kolmogorov equation in the whole phase space, J. Differential Equations, vol.260, issue.4, pp.3193-3233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01134917

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, vol.20, issue.1-2, pp.335-356, 1995.

N. Lerner, Semi-classical estimates for non-selfadjoint operators, Asian J. Math, vol.11, issue.2, pp.217-250, 2007.

N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators, Theory and Applications, vol.3, 2010.

N. Lerner, Y. Morimoto, K. Pravda-starov, and C. Xu, Gelfand-Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation, J. Funct. Anal, vol.269, issue.2, pp.459-535, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02343778

J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Recherches en Mathématiques Appliquées, vol.1, issue.2, 1988.

V. N. Logvinenko and J. F. Sereda, Equivalent norms in spaces of entire functions of exponential type, Teor. Funkci? Funkcional. Anal. i Prilo?en. Vyp, vol.20, pp.102-111, 1974.

L. Lorenzi and M. Bertoldi, Analytical methods for Markov semigroups, Pure and Applied Mathematics, vol.283, 2007.

A. Lunardi, On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures, Trans. Amer. Math. Soc, vol.349, issue.1, pp.155-169, 1997.

A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n, Ann. Scuola Norm. Sup. Pisa Cl. Sci, issue.4, pp.133-164, 1997.

A. Lunardi, Interpolation theory, Lecture Notes, Scuola Normale Superiore di Pisa (New Series), Edizioni della Normale, 2009.

J. Martin and K. Pravda-starov, Spectral inequalities for combinations of Hermite functions and nullcontrollability for evolution equations enjoying Gelfand-Shilov smoothing effect, 2019.

G. Metafune, D. Pallara, and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures, J. Funct. Anal, vol.196, issue.1, pp.40-60, 2002.

L. Miller, Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett, vol.12, issue.1, pp.37-47, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00003099

L. Miller, On the controllability of anomalous diffusions generated by the fractional Laplacian, Math. Control Signals Systems, vol.18, issue.3, pp.260-271, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00008809

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B, vol.14, issue.4, pp.1465-1485, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00411846

Y. Morimoto and C. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, vol.247, issue.2, pp.596-617, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00368263

F. Nicola and L. Rodino, Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators, Theory and Applications, vol.4, 2010.

L. Nirenberg and F. Trèves, On local solvability of linear partial differential equations. I. Necessary conditions, Comm. Pure Appl. Math, vol.23, pp.1-38, 1970.

M. Ottobre, G. A. Pavliotis, and K. Pravda-starov, Exponential return to equilibrium for hypoelliptic quadratic systems, J. Funct. Anal, vol.262, issue.9, pp.4000-4039, 2012.

M. Ottobre, G. A. Pavliotis, and K. Pravda-starov, Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators, J. Math. Anal. Appl, vol.429, issue.2, pp.676-712, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01110692

A. W. Paeth, A Fast Algorithm for General Raster Rotation, in Graphics Gems, pp.179-195, 1990.

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol.44, 1983.

K. Pravda-starov, Contraction semigroups of elliptic quadratic differential operators, Math. Z, vol.259, issue.2, pp.363-391, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00145109

K. Pravda-starov, Subelliptic estimates for quadratic differential operators, Amer. J. Math, vol.133, issue.1, pp.39-89, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00315800

K. Pravda-starov, Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities, Math. Ann, vol.372, issue.3-4, pp.1335-1382, 2018.

K. Pravda-starov, Estimations de résolvante et localisation du spectre pour certaines classes d'opérateurs pseudo-différentiels semi-classiques non autoadjoints, d'après Dencker, Sjöstrand et Zworski, Séminaire Bourbaki, 72ème année, 1169.

K. Pravda-starov, L. Rodino, and P. Wahlberg, Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians, Math. Nachr, vol.291, issue.1, pp.128-159, 2018.

L. Rodino, Linear partial differential operators in Gevrey spaces, 1993.

W. Rudin, Real and complex analysis, 1974.

J. Sjöstrand, Resolvent estimates for non-selfadjoint operators via semigroups, Around the research of Vladimir Maz'ya. III, Int. Math. Ser. (N. Y.), vol.13, pp.359-384, 2010.

J. Toft, A. Khrennikov, B. Nilsson, and S. Nordebo, Decompositions of Gelfand-Shilov kernels into kernels of similar class, J. Math. Anal. Appl, vol.396, issue.1, pp.315-322, 2012.

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, vol.I, pp.71-305, 2002.

J. Viola, Non-elliptic quadratic forms and semiclassical estimates for non-selfadjoint operators, Int. Math. Res. Not. IMRN, issue.20, pp.4615-4671, 2013.

J. Viola, Spectral projections and resolvent bounds for partially elliptic quadratic differential operators, J. Pseudo-Differ. Oper. Appl, vol.4, issue.2, pp.145-221, 2013.

J. Viola, The elliptic evolution of non-selfadjoint degree-2 Hamiltonians, 2017.

P. Wahlberg, Propagation of polynomial phase space singularities for Schrödinger equations with quadratic Hamiltonians, Math. Scand, vol.122, issue.1, pp.107-140, 2018.

G. Wang, M. Wang, C. Zhang, and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in R n, J. Math. Pures Appl, issue.9, pp.144-194, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01633333

Y. Zhang, Unique continuation estimates for the Kolmogorov equation in the whole space, C. R. Math. Acad. Sci. Paris, vol.354, issue.4, pp.389-393, 2016.

. ??-???????-?!????????????!??????????-????4!?.?!???????5?????????????!??????????-?????6??????&?????????-???*??????7?????,

&. ??!?-?!?8?-????4!?.?!????6?,

!. ?<????-?5???????3,

?. ?. >?,

?. ?????????&???!?-5?????,

?. ??,

?. ??,

?. ????-???????????7????????&??&??????,

?. ?&?-?,

. ?5????-???-!???&?-??-???-&??????5???!??????-?????0&!?-???????3,

. ??-??????-?!????9??,

. ???!???????????-?????!!?.?!??9??,

. ????!???????5????????????-??????@???????*-??!, , p.7

/. ???,

. 12?-???-?-????-?? and . ??-?,

?. ??!?-?!?????9??,

. ?????????????, . ??, and . ?&??&????????,

. ????!???????5??????????*-??-??????@?????@??-!???????,

?. ,

. ??????-??*-.?!!?&??-?-&??&???????-????-???-????-??!!*-?????!!?.?!??9,

?. ?????? and . ????,

. ?????-!????-???-??&????-?,

. ?. ????*!?-?!??&????????-?????.9?????=???????*??*-!?? and . >??&??????????;?????????????????;???;??-*-?????!?-??;;??????-????-??-!??????-?????&????-?&??????3,

. ??????-????-!???????????-!?????,

. ??-??????-5???????-?-??,

. ???????!?-?&????????-????? and . ???-??9!?-5?????,

?. ??&!?0*??!????-5???????,

?. ????-?,

?. ???*-??????????-&?????????, . ??@????, and . ??!,

*. ??!,

. ??7?????-&?????-?,

?. ?&?-?,

?. ?????-?,

. ?????&??????&?-????????????0&!?-??!9???? and . ??, , p.3