R. Faraj, F. Goutaland, N. Ollier, E. Cattaruzza, and F. Vocanson, « Growth of Gold Nanoparticles in a Glass Matrix by Continuous Laser Irradiation for Efficient Surface Enhanced Raman Scattering, Phys. Status Solidi A, vol.216, p.1800548, 2019.

S. C. Rasmussen, « How Glass Changed the World: The History and Chemistry of Glass from Antiquity to the 13 th Century, 2012.

J. E. Shelby, « Introduction to Glass Science and Technology, 2005.

W. H. Zachariasen, «. The, . Arrangement, and . Glass-», J. Am. Chem. Soc, vol.54, p.1932

R. H. Doremus, Exchange and Diffusion of Ions in Glass, J. Phys. Chem, pp.2212-2218, 1964.

K. H. Stern, Chem. Rev, pp.355-372, 1966.

G. Schulze, Versuche über die Diffusion von Silber in Glas, pp.335-367, 1913.

R. V. Ramaswamy and R. Srivastava, « Ion-exchanged glass waveguides, J. Light. Technol, vol.6, pp.984-1000, 1988.

B. R. West, « Ion-exchanged glass waveguide technology, Opt. Eng, p.71107, 2011.

J. Delgado, M. Vilarigues, A. Ruivo, V. Corregidor, R. C. Da-silva et al., « Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal », Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At, pp.2383-2388, 2011.

H. Seppo, W. Brian, Y. Sanna, and M. Pratheepan, « Recent advances in ion exchanged glass waveguides and devices, Phys. Chem. Glasses B, pp.110-120, 2006.

F. Catan, Elaboration et caractérisation de nanoparticules métalliques par voie physico-chimique : application à la couleur », thèse de doctorat, 2007.

H. Mehrer, « Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, p.645, 2007.

R. Gy, « Ion exchange for glass strengthening, Mater. Sci. Eng. B, pp.159-165, 2008.

D. Guldiren, I. Erdem, and E. S. Aydin, « Influence of silver and potassium ion exchange on physical and mechanical properties of soda lime glass, J. Non-Cryst. Solids, pp.1-9, 2016.

E. Mendes, R. Piletti, T. Barichello, C. M. Oliveira, C. T. Kniess et al., « The influence of particle size and AgNO3 concentration in the ionic exchange process on the fungicidal action of antimicrobial glass, Mater. Sci. Eng. C, pp.1518-1523, 2012.

T. Tite, N. Ollier, M. C. Sow, F. Vocanson, and F. Goutaland, « Ag nanoparticles in sodalime glass grown by continuous wave laser irradiation as an efficient SERS platform for pesticides detection, Sens. Actuators B Chem, pp.127-131, 2017.

D. Kapila and J. L. Plawsky, « Diffusion processes for integrated waveguide fabrication in glasses: A solid-state electrochemical approach, Chem. Eng. Sci, pp.2589-2600, 1995.

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada et al., « Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange, Mater. Sci. Eng. B, pp.195-199, 2008.

E. Cattaruzza, G. Battaglin, P. Calvelli, and F. Gonella, « Fast nonlinear refractive index of pure and alloy metallic nanoclusters in silica glass, Compos. Sci. Technol, vol.63, pp.1203-1208, 2003.

E. Cattaruzza, F. Gonella, G. Peruzzo, A. Quaranta, C. Sada et al., « Field-assisted ion diffusion in dielectric matrices: Er 3+ in silicate glass », Mater. Sci. Eng. B, pp.163-166, 2008.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada et al., « Fieldassisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses, Mater. Sci. Eng. C, pp.1087-1091, 2006.

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza et al., « Field-driven diffusion of transition metal and rare-earth ions in silicate glasses, J. Non-Cryst. Solids, pp.39-44, 2014.

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, Silver and gold doping of SiO2 glass by solid-state field-assisted diffusion », J. Non-Cryst. Solids, pp.1136-1139, 2009.

J. Sancho-parramon, V. Janicki, P. Dub?ek, and K. Jurai?, « Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution, Opt. Mater, pp.510-514, 2010.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian et al., « Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption, Solid State Sci, vol.12, pp.1413-1418, 2010.

S. Ali, Y. Iqbal, A. Samreen, and N. Ali, « Field-assisted diffusion behavior of transition metal ions in silicate glasses, J. Non-Cryst. Solids, pp.13-18, 2014.

N. Cabrera and N. F. Mott, Theory of the oxidation of metals, vol.12, p.1949

F. Gonella, E. Cattaruzza, A. Quaranta, S. Ali, N. Argiolas et al., « Diffusion behavior of transition metals in field-assisted ion-exchanged glasses », Solid State Ion, pp.3151-3155, 2006.

R. G. Walker, C. D. Wilkinson, and J. A. Wilkinson, « Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation, Appl. Opt, pp.1923-1928, 1983.

G. De-marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi et al., Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere, Appl. Phys. A, vol.63, pp.403-407, 1996.

E. Cattaruzza, M. Mardegan, E. Trave, G. Battaglin, P. Calvelli et al., « Modifications in silver-doped silicate glasses induced by ns laser beams, Appl. Surf. Sci, pp.5434-5438, 2011.

J. Zhang, W. Dong, L. Qiao, J. Li, J. Zheng et al., « Silver nanocluster formation in soda-lime silicate glass by X-ray irradiation and annealing, J. Cryst. Growth, pp.278-284, 2007.

S. Wackerow, G. Seifert, and E. A. Abdolvand, « Homogenous silver-doped nanocomposite glass, Opt. Mater. Express, p.1224, 2011.

X. C. Yang, M. Dubiel, S. Brunsch, and H. Hofmeister, « X-ray absorption spectroscopy analysis of formation and structure of Ag nanoparticles in soda-lime silicate glass, J. Non-Cryst. Solids, pp.123-136, 2003.

F. Goutaland, E. Marin, J. Y. Michalon, and A. Boukenter, « Growth of silver nanoparticles of variable and controlled diameter in silica-based and soda-lime glasses by simultaneous continuous ultraviolet irradiation and heat treatment », Appl. Phys. Lett, vol.94, p.181108, 2009.

M. Dubiel, J. Haug, H. Kruth, H. Hofmeister, K. Schicke et al., Na ion exchange in soda-lime glasses and the formation of small Ag nanoparticles, Mater. Sci. Eng. B, pp.146-151, 2008.

M. Dubiel, S. Brunsch, U. Kolb, D. Gutwerk, and H. Bertagnolli, « Experimental studies investigating the structure of soda-lime glasses after silver-sodium ion exchange, J. Non-Cryst. Solids, pp.30-44, 1997.

S. Mohapatra, « Tunable surface plasmon resonance of silver nanoclusters in ion exchanged soda lime glass, J. Alloys Compd, vol.598, pp.11-15, 2014.

J. Hu, W. Cai, H. Zeng, C. Li, and E. F. Sun, « Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres, J. Phys. Condens. Matter, vol.18, pp.5415-5423, 2006.

K. Berg, A. Berger, and H. Hofmeister, « Small silver particles in glass surface layers produced by sodium-silver ion exchange -their concentration and size depth profile, Z. Für Phys. At. Mol. Clust, pp.309-311, 1991.

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li et al., Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation, J. Cryst. Growth, pp.234-239, 2008.

O. Veron, J. P. Blondeau, D. De-sousa-meneses, and C. A. Vignolle, Structural Changes of Ag+-Na+ Annealed Ion-Exchanged Silicate Glasses Scanning Electron Microscopy, Far-Infrared Reflectivity, UV-Visible Absorption, and TEM Investigation, pp.137-148, 2011.

P. Gangopadhyay, P. Magudapathy, R. Kesavamoorthy, B. K. Panigrahi, K. G. Nair et al., Growth of silver nanoclusters embedded in soda glass matrix, Chem. Phys. Lett, vol.388, pp.416-421, 2004.

S. Mohapatra, « Tunable surface plasmon resonance of silver nanoclusters in ion exchanged soda lime glass, J. Alloys Compd, vol.598, pp.11-15, 2014.

G. De-marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi et al., « Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere, Appl. Phys. Mater. Sci. Process, vol.63, pp.403-407, 1996.

R. Rajaramakrishna, S. Karuthedath, R. V. Anavekar, and H. Jain, « Nonlinear optical studies of lead lanthanum borate glass doped with Au nanoparticles, J. Non-Cryst. Solids, pp.1667-1672, 2012.

J. Sasai and K. Hirao, « Relaxation behavior of nonlinear optical response in borate glasses containing gold nanoparticles, J. Appl. Phys, pp.4548-4553, 2001.

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller et al., Rapp « Three-dimensional printing of transparent fused silica glass, Nature, pp.337-339, 2017.

S. B. Kolavekar, N. H. Ayachit, G. Jagannath, K. Nagakrishnakanth, and S. Rao, Optical, structural and Near-IR NLO properties of gold nanoparticles doped sodium zinc borate glasses, pp.34-42, 2018.

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si et al., Manipulation of Gold Nanoparticles inside Transparent Materials », pp.2230-2234, 2004.

K. Hirao, Expression of Optical Function by Nanostructure Using Femtosecond Laser Processing, Nanoparticle Technology Handbook, pp.578-582, 2008.

A. Piqué and P. Serra, Laser Printing of Functional Materials: 3D Microfabrication, Electronics and Biomedicine, p.480, 2018.

A. Stalmashonak, G. Seifert, and E. A. Abdolvand, « Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites, p.76, 2013.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev et al., Controllable femtosecond laser-induced dewetting for plasmonic applications: Controllable femtosecond laser-induced dewetting for plasmonic applications, vol.10, pp.91-99, 2016.

S. J. Henley, M. J. Beliatis, V. Stolojan, S. P. Ravi, and . Silva, Chapitre 1 : Bibliographie sur la synthèse des nanoparticules, pp.1054-1059, 2013.

S. J. Henley, J. D. Carey, and S. R. Silva, « Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films, Phys. Rev. B, vol.72, p.195408, 2005.

Z. Hui-dan, Q. Shi-liang, . Jian-rong, Z. Jiang, and . Cong-shan, Influence of Femtosecond Laser Irradiation and Heat Treatment on Precipitation of Silver Nanoparticles in Glass -IOPscience, pp.932-934, 2003.

M. Heinz, V. Srabionyan, and L. Bugaev, « Formation of silver nanoparticles in silicate glass using excimer laser radiation: Structural characterization by HRTEM, XRD, EXAFS and optical absorption spectra, J. Alloys Compd, pp.307-315, 2016.

H. Zeng, J. Qiu, X. Jiang, C. Zhu, and F. Gan, « The effect of femtosecond laser irradiation conditions on precipitation of silver nanoparticles in silicate glasses, J. Phys. Condens. Matter, pp.2901-2906, 2004.

J. Qiu, « Space-selective precipitation of metal nanoparticles inside glasses, Appl. Phys. Lett, vol.81, pp.3040-3042, 2002.

N. H. Man, H. L. Ma, M. J. Zhong, J. Y. Yang, and Y. Dai, Ye « Direct precipitation of silver nanoparticles induced by a high repetition femtosecond laser, Mater. Lett, vol.63, pp.151-153, 2009.

Q. Zhao, J. Qiu, X. Jiang, C. Zhao, and C. Zhu, « Mechanisms of the refractive index change in femtosecond laser-irradiated Au 3+ -doped silicate glasses, J. Appl. Phys, pp.7122-7125, 2004.

N. Nedyalkov, M. E. Koleva, R. Nikov, M. Grozeva, E. Iordanova et al.,

«. Karashanova, Optical properties modification of gold doped glass induced by nanosecond laser radiation and annealing, Opt. Mater, pp.646-653, 2018.

M. Heinz, V. Srabionyan, A. Avakyan, L. Bugae, V. Skidanenko et al., « Formation and implantation of gold nanoparticles by ArF-excimer laser irradiation of goldcoated float glass, J. Alloys Compd, vol.736, pp.152-162, 2018.

K. Grochowska, G. ?liwi?ski, A. Iwulska, M. Sawczak, N. Nedyalkov et al., Engineering Au Nanoparticle Arrays on SiO2 Glass by Pulsed UV Laser Irradiation, pp.105-113, 2013.

C. Sánchez-aké, A. Canales-ramos, T. García-fernández, and M. Villagrán-muniz, « Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure, Appl. Surf. Sci, pp.448-454, 2017.

N. Nedyalkov, N. E. Stankova, M. E. Koleva, R. Nikov, L. Aleksandrov et al., « Laser processing of noble metal doped glasses by femto-and nanosecond laser pulses, Appl. Surf. Sci, pp.479-486, 2019.

N. Nedyalkov, M. E. Koleva, R. Nikov, N. E. Stankova, E. Iordanova et al., « Tuning optical properties of noble metal nanoparticlecomposed glasses by laser radiation, Appl. Surf. Sci, pp.968-975, 2019.

M. Heinz, M. Dubiel, J. Meinertz, J. Ihlemann, and A. Hoell, « Investigation of gold and bimetallic gold/silver nanoparticles in soda-lime-silicate glasses formed by means of excimer laser irradiation », conférence SPIE LASE, 2017.

C. E. Talley, T. R. Huser, C. W. Hollars, L. Jusinski, T. Laurence et al., « Nanoparticle Based Surface-Enhanced Raman Spectroscopy, 2004.

H. S. Won and S. H. Song, « Metallic nanocluster gratings generated by nearfield coupling of localized surface plasmons, Opt. Express, pp.11814-11822, 2006.

M. D. Niry, J. Mostafavi-amjad, H. R. Khalesifard, A. Ahangary, and Y. , Azizian-Kalandaragh, « Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam, J. Appl. Phys, p.2012

F. Goutaland, M. Sow, N. Ollier, and F. Vocanson, « Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure, Opt. Mater. Express, vol.2, pp.350-357, 2012.

W. D. Johnston, « Oxidation-Reduction Equilibria in Molten Na2O, J. Am. Ceram. Soc, pp.184-190, 1965.

M. Tyagi, P. Kumar, and E. D. Kumar, « Modelling and analysis of barriers for supply chain performance measurement system », Int. J. Oper. Res, pp.392-414, 2017.

R. Ciceo, M. Todea, R. Dudric, A. Buhai, and V. Simon, « Structural effect of cobalt ions added to a borophosphate-based glass system, J. Non-Cryst. Solids, pp.562-567, 2018.

Y. Li, W. Qiu, F. Qin, H. Fang, G. Hadjiev et al., « Identification of Cobalt Oxides with Raman Scattering and Fourier Transform Infrared Spectroscopy », J. Phys. Chem. C, pp.4511-4516, 2016.

P. Dutta, M. S. Seehra, S. Thota, and J. Kumar, « A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4 », J. Phys. Condens. Matter, p.15218, 2008.

S. Greenwald, The antiferromagnetic structure deformations in CoO and MnTe, vol.6, p.1953

A. V. Ravindra, B. C. Behera, and P. Padhan, « Laser Induced Structural Phase Transformation of Cobalt Oxides Nanostructures, J. Nanosci. Nanotechnol, pp.5591-5595, 2014.

W. L. Roth, . Structures-of, . Mno, C. Feo, and . Nio, Phys. Rev, pp.1333-1341, 1958.

W. L. Roth, Multispin Axis Structures for Antiferromagnets, Phys. Rev, pp.772-781, 1958.

R. H. Kodama, « Magnetic nanoparticles, J. Magn. Magn. Mater, pp.359-372, 1999.

J. S. Yin and Z. L. Wang, « In Situ Structural Evolution of Self-Assembled Oxide Nanocrystals, vol.101, pp.8979-8983, 1997.

L. Wang, K. Vu, A. Navrotsky, R. Stevens, B. F. Woodfield et al., Calorimetric Study: Surface Energetics and the Magnetic Transition in Nanocrystalline CoO », pp.5394-5400, 2004.

J. Jiang, J. Liu, R. Ding, X. Ji, Y. Hu et al., « Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes, J. Phys. Chem. C, pp.929-932, 2010.

U. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites: B: Ceramic Engineering and Science Proceedings, pp.101-106, 2008.

P. Thormählen, M. Skoglundh, and E. Fridell, Andersson, « Low-Temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts, J. Catal, pp.300-310, 1999.

B. Rivas-murias and V. Salgueiriño, « Thermodynamic CoO-Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals, J. Raman Spectrosc, vol.48, pp.837-841, 2017.

W. S. Seo, J. H. Shim, S. J. Oh, E. K. Lee, N. H. Hur et al., « Phase-and Size-Controlled Synthesis of Hexagonal and Cubic CoO Nanocrystals, J. Am. Chem. Soc, pp.6188-6189, 2005.

A. S. Risbud, L. P. Snedeker, M. M. Elcombe, A. K. Cheetham, R. Seshadri et al., Chem. Mater, pp.834-838, 2005.

J. S. Yin and Z. L. Wang, « Ordered Self-Assembling of Tetrahedral Oxide Nanocrystals, Phys. Rev. Lett, pp.2570-2573, 1997.

M. Ghosh, E. V. Sampathkumaran, and C. N. Rao, Synthesis and Magnetic Properties of CoO Nanoparticles, pp.2348-2352, 2005.

J. B. Wu, J. P. Tu, X. L. Wang, and W. K. Zhang, Synthesis of nanoscale CoO particles and their effect on the positive electrodes of nickel-metal hydride batteries, pp.606-610, 2007.

W. L. Smith and A. D. Hobson, The structure of cobalt oxide Co3O4, vol.29, pp.362-363, 1973.

W. Y. Li, L. N. Xu, and E. J. Chen, Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors, pp.851-857, 2005.

T. Maruyama and S. Arai, « Electrochromic Properties of Cobalt Oxide Thin Films Prepared by Chemical Vapor Deposition, J. Electrochem. Soc, pp.1383-1386, 1996.

F. ?vegl, B. Orel, I. Grabec-?vegl, and E. V. Kau?i?, « Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route, Electrochimica Acta, pp.4359-4371, 2000.

J. L. Gautier, E. Rios, M. Gracia, J. F. Marco, and J. R. Gancedo, « Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3?xO4 (1?x?0) spinel films prepared by lowtemperature spray pyrolysis, Thin Solid Films, pp.51-57, 1997.

R. V. Kumar, Y. Diamant, and A. Gedanken, « Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates, Chem. Mater, pp.2301-2305, 2000.

T. He, D. Chen, X. Jiao, Y. Wang, and Y. Duan, Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals, pp.4023-4030, 2005.

H. Zhang, J. Wu, C. Zhai, X. Ma, N. Du et al., « From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes, Nanotechnology, p.35711, 2008.

Y. Li, B. Tan, and Y. Wu, « Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability, Nano Lett, vol.8, pp.265-270, 2008.

X. W. Lou, D. Deng, J. Y. Lee, J. Feng, and L. A. Archer, « Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes, Adv. Mater, pp.258-262, 2008.

L. Li, Y. Chu, Y. Liu, J. Song, D. Wang et al., A facile hydrothermal route to synthesize novel Co3O4 nanoplates », vol.62, pp.1507-1510, 2008.

S. H. Johnson, C. L. Johnson, S. J. May, S. Hirsch, M. W. Cole et al., « Co@CoO@Au core-multi-shell nanocrystals, J. Mater. Chem, pp.439-443, 2010.

C. Tang, C. Wang, S. Chien, ;. Ft-ir, and T. Raman, Thermochim. Acta, pp.68-73, 2008.

J. Yang, H. Liu, W. N. Martens, and R. L. Frost, « Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs, J. Phys. Chem. C, pp.111-119, 2010.

P. J. Gielisse, J. N. Plendl, and L. C. Mansur, « Infrared Properties of NiO and CoO and Their Mixed Crystals, J. Appl. Phys, pp.2446-2450, 1965.

Q. Guo, H. Mao, J. Hu, J. Shu, and R. J. Hemley, « The phase transitions of CoO under static pressure to 104 GPa », J. Phys. Condens. Matter, p.11369, 2002.

C. A. Melendres, « In Situ Laser Raman Spectroscopic Study of Anodic Corrosion Films on Nickel and Cobalt, J. Electrochem. Soc, p.2239, 1984.

D. Gallant and S. Simard, « A study on the localized corrosion of cobalt in bicarbonate solutions containing halide ions, Corros. Sci, pp.1810-1838, 2005.

C. A. Melendres, « In Situ Laser Raman Spectroscopic Study of Anodic Corrosion Films on Nickel and Cobalt, J. Electrochem. Soc, vol.131, p.2239, 1984.

J. Nan, Y. Yang, and Z. Lin, « Raman spectroscopic study on the surface oxide layer of AB5-type metal hydride electrodes, Electrochimica Acta, pp.1767-1772, 2001.

V. G. Hadjiev, M. N. Iliev, and I. V. Vergilov, « The Raman spectra of Co3O4 », J. Phys. C Solid State Phys, vol.21, p.199, 1988.

C. Muehlethaler, M. Leona, and J. R. Lombardi, Review of Surface Enhanced Raman Scattering Applications in Forensic Science », vol.88, pp.152-169, 2016.

F. Gonella, Stress-induced optical effects in Ag^+-Na^+ ion-exchanged glass waveguides, Opt. Lett, vol.17, p.1667, 1992.

S. Schwarz, Secondary Ion Mass Spectroscopy », Encyclopedia of Materials: Science and Technology, pp.8283-8290, 2001.

J. Zhao, J. Lin, W. Zhang, H. Wei, and Y. Chen, « SERS-active Ag nanoparticles embedded in glass prepared by a two-step electric field-assisted diffusion, Opt. Mater, pp.39-97, 2015.

M. Sow, Surfaces fonctionnalisées à base de nanoparticules métalliques pour l'optique et la photonique », thèse de doctorat, 2013.

F. Goutaland, J. Colombier, M. C. Sow, N. Ollier, and F. Vocanson, Laser-induced periodic alignment of Ag nanoparticles in soda-lime glass, Opt. Express, p.31789, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919742

M. D. Niry, J. Mostafavi-amjad, H. R. Khalesifard, A. Ahangary, and Y. , Azizian-Kalandaragh, « Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar + laser beam, J. Appl. Phys, p.2012

S. Wackerow and A. Abdolvand, « Laser-assisted one-step fabrication of homogeneous glass-silver composite, Appl. Phys. A, vol.109, pp.45-49, 2012.

J. M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett, vol.7, pp.196-198, 1982.

W. D. Johnston, « Oxidation-Reduction Equilibria in Iron-Containing Glass, J. Am. Ceram. Soc, vol.47, pp.198-201, 1964.

Y. Hayashi, K. Matsumoto, and M. Kudo, « The diffusion mechanism of tin into glass governed by redox reactions during the float process, J. Non-Cryst. Solids, pp.188-196, 2001.

W. D. Johnston, « Oxidation-Reduction Equilibria in Molten Na2O, J. Am. Ceram. Soc, pp.184-190, 1965.

G. W. Toop and C. S. Somis, Some New Ionic Concepts of Silicate Slags », vol.1, pp.129-152, 1962.

P. A. Kilty, W. M. Sachtler, «. The, . Of, . Selective et al., Catal. Rev, vol.10, pp.1-16, 1974.

J. Hu, W. Cai, H. Zeng, C. Li, and E. F. Sun, « Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres, J. Phys. Condens. Matter, vol.18, pp.5415-5423, 2006.

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, « Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam, J. Appl. Phys, pp.2343-2348, 2003.

M. Lax and . Temperature, J. Appl. Phys, pp.3919-3924, 1977.

S. Mohapatra, « Tunable surface plasmon resonance of silver nanoclusters in ion exchanged soda lime glass, J. Alloys Compd, vol.598, pp.11-15, 2014.

J. Zhao, J. Lin, W. Zhang, H. Wei, and Y. Chen, « SERS-active Ag nanoparticles embedded in glass prepared by a two-step electric field-assisted diffusion, Opt. Mater, pp.39-97, 2015.

P. A. Mosier-boss, « Review of SERS Substrates for Chemical Sensing, p.2017

J. Gu, W. Fan, A. Shimojima, and T. Okubo, « Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica, J. Solid State Chem, pp.957-963, 2008.

J. H. Fan, W. I. Hung, W. T. Li, and J. M. Yeh, Biocompatibility Study of Gold Nanoparticles to Human Cells », chapter from book 13th International Conference on Biomedical Engineering, pp.870-873, 2009.

T. Tite, N. Ollier, M. C. Sow, F. Vocanson, and F. Goutaland, « Ag nanoparticles in sodalime glass grown by continuous wave laser irradiation as an efficient SERS platform for pesticides detection, Sens. Actuators B Chem, pp.127-131, 2017.

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza et al., « Field-driven diffusion of transition metal and rare-earth ions in silicate glasses, J. Non-Cryst. Solids, pp.39-44, 2014.

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, Silver and gold doping of SiO2 glass by solid-state field-assisted diffusion », J. Non-Cryst. Solids, pp.1136-1139, 2009.

D. Kapila and J. L. Plawsky, « Diffusion processes for integrated waveguide fabrication in glasses: A solid-state electrochemical approach, Chem. Eng. Sci, pp.2589-2600, 1995.

D. Kapila and J. L. Plawsky, « Solid-State film diffusion for the production of integrated optical waveguides, AIChE J, pp.39-1186, 1993.

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, Silver and gold doping of SiO2 glass by solid-state field-assisted diffusion », J. Non-Cryst. Solids, pp.1136-1139, 2009.

F. Goutaland, J. Colombier, M. C. Sow, N. Ollier, and F. Vocanson, Laser-induced periodic alignment of Ag nanoparticles in soda-lime glass, Opt. Express, p.31789, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919742

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, « Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam, Appl. Phys, pp.2343-2348, 2003.

M. Lax and . Temperature, Appl. Phys, pp.3919-3924, 1977.

M. Lax, Temperature rise induced by a laser beam II. The nonlinear case», Appl. Phys. Lett, pp.786-788, 1978.

E. Cattaruzza, G. Battaglin, P. Calvelli, F. Gonella, G. Mattei et al., « Fast nonlinear refractive index of pure and alloy metallic nanoclusters in silica glass, Chapitre 5 : Nanostructuration de verres sodocalciques dopés avec des nanoparticules d'oxyde de cobalt, vol.63, p.127, 2003.

, Chapitre 5 : Nanostructuration de verres sodocalciques dopés avec des nanoparticules d'oxyde de cobalt Références

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada et al., « Fieldassisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses, Mater. Sci. Eng. C, pp.1087-1091, 2006.

F. Gonella, E. Cattaruzza, A. Quaranta, S. Ali, N. Argiolas et al., « Diffusion behavior of transition metals in field-assisted ion-exchanged glasses », Solid State Ion, pp.3151-3155, 2006.

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, Silver and gold doping of SiO2 glass by solid-state field-assisted diffusion, J. Non-Cryst. Solids, pp.1136-1139, 2009.

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada et al., « Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange, Mater. Sci. Eng. B, pp.195-199, 2008.

R. Faraj, F. Goutaland, N. Ollier, E. Cattaruzza, and F. Vocanson, « Growth of Gold Nanoparticles in a Glass Matrix by Continuous Laser Irradiation for Efficient Surface Enhanced Raman Scattering, Phys. Status Solidi A, vol.216, p.1800548, 2019.

W. L. Smith and A. D. Hobson, The structure of cobalt oxide

B. , , vol.29, pp.362-363, 1973.

G. A. De-wijs, C. M. Fang, G. Kresse, and G. With, « First-principles calculation of the phonon spectrum of MgAl2O4 spinel, Phys. Rev. B, vol.65, p.94305, 2002.

V. G. Hadjiev, M. N. Iliev, and I. V. Vergilov, « The Raman spectra of Co3O4 », J. Phys. C Solid State Phys, vol.21, p.199, 1988.

H. Chou and H. Y. Fan, « Light scattering by magnons in CoO, MnO, and ? ? MnS, Phys. Rev. B, vol.13, pp.3924-3938, 1976.

D. L. De-faria, S. Silva, and M. T. De-oliveira, « Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc, vol.28, pp.873-878, 1997.

W. A. England, M. J. Bennett, D. A. Greenhalgh, S. N. Jenny, and C. F. Knights, The characterization by raman spectroscopy of oxide scales formed on a 20Cr25NiNb stabilized stainless steel, pp.537-545, 1986.

B. Rivas-murias and V. Salgueiriño, « Thermodynamic CoO-Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals, J. Raman Spectrosc, vol.48, pp.837-841, 2017.

A. Navrotsky, Physics and Chemistry of Earth Materials, p.434, 1994.

G. M. Kale, S. S. Pandit, and K. T. Jacob, Oxide (Co3O4): Evidence of Phase Transition, Thermodynamics of Cobalt, pp.125-132, 1988.

R. Drasovean and S. Condurache-bota, « Structural Characterization and Optical Properties of Co3O4 and CoO Films, J. Optoelectron. Adv. Mater, pp.2141-2144, 2009.

F. Gu, C. Li, Y. Hu, and L. Zhang, Synthesis and optical characterization of Co3O4 nanocrystals, J. Cryst. Growth, pp.369-373, 2007.

S. Farhadi, M. Javanmard, and G. Nadri, « Characterization of Cobalt Oxide Nanoparticles Prepared by the Thermal Decomposition, Acta Chim. Slov, vol.63, pp.335-343, 2016.

G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu et al., « Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods », J. Phys. Chem. C, pp.4357-4361, 2009.

R. Xu and H. C. Zeng, « Self-Generation of Tiered Surfactant Superstructures for One-Pot Synthesis of Co3O4 Nanocubes and Their Close-and Non-Close-Packed Organizations, Langmuir, pp.9780-9790, 2004.

F. Gu, C. Li, Y. Hu, and L. Zhang, Synthesis and optical characterization of Co3O4 nanocrystals, J. Cryst. Growth, pp.369-373, 2007.

K. M. Miedzinska, B. R. Hollebone, and J. G. Cook, « An assigment of the optical absorption spectrum of mixed valence Co3O4 spinel films, J. Phys. Chem. Solids, pp.649-656, 1987.

X. Zhu, J. Wang, D. Nguyen, J. Thomas, R. A. Norwood et al., Linear and nonlinear optical properties of Co3O4 nanoparticle-doped polyvinyl-alcohol thin films, Opt. Mater. Express, vol.2, p.2012

A. Duran, J. M. Fernandez-navarro, P. Casariego, and A. Joglar, « Optical properties of glass coatings containing Fe and Co, J. Non-Cryst. Solids, pp.391-399, 1986.

D. Gallant and S. Simard, « A study on the localized corrosion of cobalt in bicarbonate solutions containing halide ions, Corros. Sci, pp.1810-1838, 2005.

K. Mocala, A. Navrotsky, and D. M. Sherman, « High-temperature heat capacity of Co3O4 spinel: thermally induced spin unpairing transition, Phys. Chem. Miner, vol.19, pp.88-95, 1992.

C. Cheng, M. Serizawa, H. Sakata, and T. Hirayama, « Electrical conductivity of Co3O4 films prepared by chemical vapour deposition », Mater. Chem. Phys, pp.225-230, 1998.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo et al.,

, Tondello « Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition, Chem. Mater, pp.588-593, 2001.

E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela, « Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass, J. Appl. Phys, vol.104, p.54912, 2008.

D. Zhang, J. Zhu, N. Zhang, T. Liu, L. Chen et al., « Controllable fabrication and magnetic properties of double-shell cobalt oxides hollow particles, Sci. Rep, vol.5, p.8737, 2015.

Q. Wang, C. Xu, M. Ming, Y. Yang, B. Xu et al., « In Situ Formation of AgCo Stabilized on Graphitic Carbon Nitride and Concomitant Hydrolysis of Ammonia Borane to Hydrogen, p.280, 2018.

A. S. Dimitrov and K. Nagayama, « Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, Langmuir, pp.1303-1311, 1996.

A. Holewinski, J. Idrobo, and E. S. Linic, « High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction », Nat. Chem, vol.6, p.828, 2014.

R. Moyes, « Interaction of cobalt with oxygen, water vapor, and carbon monoxide *1X-Ray and ultraviolet photoemission studies, J. Catal, pp.216-224, 1977.

C. R. Brundle, T. J. Chuang, and D. W. Rice, « X-ray photoemission study of the interaction of oxygen and air with clean cobalt surfaces, Surf. Sci, pp.286-300, 1976.

D. W. Rice, P. B. Phipps, and R. Tremoureux, Atmospheric Corrosion of Cobalt, J. Electrochem. Soc, pp.1459-1466, 1979.

R. E. Carter, F. D. Richardson, and C. Wagner, Oxidation of Cobalt Metal, p.1955

F. Goutaland, J. Colombier, M. C. Sow, N. Ollier, and F. Vocanson, Laser-induced periodic alignment of Ag nanoparticles in soda-lime glass, Opt. Express, p.31789, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919742

M. C. Mathpal, P. Kumar, S. Kumar, A. K. Tripathi, M. K. Singh et al.,

. Agarwal, Opacity and plasmonic properties of Ag embedded glass based metamaterials, RSC Adv, vol.5, pp.12555-12562, 2015.

M. Erol, Y. Han, S. K. Stanley, C. M. Stafford, H. Du et al., Je n'ai pas pu utiliser ces techniques du fait de la très grande sensibilité sous excitation X et de la faible concentration de nanoparticules : l'analyse des échantillons dopés argent par XPS, dans le but de mesurer l'oxydation de ces nanoparticules, nécessitaient des durées d'acquisition très longues (quelques heures) pendant lesquelles les nanoparticules se modifiaient, voire disparaissaient, J. Am. Chem. Soc, pp.7480-7481, 2009.

, Concernant les nanoparticules, d'or, les résultats obtenus sont prometteurs en termes de détection par effet SERS. Néanmoins, je pense qu'il est possible d'améliorer à la fois la qualité et la reproductibilité des substrats en déposant la couche d'or par pulvérisation magnétron plutôt que par évaporation thermique. En effet, l'adhérence de l'or sur le verre est faible avec cette dernière technique et la couche à tendance à s'enlever lors du poling thermique. Le co-dopage argent-or est également possible en utilisant successivement l'échange ionique à l'argent puis le poling thermique pour former les deux types de nanoparticules. Ce co-dopage peut permettre d'étendre la sensibilité des substrats en termes de molécules à détecter

. De-la-même-façon, En effet, les nanoparticules de cobalt semblent s'oxyder au détriment de celles d'argent. Il a été démontré, dans la littérature, que des nanoparticules d'argent non oxydées, c'est-à-dire, purement métalliques, permettent une meilleure détection SERS. Les lames de verre codopées par des nanoparticules d'argent et de cobalt présentent également un intérêt potentiel en tant que matériau magnéto-optique, dans lequel la polarisation d'une onde lumineuse se propageant est modifiée sous champ magnétique. Mes résultats ont notamment montré que les nanoparticules de cobalt précipitent sous la forme cristalline Co3O4, qui présente des propriétés magnétiques intéressantes. Le co-dopage avec l'argent pourrait permettre d'exploiter les propriétés optiques des nanoparticules d'argent via leur résonance plasmon. Bien évidemment, il faudra auparavant étudier les phénomènes physico-chimiques qui se produisent