Skip to Main content Skip to Navigation

La protéine Kinase Haspine comme nouvelle cible thérapeutique : analyse de ses fonctions et caractérisation d'inhibiteurs spécifiques

Abstract : Since its discovery in 1994, Haspin protein kinase has been of growing scientific interest due to its key role in mitosis. It is involved in spatio-temporal localization and activation of Aurora B kinase by creating a specific anchoring site (phosphorylation of Histone H3 on Thr3) on chromosomes and specifically at centromers during early mitosis. Loss of Haspin activity is irremediably accompanied by chromosome alignment errors, centromeric cohesion and mitotic spindle defects. Its essential mitotic functions make it a potential therapeutic target for cancer. The objectives of this thesis were to better understand the functions of Haspin in mitosis, and at the same time, to characterize new specific inhibitors. We have shown that centrosome and mitotic spindle integrity depends on Haspin kinase activity independently of Aurora B activity. In addition, we show that Haspin acts as a negative regulator microtubule nucleation both at centrosomes and on chromosomes. To better understand Haspin's role in microtubule nucleation we looked for new substrates using protein chips. We have identified several candidates including the Nima kinase nucleation effector, Nek9. We confirmed that Nek9 is an in vitro Haspin substrate. In addition, our results showed that Nek9 depletion partly saves the Haspin depletion phenotype, suggesting that Haspin antagonizes Nek9 nucleation function. All of our results demonstrate a new Haspin function in the regulation of microtubule nucleation signaling pathway. At the same time, we have characterized a new series of small inhibitory molecules of Haspin, imidazopyridines derived from CHR-6494. Our hit compounds showed good Haspin inhibitory activity and increased selectivity. Unlike CHR-6494, they have the advantages of not causing cell cycle arrest in G2/M through CDK1 inhibition. They prove to be valuable tools for Haspin function studies and form a strong structural basis for the development of potential therapeutic drugs.
Document type :
Complete list of metadatas

Cited literature [322 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Wednesday, July 8, 2020 - 12:24:13 PM
Last modification on : Wednesday, September 9, 2020 - 4:55:14 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02893496, version 1


Omid Feizbakhsh. La protéine Kinase Haspine comme nouvelle cible thérapeutique : analyse de ses fonctions et caractérisation d'inhibiteurs spécifiques. Biologie cellulaire. Université Rennes 1, 2017. Français. ⟨NNT : 2017REN1B053⟩. ⟨tel-02893496⟩



Record views


Files downloads