J. Coër, Mise en forme par emboutissage en température d'un alliage d'aluminium AA5754-O, phdthesis, 2013.

J. Friedel, Les Dislocations, Gauthier-Villars, p.72, 1956.

J. Friedel, Dislocations Pergamon, N. Y, vol.274, 1964.

R. Labusch and D. , Aktivierungslänge" bei der thermischen Versetzungsbewegung über Hindernisse auf der Gleitebene, Z. Für Phys, vol.167, pp.452-460, 1962.

U. F. Kocks, Statistical treatment of penetrable obstacles, Can. J. Phys, vol.45, pp.737-755, 1967.

E. Orowan, Discussion on internal stresses. Symposium on Internal Stresses in Metals and Alloys, pp.451-453, 1948.

A. Deschamps, Y. Bréchet, and F. Livet, Influence of copper addition on precipitation kinetics and hardening in Al-Zn-Mg alloy, Mater. Sci. Technol, vol.15, pp.993-1000, 1999.

A. Bastier, Modélisation du soudage d'alliages d'aluminium par friction et malaxage, phdthesis, Ecole Polytechnique X, 2006.

G. Fribourg, Precipitation and plasticity couplings in a 7xxx aluminium alloy: application to thermomechanical treatments for distortion correction of aerospace component, Theses, Institut National Polytechnique de Grenoble -INPG, 2009.

J. W. Christian, The theory of transformations in metals and alloys

, Boston, 2002.

P. Haasen, Physical metallurgy

J. Philibert, Diffusion et transport de matière dans les solides, Éd. de Physique, 1985.

C. Zener, Imperfections in nearly perfect crystals, p.295, 1952.

S. J. Rothman, N. L. Peterson, and J. T. Robinson, Isotope Effect for Self-Diffusion in Single Crystals of Silver, Phys. Status Solidi B Basic Res, vol.39, pp.635-645, 1970.

J. Sommer and C. Herzig, Direct determination of grain-boundary and dislocation self-diffusion coefficients in silver from experiments in type-C kinetics, J. Appl. Phys, vol.72, pp.2758-2766, 1992.

Y. E. Geguzin and G. N. Kovalev, Fiz. Tverd. Tela, vol.5, p.1687, 1963.

A. Paul, T. Laurila, V. Vuorinen, S. V. Divinski, and T. , Diffusion and the Kirkendall Effect in Solids, 2014.

B. Lesage and A. M. Huntz, Diffusion en volume et dans les joints de grains dans le molybdène du fer 59Fe et du soufre 35S: Relations avec la structure, J. Common Met, vol.38, issue.74, pp.90058-90065, 1974.

E. W. Hart, On the role of dislocations in bulk diffusion, Acta Metall, vol.5, issue.57, p.90127, 1957.

B. Dubost and P. Sainfort, Durcissement par précipitation des alliages d'aluminium, Tech. Ing. Méthodes Caractér. Anal. Métaux Alliages, 1991.

J. B. Zeldovich, Acta Physicochim, p.1, 1943.

R. W. Cahn and P. Haasen, Physical metallurgy, 1983.

R. Kampmann, R. Wagner, . Kinetics, and . Precipitation, METASTABLE BINARY ALLOYS -THEORY AND APPLICATION TO Cu-1.9 at % Ti AND Ni-14 at % Al, pp.91-103, 1984.

C. Zener, Theory of Growth of Spherical Precipitates from Solid Solution, J. Appl. Phys, vol.20, pp.950-953, 1949.

H. B. Aaron, D. Fainstein, and G. R. Kotler, Diffusion-Limited Phase Transformations: A Comparison and Critical Evaluation of the Mathematical Approximations, J. Appl. Phys, vol.41, pp.4404-4410, 1970.

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, vol.19, pp.90054-90057, 1961.

C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), vol.65, pp.581-591, 1961.

P. A. Rometsch, Y. Zhang, and S. Knight, Heat treatment of 7xxx series aluminium alloys-Some recent developments, Trans. Nonferrous Met. Soc. China, vol.24, issue.14, pp.63306-63315, 2014.

A. K. Vasudévan and R. D. Doherty, Grain boundary ductile fracture in precipitation hardened aluminum alloys, Acta Metall, vol.35, pp.1193-1219, 1987.

M. Li, Y. Yang, Z. Feng, B. Huang, X. Luo et al., Precipitation sequence of ? phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy during artificial aging, Trans. Nonferrous Met. Soc. China, vol.24, pp.2061-2066, 2014.

R. Ranganatha, V. A. Kumar, V. S. Nandi, R. R. Bhat, and B. K. Muralidhara, Multi-stage heat treatment of aluminum alloy AA7049, Trans. Nonferrous Met. Soc. China, vol.23, issue.13, pp.62632-62633, 2013.

H. Zhao, F. De-geuser, A. Kwiatkowski-da-silva, A. Szczepaniak, B. Gault et al., Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy, Acta Mater, vol.156, pp.318-329, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01832872

T. Takeyama and S. Koda, Preferred Precipitation on Dislocation Lines in an Aluminium Alloy, Nature, vol.179, pp.777-778, 1957.

J. C. Williams and E. A. Starke, Progress in structural materials for aerospace systems1, Acta Mater, vol.51, pp.5775-5799, 2003.

J. Baïlon and J. Dorlot, Des matériaux, 3e édition | Presses internationales Polytechnique, 3ème, Presses internationales polytechnique, 2000.

R. Mächler, P. J. Uggowitzer, C. Solenthaler, R. M. Pedrazzoli, and M. O. Speidel, Structure, mechanical properties, and stress corrosion behaviour of high strength spray deposited 7000 series aluminium alloy, Mater. Sci. Technol, vol.7, pp.447-451, 1991.

B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen, Three Dimensional Atom Probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys, Scr. Metall, vol.51, pp.333-337, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00003787

M. J. Jones and F. J. Humphreys, Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium, Acta Mater, vol.51, pp.2149-2159, 2003.

N. Masquelier, Caractérisation et modélisation de transformations microstructurales pour la mise au point d'une nouvelle génération d'alliages d'aluminium pour conducteurs électriques, thesis, 2012.

H. Chen, Q. Chen, J. Bratberg, and A. Engström, Predictions of Stable and Metastable Phase Formations in Aluminum Alloys, Mater. Today Proc, vol.2, pp.4939-4948, 2015.

Y. Shi, Q. Pan, M. Li, Z. Liu, and Z. Huang, Microstructural evolution during homogenization of DC cast 7085 aluminum alloy, Trans. Nonferrous Met. Soc. China, vol.25, issue.15, pp.63993-63993, 2015.

X. Zou, H. Yan, and X. Chen, Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment, Trans. Nonferrous Met. Soc. China, vol.27, issue.17, pp.60240-60241, 2017.

N. Birbilis, M. K. Cavanaugh, and R. G. Buchheit, Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651, Corros. Sci, vol.48, pp.4202-4215, 2006.

A. Chemin, D. Marques, L. Bisanha, A. Motheo, W. W. Bose-filho et al., Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys, Mater. Des, vol.53, pp.118-123, 2014.

H. Löffler, I. Kovács, and J. Lendvai, Decomposition processes in Al-Zn-Mg alloys, J. Mater. Sci, vol.18, pp.2215-2240, 1983.

J. Lendvai, Precipitation and Strengthening in Aluminium Alloys, Alum. Alloys -ICAA5, pp.43-56, 1996.

L. F. Mondolfo, Structure of the aluminium: magnesium: zinc alloys, Metall. Rev, vol.16, pp.95-124, 1971.

J. D. Embury and R. B. Nicholson, The nucleation of precipitates: The system Al-Zn-Mg, Acta Metall, vol.13, pp.403-417, 1965.

C. Mondal and A. K. Mukhopadhyay, On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy, Mater. Sci. Eng. A, vol.1, issue.2, pp.367-376, 2005.

J. K. Park and A. J. , Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers, Metall. Trans. A, vol.14, pp.1957-1965, 1983.

A. K. Mukhopadhyay, Q. B. Yang, and S. R. Singh, The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloy, Acta Metall. Mater, vol.42, pp.90406-90411, 1994.

G. Dlubek, Positron Studies of Decomposition Phenomena in Al Alloys, Age-Hardenable Alum. Alloys, pp.11-32, 1987.

A. Deschamps, Influence de la prédéformation et des traitements thermiques sur la microstructure et les propriétés mécaniques des alliages Al-Zn-Mg-Cu, thesis, Grenoble INPG, February, vol.18, 1997.

J. J. Thompson, E. S. Tankins, and V. S. Agarwala, A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7xxx aluminum alloys, Mater. Perform, vol.26, pp.45-52, 1987.

O. Blaschko, G. Ernst, P. Fratzl, M. Bernole, and P. Auger, A neutron scattering investigation of the early stages of guinier-preston zone formation in AlZnMg(Cu)-alloys, Acta Metall, vol.30, pp.90235-90243, 1982.

T. Ungár and F. Of-guinier-preston-zones, THE Al-4. 8 wt. % Zn-1. 2 wt. % Mg ALLOY STUDIED BY X-RAY SMALL ANGLE SCATTERING, vol.70, pp.739-745, 1979.

O. Kabisch, G. Dlubek, H. Löffler, O. Brümmer, and K. Gerlach, Precipitation and dissolution processes in age-hardenable Al Alloys -A comparison of positron annihilation and X-ray small-angle scattering investigations, Phys. Status Solidi A, vol.59, pp.731-742, 1980.

R. Feder and A. S. Nowick, Use of Thermal Expansion Measurements to Detect Lattice Vacancies near the Melting Point of Pure Lead and Aluminum, Phys. Rev, vol.109, pp.1959-1963, 1958.

T. Federighi, Lattice defects in quenched metals, p.217, 1965.

R. O. Simmons and R. W. Balluffi, Measurements of Equilibrium Vacancy Concentrations in Aluminum, Phys. Rev, vol.117, pp.52-61, 1960.

C. P. Flynn, J. Bass, and D. Lazarus, The vacancy formation and motion energies in gold, Philos. Mag. J. Theor. Exp. Appl. Phys, vol.11, pp.521-538, 1965.

J. Bass, The formation and motion energies of vacancies in aluminium, Philos. Mag. J. Theor. Exp. Appl. Phys, vol.15, pp.717-730, 1967.

L. Wan, Y. Deng, L. Ye, and Y. Zhang, The natural ageing effect on pre-ageing kinetics of Al-Zn-Mg alloy, J. Alloys Compd, vol.776, pp.469-474, 2019.

G. Waterloo, V. Hansen, J. Gjønnes, and S. R. Skjervold, Effect of predeformation and preaging at room temperature in Al-Zn-Mg-(Cu,Zr) alloys, Mater. Sci. Eng. A, vol.303, pp.1883-1892, 2001.

Z. Katz and N. Ryum, Precipitation kinetics in Al-alloys, Scr. Metall, vol.15, issue.81, pp.90341-90341, 1981.

E. Kovács-csetényi and N. Ryum, On the formation of transition phase in Al-Zn6-Mg alloy, Scr. Metall, vol.15, pp.705-707, 1981.

H. Löffler, I. Kovács, and J. Lendvai, Decomposition processes in Al-Zn-Mg alloys, J. Mater. Sci, vol.18, pp.2215-2240, 1983.

G. Sha and A. Cerezo, Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Mater, vol.52, pp.4503-4516, 2004.

G. Waterloo, V. Hansen, J. Gjønnes, and S. R. Skjervold, Effect of predeformation and preaging at room temperature in Al-Zn-Mg-(Cu,Zr) alloys, Mater. Sci. Eng. A, vol.303, pp.1883-1892, 2001.

R. Ferragut, A. Somoza, and A. Dupasquier, Positron lifetime spectroscopy and decomposition processes in commercial Al-Zn-Mg-based alloys, J. Phys. Condens. Matter, vol.10, pp.3903-3918, 1998.

G. Dlubek, R. Krause, O. Brümmer, and F. Plazaola, Study of formation and reversion of Guinier-Preston zones in Al-4.5 at%Zn-x at%Mg alloys by positrons, J. Mater. Sci, vol.21, pp.853-858, 1986.

R. Ferragut, A. Somoza, and I. Torriani, Pre-precipitation study in the 7012 Al-Zn-Mg-Cu alloy by electrical resistivity, Mater. Sci. Eng. A, vol.334, pp.1-5, 2002.

A. Juhász, I. Kovács, J. Lendvai, and P. Tasnádi, Initial clustering after quenching in AlZnMg alloys, J. Mater. Sci, vol.20, pp.624-629, 1985.

J. Buha, R. N. Lumley, and A. G. Crosky, Secondary ageing in an aluminium alloy 7050, Mater. Sci. Eng. A, vol.492, pp.1-10, 2008.

K. Stiller, P. J. Warren, V. Hansen, J. Angenete, and J. Gjønnes, Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100° and 150°C, Mater. Sci. Eng. A, vol.270, pp.55-63, 1999.

L. K. Berg, J. Gjønnes, V. Hansen, X. Z. Li, M. Knutson-wedel et al., GP-zones in Al-Zn-Mg alloys and their role in artificial aging, Acta Mater, vol.49, pp.251-259, 2001.

X. J. Jiang, J. Tafto, B. Noble, B. Holme, and G. Waterloo, Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys, Metall. Mater. Trans. A, vol.31, pp.339-348, 2000.

S. K. Maloney, K. Hono, I. J. Polmear, and S. P. Ringer, The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.% alloy, Scr. Mater, vol.41, pp.1031-1038, 1999.

T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys, Acta Mater, vol.58, pp.248-260, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00456224

S. P. Ringer and K. Hono, Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies, vol.44, pp.101-131, 2000.

B. Dubost and J. Bouvaist, Étude de la précipitation structurale dans les alliages aluminium-magnésiumzinc avec ou sans cuivre, 1976.

C. Wolverton, Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys, Acta Mater, vol.49, pp.3129-3142, 2001.

X. Z. Li, V. Hansen, J. Gjønnes, and L. R. Wallenberg, HREM study and structure modeling of the ?? phase, the hardening precipitates in commercial Al-Zn-Mg alloys, vol.47, pp.2651-2659, 1999.

M. J. Starink and S. C. Wang, A model for the yield strength of overaged Al-Zn-Mg-Cu alloys, Acta Mater, vol.51, pp.5131-5150, 2003.

G. Fribourg, Precipitation and plasticity couplings in a 7xxx aluminium alloy: application to thermomechanical treatments for distortion correction of aerospace component, Theses, Institut National Polytechnique de Grenoble -INPG, 2009.

H. P. Degischer, W. Lacom, A. Zahra, and C. Y. Zahra, Decomposition processes in an Al-5% Zn-1%Mg alloy, Z. Für Met, vol.71, pp.231-238, 1980.

T. Ungár, J. Lendvai, I. Kovács, G. Groma, and E. Kovács-csetényi, The decomposition of the solid solution state in the temperature range 20 to 200° C in an Al-Zn-Mg alloy, J. Mater. Sci, vol.14, pp.671-679, 1979.

A. Deschamps, A. Bigot, F. Livet, P. Auger, Y. Bréchet et al., A comparative study of precipitate composition and volume fraction in an Al-Zn-Mg alloy using tomographic atom probe and small-angle X-ray scattering, Philos. Mag. A, vol.81, pp.2391-2414, 2001.

T. Ramgopal, P. I. Gouma, and G. S. Frankel, Role of Grain-Boundary Precipitates and Solute-Depleted Zone on the Intergranular Corrosion of Aluminum Alloy 7150, CORROSION, vol.58, pp.687-697, 2002.

J. Philibert, A. Vignes, Y. Bréchet, P. Combrade, and M. , , 1998.

M. J. Starink, N. Gao, L. Davin, J. Yan, and A. Cerezo, Room temperature precipitation in quenched Al-Cu-Mg alloys: a model for the reaction kinetics and yield strength development, Philos. Mag, vol.85, pp.1395-1417, 2005.

O. Myhr, Ø. Grong, and S. Andersen, Modelling of the age hardening behaviour of Al-Mg-Si alloys, Acta Mater, vol.49, pp.65-75, 2001.

X. Sauvage, E. V. Bobruk, M. Y. Murashkin, Y. Nasedkina, N. A. Enikeev et al., Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys, Acta Mater, vol.98, pp.355-366, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02142075

O. R. Myhr, Ø. Grong, H. G. Fjaer, and C. D. Marioara, Modelling of the microstructure and strength evolution in Al-Mg-Si alloys during multistage thermal processing, Acta Mater, vol.52, pp.4997-5008, 2004.

A. Simar, Y. Bréchet, B. Meester, A. Denquin, and T. Pardoen, Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6, Acta Mater, vol.55, pp.6133-6143, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00204237

A. Simar, Y. Bréchet, B. Meester, A. Denquin, C. Gallais et al., Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties, Prog. Mater. Sci, vol.57, pp.95-183, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00664802

C. Gallais, A. Denquin, Y. Bréchet, and G. Lapasset, Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: Characterisation and modelling, Mater. Sci. Eng. A, vol.496, pp.77-89, 2008.

M. Dixit, R. S. Mishra, and K. K. Sankaran, Structure-property correlations in Al 7050 and Al 7055 highstrength aluminum alloys, Mater. Sci. Eng. A, vol.478, pp.163-172, 2008.

A. Deschamps and Y. Brechet, Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modeling of precipitation kinetics and yield stress, Acta Mater, vol.47, pp.296-297, 1998.

G. J. Mahon and G. J. Marshall, Microstructure-property relationships in O-temper foil alloys, JOM, vol.48, pp.39-42, 1996.

A. Wilm, Physical metallurgical experiments on aluminum alloys containing magnesium, Metallurgie, vol.8, p.223, 1911.

P. D. Merica, R. G. Waltenberg, and H. Scott, Trans.AIME, vol.64, p.41, 1920.

E. Orowan, Z. Kristallplastizität, and Z. Iii, Für Phys, vol.89, pp.634-659, 1934.

T. Ingram, The mechanism of plastic deformation of crystals. Part I.-Theoretical, Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, vol.145, pp.362-387, 1934.

M. Polanyi, Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte, Z. Für Phys, vol.89, pp.660-664, 1934.

N. F. Mott and F. R. Nabarro, An attempt to estimate the degree of precipitation hardening, with a simple model, Proc. Phys. Soc, vol.52, pp.86-89, 1940.

U. F. Kocks, A statistical theory of flow stress and work-hardening, Philos. Mag. J. Theor. Exp. Appl. Phys, vol.13, pp.541-566, 1966.

E. O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. Sect. B, vol.64, p.747, 1951.

N. J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst, vol.174, pp.25-28, 1953.

N. Hansen, The effect of grain size and strain on the tensile flow stress of aluminium at room temperature, Acta Metall, vol.25, pp.90171-90178, 1977.

J. T. Al-haidary, N. J. Petch, and E. R. De-los-rios, The plastic deformation of polycrystals I. Aluminium between room temperature and 400°C, Philos. Mag. A, vol.47, pp.869-890, 1983.

A. A. Thompson, Yielding in nickel as a function of grain or cell size, Acta Metall, vol.23, pp.1337-1342, 1975.

R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A, vol.137, pp.35-40, 1991.

T. Fujioka and Z. Horita, Development of High-Pressure Sliding Process for Microstructural Refinement of Rectangular Metallic Sheets, Mater. Trans, vol.50, pp.930-933, 2009.

N. L. Carter, J. M. Christie, and D. T. Griggs, Experimental Deformation and Recrystallization of Quartz, J. Geol, vol.72, pp.687-733, 1964.

R. E. Riecker and K. E. Seifert, Shear deformation of upper-mantle mineral analogs: Tests to 50 kilobars at 27°C, J. Geophys. Res, vol.69, pp.3901-3911, 1964.

F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan, Structural refinement of low alloyed steels during severe plastic deformation, Mater. Sci. Eng. A, vol.387, issue.389, pp.809-816, 2004.

A. P. Zhilyaev, G. V. Nurislamova, B. Kim, M. D. Baró, J. A. Szpunar et al., Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Mater, vol.51, pp.753-765, 2003.

C. Xu, Z. Horita, and T. G. Langdon, The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta Mater, vol.56, pp.5168-5176, 2008.

K. Edalati and Z. Horita, A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A, vol.652, pp.325-352, 2016.

S. Lee, K. Tazoe, I. F. Mohamed, and Z. Horita, Strengthening of AA7075 alloy by processing with highpressure sliding (HPS) and subsequent aging, Mater. Sci. Eng. A, vol.628, pp.56-61, 2015.

R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch, and B. Baudelet, Structure and deformation behaviour of Armco iron subjected to severe plastic deformation, Acta Mater, vol.44, issue.96, pp.156-161, 1996.

C. Xu, Z. Horita, and T. G. Langdon, The evolution of homogeneity in processing by high-pressure torsion, Acta Mater, vol.55, pp.203-212, 2007.

Y. Ito and Z. Horita, Microstructural evolution in pure aluminum processed by high-pressure torsion, Mater. Sci. Eng. A, vol.503, pp.32-36, 2009.

Y. Todaka, M. Umemoto, J. Yin, Z. Liu, and K. Tsuchiya, Role of strain gradient on grain refinement by severe plastic deformation, Mater. Sci. Eng. A, vol.462, pp.264-268, 2007.

M. J. Starink, X. Cheng, and S. Yang, Hardening of pure metals by high-pressure torsion: A physically based model employing volume-averaged defect evolutions, Acta Mater, vol.61, pp.183-192, 2013.

K. Edalati and Z. Horita, High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness, Acta Mater, vol.59, pp.6831-6836, 2011.

G. Ji, Y. Xiaohui, N. Song, and S. Min, Structural and Hardness Evolution of Pure Magnesium Subjected to High Pressure Torsion, Rare Met. Mater. Eng, vol.47, issue.18, pp.30133-30137, 2018.

J. Jiang, Y. Ding, F. Zuo, and A. Shan, Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling, Scr. Mater, vol.60, pp.905-908, 2009.

M. Kawasaki, Z. Horita, and T. G. Langdon, Microstructural evolution in high purity aluminum processed by ECAP, Mater. Sci. Eng. A, vol.524, pp.143-150, 2009.

Y. Ito and Z. Horita, Microstructural evolution in pure aluminum processed by high-pressure torsion, Mater. Sci. Eng. A, vol.503, pp.32-36, 2009.

Y. Ito, K. Edalati, and Z. Horita, High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship, Mater. Sci. Eng. A, vol.679, pp.428-434, 2017.

K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga et al., Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion, Acta Mater, vol.69, pp.68-77, 2014.

J. Gubicza, M. Kassem, G. Ribárik, and T. Ungár, The microstructure of mechanically alloyed Al-Mg determined by X-ray diffraction peak profile analysis, Mater. Sci. Eng. A, vol.372, pp.115-122, 2004.

B. B. Straumal, A. R. Kilmametov, A. A. Mazilkin, L. Kurmanaeva, Y. Ivanisenko et al., Transformations of Cu(in) supersaturated solid solutions under high-pressure torsion, Mater. Lett, vol.138, pp.255-258, 2015.

J. Zhang, N. Gao, and M. J. Starink, Al-Mg-Cu based alloys and pure Al processed by high pressure torsion: The influence of alloying additions on strengthening, Mater. Sci. Eng. A, vol.527, pp.3472-3479, 2010.

E. Bagherpour, M. Reihanian, and H. Miyamoto, Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress, J. Mater. Sci, vol.52, pp.3436-3446, 2017.

F. J. Humphreys and M. G. Ardakani, The deformation of particle-containing aluminium single crystals, Acta Metall. Mater, vol.42, pp.749-761, 1994.

H. Jia, K. Marthinsen, and Y. Li, Effect of soft Bi particles on grain refinement during severe plastic deformation, Trans. Nonferrous Met. Soc. China, vol.27, issue.17, pp.60114-60120, 2017.

P. J. Apps, J. R. Bowen, and P. B. Prangnell, The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing, Acta Mater, vol.51, pp.2811-2822, 2003.

M. Borodachenkova, F. Barlat, W. Wen, A. Bastos, and J. J. Grácio, A microstructure-based model for describing the material properties of Al-Zn alloys during high pressure torsion, Int. J. Plast, vol.68, pp.150-163, 2015.

M. Murayama, Z. Horita, and K. Hono, Microstructure of two-phase Al-1.7 at% Cu alloy deformed by equalchannel angular pressing, Acta Mater, vol.49, pp.308-314, 2001.

K. Edalati, Z. Horita, and T. G. Langdon, The significance of slippage in processing by high-pressure torsion, Scr. Mater, vol.60, pp.9-12, 2009.

M. Kawasaki, B. Ahn, and T. G. Langdon, Microstructural evolution in a two-phase alloy processed by highpressure torsion, Acta Mater, vol.58, pp.919-930, 2010.

S. Sabbaghianrad and T. G. Langdon, A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT, Mater. Sci. Eng. A, vol.596, pp.52-58, 2014.

P. Serre, R. B. Figueiredo, N. Gao, and T. G. Langdon, Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A, vol.528, pp.3601-3608, 2011.

G. B. Rathmayr and R. Pippan, Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel, Acta Mater, vol.59, pp.7228-7240, 2011.

R. Vafaei, M. R. Toroghinejad, and R. Pippan, Evaluation of mechanical behavior of nano-grained 2024 Al alloy during high pressure torsion (HPT) process at various temperatures, Mater. Sci. Eng. A, vol.536, pp.73-81, 2012.

C. Zener and J. H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys, vol.15, pp.22-32, 1944.

A. Bachmaier, M. Hafok, and R. Pippan, Rate Independent and Rate Dependent Structural Evolution during Severe Plastic Deformation, Mater. Trans. 51, pp.8-13, 2010.

R. Gholizadeh, A. Shibata, and N. Tsuji, Global view for grain refinement in ultra-low-C IF steel during high-strain deformation at various temperatures and strain rates, Materialia, vol.6, p.100262, 2019.

A. Vorhauer and R. Pippan, On the Onset of a Steady State in Body-Centered Cubic Iron during Severe Plastic Deformation at Low Homologous Temperatures, Metall. Mater. Trans. A, vol.39, pp.417-429, 2008.

R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter et al., Saturation of Fragmentation During Severe Plastic Deformation, Annu. Rev. Mater. Res, vol.40, pp.319-343, 2010.

R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci, vol.45, pp.7-9, 2000.

R. A. Andrievski, Review of thermal stability of nanomaterials, J. Mater. Sci, vol.49, pp.1449-1460, 2014.

J. Hu, Y. N. Shi, X. Sauvage, G. Sha, and K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science, vol.355, pp.1292-1296, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766047

K. Mannesson, J. Jeppsson, A. Borgenstam, and J. Ågren, Carbide grain growth in cemented carbides, Acta Mater, vol.59, pp.1912-1923, 2011.

V. Y. Gertsman and R. Birringer, On the room-temperature grain growth in nanocrystalline copper, Scr. Metall. Mater, vol.30, pp.577-581, 1994.

B. Günther, A. Kumpmann, and H. Kunze, Secondary recrystallization effects in nanostructured elemental metals, Scr. Metall. Mater, vol.27, pp.833-838, 1992.

M. Upmanyu, D. J. Srolovitz, A. E. Lobkovsky, J. A. Warren, and W. C. Carter, Simultaneous grain boundary migration and grain rotation, Acta Mater, vol.54, pp.1707-1719, 2006.

N. Bernstein, The influence of geometry on grain boundary motion and rotation, Acta Mater, vol.56, pp.1106-1113, 2008.

R. Chaim, Grain coalescence by grain rotation in nano-ceramics, Scr. Mater, vol.66, pp.269-271, 2012.

R. Z. Valiev, E. V. Kozlov, Y. F. Ivanov, J. Lian, A. A. Nazarov et al., Deformation behaviour of ultra-fine-grained copper, Acta Metall. Mater, vol.42, pp.90326-90329, 1994.

K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures, Nat. Rev. Mater, vol.1, p.16019, 2016.

O. V. Mishin, Y. B. Zhang, and A. Godfrey, Structural coarsening during annealing of an aluminum plate heavily deformed using ECAE, IOP Conf. Ser. Mater. Sci. Eng, vol.89, p.12035, 2015.

R. K. Islamgaliev, N. M. Amirkhanov, K. J. Kurzydlowski, and J. J. Bucki, Grain Growth in Ultrafine-Grained Copper Processed by Severe Plastic Deformation, Investig. Appl. Sev. Plast. Deform, pp.297-302, 2000.

J. Lian, R. Z. Valiev, and B. Baudelet, On the enhanced grain growth in ultrafine grained metals, Acta Metall. Mater, vol.43, pp.4165-4170, 1995.

H. Jazaeri and F. J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys: I -the deformed state, Acta Mater, vol.52, pp.3239-3250, 2004.

K. A. Darling, A. J. Roberts, Y. Mishin, S. N. Mathaudhu, and L. J. Kecskes, Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum, J. Alloys Compd, vol.573, pp.142-150, 2013.

T. Konkova, S. Mironov, A. Korznikov, and S. L. Semiatin, Microstructure instability in cryogenically deformed copper, Scr. Mater, vol.63, pp.921-924, 2010.

L. Cheng and G. D. Hibbard, Abnormal grain growth via the migration of planar growth interfaces, Mater. Sci. Eng. A, vol.492, pp.128-133, 2008.

K. Hattar, D. M. Follstaedt, J. A. Knapp, and I. M. Robertson, Defect structures created during abnormal grain

A. Deschamps, G. Fribourg, Y. Bréchet, J. L. Chemin, and C. R. Hutchinson, In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy, Acta Mater, vol.60, pp.1905-1916, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00728088

K. Ma, T. Hu, H. Yang, T. Topping, A. Yousefiani et al., Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys, Acta Mater, vol.103, pp.153-164, 2016.

K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater, vol.62, pp.141-155, 2014.

X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, and R. Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A, vol.540, pp.1-12, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683535

S. Wang, J. Jiang, G. Fan, A. M. Panindre, G. S. Frankel et al., Accelerated precipitation and growth of phases in an Al-Zn-Mg-Cu alloy processed by surface abrasion, Acta Mater, vol.131, pp.233-245, 2017.

T. Hu, K. Ma, T. D. Topping, J. M. Schoenung, and E. J. Lavernia, Precipitation phenomena in an ultrafinegrained Al alloy, Acta Mater, vol.61, pp.2163-2178, 2013.

N. Tsuji, T. Iwata, M. Sato, S. Fujimoto, and Y. Minamino, Aging behavior of ultrafine grained Al-2 wt%Cu alloy severely deformed by accumulative roll bonding, Sci. Technol. Adv. Mater, vol.5, pp.173-180, 2004.

N. Gao, M. J. Starink, M. Furukawa, Z. Horita, C. Xu et al., Evolution of Microstructure and Precipitation in Heat-Treatable Aluminium Alloys during ECA Pressing and Subsequent Heat Treatment, Nanomater. Sev. Plast. Deform, pp.275-280, 2006.

J. Gubicza, I. Schiller, N. Q. Chinh, J. Illy, Z. Horita et al., The effect of severe plastic deformation on precipitation in supersaturated Al-Zn-Mg alloys, Mater. Sci. Eng. A, vol.460, issue.461, pp.77-85, 2007.

G. Sha, Y. B. Wang, X. Z. Liao, Z. C. Duan, S. P. Ringer et al., Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy, Acta Mater, vol.57, pp.3123-3132, 2009.

A. Deschamps, F. Livet, and Y. Bréchet, Influence of predeformation on ageing in an Al-Zn-Mg alloy-I. Microstructure evolution and mechanical properties, Acta Mater, vol.47, pp.293-299, 1998.

C. Liu, Z. Ma, P. Ma, L. Zhan, and M. Huang, Multiple precipitation reactions and formation of ?'-phase in a pre-deformed Al-Cu alloy, Mater. Sci. Eng. A, vol.733, pp.28-38, 2018.

R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background, Acta Mater, vol.55, pp.5129-5138, 2007.

J. Weissmüller, Alloy effects in nanostructures, Nanostructured Mater, vol.3, pp.261-272, 1993.

A. Michels, C. E. Krill, H. Ehrhardt, R. Birringer, and D. T. Wu, Modelling the influence of grain-sizedependent solute drag on the kinetics of grain growth in nanocrystalline materials, Acta Mater, vol.47, pp.2143-2152, 1999.

J. Weissmüller, Alloy thermodynamics in nanostructures, J. Mater. Res, vol.9, pp.4-7, 1994.

F. Liu and R. Kirchheim, Comparison between kinetic and thermodynamic effects on grain growth, Thin Solid Films, vol.466, pp.108-113, 2004.

P. C. Millett, R. P. Selvam, and A. Saxena, Stabilizing nanocrystalline materials with dopants, Acta Mater, vol.55, pp.2329-2336, 2007.

D. L. Beke, C. Cserháti, and I. A. Szabó, Segregation inhibited grain coarsening in nanocrystalline alloys, J. Appl. Phys, vol.95, pp.4996-5001, 2004.

J. R. Trelewicz and C. A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys, Phys. Rev. B, vol.79, p.94112, 2009.

K. A. Darling, R. N. Chan, P. Z. Wong, J. E. Semones, R. O. Scattergood et al., Grain-size stabilization in nanocrystalline FeZr alloys, Scr. Mater, vol.59, pp.530-533, 2008.

K. A. Darling, B. K. Vanleeuwen, C. C. Koch, and R. O. Scattergood, Thermal stability of nanocrystalline Fe-Zr alloys, Mater. Sci. Eng. A, vol.527, pp.3572-3580, 2010.

K. A. Darling, B. K. Vanleeuwen, J. E. Semones, C. C. Koch, R. O. Scattergood et al., Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection, Mater. Sci. Eng. A, vol.528, pp.4365-4371, 2011.

B. Färber, E. Cadel, A. Menand, G. Schmitz, and R. Kirchheim, Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP), Acta Mater, vol.48, pp.789-796, 2000.

J. Li, T. Malis, and S. Dionne, Recent advances in FIB-TEM specimen preparation techniques, Mater. Charact, vol.57, 2006.

R. Marder, R. Chaim, and C. Estournès, Grain growth stagnation in fully dense nanocrystalline Y2O3 by spark plasma sintering, Mater. Sci. Eng. A, vol.527, pp.1577-1585, 2010.

C. Bansal, Z. Q. Gao, and B. Fultz, Grain growth and chemical ordering in (Fe,Mn)3Si, Nanostructured Mater, vol.5, pp.327-336, 1995.

Z. Q. Gao and B. Fultz, Inter-dependence of grain growth, Nb segregation, and chemical ordering in Fe-Si-Nb nanocrystals, Nanostructured Mater, vol.4, pp.939-947, 1994.

Z. Gao and B. Fultz, The thermal stability of nonocrystalline Fe-Si-Nb prepared by mechanical alloying, Nanostructured Mater, vol.2, pp.231-240, 1993.

O. Cojocaru-mirédin, D. Mangelinck, K. Hoummada, E. Cadel, D. Blavette et al., Snowplow effect and reactive diffusion in the Pt doped Ni-Si system, Scr. Mater, vol.57, pp.373-376, 2007.

P. Knauth, A. Charaï, and P. Gas, Grain growth of pure nickel and of a Ni-Si solid solution studied by differential scanning calorimetry on nanometer-sized crystals, Scr. Metall. Mater, vol.28, issue.93, p.90436, 1993.

H. J. Höfler and R. S. Averback, Grain growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture toughness, Scr. Metall. Mater, vol.24, pp.2401-2406, 1990.

K. Reddy, N. Kumar, and B. Basu, Inhibition of grain growth during the final stage of multi-stage spark plasma sintering of oxide ceramics, Scr. Mater, vol.63, pp.585-588, 2010.

C. S. Smith, Zener, Grains, phases, and interphases: an interpretation of microstructure, Trans Met. Soc AIME, vol.175, pp.15-51, 1948.

R. K. Koju, K. A. Darling, L. J. Kecskes, and Y. Mishin, Zener Pinning of Grain Boundaries and Structural Stability of Immiscible Alloys, JOM, vol.68, pp.1596-1604, 2016.

R. Elst, J. Van-humbeeck, and L. Delaey, Evaluation of grain growth criteria in particle-containing materials, Acta Metall, vol.36, pp.1723-1729, 1988.

A. Harun, E. A. Holm, M. P. Clode, and M. A. Miodownik, On computer simulation methods to model Zener pinning, Acta Mater, vol.54, pp.3261-3273, 2006.

N. Wang, Y. Ji, Y. Wang, Y. Wen, and L. Chen, Two modes of grain boundary pinning by coherent precipitates, Acta Mater, vol.135, pp.226-232, 2017.

T. Gladman and P. , On the theory of the effect of precipitate particles on grain growth in metals, Proc R Soc Lond A, vol.294, pp.298-309, 1966.

M. Hillert, Inhibition of grain growth by second-phase particles, Acta Metall, vol.36, pp.3177-3181, 1988.

S. A. Humphry-baker and C. A. Schuh, Suppression of grain growth in nanocrystalline Bi2Te3 through oxide particle dispersions, J. Appl. Phys, vol.116, p.173505, 2014.

P. A. Manohar, M. Ferry, and T. Chandra, Five Decades of the Zener Equation, ISIJ Int, vol.38, pp.913-924, 1998.

X. Boulnat, N. Sallez, M. Dadé, A. Borbély, J. Béchade et al., Influence of oxide volume fraction on abnormal growth of nanostructured ferritic steels during non-isothermal treatments: An in situ study, Acta Mater, vol.97, pp.124-130, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218295

J. M. Cubero-sesin, M. Arita, and Z. Horita, High Strength and Electrical Conductivity of Al-Fe Alloys Produced by Synergistic Combination of High-Pressure Torsion and Aging, Adv. Eng. Mater, vol.17, pp.1792-1803, 2015.

J. M. Cubero-sesin, H. In, M. Arita, H. Iwaoka, and Z. Horita, High-pressure torsion for fabrication of highstrength and high-electrical conductivity Al micro-wires, J. Mater. Sci, vol.49, pp.6550-6557, 2014.

J. M. Cubero-sesin and Z. Horita, Age Hardening in Ultrafine-Grained Al-2 Pct Fe Alloy Processed by High-Pressure Torsion, Metall. Mater. Trans. A, vol.46, pp.2614-2624, 2015.

I. R. Hughes and H. Jones, Coupled eutectic growth in Al-Fe alloys, J. Mater. Sci, vol.11, pp.1781-1793, 1976.

A. Yamamoto, T. Kato, and H. Tsubakino, Precipitation in an Al-300 ppm Fe Alloy, Mater. Trans, vol.45, pp.3106-3113, 2004.

J. M. Cubero-sesin and Z. Horita, Strengthening of Al through addition of Fe and by processing with highpressure torsion, J. Mater. Sci, vol.48, pp.4713-4722, 2012.

B. L. Silva, A. Garcia, and J. E. Spinelli, The effects of microstructure and intermetallic phases of directionally solidified Al-Fe alloys on microhardness, Mater. Lett, vol.89, pp.291-295, 2012.

,

J. G. Barlock and L. F. Mondolfo, Structure of Some Aluminum-Iron-Magnesium-Manganese-Silicon Alloys, vol.66, pp.605-611, 1975.

H. Chen, Q. Chen, J. Bratberg, and A. Engström, Predictions of Stable and Metastable Phase Formations in Aluminum Alloys, Mater. Today Proc, vol.2, pp.4939-4948, 2015.

,

Y. Shi, Q. Pan, M. Li, Z. Liu, and Z. Huang, Microstructural evolution during homogenization of DC cast 7085 aluminum alloy, Trans. Nonferrous Met. Soc. China, vol.25, pp.3560-3568, 2015.

L. Wan, Y. Deng, L. Ye, and Y. Zhang, The natural ageing effect on pre-ageing kinetics of Al-Zn-Mg alloy, J. Alloys Compd, vol.776, pp.469-474, 2019.

S. Liu, C. Li, S. Han, Y. Deng, and X. Zhang, Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy, J. Alloys Compd, vol.625, pp.34-43, 2015.

E. Rauch, M. Véron, S. Nicolopoulos, and D. Bultreys, Orientation and Phase Mapping in TEM Microscopy (EBSD-TEM Like): Applications to Materials Science, vol.186, pp.13-15, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00824369

E. Rauch, S. Rouvimov, S. Nicolopoulos, and P. Moeck, High Throughput Automated Crystal Orientation and Phase Mapping of Nanoparticles from HREM -TEM Images, vol.15, pp.756-757, 2009.

D. Viladot, M. Véron, M. Gemmi, F. Peiró, J. Portillo et al., Orientation and phase mapping in the transmission electron microscope using precessionassisted diffraction spot recognition: state-of-the-art results, J. Microsc, vol.252, pp.23-34, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00933902

E. F. Rauch and L. Dupuy, Rapid spot diffraction patterns idendification through template matching, Arch. Metall. Mater, vol.50, issue.1, pp.87-99, 2005.

E. F. Rauch and M. Véron, Automated crystal orientation and phase mapping in TEM, Mater. Charact, vol.98, pp.1-9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01121290

J. R. Michael and R. P. Goehner, Advances in backscattered-electron Kikuchi patterns for crystallographic phase identification, Proc. Annu. Meet, pp.596-596, 1994.

. Nanomegas, Advanced Tools for electron diffraction, 2018.

L. P. Kubin and A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scr. Mater, vol.48, pp.119-125, 2003.

H. Gao, Y. Huang, W. D. Nix, and J. W. Hutchinson, Mechanism-based strain gradient plasticity-I. Theory, J. Mech. Phys. Solids, vol.47, pp.103-106, 1999.

M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A, vol.527, pp.2738-2746, 2010.

Y. Takayama, J. A. Szpunar, and H. Kato, Analysis of Intragranular Misorientation Related to Deformation in an Al-Mg-Mn Alloy, Mater. Sci. Forum, 2005.

,

Q. Liu, D. Jensen, and N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Mater, vol.46, issue.98, pp.229-237, 1998.

Y. Takayama and J. A. Szpunar, Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending, Mater. Trans, vol.45, pp.2316-2325, 2004.

B. Gault, M. P. Moody, J. M. Cairney, and S. P. Ringer, Atom Probe Microscopy, 2012.

W. Lefebvre-ulrikson, Atom probe tomography: put theory into practice, 2016.

R. Badyka, Influence des éléments d'alliage sur la cinétique de vieillissement de la ferrite d'aciers inoxydables austéno-ferritiques moulés, thesis, Normandie, 2018.

A. Guiner, G. Fournet, C. Walker, and K. L. Yudowitch, Small angle scattering of X-rays, 1955.

O. Glatter and O. Kratky, Small angle x-ray scattering, 1982.

G. Kostorz, Small-angle scattering studies of phase separation and defects in inorganic materials, J. Appl. Crystallogr, vol.24, pp.444-456, 1991.

G. Kostorz, X. , and N. Scattering, Phys. Metall. Fifth Ed, pp.1116-1199, 1996.

F. De-geuser and A. Deschamps, Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering, Comptes Rendus Phys, vol.13, pp.246-256, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00728096

,

M. Girault, Etude d'un plasma généré lors d'un traitement de surface métallique par ablation laser dans l'air : caractérisations du rayonnement et des nanoparticules induits, thesis, 2015.

J. K. Percus and G. J. Yevick, Analysis of Classical Statistical Mechanics by Means of Collective Coordinates, Phys. Rev, vol.110, pp.1-13, 1958.

A. Deschamps, F. De-geuser, Z. Horita, S. Lee, and G. Renou, Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy, Acta Mater, vol.66, pp.105-117, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00963756

,

M. Dumont, A. Steuwer, A. Deschamps, M. Peel, and P. J. Withers, Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS, Acta Mater, vol.54, pp.4793-4801, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01774054

M. Dumont, W. Lefebvre, B. Doisneau-cottignies, and A. Deschamps, Characterisation of the composition and volume fraction of ?? and ? precipitates in an Al-Zn-Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy, Acta Mater, vol.53, pp.2881-2892, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01774069

Y. Zhang, D. Pelliccia, B. Milkereit, N. Kirby, M. J. Starink et al., Analysis of age hardening precipitates of Al-Zn-Mg-Cu alloys in a wide range of quenching rates using small angle X-ray scattering, Mater. Des, vol.142, pp.259-267, 2018.

C. R. Hutchinson, F. De-geuser, Y. Chen, and A. Deschamps, Quantitative measurements of dynamic precipitation during fatigue of an Al-Zn-Mg-(Cu) alloy using small-angle X-ray scattering, Acta Mater, vol.74, pp.96-109, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01138240

K. Edalati and Z. Horita, Correlation of Physical Parameters with Steady-State Hardness of Pure Metals Processed by High-Pressure Torsion, Mater. Sci. Forum, pp.683-688, 2011.

M. Kawasaki, H. Lee, B. Ahn, A. P. Zhilyaev, and T. G. Langdon, Evolution of hardness in ultrafinegrained metals processed by high-pressure torsion, J. Mater. Res. Technol, vol.3, pp.311-318, 2014.

A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon, and T. R. Mcnelley, Microstructural evolution in commercial purity aluminum during high-pressure torsion, Mater. Sci. Eng. A, vol.410, pp.277-280, 2005.

Z. Horita and T. G. Langdon, Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion, Mater. Sci. Eng. A, pp.422-425, 2005.

C. Xu, Z. Horita, and T. G. Langdon, The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta Mater, vol.56, pp.5168-5176, 2008.

C. Xu and T. G. Langdon, Three-dimensional representations of hardness distributions after processing by high-pressure torsion, Mater. Sci. Eng. A, vol.503, pp.71-74, 2009.

J. M. Cubero-sesin and Z. Horita, Mechanical Properties and Microstructures of Al-Fe Alloys Processed by High-Pressure Torsion, Metall. Mater. Trans. A, vol.43, pp.5182-5192, 2012.

D. Akama, Z. Horita, K. Matsuda, and S. Hirosawa, Aging Behavior of Al-Mg-Si Alloys Processed by High-Pressure Torsion, Mater. Sci. Forum, pp.259-264, 2011.

,

E. Bagherpour, M. Reihanian, and H. Miyamoto, Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress, J. Mater. Sci, vol.52, pp.3436-3446, 2017.

J. M. Cubero-sesin, M. Arita, and Z. Horita, High Strength and Electrical Conductivity of Al-Fe Alloys Produced by Synergistic Combination of High-Pressure Torsion and Aging, Adv. Eng. Mater, vol.17, pp.1792-1803, 2015.

J. M. Cubero-sesin, H. In, M. Arita, H. Iwaoka, and Z. Horita, High-pressure torsion for fabrication of highstrength and high-electrical conductivity Al micro-wires, J. Mater. Sci, vol.49, pp.6550-6557, 2014.

J. M. Cubero-sesin and Z. Horita, Age Hardening in Ultrafine-Grained Al-2 Pct Fe Alloy Processed by High-Pressure Torsion, Metall. Mater. Trans. A, vol.46, pp.2614-2624, 2015.

O. N. Senkov, F. H. Froes, V. V. Stolyarov, R. Z. Valiev, and J. Liu, Microstructure and microhardness of an Al-Fe alloy subjected to severe plastic deformation and aging, Nanostructured Mater, vol.10, pp.691-698, 1998.

O. N. Senkov, F. H. Froes, V. V. Stolyarov, R. Z. Valiev, and J. Liu, Microstructure of Aluminum-Iron Alloys Subjected to Severe Plastic Deformation, Scr. Mater, vol.38, pp.73-79, 1998.

B. D. Saller, G. Sha, L. M. Yang, F. Liu, S. P. Ringer et al., Iron in solution with aluminum matrix after non-equilibrium processing: an atom probe tomography study, Philos. Mag. Lett, vol.97, pp.118-124, 2017.

V. V. Tcherdyntsev, S. D. Kaloshkin, D. V. Gunderov, E. A. Afonina, I. G. Brodova et al., Phase composition and microhardness of rapidly quenched Al-Fe alloys after high pressure torsion deformation, Mater. Sci. Eng. A. 375, vol.377, pp.2127-2135, 2004.

,

A. R. Yavari, P. J. Desré, and T. Benameur, Mechanically driven alloying of immiscible elements, Phys. Rev. Lett, vol.68, pp.2235-2238, 1992.

D. L. Beke, I. Gödény, I. A. Szabó, G. Erdélyi, and F. J. Kedves, On the diffusion of 59Fe into aluminium and Al Mn solid solutions, Philos. Mag. A, vol.55, pp.425-443, 1987.

G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag, H. Mehrer et al., Diffusion of implanted 3d-transition elements in aluminum, Part I, Temperature Dependence, Z Met, vol.85, pp.122-130, 1995.

G. M. Hood, The diffusion of iron in aluminium, Philos. Mag. J. Theor. Exp. Appl. Phys, vol.21, pp.305-328, 1970.

W. B. Alexander and L. M. Slifkin, Diffusion of Solutes in Aluminum and Dilute Aluminum Alloys, Phys. Rev. B, vol.1, pp.3274-3282, 1970.

S. Mantl, W. Petry, K. Schroeder, and G. Vogl, Diffusion of iron in aluminum studied by M\"ossbauer spectroscopy, Phys. Rev. B, vol.27, pp.5313-5331, 1983.

Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin et al., Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation, Mater. Sci. Eng. A, vol.363, pp.140-151, 2003.

A. Einstein, Investigations on the Theory of the Brownian Movement, 1956.

L. Shaw, H. Luo, J. Villegas, and D. Miracle, Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying, Acta Mater, vol.51, issue.03, pp.75-77, 2003.

J. W. Martin, Precipitation Hardening, 2012.

B. Q. Han, F. A. Mohamed, and E. J. Lavernia, Tensile behavior of bulk nanostructured and ultrafine grained aluminum alloys, J. Mater. Sci, vol.38, pp.3319-3324, 2003.

C. Zener, Theory of Growth of Spherical Precipitates from Solid Solution, J. Appl. Phys, vol.20, pp.950-953, 1949.

T. Gladman and P. , On the theory of the effect of precipitate particles on grain growth in metals, Proc R Soc Lond A, vol.294, pp.298-309, 1966.

M. Hillert, Inhibition of grain growth by second-phase particles, Acta Metall, vol.36, pp.90053-90056, 1988.

S. A. Humphry-baker and C. A. Schuh, Suppression of grain growth in nanocrystalline Bi2Te3 through oxide particle dispersions, J. Appl. Phys, vol.116, p.173505, 2014.

A. Deschamps, F. Livet, and Y. Bréchet, Influence of predeformation on ageing in an Al-Zn-Mg alloy-I. Microstructure evolution and mechanical properties, Acta Mater, vol.47, pp.293-299, 1998.

Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, and T. G. Langdon, Achieving High Strength and High Ductility in Precipitation-Hardened Alloys, Adv. Mater, vol.17, pp.1599-1602, 2005.

,

S. S. Nayak, M. Wollgarten, J. Banhart, S. K. Pabi, and B. S. Murty, Nanocomposites and an extremely hard nanocrystalline intermetallic of Al-Fe alloys prepared by mechanical alloying, Mater. Sci. Eng. A, vol.527, pp.2370-2378, 2010.

C. Gammer, H. P. Karnthaler, and C. Rentenberger, Unexpected grain size reduction by heating in bulk nanocrystalline FeAl, J. Alloys Compd, vol.633, pp.384-389, 2015.

,

Y. Ito, K. Edalati, and Z. Horita, High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship, Mater. Sci. Eng. A, vol.679, pp.428-434, 2017.

Y. Zhang, S. Jin, P. Trimby, X. Liao, M. Y. Murashkin et al., Strengthening mechanisms in an ultrafine-grained AlZnMgCu alloy processed by high pressure torsion at different temperatures, Mater. Sci. Eng. A, vol.752, pp.223-232, 2019.

A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon, and T. R. Mcnelley, Microstructural evolution in commercial purity aluminum during high-pressure torsion, Mater. Sci. Eng. A, vol.410, pp.277-280, 2005.

A. Deschamps and Y. Brechet, Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modeling of precipitation kinetics and yield stress, Acta Mater, vol.47, pp.296-297, 1998.

V. V. Stolyarov, V. V. Latysh, V. A. Shundalov, D. A. Salimonenko, R. K. Islamgaliev et al., Influence of severe plastic deformation on aging effect of Al-Zn-Mg-Cu-Zr alloy, Mater. Sci. Eng. A, vol.234, issue.236, pp.339-342, 1997.

Y. Zhang, S. Jin, P. W. Trimby, X. Liao, M. Y. Murashkin et al., Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion, Acta Mater, 2018.

J. Gubicza, N. Q. Chinh, T. Csanádi, T. G. Langdon, and T. Ungár, Microstructure and strength of severely deformed fcc metals, Mater. Sci. Eng. A, vol.462, pp.86-90, 2007.

L. Liu, X. Cui, J. Jiang, B. Zhang, K. Nomoto et al., Segregation of the major alloying elements to Al3(Sc,Zr) precipitates in an Al-Zn-Mg-Cu-Sc-Zr alloy, Mater. Charact, p.109898, 2019.

L. Liu, J. Jiang, B. Zhang, W. Shao, and L. Zhen, Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing, J. Mater. Sci. Technol, vol.35, pp.962-971, 2019.

, Étude de la séquence de précipitation pendant une isotherme à 100°C : influence de la déformation

, L'évolution des zones-GP (0-3 nm) est étudiée grâce aux graphiques (a, c, e) de la Figure 5. 17. Après 1h de traitement à 100°C, une fraction volumique similaire des zones-GP, pp.0-3

, Après 10h et jusqu'à 48h à 100°C, la distribution de taille des zones-GP s'élargit et le rayon moyen

, Les échantillons déformés par HPS (? ? 15, ? ? 20 et ? ? 30) ont également été étudiés en SAXS pendant une isotherme à 100°C, ainsi que les échantillons 0,4% SC déformé à ? ? 2000 et 0,8% FC après mise en solution

, i)) montrent que, comme pour l'alliage déformé par HPT, la taille de grains semble rester stable lors du traitement à 70°C quel que soit le taux de déformation. Les cartographies KAM (Figure 5. 28) montrent que les désorientations inférieures à 10° n'évoluent pas lors du recuit à 70°C, se traduisant par des densités de dislocations (désorientations) suivantes : de 2,67±0,39.10 15 m -2 à 1,96±0,04.10 15 m -2 pour l'alliage déformé à ? ? 15

, Les cartographies ASTAR de l'alliage 0,4% SC déformé par HPS avec ? ? 15 puis recuit à 70°C ou 100°C (Figure 5. 28 (a, c, e)) montrent que la taille de grains ne croit pas de façon importante après les recuits

, 28 (b, d, f)) montrent qu'un recuit plus intense entraine la formation de désorientations intragranulaire regroupées sous forme de sous-joints de grains (désorientations moins diffuses dans les grains, Les densités de dislocations calculées diminuent peu après un recuit à 70°C (de 2,67±0,39.10 15 m -2 après déformation à 1,96±0,04.10 15 m -2 ), vol.5

, Les images STEM DF et HAADF (Figure 5. 30 et Figure 5. 31) montrent qu'après 72h à 70°C la nanostructure des alliages déformés par HPS, quel que soit le taux déformation, présente une forte densité de précipités. On retrouve, comme indiqué par les résultats SAXS

, Après un traitement à 100°C, pour l'alliage déformé avec ? ? 15 (Figure 5. 30), une évolution très hétérogène des précipités est observée. Cette hétérogénéité, déjà remarqué à 70°C, est accentuée après un recuit à 100°C comme le montrent les images HAADF (Figure 5. 30(h, i)) : la microstructure est découpée en plusieurs zones, celles qui semblent contenir des petits grains, et où la précipitation est donc principalement intergranulaire

, De plus, à l'intérieur même de ces zones intra-granulaires, il semble que la distribution de taille des précipités soit très large

, Cette hétérogénéité dans la précipitation n'est pas retrouvée dans les images STEM de l'alliage déformé

P. V. Liddicoat, X. Liao, Y. Zhao, Y. Zhu, M. Y. Murashkin et al., Nanostructural hierarchy increases the strength of aluminium alloys, Nat. Commun, vol.1, p.63, 2010.

A. Deschamps, F. Livet, and Y. Bréchet, Influence of predeformation on ageing in an Al-Zn-Mg alloy-I. Microstructure evolution and mechanical properties, Acta Mater, vol.47, pp.293-299, 1998.

E. V. Bobruk, M. Y. Murashkin, I. V. Lomakin, V. U. Kazykhanov, and R. Z. Valiev, Low Temperature Superplasticity of High-Strength Ultrafine-Grained Al 7050 alloy, IOP Conf. Ser. Mater. Sci. Eng, vol.461, p.12090, 2018.

F. Viana, A. M. Pinto, H. M. Santos, and A. B. Lopes, Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization, J. Mater. Process. Technol, pp.54-59, 1999.

T. Marlaud, B. Baroux, A. Deschamps, J. L. Chemin, and C. Hénon, Understanding the compromise between strength and exfoliation corrosion in high strength 7000 alloys, p.6, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00157489

P. N. Adler and R. Deiasi, Calorimetric studies of 7000 series aluminum alloys: II. Comparison of 7075, 7050 and RX720 alloys, Metall. Trans. A, vol.8, pp.1185-1190, 1977.

Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, and Y. T. Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater, vol.52, pp.4589-4599, 2004.

S. Liu, C. Li, S. Han, Y. Deng, and X. Zhang, Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy, J. Alloys Compd, vol.625, pp.34-43, 2015.

J. Gubicza, I. Schiller, N. Q. Chinh, J. Illy, Z. Horita et al., The effect of severe plastic deformation on precipitation in supersaturated Al-Zn-Mg alloys, Mater. Sci. Eng. A, vol.460, issue.461, pp.77-85, 2007.

J. Tang, H. Chen, X. Zhang, S. Liu, W. Liu et al., Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy, Trans. Nonferrous Met. Soc. China, vol.22, issue.11, pp.61313-61320, 2012.

N. Q. Chinh, P. Jenei, J. Gubicza, E. V. Bobruk, R. Z. Valiev et al., Influence of Zn content on the microstructure and mechanical performance of ultrafine-grained Al-Zn alloys processed by highpressure torsion, Mater. Lett, vol.186, pp.334-337, 2017.

C. Schmuck, P. Auger, F. Danoix, and D. Blavette, Quantitative analysis of GP zones formed at room temperature in a 7150 Al-based alloy, Appl. Surf. Sci, vol.87, issue.88, p.501, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01928956

J. I. Rojas and D. Crespo, Dynamic microstructural evolution of an Al-Zn-Mg-Cu alloy (7075) during continuous heating and the influence on the viscoelastic response, Mater. Charact, vol.134, pp.319-328, 2017.

N. Q. Chinh, J. Lendvai, D. H. Ping, and K. Hono, The effect of Cu on mechanical and precipitation properties of Al-Zn-Mg alloys, J. Alloys Compd, vol.378, pp.52-60, 2004.

G. Sha and A. Cerezo, Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Mater, vol.52, pp.4503-4516, 2004.

C. S. Smith, Zener, Grains, phases, and interphases: an interpretation of microstructure, Trans Met. Soc AIME, vol.175, pp.15-51, 1948.

M. M. Abramova, N. A. Enikeev, R. Z. Valiev, A. Etienne, B. Radiguet et al., Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel, Mater. Lett. C, pp.349-352, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02107689

C. Gammer, H. P. Karnthaler, and C. Rentenberger, Unexpected grain size reduction by heating in bulk nanocrystalline FeAl, J. Alloys Compd, vol.633, pp.384-389, 2015.

É. À-cette, le seul point négatif est le taux de déformation nécessaire pour obtenir ces résultats, en effet, étant très élevé, il est difficile d'imaginer une transposition de cette stratégie à grande échelle

, Néanmoins, ces résultats nous ont permis de poursuivre le projet par la deuxième étape qui consiste à

, la déformation intense sur l'alliage 0,4% SC avait pour but d'affiner la taille de grains mais également de fragmenter les particules intermétalliques afin d'obtenir une stabilité thermique élevée comme pour l'alliage modèle Al-Fe. Après ? ? 15, 20, 30 par HPS et ? ? 200 et 2000 par HPT, la taille de grains est affinée (<500nm) et le phénomène de saturation de la taille de grains (observé pour l'alliage modèle Al-Fe)

, le même temps, l'influence de la solidification rapide, qui devait permettre d'obtenir une densité numérique élevée d'intermétalliques, n'a également pas permis de favoriser la fragmentation. Malgré tout, l'étude des microstructures a montré qu'en plus des grains ultrafins, de nombreuses désorientations intra-granulaires

, Cette seconde étape a permis de montrer que dans les alliages 7###, la phase Al7Cu2Fe formée ne se fragmente pas autant que la phase Al6Fe de l'alliage Al-Fe, des facteurs tels que la forme, la taille et la fraction volumique des particules en sont probablement des raisons. Néanmoins, la résistance de l'alliage est largement augmentée principalement grâce à la taille de grains et aux nombreuses désorientations intra-granulaires créé par la déformation, De plus les ségrégations et la précipitation sur les défauts ont également été révélées

, Ainsi, la dernière étape de l'étude a consisté en l'étude de la stabilité thermique des alliages déformés ainsi que l'influence de la déformation sur la séquence de précipitation. Et finalement

, Dans un premier temps, un recuit à 70°C pendant 72h a engendré une recristallisation, sauf pour

, par la précipitation intergranulaire, qui donne des précipités plus gros que lors du précédent recuit. Cette intense précipitation Figure C. 2:Taille de grains en fonction de la limite d'élasticité pour l'alliage 0,4% SC non-déformé, déformé à différents taux et recuit à différentes températures. 'éléments d'alliages, et peut être faire un simple alliage Al-Zn-Mg, avec des pourcentages poids faibles et ainsi étudier si ces quantités permettent d'obtenir un alliage à grains ultrafins et si les précipités sont suffisants pour stabiliser cette microstructure. Y aurait-il encore des précipités intra-granulaires ? Si non, cela engendrerai-t-il une perte importante de résistance ? Il serait également intéressant de pousser l, Dans un second temps, un recuit à 100°C pendant 48h a engendré un régime de croissance pour l'alliage stabilité est également apportée, lors de ce recuit

. Comme-le-mn and . Le-cr, Enfin une dernière perspective pourrait être de pousser l'idée des particules intermétalliques mais en utilisant d'autres éléments que le fer

L. Lodgaard and N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys, Mater. Sci. Eng. A, vol.283, pp.734-740, 2000.

A. R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk, Correlation between Electrical Resistivity, Particle Dissolution, Precipitation of Dispersoids, and Recrystallization Behavior of AA7020 Aluminum Alloy, vol.40, pp.2435-2446, 2009.

C. Q. Chen and J. F. Knott, Effects of dispersoid particles on toughness of high-strength aluminium alloys, Met. Sci, vol.15, pp.357-364, 1981.

Y. J. Li, W. Z. Zhang, and K. Marthinsen, Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy, Acta Mater, vol.60, pp.5963-5974, 2012.