S. C. Fry, Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals, Biochem. J, vol.332, pp.507-515, 1998.

T. Fujimoto and I. Parmryd, Interleaflet coupling, pinning, and leaflet asymmetry-major players in plasma membrane nanodomain formation, Front. Cell Dev. Biol, vol.4, pp.1-12, 2017.

T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi, Phospholipids undergo hop diffusion in compartmentalized cell membrane, J. Cell Biol, vol.157, pp.1071-1081, 2002.

G. ,

N. Gahalain, J. Chaudhary, A. Kumar, S. Sharma, and A. Jain, Lipid peroxidation: An overview, Int. J. Pharm. Sci. Res, vol.1, pp.2757-2766, 2011.

I. Galvano, The effects of dietary flavonoids on the regulation of redox inflammatory networks, Front. Biosci, vol.17, pp.2396-2418, 2012.

A. Garcia-brugger, O. Lamotte, E. Vandelle, S. Bourque, D. Lecourieux et al., Early signaling events induced by elicitors of plant defenses, Mol. Plant. Microbe. Interact, vol.19, pp.711-724, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02668828

M. Garcia-diaz, Y. Y. Huang, and M. R. Hamblin, Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy, Methods, vol.109, pp.158-166, 2016.

K. Gaus, E. Gratton, E. Kable, A. S. Jones, I. Gelissen et al., Visualizing lipid structure and raft domains in living cells with two-photon microscopy, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.15554-15559, 2003.

A. Gauthier, O. Lamotte, D. Reboutier, F. Bouteau, A. Pugin et al., Cryptogeininduced anion effluxes: Electrophysiological properties and analysis of the mechanisms through which they contribute to the elicitor-triggered cell death, Plant Signal. Behav, vol.2, pp.86-95, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02461138

N. Geldner, N. Anders, H. Wolters, J. Keicher, W. Kornberger et al., The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth, Cell, vol.112, pp.219-230, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00134323

N. Geldner, J. Friml, Y. D. Stierhof, G. Jürgens, and K. Palme, Auxin transport inhibitors block PIN1 cycling and vesicle trafficking, Nature, vol.413, pp.425-428, 2001.

P. Gerbeau-pissot, C. Der, D. Thomas, I. Anca, K. Grosjean et al., Modification of plasma membrane organization in tobacco cells elicited by cryptogein, Plant Physiol, vol.164, pp.273-286, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638760

M. Giocondi, D. Yamamoto, E. Lesniewska, P. Milhiet, T. Ando et al., Surface topography of membrane domains, BBA -Biomembr, vol.1798, pp.703-718, 2009.

D. Giron, E. Frago, G. Glevarec, C. Pieterse, and M. Dicke, Cytokinins as key regulators in plant-microbe-insect interactions: Connecting plant growth and defence, Funct. Ecol, vol.27, pp.147-599, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00866182

A. Glasauer and N. S. Chandel, Ros. Curr. Biol, vol.23, pp.100-102, 2013.

J. Glazebrook, Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens, Annu. Rev. Phytopathol, vol.43, pp.205-227, 2005.

L. Gomez-gomez, Z. Bauer, and T. Boller, Both the Extracellular Leucine-Rich Repeat Domain and the Kinase Activity of FLS2 Are Required for Flagellin Binding and Signaling in Arabidopsis, Plant Cell, vol.13, p.1155, 2007.

F. M. Goni, M. Urbaneja, J. Arrondo, A. Alonso, A. A. Durrani et al., The interaction of phosphatidylcholine bilayers with Triton X-100, Eur. J. Biochem, vol.160, pp.659-665, 1986.

E. M. Govrin and A. Levine, The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea, Curr. Biol, vol.10, pp.751-757, 2000.

A. Grandmougin, P. Bouvier-navé, P. Ullmann, P. Benveniste, and M. Hartmann, Cyclopropyl Sterol and Phospholipid Composition of Membrane Fractions from Maize Roots Treated with Fenpropimorph, Plant Physiol, vol.90, pp.591-597, 1989.

G. Grebnev, M. Ntefidou, and B. Kost, Secretion and Endocytosis in Pollen Tubes: Models of Tip Growth in the Spot Light, Front. Plant Sci, vol.8, pp.1-7, 2017.

J. T. Greenberg and N. Yao, The role of regulation of programmed cell death in plantpathogen interactions, Cell. Microbiol, vol.6, pp.201-211, 2004.

T. Griebel and J. Zeier, A role for ?-sitosterol to stigmasterol conversion in plant-pathogen interactions, Plant J, vol.63, pp.254-268, 2010.

M. S. Grison, L. Brocard, L. Fouillen, N. W. Wewer, V. Dörmann et al., Specific Membrane Lipid Composition Is Important for Plasmodesmata Function in Arabidopsis, Plant Cell, vol.27, pp.1228-1250, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641388

J. Gronnier, J. M. Crowet, B. Habenstein, M. N. Nasir, V. Bayle et al., Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains, vol.6, pp.1-24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606735

J. Gronnier, P. Gerbeau-pissot, V. Germain, S. Mongrand, and F. Simon-plas, Divide and Rule: Plant Plasma Membrane Organization, Trends Plant Sci. xx, pp.1-19, 2018.

K. Grosjean, C. Der, F. Robert, D. Thomas, S. Mongrand et al., Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells, J. Exp. Bot, vol.69, pp.3545-3557, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02629167

K. Grosjean, S. Mongrand, L. Beney, F. Simon-plas, and P. Gerbeau-pissot, Differential effect of plant lipids on membrane organization specificities of phytosphingolipids and phytosterols, Biochim. Biophys. Acta -Biomembr, vol.290, pp.143-152, 2015.

L. Mejía-teniente, B. A. Durán-flores, I. Torres-pacheco, M. M. González-chavira, R. F. Rivera-bustamante et al., Hydrogen peroxide protects pepper (Capsicum annuum L.) against pepper golden mosaic geminivirus (PepGMV) infections, Physiol. Mol. Plant Pathol, vol.106, pp.23-29, 2019.

D. Mellersh and M. C. Heath, Plasma membrane-cell wall adhesion is required for expression of plant defense responses during fungal penetration, Plant Cell, vol.13, pp.413-424, 2001.

S. Men, Y. Boutté, Y. Ikeda, X. Li, K. Palme et al., , 2008.

, Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity, Nat. Cell Biol, vol.10, pp.237-244

L. Miao, M. Nielsen, J. Thewalt, J. H. Ipsen, M. Bloom et al., From lanosterol to cholesterol: Structural evolution and differential effects on lipid bilayers, Biophys. J, vol.82, pp.1429-1444, 2002.

L. Mignolet-spruyt, E. Xu, N. Idänheimo, F. A. Hoeberichts, P. Mühlenbock et al., Spreading the news: Subcellular and organellar reactive oxygen species production and signalling, J. Exp. Bot, vol.67, pp.3831-3844, 2016.

L. Miguel, D. M. Owen, C. Lim, C. Liebig, J. Evans et al., , 2011.

. +-t-cells, Have Diverse Levels of Membrane Lipid Order That Correlate with Their Function, J. Immunol, vol.186, pp.3505-3516

P. E. Milhiet, C. Domec, M. C. Giocondi, V. Mau, N. Heitz et al., Domain formation in models of the renal brush border membrane outer leaflet, Biophys. J, vol.81, pp.547-555, 2001.

C. W. Mims, C. Rodriguez-lother, and E. A. Richardson, Ultrastructure of the host-pathogen interface in daylily leaves infected by the rust fungus Puccinia hemerocallidis, Protoplasma, vol.219, pp.221-226, 2002.

R. Mittler, ROS Are Good. Trends Plant Sci, vol.22, pp.11-19, 2017.

R. Mittler, S. Vanderauwera, M. Gollery, and F. Van-breusegem, Reactive oxygen gene network of plants, Trends Plant Sci, vol.9, pp.490-498, 2004.

R. Mittler, S. Vanderauwera, N. Suzuki, G. Miller, V. B. Tognetti et al., ROS signaling: The new wave? Trends Plant Sci, vol.16, pp.300-309, 2011.

E. Mombelli, R. Morris, W. Taylor, and F. Fraternali, Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: A molecular dynamics study, Biophys. J, vol.84, pp.1507-1517, 2003.

S. Mongrand, J. Morel, J. Laroche, S. Claverol, J. P. Carde et al., Lipid rafts in higher plant cells: Purification and characterization of triton X-100-insoluble microdomains from tobacco plasma, 2004.

, Cytokinesis Requires De Novo Secretory Trafficking but Not Endocytosis, Curr. Biol, vol.17, pp.2047-2053

A. Reis and C. M. Spickett, Chemistry of phospholipid oxidation, Biochim. Biophys. Acta -Biomembr, vol.1818, pp.2374-2387, 2012.

P. Ricci, F. Trentin, P. Bonnet, P. Venard, F. Mouton-perronet et al., Differential production of parasiticein, an elicitor of necrosis and resistance in tobacco, by isolates of Phytophthora parasitica, Plant Pathol, vol.41, pp.298-307, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02714076

G. Richard and . Anderson-ken-jacobson, A Role for Lipid Shells in Targeting Proteins to Caveolae, Rafts, and Other Lipid Domains, Cell Biology, vol.296, pp.1821-1825, 2002.

H. Rinia and B. Kruijff, Imaging domains in model membranes with atomic force microscopy, FEBS Lett, vol.504, pp.194-199, 2001.

S. Robatzek, D. Chinchilla, and T. Boller, Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis, Genes Dev, vol.20, pp.537-542, 2006.

K. Roberts, Structures at the plant cell surface, Curr. Opin. Cell Biol, vol.2, pp.920-928, 1990.

Y. Roche, P. Gerbeau-pissot, B. Buhot, D. Thomas, L. Bonneau et al., Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts, FASEB J, vol.22, pp.3980-3991, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02657476

C. Rosetti and C. Pastorino, Polyunsaturated and saturated phospholipids in mixed bilayers: a study from the molecular scale to the lateral lipid organization, J. Phys. Chem. B, vol.115, pp.1002-1013, 2010.

C. Rusterucci, V. Stallaert, M. L. Milat, A. Pugin, P. Ricci et al., Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana, Plant Physiol, vol.111, pp.885-891, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02688250

G. Sagi, A. Katz, D. Guenoune-gelbart, and B. L. Epel, Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus, Plant Cell, vol.17, pp.1788-1800, 2005.

S. J. Sahl, M. Leutenegger, M. Hilbert, S. W. Hell, and C. Eggeling, Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids, Proc. Natl. Acad. Sci, vol.107, pp.6829-6834, 2010.

Y. Saijo, ER quality control of immune receptors and regulators in plants, Cell. Microbiol, vol.12, pp.716-724, 2010.

C. Saito and T. Ueda, Chapter 4 Functions of RAB and SNARE Proteins in Plant Life, Int. Rev. Cell Mol. Biol, vol.274, pp.183-233, 2009.

S. K. Saka, A. Honigmann, C. Eggeling, S. W. Hell, T. Lang et al., Multi-protein assemblies underlie the mesoscale organization of the plasma membrane, Nat. Commun, vol.5, pp.1-14, 2014.

Y. Sako and A. Kusumi, Compartimentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis, J. Cell Biol, vol.125, pp.1251-1264, 1994.

M. Sanchez-alvarez, Q. Zhang, F. Finger, M. Wakelam, and C. Bakal, Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis, Open Biol, vol.5, p.150093, 2015.

R. Sandor, C. Der, K. Grosjean, I. Anca, E. Noirot et al., Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence, Journal of experimental botany, vol.67, pp.5173-5185, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02630903

M. B. Sankaram and T. E. Thompson, Interaction of Cholesterol with Various Glycerophospholipids and Sphingomyelin, Biochemistry, vol.29, pp.10670-10675, 1990.

F. C. Santos, A. S. Fernandes, C. Antunes, F. P. Moreira, A. Videira et al., Reorganization of plasma membrane lipid domains during conidial germination, 2017.

, Biochim. Biophys. Acta -Mol. Cell Biol. Lipids, vol.1862, pp.156-166

I. Saxena, S. Srikanth, and Z. Chen, Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response, Front. Plant Sci, vol.7, pp.1-16, 2016.

H. Schaller, New aspects of sterol biosynthesis in growth and development of higher plants, Plant Physiol. Biochem, vol.42, pp.465-476, 2004.

A. L. Schapire, B. Voigt, J. Jasik, A. Rosado, R. Lopez-cobollo et al., Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability, Plant Cell, vol.20, pp.3374-3388, 2008.

H. V. Scheller and P. Ulvskov, Hemicelluloses. Annu. Rev. Plant Biol, vol.61, pp.263-289, 2010.

M. Schieber and N. S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol, vol.24, pp.453-462, 2014.

F. Schroeder, Fluorescent sterols: Probe molecules of membrane structure and function, Prog. Lipid Res, vol.23, pp.97-113, 1984.

C. Schroer, L. Baldauf, L. Van-buren, T. A. Wassenaar, M. N. Melo et al., Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers, Proc. Natl. Acad. Sci. U. S. A, vol.117, pp.5861-5872, 2020.

S. Schuck, M. Honsho, K. Ekroos, A. Shevchenko, and K. Simons, Resistance of cell membranes to different detergents, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.5795-5800, 2003.

J. M. Seddon, R. H. Templer, N. A. Warrender, Z. Huang, G. Cevc et al., Phosphatidylcholine-fatty acid membranes: Effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal, 1997.

, Biochim. Biophys. Acta -Biomembr, vol.1327, pp.131-147

M. Serrano, F. Coluccia, M. Torres, L. 'haridon, F. Métraux et al., The cuticle and plant defense to pathogens, Front. Plant Sci, vol.5, pp.1-8, 2014.

. Setsukinai-k-ichi, Y. Urano, K. Kakinuma, H. J. Majima, and T. Nagano, Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species, J. Biol. Chem, vol.278, pp.3170-3175, 2003.

E. Sezgin, H. J. Kaiser, T. Baumgart, P. Schwille, K. Simons et al., Elucidating membrane structure and protein behavior using giant plasma membrane vesicles, Nat. Protoc, vol.7, pp.1042-1051, 2012.

E. Sezgin, F. Schneider, V. Zilles, I. Urban?i?, E. Garcia et al., Polarity-Sensitive Probes for Superresolution Stimulated Emission Depletion Microscopy, Biophys. J, vol.113, pp.1321-1330, 2017.

D. K. Sharma, J. Brown, A. Choudhury, T. Peterson, E. Holicky et al., Selective Stimulation of Caveolar Endocytosis by Glycosphingolipids and Cholesterol, Mol Biol Cell, vol.15, pp.3114-3122, 2004.

M. B. Sheahan, R. J. Rose, and D. W. Mccurdy, Actin-filament-dependent remodeling of the vacuole in cultured mesophyll protoplasts, Protoplasma, vol.230, pp.141-152, 2007.

H. D. Shew, Effect of Host Resistance on Spread of Phytophthora parasitica var. nicotianae and Subsequent Development of Tobacco Black Shank Under Field Conditions, Phytopathology, vol.77, p.1090, 1987.

H. Shi, T. Ye, N. Han, H. Bian, X. Liu et al., Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis, J. Integr. Plant Biol, vol.57, pp.628-640, 2015.

E. J. Shimshick and H. M. Mcconnell, Lateral Phase Separation in Phospholipid Membranes, Biochemistry, vol.12, pp.2351-2360, 1973.

V. V. Shynkar, A. S. Klymchenko, C. Kunzelmann, G. Duportail, C. D. Muller et al., Fluorescent biomembrane probe for ratiometric detection of apoptosis, J. Am. Chem. Soc, vol.129, pp.2187-2193, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00139158

J. J. Sieber, K. I. Willig, C. Kutzner, C. Gerding-reimers, B. Harke et al., Anatomy and dynamics of a supramolecular membrane protein cluster, Science, vol.317, pp.1072-1076, 2007.

P. Sil, N. Mateos, S. Nath, S. Buschow, C. Manzo et al., Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane, Mol. Biol. Cell: mbc, 2019.

J. E. Silvius, N. J. Chatterton, and D. F. Kremer, Photosynthate Partitioning in Soybean Leaves at Two Irradiance Levels, Plant Physiol, vol.64, pp.872-875, 1979.

F. Simon-plas, T. Elmayan, and J. P. Blein, The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells, Plant J, vol.31, pp.137-147, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02679558

F. Simon-plas, C. Rustérucci, M. L. Milat, and C. Humbert, Active oxygen species production in tobacco cells elicited by cryptogein*, Montillet JL & Blein JP, vol.20, pp.1573-168, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02691047

K. Simons and E. Ikonen, Functional Rafts in Cell-Membranes, Nature, vol.387, pp.569-572, 1997.

K. Simons and E. Ikonen, How cells handle cholesterol, Science, vol.290, pp.1721-1726, 2000.

M. Simunovic, E. Evergren, I. Golushko, C. Prévost, H. Renard et al., How curvature-generating proteins build scaffolds on membrane nanotubes, Proc. Natl. Acad. Sci, vol.113, pp.11226-11231, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01529998

S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science, vol.175, pp.720-731, 1972.

A. Singh, G. H. Lim, and P. Kachroo, Transport of chemical signals in systemic acquired resistance, J. Integr. Plant Biol, vol.59, pp.336-344, 2017.

C. R. Somerville, Cellulose synthesis in higher plants, Annu. Rev. Cell Dev. Biol, vol.22, pp.53-78, 2006.

I. Sparkes, C. Hawes, and L. Frigerio, FrontiERs: Movers and shapers of the higher plant cortical endoplasmic reticulum, Curr. Opin. Plant Biol, vol.14, pp.658-665, 2011.

E. Sparr, L. Hallin, N. Markova, and H. Wennerstrom, Phospholipid-cholesterol bilayers under osmotic stress, Biophys. J, vol.83, pp.2015-2025, 2002.

S. Spassieva and J. Hille, Plant sphingolipids today -Are they still enigmatic?, Plant Biol, vol.5, pp.125-136, 2003.

P. Sperling and E. Heinz, Plant sphingolipids: Structural diversity, biosynthesis, first genes and functions, Biochim. Biophys. Acta -Mol. Cell Biol. Lipids, vol.1632, pp.1-15, 2003.

E. B. Speth, L. Imboden, P. Hauck, and S. Y. He, Subcellular localization and functional analysis of the Arabidopsis GTPase RabE 1, Plant Physiol, vol.149, pp.1824-1837, 2009.

H. Sprong, P. Van-der-sluijs, and G. Van-meer, How proteins move lipids and lipids move proteins, Nat. Rev. Mol. Cell Biol, vol.2, pp.504-513, 2001.

T. Stanislas, D. Bouyssie, M. Rossignol, S. Vesa, J. Fromentin et al., Quantitative Proteomics Reveals a Dynamic Association of Proteins to Detergent-resistant Membranes upon Elicitor Signaling in Tobacco, Mol. Cell. Proteomics, vol.8, pp.2186-2198, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02661848

M. Stegmann, R. G. Anderson, L. Westphal, S. Rosahl, J. M. Mcdowell et al., The exocyst subunit Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death, Plant Signal. Behav, vol.8, p.27421, 2013.

F. Stetter, L. Cwiklik, P. Jungwirth, and T. Hugel, Single lipid extraction: The anchoring strength of cholesterol in liquid-ordered and liquid-disordered phases, Biophys. J, vol.107, pp.1167-1175, 2014.

T. J. Stevens and I. T. Arkin, Do more complex organisms have a greater proportion of membrane proteins in their genomes?, Proteins Struct. Funct. Genet, vol.39, pp.417-420, 2000.

R. A. Stong, E. Kolodny, R. G. Kelsey, M. P. González-hernández, J. M. Vivanco et al., The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years, J. References 1. Nicolson GL, issue.6, pp.1451-1466, 1838.

K. Grosjean, S. Mongrand, L. Beney, F. Simon-plas, and P. Gerbeau-pissot, Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols, J Biol Chem, vol.290, issue.9, pp.5810-5825, 2015.

J. Aittoniemi, P. S. Niemela, M. T. Hyvonen, M. Karttunen, and I. Vattulainen, Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine, Biophysical J, vol.92, issue.4, pp.1125-1137, 2007.

J. Gronnier, J. M. Crowet, B. Habenstein, M. N. Nasir, V. Bayle et al., Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains, vol.6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606735

K. Grosjean, C. Der, F. Robert, D. Thomas, S. Mongrand et al., Interactions between lipids and proteins are critical for plasma membrane ordered domain organization in BY-2 cells, J Exp Bot, vol.69, issue.15, pp.3545-3557, 2018.

P. Voothuluru, J. C. Anderson, R. E. Sharp, and S. C. Peck, Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress, Plant Cell Environ, vol.39, issue.9, pp.2043-2054, 2016.

J. Dinic, H. Biverstahl, L. Maler, and I. Parmryd, Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing, Biochim Biophys Acta

, , vol.1808, pp.298-306

X. Zhao, X. Zhang, Y. Qu, R. Li, F. Baluska et al., Mapping of membrane lipid order in root apex zones of Arabidopsis thaliana, Front Plant Sci, vol.6, p.1151, 2015.

M. Frescatada-rosa, T. Stanislas, S. K. Backues, I. Reichardt, S. Men et al., High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function, Plant J, 2014.

, , vol.80, pp.745-757

H. Takatsuka and M. Umeda, Hormonal control of cell division and elongation along differentiation trajectories in roots, J Exp Bot, vol.65, issue.10, pp.2633-2643, 2014.

C. Sánchez, W. García-ponce, B. Sánchez, M. P. Álvarez-buylla, E. R. Garay-arroyo et al., Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots, Commun Integr Biol, vol.11, issue.1, p.1395993, 2017.

E. Kranz and H. Lorz, In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants, Plant Cell, vol.5, issue.7, pp.739-746, 1993.

B. Zaban, J. Maisch, and P. Nick, Dynamic actin controls polarity induction de novo in protoplasts, J Integr Plant Biol, vol.55, issue.2, pp.142-159, 2013.

M. Denz, S. Chiantia, A. Herrmann, P. Mueller, T. Korte et al., Cell cycle dependent changes in the plasma membrane organization of mammalian cells, Biochim Biophys Acta Biomembr, vol.1859, issue.3, pp.350-359, 2017.

G. E. Atilla-gokcumen, E. Muro, J. Relat-goberna, S. Sasse, A. Bedigian et al., Dividing cells regulate their lipid composition and localization, Cell, vol.156, issue.3, pp.428-439, 2014.

M. Sanchez-alvarez, Q. Zhang, F. Finger, M. J. Wakelam, and C. Bakal, Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis, Open Biol, vol.5, issue.9, p.150093, 2015.

C. V. Hague, A. D. Postle, G. S. Attard, and M. K. Dymond, Cell cycle dependent changes in membrane stored curvature elastic energy: evidence from lipidomic studies, Faraday Discuss, vol.161, pp.563-89, 2013.

J. Kleine-vehn, K. Wabnik, A. Martiniere, L. Langowski, K. Willig et al., Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane, Mol Syst Biol, vol.7, p.540, 2011.

C. Luschnig and G. Vert, The dynamics of plant plasma membrane proteins: PINs and beyond, Development, vol.141, issue.15, pp.2924-2938, 2014.

E. Feraru, M. I. Feraru, J. Kleine-vehn, A. Martiniere, G. Mouille et al., PIN polarity maintenance by the cell wall in Arabidopsis, Curr Biol, vol.21, issue.4, pp.338-343, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01019303

M. Laloi, A. M. Perret, L. Chatre, S. Melser, C. Cantrel et al., Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells, Plant Physiol, vol.143, issue.1, pp.461-472, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170585

C. Ambrose, Y. Ruan, J. Gardiner, L. M. Tamblyn, A. Catching et al., CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana, Dev Cell, vol.24, issue.6, p.294002, 2013.

, PI3P 5-Kinase (1 ?M, p.201636

. Pi4-kinase, ?M) Wortmannin [283,31] PI3-Kinase + PI4-Kinase (30 ?M) Wortmannin Sphingolipids Ceramide synthase, 30-60 ?M) Phenylarsine oxide (PAO), vol.117, p.3

B. Fumonisin,

/. Vlcfas and . Sphingolipid,

, Serine palmitoyltransferase (SPT) Myriocin [56,403] Inositol phosphorylceramide synthase (fungi) Aureobasidin A

, Diacylglycerol/phosphatidic acid Lyso PA Acyl transferase CI-976

, PLD-derived PA formation (50 ?M) (R)-(+)-Propanolol hydrochloride

, ) 1-butanol [409,410] PLC-derived DAG formation (5 ?M) U73122 (active analog

, PLC-derived DAG formation (50 ?M

. Dag-kinase, , p.59022

, Sterols Cyclopropylsterol isomerase, vol.1

A. M. Cassim, Progress in Lipid Research, vol.73, pp.1-27, 2019.

H. W. Xue, X. Chen, and Y. Mei, Function and regulation of phospholipid signalling in plants, Biochem J, vol.421, pp.145-156, 2009.

J. L. Cacas, C. Bure, K. Grosjean, P. Gerbeau-pissot, J. Lherminier et al., Re-visiting plant plasma membrane lipids in tobacco: a focus on sphingolipids, Plant Physiol, vol.170, pp.367-384, 2015.

L. Yetukuri, K. Ekroos, A. Vidal-puig, and M. Oresic, Informatics and computational strategies for the study of lipids, Mol Biosyst, vol.4, pp.121-127, 2008.

C. Larsson, M. Sommarin, and S. Widell, Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles, Methods Enzymol, vol.228, pp.451-469, 1994.

T. Samarakoon, S. Shiva, K. Lowe, P. Tamura, M. R. Roth et al., Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis, Methods Mol Biol, vol.918, pp.179-268, 2012.

D. Yu, T. W. Rupasinghe, B. A. Boughton, S. H. Natera, C. B. Hill et al., A high-resolution HPLC-QqTOF platform using parallel reaction monitoring for in-depth lipid discovery and rapid profiling, Anal Chim Acta, vol.1026, pp.87-100, 2018.

M. S. Grison, L. Brocard, L. Fouillen, W. Nicolas, V. Wewer et al., Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis, Plant Cell, vol.27, pp.1228-1250, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641388

F. Doignon, P. Laquel, E. Testet, K. Tuphile, L. Fouillen et al., Requirement of phosphoinositides containing stearic acid to control cell polarity, Mol Cell Biol, vol.36, pp.765-780, 2015.

J. E. Markham and J. G. Jaworski, Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry, Rapid Commun Mass Spectrom, vol.21, pp.1304-1314, 2007.

J. E. Markham, J. Li, E. B. Cahoon, and J. G. Jaworski, Separation and identification of major plant sphingolipid classes from leaves, J Biol Chem, vol.281, pp.22684-22694, 2006.

K. Schrick, S. Shiva, J. C. Arpin, N. Delimont, G. Isaac et al., Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry, Lipids, vol.47, pp.185-193, 2012.

V. Wewer, I. Dombrink, K. Vom-dorp, and P. Dormann, Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry, J Lipid Res, vol.52, pp.1039-1054, 2011.

M. R. Wenk, Lipidomics: new tools and applications, vol.143, pp.888-895, 2010.

P. J. Horn, A. R. Korte, P. B. Neogi, E. Love, J. Fuchs et al., Spatial mapping of lipids at cellular resolution in embryos of cotton, Plant Cell, vol.24, pp.622-636, 2012.

H. K. Woodfield, D. Sturtevant, L. Borisjuk, E. Munz, I. A. Guschina et al., Spatial and temporal mapping of key lipid species in brassica napus seeds, Plant Physiol, vol.173, pp.1998-2009, 2017.

S. R. Ellis, M. R. Paine, G. B. Eijkel, J. K. Pauling, P. Husen et al., Automated, parallel mass spectrometry imaging and structural identification of lipids, Nat Methods, vol.15, pp.515-518, 2018.

J. F. Frisz, H. A. Klitzing, K. Lou, I. D. Hutcheon, P. K. Weber et al., Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol, J Biol Chem, vol.288, pp.16855-16861, 2013.

J. F. Frisz, K. Lou, H. A. Klitzing, W. P. Hanafin, V. Lizunov et al., Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts, Proc Natl Acad Sci U S A, vol.110, pp.613-622, 2013.

S. Mongrand, J. Morel, J. Laroche, S. Claverol, J. P. Carde et al., Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane, J Biol Chem, vol.279, pp.36277-36286, 2004.

M. Uemura, R. A. Joseph, and P. L. Steponkus, Cold acclimation of arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions), Plant Physiol, vol.109, pp.15-30, 1995.

M. Bohn, E. Heinz, and S. Luthje, Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots, Arch Biochem Biophys, issue.387, pp.35-40, 2001.

M. Uemura and P. L. Steponkus, A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance, Plant Physiol, vol.104, pp.479-496, 1994.

M. F. Quartacci, O. Glisic, B. Stevanovic, and F. Navari-izzo, Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydration, J Exp Bot, vol.53, pp.2159-2166, 2002.

A. H. Berglund, M. F. Quartacci, L. Calucci, F. Navari-izzo, C. Pinzino et al., Alterations of wheat root plasma membrane lipid composition induced by copper stress result in changed physicochemical properties of plasma membrane lipid vesicles, Biochim Biophys Acta, vol.1564, pp.466-472, 2002.

J. E. Vermeer and T. Munnik, Using genetically encoded fluorescent reporters to image lipid signalling in living plants, Methods Mol Biol, vol.1009, pp.283-289, 2013.

R. Tejos, M. Sauer, S. Vanneste, M. Palacios-gomez, H. Li et al., Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in arabidopsis, Plant Cell, vol.26, pp.2114-2128, 2014.

M. L. Simon, M. P. Platre, S. Assil, R. Van-wijk, W. Y. Chen et al., Progress in Lipid Research, vol.73, pp.1-27, 2019.

, colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis, Plant J, vol.77, pp.322-337, 2014.

Y. Yamaoka, Y. Yu, J. Mizoi, Y. Fujiki, K. Saito et al., Phosphatidylserine Synthase1 is required for microspore development in Arabidopsis thaliana, Plant J, vol.67, pp.648-661, 2011.

T. Hirano, K. Stecker, T. Munnik, H. Xu, and M. H. Sato, Visualization of phosphatidylinositol 3,5-bisphosphate dynamics by a tandem ML1N-based fluorescent protein probe in arabidopsis, Plant Cell Physiol, vol.58, pp.1185-1195, 2017.

W. Van-leeuwen, J. E. Vermeer, T. W. Gadella, and T. Munnik, Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspensioncultured tobacco BY-2 cells and whole Arabidopsis seedlings, Plant J, vol.52, pp.1014-1026, 2007.

F. Furt, S. Konig, J. J. Bessoule, F. Sargueil, R. Zallot et al., Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane, Plant Physiol, vol.152, pp.2173-2187, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02667250

M. X. Andersson, M. H. Stridh, K. E. Larsson, C. Liljenberg, and A. S. Sandelius, Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol, FEBS Lett, vol.537, pp.128-132, 2003.

M. X. Andersson, K. E. Larsson, H. Tjellstrom, C. Liljenberg, and A. S. Sandelius, Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane, J Biol Chem, vol.280, pp.27578-27586, 2005.

J. E. Vermeer, R. Van-wijk, J. Goedhart, N. Geldner, J. Chory et al., In vivo imaging of diacylglycerol at the cytoplasmic leaflet of plant membranes, Plant Cell Physiol, vol.58, pp.1196-1207, 2017.

D. V. Lynch and T. M. Dunn, An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function, New Phytol, vol.16, pp.677-702, 2004.

S. Sonnino and A. Prinetti, Gangliosides as regulators of cell membrane organization and functions, Adv Exp Med Biol, vol.688, pp.165-184, 2010.

P. Moreau, J. J. Bessoule, S. Mongrand, E. Testet, P. Vincent et al., Lipid trafficking in plant cells, Prog Lipid Res, vol.37, pp.371-391, 1998.

M. O. Pata, Y. A. Hannun, and C. K. Ng, Plant sphingolipids: decoding the enigma of the Sphinx, New Phytol, vol.185, pp.611-630, 2010.

J. L. Cacas, C. Bure, K. Grosjean, P. Gerbeau-pissot, J. Lherminier et al., Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids, Plant Physiol, vol.170, pp.367-384, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637209

T. A. Lenar?i?, H. Böhm, V. Hodnik, K. Pirc, A. P. Zavec et al., Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins, 2017.

H. E. Carter, R. H. Gigg, J. H. Law, T. Nakayama, and E. Weber, Biochemistry of the sphingolipides. XI. Structure of phytoglycolipide, J Biol Chem, vol.233, pp.1309-1314, 1958.

C. Bure, J. L. Cacas, S. Mongrand, and J. M. Schmitter, Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry, Anal Bioanal Chem, vol.406, pp.995-1010, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02631323

T. C. Hsieh, R. L. Lester, and R. A. Laine, Glycophosphoceramides from plants. Purification and characterization of a novel tetrasaccharide derived from tobacco leaf glycolipids, J Biol Chem, vol.256, pp.7747-7755, 1981.

P. Sperling and E. Heinz, Plant sphingolipids: Structural diversity, biosynthesis, first genes and functions, Biochim Biophys Acta, vol.1632, pp.1-15, 2003.

C. Bure, J. L. Cacas, F. Wang, K. Gaudin, F. Domergue et al., Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry, Rapid Commun Mass Spectrom, vol.25, pp.3131-3145, 2011.

J. L. Cacas, C. Bure, F. Furt, J. P. Maalouf, A. Badoc et al., Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity, Phytochemistry, vol.96, pp.191-200, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02644251

J. C. Mortimer, X. Yu, S. Albrecht, F. Sicilia, M. Huichalaf et al., Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis, Plant Cell, vol.25, pp.1881-1894, 2013.

C. Bure, J. L. Cacas, S. Mongrand, and J. M. Schmitter, Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry, Anal Bioanal Chem, vol.406, issue.4, pp.995-1010, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02631323

L. Fang, T. Ishikawa, E. A. Rennie, G. M. Murawska, J. Lao et al., Loss of inositol phosphorylceramide sphingolipid mannosylation induces plant immune responses and reduces cellulose content in arabidopsis, Plant Cell, vol.28, pp.2991-3004, 2016.

K. D. Luttgeharm, A. N. Kimberlin, R. E. Cahoon, R. L. Cerny, J. A. Napier et al., Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling, Phytochemistry, vol.115, pp.121-129, 2015.

F. Tellier, A. Maia-grondard, I. Schmitz-afonso, and J. D. Faure, Comparative plant sphingolipidomic reveals specific lipids in seeds and oil, Phytochemistry, vol.103, pp.50-58, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01024458

M. Nagano, T. Ishikawa, M. Fujiwara, Y. Fukao, Y. Kawano et al., Plasma membrane microdomains are essential for Rac1-RbohB/H-mediated immunity in rice, Plant Cell, vol.28, pp.1966-1983, 2016.

K. Kaul and R. L. Lester, Characterization of inositol-containing phosphosphingolipids from tobacco leaves: Isolation and Identification of two novel, major lipids: Nacetylglucosamidoglucuronidoinositol phosphorylceramide and glucosamidoglucuronidoinositol phosphorylceramide, Plant Physiol, vol.55, pp.120-129, 1975.

N. Blaas and H. U. Humpf, Structural profiling and quantitation of glycosyl inositol phosphoceramides in plants with Fourier transform mass spectrometry, J Agric Food Chem, vol.61, pp.4257-4269, 2013.

T. C. Hsieh, K. Kaul, R. A. Laine, and R. L. Lester, Structure of a major glycophosphoceramide from tobacco leaves, PSL-I: 2-deoxy-2-acetamido-D-glucopyranosyl(alpha1 leads to 4)-D-glucuronopyranosyl(alpha1 leads to 2)myoinositol-1-O-phosphoceramide, Biochemistry, vol.17, pp.3575-3581, 1978.

J. E. Markham, D. Molino, L. Gissot, Y. Bellec, K. Hematy et al., Sphingolipids containing very-long-chain Fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis, Plant Cell, vol.23, pp.2362-2378, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00855942

M. Chen, J. E. Markham, and E. B. Cahoon, Sphingolipid Delta8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis, Plant J, vol.69, pp.769-781, 2012.

T. Mikami, M. Kashiwagi, K. Tsuchihashi, T. Akino, and S. Gasa, Substrate specificity and some other enzymatic properties of dihydroceramide desaturase (ceramide synthase) in fetal rat skin, J Biochem, vol.123, pp.906-911, 1998.

H. Liang, N. Yao, J. T. Song, S. Luo, H. Lu et al., Ceramides modulate programmed cell death in plants, Genes Dev, vol.17, pp.2636-2641, 2003.

J. T. Marques, H. S. Marinho, and R. F. De-almeida, Sphingolipid hydroxylation in mammals, yeast and plants -an integrated view, Prog Lipid Res, vol.71, pp.18-42, 2018.

I. Hillig, M. Leipelt, C. Ott, U. Zahringer, D. Warnecke et al., Formation of glucosylceramide and sterol glucoside by a UDP-glucose-dependent glucosylceramide synthase from cotton expressed in Pichia pastoris, FEBS Lett, vol.553, pp.365-369, 2003.

W. Wang, X. Yang, S. Tangchaiburana, R. Ndeh, J. E. Markham et al., An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis, Plant Cell, vol.20, pp.3163-3179, 2008.

E. A. Rennie, B. Ebert, G. P. Miles, R. E. Cahoon, K. M. Christiansen et al., Identification of a sphingolipid alpha-glucuronosyltransferase that is essential for pollen function in Arabidopsis, Plant Cell, vol.26, pp.3314-3325, 2014.

T. Ishikawa, L. Fang, E. A. Rennie, J. Sechet, J. Yan et al., Glucosamine Inositolphosphorylceramide Transferase1 (GINT1) is a GlcNAc-Containing glycosylinositol phosphorylceramide glycosyltransferase, Plant Physiol, vol.177, pp.938-952, 2018.

J. O. Blachutzik, F. Demir, I. Kreuzer, R. Hedrich, and G. S. Harms, Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues, Plant Methods, vol.8, p.28, 2012.

T. Rog, A. Orlowski, A. Llorente, T. Skotland, T. Sylvanne et al., Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner, Biochim Biophys Acta, pp.281-288, 1858.

D. A. Guo, M. Venkatramesh, and W. D. Nes, Developmental regulation of sterol biosynthesis in Zea mays, Lipids, vol.30, pp.203-219, 1995.

R. A. Moreau, L. Nystrom, B. D. Whitaker, J. K. Winkler-moser, D. J. Baer et al., Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses, Prog Lipid Res, vol.70, pp.35-61, 2018.

H. Schaller, New aspects of sterol biosynthesis in growth and development of higher plants, Plant Physiol Biochem, vol.42, pp.465-476, 2004.

M. S. Webb, M. Uemura, and P. L. Steponkus, A comparison of freezing injury in oat and rye: Two cereals at the extremes of freezing tolerance, Plant Physiol, vol.104, pp.467-478, 1994.

A. Ferrer, T. Altabella, M. Arro, and A. Boronat, Emerging roles for conjugated sterols in plants, Prog Lipid Res, vol.67, pp.27-37, 2017.

Y. Boutte, S. Men, and M. Grebe, Fluorescent in situ visualization of sterols in Arabidopsis roots, Nat Protoc, vol.6, pp.446-456, 2011.

M. Ovecka, T. Berson, M. Beck, J. Derksen, J. Samaj et al., Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana, Plant Cell, vol.22, pp.2999-3019, 2010.

P. Liu, R. L. Li, L. Zhang, Q. L. Wang, K. Niehaus et al., Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth, Plant J, vol.60, pp.303-313, 2009.

L. Bonneau, P. Gerbeau-pissot, D. Thomas, C. Der, J. Lherminier et al., Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells, Biochim Biophys Acta, pp.2150-2159, 1798.
URL : https://hal.archives-ouvertes.fr/hal-02661363

T. Stanislas, M. Grebe, and Y. Boutte, Sterol dynamics during endocytic trafficking in Arabidopsis, Methods Mol Biol, vol.1209, pp.13-29, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02801846

H. Tjellstrom, L. I. Hellgren, A. Wieslander, and A. S. Sandelius, Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet, FASEB J, vol.24, pp.1128-1138, 2010.

S. L. Liu, R. Sheng, J. H. Jung, L. Wang, E. Stec et al., Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol, Nat Chem Biol, vol.13, pp.268-274, 2017.

J. R. Hazel and E. E. Williams, The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment, Prog Lipid Res, vol.29, pp.167-227, 1990.

K. Jacobson, Z. Derzko, E. S. Wu, Y. Hou, and G. Poste, Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching, J Supramol Struct, vol.5, issue.428, pp.565-417, 1976.

G. S. Ali, K. V. Prasad, I. Day, and A. S. Reddy, Ligand-dependent reduction in the membrane mobility of flagellin sensitive2, an arabidopsis receptor-like kinase, Plant Cell Physiol, vol.48, pp.1601-1611, 2007.

M. Lankova, J. Humpolickova, S. Vosolsobe, Z. Cit, J. Lacek et al., Determination of dynamics of plant plasma membrane proteins with fluorescence recovery and raster image correlation spectroscopy, Microsc Microanal, vol.22, pp.290-299, 2016.

A. Martiniere, I. Lavagi, G. Nageswaran, D. J. Rolfe, L. Maneta-peyret et al., Progress in Lipid Research, vol.73, pp.1-27, 2019.

, Cell wall constrains lateral diffusion of plant plasma-membrane proteins, Proc Natl Acad Sci U S A, vol.109, pp.12805-12810, 2012.

R. Machan and M. Hof, Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy, Biochim Biophys Acta, pp.1377-1391, 1798.

P. A. Janmey and P. K. Kinnunen, Biophysical properties of lipids and dynamic membranes, Trends Cell Biol, vol.16, pp.538-546, 2006.

B. R. Lentz, Y. Barenholz, and T. E. Thompson, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes, vol.15, pp.4521-4528, 1976.

E. R. Moellering, B. Muthan, and C. Benning, Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane, Science, vol.330, pp.226-228, 2010.

M. T. Uemura, C. Nakagawara, S. Shigematsu, A. Minami, and Y. Kawamura, Physiol Plant, vol.126, pp.81-89, 2005.

M. F. Thomashow, Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms, Annu Rev Plant Physiol Plant Mol Biol, vol.50, pp.571-599, 1999.

A. Martiniere, M. Shvedunova, A. J. Thomson, N. H. Evans, S. Penfield et al., Homeostasis of plasma membrane viscosity in fluctuating temperatures, New Phytol, vol.192, pp.328-337, 2011.

W. J. Van-blitterswijk, R. P. Van-hoeven, and P. Emmelot, On the lipid fluidity of malignant lymphoid cell membranes, Cancer Res, vol.41, pp.3670-3671, 1981.

P. Gerbeau-pissot, C. Der, D. Thomas, I. A. Anca, K. Grosjean et al., Modification of plasma membrane organization in tobacco cells elicited by cryptogein, Plant Physiol, vol.164, pp.273-286, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638760

Y. Roche, P. Gerbeau-pissot, B. Buhot, D. Thomas, L. Bonneau et al., Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts, FASEB J, vol.22, pp.3980-3991, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02657476

Y. Roche, A. S. Klymchenko, P. Gerbeau-pissot, P. Gervais, Y. Mely et al., Behavior of plant plasma membranes under hydrostatic pressure as monitored by fluorescent environment-sensitive probes, Biochim Biophys Acta, pp.1601-1607, 1798.
URL : https://hal.archives-ouvertes.fr/hal-02661420

M. Shaghaghi, M. T. Chen, Y. W. Hsueh, M. J. Zuckermann, and J. L. Thewalt, Effect of sterol structure on the physical properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes determined using (2)H nuclear magnetic resonance, Langmuir, vol.32, pp.7654-7663, 2016.

O. G. Mouritsen, L. A. Bagatolli, L. Duelund, O. Garvik, J. H. Ipsen et al., Effects of seaweed sterols fucosterol and desmosterol on lipid membranes, Chem Phys Lipids, vol.205, pp.1-10, 2017.

K. R. Bruckdorfer, R. A. Demel, J. De-gier, and L. L. Van-deenen, The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes, Biochim Biophys Acta, vol.183, pp.334-345, 1969.

P. A. Edwards and C. Green, Incorporation of plant sterols into membranes and its relation to sterol absorption, FEBS Lett, vol.20, pp.97-99, 1972.

K. Grosjean, S. Mongrand, L. Beney, F. Simon-plas, and P. Gerbeau-pissot, Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols, J Biol Chem, vol.290, pp.5810-5825, 2015.

K. K. Halling and J. P. Slotte, Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization, Biochim Biophys Acta, pp.161-171, 1664.

I. Haralampiev, H. A. Scheidt, D. Huster, and P. Muller, The potential of alpha-spinasterol to mimic the membrane properties of natural cholesterol, Molecules, vol.22, 2017.

A. Hodzic, M. Rappolt, H. Amenitsch, P. Laggner, and G. Pabst, Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol, Biophys J, vol.94, pp.3935-3944, 2008.

K. Hac-wydro, P. Wydro, P. Dynarowicz-latka, and M. Paluch, Cholesterol and phytosterols effect on sphingomyelin/phosphatidylcholine model membranes-thermodynamic analysis of the interactions in ternary monolayers, J Colloid Interface Sci, vol.329, pp.265-272, 2009.

D. A. Mannock, M. G. Benesch, R. N. Lewis, and R. N. Mcelhaney, A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols beta-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Biochim Biophys Acta, pp.1629-1638, 1848.

C. W. Bernsdorff and R. , Differential properties of the sterols cholesterol, ergosterol, ?sitosterol, trans-7-dehydrocholesterol, stigmasterol and lanosterol on DPPC bilayer order, J Phys Chem B, vol.107, pp.10658-10664, 2003.

X. Zhuang, A. Ou, and J. B. Klauda, Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes, J Chem Phys, vol.146, p.215103, 2017.

F. Sena, M. Sotelo-silveira, S. Astrada, M. A. Botella, L. Malacrida et al., Spectral phasor analysis reveals altered membrane order and function of root hair cells in Arabidopsis dry2/sqe1-5 drought hypersensitive mutant, Plant Physiol Biochem, vol.119, pp.224-231, 2017.

J. B. Mudd and T. T. Mcmanus, Effect of steryl glycosides on the phase transition of dipalmitoyl lecithin, Plant Physiol, vol.65, pp.78-80, 1980.

K. Grosjean, S. Mongrand, L. Beney, F. Simon-plas, and P. Gerbeau-pissot, Differential effect of plant lipids on membrane organization: hot features and specificities of phytosphingolipids and phytosterols, J Biol Chem, vol.290, pp.5810-5825, 2015.

K. Hac-wydro, M. Flasinski, M. Broniatowski, P. Dynarowicz-latka, and J. Majewski, Properties of beta-sitostanol/DPPC monolayers studied with grazing incidence Xray diffraction (GIXD) and brewster angle microscopy, J Colloid Interface Sci, vol.364, pp.133-139, 2011.

K. Hac-wydro, R. Lenartowicz, and P. Dynarowicz-latka, The influence of plant stanol (beta-sitostanol) on inner leaflet of human erythrocytes membrane modeled with the Langmuir monolayer technique, Colloids Surf B Biointerfaces, vol.102, pp.178-188, 2013.

R. Sandor, C. Der, K. Grosjean, I. Anca, E. Noirot et al., Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence, J Exp Bot, vol.67, pp.5173-5185, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02630903

M. Lonnfors, J. P. Doux, J. A. Killian, T. K. Nyholm, and J. P. Slotte, Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order, Biophys J, vol.100, pp.2633-2641, 2011.

E. Sezgin, I. Levental, S. Mayor, and C. Eggeling, The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nat Rev Mol Cell Biol, vol.18, pp.361-374, 2017.

J. T. Marques, A. M. Cordeiro, A. S. Viana, A. Herrmann, H. S. Marinho et al., Formation and properties of membrane-ordered domains by phytoceramide: Role of sphingoid base hydroxylation, Langmuir, vol.31, pp.9410-9421, 2015.

M. P. Platre and Y. Jaillais, Anionic lipids and the maintenance of membrane electrostatics in eukaryotes, Plant Signal Behav, vol.12, p.1282022, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01600824

M. L. Simon, M. P. Platre, M. M. Marques-bueno, L. Armengot, T. Stanislas et al., A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants, Nat Plants, vol.2, p.16089, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636342

M. P. Platre, L. C. Noack, M. Doumane, V. Bayle, M. L. Simon et al., A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes, Dev Cell, vol.45, pp.465-480, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02330992

A. Martiniere, R. Gibrat, H. Sentenac, X. Dumont, I. Gaillard et al., Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging, Proc Natl Acad Sci U S A, vol.115, issue.25, pp.6488-6493, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01810431

A. Zachowski, Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement, Biochem J, vol.294, issue.1, pp.1-14, 1993.

M. Murate and T. Kobayashi, Transmembrane asymmetry and lateral domains in biological membranes, Chem Phys Lipids, vol.194, pp.58-71, 2016.

J. D. Nickels, J. C. Smith, and X. Cheng, Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes, Chem Phys Lipids, vol.192, pp.87-89, 2015.

M. Murate and T. Kobayashi, Revisiting transbilayer distribution of lipids in the plasma membrane, Chem Phys Lipids, vol.194, pp.58-71, 2016.

J. H. Ipsen, O. G. Mouritsen, and M. J. Zuckermann, Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol, Biophys J, vol.56, pp.661-667, 1989.

O. G. Mouritsen, Theoretical models of phospholipid phase transitions, Chem Phys Lipids, vol.57, pp.179-194, 1991.

S. L. Veatch and S. L. Keller, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol, Biophys J, vol.85, pp.3074-3083, 2003.

P. F. Almeida, Thermodynamics of lipid interactions in complex bilayers, pp.72-85, 1788.

E. London, How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells, Biochim Biophys Acta, pp.203-220, 1746.

J. G. Beck, D. Mathieu, C. Loudet, S. Buchoux, and E. J. Dufourc, Plant sterols in "rafts": a better way to regulate membrane thermal shocks, FASEB J, vol.21, pp.1714-1723, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01564162

E. J. Dufourc, Sterols and membrane dynamics, J Chem Biol, vol.1, pp.63-77, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02124211

A. S. Klymchenko and R. Kreder, Fluorescent probes for lipid rafts: from model membranes to living cells, Chem Biol, vol.21, pp.97-113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00958803

N. Komura, K. G. Suzuki, H. Ando, M. Konishi, M. Koikeda et al., Raftbased interactions of gangliosides with a GPI-anchored receptor, Nat Chem Biol, vol.12, pp.402-410, 2016.

M. Fidorra, A. Garcia, J. H. Ipsen, S. Hartel, and L. A. Bagatolli, Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: a quantitative fluorescence microscopy imaging approach, Biochim Biophys Acta, pp.2142-2149, 1788.

R. D. Klausner and D. E. Wolf, Selectivity of fluorescent lipid analogues for lipid domains, Biochemistry, vol.19, pp.6199-6203, 1980.

R. M. Mesquita, E. Melo, T. E. Thompson, and W. L. Vaz, Partitioning of amphiphiles between coexisting ordered and disordered phases in two-phase lipid bilayer membranes, Biophys J, vol.78, pp.3019-3025, 2000.

T. Baumgart, G. Hunt, E. R. Farkas, W. W. Webb, and G. W. Feigenson, Fluorescence probe partitioning between Lo/Ld phases in lipid membranes, Biochim Biophys Acta, pp.2182-2194, 1768.

H. I. Ingolfsson, M. N. Melo, F. J. Van-eerden, C. Arnarez, C. A. Lopez et al., Lipid organization of the plasma membrane, J Am Chem Soc, vol.136, pp.14554-14559, 2014.

D. A. Brown and J. K. Rose, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, vol.68, pp.533-544, 1992.

E. London and D. A. Brown, Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts), Biochim Biophys Acta, vol.1508, pp.182-195, 2000.

R. Schroeder, E. London, and D. Brown, Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior, Proc Natl Acad Sci U S A, vol.91, pp.12130-12134, 1994.

A. E. Garner, D. A. Smith, and N. M. Hooper, Visualization of detergent solubilization of membranes: implications for the isolation of rafts, Biophys J, vol.94, pp.1326-1340, 2008.

H. A. Rinia and B. De-kruijff, Imaging domains in model membranes with atomic force microscopy, FEBS Lett, vol.504, pp.194-199, 2001.

K. E. Kirat and S. Morandat, Cholesterol modulation of membrane resistance to Triton A. Mamode Cassim et al, Progress in Lipid Research, vol.73, pp.1-27, 2019.

, X-100 explored by atomic force microscopy, Biochim Biophys Acta, pp.2300-2309, 1768.

S. Morandat and K. E. Kirat, Membrane resistance to Triton X-100 explored by realtime atomic force microscopy, Langmuir, vol.22, pp.5786-5791, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00090294

S. Keller, A. Tsamaloukas, and H. Heerklotz, A quantitative model describing the selective solubilization of membrane domains, J Am Chem Soc, vol.127, pp.11469-11476, 2005.

H. Ahyayauch, M. I. Collado, F. M. Goni, and D. Lichtenberg, Cholesterol reverts Triton X-100 preferential solubilization of sphingomyelin over phosphatidylcholine: a 31P-NMR study, FEBS Lett, vol.583, pp.2859-2864, 2009.

G. Staneva, M. Seigneuret, K. Koumanov, G. Trugnan, and M. I. Angelova, Detergents induce raft-like domains budding and fission from giant unilamellar heterogeneous vesicles: a direct microscopy observation, Chem Phys Lipids, vol.136, pp.55-66, 2005.

J. Sot, L. A. Bagatolli, F. M. Goni, and A. Alonso, Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers, Biophys J, vol.90, pp.903-914, 2006.

E. B. Babiychuk and A. Draeger, Biochemical characterization of detergent-resistant membranes: a systematic approach, Biochem J, vol.397, pp.407-416, 2006.

D. Lingwood and K. Simons, Detergent resistance as a tool in membrane research, Nat Protoc, vol.2, pp.2159-2165, 2007.

A. Rietveld and K. Simons, The differential miscibility of lipids as the basis for the formation of functional membrane rafts, Biochim Biophys Acta, vol.1376, pp.467-479, 1998.

U. Salzer and R. Prohaska, Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts, Blood, vol.97, pp.1141-1143, 2001.

L. J. Pike, X. Han, K. N. Chung, and R. W. Gross, Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis, Biochemistry, vol.41, pp.2075-2088, 2002.

S. Schuck, M. Honsho, K. Ekroos, A. Shevchenko, and K. Simons, Resistance of cell membranes to different detergents, Proc Natl Acad Sci U S A, vol.100, pp.5795-5800, 2003.

F. Pinaud, X. Michalet, G. Iyer, E. Margeat, H. P. Moore et al., Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipidrich microdomains imaged by single-quantum dot tracking, Traffic, vol.10, pp.691-712, 2009.

L. J. Foster and Q. W. Chan, Lipid raft proteomics: more than just detergent-resistant membranes, Subcell Biochem, vol.43, pp.35-47, 2007.

A. G. Ayuyan and F. S. Cohen, Raft composition at physiological temperature and pH in the absence of detergents, Biophys J, vol.94, pp.2654-2666, 2008.

D. A. Persaud-sawin, S. Lightcap, and G. J. Harry, Isolation of rafts from mouse brain tissue by a detergent-free method, J Lipid Res, vol.50, pp.759-767, 2009.

S. C. Lee, T. J. Knowles, V. L. Postis, M. Jamshad, R. A. Parslow et al., A method for detergent-free isolation of membrane proteins in their local lipid environment, Nat Protoc, vol.11, pp.1149-1162, 2016.

T. Peskan, M. Westermann, and R. Oelmuller, Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants, Eur J Biochem/ FEBS, vol.267, pp.6989-6995, 2000.

G. H. Borner, D. J. Sherrier, T. Weimar, L. V. Michaelson, N. D. Hawkins et al., Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts, Plant Physiol, vol.137, pp.104-116, 2005.

M. Laloi, A. M. Perret, L. Chatre, S. Melser, C. Cantrel et al., Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells, Plant Physiol, vol.143, pp.461-472, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170585

S. Kierszniowska, B. Seiwert, and W. X. Schulze, Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-beta-cyclodextrin and quantitative proteomics, Mol Cell Proteomics, vol.8, pp.612-623, 2009.

N. F. Keinath, S. Kierszniowska, J. Lorek, G. Bourdais, S. A. Kessler et al., PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity, J Biol Chem, vol.285, pp.39140-39149, 2010.

H. Zauber, W. Szymanski, and W. X. Schulze, Unraveling sterol-dependent membrane phenotypes by analysis of protein abundance-ratio distributions in different membrane fractions under biochemical and endogenous sterol depletion, Mol Cell Proteomics, vol.12, pp.3732-3743, 2013.

B. Lefebvre, F. Furt, M. A. Hartmann, L. V. Michaelson, J. P. Carde et al., Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system, Plant Physiol, vol.144, pp.402-418, 2007.

C. Guillier, J. L. Cacas, G. Recorbet, N. Depretre, A. Mounier et al., Direct purification of detergent-insoluble membranes from Medicago truncatula root microsomes: comparison between floatation and sedimentation, BMC Plant Biol, vol.14, p.255, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02633982

M. Fujiwara, S. Hamada, M. Hiratsuka, Y. Fukao, T. Kawasaki et al., Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice, Plant Cell Physiol, vol.50, pp.1191-1200, 2009.

D. Takahashi, Y. Kawamura, and M. Uemura, Detergent-resistant plasma membrane proteome to elucidate microdomain functions in plant cells, Front Plant Sci, vol.4, p.27, 2013.

E. Gutierrez-carbonell, D. Takahashi, S. Luthje, J. A. Gonzalez-reyes, S. Mongrand et al., A shotgun proteomic approach reveals that fe deficiency causes marked changes in the protein profiles of plasma membrane and detergent-resistant microdomain preparations from Beta vulgaris roots, J Proteome Res, issue.15, pp.2510-2524, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01604237

T. Stanislas, D. Bouyssie, M. Rossignol, S. Vesa, J. Fromentin et al., Quantitative proteomics reveals a dynamic association of proteins to detergentresistant membranes upon elicitor signaling in tobacco, Mol Cell Proteomics, vol.8, pp.2186-2198, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02661848

J. Morel, S. Claverol, S. Mongrand, F. Furt, J. Fromentin et al., Proteomics of plant detergent-resistant membranes, Mol Cell Proteomics, vol.5, pp.1396-1411, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00068719

A. Minami, M. Fujiwara, A. Furuto, Y. Fukao, T. Yamashita et al., Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation, Plant Cell Physiol, vol.50, pp.341-359, 2009.

S. Konig, M. Hoffmann, A. Mosblech, and I. Heilmann, Determination of content and fatty acid composition of unlabeled phosphoinositide species by thin-layer chromatography and gas chromatography, Anal Biochem, vol.378, pp.197-201, 2008.

J. Gronnier, J. M. Crowet, B. Habenstein, M. N. Nasir, V. Bayle et al., Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606735

L. Carmona-salazar, M. E. Hafidi, N. Gutierrez-najera, L. Noyola-martinez, A. Gonzalez-solis et al., Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species, Phytochemistry, vol.109, pp.25-35, 2015.

L. Carmona-salazar, M. E. Hafidi, C. Enriquez-arredondo, C. Vazquez-vazquez, G. De-la-vara et al., Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues, Anal Biochem, vol.417, pp.220-227, 2011.

R. Zidovetzki and I. Levitan, Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies, Biochim Biophys Acta, pp.1311-1324, 1768.

P. G. Nyholm, I. Pascher, and S. Sundell, The effect of hydrogen bonds on the conformation of glycosphingolipids. Methylated and unmethylated cerebroside studied by X-ray single crystal analysis and model calculations, Chem Phys Lipids, vol.52, pp.1-10, 1990.

H. Lofgren and I. Pascher, Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides, Chem Phys Lipids, vol.20, pp.273-284, 1977.

P. Sperling, S. Franke, S. Luthje, and E. Heinz, Are glucocerebrosides the predominant sphingolipids in plant plasma membranes?, Plant Physiol Biochem, vol.43, pp.1031-1038, 2005.

A. Moscatelli, A. Gagliardi, L. Maneta-peyret, L. Bini, N. Stroppa et al., Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum, Biol Open, vol.4, pp.378-399, 2015.

D. Lingwood and K. Simons, Lipid rafts as a membrane-organizing principle, Science, vol.327, pp.46-50, 2010.

D. Lichtenberg, F. M. Goni, and H. Heerklotz, Detergent-resistant membranes should not be identified with membrane rafts, Trends Biochem Sci, vol.30, pp.430-436, 2005.

J. Malinsky, M. Opekarova, G. Grossmann, and W. Tanner, Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi, Annu Rev Plant Biol, vol.64, pp.501-529, 2013.

S. Munro, Lipid rafts: elusive or illusive?, Cell, vol.115, pp.377-388, 2003.

W. Tanner, J. Malinsky, and M. Opekarova, In plant and animal cells, detergent-resistant membranes do not define functional membrane rafts, Plant Cell, vol.23, pp.1191-1193, 2011.

E. Noirot, C. Der, J. Lherminier, F. Robert, P. Moricova et al., Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein, J Exp Bot, vol.65, pp.5011-5022, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637002

J. Lherminier, T. Elmayan, J. Fromentin, K. T. Elaraqui, S. Vesa et al., NADPH oxidase-mediated reactive oxygen species production: Subcellular localization and reassessment of its role in plant defense, Mol Plant Microbe Interact, vol.22, pp.868-881, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02661722

C. A. Bucherl, I. K. Jarsch, C. Schudoma, C. Segonzac, M. Mbengue et al., Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains, 2017.

S. Raffaele, E. Bayer, D. Lafarge, S. Cluzet, S. German-retana et al., Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement, Plant Cell, vol.21, pp.1541-1555, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00856115

F. Demir, C. Horntrich, J. O. Blachutzik, S. Scherzer, Y. Reinders et al., Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3, Proc Natl Acad Sci U S A, vol.110, pp.8296-8301, 2013.

I. K. Jarsch, S. S. Konrad, T. F. Stratil, S. L. Urbanus, W. Szymanski et al., Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in arabidopsis and nicotiana benthamiana, Plant Cell, vol.26, pp.1698-1711, 2014.

K. Simons and M. J. Gerl, Revitalizing membrane rafts: new tools and insights, Nat Rev Mol Cell Biol, vol.11, pp.688-699, 2010.

T. Ott, Membrane nanodomains and microdomains in plant-microbe interactions, Curr Opin Plant Biol, vol.40, pp.82-88, 2017.

M. Nakamura and M. Grebe, Outer, inner and planar polarity in the Arabidopsis root, Curr Opin Plant Biol, vol.41, pp.46-53, 2018.

C. Faulkner, A cellular backline: specialization of host membranes for defence, J Exp Bot, vol.66, pp.1565-1571, 2015.

L. Galweiler, C. Guan, A. Muller, E. Wisman, K. Mendgen et al., Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue, Science, vol.282, pp.2226-2230, 1998.

N. Geldner, Casparian strips, Current Biol, vol.23, pp.1025-1026, 2013.

L. C. Noack and Y. Jaillais, Precision targeting by phosphoinositides: How PIs direct endomembrane trafficking in plants, Curr Opin Plant Biol, vol.40, pp.22-33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02352100

T. Ischebeck, S. Seiler, and I. Heilmann, At the poles across kingdoms: phosphoinositides and polar tip growth, Protoplasma, vol.240, pp.13-31, 2010.

A. M. Cassim, Progress in Lipid Research, vol.73, pp.1-27, 2019.

L. Kalmbach, K. Hematy, D. Bellis, M. Barberon, S. Fujita et al., Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization, Nat Plants, vol.3, p.17058, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02626911

J. Tilsner, W. Nicolas, A. Rosado, and E. M. Bayer, Staying tight: Plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants, Annu Rev Plant Biol, vol.67, pp.337-364, 2016.

C. L. Thomas, E. M. Bayer, C. Ritzenthaler, L. Fernandez-calvino, and A. J. Maule, Specific targeting of a plasmodesmal protein affecting cell-to-cell communication, PLoS Biol, vol.6, p.7, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00255806

C. Simpson, C. Thomas, K. Findlay, E. Bayer, and A. J. Maule, An Arabidopsis GPIanchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking, Plant Cell, vol.21, pp.581-594, 2009.

M. Frescatada-rosa, T. Stanislas, S. K. Backues, I. Reichardt, S. Men et al., High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function, Plant J, vol.80, pp.745-757, 2014.

J. Kleine-vehn, K. Wabnik, A. Martiniere, L. Langowski, K. Willig et al., Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane, Mol Syst Biol, vol.7, p.540, 2011.

E. Rodriguez-boulan, G. Kreitzer, and A. Musch, Organization of vesicular trafficking in epithelia, Nat Rev Mol Cell Biol, vol.6, pp.233-247, 2005.

D. T. Burnette, P. Sengupta, Y. Dai, J. Lippincott-schwartz, and B. Kachar, Bleaching/ blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules, Proc Natl Acad Sci U S A, vol.108, pp.21081-21086, 2011.

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, Tracking single molecules at work in living cells, Nat Chem Biol, vol.10, pp.524-532, 2014.

N. M. Curthoys, M. Parent, M. Mlodzianoski, A. J. Nelson, J. Lilieholm et al., Dances with membranes: Breakthroughs from super-resolution imaging, Curr Top Membr, vol.75, pp.59-123, 2015.

X. Lv, Y. Jing, J. Xiao, Y. Zhang, Y. Zhu et al., Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex, Plant J, vol.90, pp.3-16, 2017.

A. Yoshinari, M. Fujimoto, T. Ueda, N. Inada, S. Naito et al., DRP1-dependent endocytosis is essential for polar localization and boron-induced degradation of the borate transporter BOR1 in Arabidopsis thaliana, Plant Cell Physiol, vol.57, pp.1985-2000, 2016.

R. Gutierrez, J. J. Lindeboom, A. R. Paredez, A. M. Emons, and D. W. Ehrhardt, Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments, Nat Cell Biol, vol.11, pp.797-806, 2009.

K. Burstenbinder, B. Moller, R. Plotner, G. Stamm, G. Hause et al., The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus, Plant Physiol, vol.173, pp.1692-1708, 2017.

S. J. Hutten, D. S. Hamers, M. Aan-den-toorn, W. Van-esse, A. Nolles et al., Visualization of BRI1 and SERK3/BAK1 nanoclusters in arabidopsis roots, vol.12, p.169905, 2017.

R. Li, P. Liu, Y. Wan, T. Chen, Q. Wang et al., A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development, Plant Cell, vol.24, pp.2105-2122, 2012.

H. Hao, L. Fan, T. Chen, R. Li, X. Li et al., Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in arabidopsis, Plant Cell, vol.26, pp.1729-1745, 2014.

J. G. , -. P. Gronnier, V. Germain, S. Mongrand, and F. Simon-plas, Divide and rule: plant plasma membrane organization, Trends Plant Sci, vol.23, issue.10, pp.899-917, 2018.

A. Pertsinidis, Y. Zhang, and S. Chu, Subnanometre single-molecule localization, registration and distance measurements, Nature, vol.466, pp.647-651, 2010.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynna, V. Westphal et al., Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes, Science, vol.355, pp.606-612, 2017.

Y. Golan and E. Sherman, Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane, Nat Commun, vol.8, p.15851, 2017.

F. Persson, M. Linden, C. Unoson, and J. Elf, Extracting intracellular diffusive states and transition rates from single-molecule tracking data, Nat Methods, vol.10, pp.265-269, 2013.

J. Sekeres, P. Pejchar, J. Santrucek, N. Vukasinovic, V. Zarsky et al., Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes, Plant Physiol, vol.173, pp.1659-1675, 2017.

S. S. Konrad, C. Popp, T. F. Stratil, I. K. Jarsch, V. Thallmair et al., Sacylation anchors remorin proteins to the plasma membrane but does not primarily determine their localization in membrane microdomains, New Phytol, vol.203, pp.758-769, 2014.

B. Sorre, A. Callan-jones, J. B. Manneville, P. Nassoy, J. F. Joanny et al., Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins, Proc Natl Acad Sci U S A, vol.106, pp.5622-5626, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01002457

S. N. Pinto, E. L. Laviad, J. Stiban, S. L. Kelly, A. H. Merrill et al., Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain, J Lipid Res, vol.55, pp.53-61, 2014.

G. H. Patterson, K. Hirschberg, R. S. Polishchuk, D. Gerlich, R. D. Phair et al., Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system, Cell, vol.133, pp.1055-1067, 2008.

J. M. Duran, F. Campelo, J. Van-galen, T. Sachsenheimer, J. Sot et al., Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex, EMBO J, vol.31, pp.4535-4546, 2012.

F. Campelo, J. Van-galen, G. Turacchio, S. Parashuraman, M. M. Kozlov et al., Sphingomyelin metabolism controls the shape and function of the Golgi cisternae, 2017.

S. Melser, B. Batailler, M. Peypelut, C. Poujol, Y. Bellec et al., Glucosylceramide biosynthesis is involved in Golgi morphology and protein secretion in plant cells, Traffic, vol.11, pp.479-490, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203898

R. W. Klemm, C. S. Ejsing, M. A. Surma, H. J. Kaiser, M. J. Gerl et al., Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network, J Cell Biol, vol.185, pp.601-612, 2009.

Y. Deng, F. E. Rivera-molina, D. K. Toomre, and C. G. Burd, Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle, Proc Natl Acad Sci U S A, vol.113, pp.6677-6682, 2016.

Y. Boutte, M. Frescatada-rosa, S. Men, C. M. Chow, K. Ebine et al., Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis, EMBO J, vol.29, pp.546-558, 2010.

V. Wattelet-boyer, L. Brocard, K. Jonsson, N. Esnay, J. Joubes et al., Enrichment of hydroxylated C24-and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains, Nat Commun, vol.7, p.12788, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608825

Y. Q. Gao, J. G. Chen, Z. R. Chen, D. An, Q. Y. Lv et al., A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis, PLoS Biol, vol.15, p.2002978, 2017.

A. Siddhanta and D. Shields, Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels, J Biol Chem, vol.273, pp.17995-17998, 1998.

H. M. Hankins, Y. Y. Sere, N. S. Diab, A. K. Menon, and T. R. Graham, Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles, Mol Biol Cell, vol.26, pp.4674-4685, 2015.

B. Mesmin, J. Bigay, J. Polidori, D. Jamecna, S. Lacas-gervais et al., Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP, EMBO J, vol.36, pp.3156-3174, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617401

D. Gendre, K. Jonsson, Y. Boutte, and R. P. Bhalerao, Journey to the cell surface-the central role of the trans-Golgi network in plants, Protoplasma, vol.252, pp.385-398, 2015.

M. R. Rosquete, D. J. Davis, and G. Drakakaki, The plant trans-golgi network: not just a matter of distinction, Plant Physiol, vol.176, pp.187-198, 2018.

C. Viotti, J. Bubeck, Y. D. Stierhof, M. Krebs, M. Langhans et al., Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/ early endosome, an independent and highly dynamic organelle, Plant Cell, vol.22, pp.1344-1357, 2010.

T. Uemura, Y. Suda, T. Ueda, and A. Nakano, Dynamic behavior of the trans-golgi network in root tissues of Arabidopsis revealed by super-resolution live imaging, Plant Cell Physiol, vol.55, pp.694-703, 2014.

J. Dettmer, A. Hong-hermesdorf, Y. D. Stierhof, and K. Schumacher, Vacuolar H +-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis, Plant Cell, vol.18, pp.715-730, 2006.

K. Grosjean, C. Der, F. Robert, D. Thomas, S. Mongrand et al., Interactions between lipids and proteins are critical for plasma membrane ordered domain organization in BY-2 cells, J Exp Bot, vol.69, issue.15, pp.3545-3557, 2018.

A. Radhakrishnan and H. M. Mcconnell, Condensed complexes of cholesterol and phospholipids, Biophys J, vol.77, pp.1507-1517, 1999.

P. J. Somerharju, J. A. Virtanen, K. K. Eklund, P. Vainio, and P. K. Kinnunen, 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers, Biochemistry, vol.24, pp.2773-2781, 1985.

J. Huang, Exploration of molecular interactions in cholesterol superlattices: Effect of multibody interactions, Biophys J, vol.83, pp.1014-1025, 2002.

J. Huang and G. W. Feigenson, A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers, Biophys J, vol.76, pp.2142-2157, 1999.

P. Dhar, E. Eck, J. N. Israelachvili, D. W. Lee, Y. Min et al., Lipid-protein interactions alter line tensions and domain size distributions in lung surfactant monolayers, Biophys J, vol.102, pp.56-65, 2012.

O. G. Mouritsen and M. Bloom, Mattress model of lipid-protein interactions in membranes, Biophys J, vol.46, pp.141-153, 1984.

J. D. Nickels, J. C. Smith, and X. Cheng, Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes, Chem Phys Lipids, vol.192, pp.87-99, 2015.

T. Fujimoto and I. Parmryd, Interleaflet coupling, pinning, and leaflet asymmetrymajor players in plasma membrane nanodomain formation, Front Cell Dev Biol, vol.4, p.155, 2016.

E. Chiricozzi, M. G. Ciampa, G. Brasile, F. Compostella, A. Prinetti et al., Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells, J Lipid Res, vol.56, pp.129-141, 2015.

R. Raghupathy, A. A. Anilkumar, A. Polley, P. P. Singh, M. Yadav et al., Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins, Cell, vol.161, pp.581-594, 2015.

M. Argos, M. Rahman, F. Parvez, J. Dignam, T. Islam et al., Baseline comorbidities in a skin cancer prevention trial in Bangladesh, Eur J Clin Invest, vol.43, pp.579-588, 2013.

N. Yilmaz and T. Kobayashi, Assemblies of pore-forming toxins visualized by atomic force microscopy, Biochim Biophys Acta, vol.1858, pp.500-511, 2016.

M. Lorizate, B. Brugger, H. Akiyama, B. Glass, B. Muller et al., Probing HIV-1 membrane liquid order by Laurdan staining reveals producer celldependent differences, J Biol Chem, vol.284, pp.22238-22247, 2009.

B. Brugger, B. Glass, P. Haberkant, I. Leibrecht, F. T. Wieland et al., The HIV lipidome: a raft with an unusual composition, Proc Natl Acad Sci U S A, vol.103, pp.2641-2646, 2006.

I. A. Prior, C. Muncke, R. G. Parton, and J. F. Hancock, Direct visualization of Ras proteins in spatially distinct cell surface microdomains, J Cell Biol, vol.160, pp.165-170, 2003.

A. M. Cassim, Progress in Lipid Research, vol.73, pp.1-27, 2019.

Y. Zhou, P. Prakash, H. Liang, K. J. Cho, A. A. Gorfe et al., Lipid-sorting specificity encoded in k-ras membrane anchor regulates signal output, Cell, vol.168, pp.239-251, 2017.

Y. Zhou, C. O. Wong, K. J. Cho, D. Van-der-hoeven, H. Liang et al., Signal transduction. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling, Science, vol.349, pp.873-876, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00092922

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

A. M. Laxalt and T. Munnik, Phospholipid signalling in plant defence, Curr Opin Plant Biol, vol.5, pp.332-338, 2002.

T. Munnik and J. E. Vermeer, Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants, Plant Cell Environ, vol.33, pp.655-669, 2010.

J. Canonne, S. Froidure-nicolas, and S. Rivas, Phospholipases in action during plant defense signaling, Plant Signal Behav, vol.6, pp.13-18, 2011.

I. Pokotylo, V. Kravets, J. Martinec, and E. Ruelland, The phosphatidic acid paradox: too many actions for one molecule class? Lessons from plants, Prog Lipid Res, vol.71, pp.43-53, 2018.

A. H. Van-der-luit, T. Piatti, A. Van-doorn, A. Musgrave, G. Felix et al., Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate, Plant Physiol, vol.123, pp.1507-1516, 2000.

A. M. Laxalt, N. Raho, A. T. Have, and L. Lamattina, Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited tomato cells, J Biol Chem, vol.282, pp.21160-21168, 2007.

N. Raho, L. Ramirez, M. L. Lanteri, G. Gonorazky, L. Lamattina et al., Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide, J Plant Physiol, vol.168, pp.534-539, 2011.

S. A. Arisz, C. Testerink, and T. Munnik, Plant PA signaling via diacylglycerol kinase, Biochim Biophys Acta, vol.1791, pp.869-875, 2009.

C. Testerink and T. Munnik, Molecular, cellular, and physiological responses to phosphatidic acid formation in plants, J Exp Bot, vol.62, pp.2349-2361, 2011.

P. K. Farmer and J. H. Choi, Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.), Biochim Biophys Acta, vol.1434, pp.6-17, 1999.

J. Szczegielniak, M. Klimecka, A. Liwosz, A. Ciesielski, S. Kaczanowski et al., A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase, Plant Physiol, vol.139, pp.1970-1983, 2005.

T. Munnik and C. Testerink, Plant phospholipid signaling: "in a nutshell, J Lipid Res, vol.50, pp.260-265, 2009.

T. Munnik and A. M. Laxalt, Measuring PLD activity in vivo, Methods Mol Biol, vol.1009, pp.219-231, 2013.

I. Camehl, C. Drzewiecki, J. Vadassery, B. Shahollari, I. Sherameti et al., The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis, PLoS Pathog, vol.7, p.1002051, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02646391

I. Pokotylo, Y. Kolesnikov, V. Kravets, A. Zachowski, and E. Ruelland, Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme, Biochimie, vol.96, pp.144-157, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02165163

T. S. Nuhse, A. R. Bottrill, A. M. Jones, and S. C. Peck, Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses, Plant J, vol.51, pp.931-940, 2007.

J. M. D'ambrosio, D. Couto, G. Fabro, D. Scuffi, L. Lamattina et al., Phospholipase C2 affects MAMP-triggered immunity by modulating ROS production, Plant Physiol, vol.175, pp.970-981, 2017.

M. X. Andersson, O. Kourtchenko, J. L. Dangl, D. Mackey, and M. Ellerstrom, Phospholipase-dependent signalling during the AvrRpm1-and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana, Plant J, vol.47, pp.947-959, 2006.

Z. K. Kr?ková, M. Dan?k, J. Brouzdová, P. P. Janda, I. Pokotylo et al., The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack, Ann Bot, vol.121, pp.297-310, 2017.

J. L. Cacas, P. Gerbeau-pissot, J. Fromentin, C. Cantrel, D. Thomas et al., Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein, Plant Cell Environ, vol.40, pp.585-598, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01328631

Y. Kadota, K. Shirasu, and C. Zipfel, Regulation of the NADPH oxidase RBOHD during plant immunity, Plant Cell Physiol, vol.56, pp.1472-1480, 2015.

X. Liang, M. Ma, Z. Zhou, J. Wang, X. Yang et al., Ligand-triggered derepression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases, Cell Res, vol.28, pp.529-543, 2018.

A. M. Abd-el-haliem, J. H. Vossen, A. Van-zeijl, S. Dezhsetan, C. Testerink et al., Biochemical characterization of the tomato phosphatidylinositolspecific phospholipase C (PI-PLC) family and its role in plant immunity, Biochim Biophys Acta, vol.1861, pp.1365-1378, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02632103

J. Li, J. L. Henty-ridilla, B. H. Staiger, B. Day, and C. J. Staiger, Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity, Nat Commun, vol.6, p.7206, 2015.

Y. Sang, S. Zheng, W. Li, B. Huang, and X. Wang, Regulation of plant water loss by manipulating the expression of phospholipase Dalpha, Plant J, vol.28, pp.135-144, 2001.

T. Yamaguchi, E. Minami, J. Ueki, and N. Shibuya, Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells, Plant Cell Physiol, vol.46, pp.579-587, 2005.

L. Fan, S. Zheng, D. Cui, and X. Wang, Subcellular distribution and tissue expression of phospholipase Dalpha, Dbeta, and Dgamma in Arabidopsis, Plant Physiol, vol.119, pp.1371-1378, 1999.

F. Pinosa, N. Buhot, M. Kwaaitaal, P. Fahlberg, H. Thordal-christensen et al., Arabidopsis phospholipase ddelta is involved in basal defense and nonhost resistance to powdery mildew fungi, Plant Physiol, vol.163, pp.896-906, 2013.

K. Hyodo, T. Taniguchi, Y. Manabe, M. Kaido, K. Mise et al., Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus, PLoS Pathog, vol.11, p.1004909, 2015.

L. Guo and X. Wang, Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling, Front Plant Sci, vol.3, p.51, 2012.

E. C. Kooijmam, B. De-kruijff, and K. N. Burger, Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid, Traffic, vol.4, pp.162-174, 2003.

M. Roth, Molecular mechanisms of PLD function in membrane traffic, Traffic9, pp.1233-1239, 2008.

G. H. Lim, R. Singhal, A. Kachroo, and P. Kachroo, Fatty acid-and lipid-mediated signaling in plant defense, Annu Rev Phytopathol, vol.55, pp.505-536, 2017.

T. Yaeno, O. Matsuda, and K. Iba, Role of chloroplast trienoic fatty acids in plant disease defense responses, Plant J, vol.40, pp.931-941, 2004.

L. W. Madi, L. Kobiler, A. Lichter, and D. Prusky, Stress on avocado fruits regulates ?9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack, Physiol Mol Plant Pathol, vol.62, pp.277-283, 2003.

M. Ongena, F. Duby, F. Rossignol, M. L. Fauconnier, J. Dommes et al., Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain, Mol Plant Microbe Interact, vol.17, pp.1009-1018, 2004.

K. Schrick, S. Fujioka, S. Takatsuto, Y. D. Stierhof, H. Stransky et al., A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis, Plant J, vol.38, pp.227-243, 2004.

L. V. Michaelson, J. A. Napier, D. Molino, and J. D. Faure, Plant sphingolipids: their importance in cellular organization and adaption, Biochim Biophys Acta, vol.1861, pp.1329-1335, 2016.

S. Konig, K. Feussner, M. Schwarz, A. Kaever, T. Iven et al., Arabidopsis mutants of sphingolipid fatty acid alpha-hydroxylases accumulate ceramides and salicylates, New Phytol, vol.196, pp.1086-1097, 2012.

H. K. Abbas, T. Tanaka, and W. T. Shier, Biological activities of synthetic analogues of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cell cultures, Phytochemistry, vol.40, pp.1681-1689, 1995.

J. S. Griffitts, S. M. Haslam, T. Yang, S. F. Garczynski, B. Mulloy et al., Glycolipids as receptors for bacillus thuringiensis crystal toxin, vol.307, pp.922-925, 2005.

X. Yu, A. Feizpour, N. G. Ramirez, L. Wu, H. Akiyama et al., Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells, Nat Commun, vol.5, p.4136, 2014.

J. Gronnier, V. Germain, P. Gouguet, J. L. Cacas, and S. Mongrand, GIPC: glycosyl inositol phospho ceramides, the major sphingolipids on earth, Plant Signal Behav, vol.11, p.1152438, 2016.

S. Oome and G. , Van den Ackerveken, Comparative and functional analysis of the widely occurring family of Nep1-like proteins, Mol Plant Microbe Interact, vol.27, pp.1081-1094, 2014.

M. Gijzen and T. Nurnberger, Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa, Phytochemistry, vol.67, pp.1800-1807, 2006.

D. Qutob, B. Kemmerling, F. Brunner, I. Kufner, S. Engelhardt et al., Phytotoxicity and innate immune responses induced by Nep1-like proteins, Plant Cell, vol.18, pp.3721-3744, 2006.

A. Perraki, J. L. Cacas, J. M. Crowet, L. Lins, M. Castroviejo et al., Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement, Plant Physiol, vol.160, pp.624-637, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02648092

B. Lefebvre, T. Timmers, M. Mbengue, S. Moreau, C. Herve et al., A remorin protein interacts with symbiotic receptors and regulates bacterial infection, Proc Natl Acad Sci U S A, vol.107, pp.2343-2348, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02663753

P. Liang, T. F. Stratil, C. Popp, M. Marin, J. Folgmann et al., Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains, Proc Natl Acad Sci U S A, vol.115, pp.5289-5294, 2018.

V. Srivastava, E. Malm, G. Sundqvist, and V. Bulone, Quantitative proteomics reveals that plasma membrane microdomains from poplar cell suspension cultures are enriched in markers of signal transduction, molecular transport, and callose biosynthesis, Mol Cell Proteomics, vol.12, pp.3874-3885, 2013.

S. Son, C. J. Oh, and C. S. An, Arabidopsis thaliana remorins interact with SnRK1 and play a role in susceptibility to beet curly top virus and beet severe curly top virus, Plant Pathol J, vol.30, pp.269-278, 2014.

T. O. Bozkurt, A. Richardson, Y. F. Dagdas, S. Mongrand, S. Kamoun et al., The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to phytophthora infestans, Plant Physiol, vol.165, pp.1005-1018, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02633827

J. Gui, C. Liu, J. Shen, and L. Li, Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance, Plant Physiol, vol.166, pp.1463-1478, 2014.

C. Zipfel and G. E. Oldroyd, Plant signalling in symbiosis and immunity, Nature, vol.543, pp.328-336, 2017.

L. Gomez-gomez and T. Boller, FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis, Mol Cell, vol.5, pp.1003-1011, 2000.

D. Couto, R. Niebergall, X. Liang, C. A. Bucherl, J. Sklenar et al., The arabidopsis protein phosphatase PP2C38 negatively regulates the central immune A. Mamode Cassim et al, Progress in Lipid Research, vol.73, pp.1-27, 2019.

, PLoS Pathog, vol.12, p.1005811, 2016.

C. Faulkner, E. Petutschnig, Y. Benitez-alfonso, M. Beck, S. Robatzek et al., LYM2-dependent chitin perception limits molecular flux via plasmodesmata, Proc Natl Acad Sci U S A, vol.110, pp.9166-9170, 2013.

R. Zavaliev, X. Dong, and B. L. Epel, Glycosylphosphatidylinositol (GPI) modification serves as a primary plasmodesmal sorting signal, Plant Physiol, vol.172, pp.1061-1073, 2016.

R. Zavaliev, A. Levy, A. Gera, and B. L. Epel, Subcellular dynamics and role of Arabidopsis beta-1,3-glucanases in cell-to-cell movement of tobamoviruses, Mol Plant Microbe Interact, vol.26, pp.1016-1030, 2013.

W. Halperin and W. A. Jensen, Ultrastructural changes during growth and embryogenesis in carrot cell cultures, J Ultrastruct Res, vol.18, pp.428-443, 1967.

B. D. Rutter and R. W. Innes, Extracellular vesicles as key mediators of plant-microbe interactions, Curr Opin Plant Biol, vol.44, pp.16-22, 2018.

G. Gonorazky, A. M. Laxalt, C. Testerink, T. Munnik, and L. , Phosphatidylinositol 4-phosphate accumulates extracellularly upon xylanase treatment in tomato cell suspensions, Plant Cell Environ, vol.31, pp.1051-1062, 2008.

M. Regente, M. Pinedo, H. Clemente, T. Balliau, E. Jamet et al., Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth, J Exp Bot, vol.68, pp.5485-5495, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02622049

C. O. Micali, U. Neumann, D. Grunewald, R. Panstruga, and R. O'connell, Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria, Cell Microbiol, vol.13, pp.210-226, 2011.

Q. An, R. Huckelhoven, K. H. Kogel, and A. J. Van-bel, Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus, Cell Microbiol, vol.8, pp.1009-1019, 2006.

M. Wang, A. Weiberg, F. M. Lin, B. P. Thomma, H. D. Huang et al., Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection, Nat Plants, vol.2, p.16151, 2016.

T. Zhang, Y. L. Zhao, J. H. Zhao, S. Wang, Y. Jin et al., Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen, Nat Plants, vol.2, p.16153, 2016.

Q. Cai, L. Qiao, M. Wang, B. He, F. M. Lin et al., Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes, Science, vol.360, pp.1126-1129, 2018.

B. D. Rutter and R. W. Innes, Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins, Plant Physiol, vol.173, pp.728-741, 2017.

G. Gonorazky, A. M. Laxalt, H. L. Dekker, M. Rep, T. Munnik et al., Phosphatidylinositol 4-phosphate is associated to extracellular lipoproteic fractions and is detected in tomato apoplastic fluids, Plant Biol (Stuttg), vol.14, pp.41-49, 2012.

S. Sabatini, D. Beis, H. Wolkenfelt, J. Murfett, T. Guilfoyle et al., An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root, Cell, vol.99, pp.463-472, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02695493

E. Benkova, M. Michniewicz, M. Sauer, T. Teichmann, D. Seifertova et al., Local, efflux-dependent auxin gradients as a common module for plant organ formation, Cell, vol.115, pp.591-602, 2003.

J. Friml, E. Benkova, U. Mayer, K. Palme, and G. Muster, Automated whole mount localisation techniques for plant seedlings, Plant J, vol.34, pp.115-124, 2003.

V. A. Grieneisen, J. Xu, A. F. Maree, P. Hogeweg, and B. Scheres, Auxin transport is sufficient to generate a maximum and gradient guiding root growth, Nature, vol.449, pp.1008-1013, 2007.

M. J. Bennett, A. Marchant, H. G. Green, S. T. May, S. P. Ward et al., Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism, Science, vol.273, pp.948-950, 1996.

C. Luschnig, R. A. Gaxiola, P. Grisafi, and G. R. Fink, EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana, Genes Dev, vol.12, pp.2175-2187, 1998.

J. Petrasek, J. Mravec, R. Bouchard, J. J. Blakeslee, M. Abas et al., PIN proteins perform a rate-limiting function in cellular auxin efflux, Science, vol.312, pp.914-918, 2006.

J. Wisniewska, J. Xu, D. Seifertova, P. B. Brewer, K. Ruzicka et al., Polar PIN localization directs auxin flow in plants, Science, vol.312, p.883, 2006.

Y. Yang, U. Z. Hammes, C. G. Taylor, D. P. Schachtman, and E. Nielsen, High-affinity auxin transport by the AUX1 influx carrier protein, Current Biol, vol.16, pp.1123-1127, 2006.

Y. Boutte, K. Jonsson, H. E. Mcfarlane, E. Johnson, D. Gendre et al., ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation, Proc Natl Acad Sci U S A, vol.110, pp.16259-16264, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651935

J. G. Wang, S. Li, X. Y. Zhao, L. Z. Zhou, G. Q. Huang et al., HAPLESS13, the Arabidopsis mu1 adaptin, is essential for protein sorting at the trans-Golgi network/early endosome, Plant Physiol, vol.162, pp.1897-1910, 2013.

E. Feraru, M. I. Feraru, R. Asaoka, T. Paciorek, R. De-rycke et al., BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis, Plant Cell, vol.24, pp.3074-3086, 2012.

D. Gendre, J. Oh, Y. Boutte, J. G. Best, L. Samuels et al., Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation, Proc Natl Acad Sci U S A, vol.108, pp.8048-8053, 2011.

D. Gendre, H. E. Mcfarlane, E. Johnson, G. Mouille, A. Sjodin et al., Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis, Plant Cell, vol.25, pp.2633-2646, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001547

S. Naramoto, M. S. Otegui, N. Kutsuna, R. De-rycke, T. Dainobu et al., Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis, Plant Cell, vol.26, pp.3062-3076, 2014.

K. Jonsson, Y. Boutte, R. K. Singh, D. Gendre, and R. P. Bhalerao, Ethylene regulates differential growth via BIG ARF-GEF-dependent post-golgi secretory trafficking in arabidopsis, Plant Cell, vol.29, pp.1039-1052, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02408589

L. E. Sieburth, G. K. Muday, E. J. King, G. Benton, S. Kim et al., SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis, Plant Cell, vol.18, pp.1396-1411, 2006.

L. Bach, L. V. Michaelson, R. Haslam, Y. Bellec, L. Gissot et al., The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development, Proc Natl Acad Sci U S A, vol.105, pp.14727-14731, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02664902

F. Roudier, L. Gissot, F. Beaudoin, R. Haslam, L. Michaelson et al., Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis, Plant Cell, vol.22, pp.364-375, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856101

V. Willemsen, J. Friml, M. Grebe, A. Van-den-toorn, K. Palme et al., Cell polarity and PIN protein positioning in Arabidopsis require sterol methyl-transferase1 function, Plant Cell, vol.15, pp.612-625, 2003.

S. Men, Y. Boutte, Y. Ikeda, X. Li, K. Palme et al., Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity, Nat Cell Biol, vol.10, pp.237-244, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00255788

J. Kleine-vehn, P. Dhonukshe, R. Swarup, M. Bennett, and J. Friml, Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1, Plant Cell, vol.18, pp.3171-3181, 2006.

A. S. Mialoundama, N. Jadid, J. Brunel, T. D. Pascoli, D. Heintz et al., Arabidopsis ERG28 tethers the sterol C4-demethylation complex to prevent accumulation of a biosynthetic intermediate that interferes with polar auxin transport, Plant Cell, vol.25, pp.4879-4893, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00939347

X. Zhang, S. Sun, X. Nie, Y. Boutte, M. Grison et al., Sterol methyl oxidases affect embryo development via auxin-associated mechanisms, Plant Physiol, vol.171, pp.468-482, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01603034

E. Darwish, C. Testerink, M. Khalil, O. El-shihy, and T. Munnik, Phospholipid signaling responses in salt-stressed rice leaves, Plant Cell Physiol, vol.50, pp.986-997, 2009.

M. Mishkind, J. E. Vermeer, E. Darwish, and T. Munnik, Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus, Plant J, vol.60, pp.10-21, 2009.

H. J. Meijer, J. A. Van-himbergen, A. Musgrave, and T. Munnik, Acclimation to salt modifies the activation of several osmotic stress-activated lipid signalling pathways in Chlamydomonas, Phytochemistry, vol.135, pp.64-72, 2017.

Q. Hou, G. Ufer, and D. Bartels, Lipid signalling in plant responses to abiotic stress, Plant Cell Environ, vol.39, pp.1029-1048, 2016.

M. Li, Y. Hong, and X. Wang, Phospholipase D-and phosphatidic acid-mediated signaling in plants, Biochim Biophys Acta, vol.1791, pp.927-935, 2009.

M. Heilmann and I. Heilmann, Plant phosphoinositides-complex networks controlling growth and adaptation, Biochim Biophys Acta, vol.1851, pp.759-769, 2015.

X. Wang and K. D. Chapman, Lipid signaling in plants, Front Plant Sci, vol.4, p.216, 2013.

W. Zhang, C. Qin, J. Zhao, and X. Wang, Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling, Proc Natl Acad Sci U S A, vol.101, pp.9508-9513, 2004.

M. Diaz, M. J. Sanchez-barrena, J. M. Gonzalez-rubio, L. Rodriguez, D. Fernandez et al., Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling, Proc Natl Acad Sci U S A, vol.113, pp.396-405, 2016.

W. J. Nicolas, M. S. Grison, S. Trepout, A. Gaston, M. Fouche et al., Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves, Nat Plants, vol.3, p.17082, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602621

S. Lahiri, A. Toulmay, and W. A. Prinz, Membrane contact sites, gateways for lipid homeostasis, Curr Opin Cell Biol, vol.33, pp.82-87, 2015.

M. S. Grison, L. Fernandez-calvino, S. Mongrand, and E. M. Bayer, Isolation of plasmodesmata from Arabidopsis suspension culture cells, Methods Mol Biol, vol.1217, pp.83-93, 2015.

M. Deleu, J. M. Crowet, M. N. Nasir, and L. Lins, Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review, Biochim Biophys Acta, vol.1838, pp.3171-3190, 2014.

D. Martinez, A. Legrand, J. Gronnier, M. Decossas, P. Gouguet et al., Coiled-coil oligomerization controls localization of the plasma membrane REMORINs, J Struct Biol, issue.18, pp.30046-30047, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02536974

A. Pandey, K. Shin, R. E. Patterson, X. Q. Liu, and J. K. Rainey, Current strategies for protein production and purification enabling membrane protein structural biology, Biochem Cell Biol, vol.94, pp.507-527, 2016.

S. A. Sarver, R. B. Keithley, D. C. Essaka, H. Tanaka, Y. Yoshimura et al., Preparation and electrophoretic separation of Bodipy-Fl-labeled glycosphingolipids, J Chromatogr A, vol.1229, pp.268-273, 2012.

H. T. Cheng and L. E. Megha, Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation, J Biol Chem, vol.284, pp.6079-6092, 2009.

K. Pluhackova and R. A. Bockmann, Biomembranes in atomistic and coarse-grained simulations, J Phys Condens Matter, vol.27, p.323103, 2015.

A. P. Lyubartsev and A. L. Rabinovich, Force field development for lipid membrane simulations, Biochim Biophys Acta, vol.1858, pp.2483-2497, 2016.

T. A. Wassenaar, H. I. Ingolfsson, M. Priess, S. J. Marrink, L. V. Schafer et al., Electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations, J Phys Chem B, vol.117, pp.3516-3530, 2013.

D. Poger, B. Caron, and A. E. Mark, Validating lipid force fields against experimental data: Progress, challenges and perspectives, Biochim Biophys Acta, vol.1858, pp.1556-1565, 2016.

C. A. Lopez, Z. Sovova, F. J. Van-eerden, A. H. De-vries, and S. J. Marrink, Martini force field parameters for glycolipids, J Chem Theory Comput, vol.9, pp.1694-1708, 2013.

A. M. Cassim, Progress in Lipid Research, vol.73, pp.1-27, 2019.

E. Izquierdo and A. Delgado, Click chemistry in sphingolipid research, Chem Phys Lipids, vol.215, pp.71-83, 2018.

M. D. Best, Click chemistry and bioorthogonal reactions: Unprecedented selectivity in the labeling of biological molecules, Biochemistry, vol.48, pp.6571-6584, 2009.

T. Stanislas, M. P. Platre, M. Liu, L. E. Rambaud-lavigne, Y. Jaillais et al., A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana, BMC Biol, vol.16, p.20, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02348886

Y. Ma, E. Pandzic, P. R. Nicovich, Y. Yamamoto, J. Kwiatek et al., An intermolecular FRET sensor detects the dynamics of T cell receptor clustering, Nat Commun, vol.8, p.15100, 2017.

Y. Ma, K. Poole, J. Goyette, and K. Gaus, Introducing membrane charge and membrane potential to T cell signaling, Front Immunol, vol.8, p.1513, 2017.

S. Oncul, A. S. Klymchenko, O. A. Kucherak, A. P. Demchenko, S. Martin et al., Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis, Biochim Biophys Acta, vol.1798, pp.1436-1443, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508235

P. Tarazona, K. Feussner, and I. Feussner, An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold-and drought-induced membrane remodeling, Plant J, vol.84, pp.621-633, 2015.

A. Ray, N. Jatana, and L. , Lipidated proteins: Spotlight on protein-membrane binding interfaces, Prog Biophys Mol Biol, vol.128, pp.74-84, 2017.

P. Prakash, Y. Zhou, H. Liang, J. F. Hancock, and A. A. Gorfe, Oncogenic K-Ras binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis, Biophys J, vol.110, pp.1125-1138, 2016.

A. Sayyed-ahmad, K. J. Cho, J. F. Hancock, and A. A. Gorfe, Computational equilibrium thermodynamic and kinetic analysis of K-Ras dimerization through an effector binding surface suggests limited functional role, J Phys Chem B, vol.120, pp.8547-8556, 2016.

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton et al., Plasma membrane nanoswitches generate high-fidelity Ras signal transduction, Nat Cell Biol, vol.9, pp.905-914, 2007.

S. V. Pageon, T. Tabarin, Y. Yamamoto, Y. Ma, P. R. Nicovich et al., Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination, Proc Natl Acad Sci U S A, vol.113, pp.5454-5463, 2016.

D. J. Williamson, D. M. Owen, J. Rossy, A. Magenau, M. Wehrmann et al., Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events, Nat Immunol, vol.12, pp.655-662, 2011.

T. Zech, C. S. Ejsing, K. Gaus, B. Wet, A. Shevchenko et al., Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling, EMBO J, vol.28, pp.466-476, 2009.

C. Rentero, T. Zech, C. M. Quinn, K. Engelhardt, D. Williamson et al., Functional implications of plasma membrane condensation for T cell activation, PLoS One, vol.3, p.2262, 2008.

M. Kinoshita, K. G. Suzuki, N. Matsumori, M. Takada, H. Ano et al., Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs, J Cell Biol, vol.216, pp.1183-1204, 2017.

A. Kusumi, T. K. Fujiwara, R. Chadda, M. Xie, T. A. Tsunoyama et al., Dynamic organizing principles of the plasma membrane that regulate signal transduction: Commemorating the fortieth anniversary of singer and Nicolson's fluid-mosaic model, Annu Rev Cell Dev Biol, vol.28, pp.215-250, 2012.

A. Kusumi and K. Suzuki, Toward understanding the dynamics of membrane-raftbased molecular interactions, Biochim Biophys Acta, vol.1746, pp.234-251, 2005.

M. Fujimoto, Y. Suda, S. Vernhettes, A. Nakano, and T. Ueda, Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana, Plant Cell Physiol, vol.56, pp.287-298, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204169

T. Hirano, T. Munnik, and M. H. Sato, Phosphatidylinositol 3-Phosphate 5-Kinase, FAB1/PIKfyve kinase mediates endosome maturation to establish endosome-cortical microtubule interaction in arabidopsis, Plant Physiol, vol.169, pp.1961-1974, 2015.

A. Aubert, J. Marion, C. Boulogne, M. Bourge, S. Abreu et al., Sphingolipids involvement in plant endomembrane differentiation: The BY2 case, Plant J, vol.65, pp.958-971, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00855924

E. Wang, W. P. Norred, C. W. Bacon, R. T. Riley, and A. H. Merrill, Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme, J Biol Chem, vol.266, pp.14486-14490, 1991.

F. Kruger, M. Krebs, C. Viotti, M. Langhans, K. Schumacher et al., PDMP induces rapid changes in vacuole morphology in Arabidopsis root cells, J Exp Bot, vol.64, pp.529-540, 2013.

B. Nieto, O. Fores, M. Arro, and A. Ferrer, Arabidopsis 3-hydroxy-3-methylglutaryl-CoA reductase is regulated at the post-translational level in response to alterations of the sphingolipid and the sterol biosynthetic pathways, Phytochemistry, vol.70, pp.53-59, 2009.

J. G. Mina, Y. Okada, N. K. Wansadhipathi-kannangara, S. Pratt, H. Shams-eldin et al., Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase, Plant Mol Biol, vol.73, pp.399-407, 2010.

T. Baba, A. Yamamoto, M. Tagaya, and K. Tani, A lysophospholipid acyltransferase antagonist, CI-976, creates novel membrane tubules marked by intracellular phospholipase A1 KIAA0725p, Mol Cell Biochem, vol.376, pp.151-161, 2013.

W. J. Brown, H. Plutner, D. Drecktrah, B. L. Judson, and W. E. Balch, The lysophospholipid acyltransferase antagonist CI-976 inhibits a late step in COPII vesicle budding, Traffic, vol.9, pp.786-797, 2008.

K. Chambers, B. Judson, and W. J. Brown, A unique lysophospholipid acyltransferase (LPAT) antagonist, CI-976, affects secretory and endocytic membrane trafficking pathways, J Cell Sci, vol.118, pp.3061-3071, 2005.

P. Wu, H. B. Gao, L. L. Zhang, H. W. Xue, and W. H. Lin, Phosphatidic acid regulates BZR1 activity and brassinosteroid signal of Arabidopsis, Mol Plant, vol.7, pp.445-447, 2014.

C. M. Motes, P. Pechter, C. M. Yoo, Y. S. Wang, K. D. Chapman et al., Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth, Protoplasma, vol.226, pp.109-123, 2005.

G. Li and H. W. Xue, Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response, Plant Cell, vol.19, pp.281-295, 2007.

I. Staxen, C. Pical, L. T. Montgomery, J. E. Gray, A. M. Hetherington et al., Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C, Proc Natl Acad Sci U S A, vol.96, pp.1779-1784, 1999.

A. M. Cassim, Progress in Lipid Research, vol.73, pp.1-27, 2019.