
HAL Id: tel-02892554
https://theses.hal.science/tel-02892554

Submitted on 7 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Réalisation des nanostructures désirées en or et en
argent par effet thermique local induit optiquement :
Application au stockage de données et à l’imprimante

couleur
Fei Mao

To cite this version:
Fei Mao. Réalisation des nanostructures désirées en or et en argent par effet thermique local induit
optiquement : Application au stockage de données et à l’imprimante couleur. Physique [physics].
Université Paris-Saclay, 2020. Français. �NNT : 2020UPASN011�. �tel-02892554�

https://theses.hal.science/tel-02892554
https://hal.archives-ouvertes.fr


 

 

 

Realization of desired Au and Ag 

nanostructures by optically induced 

local thermal effect: Application to 

data storage and color printer 

 

 

Thèse de doctorat de l'université Paris-Saclay 
 

 

École doctorale n° 575 Electrical, Optical, Bio: Physics and Engineering 

(EOBE) 

Spécialité de doctorat : physique 

Unité de recherche : Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, 

Laboratoire de Photonique Quantique et Moléculaire, 94235, Cachan, France.  

Référent : ENS Paris-Saclay  

 

 

Thèse présentée et soutenue à ENS Paris-Saclay, par 

 

 Fei MAO 
 

Composition du Jury   

Fabrice VALLÉE 

Professor, Université Lyon 1 
 Rapporteur 

Jean-Christophe LACROIX 

Professor, Université de Paris 
 Rapporteur  

Duc-Tho NGUYEN 

Associate professor, University of 

Georgia, USA 

 Examinateur  

   

Ngoc Diep LAI  

Associate professor, ENS Paris-Saclay 
 Directeur de thèse 

Isabelle LEDOUX-RAK 

Professor, ENS Paris-Saclay 
 Présidente 

Chi-Thanh NGUYEN  

Research Ingineer, CNRS 
 Co-encadrant 

   

   

T
h

è
se

 d
e
 d

o
ct

o
ra

t 
N

N
T
 :
 2

0
2
0
U

P
A

S
N

0
1
1
 



 



List of publications 

- Mao F., Pham T. N., Nguyen B. M., Li Z., Au T. H., Nguyen D. T. T., Tong Q. 

C., Pham T. L., Nguyen T. H., Tran Q. T., Lai N. D., “One-photon absorption 

based direct laser writing for fabrication of multi-dimensional photonic and 

plasmonic nanostructures,” Int. J. Nanotechnology (IJNT), accepted (2020). 

- Mao F., Davis A., Tong Q. C., Luong M. H., Nguyen C. T., Ledoux-Rak I., Lai 

N. D., “Direct laser writing of gold nanostructures: application to data storage 

and color nanoprinting,” Plasmonics 13 (6), 2285-2291 (2018). 

- Mao F., Davis A., Tong Q. C., Luong M. H., Nguyen C. T., Ledoux-Rak I., Lai 

N. D., “Direct laser coding of plasmonic nanostructures for data storage 

applications,” Nanophotonics VII 10672, 106722Z (2018). 

- Mao F., Tong Q. C., Nguyen D. T. T., Huong A. T., Odessey R., Saudrais F., Lai 

N. D., “LOPA-based direct laser writing of multi-dimensional and multi-

functional photonic submicrostructures,” Advanced Fabrication Technologies for 

Micro/Nano Optics and Photonics X 10115, 1011509 (2017). 

- Tong Q. C., Mao F., Luong M. H., Do M. T., Ghasemi R., Tien T. Q., Nguyen  T. 

D., Lai N. D., “Arbitrary Form Plasmonic Structures: Optical Realization, 

Numerical Analysis and Demonstration Applications,” Chapter 5, Book 

“Plasmonics”, IntechOpen (2018). 



 



Contents

Acknowledgements III

1 General introduction 1

1.1 Plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fabrication techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Motivation and thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Realization of plasmonic nanoparticles in large area by thermal dewetting

method in an oven 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Thermal annealing of plasmonic NPs . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Simulations of Au and Ag NPs by FDTD method . . . . . . . . . . . . . . . 24

2.4 Thermal annealing of Au + Ag films . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Direct laser writing of Au and Ag nanoparticles and nanostructures 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Optically induced thermal effect: theory and simulation . . . . . . . . . . . . 38

I



CONTENTS

3.3 Realization of plasmonic nanostructures by DLW method . . . . . . . . . . . 46

3.3.1 Continuous-wave based DLW method . . . . . . . . . . . . . . . . . . 46

3.3.2 Realization of Au and Ag NPs . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Realization of plasmonic nanostructure with metallic NPs . . . . . . . 55

3.3.4 Demonstration of direct fabrication of nanoholes arrays . . . . . . . . 57

3.4 Conclusion of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Applications of fabricated plasmonic nanostructures 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Color printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Fluorescence enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Random laser based on a monolayer of Au NPs . . . . . . . . . . . . . . . . 82

4.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Conclusion and prospects 87

II



Acknowledgment

In the past years, I have learned and grown a lot. With the help of professors,

classmates, and friends, I was able to complete my doctoral studies.

First of all, I would like to express my deepest gratitude to my supervisor, Professor

Ngoc Diep Lai, for his continued support of my doctoral research, for his patience,

motivation and great knowledge. With the help of his guidance, I can research and

write this thesis.

At the same time, I would like to express my heartfelt thanks to Dr. Chi Thanh

Nguyen and Professor Isabell Ledoux-Rak, my co-supervisors, for their scientific guid-

ance, consistent support, and encouragement during my Ph.D.

I want to thank my labmates who have worked with me for many years - Quang

Cong Tong, Andrew Davis, Mai Hoang Luong, Dam Thuy Trang Nguyen, Kirill Kni-

azev, Li Zhen, etc. It is really happy to work with them.

I am also very grateful to my colleagues and friends who gave me their help and

time in these years, especially Dr. Rasta Ghasemi for her great help in cleanroom

facilities and nano-manufacturing.

I would also like to thank all members of my defense committee: Professor Fabrice

Vallée, Professor Jean-Christophe LACROIX, and Professor Tho Duc Nguyen for their

insights and encouragement, as well as for embraving me to expand my problem.

III



CONTENTS

Last but not least, I want to thank my family for their support and constant

encouragement over the period of my Ph.D.

IV



Chapter 1

General introduction

1.1 Plasmonics

Plasmonics is a branch of optical condensed matter science devoted to optical phe-

nomena in the nanoscale vicinity of metal surfaces [1]. When an incident light wave

irradiates on a metallic nanostructure, different types of resonance modes appear due

to the fluctuation of free electrons in the conduction band of the metal. The nature of

these modes can determine the strength of the interaction between the incident light

and the nanostructures. Therefore, the optical response of plasmonic devices can be

controlled if there is some degree of control over the incident light and nanostructures.

The most famous report in the history of the plasmonic phenomena can date back

to Lycurgus Cup (British Museum, London, UK 1902) [2]. It has a fantastic visual

shock that its color could be changed under ambient lighting only one thing needs to

change is the position where we put the light. As shown in figure 1.1, its color is green

(a) and when putting the light inside the cup and let the light through it, then we

could get a probably new Cup with glints bright red (b) [4]. Likely, the rose window

of the Notre Dame Cathedral is also very impressive as figure 1.1 (c) shows. Great
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1.1. PLASMONICS

Figure 1.1: (a) Examples of decorative objects made by plasmonic nanoparticles. The Lycur-
gus Cup in reflected and transmitted light. Department of Prehistory and Europe, the British
Museum [2]. (b) The rose window of Notre-Dame (about the year 1250) [3].

craftsmen used their excellent techniques to create such beautiful artwork which could

light the nave with different colors. This may be amazing at that time and appeal

a lot of attentions so that it gradually became a new research direction that dealing

with the interaction between an electromagnetic field and free electrons in a metal.

So now we know that is “plasmonic” effect, the color of the Cup changes due to gold

and silver nanoparticles embedded in the glass [5].

With a huge number of investigations in the domain, we can separate the plasmonic

effect in three types: surface plasmon polariton (SPP), localized surface plasmon

resonance (LSPR), and plasmonic nanostructures (PNS).

SPP is an electromagnetic excitation existing on a metallic surface [6]. It is an

intrinsically two-dimensional excitation whose electromagnetic field decays exponen-

tially with distance from the surface. The propagation distance of SPPs depends

primarily on the absorption of the metal and the thickness and surface roughness of

the film. Figure 1.2 (a) illustrates the light propagation along with a metal-dielectric

or metal-air interface, while only a particular wavelength and a particular incident

2



1.1. PLASMONICS

Figure 1.2: (a) Surface plasmon polariton (SPP) at a metal-air interface and correspond-
ing reflectivity properties (b). (c) Localized surface plasmon resonance (LSPR) in isolated
nanoparticles and corresponding plasmonic resonant spectrum (d). (e) Coupled surface plas-
mon resonance in a nanoholes array and corresponding transmission properties (f).

angle could propagate and the others will be reflected. The illustration of the reflec-

tivity curve is shown in figure 1.2 (b), where we can see that the reflectivity is greatly

reduced at a specific wavelength, called resonant mode. The SPP therefore paves the

way for a number of applications. Figures 1.3 (a,b) show an example of integrated

optical communication [7] and bio-sensors [8] based on the SPP.

LSPR is the result of the confinement of a surface plasmon in metallic nanoparti-

cles (NPs) having a size smaller than the wavelength of the light used to excite the

plasmon. Usually, when a particular light is focused on metal NPs, the electron os-

3



1.1. PLASMONICS

Figure 1.3: Plasmonic applications of SPP: integrated optical communication (a) [7] and
bio-sensors (b) [8]. Plasmonic applications of LSPR: gold nanoparticles in cancer therapy
(c) [9] and bio-sensors (d) [10]. Plasmonic applications of PNS: light filters (e) [11] and
nano color printing (f) [12].

cillation at the NP surface will cause a charge separation and then leading to form

a dipole oscillation along the direction of the electric field of the light. By that, the

oscillation of the light field around the metal ball will be enhanced. Meanwhile, only

certain wavelengths of light can be absorbed and scattered. This is called plasmonic

resonance mode, as shown in Fig. 1.2 (d). The metallic NP becomes a very hot nano

spot, with a temperature reaching several thousand degrees [13–15]. According to

these optical properties of LSPR, many applications could be investigated: antimicro-
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1.2. FABRICATION TECHNIQUES

bial effects [16], cancer treatment [17, 18], solar cells [19], light-emitting diodes [20],

spectroscopy [21], signal enhancement for imaging [22], chemical synthesis [23], catal-

ysis [24], photoelectrochemical [25], mechano-optical instrumentation [26], etc. Since

LSPR is a localized effect, it is easy to dope metallic NPs into another material and

to incorporate them into components, thus it has many other applications. Figure

1.3 (c,d) show the examples of cancer therapy [9] and bio-sensors [10] based on the

LSPR.

Since LSPR strongly and locally amplifies the electromagnetic (EM) field near the

metallic surface, many works propose to make LSPR propagating as in the case of

SPP. Therefore, PNS does a good job to combine the effect of SPP and LSPR [27].

Indeed, when two metallic NPs are close enough, a strong EM field appears in the

proximity of NPs surfaces, which may modify their surface potential and couple their

plasmonic modes [28, 29]. Those modes can span over a broader optical spectrum

as compared to their individual compartment. The spectrum of the coupled system

is usually red-shifted and a relatively small or moderate splitting of the modes is

observed [30–33]. Then, PNS with multiple metallic NPs [1, 34] or multiple nano-

holes arrays (NHAs) [35–38] are studied. These PNSs allow having many applications

since it has more degree of control, for example, the structure type, period, filling

factor, etc. It seems that PNS is the best way of implementing many applications

based on the plasmonic effect. Figures 1.3 (e,f) show the examples of light filters [11]

and nano color printing [12] based on PNSs.

1.2 Fabrication techniques

There are many fabrication techniques that allow obtaining plasmonic structures.

SPPs are the simplest structures, which can be obtained by creating a metallic thin

5



1.2. FABRICATION TECHNIQUES

film on a definite substrate by atomic deposition or evaporation method. The metallic

film thickness is most important which can affect the propagation properties. The

typical thickness of SPP is about 50 nm which can be made in a large area (few

millimeters to few centimeters) or following a one-dimensional waveguide. The last one

is done usually by using a template pre-fabricated by the mask lithography technique.

To get the metallic NPs, there are numerous fabrication techniques [39]. Chemical

synthesis has been the primary means of growing a wide variety of metal NPs shapes

(including stars [40, 41], rods [42–44], boxes [45], and cages [46–48]) because reaction

conditions such as temperature, surfactants, and precursors can be independently

controlled [49]. Extensive works of the different synthetic conditions and outcomes

have been published elsewhere [50–59]. Although solution-based methods are scalable,

the large distribution of shape and size of NPs within a single reaction vessel is still a

challenge. Recently, the dewetting method [60] is also proposed to obtain a monolayer

of NPs on a surface, where heating can be got from the electric or optically induced

thermal effect. This technique shows a great advantage as compared to others since

it allows obtaining NPs in the desired area [61] or even a structure of NPs by using a

polymeric template prior annealing [62].

In order to obtain PNSs in a large area, we need to use various techniques such

as a combination of interference lithography and gold etching [63–66], evaporation

or sputtering of metallic materials onto structured polymeric templates [67–69], a

combination of interference lithography and thermal annealing technique [70–72]. In

addition, forming the desired configuration of metallic NPs in a small area, other

methods are also necessary such as high-energy radiation metal membranes [73,74], fo-

cused ion beam [75,76], or a combination of nano-sphere lithography [77,78], electron-

beam lithography (EBL) [79–85], or direct laser writing (DLW) technique with lift-off

method [86]. These methods are used to create the desired structures at nanoscale,

6



1.2. FABRICATION TECHNIQUES

so they are the most employed for PNSs fabrication.

Figure 1.4: Schematic diagram of e-beam or photo-beam lithography on a photoresist film
(a) and the photoresist pattern after development (b).

Here, we briefly introduce several common fabrication methods of PNS. The EBL,

photolithography, and focused ion beam lithography have been the main techniques

for fabricating nanoscale patterns. For plasmonic fabrication, a combined method of

photolithography or EBL, and a lift-off process, called PEEL must be used. This

is an indirect method that consists of two steps: template fabrication and metal

structure formation. EBL appeared in the late 1960s [87] and consists of the electron

irradiation of a surface that is covered with a resist sensitive to electrons by means of a

focused e-beam. The main advantage of EBL over the conventional photolithography

techniques includes very high-resolution [88]. This technique is used today for most

PNS fabrication of high resolution and with arbitrary configuration. Besides, photo-

beam lithography, also called photolithography or optical lithography, is the process

of forming a pattern in a layer of an energy-definable polymer (photoresist). DLW

or laser interference methods are widely used to fabricate sub-micrometer polymeric

structures. Figure 1.4 illustrates a template fabricated by e-beam or photo-beam

lithography on a photoresist film. The e-beam or photo-beam induces a change in

7



1.2. FABRICATION TECHNIQUES

the molecular structure and solubility of the resist film. After exposure, the resist

is developed in a suitable solvent to selectively dissolve either the exposed (positive

resist) or unexposed (negative resist) areas. After exposing and developing, the resist

layer on top of the sample can be used as a mask or template for transferring the

pattern into a metallic structure.

Figure 1.5: Plasmonic structures fabricated by polymer templates and a lift-off method.
First, the photoresist pattern is formed by e-beam or photo-beam writing (a), then gold film
is evaporated on top of the structures (b), the plasmonic structure is obtained after the lift-off
process (c).

Figure 1.5 illustrates a nanopatterning procedure that transfers patterned features

in a photoresist into plasmonic structures [89, 90]. First, photoresist patterns are

fabricated by the EBL or photolithography method on a glass substrate as shown

in Fig. 1.5 (a). Then a gold film is deposited on top of the polymeric pattern as

illustrated in Fig. 1.5 (b). Finally, the sample is lifted-off to obtain the metallic

nanoholes array (Fig. 1.5 (c)) by removing the polymeric template.

A combination of polymeric templates and plasma etching methods is also a com-

mon way to obtain plasmonic structures [91]. Figure 1.6 illustrates how to fabricate

the metallic structure by this combination. The photoresist pattern is obtained by

EBL or photolithography method on top of a metallic film that is deposited on the

glass substrate. Then, the plasma etching is applied to remove the metallic film

through the air holes leaving the metallic film under the photoresist part on a glass

8



1.2. FABRICATION TECHNIQUES

Figure 1.6: Plasmonic structures fabricated by using polymeric template and plasma etching
methods. First, the photoresist pattern is formed by e-beam or photo-beam writing on top of
a metallic film (a), then plasma is used to etch the metallic material through the air holes
(b), the plasmonic structure remains after removing polymeric template (c).

substrate. After removing the polymeric structure, PNS is obtained as shown in Fig.

1.6.

These two combination methods are indirect ways to make the PNSs. An example

of NHA fabricated by the DLW method and gold evaporation method is recently

demonstrated in our laboratory and shown in Fig. 1.7 [92].

Figure 1.7: SEM images of (a) photoresist pattern of nanopillars array fabricated by DLW
method; (b) gold nanoholes pattern after the lift-off process [92].

In order to directly fabricate PNSs (i.e. without photoresist template), it requires

an energetic source that enables defusing metallic thin film. The focused ion beam

9



1.2. FABRICATION TECHNIQUES

Figure 1.8: (a) Illustration of focused ion beam (FIB) system, which can be used in two ways
for fabrications of metallic structures: milling (b) and deposition (c).

(FIB) technique is demonstrated as a direct way to fabricate plasmonic structures,

which was mainly developed during the late 1970s and the early 1980s [93]. A typical

FIB system is illustrated in Fig. 1.8 (a). The system contains three parts: scanning

electron microscopy (SEM), FIB and gas inject system (GIS). By this FIB, two ways

can be used to obtain desired plasmonic structures. Figure 1.8 (b) illustrates the

fabrication of the milling method. The FIB allows removing the sample material

using a high ion current beam. By scanning the ion beam over the substrate, a

plasmonic structure with arbitrary shape can be obtained. In order to speed up

the milling process, an etching gas can be introduced into the work chamber during

milling. Figure 1.8 (c) illustrates the localized maskless deposition of both metal

and insulator materials. The precursor gases are sprayed on the surface by a fine

10



1.3. MOTIVATION AND THESIS PLAN

needle (nozzle), the incident ion beam decomposes the adsorbed precursor gases. Then

the volatile reaction products desorb from the surface and are removed through the

vacuum system, while the desired reaction products remain fixed on the surface as a

thin film. This FIB is robust but it is the most expensive method and it is not easy

to have access to this method for most research laboratories.

So far, all these indirect and direct fabrication methods have been demonstrated.

These techniques present many advantages but also some drawbacks. The fabrication

of PNSs by indirect methods requires at least two steps, making this method rather

complicated and expensive. FIB method has the advantages of high sensitivity, high

resolution, and high stability, but it also has some disadvantages, such as it needs a

high vacuum system, expensive and easy to damage the substrate. Therefore, it is

necessary to develop a new method, simple and low-cost to realize PNS on-demand

in a single step.

1.3 Motivation and thesis plan

In order to realize PNSs on demand, our lab has recently demonstrated the fabrication

of Au NPs by a conventional thermal annealing process [94]. The experimental results

show that the high-temperature annealing process melted the sputtered Au films,

leading to the formation of isolated Au nano-islands, which exhibit a plasmonic effect

with respect to the initial sputtered films. The distribution of metallic NPs dewetting

on the oven is random in a large area. Then, thermal annealing of Au film by a

high power continuous-wave (CW) laser beam is demonstrated [92]. To fabricate

PNS in a small area and with the desired shape, an optically induced local thermal

effect by using the DLW is applied [95]. This method is a direct way to fabricate

desired patterns on demand. The optically induced thermal effect on an Au substrate

11



1.3. MOTIVATION AND THESIS PLAN

is studied, which can form the Au NPs on different substrates. Many interesting

questions are then raised: can this DLW be applied to other metallic thin films, such

as Ag or Au/Ag mixing films? Can DLW be used to create NPs array (NPA) or NHAs

(like FIB)? What are the applications of these fabricated structures?

In order to answer these questions, we study theoretically and experimentally the

use of the DLW employing a CW laser with controllable laser power to realize both

NPA and NHA structures on gold and silver films. We investigate their optical prop-

erties and demonstrate some potential applications of fabricated 1D and 2D PNSs.

This thesis is organized as following:

In chapter 1, we briefly introduce the fundamental backgrounds of plasmonics, such

as surface plasmon polaritons, localized surface plasmon resonance, and nano-holes

array and their potential applications. Then, we introduce the common fabrication

techniques of plasmonic structures and introduce the motivation of the PhD work.

In chapter 2, gold and silver NPs are elaborated by the thermal dewetting method

using an oven in atmospheric conditions. We studied the optical properties of Ag

NPs as a function of different fabrication parameters. A tentative fabrication of dual

plasmonic structure by using a combination of Au and Ag film is also realized. The

plasmonic effect is demonstrated in a good agreement between the FDTD simulations

and the experimental characterizations.

In chapter 3, we first theoretically studied the optically induced thermal effect in

a metallic film by using two simulation methods: Matlab and Comsol Multiphysics.

We show that Matlab can be used to calculate the temperature distributions in an

ideal model, while Comsol software not only can solve the ideal model but also can

simulate the temperature distribution with a rough surface. All the simulation results

12



1.3. MOTIVATION AND THESIS PLAN

are compared to verify the correctness of the optically induced thermal effect model.

To simulate the shape of the nanoholes array created in a real case, we calculated

the temperature contour shape in the laser focusing area on a rough metallic surface.

These results will guide for experimental realizations and explain the real fabricated

structures. Then, we demonstrated the use of the DLW technique using a CW laser at

532 nm for the fabrication of plasmonic structures on demand. We first fabricated the

plasmonic structures made of gold and silver NPs separately. Their optical properties

are experimentally studied and compared with the simulation results obtained by

the FDTD method. By increasing the laser power, we demonstrated for the first

time the direct fabrication of gold NHAs with controllable size and structures. Their

optical properties are simulated by FDTD method and compared with experimental

characterization results.

In chapter 4, we demonstrated some applications of PNS with Au or Ag NPs, such

as data storage, nano color printer, fluorescence enhancement, and random laser. We

show that plasmonics based data storage is very promising, which can replace the

traditional optical disks fabricated by using photorefractive materials. By varying

the metallic NPs size, we demonstrated that this technique paves the way for some

potential applications, such as QR codes at a submicro scale that is ideal for anti-

counterfeiting. Finally, we demonstrated some preliminary results of random laser

based on plasmonic NPs resized by the DLW technique.

In the last chapter, we summarize our works and discuss some prospects.

13





Chapter 2

Realization of plasmonic nanoparticles

in large area by thermal dewetting

method in an oven

2.1 Introduction

According to the physical and chemical properties, nanoparticles (NPs) can be classi-

fied into different types: carbon-based NPs, ceramic NPs, metal NPs, semiconductor

NPs, polymeric NPs, and lipid-based NPs. According to the size and morphology,

NPs can be classified into nanoball, nanorods, nanoshells, nanocages, etc. [96]

The most representative characteristics of the metallic NPs are the strong ab-

sorption/scattering peak in the visible range [97–100]. Namely, when the electronic

vibration frequency of the metallic NP is equal to the incident light wave frequency,

surface plasmon resonance (SPR) occurs, resulting in a strong absorption/scattering

peak. Meanwhile, the peak position is very sensitive to the shape, size, and distri-

bution of metal NPs. Their optical properties allow many applications such as nano-
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2.1. INTRODUCTION

optics [101,102], nonlinear optics [103,104], catalysis [105,106], thermodynamics [107],

sensors [108–111], monitor [112], and medical diagnostics [113], etc.

With the development of modern nanotechnology, the fabrication of noble metal

NPs can be prepared by break-down or build-up methods [114]. The break-down

method is a technique for crushing the bulk metal by mechanical grinding [115], me-

chanical milling [116], or annealing by thermal effect [117–119]. The build-up method

is a technique for assembling metallic atoms and has a lot of variations. Usually, the

build-up method is used in a chemical reaction [120] or assemble in a solution [121],

and the break-down method is used in physics grinding, machine milling, laser de-

composition, and so on [122].

The dewetting method is widely used in nanostructure fabrications [123, 124]. In

the research of Hayashi et al. [125], they discovered that the melting point is decreased

by reducing a metallic particle to nanolevel [126]. This opens a way to obtain metallic

NPs with a moderate temperature, by using simply an electric oven.

In this chapter, we use a break-down method of thermal annealing technique to

realize a monolayer of metallic NPs in large area. We first investigate the formation of

gold (Au) and/or silver (Ag) NPs and then their mixture by using the oven annealing

method. We experimentally show the variation of the size of formed Au and Ag NPs

as a function of the annealing temperature and the annealing time. Simulations by

the finite-difference time-domain methods are used to study the plasmonic properties

of a monolayer of Au and Ag NPs, which are then compared with the experimental

ones. We also simulate the plasmonic properties of the mixed Au/Ag NPs, and study

theoretically the environmental effect.
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2.2. THERMAL ANNEALING OF PLASMONIC NPS

2.2 Thermal annealing of plasmonic NPs

Figure 2.1 shows the fabrication of Au or Ag NPs monolayer by using the thermal

dewetting method in an oven. Metallic NPs can be formed on the surface of a glass

substrate.

Figure 2.1: (a) Illustration of the dewetting method by oven annealing. (b-d) Annealing
process of gold/silver nanoparticles.

The fabrication process can be explained as follows: first, the Au or Ag film is

deposited on a glass substrate. The Au films were deposited onto 1.1 mm thick stan-

dard glass substrates by using an Emitech K650 magnetron sputter. The deposition

conditions are a DC argon plasma with a gas purity of 99.995% and a discharge cur-

rent of 50 mA. The average sputtering time is eight minutes so that we can obtain a

desired thin Au film of about 12 nm thick (measured by a Dektak profilometer). For

Ag films, the evaporation machine (Edwards, model: Auto 306) is used to obtain a

uniform Ag film, whose thickness is about 8 nm. The samples are putting inside a hot

oven with suitable annealing temperature and time. Inside the oven, the Au or Ag

film is heating under a suitable temperature that can form NPs in the air environment.

After annealing, the samples are naturally cooled down to room temperature.
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To characterize the morphology of Au and Ag NPs, a scanning electron microscope

(SEM, Hitachi S3400N / EDS Thermo Electron) is used to obtain the image of NPs,

of which the shape and size can be calculated. The typical SEM images of annealing

Au and Ag NPs are illustrated in Fig. 2.2. After many experiments, the annealing

temperatures of the Au and the Ag NPs are set to 500 ◦C and 200 ◦C, respectively,

which are the most suitable values to form these metallic NPs. The size, shape, and

distribution of Au and Ag NPs are quite easy to distinguish from these SEM images.

And the distribution of Au or Ag NPs is linked to their metallic nature, their thickness

and the film preparation method.

Figure 2.2: SEM images of (a) Au film and (b) Au NPs annealing at 500 ◦C; (c) Ag film
and (d) Ag NPs annealing at 200 ◦C. The annealing times are both set to 30 minutes.

Influence of annealing temperature

After annealing with different temperatures while fixed the duration time, the
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Figure 2.3: Results of Ag samples annealed with various temperatures by fixing the annealing
duration at 30 min. The first column shows the transmission microscope images at large
scale. The second column demonstrates the images taken in the reflection microscope. The
third and fourth columns show the corresponding SEM images and Ag NPs size distributions,
respectively.
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plasmonic properties of the Ag film have dramatically changed as clearly shown in

Fig. 2.3. The colorful images of transmission and reflection microscope change as

the annealing temperature increasing. This is because, the resonance frequency of

the NPs is affected by the NPs size and distribution, resulting in the color changes.

The color changes from blue to orange, and then to dark red. The different annealing

temperature results in the different average sizes of Ag NPs, as the SEM images

illustrated in Fig. 2.3. As we can see in the SEM image, the Ag film starts changing

to Ag NPs at 100 ◦C. When the temperature reaches 350 ◦C, all the film is evaporated,

therefore we only show the results obtained with temperatures below 300 ◦C.

By analyzing the statistics of size distribution at various annealing temperatures,

which is illustrated in the right column of figure 2.3, we found that the particle size

slightly changes as a function of the annealing temperature. The best size distribution

was obtained with 200 ◦C. This variation (size increases then decreases) is complicated

together with the variation of particle height and also the number of particles. There-

fore for Ag NPs, we adopted the annealing temperature as a key parameter to change

the size of Ag NPs. Under 150 ◦C, the average size of Ag NPs is around 50 nm. If

the temperature increase to 200 ◦C, the average size of the Ag NPs becomes smaller,

about 40 nm. And then, if we continue to increase the annealing temperature, the

average size will become bigger and bigger, and the size distribution is more scat-

tered. Meanwhile, the peak is disappeared when the temperature reaches 350 ◦C,

which implies that all the Ag film is evaporated from the substrate.

The distinction of the physical properties of Au or Ag NPs is reflected in the ex-

tinction spectrum, which is a combination of the absorption and scattering spectra.

The plasmonic resonance of fabricated Au and Ag NPs is characterized by measuring

the absorption spectra using a UV-Vis spectroscopy. Figure 2.4 (a, c) illustrates the

influence of annealing temperatures on the formation of the Au and Ag NPs by the
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Figure 2.4: (a) The extinction (absorption and scattering combined) spectra of Au samples
annealed with different temperatures in 30 minutes. (b) Detail of the extinction spectra. (c)
The extinction spectra of Ag samples. (d) Detail of the extinction spectra.

thermal annealing method. We fixed the annealing duration time to 30 minutes and

changed the annealing temperature from 200 ◦C to 500 ◦C for Au NPs, and from

100 ◦C to 350 ◦C for Ag NPs. From the combination of the SEM images and the

Ag NPs distributions, we know that the dewetting effect happens when the annealing

temperature reached 100 ◦C. When the temperature is chosen between 150 ◦C to 300

◦C, the Ag NPs are formed, and the extinction peak, which means the combination

of the absorption and the scattering, is almost unchanged. By studying more details

in Fig. 2.4 (b, d), we found that, not like the Au NPs, where the extinction peak
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shift in one direction, the extinction peak shifts of Ag NPs has a turning point in the

annealing temperature of 200 ◦C. When the temperature increased from 100 to 200

◦C, the extinction peak is blue shift. And when the temperature continues to increase

from 200 to 300 ◦C, compared with 200 ◦C, the peak is redshift. This is consistent

with the transmission microscope image, where we saw that the color changes from

dark red to orange in 200 ◦C, and then become darker and darker again with high

annealing temperatures.

Influence of annealing duration time

Besides the temperature, the annealing duration time is another important param-

eter in forming Ag NPs. We then fixed the temperature at 250 ◦C while changing the

annealing time as 1, 5, 10, 30 and 45 minutes. By observing the microscope results,

the sample color is hard to distinguish. This means that there is a little change in the

position of the absorption peak. For studying in more detail the influence of the an-

nealing time, we also studied the SEM images and size distribution of Ag NPs which

can be referenced to the resonant spectra.

SEM images and corresponding size distributions are illustrated in Fig. 2.5. Using

different annealing times, the average size of all Ag NPs is around 40 nm. The

difference is that the numbers of NPs are gradually decreased when the annealing

duration is increased. The extinction spectrum is measured and shown in Fig. 2.6

(a), where we can see that the peak intensity decreases when the annealing duration

time increases, which is consistent with the number of NPs shown in Fig. 2.5. Figure

2.6 (b) shows, in more detail, the resonance peak as a function of the annealing

time. The resonance peak does not shift, which is coherent with the sample color as

explained before.

In conclusion, this dewetting method in an oven is suitable for fabricating Au and
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Figure 2.5: Results of Ag samples annealed with various annealing times while the annealing
temperature was set to 250 ◦C. The first and second columns show the SEM images and Ag
NPs size distribution, respectively.

Ag NPs in a large area, which has the advantage of rapid, easy and controllable fabri-

cation. In order to understand the plasmonic properties of metallic NPs in monolayer,
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Figure 2.6: (a) The extinction (absorption and scattering combined) spectra of Ag samples
annealed with different durations when the temperature was fixed to 250 ◦C. (b) Detail of the
extinction spectra.

as well as their size and shape dependence, we developed a simulation method based

on a commercial Lumerical software.

2.3 Simulations of Au and Ag NPs by FDTD method

The Lumerical FDTD software is used to simulate the plasmonic resonance of metallic

NPs. Not like the regular shape of Au or Ag NPs of other works [127,128], the metallic

NPs fabricated in this work have a random shape, dispersed in a monolayer on a

glass substrate. These NPs are also called nano-islands (NIs), which therefore need a

particular simulation way to obtain their optical properties.

Figure 2.7 illustrates the reconstruction of randomly distributed metallic NPs in

the FDTD model. This simulation method requires an SEM image and an AFM

image. The SEM image is imported by Matlab in a 2D array, all the pixels are set

to the grey mode. In this way, we can calculate the average size distribution and
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count the numbers of the metallic NPs from the imported image. Figure 2.7 (a)

demonstrates the top-view of NPs sizes and shapes in x-y coordinates. With the

height estimated from the AFM image, as shown in Fig. 2.7 (b), the 3D surface is

obtained and imported by FDTD software. Figure 2.7 (c) demonstrates the FDTD

simulation configuration. The simulation area is bounded in the x-y plane where the

periodical boundary conditions are defined. In z -direction, PML boundary conditions

are applied to prevent any reflections. The absorbance spectra were calculated from

Fourier transform time-dependent transmission monitor [94].

Figure 2.7: FDTD model used to simulate the plasmonic resonance of metallic NPs on
a glass substrate. (a) The imported data transformed from the SEM image by Matlab
software. (b) The AFM image is used to obtain the height of NPs. (c) The Lumerical
FDTD model set up to simulate the absorption of plasmonic NPs.

Au NPs

Figure 2.8 (a) illustrates the absorption spectra measured from Au NPs and Au

film. The resonant peak of Au NPs appears at 550 nm wavelength. Figure 2.8

25



2.3. SIMULATIONS OF AU AND AG NPS BY FDTD METHOD

Figure 2.8: (a) The experimental absorption spectra of Au NPs and Au film. (b) The
simulated absorption spectra of Au NPs with different average sizes of NP.

(b) shows the plasmonic resonant spectra of Au NPs having different average sizes

obtained by the FDTD method. We can see that, if the particle size is assumed to

be 50 nm, we obtained a very similar resonant spectrum as shown in Fig. 2.8 (b).

This confirms the experimental results obtained during this work. Furthermore, when

the average size of Au NPs became larger, the absorption peak is redshift. In this

simulation, the size of Au NPs changes from 20 nm to 100 nm, resulting in a shift of

about 48 nm for the resonant peak. That explains why we can use this Au NPs for

nano color printer, and why we cannot change much the color.

Ag NPs

The FDTD method is also applied to obtain the absorption spectrum of Ag NPs.

The SEM image in Fig. 2.2 (d) is imported to Lumerical software, in which the
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Figure 2.9: (a) Simulation plasmonic resonance spectra of the different average sizes
of Ag NPs. The imported SEM image comes from the experiment whose plasmonic
resonance spectra shows in the red curve. (b) Detail of the simulated peak position.

average size is calculated as 50 nm. Figure 2.9 (a) illustrates the simulated plasmonic

resonance spectra of the different average sizes of Ag NPs. The imported SEM image

comes from the experiment whose plasmonic resonance spectrum is also shown in the

red curve. The simulation curve is not smooth for a limited simulation area having

less Ag NPs than in the case of Au NPs, but the position of the main peak and the

small peak is found on the same wavelength of the experimental one. Figure 2.9 (b)

illustrates the detail of the simulation results of the absorption curve of Ag NPs having

different average sizes. Unlike the Au NPs, the plasmonic resonance spectra of Ag

NPs have two peaks. The main peak comes from the size distribution in the x-y plane,

and the smaller one in the left is due to the height of Ag NPs [129]. In Fig. 2.9 (b),

the resonance peak also has a shift when the size of NPs changes. This is consistent

with the observable in experiment realized with different annealing temperatures.

Influence of environment

The environment around the plasmonic NPs is also a factor affecting the plasmonic
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Figure 2.10: FDTD simulation of the dependence of plasmonic properties of Au NPs
(a) and Ag NPs (b) on environment.

resonant peak. Here, we simulated the plasmonic properties of Au and Ag NPs located

in the air, water, and oil environment to understand their dependence. Figure 2.10

illustrates the effect of the environment. In figure 2.10 (a), the absorption peak of Au

NPs is redshift when we change the environment from air to water and to oil. This

is because the plasmonic resonance of the NPs depends on the refractive index of the

surrounding environment, where the refractive indices of air, water, and oil are 1, 1.33

and 1.6, respectively. In figure 2.10 (b), the plasmonic resonant peak of Ag NPs is

also redshift when we change the environment from air to water, and then to oil.

From the simulation, we can confirm that even the shape of NPs is not perfectly

circular or elliptical, and not uniform, the resonance peak still exists and as strong as

in the case of perfect NP. By adjusting the size of the NPs, we can slightly change

the resonant peaks, thus allowing applications like nano color printer. Compared to

the perfect spherical NPs, the real NPs have a large resonant peak and not a smooth

curve. The resonant peak of Au NPs is around 550 nm while the resonant peak of Ag

NPs is around 450 nm in the air environment. We wonder if we make a mixed Au and

28



2.4. THERMAL ANNEALING OF AU + AG FILMS

Ag NPs in the same sample, can we obtain a large plasmonic resonance range which

can be interesting for a lot of applications.

2.4 Thermal annealing of Au + Ag films

Since the metallic NPs resonance frequency is related to material, we tried to form the

NPs by combining Au and Ag materials. We expected that the plasmonic resonant

peak would be a combination of resonant spectra obtained from pure Au NPs and Ag

NPs.

From the previous results, we know that the annealing temperatures of Au and Ag

NPs are not the same. For Ag NPs, the suitable dewetting temperature is ranging

from 150 ◦C to 300 ◦C, but for Au NPs, the dewetting temperature is in between 300

◦C and 500 ◦C [92]. So we’d like to set the annealing temperature at 300 ◦C which

may be suitable to make the combined NPs.

In this experiment, all the samples are prepared by the evaporation method (Ed-

wards, model: Auto 306) to deposit both the Au and Ag films. As the results shown

previously, the thicknesses of Au and Ag films are set to 12 nm and 8 nm, respectively.

We have prepared two kinds of deposition, an Au film on top or an Ag film on top of

the other.

Figures 2.11 (a-b) illustrate the result of nanocomposite islands after annealing

at 300 ◦C. This sample is prepared by depositing an Ag film on an Au film (Ag +

Au). A transmission microscope image is illustrated in the insert figure showing the

plasmonic color. For inverse deposition, i.e. an Au film deposited on an Ag film (Au

+ Ag), the results are shown in Fig. 2.11 (c-d). From the enlarged SEM images, we

can see that NPs or NIs are not really formed but rather NIs with connections. The

density of connected NIs of the (Ag + Au) sample is slightly weaker than that of the
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Figure 2.11: (a) SEM images of the annealed sample consisting of an Ag film on an
Au film (Ag + Au). (b) Zoom in of (a). The insert is the transmission microscope
image. (c) SEM image of annealed (Au + Ag) sample. (d) Zoom in of (c). Both of
the annealing temperature and time are fixed at 300 ◦C and 30 minutes.

(Au + Ag) sample. This can be also observed from the microscope images, which

show very similar colors.

We also performed the measurement of the absorption spectra of the nanocompos-

ite samples and compared them with those obtained with pure Au or Ag materials,

as shown in Fig. 2.12. The red and black curves present the pure Au and Ag NPs

absorption spectra which are annealed with the same parameter. They all show the

plasmonic resonant peaks due to the material nature and the NPs formation. And

the grey and blue curves present the annealed structures of the (Ag + Au) and (Au +

Ag) films. As we can see, there is no clear plasmonic resonant peak for the nanocom-

posite samples, which means that the mixed NPs are not formed at 300 ◦C. This is
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Figure 2.12: The absorption spectra of thermal annealing of a combined Au and Ag
films with an annealing temperature of 300 ◦C and an annealing duration of 30 min-
utes.

consistent with the SEM images shown in Fig. 2.11, where the annealed films are

represented as discontinued lines, but not NIs. These results, therefore, do not meet

our expectations for the first test.

We have then attempted another method to obtain mixed NPs. Because the dewet-

ting temperature of Au film is higher than that of Ag film, we first realized the Au

NPs by the thermal annealing method using a pure Au material. Then the Ag film is

deposited on the top of these Au NPs, which experiences another thermal annealing

process. Figure 2.13 shows the annealing results of the corresponding sample. When

the annealing temperature is increased from 100 ◦C to 300 ◦C, the Ag film is per-

formed as the “bridge” to connect the Au NPs. When the annealing temperature

reaching 400 ◦C and 500 ◦C, the shape of the mixed NPs appears clearly.

To confirm the existence of Ag material, we also performed the plasmonic resonant
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Figure 2.13: Thermal annealing of an Ag film deposited on Au NPs. (a-e) SEM images
of different samples obtained after annealing at different temperatures.

Figure 2.14: The absorption spectrum of thermal annealing of an Ag film deposited on
Au NPs with different annealing temperatures.

measurement. Figure 2.14 shows the absorption spectra of Ag film covered the Au

NPs with different annealing temperatures. Here, we see the existence of Ag after
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annealing at 500 ◦C, where there appears two peaks, the main peak (at about 560

nm) is at the resonance wavelength of pure Au NPs, and the smaller peak (at about

450 nm) is at the resonance wavelength of pure Ag NPs. To verify if the Ag covered

on the Au NPs, we need another measurement method, such as Energy-dispersive

X-ray spectroscopy (EDX), but this is out of time for this thesis.

Figure 2.15: FDTD simulation of mixed Au and Ag NPs. (a) Imported SEM image
in which Au and Ag NPs are separated. (b) The simulated plasmonic spectra of mixed
Au and Ag NPs, which is compared with the measurements.

In order to understand the contribution of Ag and Au materials on the plasmonic

resonant spectra of the combination, the FDTD simulations of mixed Au and Ag NPs

have been also studied. In this simulation, half of NPs in the import SEM image are

set as Au NPs (yellow color) and another half set as Ag NPs (grey color), as shown

in Fig. 2.15 (a). The red curve in Fig. 2.15 (b) illustrates the simulated plasmonic

resonance, where appears two main resonant peaks. The left peak represents the

plasmonic resonant peak of Ag NPs while the right one corresponding to Au NPs.

The experimental results of Au NPs, Ag NPs and (Ag + Au NPs) are also illustrated

in Fig. 2.15 (b). Not like the pure Au NPs, the curve of (Ag + Au NPs) has a small
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peak in the position of the peak from pure Ag NPs. This means the Ag still exist in

the annealing of 500 ◦C in (Ag + Au NPs) film. The peak height of the simulation

result is depending on the number of NPs. The simulated two peaks have the same

height because the imported SEM image is set to have the same number of NPs to Au

and to Ag. The resonant spectra of (Ag + Au NPs) shows the height of the peak at

the position of Ag is smaller than Au, which means that the resonance of Ag covered

Au NPs is much less than Au NPs itself. In another word, the Au NPs is not fully

covered with Ag, only part of the Au NPs surface is covered.

To continue this idea, we can study different sizes of Au NPs and different thickness

of covered Ag film. Moreover, we propose that the dewetting temperatures of the

metallic films should overlapped, thus another material having the similar dewetting

temperature can form better NPs.

2.5 Conclusion

In this chapter, we have theoretically and experimentally studied the formation of Au

and Ag NPs by the dewetting method in an oven. The main results can be summarized

as follows:

First, we demonstrate the Au and Ag NPs by the thermal dewetting method. By

analyzing their SEM images, the morphologies, such as shape and size distribution,

are characterized. We discussed annealing temperature and annealing duration to

form Au and Ag NPs. At different annealing temperatures, the resonant peaks of Au

or Ag NPs changed slightly, which corresponds to different average size distribution.

And for different annealing durations, the intensity of resonant peaks is different, and

it responds to different numbers of NPs.

Second, FDTD software is used to simulate the optical property of Au and Ag
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NPs by importing SEM images of the random shape of NPs. When the average NPs

size changes from 20 nm to 100 nm, the plasmonic resonant peaks of Au NPs are

redshifted by 48 nm. For Ag NPs, when the average sizes are changed, the plasmonic

resonant peaks also have the shift. Environmental impacts were also discussed. When

the NPs are changed from air to water and then to oil, the resonant peaks shift red.

Third, the thermal annealing of a mixed Au and Ag film was studied. In the

beginning, we tried to use the same annealing temperature, which can both form Au

and Ag NPs separately, to form the combined Au and Ag NPs. We failed because they

couldn’t form NPs. After that, we tried to deposit the Ag on Au NPs. The resonance

curve showed two peaks at the positions of the pure Au and Ag NPs. FDTD simulation

results, which set half of the NPs as Au and the other half as Ag, are consistent with

the peak position of the experiment, which means that Ag is covered the Au NPs.

Following this work, there are a lot of things to do, such as fabricating other

metallic NPs, a new combined NPs, and studying their optical properties. These

metallic NPs can be used in many applications, such as filters [130] and sensors [131].

In addition to forming large-area metallic NPs, small-area metallic NPs with required

nanostructures have attracted more attention for widespread applications, which we

will discuss in the next chapter.
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Chapter 3

Direct laser writing of Au and Ag

nanoparticles and nanostructures

3.1 Introduction

In the previous chapter, gold (Au) and silver (Ag) nanoparticles (NPs) are fabricated

on the entire surface by an oven annealing method. Can we obtain Au and Ag NPs

in a small area in order to realize plasmonics-based devices as desired? We proposed

and demonstrated in this chapter a controllable method by using a laser annealing to

fabricate on demand metallic NPs in desired areas.

The optically induced thermal effect is widely studied in laser-material interaction,

especially in laser ablation [132, 133], laser cutting [134], etc. Recently, our lab [92]

has demonstrated that it was possible to induce a thermal effect in a very small area

by using a focused laser beam. This allowed to dewetting locally an Au film to realize

Au NPs structure on demand [135]. In this work, we demonstrated that this optically

induced thermal effect can be applied to other metallic materials, such as Ag film.

In particular, by applying high laser power, we demonstrated for the first time the
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fabrication of nanoholes array (NHA) in thick Au film. This is a direct technique

without needing a polymeric template and the lift-off process.

In this chapter, we first study the optically induced thermal effect using the Com-

sol simulation method. We performed the simulation using a uniform metallic surface

and compared the simulation results with those realized by the partial differential

equation (PDE) method, which is already done in previous work [136]. Then, we

demonstrated the optically induced thermal effect on a rough surface which corre-

sponds to a real film to study the formation of NPs. Optically induced thermal effect

on a thicker metal surface is also studied to check if we can use the direct laser writ-

ing (DLW) method to obtain plasmonic NHA structures. Then, we experimentally

demonstrated the fabrication of Au and Ag NPs by the DLW method and compared

them with the results obtained by the oven annealing method. Finally, we experi-

mentally demonstrated the direct fabrication of Au NHA, with square and hexagon

configurations, and theoretically studied their optical properties based on the SEM

images and compared them with the ideal ones.

3.2 Optically induced thermal effect: theory and sim-

ulation

Following the theory applied for calculating thermal effect in polymeric material [137],

we applied this theory of heat equation to calculate the heat distribution when a laser

beam is focused on a metallic film. The heat equation is shown as:

ρCP
∂T

∂t
= k52 T + S, (3.1)

where ρ is the material density, CP is the metallic heat capacity, k is the thermal
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conductivity, and S can be calculated as a variation of light density in the material:

S = −(
∂I(r, z)

∂z
)r = µabs(1− Rc)I(r, z)exp(−µabsz), (3.2)

where I(r, z) is the laser intensity, µabs is the absorption coefficient of the material,

and Rc is the reflection coefficient. We note that the light beam propagates along

z -direction.

We now need to apply this equation to find out the induced temperature in a

real metallic sample. There are two kinds of simulation in dealing with the optically

induced thermal effect. The description of the laws of physics for space- and time-

dependent problems are usually expressed in terms of PDEs [138]. For the majority

of geometries and problems, these PDEs cannot be solved with analytical methods.

Instead, an approximation of the equations can be constructed, typically based upon

different types of discretizations. These discretization methods approximate the PDEs

with numerical model equations, which can be solved using numerical methods. The

solution to the numerical model equations is, in turn, an approximation of the real

solution to the PDEs. The finite element method (FEM) could be used to compute

such approximations [139].

Figure 3.1: Illustration of an ideal model, perfect uniform film (a) and a real model,
rough film (b) of laser focusing on a metallic thin film.
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The optically induced thermal effect of the PDE method is widely studied by

using the toolbox of Matlab software [136]. An ideal model has been proposed and

applied to calculate induced thermal effect in different materials, such as SU8 [95].

In the PDE simulation, the optically induced thermal effect in the laser focus center

is strong enough to reach the post bake temperature of SU8. Thus, by using laser-

induced thermal effect instead of post bake, the smaller size of the nanostructure can

be obtained. This method is also suitable for simulation of optically induced thermal

effects in metallic materials. But it is only applied for the ideal model but not for the

rough surface as a real sample. To simulate the optically induced thermal effect of a

real rough surface, the FEM method of the Comsol simulation should be applied.

The models of an ideal and a rough surface are illustrated in Fig. 3.1, which are

set into the Comsol software.

Figure 3.2: (a) Evolution of the induced temperature of a thin and uniform Au film with
different laser powers in the focus center. (b) The induced temperature distribution
around the focus point. The enlarged image illustrates the light spot.

Considering first the case of an Au uniform film having a thickness of 50 nm. The

simulation parameters are used from the reference [94]: density of Au is 19.30 g/cm3,
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molar heat capacity is 25.418 J/(mol · K), thermal conductivity is 318 W/(m · K),

absorption coefficient is 5.94 × 107 m−1, light densities in the material are from 0.6

to 1.8 × 108 W/m−2 which corresponding to a laser power from 80 to 240 mW, and

the diameter of laser-focused area 300 nm.

In the laser focus center, the temperature with different laser powers over the laser

exposes time is shown in Fig. 3.2 (a). The induced temperature is increasing obviously

in the first 20 µs, and it becomes stable when the exposure time duration is longer

than 30 µs. The stable temperatures depend on different incident laser powers. Figure

3.2 (b) illustrates the induced temperature distribution around the focus point, where

the light spot is illustrated in the enlarged image.

Figure 3.3: (a) The induced temperature profile along the x-direction obtained with
different laser intensities. (b) The maximum induced temperature in the focus center
changes with the laser intensity.

When the temperature becomes stable, we obtained a hot spot with the form quite

similar to the light focusing spot. The temperature distribution along the x -direction

is illustrated in Fig. 3.3 (a) as a function of laser intensities. The blue dotted line

(threshold 1) indicates the temperature threshold for the dewetting effect of Au film.
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This 350 ◦C value has been determined in previous work [92]. The red dotted line

(threshold 2) illustrates the threshold of the evaporating temperature of 50 nm thick

Au film, which was determined experimentally by the oven annealing method, to be

around 700 ◦C. This temperature is much lower than the Au evaporation temperature

of 1064 ◦C from the textbook [140]. This is because a thin rough Au film (50 nm) is

easier to be evaporated than a thick Au crystal.

Figure 3.3 (b) illustrates the maximum induced temperature at the laser focus

which linearly changes as a function of incident laser intensity. This result can be

understood by looking at the heat equation shown in (3.1) and (3.2). In equation

(3.2), the variable S is linearly changed with the laser intensity at a determined z.

While the left side of the heat equation (3.1) becomes 0, the temperature value in the

focus center linearly changed with S parameter, i.e. the laser intensity.

Figure 3.4: (a) Simulation result of the optically induced thermal effect of Ag film with
a thickness of 8 nm by using Comsol software. (b) The maximum induced temperature
in the laser focus center as a function of the laser intensity.

We realized the same simulation for Ag film. The optically induced thermal effect

of Ag film is shown in Fig. 3.4. The parameters of Ag are chosen as [141]: den-
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sity 10.49 g/cm3, molar heat capacity 25.35 J/(mol · K), thermal conductivity 235

W/(m · K), and absorption coefficient 8.35 ×107 m−1. The heat distribution in the

x -direction is shown in Fig. 3.4 (a), in which the red dotted line (threshold 2) shows

the threshold of evaporate temperature, and the blue dotted line (threshold 1) shows

the NPs formation temperature. The suitable writing intensity by the DLW method

is from 1 × 107 W/cm2 to 6.5 × 107 W/cm2, which seems lower than those required

for Au film. In the laser focus center, the induced temperature also showed a linear

dependence with the laser power or laser intensity as illustrated in Fig. 3.4 (b).

Figure 3.5: Simulation of an array of hot spots induced in a 50-nm thickness of Au film.
The optically induced heat distribution of one spot is illustrated in a uniform surface
(a) and in a rough surface (b). The contour lines of the temperature distribution of
light spots in the 2D array are illustrated in a uniform surface (c) and in a rough
surface (d), where the black cycle is the light spot. The period of this simulated 2D
structure is 1 µm.
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In previous simulations, we assumed that the metallic films are perfectly uniform.

But in practice, the films are rather rough, in particular with the very thin films due

to the fabrication technique (sputtering). We, therefore, performed new simulations

with rough film and compare the results with ideal cases.

We introduced a rough metallic surface by adding a random superimposed flexible

function into a uniform metallic film. The simulation results obtained with uniform

and rough Au films are shown in Fig. 3.5. In the uniform film, the heat transferred

smoothly from the center area to the edge, but in the rough surface, the heat transfer

is not homogeneously and uniformly. The iso-temperature curve shows that the dis-

tribution of the ideal model is a perfect cycle, but for the rough surface, the contour

curve is affected by the surface quality, which leads to a deformed circle. We expected

that the DLW on real metallic thin film will create plasmonic NHAs, but the shapes

and sizes of the holes will vary from this focusing spot to others. A non uniform NHA

is therefore expected by this fabrication method.

Since the film roughness depends on the film thickness, and the induced temper-

ature depends also on this parameter, we simulated the optically induced thermal

effect with real samples having 12 nm and 50 nm thickness. The first sample (12 nm)

is used for the fabrication of NPs by the dewetting method and the other (50 nm) is

used for fabrication of NHA.

Figure 3.6 shows the heat distribution of these two kinds of thickness. Because the

Au film obtained by the deposition method has a lot of “scratches” on the surface, the

12-nm Au film surface has many small “holes”, as shown in Fig. 3.6 (a). The thermal

effect at the laser focusing area is therefore not continuous but stopped by these

“holes”, as shown in Fig. 3.6 (b). When the induced temperature is high enough, it is

easy to cut off the connection in the Au film to form Au NPs. For the 50-nm Au film,

the Au film is more continuous, but the surface is still rough, as shown in Fig. 3.6
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Figure 3.6: The induced temperature distribution on Au films with 12-nm (a,b) and
50-nm (c,d) thickness. (a) and (c) illustrate the laser focusing, (b) and (d) illustrate
the induced thermal effect, respectively.

(c). The thermal effect at the laser focusing area is continuous, but still not uniform,

as shown in Fig. 3.6 (d). When the laser-induced temperature is high enough, the

Au material evaporates and forming Au nano-holes. These simulations using Comsol

Multiphysics allowed us to understand correctly what happens when a laser beam is

focused on the surface of a metallic sample. This suggests a way to realize metallic

NHAs by an optical method without needing the use of a polymeric template and a

lift-off method. The required laser power was predicted in the range of few milliwatts

to dozens milliwatts, which is reasonable with a standard optical system.
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3.3 Realization of plasmonic nanostructures by DLW

method

3.3.1 Continuous-wave based DLW method

The direct laser writing (DLW) method based on focusing a light beam through a

high numerical aperture (NA) objective lens (OL) is a simple and fast approach for

plasmonic fabrication. The resolution of a common DLW technique is limited at

hundreds of nanometers due to the diffraction limit effect at the focusing spot of the

OL [142]. When an incident laser focuses on materials, the absorption effect [143]

has two processes called photolytic and photothermal effect [144]. When the laser-

induced excitation rate is lower than the thermalization rate, the photothermal effect is

significant. So a continuous-wave (CW) laser is suitable for the photothermal process

instead of a pulsed laser.

Recently, we have demonstrated a DLW system based on low one-photon absorp-

tion (LOPA) in photoresist materials, in which the optically induced thermal effect

in the focus area inside the polymer film occurs to form the desired nanostructures.

In this work, we demonstrated the use of this DLW to realize on-demand plasmonic

nanostructure (PNS).

The DLW set up is described in Fig. 3.7, in which items are connected and each of

them takes responsibility for each experimental condition and parameter. The light

source used for all fabrications is a CW laser emitting at 532 nm. For Au and Ag,

this light source is not really LOPA, but these metallic materials, with a very thin

film, simply absorb the light beam and convert to heat. We, therefore, consider this

fabrication as a simple OPA-based DLW technique. A combination of a half-wave

plate (λ/2) and a polarizer (P) is employed to control the laser power from a few
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Figure 3.7: Illustration of the DLW setup used to realize plasmonic nanostructures.
λ/2: half-wave plate; P: polarizer; S, shutter; M1, M2: mirrors; λ/4: quarter-wave
plate; BS: beam splitter; L1, L2: lens; PH: pinhole; APD: avalanche photodiode de-
tector; OL: objective lens; PZT: piezoelectric translator.

microwatts to 5 W (maximum of the laser power). The electronic shutter (S), which

is synchronized with the movement of a piezoelectric translator (PZT), is used to

control the exposure time. Then, a quarter-plate (λ/4) is placed in front of the OL

in order to transfer the laser beam from linear polarization to circular polarization,

preventing an anisotropy effect in the focus area and ensuring a perfect circular shape

of the focusing spot. A high NA (NA=0.9, air immersion) is introduced to focus the

laser beam into the sample, which is mounted on the PZT. The focusing spot position

is determined by detecting the fluorescence emission of the metallic thin film. We

note that at the very thin film, a metallic layer, such as Au and Ag, can absorb 532

nm light and partially convert energy to fluorescence while major part converts to

thermal effect. Even the fluorescence signal is weak, but our confocal system still can
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detect this signal thanks to the use of a high sensitive avalanche photodiode detector

(APD).

The mechanism of the fabrication technique is to focus a 532 nm CW laser beam

on a metallic film. When the laser beam is focused on a metallic film, the high-energy

radiation is produced, generating a local temperature, called optically induced thermal

effect, exceeding few hundreds of degrees in a short time. This high temperature

allows the metallic film to be dewetted forming NPs or to be melted and evaporated

forming nanoholes structures. The metallic NPs formed by optically induced local

thermal effect is equivalent to the thermal annealing method, presented in chapter

2. Especially, the DLW technique allows metallic NPs to be formed only in the

illuminated area, thus by moving the focusing position, plasmonic sub-micro patterns

can be created on-demand. Furthermore, by using higher laser power, this DLW

allows creating nanoholes in a thick metallic film. This enables a direct fabrication

of plasmonic NHAs, for the first time by DLW method, without using a polymeric

template and a lift-off method.

Technically, the combination of Matlab and Labview is used to obtain the writing

trace of desired structures. First, the trace of the desired structure is calculated by

Matlab, which records the position of each point or the beginning of the point and

corresponding distance of writing direction. Then, this data is loaded by the Labview

program, which controls the PZT’s movement through the point-to-point method or

scanning velocity method. With a suitable laser power, by controlling the writing

trace linked with the shutter (S), the desired plasmonic patterns consisted of metallic

NPs or NHAs can be obtained.
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3.3.2 Realization of Au and Ag NPs

The Au film sample is prepared by using an Emitech K650 magnetron sputter on

a glass substrate as shown in chapter 2. The thickness of the Au layer is about 12

nm, as measured by the Dektak profilometer. We have first scanned the sample line

by line with a distance of 500 nm to form an area of 5 × 5 (µm2) of Au NPs. The

fabricated samples can be checked by eye, with a change of color, and also with an

optical microscope and an electron scanning microscope (SEM).

The result obtained by the transmission microscope is shown in Fig. 3.8 (a). In

this sample, different areas were obtained by changing the laser exposure dose with

different laser powers and different scanning speeds. The vertical-direction indicates

the patterns obtained with different laser powers, changing from strong to weak (38

mW - 2 mW) and the horizontal-direction indicates the patterns obtained with various

scanning speeds ranging from 1 µm/s to 40 µm/s, respectively. From these optical

microscopes images, we can see that the sample color gradually changes with the laser

exposure dose, from dark red to yellow, then to green. Figure 3.8 (b) shows an SEM

image of the original Au film. We can see that the Au film is not uniform but consists

of discontinuous random lines. In contrast, the SEM image shown in Fig. 3.8 (c)

corresponding to the color yellow, confirms that the NPs are formed. The shape of

the NPs like the islands, which can also be called the Au nano-islands (NIs). Moreover,

the absorption spectra of fabricated small samples are measured and compared with

the results obtained before fabrication showing a strong plasmonic resonant peak at

around 550 nm. This result is consistent with those obtained by annealing in the

oven, shown in chapter 2.

We have then demonstrated the advantages of the DLW method to fabricate many

other Au NPs based plasmonic structures, with controllable colors and also sizes and
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Figure 3.8: (a) Optical microscope images of Au NPs written by different laser powers
and different scanning speeds. (b) SEM image of Au film before DLW. (c) SEM image
of fabricated Au NIs in the yellow area.

shapes. These fabricated structures are very interesting for many applications, which

were partially demonstrated and will be presented in chapter 4.

Similar to that, we also performed the fabrication of plasmonic structures using

Ag thin film. The Ag layer is prepared by the evaporation method as explained in

chapter 2. The metallic layer of the evaporation method is more uniform and has a

higher density than that obtained by the deposition method. The thickness of Ag film

is about 8 nm as the best thickness for fabrication of Ag NPs. The fabrication process

of Ag NPs is the same as the formation of Au NPs, whose size can be controlled by

adjusting the laser exposure dose and the scanning speed. We should note that the
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color of Ag material is white when the Ag film is thicker, i.e. this material does not

absorb at 532 nm. However, at a thickness of 8 nm, the Ag film (also Au film) shows

a grey color, and this film absorbs strongly 532 nm laser beam.

We experimentally found that the temperature of transferring Ag film to Ag NPs

is weaker than that of Au film, as explained in the simulation part. Therefore, the

laser power used to form Ag NPs is lower than that required to form Au NPs, by

using the same optical system.

The formation of Ag NPs can be clearly seen in Fig. 3.9 in term of color and

corresponding SEM image. In this case, we also changed the laser exposure dose

(power, exposure time, scanning speed, or distance between scanning lines) to change

Ag NPs sizes. Therefore, the color of Ag NPs samples in the optical microscope

changes from the natural color of Ag substrate to yellow, then gradually changes from

blue to dark blue, thanks to different sizes and distribution of Ag NPs. Look closely

at Fig. 3.9 (a), a laser power of 10 mW starts to transform a continuous Ag film into

separated tiny Ag NPs. As the laser power increases to a higher value of 30 mW,

Ag NPs become clearer and their sizes reach to about 50 nm (an average value with

a variation of about ± 25 nm), which was calculated from the SEM image shown in

Fig. 3.9 (b). This result shows the dependence of plasmonic effect (color) on the laser

power, indicating that the size and distribution of Ag NPs play a vital role in the

plasmonic effect of written samples.

Technically, there are three parameters to adjust the exposure doses in the focus

area: writing speed or exposure time, period or distance between two scanning lines,

and the laser power or laser intensity. For the scanning speed, the high scanning

speed means the less time laser exposed in the same area, hence, the saturation is

faded as speed becomes faster. This phenomenon occurs due to the fact that longer

exposure time leads to a more uniform heat distribution around the focusing spot.
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Figure 3.9: (a) Ag NPs fabricated by the DLW method with different writing speeds
and laser powers. (b) Typical SEM image of Ag NPs in the blue area. (c) Ag NPs
fabricated by the DLW method with different separations between scanning lines and
different laser powers.

Aside from that, Ag NPs created with different separations between two scanning

lines show a little change in the resulting color, as shown in figure 3.9 (c). That is

because the OL used allows focusing the laser beam to a small spot of about 250 nm,

which is already very small comparing to the distance between two scanning lines.

The thermal effect makes the induced hot spot with a size larger than 250 nm. By

changing the separation between lines or between focusing spots, the dose is then
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Figure 3.10: (a) Optical microscope image of Ag NPs samples fabricated by various
exposure powers. Laser power from top left to bottom right: 5, 8, 10, 15, 20, 30, 50,
60 and 80 mW, respectively. (b-f) SEM images of Ag NPs obtained by different laser
powers: 10, 30, 50, 60 and 80 mW, respectively.

changed, resulting in different Ag NPs sizes. However, we found that exposure time

and period cannot be perceived as vital factors in creating Ag NPs samples that have

distinguishable plasmonic effects. We may conclude that the laser power is the key

parameter to change the size of Ag NPs, thus alter the plasmonic effect.

Then, we fixed the scanning speed and the distance between two scanning lines

and varied the laser power. Figure 3.10 (a) illustrates the optical microscope image

of color-changing by applying different laser powers: 2.5, 5, 10, 15, 20, 30, 50, 60,

and 80 mW, respectively. For this result, the scanning speed is chosen as 5 µm/s and

the distance between scanning lines is 500 nm. The corresponding SEM images are

shown in Fig. 3.10 (b-f). This suggests that the laser powers ranging from 10 mW
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to 30 mW are optimum for the creation of Ag NPs by the DLW method. When the

power is increased to 50 mW, the micro explosion phenomenon tends to happen, i.e.

big Ag particles are exploded into very tiny particles. When the laser power reaches

80 mW, the Ag NPs are totally exploded, it’s too small to be seen, or even totally

evaporated, and only the substrate remains.

Figure 3.11: Comparison of Ag NPs fabricated by oven annealing and DLW methods.
Ag NPs are obtained by (a-b) oven annealing at 150 ◦C and with 30 s duration, and
(c-d) DLW method with a laser power of 30 mW, a scanning speed of 5 µm/s and a
scanning period of 0.5 µm.

Since Ag NPs can be fabricated by the thermal annealing method and DLW

method, we evaluate the equivalence of these two techniques by analyzing corre-

sponding SEM images and size distribution of Ag NPs. Figure 3.11 illustrates the

size distribution of Ag NPs created by thermal annealing method at 150 ◦C and with

30 s duration, and the size distribution of Ag NPs fabricated by DLW method with

a laser power of 30 mW, a scanning speed of 5 µm/s and a scanning period of 0.5
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µm. The two results are quite similar so that we can conclude that the optically

induced temperature can reach very high and can be optically controlled. The great

advantage is that, by using the DLW method, we can obtain desired patterns which

is very interesting for many applications as it will be shown in the next chapter.

3.3.3 Realization of plasmonic nanostructure with metallic NPs

As mentioned before, the size of the focusing point is hundreds of nanometers because

of the diffraction limit, which is much bigger than the size of metallic NPs. Thus, the

small-period structure of PNS with single Au or Ag NPs inside is difficult to obtain.

Besides, we also saw that the metallic NPs were totally evaporated with high laser

power, e.g. 80 mW for Ag NPs. In this section, we propose to control the laser power

and study the influence of separation between two scanning lines for the fabrication

of 1D PNS containing multiple Au NPs.

To obtain 1D structure formed by Au NPs, we first investigated the Au NPs formed

under a high laser power of 50 mW. With this laser power, the induced temperature is

very high, resulting in a large thermal spot that form the Au NPs in a very large area,

larger than the diffraction limited spot. Figure 3.12 (a) illustrate the 1D nanostructure

lines of Au NPs separated by the Au film whose period is 2 µm. Because the heat

transfer curve has a greater width than the laser scanning area, the width of the Au

NPs line is very large (> 1µm). While decreasing the period to 1.2 µm, all the Au

film between the writing lines is transferred to form NPs, the 1D period structure

is disappeared and all the writing area covered with Au NPs, as shown in Fig. 3.12

(b). When the laser writing period getting smaller, the 1D structure appears again.

This 1D structure is made by Au NPs and blank space, where the next line writing

is directly on the already formed NPs, making these NPs evaporated. The results

obtained with a scanning period of 0.6 µm is shown in Fig. 3.12 (c).
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Figure 3.12: SEM images of 1D PNS formed by Au NPs of different periods: (a) 2
µm, (b) 1.2 µm, (c) 0.6 µm. The laser power is 50 mW which can both form the Au
NPs from 12-nm Au film and explode them with the second writing.

That can be also explained by the fact that when Au NPs already formed, the

optically induced thermal effect is stronger, resulting in a higher induced temperature.

Therefore the second writing, even with the same laser power, on the already formed

NPs will easily evaporate these NPs. Then, we proposed a simple and rapid method

to obtain this kind of 1D PNS of Au NPs by using a two-step fabrication method.

First, a large area of Au NPs surface is obtained by the oven annealing method. Then,

DLW on this sample of Au NPs can form the 1D structure with a smaller period.

The two-step results are shown in Fig. 3.13. The Au NPs are removed during the

DLW process resulting in an air line. A stable periodic 1D structure is then obtained,

where the lines of the Au NPs consist of 1 or 2 Au NPs as shown in the enlarged image

in Fig. 3.13 (b). When the period reached 300 nm, which is close to the diffraction

limit of the OL, only few NPs remain, the 1D structure still can be seen but not clear,
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Figure 3.13: SEM images of 1D structures of Au NPs fabricated by two-step writing.
The first step is the fabrication of the Au NPs by thermal annealing method in the
oven. The second step is to perform DLW on the Au NPs sample with a laser power
of 50 mW. (a-c) illustrate the period of 500 nm, 400 nm, and 300 nm, respectively.

as shown in Fig. 3.13 (c).

With this two-step method, we confirmed that the 1D structure of Au NPs with

400 nm period is reliable, which is very useful for potential applications, such as

distributed feedback (DFB) laser, or plasmonic color printer.

3.3.4 Demonstration of direct fabrication of nanoholes arrays

We proposed in this section to show the results of different 2D plasmonic structures,

fabricated by a direct method. The thickness of the Au layer is set to 50 nm and

the laser power is chosen to be 160 mW. For such thick Au film, a higher laser power

is required in order to induce a strong thermal effect, which can evaporate the thick

Au film. Figure 3.14 shows the SEM images of fabricated Au NHAs of square and
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Figure 3.14: SEM images of 100 × 100 µm square configuration (a) and 100 × 86
µm hexagon configuration (b) of Au NHA. Inserts are the enlarged images.

hexagon configurations. The periods of square and hexagonal structures are 1 µm

and 1.1 µm, respectively. The focusing laser beam allowed totally evaporation of Au

material, resulting in a submicro hole. The shape of the holes is random, which is due

to the non-uniformity of the surface of the Au film as explained before. Together with

the optically induced thermal effect, this evaporates non-uniformly the Au material,

which is consistent with the simulation results shown in Fig. 3.5 (d).

Note that, we also tried to fabricate the Ag NHA. Unfortunately, not like the

simulation results, which shows that with a laser power of 60 mW, one can obtain

the Ag NHA. We don’t obtain any structure with the Ag film even the laser power is

increased up to 400 mW, which is much higher than that required for Au film. This

can be explained by the fact that when the thickness of Ag film becomes important
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(more than 30 nm in the experiment), the Ag film behaves like a mirror. All the light

is reflected at the interface, and it has very low, even no absorption. This is of course

not like when the thickness of Ag is very thin (8 nm), for which Ag still absorbed

strongly light at 532 nm. Different solutions are proposed for patterning Ag NHAs,

for example, using a laser wavelength in the UV domain, or covering Ag film with

an absorbing material at 532 nm. We have tried the last solution by spin-coating a

SU8 photoresist doped RhB on the top of the Ag film. We expected that RhB will

absorb strongly 532 nm laser beam and induce a hot spot on the top of Ag film, which

can, therefore, evaporate Ag material. Unfortunately, after many tests, Ag still exists

and SU8/RhB becomes just solid on the top of Ag film. We think that it should be

possible to obtain Ag NHAs by using a UV laser beam, but it is out of the scope of

this thesis work.

We now tried to study theoretically if the plasmonic NHA fabricated by our method

possesses a good plasmonic property as those obtained by other standard methods.

We first simulated the plasmonic properties of ideal NHAs, i.e. with perfect circular

holes, then simulated and compared with the results of real structures fabricated by

our method. The FDTD simulations of an ideal model of Au NHA with a period of 1

µm are illustrated in Fig. 3.15. We first fixed the diameter of the Au NHA to 400 nm,

and changed the thickness of the Au film from 10 nm to 90 nm (Fig. 3.15 (a)). Figure

3.15 (c) shows that the corresponding transmission spectra. Usually, the suitable

thickness is fixed as 50 nm for the best plasmonic property. By this simulation, with

50 nm thickness, we confirmed that Au NHA possesses an extraordinary transmission

peak at about 1550 nm. That is very interesting for applications such as a bandpass

filter.

We then fixed the thickness of Au at 50 nm and changed the diameter of the Au

holes (see Fig.3.15 (b)). Figure 3.15 (d) shows the dependence of plasmonic resonance
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Figure 3.15: The FDTD simulations of Au NHA. Illustrations of squared pattern
with fixed hole size (a) and thickness of the Au film (b), respectively. Transmission
spectra of different thicknesses (c) and different diameters of NHA (d). (e) shows the
simulation area.

of NHA on the diameter of the Au holes. The best result is obtained with 400 nm

diameter and 50 nm thickness, for which it has a narrow peak and high transmission.

We also did a similar simulation for hexagon patterns, as shown in Fig. 3.16. With

a period of 1 µm, the best transmission peak appears around the wavelength of 1450

nm. The transmission peak blue shift with the thicker film (Fig. 3.16 (c)), which

has the same trend as the squared one. And for the same thickness of 50 nm, the

transmission peak becomes redshift and wider when the diameter of the nanoholes

increased (Fig. 3.16 (d)).

We then performed the simulations using real NHAs (square and hexagonal) and
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Figure 3.16: FDTD simulations of Au NHA of hexagon pattern. Simulation models
with a fixed hole size (a) and thickness (b), respectively. (c-d) Transmission spec-
tra of Au NHAs having different thicknesses and different diameters. (e) shows the
simulation area.

compared them with the results of ideal ones. Figure 3.17 (a) illustrates the simulation

results of the transmission spectrum of the real image of the square pattern, and

corresponding results of the ideal model. For the real structure, the size and shape of

the hole vary from this hole to others. We adopted the one having the diameter of an

average hole around 500 nm to do simulations and compared the results with those

obtained ideal one having the same diameter of 500 nm. These matched results show

that even the shape of real NHA is not circular, they have the same transmission

results. This means that the transmission spectra depends on the period and the

average size of NHA, and not on the shape of every nanohole. This is similar to

the result of plasmonic resonance of metallic NPs shown in chapter 2, for which the
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Figure 3.17: Comparison of transmission spectra of an ideal model and a real fabricated
structure. (a) Results of a square NHA having a period of 1 µm. (b) Results of a
hexagonal NHA having a period of 1.1 µm.

resonance spectra also depend on the average size of metallic NPs instead of the shape

of each NP. Similar simulations have been also done for hexagonal structures. For this
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real NHA, the size of the holes is varied between 500 and 600 nm. To match the results

of the simulations, the diameter of 580 nm of the ideal model is assumed of which the

transmission spectra is matched to the result from the real one, as shown in Fig. 3.17

(b).

Figure 3.18: Simulation of electric field distribution of Au NHA. (a),(c): Electric
field distributions in the ideal model. (b),(d): Electric field distributions in the real
structure. (e) Comparison of the electric field intensity corresponding to the dot lines
in ideal and real structures.

To further compare the ideal model with the experimental results, we did the

simulation of electric field distribution around the nanohole of NHAs. Figure 3.18 (a)

shows the electric field distribution in the x-y plane of the Au nanohole, and Fig. 3.18

(c) shows the electric field distribution in the y-z plane of an ideal NHA. In the real

situation, the nanohole has a random shape. To do simulations, an SEM image of Au

NHA obtained by the DLW method is imported to the simulation program. Figure

63



3.4. CONCLUSION OF CHAPTER 3

3.18 (b) and (d) show the electric fields in x-y and y-z planes, respectively of this real

structure. We can clearly see that the electric field distribution is not uniform in this

real structure due to the variation of the Au nanoholes, from this one to the other.

The electric field intensities in the position of the nanoholes of ideal structure and real

structure are extracted and compared as shown in Fig. 3.18 (e). The electric field

distribution inside the real NHA is not uniform for every hole as the ideal one, but the

average intensity is equivalent to that of the ideal one. However, the strong field in

certain holes of the real NHA suggests that this structure can enhance the light-matter

interaction, better than the ideal NHA. This is quite similar to Anderson localization

effect in photonic structure and it should be interesting for some applications.

3.4 Conclusion of chapter 3

In this chapter, first, we have theoretically studied the optically induced thermal

effect at a small area in a real metallic film. Not like the theoretical calculation of the

PDE method by Matlab software, which only can solve the heat equation in an ideal

model, we introduced the finite element method by using Comsol software to deal

with the rough surface as in the experiment. We studied the induced temperature in

the laser focus center as a function of the laser intensity and of the exposure time. It

shows that the temperature will reach a stable value after 30 µs, and the maximum

induced temperature linearly changes as a function of the laser intensity. We applied

the simulations for both Au and Ag materials. We found that the laser intensity

required to obtain the Ag NPs is much lower than that required for Au NPs. The

optically induced thermal effect of different thickness, 12 nm and 50 nm, respectively,

is studied. For the 12 nm thick film, the high induced temperature is easy to cut off

the connection in the metallic film to form the metallic NPs. But for the 50 nm thick

film, it can form nano-holes when the localized induced temperature is high enough
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to evaporate the metal. We studied the temperature distribution for a thick metallic

film of 50 nm for two cases: perfect uniform and rough surface. With the same laser

power, the laser focuses to create a perfect circular temperature spot for a uniform

metallic film while in the case of rough surface, the temperature spot is irregular.

Second, we introduced the DLW method to fabricate the Au and Ag NPs and

Au NHAs. We explained first the working principle of the system, and then how to

combine the Matlab software works with the Labview program. By using this DLW

system, we obtained the Au and Ag NPs with different particle sizes by controlling the

laser power and the exposure time. The results of color and size changes are consistent

with the FDTD simulations in the previous chapter. After that, the fabrication of

PNS with Au or Ag NPs is demonstrated. A two-step writing method is suggested to

improve the minimum period of the 1D structure, which shows a stable PNS with a

minimum period of 400 nm.

Finally, we studied theoretically the optical properties and experimentally the fab-

rication of the Au NHAs. Two kinds of Au NHA structures, square and hexagon,

are obtained on the 50-nm thickness Au layer. In the experiment, the periods of

square and hexagonal structures are 1 µm and 1.1 µm, respectively. The experimen-

tal nanoholes show irregular shapes, which are consistent with the simulations due to

the rough surface of the Au film. Then, the transmission spectrum of Au NHA of these

two structures is studied. The high transmission peak appears around 1550 nm for

the square structure and at 1450 nm for the hexagonal structure. Since the nanoholes

are irregular, the electric field distribution and transmission of NHA are studied and

compared to the ideal models. We found that even the electric field distributions of

real structure and ideal model are very different at the nanoholes position but the

transmission spectra are almost the same. This proved that the plasmonic resonances

of Au NHA depend on the nanohole diameter, period, and structure, but not on the
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nanohole’s shape. However, the electric field distributions are quite inhomogeneous in

real NHA, like Anderson localization. This suggests that these fabricated structures

can strongly enhance light-matter interaction when the fluorescent layer is covered

this NHA, for example.
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Chapter 4

Applications of fabricated plasmonic

nanostructures

4.1 Introduction

The plasmonic nanostructure (PNS) allows having many applications in different do-

mains, from physics, to chemistry and biology. In the previous chapters, gold (Au)

and silver (Ag) nanoparticles (NPs) have shown the color changes in the transmis-

sion or reflection microscope which are related to the different NPs sizes and their

distribution, as well as the surrounding environment. Some applications, such as data

storage and color printing were already suggested [145,146].

In this chapter, we demonstrate several applications of fabricated PNS made of

metallic NPs. First, we demonstrate the data storage application by showing the

binary record, QR code and bar code, and direct text writing. Then, we demonstrate

the application of color printing by using Au and Ag NPs with controllable particle

sizes. We propose to improve the quality of the data storage method by using the

fluorescence enhancement method, which makes plasmonic nanostructure easy to be
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recognized. At last, we propose a random laser based on Au NPs, and show the

preliminary investigation.

4.2 Data storage

Optical data storage is the use of light to record and to read the information to and

from a memory device [147]. Storage can be achieved by using lasers to pattern a

surface, such as on a compact disc, or altering the physical properties of a small vol-

ume inside a light-sensitive material. Here, we introduce some data storage method:

binary recording, bar code, and QR code recording, and direct text writing.

Binary recording

In order to store data by the plasmonic method, the minimum structures should

be studied first. Due to the induced thermal effect, the temperature can reach a high

value at the focusing spot but also nearby. The metallic NPs can be therefore formed

outside the illuminated area. Therefore, in order to generate Au or Ag NPs only in

a region within the focus point, parameters such as power and scanning speed should

be optimized.

Since our DLW method is similar to those of CDs and DVDs, we used this method

to write binary code and compare it with standard CDs and DVDs. Figure 4.1 shows

the comparison of a standard CD writing [148] and our plasmonic writing, where the

writing PNSs are formed with Au NPs.

Figure 4.2 illustrates the SEM result of the binary writing realized by the DLW

method on an Au film. The black dots and lines illustrate the writing area (Au NPs),

while the grey part shows the background (Au initial film). The distance between

lines is set to 1.4 µm, and the minimum length of one data is set to 0.7 µm. That
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Figure 4.1: Comparison of a standard CD writing [148] and the DLW of PNS with
Au NPs.

is due to the resolution of the used DLW system and also of the limited resolution of

the optical microscope used to image the fabricated structures.

Table 4.1 shows the comparison of characteristics of the standard CD, DVD and

this plasmonic writing with Au NPs. The capacity of the plasmonic writing is calcu-

lated to be 914 Mb for this example, which is better than that of a standard CD but

less good than the capacity of a standard DVD. To enlarge the capacity of plasmonic

writing, we need to make the period smaller. For this moment, the width of the writ-

ing is 0.7 µm for 12-nm Au film, where the Au NPs are formed inside. As explained

before, due to the thermal effect, the NPs can be formed even outside of the focusing

spot. Therefore, we should minimize this thermal factor to limit the formation of

metallic NPs only inside the diffracted limit area of the focusing. Besides, we can also

improve the light focusing spot size by using shorter wavelength and increasing the

numerical aperture of the objective lens. If it is possible to create only one or two NP
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Figure 4.2: SEM image of binary writing with the DLW method, the period is 1.4 µm.

for a bit, this plasmonics-based data storage will have a good position as compared

with DVD and blue-ray disks.

Bar code and QR code recording

Bar code (1D) is a fast, easy, and accurate data storage method enabling products

to be tracked efficiently and accurately. Nowadays, with the help of embedded camera

CD DVD Plasmonic writing
Capacity of the disk 700 MB 4.7 GB 914 MB
Wavelength of the writing laser 780 nm 650 nm 532 nm
Track pitch 1.6 µm 0.74 µm 1.4 µm
Min pit length 0.8µm 0.4 µm 0.7 µm
Density 0.41 Gb/in2 2.77 Gb/in2 0.53 Gb/in2

Recording materials Dye layer Dye layer Gold layer
Numerical aperture (NA) 0.45 0.65 0.9

Table 4.1: Comparison of the similarities and differences between plasmonic writing
with Au NPs, CDs and DVDs.
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devices of smart mobile phones, capturing bar code with their cameras and decoding

them with software running on the phone become more and more popular. Besides,

QR code (2D bar code) began to attract more attention in e-commerce because QR

code not only provides a simple and inexpensive method to present diverse commerce

data but also improves mobile user experience by convenient and easy operation.

Nowadays, bar code and QR code are realized in millimeter size, which is easy to

make fake products. Here we propose to realize these codes at microscale and in that

way, “normal” people cannot copy and reproduce it.

Figure 4.3: Optical images of (a) QR code made on Au film by DLW method, which
links to the website of the author’s laboratory and (b) an example of bar code.

Figure 4.3 illustrates the realization of a QR code, which links to the website of our

laboratory, and a bar code, respectively. The size of the QR code is 70 × 70 (µm2).

Observing and identifying it requires an optical microscope with a magnification of at

least 400 times and a smartphone with a decoding software. For fabrication of these
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plasmonic structures, the laser power was 30 mW and the focusing spot is scanned

with a speed of 100 µm/s. The Au NPs were formed in the focus area, and the line

width was estimated to be 0.7 µm from the SEM image. For testing, you can use

your smartphone to scan the 2D image shown in Fig. 4.3 (a) to reach the website of

our laboratory. This suggests a lot of potential applications in marking the objects

at micro-scale, such as recording, tracking, and recognizing the micro-devices, and for

high security.

Direct text writing

Figure 4.4: (a) Direct text writing of PNS with Au NPs at micro scale. The height of
the “SPIE” letter is 1.9 µm. (b) Inverse direct text writing of the “SPIE” letter. (c)
Direct text writing in one page.

Figure 4.4 (a) shows another example of fabricated plasmonic structures: the

“SPIE” word made by Au NPs. The height of this word is measured to be 1.9 µm.

Generally, any submicro scale text can be written by this DLW method and read by
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the plasmonic effect. Figure 4.4 (c) shows a full text at submicro scale. An inverse

writing way can be implied with the DLW method as well. For that, the background

was exposed with the laser to form Au NPs, and the non-exposed area is formed as the

text. Figure 4.4 (b) illustrates the microscope image of the “SPIE” word, in which Au

NPs were distributed as the background. The height of the inverse text is measured

as 4 µm, which is bigger than that obtained by the direct writing way. The reason is

that the overlap effect of Au NPs is formed at the edge of the line.

Figure 4.5: (a) Direct text writing at micro-scale on Ag NPs in one page. (b) In detail,
the height of the letter is 2.5 µm.

Similar to Au material, we also realized microstructures, texts, codes on Ag film.

Figure 4.5 illustrates the direct text writing of Ag NPs.
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4.3 Color printer

It is well known that the plasmonic resonance depends strongly on NPs size, which

itself depends on fabrication parameters, i.e. exposure dose. We have demonstrated

the tuning of plasmonic color by changing the parameters of the exposure dose.

Figure 4.6: (a) Microscope image of Au NPs patterns fabricated by different laser
powers. (b) The processed image of “Mickey Mouse” imported and transformed by
Matlab. (c) The nano color printed image fabricated by the DLW method on Au film.

Figure 4.6 (a) shows the reflected optical microscope image of the fabricated struc-

tures 10 × 10 (µm2). As the laser exposure dose increases, the color changes from the

natural color of the Au film to yellow, then to green.

We then applied this idea to realize nanostructures with different colors. An image

of “Mickey Mouse” was imported to a Matlab program, and each pixel was transferred

to an exact dose of the light exposure with three distinct colors: dark color, yellow,

and green, as shown in Fig. 4.6 (b). For fabrication, the scanning speed is fixed at 10

µm/s and the laser power was set as 35 mW, 30 mW, and 25 mW for the production

of dark, green, and yellow colors, respectively. Figure 4.6 (c) shows the corresponding

plasmonic image at the micro scale. The image is successfully reproduced.
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Figure 4.7: (a) The nano color printing of Au NPs patterns by the DLW method with
different writing parameters. (b) The nano color printing of Ag NPs patterns. Insert
image is the original image.

By playing with plasmonic NPs sizes, we even can produce more complicated 3D

structures. Figure 4.7 (a) shows a 3D photonic crystal image by three different colors.

The insert is the original image, which can be compared with the experimental result.

Similarly, we obtained the color printing of Ag NPs shown in Fig. 4.7 (b). The

insert image is the original image of the “Earth”, of which the green color is replaced

by the yellow color. We note that, the plasmonic spectra of Ag NPs does not vary

much with their NPs size. Therefore, it is difficult to produce more colors with these

Ag NPs, and the main color is located in the UV range.

4.4 Fluorescence enhancement

Metal nanostructures exhibit remarkable optical properties due to the excitation of

their surface plasmons by an incident light, which results in a significant enhance-
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ment of the electromagnetic field at the NP surface. This enhanced near field can

be used to design highly sensitive chemical and biosensors with specific plasmon res-

onances tailored by the NP geometry. Metallic NPs have been shown to enhance

the fluorescence emission and decrease the molecular excited-state lifetimes of vicinal

fluorophores [149]. The fluorescence enhancement is attributable to a combination of

processes including enhanced absorption by the molecule, modification of the radia-

tive decay rate of the molecule, and enhanced coupling efficiency of the fluorescent

emission to the far-field [150].

We proposed to demonstrate the use of metallic NPs in a monolayer as the flu-

orescent enhancement medium. In this experiment, the Ag NPs covered with the

RhB/PMMA mixture is used to measure the fluorescence enhancement.

Figure 4.8: The sample fabrication process of fluorescence enhancement.

The fabrication process of plasmonics-enhanced fluorescence sample is illustrated

in Fig. 4.8. The Ag NPs are obtained by using an oven annealing method (chapter 2)

or the DLW method (chapter 3). Then a mixture of RhB and PMMA is deposited on

top of Ag NPs sample to make the fluorophore filled around the NPs. By applying a

CW laser whose wavelength is suitable for the absorption of the fluorophore covered

with NPs, the fluorescence enhancement can be detected by the detection system.

Figure 4.9 (a) illustrates the fabrication method of mixed fluorophore solution.

First, 1 wt.% of RhB is mixed in the PMMA solution with a magneto spin for about
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Figure 4.9: (a) The fabrication of the PMMA/RhB mixture. (b) The thickness of the
spin-coated layers of the PMMA/RhB mixture.

24 hours. Then, the mixture is mixed with Chloroform solution with a ratio of 1 to

20. The fluorophore layer is spin-coated on a glass substrate to measure the thickness

by the Dektak profilometer. The desired thickness of RhB/PMMA is about 60 nm, as

shown in Fig. 4.9 (b), which is comparable to the size of Ag NPs. This thickness was

chosen because the plasmonic field enhancement is near Ag NPs with an evanescence

distance of less than 50 nm.

To obtain the fluorescence enhancement, first, we need to measure the absorption

spectra to determine the wavelength of the incident laser. Figure 4.10 illustrates the

absorption spectrum of Ag NPs, the fluorophore layer, and the fluorophore layer on

Ag NPs. There have two absorption peaks in the fluorophore layer with Ag NPs. The

left peak is mainly due to the Ag NPs, and the right one is due to the absorption

of RhB. Between the two peaks, there still exists a strong absorption, ranging from

450 nm to 600 nm. This is a mixing between absorption of RhB and that of Ag NPs.
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Figure 4.10: Absorption spectra of the fluorophore layer (RhB), Ag NPs, and fluo-
rophore layer spin-coating on Ag NPs.

Therefore, we have used the DLW wavelength (532 nm) as the excitation light. The

fluorescence signal is measured by a photon counter with putting a long pass filter

(cut off wavelength is 580 nm) to stop the excitation light source.

Figure 4.11 illustrates the comparison of the fluorescence signal obtained before

and after the deposition of RhB/PMMA mixture on the Ag NPs samples. In the

experiment, Ag NPs samples are fabricated with different powers as 5, 10, 15, 20,

30, 40, 50, 80, and 100 mW, respectively. The fluorescence images have significant

changes, as shown in Fig. 4.11 (e, f), of which the fluorescence scale is the same. The

fluorescence intensity of Ag NPs is less stronger than the background of Ag film, as

Fig. 4.11 (e) shows, but after spin-coating the RhB/PMMA layer on the top, the Ag

NPs areas have a very strong fluorescence signal, as shows the bright yellow color in

the same area of Fig. 4.11 (f). In the figures, bright color indicates more photons
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Figure 4.11: The comparison of fluorescence enhancement before and after the deposi-
tion of RhB polymer on top of Ag NPs sample. (a,b) The transmission and reflection
microscope image of pure Ag NPs samples fabricated by different laser power. (c, d)
The transmission and reflection microscope images obtained after RhB deposition. (e,
f) The fluorescence image with the samples obtained before and after deposit RhB,
respectively.

(fluorescence enhanced) appeared in a specific size of Ag NPs.

To quantitatively describe the fluorescence enhancement of RhB/PMMA covered

Ag NPs, a fluorescence enhancement ratio is defined as:

ratio =
number of photons of the Ag NPs covered with RhB

number of photons of the background covered with RhB

The number of photons of the Ag NPs covered with RhB/PMMA and correspond-
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Figure 4.12: (a) Fluorescence signal measured in the x-direction of the RhB deposited
in Ag NPs and in Ag film. (insert) The fluorescence image shows the selection of
the fluorescence signal along 1 direction. (b) Calculation of fluorescence enhancement
ratio of (a).

ing background (also covered RhB/PMMA) are illustrated in Fig. 4.12 (a). The

insert figure of the fluorescence image shows the selection method. In the figure, the
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red curve shows the data of Ag NPs and the black curve shows the data from the

background. The fluorescence enhancement ratio is calculated and illustrated in Fig.

4.12 (b). In this statistics figure, the centerline shows the average value, the top, and

bottom of the bar box shows the 25 % and the 75 % of the data range, and the vertical

line in top and bottom to the strip box show the first and the last 25 % data range.

For the Ag NPs obtained with the writing powers of 10, 20, 30, and 40 mW, the

fluorescence enhancement ratio is increased, the corresponding values are 1.26, 1.54,

1.91, and 2.38. The ratio reaches the maximum as the writing power reaches to 40

mW. Then, if the writing power continues to increase, the fluorescence enhancement

ratio decreases. At 150 mW, the enhancement ratio is 0.51, which means all the Ag

film is evaporated.

Figure 4.13: Comparison of color printing achieved by different observation methods.
From left to right: transmission microscope, reflection microscope and fluorescence
images of Ag NPs sample, covered with RhB/PMMA.

The fluorescence signal of the Ag NPs covered with RhB/PMMA is enhanced and

reaches a factor of 2.38. This enhancement is still modest, but consistent with results

published in literature [150]. Figure 4.13 illustrates different observations of color
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printing images of the Ag NPs sample, which is covered with RhB/PMMA. The color

printing is illustrated in different measurements: transmission microscopy, reflective

microscopy, and fluorescent imaging. The reading from the fluorescence enhancement

image has more contrast than the optical microscope images, so it is easier to be read

and recognized.

4.5 Random laser based on a monolayer of Au NPs

Nowadays, random lasers based on LSPR have attracted more attention [151], because

it is different from traditional cavity-based lasers. Indeed, random lasing results from

the interaction of multiple light scattering events by dielectric or metallic scatters

and the formation of closed-loop paths from the scattered light [152]. This feedback

mechanism leads to resonating structures with a moderate Q factor. The gain in

random lasers strongly depends on the medium scattering strength. Random lasers

have demonstrated a low threshold and high-performance characteristics [153].

In this work, we demonstrated the random laser effect by the use of a monolayer of

Au NPs. For that, we spin-coated an RhB layer on the top of the Au NPs monolayer,

and excite the sample by a high energy pulsed laser.

The setup of the Au NPs based random laser is shown in Fig. 4.14. A pulsed laser

with wavelength 532 nm, beam diameter 400 µm, repetition 5 Hz and pulse Width 1.7

ns, is incident to a convex lens having focal length of 50 mm. The pumping intensity

is calculated by changing the distance between the NPs sample and the focusing lens.

The lasing effect measured by a detector in the direction perpendicular to the pumping

direction, as shown in Fig. 4.14.

Figure 4.15 illustrates the spectra of the random lasers based on Au NPs with a 1

wt.% RhB/SU8 polymer, whose thickness is set to 500 nm, 1000 nm, and 1500 nm,
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Figure 4.14: Illustration of the setup used to study the random laser with Au NPs.
The pumping intensity is controlled by changing the distance (L) between a convex
lens and Au NPs samples.

respectively. We have studied the evolution of emission spectra of the samples as a

function of the pumping intensity. By changing the distance L, as can be seen in Fig.

4.15, at a particular pumping intensity of about 3.2 × 106 W/cm2, corresponding to

a distance L=9 cm, a narrow but intense peak appears at about 580 nm. This peak,

however, is not really a laser emission because it is still too large. We believe that this

is simply an amplified spontaneous emission (ASE) of this RhB/SU8 medium as it was

observed often in a dye or excimer laser. In order to have a lasing effect, it requires

probably a higher pumping intensity. However, as can be seen in Fig. 4.15, when the

intensity is too high, the ASE peak disappears and the emission spectra decreases.

That is due to the bleaching effect of RhB/SU8 as well as of Au NPs. Therefore, we

cannot observe the true random laser based on Au NPs for this moment. A better

condition, such as optimum pumping wavelength, better concentration of RhB in SU8,

shorter pumping pulses width, or better RhB/SU8 thickness is necessary to study in

order to obtain a random laser based on these fabricated Au NPs.

83



4.6. CONCLUSION AND DISCUSSION

Figure 4.15: Emission spectra of RhB/SU8 spin-coated on a monolayer of Au NPs as
a function of the pumping intensity. The thickness of RhB/SU8 are 500 nm (a), 1000
nm (b), and 1500 nm (c), respectively.

4.6 Conclusion and discussion

In this chapter, we demonstrated some applications of PNS based on Au and Ag NPs.
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First, we introduced a new data storage method by using Au or Ag NPs. Since

our DLW writing method is similar to those of CDs and DVDs, we used this method

to write the binary codes in metallic film and compare its capacity with those of

standard CDs and DVDs. The capacity of the plasmonic writing is about 914 Mb for

this moment, which is better than a standard CD but less good than the standard

DVD. Then, the micrometer bar code and QR code recording are also demonstrated.

An example of a QR code whose size is 70 × 70 (µm2), which links to the website of

our laboratory, is realized as a proof of principle. After that, we demonstrate direct

text writing with Au and Ag NPs. The height of the letter of Au NPs is 1.9 µm,

while the height of the letter of Ag NPs is 2.5 µm. This is because the Au NPs have

a denser particle arrangement than the Ag NPs, so the edge between NPs and the

unexposed Au film is clearer than the Ag one.

Second, we demonstrated the nano color printing of PNS with Au and Ag NPs. We

introduced the tuning of plasmonic color by changing the parameters of the exposure

dose. And then we applied this idea to realize nanostructures with different colors. To

obtain different plasmonic colors, the scanning speeds, laser powers and the distance

between scanning lines are varied. This allows the realization of different loved images

at the microscale. The colors are however limited at red, yellow and green for Au NPs

and at yellow and blue for Ag NPs. Because the localized plasmonic resonance of

metallic NPs changes very weakly as a function of their size.

Third, we demonstrated fluorescence enhancement of Ag NPs covered with RhB/PMMA.

Thanks to the field enhancement nearby the metallic NPs, the fluorescence of RhB/PMMA

is enhanced by a factor up to 2.38. The enhancement ratio depends on the NPs size,

which is controlled by the laser power of the DLW technique. By covering a plas-

monic image with a thin RhB/PMMA, we showed that the fluorescence image of such

a plasmonic structure is clearer with higher contrast.
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Finally, we demonstrated the first try to obtain a random laser of Au NPs. The

preliminary result, by changing the film thickness and the pumping intensity shows

that a strong amplified spontaneous emission was obtained. More study, such as

excitation wavelength, film thickness, etc., should be done in the next, to demonstrate

a real random laser. The DLW method has a great advantage to make a random laser

with a desired laser beam and shape.
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In this work, we systematically studied the fabrication of large-area monolayer of Au

and Ag NPs. We have demonstrated the fabrication of Au and Ag NPs by the thermal

dewetting method in an oven. By analyzing their SEM images, the morphologies, such

as shape and size distribution, are characterized. We discussed annealing temperature

and annealing duration to form Au and Ag NPs. At different annealing temperatures,

the resonant peaks of Au or Ag NPs changed slightly, which corresponds to differ-

ent average size distribution. And for different annealing durations, the intensity of

resonant peaks is different, and it responds to different numbers of NPs. Then, with

the help of the Lumerical FDTD method, the optical properties of Au and Ag NPs

were simulated by importing SEM images of the random shape of NPs. For Au NPs,

the plasmonic resonant peaks are redshifted by 48 nm when the average NPs size

changed from 20 nm to 100 nm. And for Ag NPs, when the average sizes are changed,

the plasmonic resonant peaks also have the shift. Environmental impacts were also

discussed. When the NPs are changed from air to water and then to oil, the resonant

peaks shift red. We also studied a mixed Au and Ag NPs by this thermal annealing

method. In the beginning, we tried to use the same annealing temperature, which

can both form Au and Ag NPs separately, to form the combined Au and Ag NPs. We

failed because they couldn’t form NPs. After that, we tried to deposit the Ag on Au

NPs. The resonance curve showed two peaks at the positions of the pure Au and Ag
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NPs. FDTD simulation results, which set half of the NPs as Au and the other half as

Ag, are consistent with the peak position of the experiment, which means that Ag is

covered on the Au NPs.

We demonstrated the optically induced thermal effect on the fabrication of metallic

PNS in a small area. We theoretically studied the optically induced thermal effect in a

real metallic film by using Comsol software, which can deal with the rough surface as

in the experiment. We studied the induced temperature in the laser focus center as a

function of the laser intensity and of the exposure time. It shows that the temperature

will reach a stable value after 30 µs, and the maximum induced temperature linearly

changes as a function of the laser intensity. We applied the simulations for both Au

and Ag materials. We found that the laser power required to obtain the Ag NPs is

much lower than that required for Au NPs. The optically induced thermal effect of

different thickness, 12 nm and 50 nm, respectively, is studied. For the 12 nm thick

film, the high induced temperature is easy to cut off the connection in the metallic film

to form the metallic NPs. But for the 50 nm thick film, it can form nano-holes when

the localized induced temperature is high enough to evaporate the metal. We studied

the temperature distribution for a thick metallic film of 50 nm for two cases: perfect

uniform and rough surface. With the same laser power, the laser focuses to create a

perfect circular temperature spot for a uniform metallic film while in the case of rough

surface, the temperature spot is irregular. Then, the Au NPs, Ag NPs and Au NHAs

are fabricated by using the DLW method. We explained first the working principle of

the system, and then how to combine the Matlab software works with the Labview

program. By using this DLW system, we obtained the Au and Ag NPs with different

particle sizes by controlling the laser power and the exposure time. The results of color

and size changes are consistent with the FDTD simulations. After that, a two-step

writing method is suggested to improve the minimum period of the 1D structure, which
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shows a stable Au PNS with a minimum period of 400 nm. We also demonstrated the

fabrication of the Au NHAs by using this DLW system and theoretically studied their

optical properties. In the experiment, two kinds of Au NHA structures, square and

hexagon, are obtained on the 50-nm thickness Au layer. The periods of square and

hexagonal structures are 1 µm and 1.1 µm, respectively. The experimental nanoholes

show irregular shapes, which are consistent with the simulations due to the rough

surface of the Au film. Then, the transmission spectrum of Au NHA of these two

structures is studied. The high transmission peak appears around 1550 nm for the

square structure and at 1450 nm for the hexagonal structure. Since the nanoholes

are irregular, the electric field distribution and transmission of NHA are studied and

compared to the ideal models. We found that even the electric field distributions of

real structure and ideal model are very different at the nanoholes position but the

transmission spectra are almost the same. This proved that the plasmonic resonances

of Au NHA depend on the nanohole diameter, period, and structure, but not on the

nanoholes shape. This is similar to the result of the plasmonic resonance of metallic

NPs, for which the resonance spectra also depend on the average size of metallic NPs

instead of the shape of each NP.

Several applications of PNS based on Au and Ag NPs were demonstrated. A new

data storage method by using Au or Ag NPs is first introduced. Since our DLW writ-

ing method is similar to those of CDs and DVDs, we used this method to write the

binary codes in metallic film and compare its capacity with those of standard CDs

and DVDs. The capacity of the plasmonic writing is about 914 Mb for this moment,

which is better than a standard CD but less good than the standard DVD. Then, the

micrometer bar code and QR code recording are also demonstrated. An example of a

QR code whose size is 70 × 70 (µm2), which links to the website of our laboratory, is

realized as a proof of principle. After that, we demonstrate direct text writing with
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Au and Ag NPs. The height of the letter of Au NPs is 1.9 µm, while the height of

the letter of Ag NPs is 2.5 µm. This is because the Au NPs have a denser particle

arrangement than the Ag NPs, so the edge between NPs and the unexposed Au film

is clearer than the Ag one. Then, we demonstrated the nano color printing of PNS

with Au and Ag NPs. We introduced the tuning of plasmonic color by changing the

parameters of the exposure dose. And then we applied this idea to realize nanostruc-

tures with different colors. To obtain different plasmonic colors, the scanning speeds,

laser powers and the distance between scanning lines are varied. This allows the re-

alization of different loved images at the microscale. The colors are however limited

at red, yellow and green for Au NPs and at yellow and blue for Ag NPs. Because the

localized plasmonic resonance of metallic NPs changes very weakly as a function of

their size. After that, we demonstrated fluorescence enhancement of Ag NPs covered

with RhB/PMMA. Thanks to the field enhancement nearby the metallic NPs, the

fluorescence of RhB/PMMA is enhanced by a factor up to 2.38. The enhancement

ratio depends on the NPs size, which is controlled by the laser power of the DLW

technique. By covering a plasmonic image with a thin RhB/PMMA, we showed that

the fluorescence image of such a plasmonic structure is clearer with higher contrast.

At last, we demonstrated the first try to obtain a random laser of Au NPs. The

preliminary result, by changing the film thickness and the pumping intensity shows

that a strong amplified spontaneous emission was obtained.

Outlooks

There are many works should be done in the near future. In chapter 2, we have

studied the fabrication of large-area monolayer of Au NPs, Ag NPs and mixed Au

and Ag NPs. Following this work, there are a lot of things to do, such as fabricating

other metallic NPs, a new combined NPs, and studying their optical properties. In
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chapter 3, we have demonstrated the fabrication of the Au NHAs by using the DLW

method. Due to the rough surface of the Au film, the experimental nanoholes have

irregular shapes. However, the electric field distributions are quite inhomogeneous in

real NHA, like Anderson localization. Then, we propose a smaller period of this NHA

to have the transmission spectra in the visible light range. We expect these fabricated

structures can strongly enhance light-matter interaction when the fluorescent layer is

covered with this NHA. In chapter 4, we demonstrated an application of random laser

of Au NPs by using the DLW method for the first time. We have preliminary studied

the affection of film thickness and pumping intensity. More study, such as excitation

wavelength, film thickness, etc., should be done in the next, to demonstrate a real

random laser. The DLW method has a great advantage to make a random laser with

a desired laser beam and shape.
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[42] Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M., and Mulvaney, P.,

“Gold nanorods: synthesis, characterization and applications,” Coordination

chemistry reviews 249(17-18), 1870–1901 (2005).

[43] Kim, F., Song, J. H., and Yang, P., “Photochemical synthesis of gold nanorods,”

Journal of the American Chemical Society 124(48), 14316–14317 (2002).

[44] Busbee, B. D., Obare, S. O., and Murphy, C. J., “An improved synthesis of

high-aspect-ratio gold nanorods,” Advanced Materials 15(5), 414–416 (2003).

[45] Murphy, C. J., “Nanocubes and nanoboxes,” Science 298(5601), 2139–2141

(2002).

[46] Yavuz, M. S., Cheng, Y., Chen, J., Cobley, C. M., Zhang, Q., Rycenga, M.,

Xie, J., Kim, C., Song, K. H., Schwartz, A. G., et al., “Gold nanocages cov-

ered by smart polymers for controlled release with near-infrared light,” Nature

materials 8(12), 935 (2009).

[47] Skrabalak, S. E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C. M., and Xia, Y.,

“Gold nanocages: synthesis, properties, and applications,” Accounts of chemical

research 41(12), 1587–1595 (2008).

[48] Skrabalak, S. E., Chen, J., Au, L., Lu, X., Li, X., and Xia, Y., “Gold nanocages

for biomedical applications,” Advanced Materials 19(20), 3177–3184 (2007).

98



BIBLIOGRAPHY

[49] Wiley, B., Sun, Y., Chen, J., Cang, H., Li, Z.-Y., Li, X., and Xia, Y., “Shape-

controlled synthesis of silver and gold nanostructures,” Mrs Bulletin 30(5), 356–

361 (2005).

[50] Xia, Y. and Halas, N. J., “Shape-controlled synthesis and surface plasmonic

properties of metallic nanostructures,” MRS bulletin 30(5), 338–348 (2005).

[51] Haes, A. J., Haynes, C. L., McFarland, A. D., Schatz, G. C., Van Duyne,

R. P., and Zou, S., “Plasmonic materials for surface-enhanced sensing and spec-

troscopy,” MRS bulletin 30(5), 368–375 (2005).

[52] Kumbhar, A. S., Kinnan, M. K., and Chumanov, G., “Multipole plasmon reso-

nances of submicron silver particles,” Journal of the American Chemical Soci-

ety 127(36), 12444–12445 (2005).

[53] Millstone, J. E., Park, S., Shuford, K. L., Qin, L., Schatz, G. C., and Mirkin,

C. A., “Observation of a quadrupole plasmon mode for a colloidal solution of

gold nanoprisms,” Journal of the American Chemical Society 127(15), 5312–

5313 (2005).

[54] Shuford, K. L., Ratner, M. A., and Schatz, G. C., “Multipolar excitation in tri-

angular nanoprisms,” The Journal of chemical physics 123(11), 114713 (2005).

[55] Henzie, J., Shuford, K. L., Kwak, E.-S., Schatz, G. C., and Odom, T. W.,

“Manipulating the optical properties of pyramidal nanoparticle arrays,” The

Journal of Physical Chemistry B 110(29), 14028–14031 (2006).

[56] Kelly, K. L., Coronado, E., Zhao, L. L., and Schatz, G. C., “The optical proper-

ties of metal nanoparticles: the influence of size, shape, and dielectric environ-

ment,” (2003).

99



BIBLIOGRAPHY

[57] Krenn, J. R., Schider, G., Rechberger, W., Lamprecht, B., Leitner, A.,

Aussenegg, F. R., and Weeber, J., “Design of multipolar plasmon excitations in

silver nanoparticles,” Applied Physics Letters 77(21), 3379–3381 (2000).

[58] Jain, P. K., Lee, K. S., El-Sayed, I. H., and El-Sayed, M. A., “Calculated absorp-

tion and scattering properties of gold nanoparticles of different size, shape, and

composition: applications in biological imaging and biomedicine,” The journal

of physical chemistry B 110(14), 7238–7248 (2006).

[59] Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L., Hun-

yadi, S. E., and Li, T., “Anisotropic metal nanoparticles: synthesis, assembly,

and optical applications,” (2005).

[60] Tesler, A. B., Maoz, B. M., Feldman, Y., Vaskevich, A., and Rubinstein, I.,

“Solid-state thermal dewetting of just-percolated gold films evaporated on glass:

development of the morphology and optical properties,” The Journal of Physical

Chemistry C 117(21), 11337–11346 (2013).

[61] Huang, J., Kim, F., Tao, A. R., Connor, S., and Yang, P., “Spontaneous forma-

tion of nanoparticle stripe patterns through dewetting,” Nature materials 4(12),

896 (2005).

[62] Do, M. T., Tong, Q. C., Luong, M. H., Lidiak, A., Ledoux-Rak, I., and Lai,

N. D., “Fabrication and characterization of large-area unpatterned and pat-

terned plasmonic gold nanostructures,” Journal of Electronic Materials 45(5),

2347–2353 (2016).

[63] Ma, F., Hong, M. H., and Tan, L. S., “Laser nano-fabrication of large-area

plasmonic structures and surface plasmon resonance tuning by thermal effect,”

Appl. Phys. A 93, 907 (2008).

100



BIBLIOGRAPHY

[64] Lee, F. Y., Fung, K. H., Tang, T. L., Tam, W. Y., and Chan, C., “Fabrication

of gold nano-particle arrays using two-dimensional templates from holographic

lithography,” Current Applied Physics 9, 820 (2009).

[65] Green, T., “Gold etching for microfabrication,” Gold Bulletin 47(3), 205–216

(2014).

[66] Lee, R. E., “Microfabrication by ion-beam etching,” Journal of Vacuum Science

and Technology 16(2), 164–170 (1979).

[67] Tuma, J., Lyutakov, O., Huttel, I., Siegel, J., Heitz, J., Kalachyova, Y., and

Svorcik, V., “Silver nano-structures prepared by oriented evaporation on laser-

patterned poly(methyl methacrylate),” Journal of Materials Science 48, 900905

(2013).

[68] Brodie, I. and Muray, J. J., [The physics of microfabrication ], Springer Science

& Business Media (2013).

[69] Koukharenko, E., Moktadir, Z., Kraft, M., Abdelsalam, M., Bagnall, D., Vale,

C., Jones, M., and Hinds, E. A., “Microfabrication of gold wires for atom

guides,” Sensors and Actuators A: Physical 115(2-3), 600–607 (2004).

[70] Do, M. T., Tong, Q. C., Luong, M. H., Lidiak, A., Ledoux-Rak, I., and Lai,

N. D., “Fabrication and characterization of large-area unpatterned and pat-

terned plasmonic gold nanostructures,” Journal of Electronic Materials 45,

23472353 (2016).

[71] Xu, L., Tan, L. S., and Hong, M. H., “Tuning of localized surface plasmon

resonance of well-ordered ag/au bimetallic nanodot arrays by laser interference

lithography and thermal annealing,” Applied optics 50(31), G74–G79 (2011).

101



BIBLIOGRAPHY

[72] Zheng, M., Yu, M., Liu, Y., Skomski, R., Liou, S., Sellmyer, D. J., Petryakov,

V., Verevkin, Y. K., Polushkin, N., and Salashchenko, N., “Magnetic nanodot

arrays produced by direct laser interference lithography,” Applied Physics Let-

ters 79(16), 2606–2608 (2001).

[73] Favazza, C., Kalyanaraman, R., and Sureshkumar, R., “Robust nanopatterning

by laser-induced dewetting of metal nanofilms,” Nanotechnology 17, 42294234

(2006).

[74] Berean, K. J., Sivan, V., Khodasevych, I., Boes, A., Gaspera, E. D., Field,

M. R., and Kalantar-Zadeh, A. Mitchell, G. R. K., “Laser-induced dewetting

for precise local generation of au nanostructures for tunable solar absorption,”

Advanced Optical Materials 4, 1247–1254 (2016).

[75] He, R., Zhou, X., Fu, Y., and Zhang, Y., “Near-field optical experimental inves-

tigation of gold nanohole array,” Plasmonics 6, 171 (2011).

[76] Si, G., Jiang, X., Lv, J., Gu, Q., and Wang, F., “Fabrication and characteriza-

tion of well-aligned plasmonic nanopillars with ultrasmall separations,” Nano.

Res. Lett. 9, 299 (2014).

[77] Song, Y. and Elsayed-Ali, H. E., “Aqueous phase ag nanoparticles with con-

trolled shapes fabricated by a modified nanosphere lithography and their optical

properties,” Appl. Surf. Sci. 256, 5961 (2010).

[78] Bechelany, M., Maeder, X., Riesterer, J., Hankache, J., Lerose, D., Chris-

tiansen, S., Michler, J., and Philippe, L., “Synthesis mechanisms of organized

gold nanoparticles: Influence of annealing temperature and atmosphere,” Cryst.

Growth Des. 10, 587 (2010).

102



BIBLIOGRAPHY

[79] Hicks, E. M., Zou, S., Schatz, G. C., Spears, K. G., Van Duyne, R. P., Gunnars-

son, L., Rindzevicius, T., Kasemo, B., and Käll, M., “Controlling plasmon line

shapes through diffractive coupling in linear arrays of cylindrical nanoparticles

fabricated by electron beam lithography,” Nano letters 5(6), 1065–1070 (2005).

[80] Sun, S. and Leggett, G. J., “Matching the resolution of electron beam lithog-

raphy by scanning near-field photolithography,” Nano Letters 4(8), 1381–1384

(2004).

[81] Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A.,

Khrushchev, I. Y., and Petrovic, J., “Nanofabricated media with negative per-

meability at visible frequencies,” Petrovic, Nature 438, 355 (2005).

[82] Steinbruck, A., Choi, J. W., Fasold, S., Menzel, C., Sergeyev, A., Pertsch, T.,

and Grange, R., “Plasmonic heating with near infrared resonance nanodot arrays

for multiplexing optofluidic applications,” RSC Adv. 4, 61898 (2014).

[83] Dial, O., Cheng, C.-C., and Scherer, A., “Fabrication of high-density nanostruc-

tures by electron beam lithography,” Journal of Vacuum Science & Technology

B: Microelectronics and Nanometer Structures Processing, Measurement, and

Phenomena 16(6), 3887–3890 (1998).

[84] Glass, R., Arnold, M., Bluemmel, J., Kueller, A., Moeller, M., and Spatz,

J. P., “Micro-nanostructured interfaces fabricated by the use of inorganic block

copolymer micellar monolayers as negative resist for electron-beam lithography,”

Advanced Functional Materials 13(7), 569–575 (2003).

[85] Feng, J., Tuominen, M. T., and Rothstein, J. P., “Hierarchical superhydrophobic

surfaces fabricated by dual-scale electron-beam-lithography with well-ordered

secondary nanostructures,” Advanced Functional Materials 21(19), 3715–3722

(2011).

103



BIBLIOGRAPHY

[86] Tong, Q. C., Luong, M. H., Trang, T. M., Remmel, J., Do, M. T., Kieu, D. M.,

Ghasemi, R., Nguyen, D. T., and Lai, N. D., “Realization of desired plasmonic

structures via a direct laser writing technique,” Journal of Electronic Materi-

als 46, 36953701 (2017).

[87] Hetherington, J. S., “Electron beam devices and processes,” (Jan. 14 1964). US

Patent 3,118,050.

[88] Tseng, A. A., Chen, K., Chen, C. D., and Ma, K. J., “Electron beam lithography

in nanoscale fabrication: recent development,” IEEE Transactions on electronics

packaging manufacturing 26(2), 141–149 (2003).

[89] Gao, H., Henzie, J., and Odom, T. W., “Direct evidence for surface plasmon-

mediated enhanced light transmission through metallic nanohole arrays,” Nano

letters 6(9), 2104–2108 (2006).

[90] Kwak, E.-S., Henzie, J., Chang, S.-H., Gray, S. K., Schatz, G. C., and Odom,

T. W., “Surface plasmon standing waves in large-area subwavelength hole ar-

rays,” Nano Letters 5(10), 1963–1967 (2005).
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Résumé : Ce travail se concentre sur l'étude des nanoparticules (NPs) d'or (Au) et d'argent 

(Ag) en utilisant la technique de démouillage thermique induite optiquement et leurs 

applications. Premièrement, les NPs d'Au et d'Ag sont fabriquées par un procédé de recuit 

thermique utilisant un four chaud. Cette technique permet d’obtenir des NPs d'Au et d'Ag 

distribuées de manière aléatoire en grande surface. La taille et les propriétés des NPs sont 

contrôlées par les conditions de recuit, telles que la température et le temps de recuit. Les 

propriétés plasmoniques des NPs d'Au et d'Ag sont caractérisées et comparées 

expérimentalement avec celles de la simulation réalisée par la méthode FDTD. Il a été 

démontré que ces NPs d'Au et d'Ag en grande surface sont utiles pour des applications 

comme l’amélioration de la fluorescence et le laser aléatoire à base de l'effet plasmonique. 

Deuxièmement, nous avons démontré un moyen robuste pour réaliser des nanostructures 

plasmoniques souhaitées en utilisant la méthode d’écriture directe par laser. Cette technique 

repose sur un effet thermique local induit optiquement permettant la réalisation des NPs dans 

une petite zone, à savoir une zone de focalisation. En déplaçant ainsi le spot de focalisation, 

toute structure plasmonique souhaitée en 1D et 2D peut être réalisée. La taille et la 

distribution des NPs peuvent être contrôlées par des doses d'exposition (durée d'exposition et 

puissance du laser) et par le trajectoire du mouvement du spot de focalisation. De plus, en 

focalisant un laser continu à 532 nm sur un film d'Au ou d'Ag ayant une épaisseur de 50 nm, 

nous avons démontré pour la première fois la fabrication directe d'un réseau de nano-trous 

plasmonique. Il a été démontré que ces structures fabriquées présentaient un fort potentiel 

pour de nombreuses applications telles que le stockage de données, l'imprimante couleur, 

l’amélioration de la fluorescence et le laser aléatoire. 
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Titre : Réalisation des nanostructures désirées en or et en argent par effet thermique local 

induit optiquement: Application au stockage de données et à l’imprimante couleur 

Keywords : DLW, Plasmonique, nanoparticules d'or, nanoparticules d'argent, nano-imprimante, 

stockage de données, laser, fluorescence. 

 

Dans ce travail, nous avons systématiquement étudié la fabrication de monocouches à 

grande surface de nanoparticules (NPs) d'or (Au) et d'argent (Ag). Nous avons démontré la 

fabrication de NPs Au et Ag par la méthode de démouillage thermique dans un four (Fig. 1 

(a) et (d)). En analysant leurs images SEM, les morphologies d'abord et la distribution des 

tailles, sont caractérisées. Nous avons discuté de la température de recuit et de la durée du 

recuit pour former des Au et Ag NPs. À différentes températures de recuit, les pics résonants 

des NPs d'Au ou d'Ag ont légèrement changé, ce qui correspond à une distribution de taille 

moyenne différente (Fig. 1 (b) et (e)). Et pour différentes durées de recuit, l'intensité des 

pics résonants est différente, et elle répond à différents nombres de NPs. Ensuite, à l'aide de 

la méthode FDTD, les propriétés optiques des Au et Ag NPs ont été simulées en important 

des images SEM de la forme aléatoire des NPs. Pour les NPs Au, les pics de résonance 

plasmonique sont décalés vers le rouge de 48 nm lorsque la taille moyenne des NPs passe 

de 20 nm à 100 nm (Fig. 1 (c)). Et pour les Ag NPs, lorsque les tailles moyennes sont passées 

de 20 nm à 40 nm, les pics de résonance sont décalés vers le bleu, puis décalés vers le rouge 

lorsque la taille moyenne dépasse 40 nm (figure 1 (f)). Les impacts environnementaux ont 

également été discutés. Lorsque les NPs passent de l'air à l'eau puis à l'huile, les pics de 

résonance passent au rouge (Fig. 1 (g)). Nous avons également étudié un mixte Au et Ag 

NPs par cette méthode de recuit thermique. Au début, nous avons essayé d'utiliser la même 

température de recuit, qui peut former les Au et Ag NPs séparément, pour former les Au et 

Ag NPs combinés. Nous avons échoué car ils ne pouvaient pas former de NPs. Après cela, 

nous avons essayé de déposer l'Ag sur les Au NPs (Fig. 1 (h)). La courbe de résonance a 

montré deux pics aux positions des NPs purs d'Au et d'Ag. Les résultats de la simulation 

FDTD, qui définissent la moitié des NPs comme Au et l'autre moitié comme Ag, sont 

cohérents avec la position de pointe de l'expérience (Fig.1 (i)), ce qui signifie que 
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Figure 1: (a) Comparaison des images SEM du film Au et des Au NPs (film Au recuit). (b) 

Les spectres d'extinction (absorption et diffusion combinées) d'échantillons d'Au recuits 

à différentes températures en 30 minutes. (c) Les spectres d'absorption simulés de Au 

NPs avec différentes tailles moyennes de NPs. (d) Comparaison des images SEM d'un film 

d'Ag et NPs d'Ag. (e) Les spectres d'extinction d'échantillons d'Ag recuits à différentes 

températures. (f) Les spectres d'absorption simulés NPs d'Ag avec différentes tailles 

moyennes de NPs. (g) Simulation FDTD de la dépendance des propriétés plasmoniques 

des Au NPs et Ag NPs sur l'environnement. (h) Comparaison d'images SEM d'un film d'Ag 

couvert sur Au NPs et après recuit à 500 ° C. (i) Le spectre d'absorption du recuit 

thermique. 
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Ag est couvert sur les Au NPs. 

Nous avons démontré l'effet thermique induit optiquement sur la fabrication de PNS 

métalliques dans une petite zone. Nous avons théoriquement étudié l'effet thermique 

induit optiquement dans un film métallique réel en utilisant le programme Comsol (Fig. 2 

(a)), qui peut traiter la surface rugueuse comme dans l'expérience. Nous avons étudié la 

température induite dans le centre de focalisation du laser en fonction de l'intensité du 

laser et du temps d'exposition (Fig. 2 (b)). Il montre que la température atteindra une 

valeur stable après 30 µs et que la température maximale induite change linéairement en 

fonction de l'intensité du laser. Nous avons appliqué les simulations pour les matériaux Au 

et Ag. Nous avons constaté que la puissance laser nécessaire pour obtenir les NPs d'Ag est 

bien inférieure à celle requise pour les NPs d'Au (Fig. 2 (c)). L'effet thermique induit 

optiquement de différentes épaisseurs, 12 nm et 50 nm, respectivement, est étudié (Fig. 2 

(d)). Pour le film de 12 nm d'épaisseur, la température induite élevée est facile à couper la 

connexion dans le film métallique pour former les NPs métalliques. Mais pour le film de 50 

nm d'épaisseur, il peut former des nano-trous (NHA) lorsque la température induite 

localisée est suffisamment élevée pour évaporer le métal. Nous avons étudié la distribution 

de température d'un film métallique épais de 50 nm pour deux cas: une surface 

parfaitement uniforme et l'autre rugueuse. Avec la même puissance laser, le laser se 

concentre pour créer un point de température circulaire parfait pour un film métallique 

uniforme tandis que dans le cas d'une surface rugueuse, le point de température est 

irrégulier. Ensuite, les Au NPs, Ag NPs et Au NHA sont fabriqués en utilisant la méthode 

DLW. Nous avons d'abord expliqué le principe de fonctionnement du système, puis 

comment combiner le logiciel Matlab avec le programme Labview. En utilisant ce système 

DLW, nous avons obtenu les Au et Ag NPs avec différentes tailles de particules en contrôlant 

la puissance du laser et le temps d'exposition (Fig. 2 (e) et (f)). Les résultats des 

changements de couleur et de taille sont cohérents avec les simulations FDTD. Après cela, 

une méthode d'écriture en deux étapes est suggérée pour améliorer la période minimale 

de la structure 1D, qui montre un PNS Au stable avec une période minimale de 400 nm.  
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Figure 2: (a) La distribution de température induite autour du point focal à l'aide du 

programme Comsol. (b) Le profil de température induit du film Au le long de la 

direction x obtenu avec différentes intensités laser. Insérer le chiffre est le maximum 

et l'évolution de la température induite dans le centre de mise au point. (c) Le profil 

de température induit du film Au. Insérer le chiffre correspond aux variations de 

température induites maximales avec l'intensité du laser. (d) Comparaison de la 

distribution de température induite sur des films Au minces (12 nm) et épais (50 nm). 

(e) Au NPs obtenus par la méthode DLW avec différents paramètres d'écriture. 

L'insertion est l'image SEM correspondante. (f) Ag NPs obtenus par la méthode DLW. 

(g) Au NHA avec 2 configurations obtenues par la méthode DLW. (h, i) Comparaison 

des spectres de transmission d'un modèle idéal et d'une structure fabriquée réelle de 

configurations carrées et hexagonales, respectivement. 
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Nous avons également démontré la fabrication des Au NHA en utilisant ce système DLW 

(Fig. 2 (g)) et étudié théoriquement leurs propriétés optiques. Dans l'expérience, deux 

types de structures Au NHA, carrées et hexagonales, sont obtenues sur la couche Au de 50 

nm d'épaisseur. Les périodes de structures carrées et hexagonales sont respectivement de 

1 µm et 1,1 µm. Les nano-trous expérimentaux montrent des formes irrégulières, qui sont 

cohérentes avec les simulations dues à la surface rugueuse du film Au. Ensuite, le spectre 

de transmission de Au NHA de ces deux structures est étudié. Le pic de transmission élevé 

apparaît autour de 1550 nm pour la structure carrée et à 1450 nm pour la structure 

hexagonale. Les nano-trous étant irréguliers, la distribution et la transmission du champ 

électrique du NHA sont étudiées et comparées aux modèles idéaux. Nous avons constaté 

que même les distributions de champ électrique de la structure réelle et du modèle idéal 

Figure 3: (a, b) Image SEM d'écriture binaire avec la méthode DLW, la période est de 1,4 

µm. c) Code à barres et code QR réalisés sur le film Au par la méthode DLW, qui renvoient 

au site Web du laboratoire de l'auteur. (d) Écriture directe de texte de PNS avec Au NPs 

à micro-échelle. La hauteur de la lettre est de 1,9 µm. (e) Écriture de texte directe inverse. 

(f) Rédaction directe de texte avec Au NPs sur une seule page. (g) Écriture directe de texte 

avec Ag NPs. (h) L'impression nano couleur des Au NPs. (i) L'impression nano couleur 

des motifs Ag NPs. L'insertion d'image est l'image d'origine. 
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sont très  différentes à la position des nano-trous, mais les spectres de transmission sont 

presque les mêmes (Fig. 2 (h) et (i)). Cela a prouvé que les résonances plasmoniques d'Au 

NHA dépendent du diamètre, de la période et de la structure du nanohole, mais pas de la 

forme des nanoholes. Ceci est similaire au résultat de la résonance plasmonique des NPs 

métalliques, pour laquelle les spectres de résonance dépendent également de la taille 

moyenne des NPs métalliques au lieu de la forme de chaque NP.  

Plusieurs applications de PNS basées sur les Au et Ag NPs ont été démontrées. Une 

nouvelle méthode de stockage de données utilisant des Au ou Ag NPs est d'abord introduite. 

Comme notre méthode d'écriture DLW est similaire à celle des CD et DVD, nous avons utilisé 

cette méthode pour écrire les codes binaires sur film métallique et comparer sa capacité 

avec celle des CD et DVD standard (Fig.3 (a) et (b)). La capacité d'écriture plasmonique est 

d'environ 914 Mo pour le moment, ce qui est mieux qu'un CD standard mais moins bon que 

le DVD standard. Ensuite, le code à barres micrométrique et l'enregistrement du code QR 

sont également démontrés (Fig. 3 (c)). Un exemple de QR code dont la taille est de 70 × 70 

(µm2), qui renvoie au site Internet de notre laboratoire, est réalisé comme preuve de 

principe. Après cela, nous démontrons l'écriture de texte directe avec les Au et Ag NPs (Fig. 

3 (d)). La hauteur de la lettre des Au NPs est de 1,9 µm (Fig. 3 (e)), tandis que la hauteur de 

la lettre des Ag NPs est de 2,5 µm (Fig. 3 (f)). Cela est dû au fait que les Au NPs ont une 

disposition de particules plus dense que les Ag NPs, donc le bord entre les Au NPs et le film 

non exposé est plus clair que celui de l'Ag. Ensuite, nous avons démontré l'impression nano 

couleur de PNS avec Au et Ag NPs (Fig. 3 (g) et (h)). Nous avons introduit le réglage de la 

couleur plasmonique en modifiant les paramètres de la dose d'exposition. Et puis nous 

avons appliqué cette idée pour réaliser des nanostructures avec différentes couleurs. Pour 

obtenir différentes couleurs plasmoniques, les vitesses de balayage, les puissances laser et 

la distance entre les lignes de balayage varient. Cela permet la réalisation de différentes 

images aimées à l'échelle microscopique. Les couleurs sont cependant limitées au rouge, au 

jaune et au vert pour les NPs Au et au jaune et bleu pour les Ag NPs. Parce que la résonance 

plasmonique localisée des NPs métalliques change très faiblement en fonction de leur taille. 
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Après cela, nous avons démontré une augmentation de la fluorescence des Ag NPs 

recouverts de RhB/PMMA (Fig. 4 (a)). Les images de fluorescence présentent des 

changements significatifs (Fig. 4 (b) et (c)), dont l'échelle de fluorescence est la même. Grâce 

à l'amélioration du champ à proximité des NPs métalliques, la fluorescence de RhB/PMMA 

est augmentée d'un facteur allant jusqu'à 2,38 (Fig. 4 (d)). Le taux d'amélioration dépend de 

la taille des NPs, qui est contrôlée par la puissance laser de la technique DLW. En couvrant 

une image plasmonique avec un RhB/PMMA mince, nous avons montré que l'image de 

fluorescence d'une telle structure plasmonique est plus claire avec un contraste plus élevé. 

Enfin, nous avons démontré le premier essai pour obtenir un laser aléatoire de Au NPs (Fig. 

Figure 4: (a) Spectres d'absorption de la couche de fluorophore (RhB), NPs d'Ag et du 

spin-coating de la couche de fluorophore sur Ag NPs. (b, c) Les images de fluorescence 

avec les échantillons d'Ag obtenus avant et après le dépôt de RhB, respectivement. Les 

insertions sont les images de microscope correspondantes. (d) Calcul des taux 

d'accroissement de la fluorescence. (e) Spectres d'émission de RhB/SU8 revêtus par 

centrifugation sur une monocouche de NP Au. L'épaisseur de RhB/SU8 est de 1000 nm. 



 

8 

4 (e)). Le résultat préliminaire, en modifiant l'épaisseur du film et l'intensité de pompage, 

montre qu'une forte émission spontanée amplifiée a été obtenue.  
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Titre : Réalisation des nanostructures désirées en or et en argent par effet thermique local induit optiquement:
Application au stockage de données et à l’imprimante couleur

Mots clés : DLW, Plasmonique, nanoparticules d’or, nanoparticules d’argent, nano-imprimante, stockage de
données, laser, fluorescence.

Résumé : Ce travail se concentre sur l’étude des na-
noparticules (NPs) d’or (Au) et d’argent (Ag) en uti-
lisant la technique de démouillage thermique induite
optiquement et leurs applications. Premièrement, les
NPs d’Au et d’Ag sont fabriquées par un procédé de
recuit thermique utilisant un four chaud. Cette tech-
nique permet d’obtenir des NPs d’Au et d’Ag dis-
tribuées de manière aléatoire en grande surface. La
taille et les propriétés des NPs sont contrôlées par
les conditions de recuit, telles que la température
et le temps de recuit. Les propriétés plasmoniques
des NPs d’Au et d’Ag sont caractérisées et com-
parées expérimentalement avec celles de la simula-
tion réalisée par la méthode FDTD. Il a été démontré
que ces NPs d’Au et d’Ag en grande surface sont
utiles pour des applications comme l’amélioration de
la fluorescence et le laser aléatoire à base de l’effet
plasmonique. Deuxièmement, nous avons démontré
un moyen robuste pour réaliser des nanostructures

plasmoniques souhaitées en utilisant la méthode
d’écriture directe par laser. Cette technique repose
sur un effet thermique local induit optiquement per-
mettant la réalisation des NPs dans une petite zone, à
savoir une zone de focalisation. En déplaçant ainsi le
spot de focalisation, toute structure plasmonique sou-
haitée en 1D et 2D peut être réalisée. La taille et la
distribution des NPs peuvent être contrôlées par des
doses d’exposition (durée d’exposition et puissance
du laser) et par le trajectoire du mouvement du spot
de focalisation. De plus, en focalisant un laser continu
à 532 nm sur un film d’Au ou d’Ag ayant une épaisseur
de 50 nm, nous avons démontré pour la première
fois la fabrication directe d’un réseau de nano-trous
plasmonique. Il a été démontré que ces structures
fabriquées présentaient un fort potentiel pour de
nombreuses applications telles que le stockage de
données, l’imprimante couleur, l’amélioration de la
fluorescence et le laser aléatoire.

Title : Realization of desired Au and Ag nanostructures by optically induced local thermal effect: Application
to data storage and color printer

Keywords : Plasmonics, DLW, gold and silver nanoparticles, data storage, nano color printing, fluorescence
enhancement, random laser.

Abstract : This work focuses on the investigation of
plasmonic Gold (Au) and Silver (Ag) nanoparticles
(NPs) by using optically induced local thermal dewet-
ting technique and their applications. Firstly, Au and
Ag NPs are fabricated by a thermal annealing me-
thod using a hot oven. This technique allows obtai-
ning Au and Ag NPs, which are randomly distributed
in a large area. The NPs sizes and properties are
controlled by annealing conditions, such as annea-
ling temperature and duration. Plasmonic properties
of Au and Ag NPs are experimentally characterized
and compared with the simulation ones performed by
the FDTD method. These large-area Au and Ag NPs
are demonstrated to be useful for applications in fluo-
rescence enhancement and random laser. Secondly,
we demonstrate a robust way to realize desired plas-

monic nanostructures by using a direct laser writing
method. This technique bases on optically induced lo-
cal thermal effect allowing the realization of NPs at a
small area, i.e. focusing area. By moving thus the la-
ser spot, any desired plasmonic structure can be reali-
zed. The NPs sizes and distributions can be controlled
by exposure doses (laser power and exposure time)
and moving trajectory of the focusing spot resulting in
different reflection or transmission colors. By focusing
a continuous-wave laser at 532 nm on Au films having
50 nm thickness, we demonstrated for the first time
the direct fabrication of plasmonic nanoholes array.
These fabricated structures are demonstrated to be
very potential for many applications such as data sto-
rage, color nanoprinter, fluorescence enhancement,
and plasmonics based random laser.
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