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Synthèse en français

La recherche de réponses à des questions relève de deux disciplines : le traitement

du langage naturel et la recherche d'information. L'émergence de l'apprentissage

profond dans plusieurs domaines de recherche tels que la vision par ordinateur, le

traitement du langage naturel, la reconnaissance vocale, etc. a conduit à l'émergence

de modèles de bout en bout et les travaux actuels de l'état de l'art en question-réponse

(QR) visent à mettre en oeuvre de tels modèles.

Dans le cadre du projet GoASQ1, l'objectif est d'étudier, comparer et combiner

différentes approches pour répondre à des questions formulées en langage naturel

sur des données textuelles, en domaine ouvert et en domaine biomédical. Le travail

de thèse se concentre principalement sur 1) la construction de modèles permettant

de traiter des ensembles de données à petite et à grande échelle, et 2) l'exploitation

de connaissances sémantiques pour répondre aux questions par leur intégration dans

les différents modèles. Nous visons à fusionner des connaissances issues de textes

libres, d'ontologies, de représentations d'entités, etc.

A�n de faciliter l'utilisation des modèles neuronaux sur des données de domaine

de spécialité, généralement de petite taille, nous nous plaçons dans le cadre de

l'adaptation de domaine. Nous avons proposés deux modèles de tâches de QR

différents, évalués sur la tâche BIOASQ de réponse à des questions biomédicales, et

nous montrons par nos résultats expérimentaux que le modèle deQuestions-Réponses

ouvert2 convient mieux qu'une modélisation de type Compréhension machine3, qui

est la plus courament utilisée. Nous pré-entrainons le modèle deCompréhension

machine, qui sert de base à notre modèle, sur différents ensembles de données pour

montrer la variabilité des performances lorsque ces modèles sont adaptés au domaine

biomédical. Nous constatons que l'utilisation d'un ensemble de données particulier

(ensemble de données SQUAD v2.0) pour la pré-entraînement donne les meilleurs

résultats lors du test et qu'une combinaison de quatre jeux de données donne les

meilleurs résultats lors de l'adaptation au domaine biomédical. Nous avons effectué

des expériences à l'aide de modèles de langage à grande échelle, comme BERT4,

qui sont adaptés à la tâche de réponse aux questions. Les performances varient

en fonction du type des données utilisées pour pré-entrainer BERT. Nous en avons

conclu que le modèle de langue appris sur des données biomédicales, BIOBERT,

constitue le meilleur choix pour le QR biomédical.

1https://goasq.lri.fr/
2Extraction de la réponse étant donné un ensemble de paragraphes, pertinents et non pertinents
3Extraction de la réponse étant donné un paragraphe pertinent
4https://github.com/google-research/bert
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Étant donné que les modèles d'apprentissage profond visent à fonctionner de bout

en bout, les informations sémantiques provenant de sources de connaissances con-

struites par des experts n'y sont généralement pas introduites. Nous avons annoté

manuellement et automatiquement un jeu de données par les variantes des réponses

de BIOASQ et montré l'importance d'apprendre un modèle de QR avec ces variantes.

Nous montrons l'utilité d'exploiter le Type de réponse attendu et le Types lexical de

la réponseen domaine ouvert et en domaine biomédical par différentes études.

Ces types sont ensuite utilisés pour mettre en évidence les entités dans les jeux de

données, ce qui montre des améliorations sur l'état de l'art. Par ailleurs l'exploitation

de représentations vectorielles d'entités dans les modèles se montre positif pour le

domaine ouvert.

Une de nos hypothèses est que les résultats obtenus à partir de modèles d'apprentissage

profond peuvent être encore améliorés en utilisant des traits sémantiques et des traits

collectifs calculés à partir des différents paragraphes sélectionnés pour répondre

à une question. Nous proposons d'utiliser des modèles de classi�cation binaires

pour améliorer la prédiction de la réponse parmi les K candidats à l'aide de ces

caractéristiques, conduisant à un modèle hybride qui surpasse les résultats de l'état

de l'art sur la plupart des ensembles de données.

En�n, nous avons évalué des modèles de QR ouvert sur des ensembles de données

construits pour les tâches deCompréhension machineet Sélection de phrases. Nous

montrons la différence de performance lorsque la tâche à résoudre est une tâche de

QR ouverte et soulignons le fossé important qu'il reste à franchir dans la construction

de modèles de bout en bout pour la tâche complète de réponse aux questions.
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1Introduction

Question Answering (QA) deals with retrieving relevant answers from documents for

a given question. It is a �eld of research which is an intersection between two major

research �elds, Natural Language Processing (NLP)and Information Retrieval (IR).

Unlike document retrieval performed by search engines, question answering relies

on extracting suitable short answers which are more speci�c than lengthy documents

which are topic related. Question Answering is often seen as a supervised learning

problem which requires labelled data, although some exceptions exist (Lewis et al.,

2019).

Question Answering can be de�ned in several ways based on the target task. Some

of Question-Answer pair examples are presented below.

Q: Who is the current President of France?
Document Answer: The President of France, of�cially the President of the
French Republic is the executive head of state of France in the French Fifth
Republic. In French terms, the presidency is the supreme magistracy of the
country.
The powers, functions and duties of prior presidential of�ces, as well as their
relation with the Prime Minister and Government of France, have over time
differed with the various constitutional documents since the French Second
Republic. The President of the French Republic is also the ex of�cio Co-Prince
of Andorra, Grand Master of the Legion of Honour and the National Order of
Merit. The of�ceholder is also honorary proto-canon of the Basilica of St. John
Lateran in Rome, although some have rejected the title in the past.
The current President of the French Republic is Emmanuel Macron, who
succeeded François Hollande on 14 May 2017.

Paragraph Answer: The current President of the French Republic is Emmanuel
Macron, who succeeded François Hollande on 14 May 2017.

Short Answer: Emmanuel Macron

A Question-Answer pair with a document, paragraph and short answer.
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If the goal of the system is to �nd a relevant document (with multiple paragraphs)

to a query, the task is called asDocument Retrieval. If the goal is to �nd a paragraph

or a sentence relevant to a query, the task is called asAnswer Selection. If the goal is

to �nd an answer span in the text, the task is called as Answer Extraction. All the

examples for each task are shown above for a given question. The target task of the

QA system de�nes the type of output expected from the system.

In the �rst approaches of QA systems, a question is analysed to determine some

elements such as focus (the main entity addressed in the question), question category

(factoid, non factoid, summary, yes/no, choice question etc.), and expected answer

type (entity type expected from the question). The question terms (words) are

used to �nd documents, paragraphs and sentences which might contain the answer.

Answer selection (or extraction or ranking based on how the candidates are chosen)

is then performed on the relevant paragraphs or sentences to choose the answer

sentence (long) or answer span (short).

The Information Retrieval (IR) community focuses on document retrieval and para-

graph retrieval, whose role is to fetch a set of relevant supporting texts which might

contain the answer for a question. Other models are used for ranking answers

candidates based on term frequencies, entities, etc. TheNatural Language Processing

(NLP) community works on the QA topics which use different linguistic features

such as named entities, part of speech tags, expected answer types, passage and

question representations (different syntactic and semantic approaches) etc. These

are used as features for either document or paragraph retrieval models or answer

selection/extraction models. Both the communities often use machine learning

algorithms to learn different classi�ers, ranking functions etc. for their individual

�elds. (Jouis et al., 2012; Chu-Carroll et al., 2012; Grappy, Grau, et al., 2011)

Domain speci�c question answering is a special type of question answering that

deals with specialized data belonging to a domain. Open domain datasets are

usually curated automatically or by using crowd sourced workers, while domain

speci�c datasets are curated with the help of domain experts. Open domain question

answering systems must be explicitly adapted to these speci�c domain data inorder

to perform ef�ciently.

In biomedical domain, there are a plenty of expert curated information available

in the form of ontologies, metathesaurus etc. The datasets for biomedical question

answering are not large scale in size. Creating a large scale dataset in biomedical

domain requires domain expertise which is expensive and a time consuming process.

Therefore it is important to adapt an open domain model to biomedical domain.

2 Chapter 1 Introduction



1.1 Question Answering Pipeline

Fig. 1.1: A traditional IR or NLP based question answering pipeline

There are different types of question answering systems based on the type of data

they use for processing. Textual data (free text, wikipedia documents, scienti�c

articles, medical text etc.), relational databases, knowledge graphs, ontologies etc.

are some of the data sources used for question answering.

A textual question answering system has series of operations either performed se-

quentially or in parallel. A typical QA pipeline 1 seen in the perspective of Information

Retrieval discipline is as shown in the Figure 1.1. The sub-modules of the QA pipeline

are explained in brief below.

Question Processing

The question processing module processes a query either to analyse query terms

(words) for query expansion, answer type detection etc., or to reformulate it as a

SPARQL or a relational database query to �nd answers in structured databases or

ontologies.

The answer type detection analyses the question for different expected answer types

based on question words such as "Who", "What", "Where", "When", "How" etc. and

determine the expected type of answer such as "Person", "Entity", "Location", "Time",

1Figure from: https://web.stanford.edu/class/cs124/lec/watsonqa.pdf
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"Procedure" respectively. Based on this type, the answer space can be �ltered for

better candidate answers.

Passage Retrieval

In a textual QA task, the data used is only textual documents (not databases or

knowledge graphs) using which the Document Retrievalmodule applies several

techniques to �nd the relevant documents (more than one paragraphs is termed as a

document) for a question, based on the indexed set of documents. These documents

are then passed on to aParagraph Retrievalmodule which �nds the best set of

paragraphs out of the text documents to extract the answer.

Answer Processing (Long and Short)

The answer processing module processes the paragraphs or sentences in several

ways such as ranking candidates based on features (word overlap, entity match,

knowledge graph entity types, syntactic analysis, representation matching etc.)

and extract answer spans based on named entity type match. This module uses

knowledge from databases, ontology, knowledge graphs as reference to extract or

�nd the answers.

The kind of answers such as sentences for long answers or short spans for short

answers determines the processing steps involved. For long answers, asentence selec-

tion task is used to select an answer sentence. For short answers, anextraction task

namely reading comprehension or machine reading or extractive question answering

task is used to extract short answer spans from sentences or paragraphs.

The three answer processing tasks used in our works are:

• Answer Sentence Selection- choosing one or more answer sentences or short

paragraphs among other candidates, as correct answers for a given question.

• Reading Comprehension- extracting short answer spans from a relevant para-

graph for a given question.

• Open Question Answering- extracting short answer spans from a set of para-

graphs (relevant and irrelevant) for a given question.
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Since Question Answering is a complex task, each module is considered to be an

individual subtask and the focus is on achieving better scores on the subtask target

datasets. An issue with pipeline approaches in general, isError Propagation. If an

intermediate module causes errors, the error gets propagated onto the �nal output.

The overall error rate would increase. In other words, the error gets propagated

across different modules which might reduce the �nal performance. Evaluating

individual module and predicting the overall behaviour in a pipeline approach is

cumbersome.

1.2 Rede�ning the QA Pipeline with Deep

Learning

The use of deep learning models in the �eld of Computer Vision and Speech Process-

ing started to rise rapidly because of the availability of 1) Large scale datasets 2)

Access to use hardwares such as GPUs (Graphical Processing Unit) for machine learn-

ing. GPUs were earlier used primarily for computer graphics but recently tweaked

for training deep learning models, which gave rise to more research interests in the

�eld of machine learning towards deep learning because of the accelerated training

times. This was observed in the �eld of question answering which changed the way

some of the traditional QA models work. The intuition of using these models is to 1)

avoid handcrafting features for the models, 2) avoid pipeline approaches but rely

only on input data to predict the output by automatically learning these features. An

ideal deep learning model would be an end-to-end model which relies only on input

data and will not have issues like Error Propagation.

Fig. 1.2: Deep learning QA pipeline (only the modules highlighted in red are used)
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The �eld of Natural Language Processing (NLP)witnessed the usage of deep learning

models starting with tasks such as Named Entity Recognition (Collobert et al., 2011),

Dependency Parsing (Socher et al., 2013), Sentiment Analysis (Moraes et al., 2013)

etc. The intuition or the hypothesis behind using deep learning models is that these

models are good implicit feature extractors and will not need handcrafted feature

engineering which the pipeline modules heavily relied on.

The deep learning models for QA would focus only on the red parts highlighted

in the Figure 1.2. An ideal deep learning based QA model would perform answer

extraction directly by retrieving the documents, �nding the relevant ones, extracting

relevant paragraphs and �nally extracting the answers out of it. All the modules can

be learnt based on the input data and no explicit features would be needed. But

building such models has many hurdles to cross.

Hurdles on using deep learning models

Building such a deep learning model (end-to-end model) which requires zero hand-

crafted features and which learns solely from data has some hurdles.

• Have enough data. (Size)

• Have the right kind of labelled data. (Suitable type)

• Build a single model which does it all. (Architectural Complexity)

• Generalize the model to work on all QA tasks. (Generalization)

Size

For deep learning models to work ef�ciently, they have to be trained on large scale

datasets. Training on small scale datasets will not result in similar performance as

on large scale ones. We show this behaviour experimentally in further sections of

our work. Because of this behaviour, only tasks which have suf�ciently large scale

labelled datasets can use deep learning models.

This behaviour causes dif�culty in analysing if the model itself is performing poorly

or if the dataset is not suf�cient for the model to perform better. It causes a dilemma
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whether or not to design a new model or augment the dataset with more labeled

samples and balanced label classes.

To overcome the small size of datasets for biomedical question answering,Transfer

Learningwas �rst used by (Wiese et al., 2017a). The process involves training models

on large scale datasets and �ne-tuning the same models on small scale datasets for

the same target tasks. When this process is conducted across two or more different

domain datasets, it is called asDomain Adaptation. The target task remains the same

in this approach. Another type of Transfer Learningapproach is to train models on a

task with large scale datasets and modifying �nal output layer to another target task

and �ne tuning this model on a small scale dataset of the target task.

Suitable type

The large scale datasets required by the deep neural network models are not just

any random datasets. The data should be labelled according to the task for which

the model is built. To label such datasets three methods are used in common

practice. 1) An automatic annotation method which results in creation of synthetic

datasets; 2) Distant supervision methods with some noise; 3) Crowdsourced workers

(or sometimes colleagues, students etc.) employed to annotate a dataset which is

suf�ciently large scale for their model. Although an important highlight is that there

is no standard measure to determine a "large scale" dataset.

Architectural complexity

Building an end-to-end model which returns an answer for an input question, is more

complex than building submodules, the focus was on using deep learning models

on tasks such asAnswer Sentence Selectionand Answer Extractionusing Reading

Comprehensionby splitting the QA process into two or more sub-tasks. More focus is

seen on these topics separately than together into a single big model. The goal of

building end-to-end models remained the same but the target tasks became different,

that are mainly the sub tasks of the overall QA task.

Even though end-to-end models are the best models one can strive to build for

some subtasks, getting certain aspects such as their neural architectures, training

approaches, hyperparameters, optimizer functions, random initialization parameters

etc. is a big challenge and often sometimes referred asArchitecture Engineering2.

From avoiding Feature Engineeringwhich the traditional machine learning algorithms

2https://smerity.com/articles/2016/architectures_are_the_new_feature_engineering.html
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heavily relied on, towards neural networks which heavily relies on Architecture

Engineering, one problem gives rise to another problem. Techniques like neural

architecture search (Elsken et al., 2018) can be used to learn a better architecture

than the ones chosen by humans. But they are computationally very expensive to do

and bad for environment because the electricity and CO2 emissions they use for this

purpose.

Generalization

A common problem working on QA datasets is the usability of these models on other

datasets. This problem is not only speci�c to QA but also other applied machine

learning tasks. In other words, can a model trained on one dataset perform equally

well on other datasets on the same or similar task?This aspect plays a major role

in determining if deep learning models trained on large scale datasets can be used

to predict on datasets like the domain speci�c ones which are usually tedious and

expensive to curate with the help of experts.

Hurdles in domain speci�c question answering

Domain speci�c question answering has several issues in common with some points

discussed above. The data is usually curated by domain experts. Contrary to open

domain where there is no need of expert knowledge, domain speci�c data demands

domain expertise.

The complexity of the domain expertise makes it hard to obtain labelled datasets

of large scale. One such example is the BIOASQ3 challenge where the biomedical

domain experts are asked to annotate certain task datasets for question answering.

Over the period of 7 years, the data annotated by human annotators who are domain

experts for factoid questions still remain less than 1000 questions.

Domain speci�c data has two main limitations to be addressed before using the

models which work better on open domain data:

Size

Similar to applying deep learning models on small scale datasets, the same problem

applies for domain speci�c datasets which are small scale. Construction of large

3http://bioasq.org/
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scale dataset is expensive and time consuming because of the domain expertise it

demands.

Domain Expertise and Vocabulary

Since the data is domain speci�c, the vocabulary also consists of new words from a

speci�c domain. For example, using a word embedding space which is trained on

Wikipedia might result in missing words from the vocabulary of biomedical domain

data. Because the vocabulary is different, detecting named entities, noun phrases,

part of speech tags and expected answer types cannot be reused from the traditional

QA pipeline used in the open domain setting. There is a requirement for special use

case handling for domain speci�c knowledge integration along with the existing QA

models.

While using word embeddings in any NLP tasks, a tokenizer is used to split sentences

into words and an embedding vector is found corresponding to the word from a

pretrained embedding space. In domains such as biomedical domain or medical

domain, the numerical values and co-ef�cients such as� ,� ,
 are important and

using a tokenizer which tokenizes them differently from the tokenizer used in the

pretrained word embeddings, results in missing vocabulary.

Because of the above two limitations, research on domain speci�c data is signi�cantly

less emphasized compared to the open domain. This explains the low results on

domain speci�c tasks like the BIOASQ tasks4. Techniques such as domain adaptation

and transfer learning can be used to handle this situation, which are relatively easier

to do with deep learning models.

Structured Knowledge for Question Answering

Structured knowledge and semantic knowledge by experts provide supporting in-

formation for textual data which are enriched, veri�ed, accessible and stored in

such a manner that computer applications can access and use it easily with querying

languages. They are annotated by human experts or extracted from free text. Re-

lational databases, knowledge graphs and ontologies are some of the examples for

such knowledge.

To overcome the missing vocabulary problem in domain speci�c QA one way is

to use domain speci�c textual resources for training word embedding spaces and

4http://participants-area.bioasq.org/results/
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another is to use concepts and relationships from ontologies like SNOMED CT5,

UMLS metathesaurus6 to detect speci�c entities and their types in the text of QA

datasets.

1.3 Research Objectives and Contributions

To address some of the issues discussed in the above sections with respect to deep

learning methods, we intend to investigate and compare various question answering

system techniques on open domain and domain speci�c data. Speci�cally we focus

on answer sentence selection task on open domain data, answer extraction by

reading comprehension and open question answering tasks on both open domain

data and biomedical domain datasets.

Our research questions are the following:

1. How can we build models which work both on small scale and large scale

datasets without dropping performance?

2. How can we leverage the structured and semantic knowledge effectively into

state of the art question answering models?

In the context of this thesis work - "Question Answering with Hybrid Data and

Models", Hybrid data refers to using open domain data with speci�c domain data in

a domain adaptation process, plus integrating structured knowledge for annotating

training datasets and for enriching the input data. Hybrid modelrefers to an addition

of a post processing reranker to account for structured knowledge and collective

features obtained from different paragraphs.

Deep learning models have been commonly used in the �eld ofNatural Language

Processingacross various tasks. However, using them on domain speci�c data

which are small scale and are dependent on domain speci�c vocabulary is not very

straightforward. As addressed earlier the performance of these models rely on the

Sizeof the datasets.

In Chapter 4, addressing our �rst research question, we discuss how one can use

these models on small scale labelled datasets such as biomedical domain dataset for

question answering and discuss different strategies involved in getting better perfor-

mance. More precisely we discuss details aboutDomain adaptationon biomedical

5https://www.snomed.org/snomed-ct/�ve-step-brie�ng
6https://www.nlm.nih.gov/research/umls/index.html

10 Chapter 1 Introduction



QA dataset (BIOASQ) by training two task models 1)Reading Comprehensionand

2) OpenQAon open domain QA datasets and �ne-tune them on BIOASQ data. We

show how a pre-training method using OpenQAmethod suits better for BIOASQ task

instead of the other method.

Using deep learning models has become a new trend in the �eld of research, which

has resulted in a lot of outcomes which are incremental in nature. Although often

some engineering tricks can improve a model performance slightly (sometimes

signi�cantly), research papers tend to not discuss these in detail but rather focus

on the mathematical models. Often the performance reported is generalized as the

result of the underlying neural network architectures and training methods, but

not the subtle difference in preprocessing training data such as using a different

tokenizer, different named entity recognition tools, different part of speech taggers,

different embedding spaces, highlighting some entity information, using different

combination of datasets etc. We present two research articles (Seo et al., 2016;

Chen, Fisch, et al., 2017) focused on introducing two different QA models based on

RNNs on a same QA task. The authors report the performance on SQUAD dataset

leaderboard (Rajpurkar, J. Zhang, et al., 2016). The simple method (Single attention

mechanism, faster training) by (Chen, Fisch, et al., 2017) performs better than the

complex method (Multiple attention mechanisms, slower training) by (Seo et al.,

2016), which shows that the results not always increase based on the increasing

complexity.

In Chapter 5, addressing our second research question, we hypothesize that existing

QA models can perform better if the input data contain more information than just

textual phrases. Structured and semantic knowledge which exist already can be

useful for question answering.

Our contributions are:

• Using entity information - we explore entity enriched texts for Reading Compre-

hensiontask on open domain QA dataset.

• Using answer variants- we manually annotate more answer spans which are

correct besides the gold standard ones in biomedical domain and show how

models can perform better when correct data is input.

• Using expected answer types to highlight entities- we highlight entities in para-

graphs which match the expected answer types from the question using an

existing Answer Sentence SelectionQA model and compare their performance
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with baseline model scores and show how using the same model with slightly

modi�ed data can improve performance.

• Improving QA performance using semantic features and structured information

for ranking models- The semantic information from various paragraphs which

are provided with the questions in OpenQAtask are not well modelled in

neural network models which consider only a pair of paragraph and question

inputs and ignore other paragraph information. In our work we model this

collective information and semantic information as features for ranking models

to improve QA performance.

The organization of the chapters of this thesis is as shown below: We introduced the

context of our research work, presented the introduction to question answering, some

hurdles with neural network models in QA and presented our research questions in

this chapter.

In the following chapters, we detail the tasks of question answering, datasets used

for benchmarking QA models and models which are widely used as state-of-the-art

techniques. Chapter 3 presents the overview of QA approaches including the state-

of-the-art models widely used these days on different QA tasks. Chapter 4 presents

our work on building models for small scale and large scale datasets using domain

adaptation. Chapter 5 presents our work on leveraging structured and semantic

information into QA models to improve performance.
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deep pre-trained language representations - Anna Koroleva, Sanjay Ka-
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• 2019 - How to Pre-Train Your Model? Comparison of Different Pre-Training
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biomedical semantic indexing and question answering. ECMLPKDD, September
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2Question Answering - Tasks and

Problems

Fig. 2.1: A traditional IR or NLP based question answering pipeline

In this chapter we introduce the task of Question Answeringformally by explaining

different types of tasks, problems, questions, answers and corresponding datasets

involved which are being extensively used by the research community.

The question answering pipeline introduced in the Introduction chapter in Figure

1.1 (is also shown in Figure 2.1 for reference) represents the whole pipeline or a

complete QA system architecture. Each of these modules individually sometimes

are termed as "Question Answering systems" based on different assumptions on the

target subtask. Question Answering in different contexts can mean different tasks.

The organization of this chapter is as follows: we �rst discuss and detail about

question answering based on a classi�cation of different types of answers. Then

are followed by de�ning question answering based on different types of tasks,

speci�cally about Answer Sentence Selection, Reading Comprehensionand OpenQA.

We also highlight and detail some modi�cations on Reading Comprehensiontask and

term it as RC 2.0.
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We present a list of datasets/corpora used for benchmarking the above mentioned QA

tasks and explain some characteristics of open domain and closed domain datasets.

Finally we present some evaluation metrics with respect to different tasks and

conclude by highlighting what we address in our work.

2.1 Answer based classi�cation

Question Answering systems can be classi�ed based on the answers they expect by

analysing the questions. Based on different types ofAnswersor Resultsa system

returns to the user, we can brie�y classify a QA system into one of the following

below:

• Factoid Question Answering

• Non-Factoid Question Answering

Factoid answers are factual answers such named entities, numerical values, lists,

currencies, locations etc. For domain speci�c data such as medical domain the

answers can be the names of medicines, diseases, proteins etc.

Q: What country are Volvo automobiles made in? (Location - Country)
A: Sweden

Q: How tall is Mount McKinley? (Numerical value - Height)
A: 6,190 m

Q: What currency is used in Ukraine? (Currency)
A: Ukrainian hryvnia

Q: Who played the role of Heisenberg in the series Breaking Bad? (Person)
A: Bryan Cranston

Factoid QA examples

Non-Factoid answers are answers which are descriptive in nature, such as de�nitions,

procedures, explanation of a phenomenon etc. Often, these answers can be directly

extracted from the paragraphs and sometimes a summary can be generated based

on textual supporting documents.
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Question: Why is ice less dense than water?
Answer Passage: The molecules of water are closer together and constantly
moving, whereas the molecules of ice are in a crystal lattice, meaning they're
in a rigid formation. When water freezes, the molecules spread out a little
more to form the crystal lattice. Since density is mass over volume, and ice
has takes up more volume than water, the density of ice is lesser than that of
water. Which makes ice �oat on water.

A non-factoid QA example

Apart from the above two types of QA, there are also Multiple choice QA, Yes/No

QA, Conversational QA etc. In our work we only focus on factoid QA therefore the

further sections refer to Factoid Question Answeringas just Question Answeringor

QA.

2.2 Task based classi�cation

In the context of factoid question answering as explained above, Question Answering

�eld has seen a lot of different tasks commonly referred to as "Question Answering"

although they differ in many ways. These systems can be classi�ed according to

their tasks.

2.2.1 Evolution of tasks over time

The tasks have evolved over time based on several factors such as available datasets,

approaches, evaluation campaigns etc. The below list of tasks are presented in the

chronological order.

1. Open domain question answering based on the pipeline approaches. - Legacy

OpenQA, initiated by TREC evaluations.

2. Answer sentence selection - to focus on sentence similarity or textual entail-

ment problems.

3. Reading comprehension and modi�cations - with neural network approaches.

4. Open domain question answering based on deep learning approaches. -

OpenQA
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For question answering in an open setting, a question is provided and the system is

expected to return an answer. No other supporting information is provided along

with the questions. The system has to retrieve a document collection and extract

a short answer. This is termed as anOpen QAtask. In the earlier QA systems,

pipeline approaches were used for this purpose using information retrieval and NLP

techniques, knowledge bases and ontologies. These systems are called asLegacy

OpenQA. Recent methods use deep learning methods instead of traditional pipeline

methods with a goal of building end-to-end models for the same task, these systems

are simply called asOpenQA.

In between the above two tasks, the focus of QA system was towardsAnswer sentence

selectionwhere a sentence among other sentences was to be predicted as a relevant

answer or not. Focus further shifted towards answer extraction task from relevant

paragraphs which were called asReading Comprehension. There were also systems

for multiple choice answers under Reading Comprehension.

In this section we de�ne the QA tasks which we address in our work.

2.2.2 Answer Sentence Selection

As per the details presented in Figure 2.1, the task of Answer Sentence Selection

deals with �nding a sentence as the correct answer for a question. So theAnswer

Processingmodule determines which paragraph (or sentence) is the correct answer.

Given a question in natural language, the objective of this task is to �nd relevant

sentences among candidate sentences. A sample dataset consists of a QuestionQ, a

set of paragraphsP = f p1; p2; p3; ::::png and annotated labels either being {0, 1}.

From the de�nition, the problem can be formulated as a ranking problem, where

the goal is to give better rank to the candidate sentences that are relevant to the

question. Pointwiseand Pairwiseapproaches are the two most common approaches

to learn the ranking functions.

In the pointwise approach, the ranking problem is transformed into a binary classi-

�cation problem. More speci�cally, the training instances are triples ( Qi , Pij , yij ),

where Qi is a question in the dataset,Pij is a candidate answer sentence forQi , and

yij is a binary value indicating whether Pij contains the correct answer toQi .

In the pairwise approach the ranking function is explicitly trained to score correct

candidate sentences higher than incorrect sentences. Given a question, the approach

takes a pair of candidate answer sentences and learns to predict which sentence is
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relevant to the question. Concretely, a score is predicted for each pair of questionQi

and a candidate sentencePij . We discuss more about several such approaches and

the state of the art models in the Section 3.

Q: Who is the author of the book , "The Iron Lady: A Biography of Margaret
Thatcher" ?
P1: The Iron Lady ; a biography of margaret thatcher by hugo young, farrar
straus giroux
P2: this second volume of ward's lively and psychologically revealing biog-
raphy begins with his honeymoon abroad in 1905 and concludes with his
election as governor of new york in 1928.
P3: in "The Iron Lady", Young traces the winding staircase of fortune that
transformed the younger daughter of a provincial english grocer into the
greatest woman political leader since catherine the great.

An example from TREC-QA dataset, where the sentence P1 is the correct answer.

The example shown above is from a QA task where the answers are sentences. The

models built for this task must determine if an answer sentence is correct or wrong.

However, the main limitation of this task is the inability to extract short answers

from the sentences. For example, the correct answer for the above example isHugo

Young, but the model can only determine if the whole sentence is an answer or

contains a short answer in it.

The TrecQA dataset by (M. Wang, Smith, et al., 2007) which was curated from the

Trec task1 is used to benchmark this task.

2.2.3 Reading Comprehension or Machine Reading

To focus on the answer extraction task, theReading Comprehension or Machine

Readingtask was introduced. By de�nition, the goal of Reading Comprehension

task is to "read" a document, which technically means "analyse" or "understand" a

document and answer a set of questions based on the document, similar to aCloze

test2 where an exercise consisting of a portion of text with certain items such as

entities, words, numbers etc. are removed or hidden from the text. The participant

is asked to replace the missing item or items by reading the text. "Cloze tests require

the ability to understand context and vocabulary in order to identify the correct

1https://trec.nist.gov/data/qa.html
2https://en.wikipedia.org/wiki/Cloze_test
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language or part of speech that belongs in the deleted parts of the paragraphs." -

Wikipedia2.

Using this intuition, the Reading Comprehensiontask for answer extraction was

developed by (Hermann et al., 2015) where a question and a relevant paragraph

is the input to a QA system and the answer should be a span (word, set of words,

numbers, phrases etc.) from the relevant paragraph. This way an answer from the

predicted paragraph can be extracted.

By de�nition, Reading Comprehensiontask needs comprehension skills to understand

and answer a question. The task of QA4MRE3 (Question Answering for Machine

Reading Evaluation) by (Peñas et al., 2013) was held in CLEF QA task, which is

termed asMachine Readingand had multiple choice answers for questions. The task

needed some reasoning and understanding of the paragraph to choose the correct

answer among candidate answers and not the extraction of substrings from the

paragraphs like in the Reading Comprehensiontask.

In our work we only use and refer to the Reading Comprehensiontask which is

formally de�ned below. A sample dataset consists of a QuestionQ, a relevant

paragraph P along with two string offsets - Start and Endwhich represent the start

and the end character offsets of the answer in the relevant paragraph text. The task

of extracting answer span has been generally approached in an uniform manner

since its inception by (Hermann et al., 2015). If the answer is a single token, then a

probability distribution overall the paragraph terms is used to extract the answer

token. If the answer is a span (more than 1 tokens), two classi�ers are used to detect

the answer span.

A question Q has m terms Q = f q1; :::::; qm g and paragraph S has n terms S =

f s1; :::::; sng. An answer span(s; e) is a substring in S. (s; e) 2 S.

We discuss more about several approaches and the state of the art models in the

Chapter 3.

3http://nlp.uned.es/clef-qa/repository/qa4mre.php
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Question: Which NFL team represented the AFC at Super Bowl 50?

Answer Passage: Super Bowl 50 was an American football game to determine
the champion of the National Football League (NFL) for the 2015 season. The
American Football Conference (AFC) champion Denver Broncos defeated the
National Football Conference (NFC) champion Carolina Panthers 24-10 to earn
their third Super Bowl title. The game was played on February 7, 2016, at
Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As
this was the 50th Super Bowl, the league emphasized the "golden anniversary"
with various gold-themed initiatives, as well as temporarily suspending the
tradition of naming each Super Bowl game with Roman numerals (under
which the game would have been known as "Super Bowl L"), so that the logo
could prominently feature the Arabic numerals 50.

Answer: Denver Broncos. Start Offset: 177

An example of RCtask from SQUAD dataset (Rajpurkar, J. Zhang, et al., 2016).

The example shown above represents a sample data from a Reading Comprehension

dataset SQUAD where usually more than one questions exists per paragraph. A lot of

buzz around this task was created by the media,4 when a system got higher accuracy

scores than the human annotator scores. Since then and before this buzz, a lot of

works have been published on the SQUAD dataset and their scores are presented on

its leaderboard5 which shows the increasing interests of the community towards this

task.

Following this hype, a lot of limitations of the task and the models were put forward

by Yoav Goldberg6 and several others on various social media such as Medium and

Twitter.

Following is a list of some of the limitations of Reading Comprehension on SQUAD

dataset which gave rise to other methods and datasets later on:

• The answer is guaranteed to be in the paragraph.

• We must �nd the answer in a given paragraph, not elsewhere.

4https://www.wired.com/story/ai-beat-humans-at-reading-maybe-not/,
https://www.cnet.com/news/new-results-show-ai-is-as-good-as-reading-comprehension-as-
we-are/

5https://rajpurkar.github.io/SQuAD-explorer/
6http://u.cs.biu.ac.il/~yogo/on-squad.pdf

2.2 Task based classi�cation 21



• Annotators see the paragraph when creating the question, resulting in high

lexical similarity between question and answer.

• Adversarial manipulation of the paragraphs (appending an automatically gener-

ated noisy sentence to the paragraph) leads to signi�cant drop of performance

of many models. (Jia and Liang, 2017)

• No symbolic reasoning is required. Understanding questions to perform rea-

soning over paragraphs is not possible in traditional datasets such as SQUAD

or CNN/Dailymail datasets (Hermann et al., 2015).

2.2.4 Reading Comprehension 2.0 - Modi�cations

There are several shortcomings from Reading Comprehension task which were listed

in the previous section. To address some of them, several works have been published

recently. More details about speci�c works are presented in the Section 3.

In this section we brie�y describe three approaches which are often seen as modi�-

cations for the Reading Comprehensiontask.

Fig. 2.2: An example from HotpotQA dataset by (Zhilin Yang, Qi, et al., 2018) on multi-hop
reasoning for QA.
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1. Unanswerable questions- in other words Paragraphs with no answers. In the

setting of open domain question answering, not always there is an answer

present in the paragraph. To address this issue the SQUAD 2.0 dataset (Ra-

jpurkar, Jia, et al., 2018) was released which contains some questions which

do not have an answer.

2. Discrete reasoning over paragraphs- To address the simplicity of the task, ques-

tions which do not need any symbolic reasoning, (Dua et al., 2019) released a

dataset named DROP (Discrete Reasoning Over Paragraphs) which consists of

questions which will need to resolve multiple references in a question, perhaps

to multiple input positions, and perform discrete operations over them (such

as addition, counting, or sorting).

3. Multihop reasoning- When a question needs several paragraphs or sentences

to �nd references to entities which are needed to answer a question, the task

is referred to as Multihop QA. For instance, a paragraph which contains an

answer might not have any lexical term match with the question terms. Such

situation makes the Reading Comprehension models to fail (predict wrong

answers). Multihop QA models must take this into account by cross referencing

entities from different paragraphs and making links to the answer. Figure 2.2

shows an example by (Zhilin Yang, Qi, et al., 2018) where the answer has 5

supporting sentences from 2 different paragraphs which relates the answer to

the question.

There are some simple approaches used for the above cases. Forunanswerable

questions, a binary classi�er can be trained to determine if a paragraph contains

answers to a question, if the binary predication is positive, then theStart and End

linear classi�ers can extract the answer from the paragraph. ForDiscrete reasoning

over paragraphs, authors of (Dua et al., 2019) propose multi-class classi�cation

approach to determine what type of reasoning problem the question refers to and

perform further steps. We discuss more works on these topics in the Section 3.

2.2.5 Open Domain Question Answering - OpenQA

Back to where it all started - the pioneering QA task as explained in Section 2.2 is

open domain question answering. Open Domain Question Answering orOpenQAis

a QA task where a given input data would contain a question and a short answer

(which is a factoid answer) and no supporting paragraphs or documents. The

systems should �nd relevant documents from some sources, and further �nd relevant

paragraphs and perform answer processing to extract a short answer. In other words,
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OpenQAtask follows the QA pipeline, where a QA system as shown in Figure 2.1

shall perform intermediate steps in order to obtain a �nal answer.

The difference betweenLegacy OpenQAand OpenQAis in the intermediate modules.

Earlier, different information retrieval approaches, knowledge graphs and ontologies

were used to process information in the intermediate modules. Currently deep

learning models have replaced these intermediate modules (by modelling different

intermediate tasks) and the goal is to achieve an end-to-end model which does all of

it in a single model like in multi task learning.

OpenQAtask is a union of both Answer Sentence Selectionand Reading Comprehen-

sion tasks done sequentially but with certain changes. The assumption ofReading

Comprehensionthat the paragraph always contains an answer will not be feasible

in OpenQAsetting as theAnswer Sentence Selectionmodel might select a paragraph

semantically nearby to the question terms but might not contain an answer.

Q: What's the capital of Ireland?
P1: As the capital of Ireland, Dublin is...
P2: Ireland is an island in the North Atlantic. . .
P3: Dublin is the capital of Ireland. Besides, Ottawa is one of famous tourist
cities in Ireland and ...

An example from a dataset on OpenQAtask.

An example shown above shows how a relevant paragraph does not always contain

an answer. P2 is a relevant paragraph according to an Information Retriever model

but the answer is not present in this paragraph. A model trained on Reading

Comprehensiontask will extract some answer which is incorrect. To overcome this

problem, RC 2.0models can be used in combination with Answer Sentence Selection

models or probabilistic models can be used to extract answers only from highest

probable paragraph using aReading Comprehensionmodel.

2.3 Datasets/Corpora

The performance of a QA model can be tested and reported on benchmark datasets

which are used by the research community. In this section we list some of the

well known datasets used for reporting results on particular tasks. As explained

in QA pipeline in the Figure 2.1, the section 2.2 details three main tasks and the
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recent variants of the Reading Comprehensiontask. Listed below are the datasets

corresponding to these tasks.

2.3.1 Answer Sentence Selection

Domain Dataset Split #Question #QA Pairs

Open Trec QA
Train 94 4,718

Train-all 1229 53,417
Raw-Dev 82 1,148
Raw-Test 100 1,517
Clean-Dev 65 1,117
Clean-Test 68 1,442

Open SQUAD-Sent
Train 87,599 359,222
Dev 10,570 90,117
Test - -

Open Wiki QA
Train 873 8,627
Dev 126 1,130
Test 243 2,351

Closed Insurance QA
Train 12887 -
Dev 1000 -

Test1 1800 -
Test2 1800 -

Tab. 2.1: Answer Sentence Selection Datasets. #Questions - Number of questions.
#QA Pairs - Number of Question-Answer pairs. Statistics presented by (Lai et al.,
2018). WikiQA questions without any correct answers are removed as done by
(Y. Yang et al., 2015)

Table 2.1 presents the datasets for theAnswer Sentence Selectiontask.

TrecQA is a well known dataset to benchmark a system built forAnswer Sentence

Selectiontask. It was created from the TREC Question Answering tracks (M. Wang,

Smith, et al., 2007). It contains real questions created from search engine logs and

sentences from news articles returned by the participating systems in TRECQA task.

There are two versions of this dataset, both have the same training set (Train has

manual judgements and Train-all is a noisy set with automatic judgements) but their

development and test sets differ. The clean version has removed questions in the dev

and test sets that did not have answers or only contained positive/negative answers,

reducing the development and test sets sizes from the raw version. WikiQA dataset

(Y. Yang et al., 2015) is constructed from real queries of Bing search engine and

Wikipedia data. The answers are annotated by human annotators on Amazon Mturk

crowd sourcing platform. Questions with no correct answers are usually removed,

resulting in the statistics presented in the table 2.1.
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InsuranceQA by (Feng et al., 2015) is a large scale dataset on insurance domain.

The questions and answers were collected from the website Insurance Library7.

The questions are from real world users and the answers with high quality were

composed by professionals with deep domain knowledge. There could be multiple

correct answers for some questions so that the number of correct answers is larger

than the number of questions.

SQUAD-Sent dataset was created by us by modifying the SQUAD dataset (Rajpurkar,

J. Zhang, et al., 2016) designed for reading comprehension, into an answer sentence

selection dataset to provide the answers in their original context. Sentence tokeniza-

tion was performed on SQUAD dataset paragraphs using spacy toolkit8 and answers

were checked for an exact match of strings in the sentences. There is only one

positive sentence per question and the all other sentences are negative examples.

Although Natural Questions dataset by (Kwiatkowski et al., 2019) contains long

sentence answers (like in sentence selection task) for questions, with both relevant

and irrelevant paragraphs. It is not explicitly used for Answer Sentence Selection

rather it is used for RC 2.0or OpenQA. Questions come from Google search engine

queries �ltered by human annotators along with the answers.

2.3.2 Answer Extraction

The Table 2.2 presents different answer extraction task datasets forReading Compre-

hension, Advancements toReading Comprehension- RC 2.0, and OpenQAtasks.

The rise of deep learning models in the �eld of natural language processing gave rise

to the demand for large scale labelled datasets across different tasks. For reading

comprehension, the �rst large scale synthetic dataset was constructed by (Hermann

et al., 2015) who used a large scale news domain corpus and converted that into a

cloze style question answering dataset who goal is to �nd the missing entities for

the query, in the paragraph. CNN and Dailymail datasets presented in the Table

2.2 shows this �rst large scale supervised reading comprehension dataset created

synthetically which was inspired by the Cloze style QA.

Following this, a work by (Rajpurkar, J. Zhang, et al., 2016) released the SQUAD

dataset which presents a new dataset for Reading Comprehension annotated by

human crowdsourced workers. A set of human annotators were asked to read a

paragraph and frame questions on it. SQUAD dataset is split intoTrain, Devand

Testsets. TheTestdataset is hidden from public access. The only way to evaluate a

7https://www.insurancelibrary.com
8https://spacy.io
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Dataset Annotation Split #Question Task

CNN Synthetic
Train 380,298
Dev 3,924 RC - Cloze
Test 3,198

Dailymail Synthetic
Train 879,450
Dev 64,835 RC - Cloze
Test 53,182

SQUAD Human
Train 87,599

Annotated
Dev 10,570 RC
Test 9,533

SQUAD 2.0 Human
Train 130,319

Annotated
Dev 11,873 RC 2.0
Test 8,862

NewsQA Human
Train 107,673

Annotated
Dev 5,988 RC 2.0
Test 5,971

HotpotQA Human
Train-easy 18,089

Annotated
Train-medium 56,814

Train-hard 15,661
Dev 7,405 RC 2.0

Test-Distractor 7,405 Multi Hop
Test-fullwiki 7,405

DROP Human
Train 77,409

Annotated
Dev 9,536 RC 2.0
Test 9,622 Multi Hop

QUASAR-T Synthetic
Train 37,012
Dev 3,000 OpenQA
Test 3,000

SearchQA Synthetic
Train 99,811
Dev 13,893 OpenQA
Test 27,247

TriviaQA Synthetic
Train 66,828
Dev 11,313 OpenQA
Test 10,832

CuratedTREC Human
Train 1,486

Annotated
Dev - OpenQA
Test 694

Webquestions Human
Train 3,778

Annotated
Dev - OpenQA
Test 2032

Natural Questions Human
Train 307,373 Ans. Sentence

Annotated
Dev 7,830 Selection+RC 2.0
Test 7,842 +OpenQA

BIOASQ Human
Train 685

Annotated
Dev 94 OpenQA
Test 161

Tab. 2.2: Reading Comprehension, OpenQA and modi�ed RC 2.0 datasets.

system on theTestset, is by submitting the code on a codalab platform. The SQUAD

leaderboard9 then will display the system scores. A lot of work has been published

by benchmarking on this dataset.

9https://rajpurkar.github.io/SQuAD-explorer/

2.3 Datasets/Corpora 27



Due to the issues pointed out in the Section 2.2.4 with respect to the SQUAD v1.0

dataset on Reading Comprehension, all the other datasets published with changes

are referred asRC 2.0in the Table 2.2 including SQUAD v2.0.

SQUAD 2.0 dataset (Rajpurkar, Jia, et al., 2018) was released two years after the

�rst one with additional data which contained questions without an answer. The

dataset contained an additional data point about being answerable or not. The

unanswerable questions were annotated by crowd sourced workers.

NewsQA is aRC 2.0 type dataset with unanswerable questions. Only the CNN

articles from the dataset of (Hermann et al., 2015) were used and crowd sourced

workers were asked to create questions in natural language. This is done to convert

a synthetic cloze QA dataset to a crowd sourced human annotated QA dataset.

HotpotQA (Zhilin Yang, Qi, et al., 2018) is a special RC 2.0dataset which pointed

out the issues with Reading Comprehensionor traditional RC 2.0 datasets with

unanswerable questions being simple to answer without any reasoning required.

Another challenge with models trained on these datasets is the interpretability or

explanation. Therefore this dataset provides supporting facts from different parts

of a paragraph which are required to answer a particular question. This dataset

is a Multi-hop reasoning dataset which means an answer can be answered with

information taken from more than one document to arrive at the answer. This solves

another shortcoming of the RCdatasets such as SQUAD whose questions have high

lexical similarity around the answer terms in the paragraphs.

DROP dataset (Dua et al., 2019) is a crowd sourced dataset which is also aMulti-hop

reasoning dataset like HotpotQA but has questions which require discrete operations

such as addition, counting, or sorting to answer questions. Some of the other

operations needed to answer these questions involve - subtraction, comparison,

selection, addition, coreference resolution, different answer spans and more. The

authors also propose a multiclass classi�er method to classify which kind of reasoning

problem the question would belong to and perform discrete operations.

QUASAR-T dataset (Dhingra, Danish, et al., 2018) consists of trivia questions which

were collected manually by a reddit user and posted freely online10. It is in the

format of OpenQAtask where the paragraphs are retrieved using LUCENE tool and

not all the paragraphs contain the answer.

10https://www.reddit.com/r/trivia/comments/3wzpvt/free_database_of_50000_trivia_questions/
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SearchQA (Dunn et al., 2017) is a large-scale open domain QA dataset which consists

of QA pairs crawled from J!11 archive and the paragraphs are obtained by retrieving

50 webpages for each question from Google search.

TriviaQA dataset (Joshi et al., 2017) consists of QA pairs created by trivia enthusiasts

and documents gathered by retrieving 50 webpages per question using Bing Web

search. For our experiments involving Quasar-T and SearchQA, we use the retreived

paragraphs from (S. Wang, M. Yu, Guo, et al., 2018) as done by (Y. Lin et al.,

2018).

CuratedTREC dataset (Voorhees, 2001) is based on the benchmark from the TREC

QA datasets from 1999, 2000, 2001 and 2002.

WebQuestions (Berant et al., 2013) is designed for answering questions from the

freebased knowledge base which was built by crawling Google suggest API and the

paragraphs were retrieved from English wikipedia.

Natural Questions by (Kwiatkowski et al., 2019) is a large scale QA dataset with

questions coming from Google search engine which are anonymous and aggregated.

They also release a 5 way annotated test data to capture different ways of human

annotations. In the paper they report some �ndings on 25-way annotations on 302

examples to highlight human variability for annotations. This dataset is 3 times

bigger than SQUAD dataset and contains long answers (paragraphs or wikipedia

HTML bounding boxes highlighted by the annotators) and short answers (answer

spans highlighted by the annotators).

There have been some debate about the inductive bias in some of the datasets like

SQUADdataset where people were �rst shown the paragraphs and answers while

annotating and were asked to frame questions based on that. This arguably gives

an easier set of questions than when somebody was just asked to �nd answers in a

paragraph which the SQUADtask is aimed for. Datasets likeNatural Questions do

not ask users to formulate queries but rather choose the queries based on existing

query logs from their search engines to avoid such biases.

The �eld of Question Answering has seen a lot of datasets because of the rise in the

usage of deep learning methods and the trend of releasing more models and datasets.

This has changed and improved some of the issues in the former QA systems which

heavily relied on feature engineering. In the section 3, we discuss some works which

have had signi�cant impact in the QA �eld.

11https://www.j-archive.com
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BIOASQ dataset

BIOASQ12 challenge is a large-scale biomedical semantic indexing and question

answering task (Tsatsaronis et al., 2015) which has been held successfully for 7

years. The challenge proposes several tasks using biomedical data. One of the tasks

focuses on Biomedical question answering (Task B Phase B) where the goal is to

extract answers for a given question.

Since our work is mainly focused on domain speci�c QA with biomedical data, we

present the BIOASQdata separately. BIOASQtask is an OpenQAtask with both

relevant and irrelevant snippets in the dataset.

Datasets Train Dev Test

BIOASQ 4b 427 59 161
BIOASQ 5b 544 75 150
BIOASQ 6b 685 94 161

Tab. 2.3: BIOASQ datasets used in all our experiments along with their splits. The numbers
represent number of questions. It is a small scale expert annotated QA dataset.

2.3.3 Open Domain vs Closed Domain Corpus

Closed Domain corpora are those datasets that come from a speci�c domain source

which consists of special de�nitions, vocabulary terms and features which corre-

sponding to the domain such as Insurance, Medical, Biomedical, Scienti�c, law etc.

Their size is often small scale.

Open Domain corpora are those datasets that come from a broad range of data

sources and are not constrained by some special domain speci�c content. Usually

datasets coming from News, Wikipedia, Common crawled data from the internet

that do not require certain domain expertise to understand. They are termed under

Open Domain data for textual corpora. Their size is often large scale.

BIOASQ Question Answering dataset is a biomedical domain dataset with questions

annotated by biomedical domain experts. Domain speci�c (closed domain) corpus

often have certain special characteristics which make them different. Some of the

characteristics are listed below:

• Specialized vocabulary.

12http://bioasq.org/
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• Different answer variants (abbreviations, symbols etc.) for a same question in

factoid QA.

• Small scale data.

• Created with the help of domain experts.

• Focused towards a speci�c community of users.

BIOASQ dataset being a closed domain dataset, was annotated by biomedical experts

with the support of biomedical documents. Experts were asked to curate questions

and annotate or provide answers to them.

2.4 Evaluation metrics

Different Question Answering tasks have different evaluation metrics because of

different outputs. We discuss the evaluation metrics we used in our work in this

section based on the corresponding QA task. We experiment mainly on the tasks of

Answer Sentence Selection, Reading Comprehension, BIOASQ Question Answeringand

OpenQA.

2.4.1 Answer Sentence Selection

For a given question, there are a set of sentences out of which one or more sentences

are correct. For evaluation, Mean Average Precision (MAP) (Eq. 2.1) and Mean

Reciprocal Rank (MRR) (Eq. 2.2) are used.

Precision is calculated for each question if the highest ranked (or scored) sentence is

retrieved correctly or not (P = 0 for each correct sentence that was not retrieved).

The average is then calcuated for each question. Finally, an average over all questions

is calculated.

MAP =
1
N

NX

j =1

1
Qj

Q jX

i =1

P(rel = i ) (2.1)

with Qj being the number of relevant sentences for questionj ; N the number of

questions, andP(rel = i ) the precision at i th relevant sentence.
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In the case of MRR, each system returns someK number of answers, in rank of

con�dence of their correctness, for each question. The MRR is de�ned as the mean

of the inverse rank of the �rst correct answer, taken over all N questions:

MRR =
1
N

NX

i =1

RR i (2.2)

RR i =
1
r i

(2.3)

The score for an individual question i is the reciprocal rank r i where the �rst correct

answer appeared (0 if no correct answer in topK (often K=5) answers). Thus, there

are only six possible reciprocal ranks per question for K=5: 0, 0.2, 0.25, 0.33, 0.5,

and 1. MRR is averaged over theN questions.

Instead of implementing code for computing this, once can use the scripts13 provided

by Trec.

2.4.2 Reading Comprehension

For a simple Reading Comprehensionsystem, an answer is present inside the para-

graph. i.e the answer is a substring of a paragraph string. There are two types of

evaluations commonly done by systems for this task.

• Unof�cial Evaluation - Word offsets of the answers in paragraphs are evaluated.

• Of�cial Evaluation - As de�ned by (Rajpurkar, J. Zhang, et al., 2016), answer

strings are extracted from the word offsets, and are normalized before being

evaluated.

A simple Reading Comprehensionsystem has two classi�er outputs which detect the

start and end positions of the answers in the paragraph.

For the Unof�cial Evaluation - Accuracy is evaluated to check how accurate the

start and end positions individually are extracted by the model. For a question i , if

Gold standard label is the same as Predicted label, Accuracy is 1, else the Accuracy

is 0 where label is the pair of word offsets. An average over all the questions is

calculated.

13https://github.com/usnistgov/trec_eval
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For the Of�cial Evaluation - The predicted word offsets are used to retrieve the

answer text from the paragraph, and are normalized to remove punctuations, stop

words, extra spaces etc. and are checked for exact match between the gold standard

and normalized prediction strings. If both the strings match, then Exact Match (EM)

score is 1 for questioni , elseExact Match (EM)is 0, an average over all the questions

is calculated.

Along with Exact Match, F1 Score for each question is calculated and averaged over

all the questions, using the following equation:

F1 =

 
2

recall � 1 + precision � 1

!

= 2 �
precision � recall
precision + recall

(2.4)

Precision and Recall are computed based on words which are retrieved and are

computed as follows:

P recision =
len(tokens(prediction ) \ tokens(gold standard))

len(prediction )
(2.5)

Recall =
len(tokens(prediction ) \ tokens(gold standard))

len(gold standard)
(2.6)

Where tokens function tokenizes words from the string and len function calculates

the number of words in the string.

These measures were initially used by (Rajpurkar, J. Zhang, et al., 2016) on the

SQUAD leaderboard14 whose code can be found in their repository.

2.4.3 BIOASQ evaluation

BIOASQ challenge has a biomedical question answering (Task B Phase B) task where

the goal is to extract answers for a given question from relevant snippets.

For a given question, there are one or more relevant snippets which contain the

answer. Unlike Reading Comprehensiontask, not all answers are correctly annotated

in the gold standard data and also not all gold standard answers are present in all

the relevant snippets.

The of�cial evaluation as de�ned by the task organizers is as follows. There are

three measures computed by the scripts15 provided.

14https://rajpurkar.github.io/SQuAD-explorer/
15https://github.com/BioASQ/Evaluation-Measures
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• Strict Evaluation - Top 1 accuracy - Where accuracy is measured using Exact

Match (EM) as done by Reading Comprehensiontasks for Top-1 answer.

• Lenient Evaluation - Top 5 accuracy - If the gold standard is present in Top 5

responses, where accuracy is measured using Exact Match (EM) as done by

Reading Comprehensiontasks.

• Mean Reciprocal Rank - As done inAnswer Sentence Selection- the score for an

individual question i is the reciprocal rank r i where the �rst correct answer

appeared (0 if no correct answer in top �ve answers).

All the three measures are averaged over total number of questions and are reported

in the challenge leader board16, batch wise.

2.5 Contributions and Conclusion

Our work is funded by the GOASQ project17 which intends to investigate, compare,

and combine two different approaches for answering questions formulated in natural

language over textual, semi-structured, and structured data. One approach is the

text-based question answering that directly answers natural language questions

using natural language processing and information extraction techniques. The

other tries to translate the natural language questions into formal, database-like

queries and then answer these formal queries w.r.t. a domain-dependent ontology

using database techniques. This thesis work is focused on the �rst approach that

directly answers natural language questions using natural language processing and

information extraction techniques.

As de�ned in our research objectives (Section 1.3), our focus is towards building

QA models which work with better performance both on large scale and small

scale datasets such as biomedical domain datasets. For this purpose, we show how

Domain Adaptationcan be done on biomedical data from open domain QA datasets

using Reading Comprehension. We evaluate two models (Reading Comprehension

and OpenQA) for biomedical question answering and compare their performance

variation to show that the OpenQAmodelling of BIOASQ performs better. We also

experiment with several open domain datasets forDomain Adaptation process to

show which ones perform better while adapted to biomedical domain.

16http://participants-area.bioasq.org/
17https://goasq.lri.fr/
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We use SQUAD v1.0, v2.0, HotpotQA, NewsQA datasets for reading comprehension,

QUASAR-T dataset for OpenQA, BIOASQ dataset for domain speci�c dataset. WikiQA,

TrecQA for Answer sentence selection task.

Another research objective is to focus on leveraging structured and semantic infor-

mation for existing QA models. In factoid question answering where answers are

usually entities, their types (based on a custom taxonomy) can often be inferred by

analysing the question keywords. These types are called as "Expected Answer Types"

which are useful in traditional pipeline question answering systems. These are used

to �lter or eliminate candidates which does not belong to the question type. This

information is seldom used explicitly in deep learning models for QA as the goal is

to build end-to-end systems. We present a detailed analysis on "Expected Answer

Types" for biomedical and open domain QA to verify its usefulness. We also show

how entity information and expected answer type information can be used for QA

tasks in open domain QA to further improve scores of deep learning models.

We annotate for more variants of answers than just use gold standard data on

biomedical QA dataset and show that theReading Comprehensionmodels perform

better when annotations are done correctly with more information. We also show

how these annotations can be automatically annotated using Metamap tool which

uses UMLS meta thesaurus and fetches similar results to the manual ones.

Deep learning models almost always focus towards building end-to-end systems,

and not much emphasis is put towards post processing of the outputs to better rank

the Top-K predictions. We use semantic features and structured information from

different paragraphs provided for a question, and use it for a ranking model to

improve the QA performance. We use some traditional machine learning models to

rank a better answer candidate from Top-K predictions into Top-1 position and show

that there is a scope for improvement on the predictions from the neural network

models. This applies both on biomedical question answering and open domain

question answering models onOpen QAtasks.

The following chapter presents some of the state-of-the-art models on the above

tasks in detail.
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3State of the Art

In the previous chapter we have de�ned the Question Answering (QA) tasks, datasets,

evaluation metrics commonly used. In this chapter we present the state of the art

models and present a literature review of how some models and tasks evolved over

time.

We present the history of question answering system development from their initial

stages, and how they ended up with a structured pipeline of tasks which we see

these days. The extensive use of deep learning models in machine learning also

had an impact on question answering changing the way some traditional systems

work. The following sections �rst present question answering in the past, before

deep learning and with deep learning models. Recently since contextual embeddings

using pre-trained language models have started to improve performance of several

NLP tasks including question answering, we present some of the works in this regard

which are currently in the trend.

Since a long time, Question Answering is always targetted in different ways based

on the type of data used. One of the pioneering works in the �eld of Question

Answering was BASEBALL (Green Jr et al., 1961) which was built for answering

questions about baseball games played in the American league over one season.

LUNAR (Woods, 1973) was designed as a result of the Apollo moon mission, to

help lunar geologists. Several others early systems SYNTHEX, LIFER, and PLANES

are mentioned by (Paris, 1985) for the same objective of getting an answer for a

question asked in natural language. There were no pipeline structure approaches

as we see in Figure 1.1 earlier in those systems and people built rule based systems

generally. This kind of QA systems were also built for querying databases. The

QA tasks on plain text with answer sentences and spans, gained attention while

TREC QA task was organized in 1999. Data such as databases, knowledge bases and

graphs, triples, plain text etc. lead to different types of question answering systems.

Given a question in natural language, one of the main challenges is to convert or

translate the question into a query which can be used to querying a database or a

knowledge base. The process involves aligning a question with the KB triples, which

needs to overcome lexical gap and to adapt the question parsing to the KB schema

in order to determine which phrases are entity or relation mentions. If the question

answering data is only based on free text, these problems do not exist but other
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problems such as text understanding, part of speech tagging, entity recognition,

answer type detection etc. are important to tackle (Grau and Ligozat, 2018)

Our work focuses on text based question answering, mainly factoid question answer-

ing and answer sentence selection tasks.

Fig. 3.1: Question Answering pipeline as de�ned by (Allam and Haggag, 2012)

3.1 Text Based Question Answering by Feature

Engineering Approaches

Different question answering systems can be generalised into a single structured

pipeline manner. A recent survey by (Allam and Haggag, 2012) shows in Figure 3.1

how different sub tasks are structured into one QA structure and each contribution

would come under some sub tasks generally, which is similar to the one presented

in Figure 2.1. We list and explain some of the works with respect to the structured

pipeline.

To retrieve an answer in a text from a question, there are three main modules

namely:

• Question Processing
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• Document Processing

• Answer Processing

Question Processing

Question Processing module takes as input a question in natural language. This

module Analyzesthe question, Classi�esit into a question type and Reformulatesinto

queries for the IR engine.

Question analysis is done to analyze and determine thefocusof the question. A

focusis word or a sequence of words in the question which is used to determine and

disambiguate what the question is looking for. For example, in the question "What

is the longest river in France?", the questionfocuswould be "longest river". If the

Expected Answer Type (that de�nes the entity type of the answer inferred from the

question) and the question focusare known, the system can determine the answer.

Pattern matching rules can be used to determine thefocusbased on the question

type. Machine learning methods using models like Wapiti by (Lavergne et al., 2010)

that uses conditional random �elds for sequence labelling tasks can also be used for

this purpose.

Determining the question type is important to understand what kind of answer is to

be extracted. This information will make the search easier by �ltering the type of

information to be searched. For example, if the question type is a "location" then the

answer expected shall be a location and not a name of a person. Either done by rule

based systems or machine learning based classi�ers, the question types are classi�ed

based on taxonomies.

The effectiveness of the taxonomy chosen is directly linked to the capacity of rec-

ognizing the question type. For rule based systems, the taxonomies act as a base

to construct rules such as "Where" questions would classify as "Location" class

and "When" would classify as "Date" class and so on. This approach was used by

(Moldovan et al., 1999; Hermjakob, 2001; Radev et al., 2002; Ferret et al., 2001) as

it was simple, quick and effective.

Machine learning classi�ers need labeled questions to be trained on. Choosing the

right set of features to represent the question and the type of classi�er plays an
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Fig. 3.2: Hierarchical question types taxonomy by (Moldovan et al., 1999) (left) and (Li
and Roth, 2002) (right)

important role on the performance. Features may vary from simple shallow word

analysis to detailed syntactic and semantic features using linguistics analysis. The

authors of (Hermjakob, 2001) used machine learning based parsing and question

classi�cation. The authors of (D. Zhang and W. S. Lee, 2003) compared various

choices for machine learning classi�ers using the hierarchical taxonomy proposed by

(Li and Roth, 2002). Among: Support Vector Machines (SVM), Nearest Neighbors

(NN), Naive Bayes (NB), Decision Trees (DT), and Sparse Network of Winnows

(SNoW), they showed that with only surface text features SVM outperforms four

other methods for question classi�cation.

For the question reformulation into queries (Azad and Deepak, 2019) used entity

recognition tools, stop words, part of speech taggers to extract keywords and features

from question words which are appended to the expanded query along with synsets

from the WordNet by (Miller, 1995). These are input to Information Retrieval

engine.

40 Chapter 3 State of the Art



Document Processing

The �rst step in document processing module is to extract relevant documents for an

input question. A document can be de�ned as a set of multiple paragraphs of text. A

relevant document is a document which has some semantic relationship with the

question. This can be based on matching terms between question and documents,

terms which are semantically nearby to each other measured using cosine similarity

in embedding space, etc. An important detail to highlight here is that a relevant

document (judged according to some measure) might not always contain short

answer terms but might still be relevant to the question, which leads to different QA

tasks.

The authors of (Stoyanchev et al., 2008) present a document retrieval model on a

question answering system, and evaluate the use of named entities, part of speech

tags in a query and show that phrases extracted from questions, named entities of

noun, verb, and prepositional phrases improves IR performance than just words.

The authors of (Gaizauskas and Humphreys, 2000) describe an IR model with an

NLP model that performed reasonably through linguistic analysis.

In question answering datasets which require a relevant textual paragraph for a

question, researchers typically use an IR method to retrieve relevant documents. The

authors of (Dhingra, Mazaitis, and William W Cohen, 2017a) use ClueWeb09 service

to retrieve 100 HTML documents per question and later do post processing to remove

HTML syntax, non textual data, images etc. For paragraph �ltering and ordering

given in the Figure 3.1, different approaches do it differently. A common way of

doing this is by splitting documents into paragraphs which act as answer candidates

for Answer Sentence Selectiontask which predicts the best suitable paragraphs as

answers. We detail this in section 3.2.1. Several models and approaches for this can

be found on the ACL leaderboard1.

Answer Processing

Answer Processingmodule functions differently for different sub-tasks of textual

question answering. For long answers like answer sentences, semantic similarities

are captured between questions and answer sentences. For short answers like short

spans or phrases, entities, one of the several ways of processing answers is based on

the expected answer types obtained in theQuestion Processingmodule as done by

(Grappy, Grau, et al., 2011).

1https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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For long answers like in TrecQA dataset2, the authors of (Severyn and Moschitti,

2013) use the answer type and their named entities as features in their tree kernel

approach on answer sentence selection and extraction task. The authors of (Gleize

and Grau, 2015a) also propose a uni�ed kernal approach for recognizing textual

entailment and answer sentence selection tasks.

For short answers, the answer type can be used to infer short answers by using the

named entity recognition tools. For the short answers that are entities, a question

type classi�er would predict a class based on the hierarchies in Figure 3.2, which

can be used to extract the matching named entities that are further ranked based

on some features such as embedding similarity, term overlap. The authors of (Shih

et al., 2005) propose an approach to extract answers in Chinese texts. The authors of

(Ravichandran and Hovy, 2002) present a model for �nding answers using shallow

surface text patterns and manually constructed rules on the Web dataset and TREC-

10 questions. The authors of (Peng et al., 2005) present an approach to capture long

distance dependencies using linguistic structures to enhance patterns in chinese QA

data.

Earlier works before deep learning models such as the ones by (Punyakanok et al.,

2004; Cui et al., 2005) focus mainly on syntactic features such as using dependency

trees and relation between terms and the distance between question and sentence

syntax trees. They also include named entity features for semantic information.

Instead of using strict word match between question terms and answer sentence

terms, the authors of (Cui et al., 2005) propose fuzzy relation matching based on

statistical models. The authors of(Gleize and Grau, 2015a) use kernel functions to

detect paraphrases, answer sentence selection and recognizing textual entailment.

Some other works such as (Heilman and Smith, 2010; M. Wang and Manning, 2010;

Yao et al., 2013b; Yih et al., 2013) focus on using tree edit distances, probabilistic

tree edit models, feature extraction using dependency trees, relations, named entity

types etc.

3.2 Neural Question Answering - Task based

classi�cation

Ever since the rise in the usage of deep learning models and techniques in the �eld of

machine learning and natural language processing. Question answering domain also

has witnessed the impact on a lot of question answering systems built using neural

network models. For a few sub-tasks of question answering, like answer extraction

2https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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from plain text, sentence selection task, these models outperform the traditional

methods.

From building individual sub-tasks of question answering organized in a pipeline to

building end-to-end models which completely rely on input data, deep learning is

being used extensively.

Deep learning models are good at automatic feature extraction which the models

learn based on the input data, contrary to traditional models which heavily rely on

the hand crafted features provided by tools.

In the following section we discuss how deep learning models function on a few QA

tasks following the same classi�cation of tasks presented in Section 2. We discuss

about the current state of the art models in the respective tasks, how some popular

neural network models evolved over time and the advantages/disadvantages of

using one model over the other.

3.2.1 Answer Sentence Selection

Given a question and a set of potential answer sentences, answer selection is the task

of identifying which of the candidates sentences answer the question correctly. As

per the question answering pipeline described in Figure 3.1, theDocument Processing

module outputs a list of paragraphs corresponding to a question, and theAnswer

Processingmodule shall predict which of the answer sentences (or paragraphs) are

relevant to answer the question.

For this task, there are several popular labelled datasets used to benchmark results

as listed in Table 2.1. The most popular dataset used by the community since more

than a decade is TREC QA dataset curated and �rst used by (M. Wang, Smith, et al.,

2007) where the authors use probabilistic quasi-synchronous grammar for question

answering. The dataset is designed for open domain question QA task.

Few years later, (Y. Yang et al., 2015) released a dataset named WikiQA based on

Bing search engine query logs and answer sentences were annotated by humans

on a crowdsourcing platform. Until this dataset was released, all the models were

experimented on TrecQA dataset alone. This shows the lack of datasets for question

answering and especially for the task of answer sentence selection. Table 2.1

presents the four datasets out of which two (TrecQA and WikiQA) are widely used

for benchmarking models. This task also corresponds to a textual entailment task.

Often the models are also evaluated on a paraphrase corpus (Gleize and Grau,

2015a).
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Models and approaches

The ACL page3 for state of the art models for question answering contains a leader-

board with scores comparing MAP (Mean Average Precision) and MRR (Mean

Reciprocal Rank) of different models evaluated using of�cial evaluation scripts4 of

Trec. Authors can upload their scores directly on the leaderboard by linking their

published articles.

As soon as a deep learning model was �rst used in this task by (L. Yu et al., 2014)

where the authors use a 1D CNN model, others started using different deep learning

models for this task. Following the convolutional neural network approach, (Severyn

and Moschitti, 2015) propose a siamese CNN model using learning to rank approach,

which computes a representation of both entries, candidate passage and question,

and a similarity between these two representations using a pooling layer followed

by similarity matrix computation. In (Yin et al., 2016), the similarity of the two

entries is evaluated by computing interactions between words of the two texts by an

attention layer.

The authors of (He et al., 2015) propose a Multi-Perspective CNN for this task which

is further used by (Rao et al., 2016) with a triplet ranking loss function to learn

pairwise ranking from both positive and negative samples. CNNs are generally used

for classi�cation problems where the input size between question and answer pair

does not vary signi�cantly. (Lai et al., 2018) gives a good comprehensive review of

the task and summarizes several works which use deep learning models.

According to the authors of (Lai et al., 2018), there are three general architectures

for measuring the relevance of a candidate answer sentence to a question.

1. Siamese Architecture : In a siamese architecture (Bromley et al., 1994), The

same encoder (a CNN or a RNN) layer is used to build the representations for

the input sentences (both the question and the answer sentence) individually.

After that, the relevance score is determined based on the encoded representa-

tions. There is no explicit interaction between the input sentences during the

encoding process.

3https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
4https://github.com/usnistgov/trec_eval
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Fig. 3.3: An overview of deep learning methods applied for Answer Sentence Selection
presented by (Lai et al., 2018)

2. Attentive Architecture : Rather than encoding representations independently,

attention mechanisms can be used to allow the information from an input

sentence to in�uence the computation of the other's representation (Tan et al.,

2015; Santos et al., 2016).

3. Compare-Aggregate Architecture : In a Compare-Aggregate architecture, vec-

tor representations of small units such as words of the sentences are �rst

compared. After that, these comparison results are aggregated to calculate the

�nal relevance score.

The authors of (Lai et al., 2018) also note that boundaries of de�ning which model

follows which architecture is often unclear because some models mix different
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representations inspired from different types of models making it harder to classify

under a single category.

Following these de�nitions for neural model architectures and de�nitions for Point-

wiseand Pairwiselearning approaches as de�ned in Section 2.2.2, the Figure 3.3

presents an overview of deep learning models used for this task. A similar overview

can also be found on the ACL leaderboard5.

The authors of (Tayyar Madabushi et al., 2018) use a CNN model proposed by

(He et al., 2015) using question classes (or question types as described earlier) to

enhance the dataset by highlighting entities in it. Highlighting entities were done by

mainly two ways called Bracketing (appending a special token before and after the

entity occurrence) and Replacement (replacing the entity word with a special token)

methods. They propose the above two methods for highlighting expected answer

types or question classes in the answer text.

Answer Sentence Selection task was extensively studied and several works using

different neural architectures were proposed. But the question answering commu-

nity shifted focus towards tougher aspects of the factoid QA tasks such as answer

extraction and answering tougher questions which require reasoning skills than just

factoid answer type matches.

3.2.2 Reading Comprehension

Reading Comprehension task has been addressed in several ways. One of the

popular tasks in CLEF wasQA4MREby (Peñas et al., 2013) which provided multiple

choice questions (with one correct answer) and the goal was to understand single

documents and answer a question out of the options provided.

Two of the other earliest Reading Comprehension systems are based on pattern

matching techniques with bag-of-words (Hirschman et al., 1999), and a rule based

systemQuarc(Riloff and Thelen, 2000) which use rules based on the question words

present in the question. The dataset consist of 115 questions in total. The authors

of (Poon et al., 2010) propose an approach using information extraction methods

for detecting predicate argument triples that can later be queried as a relational

database, similar to converting queries in natural language to structured queries.

The authors of (Gleize and Grau, 2015b) use word vectors and tree edit model on

graph representations of the passages and answer choices to extract edit sequences

which decide the correct answers among several choices ofQA4MREtask (Peñas

et al., 2013).

5https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)

46 Chapter 3 State of the Art



With the introduction of a new dataset by (Hermann et al., 2015), cloze style QA

task was used to convert news domain data into QA data. Since this was synthetic,

human annotated data like SQUAD dataset by (Rajpurkar, J. Zhang, et al., 2016)

became more popular as they were harder than the synthetic ones. The task is to

identify an answer span (a short answer) in the given paragraph which is the correct

answer. The models built for this task must focus on analyzing the given paragraph

to extract an answer from it. The main assumption of this task is that the answer is

always present in the paragraph. This task is often referred asMachine Readingas

well.

The lack of training data is one of the bottlenecks of using deep learning models.

Not just question answering, but this is common to many other NLP tasks. A solution

for this bottleneck is to create more data (labelled data). There are three common

ways of doing this,

• Creating labelled datasets by automatically generating question and answers

from a source (Hermann et al., 2015) - Synthetic datasets.

• Creating semi-supervised models with limited labelled data (Dhingra, Mazaitis,

and William W Cohen, 2017a) - Semi-supervised datasets.

• Creating labelled datasets by human annotations (Rajpurkar, J. Zhang, et al.,

2016) - Human annotated datasets.

Datasets

Synthetic datasets are the ones that can be created automatically and without expert

knowledge for annotations. The authors of (Hermann et al., 2015) followed the

approach of Cloze style reading where a summary or a paraphrase sentence related

to a paragraph is used to create queries. The answer terms are one or more entities

present in the query, but hidden or anonymized. The task is to identify which is

the entity hidden in the query. The dataset created and released by the authors

contained more than 1 million query answer pairs.

The follow up work by (Chen, Bolton, et al., 2016) criticizes the way these questions

are framed and state that the required reasoning and inference level of this dataset

is still quite simple. The authors build a simple model which outperforms the state

of the art by 7-10% of the original paper results. Although this dataset is relatively

simple to address the complex reading comprehension task, this work fetched more
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attention towards the reading comprehension task especially towards using an

end-to-end model.

Addressing the issues discussed above and the noise present in automatically cre-

ated synthetic datasets, (Rajpurkar, J. Zhang, et al., 2016) released a new human

annotated dataset for reading comprehension named as SQUAD (Stanford QUestion

Answering Dataset). This dataset contains over 100,000+ questions posed by crowd-

workers on wikipedia articles. The workers were asked to read a paragraph and

frame questions based on the paragraph and mark the answer span in the paragraph.

This was a pioneering work in reading comprehension which released a human

annotated large scale dataset which led to several other works in the domain of

reading comprehension for question answering.

Along with the dataset, Kaggle6 like leaderboards for question answering was re-

leased7 by the authors of (Rajpurkar, J. Zhang, et al., 2016) which made research

on reading comprehension more competitive and comparable. The authors propose

a baseline approach using logistic regression and textual features to extract answers

and also report human accuracy score which was computed by comparing one of the

three answers humans had annotated as a prediction and others as gold standard.

Although a similar leaderboard approach existed already for Answer Sentence Se-

lection8, the main difference introduced by the authors was a hidden test set. A

participant must submit the code and model to the organizers in order to evaluate

their model. That made sure that the results were not �ne-tuned on the test set and

the scores were reproducible and trustworthy which made a leap in transparency of

reported results.

A lot of interesting approaches, tricks and models came out as a result since the

availability of this dataset which showed how deep learning models would indeed

perform better with more data. Most of these below mentioned works can be found

on the SQUAD leaderboard9 as well.

Models and approaches

We brie�y discuss some of the works contributing towards Reading Comprehen-

sion and mainly on SQUAD dataset and highlight some important points from the

articles.

6https://www.kaggle.com/
7https://rajpurkar.github.io/SQuAD-explorer/
8https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
9https://rajpurkar.github.io/SQuAD-explorer/
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When variable length textual data is used such as in paragraph texts where the

size might vary signi�cantly from one to another. Using a Convolutional Neural

Network (CNN) is not very straightforward as CNNs were modelled on images

initially which are �xed size inputs. Several works on Reading Comprehensionfocus

on using Recurrent Neural Networks such as Long Short Term Memories (LSTM) or

Gated Recurrent Units (GRU) to model sequential and variable length data. Works by

(Weissenborn et al., 2017; Chen, Fisch, et al., 2017) use a similar simple architecture

of LSTM or GRUs for both Question and Paragraph encoding and use a mechanism

to learn interaction between question layer and paragraph layer. The authors of

(Weissenborn et al., 2017) call it as Interaction Layerand (Chen, Fisch, et al., 2017)

call is it as Aligned Question Embeddingwhich makes an interaction of question terms

with paragraphs term possible. The authors of (S. Wang and Jiang, 2016) used

MatchLSTM which is built on Pointer networks by (Vinyals et al., 2015) where the

output sequence tokens must come from the input sequence. Instead of picking an

output token from a �xed vocabulary, pointer network uses attention mechanism as

a pointer to select a position from the input sequence as output. This was one of the

�rst few models which used attention mechanism for this task.

In the same regard, attention mechanism which was also used extensively in se-

quence to sequence models for machine translation and later modi�ed to work

on Reading Comprehension by several others and almost all models using RNNs

use some kind of attention mechanisms for this task to facilitate interaction be-

tween two sequences. Using attention in a bidirectional manner was later shown

by (Seo et al., 2016) termed asBIDAF - BIDirectional Attention Flowwhich uses a

hierarchical multi-stage architecture for modeling the representations of the context

paragraph at different levels of granularity. BIDAF includes character-level, word-

level, and contextual embeddings, and uses bi-directional attention �ow to obtain a

query-aware context representation. Inspite of this model being more complex than

DRQA by (Chen, Fisch, et al., 2017), the latter performs much better on the SQUAD

leaderboard (BIDAF - EM 67.974, DRQA - EM 70.733), which is indeed a surprising

aspect.

Ever since RNN models became popularly used for this task, works by (Xiong et al.,

2016; Hu et al., 2017; Shen et al., 2017; Huang et al., 2017) focused on using

attention mechanism in different ways to handle dependency between question to

paragraph, paragraph to question, left to right, right to left etc. by modelling different

mechanisms with RNNs. Figure 3.4 by (Huang et al., 2017) gives a comparison

between different works by showing which model uses how many RNN, at what level
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Fig. 3.4: Summary of several models using an attention mechanism for Reading Compre-
hension. Figure by (Huang et al., 2017).

and how many attentions are used. This comparison shows how little modi�cations

in the neural architectures led to different results.

Although the focus is to increase metrics like exact match score or F1 score of these

models for Reading Comprehension, the training time of these models is increased

along with model complexity while using RNNs. That is one of the disadvantages

of using RNNs (it is worse while multiple RNNs are used sequentially) where

the training time is increased proportionally to increasing complexity of the RNN

model.

Convolution operations on the other hand take lesser training times and hence

they are better suited when time constraint is considered seriously. Following this

problem (A. W. Yu et al., 2018) propose QANETto use local convolutions and self

attention mechanism by (Vaswani et al., 2017) which would avoid the use of RNNs

but facilitates using attention mechanism. The self attention mechanism was one

of the pioneering works which was famously called asTransformer modelwhich

later was used for contextual embeddings. Modi�cations of RNNs had almost hit

a ceiling on SQUAD leaderboard followed byQANETwhich performed better than

the previous RNN methods whose exact match score for a single model was 82.47%.

This is the peak performance reported on SQUAD leaderboard for a model that does

not use pre-trained language representations, which are explained in the following

section.
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Pre-trained language representations and reading comprehension

An important milestone of using pre-trained language representations for contextual

word embeddings was proposed by (M. Peters et al., 2018a) in their work Deep

contextualized word representationswhich is famously named asELMO - Embeddings

from Language Models. The authors train a deep bidirectional language model

on a large corpus to learn word vectors, these word vectors are later added as an

embedding layer to downstream NLP tasks. The authors concatenate these contextual

word vectors into existing state of the art models for NLP tasks such as question

answering (Reading comprehension on SQUAD), textual entailment, semantic role

labelling, co-reference resolution, sentiment analysis, named entity recognition and

show that the performance of these models can be improved right away without

modifying anything with the downstream task model. This was originally inspired

by TagLM (M. E. Peters et al., 2017) which shows the feasibility of this on sequence

labelling tasks.

The authors of ELMO(M. Peters et al., 2018a) use a baseline model of theirs which

is an improved version of BIDAF model which fetches exact match score of 81.1 and

adding ELMOwords vectors to the same model fetches exact match score of 85.8

which is an increase 4.7 points on the SQUAD dataset test set. This work sets a new

baseline for using contextual word embeddings trained on language model tasks.

ELMOuses Bi-LSTMs in their model in both the directions left and right, separately

to encode the sequences. Instead of these Bi-LSTMs, (Radford et al., 2018) propose

to use a transformer model as proposed by (Vaswani et al., 2017). FollowingELMO

and GPT, a work by (Devlin et al., 2018) named as BERT - Bidirectional Encoder

Representations from Transformerswas released. BERT is also a popular name from

the Sesame Street10 which is why a muppet is used while portraying the BERT model.

Figure 3.5 compares the three models brie�y.

Fig. 3.5: Comparing BERT by (Devlin et al., 2018) with OpenAI GPT (Radford et al., 2018)
and ELMO (M. Peters et al., 2018a)

10https://www.sesamestreet.org/
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Fig. 3.6: Overall process of pre-training and �ne tuning BERTfor different NLP tasks by
(Devlin et al., 2018)

BERTis designed to pretrain deep bidirectional word representations from unlabeled

text by jointly conditioning on both left and right context in all layers. As a result,

the pre-trained BERTmodel can be �netuned with just one additional output layer

to create state-of-the-art models for a wide range of NLP tasks, such as question

answering and language inference, without substantial task speci�c architecture

modi�cations.

For question answering, as shown in Figure 3.6, the �nal layer of BERTis an

additional layer which shall predict the Start and End of the answer span, with

no new model speci�cally for QA. BERT-Large (A variant with large number of

layers) scored 84.1% which beat the previous state of the art models at the time

of release and the only peer reviewed and published paper at the time of writing.

Other variants of BERT and better models have not been published yet althought the

results are published on SQUAD leaderboard.

ELMO, BERT, OpenAI GPT, GPT-2and their variants are trained on large corpus of

text with very deep models. The are mainly two downsides of these models: 1)

Time required to train. 2) Hardware required to train. Since algorithms can be

parallelised easily, more hardware leads to lesser time.

The cost required to train these models using a sophisticated hardware set up is very

expensive11 for an individual or an academic lab to afford for such use cases. These

models are made publicly available because of the reason that they are expensive

to recompute and �ne tuning it leads to better reuse of the models for downstream

11https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
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tasks. But if one wants to pre-train these models from scratch, the cost involved is

expensive.

There are new variants of the above models released very frequently these days

by different research teams which can be accessible and tested easily by using

a repository by Huggingface12 who currently host 7 types of transformer models

namely: 1)BERT, 2)GPT, 3)GPT-2, 4)Transformer XL, 5)XLNet, 6)XLM, 7)RoBERTa

which can be used easily towards any NLP downstream tasks without the need of

pretraining the models ourselves.

Moving on from SQUAD

The simplicity of SQUAD dataset was criticized and the assumption that the answer

was always contained in the paragraph gives a pseudo positive relevance for all the

paragraphs which in real time QA setting might not hold true because �nding the

"relevant" paragraphs which contains the answer is also a challenge.

We mainly discuss about the dataset of SQUAD in this section because theReading

Comprehensiontask witnessed a lot of models and progress in question answering.

Several changes were proposed because of the issues of SQUAD dataset, and the

authors also released a new dataset SQUAD 2.0 (Rajpurkar, Jia, et al., 2018) with

additional questions without an answer.

Because of the different other assumptions and changes proposed to the task, Section

3.2.3 and 3.2.4 discuss either a different QA setting or a modi�ed version of Reading

Comprehensiontask.

3.2.3 OpenQA: back to the original QA task

OpenQAor open domain question answeringis a QA task whose goal is to retrieve

answer to a given question in open domain.

The input is only a question and a text collection, and the underlying systems

should perform all possible operations to return a short answer. Such operations

can be from the structured pipeline as explained in Figure 3.1. Traditional Reading

Comprehensionmodels are provided with a paragraph which contains the answer.

Whereas inOpenQAthere is no supporting paragraph provided to extract answer

directly.

12https://github.com/huggingface/pytorch-transformers
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A typical system would use an IR engine to retrieve relevant paragraphs for a

question and perform Answer Sentence Selectionto �nd the best set of sentences

which contain the answer.

An answer extraction module such as aReading Comprehensionmodel can be used

to extract an answer from the sentences and choose the best one among them but

the assumption that the paragraph is always relevant (A relevant paragraph is a

paragraph that is likely to contain the answer), does not apply for OpenQA. There

can be relevant paragraphs which do not contain an answer, which makesOpenQA

a more realistic and tougher problem than the task such as the one aimed by the

SQUADdataset.

Datasets

There are not many QA datasets forOpenQAwhich are large scale in size to use

it effectively with a neural network model. For this reason works such as (K. Lee

et al., 2019; Chen, Fisch, et al., 2017) convert aReading Comprehensiondatasets into

OpenQAones just by considering their question and answer strings and ignoring the

provided gold standard paragraphs and follow the IR method either in a cascaded

manner (Chen, Fisch, et al., 2017) or by learning both the document retrieval and

answer extraction model in an end to end fashion (K. Lee et al., 2019).

Dataset statistics and details can be found in Section 2.3 in detail.

Models and Approaches

A straightforward way to approach this task is by doing it in a strongly supervised

manner where the model assumes that the paragraphs retrieved from a retriever

model contain the answer and the noise is ignored. The authors of (Chen, Fisch,

et al., 2017) do it in this way where the retriever model is used to retrieve relevant

paragraphs for questions, which are further used in the reader model which is a

Reading Comprehensionmodel.

But in reality, there is always noise induced in the retrieved paragraphs as some

paragraphs might not contain answers when an IR approach is used. As pointed

out by (Singh, 2012), QA is fundamentally different from IR. (K. Lee et al., 2019)

highlight that IR is concerned with lexical and semantic matching, but in QA the

models require more language understanding, since users are explicitly looking

for unknown information which may not be lexically or semantically closed to
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question terms. Works by (Joshi et al., 2017; Dunn et al., 2017; Dhingra, Mazaitis,

and William W Cohen, 2017a) consider this noise and follow a weakly supervised

manner which removes the strong supervision and considers the noise in the gold

standard data by IR systems.

Models built for OpenQAideally should consider this noise from the retriever. There-

fore works by (Choi, Hewlett, et al., 2017; S. Wang, M. Yu, Guo, et al., 2018) attempt

to consider this noise in the model of (Chen, Fisch, et al., 2017) by separating the

question answering into paragraph selection and answer extraction. Both these mod-

els only select the most relevant paragraphs among all retrieved paragraphs to extract

answers. By doing so, only the best scored paragraph from paragraph selection is

used for answer extraction. This approach neglects information present in other

paragraphs and does not take negative paragraph information into consideration by

doing as above.

A follow up work by (S. Wang, M. Yu, Jiang, et al., 2017) propose strength-base

and coverage-based re-ranking approaches for retrieved paragraphs, which can

aggregate13 the results extracted from each paragraph by an existingReading Com-

prehensionsystem like DRQAby (Chen, Fisch, et al., 2017) to better determine the

answer. However, this still suffers from the noise issue in distant supervision data

because it considers all retrieved paragraphs indiscriminately. The authors of (Y. Lin

et al., 2018) use a paragraph selector to �lter out noisy paragraphs and keep the

best ones to perform answer extraction by considering the combined paragraph and

answer probabilities.

The most popular pipeline QA system which raised media attention was the IBM

Watson which won the jeopardy challenge against human competitors14. IBM Watson

follows a parallel component based pipeline approach (Ferrucci et al., 2010) whose

complex work�ow is as shown in the Figure 3.7.

All the above discussed approaches rely on a cascaded style model which �rst

performs paragraph retrieval and then followed by answer extraction. Both the

processes are done sequentially and not learnt together. The authors of (Chen,

Fisch, et al., 2017) use the IR engine like a blackbox model without learning any

parameters for the model. The �rst end-to-end model which learns to retrieve

evidence from an open corpus and supervise only by question answer string pairs

is proposed by (K. Lee et al., 2019). The authors highlight that the main challenge
13Consider values calculated from different paragraphs for a question
14https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html
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Fig. 3.7: Overall DeepQA architecture of the IBM Watson QA system

to build a fully end to end model is by considering the retrieval as a latent variable

which is impractical to learn from scratch and using IR systems result in a potentially

suboptimal starting point. So they propose a pre-training task called as Inverse

Cloze Task (ICT) which is done in an unsupervised manner. Both the retrieval model

which is pretrained with ICT and answer extraction model like BERT on Reading

Comprehensionare trained together end to end.

3.2.4 Reading Comprehension 2.0 - Modi�cations and Future

of QA

Reading Comprehensiontask was mainly experimented on SQUAD v1.0 dataset as it

was the �rst ever human annotated large scale dataset for the task. In section 2.2.4,

some problems were discussed and new methods were also introduced which gave

rise to new datasets. These new methods and datasets are explained in this section

and we term it as Reading Comprehension 2.0as they are generally a variant of the

original RCtask.
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Fig. 3.8: Table presented by (Dua et al., 2019) with different types of reasoning required
for the QA in DROP dataset

Unanswerable questions

The goal of introducing unanswerable questions in SQUAD 2.0 by (Rajpurkar, Jia,

et al., 2018) is to learn models which can determine if an answer exists to a question

in the paragraph. This is similar to the questions of TRECQA task which did not

contain any answers in the documents, but on a large scale.

In the setting of open domain question answering (OpenQA), an answer is not

always present in the paragraph. There are relevant paragraphs in accordance with

a question, which do not contain an answer.
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A simple way to learn this datapoint as done by the authors of SQUAD v2.0 is by using

the models of (Levy et al., 2017; Clark and Gardner, 2018) which learn to predict

the probability that a question is unanswerable, in addition to extracting answers if

the question is answerable. A binary classi�er which predicts this probability can be

learnt along with answer span extraction probabilities Start and Endof the answer.

Several works including one of the state of the art models BERT by (Devlin et al.,

2018) uses the above method to handle this case.

Discrete reasoning over paragraphs

As the RCtask is relatively simple and does not need any reasoning required to �nd

answers in the paragraph, the authors of (Dua et al., 2019) introduce a new dataset

named DROP - Discrete Reasoning Over Paragraphswhich is a more challenging read-

ing comprehension dataset which requires discrete reasoning to answer questions

which demand numerical answers, choice answers etc. and not just lexically similar

term matching answers.

Figure 3.8 shows different types of questions present in the DROP dataset which

require different reasoning skills to answer the question. The baseline approach

proposed by the authors uses a multi-class classi�cation approach where the tradi-

tional RCtype answer offsets are extracted along with two classes to predict if it is

a Count type or Arithmetic type reasoning, followed by predicting the numbers in

the text. Although this is a pretty naive way of doing limited set of operations, the

authors state that this is a promising approach to combine neural network methods

and symbolic reasoning. The authors also created a leaderboard15 where one can

upload their systems and the website evaluates on the hidden test set automatically

online.

Multihop reasoning

The DROP dataset provides a dataset and explains a baseline approach of using

multi-class classi�cation approach to solve the reasoning problem. But the answers

are still relying on a single supporting paragraph. i.e. Questions in DROP dataset do

not use any information from other paragraphs to answer questions.

Suppose we have a question who needs data from different paragraghs to answer a

question, neither DROP or otherRCdatasets have such data or methods to tackle

this situation. To address this issue which is called asMultihop reasoning, (Zhilin

15https://leaderboard.allenai.org/drop/submissions/public
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Yang, Qi, et al., 2018) introduce this problem and release a dataset calledHOTPOT

QA which addresses two main issues: 1) Multihop reasoning, 2) Sentence level

supporting facts to provide explainability of the answers.

The systems should not only return answers to the questions which are inferred

based on different supporting paragraph information, but also provide supporting

facts which resulted in that answer prediction. The dataset also contains questions

where two entities are compared, two entities are used to bridge another entity. The

authors also propose a baseline approach which uses strong supervision over facts in

a multi-task setting. The authors created a leaderboard16 where one can upload their

systems and the website evaluates on the hidden test set automatically online.

3.3 Evaluations and Challenges

A question answering system is tested always on datasets to determine its capability.

Recently, there have been several leaderboards which compare results on a hidden

dataset and report the performance of a system. These are online exclusive, some

are automatic and most of them are updated frequently all over the year.

Some of such popular online leaderboards are:

• SQUAD v1.0 and v2.0 datasets by (Rajpurkar, J. Zhang, et al., 2016; Rajpurkar,

Jia, et al., 2018)

• HotpotQA dataset by (Zhilin Yang, Qi, et al., 2018)

• DROP dataset by (Dua et al., 2019)

• Natural Questions dataset by (Kwiatkowski et al., 2019)

Of�ine Evaluation campaigns or challenges are held in order to gather research

community efforts to solve a task by providing a standard dataset and evaluation

metrics. Participating teams must submit either their systems (code + model) or

the system predictions on a test set which the organizers will evaluate and compare

with others. Usually a workshop is conducted at the end of the shared task where

participants discuss their systems, approaches, tricks etc. and explain how their

systems perform. To make it comparable, all the systems use the same datasets.

In this section we discuss six such workshops or conferences based on question

answering and mainly focus on explaining about the workshop, data used and

16https://hotpotqa.github.io
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different tasks involved. However, this section does not provide an exhaustive list of

all popular workshops involving question answering.

TREC

The TREC question answering (QA) track was the pioneer in large-scale evaluation

of open-domain question answering systems. TREC is a workshop series designed to

provide the infrastructure required for large-scale evaluation of text retrieval and

related technologies. A "QA" track was introduced in TREC-8 in 1999 which went

on for several years. The motivation was to foster research towards information

retrieval systems than document retrieval systems.

Participants were given a document collection and a test set of questions, and

expected to return a ranked list of �ve answer strings which contain an answer to

the question. Human assessors read string and decided if it contained the answer or

not. TREC-9 dataset contained around 500 questions which is a small scale dataset

for today's standards.

In Trec QA task, QA systems return an actual answer (can be an answer sentence or

a phrase), rather than a ranked list of documents, in response to a question. TREC

has had a question answering track since 1999; in each track the task was de�ned

such that the systems were supposed to retrieve small snippets of text that contained

an answer for open-domain, factoid questions.

Trec QA evaluations considered the possibility that different people might have

different ideas of what constitutes a correct answer. And the judgements by three

individuals which were in con�ict were decided by the of�cial evaluation but the

difference in the answer judgements were used to measure the judgement on system

scores. More detailed version of the evaluation can be found in the document by

(Voorhees, 2002).

These datasets from the past (1999-2004) are curated (questions without an answer

were removed) by (M. Wang, Smith, et al., 2007) and used popularly as TrecQA data

for Answer Sentence Selectiontoday.

CLEF

The CLEF Initiative (Conference and Labs of the Evaluation Forum, formerly known

as Cross-Language Evaluation Forum) is an ongoing initiative started in 1999 in the
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view of supporting and promoting research, innovation, and development of informa-

tion access systems with an emphasis on multilingual and multimodal information

with various levels of structure.

CLEF initiative is split into two parts: 1) Peer-reviewed conference 2) A series

of evaluation labs with some datasets released to conduct evaluations. CLEF has

different tracks such as ImageCLEF, VideoCLEF, QA@CLEF, CLEF-eHealth related to

different data domains and tasks.

QA track at CLEF has different language question answering tasks. Questions in this

track are in natural language. However, answering some questions may need to

query Linked Data and some questions may need textual inferences and querying

free text data. QA@CLEF had various types of QA tasks since 2003-2014. Some of

the QA tasks in this track are, 1) BIOASQ - a biomedical challenge dataset which we

use in our work. 2) QA4MRE - a QA task which has multiple choice questions related

to a document. 3) QALD - a QA task on linked data. 4) Answer Validation Exercise

to assess QA responses and decide whether an Answer to a Question is correct or

not according to a given Text. More details can be found on the track site17.

QA4MRE - Question Answering for Machine Reading Evaluationwas a campaign which

was held during 2011-2013 aimed at evaluating Machine Reading systems through

Question Answering and Reading Comprehension Tests. The de�nition ofReading

Comprehensionis slightly different these days (also in our work) as the �eld of

question answering refer to Reading Comprehensionand Machine Readingas an

answer extraction task, whereasQA4MREwas about detecting the right answer in

multiple choices provided. Therefore the evaluation and the models built for both

the tasks are different even though they carry the same name. More about QA@CLEF

can be found on their website18.

BIOASQ

BIOASQ19 challenge is a large-scale biomedical semantic indexing and question

answering task (Tsatsaronis et al., 2015) which has been successful for 7 years. The

challenge proposes several tasks using Biomedical data. One of the tasks focuses

on Biomedical question answering (Task B Phase B) where the goal is to extract

answers for a given question from relevant snippets.

17http://nlp.uned.es/clef-qa/repository/
18http://www.clef-initiative.eu/track/qaclef
19http://bioasq.org/
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Below is an example of a factoid question from the BIOASQ dataset for QA (task B).

Each sample contains a question, answer and relevant snippets.

Question: What is the mode of inheritance of Wilson's disease?

Answer: autosomal recessive

Snippets: The overall sex ratio of patients was nearly 1:1,

and genetic analysis of 20 families con�rmed an autosomal

recessive mode of inheritance.

Every year the challenge is organized in 5 batches, a training set with all the gold

standard data is released earlier and the 5 test sets with all new questions and

snippets are provided in each batch release. System predictions are expected to be

submitted within 24 hours of release of the test set. Biomedical questions with their

exact answers, relevant text snippets, concepts, articles, summaries were constructed

or selected by biomedical experts from around Europe.

BIOASQ 7 is the seventh challenge and the evaluation measures for BIOASQ task B

has always been the same. Strict Accuracy, Lenient Accuracy and Mean Reciprocal

Rank (MRR) are the three evaluation measures used. To compute the scores, the

exact match of strings between the predictions and the gold standard answers is

used to decide if a system answer is correct. Strict accuracy is the rate of top 1 exact

answers. Lenient accuracy is the rate of exact answers in top 5 predictions. MRR is

the mean reciprocal rank computed on the top 5 system answers. These measures

have been the same since the 1st challenge, although the �rst four challenges had

triples and concepts along with snippets in the data. In the last two challenges, only

relevant snippets for questions are released.

Several works in the past BIOASQ tasks have used classical question answering

pipeline architecture adapted to the biomedical domain which includes modules such

as question analysis, passage selection, answer selection which contribute towards

the extraction of suitable answers. Some use the domain-speci�c information from

UMLS tools such as Metamap (Schulze et al., 2016), along with other NLP tools like

Corenlp, LingPipe (Zi Yang et al., 2016).

One of the �rst attempts to use deep learning algorithms for the BIOASQ task was

reported in BIOASQ 5 by (Wiese et al., 2017c) where the dataset was adapted to

be used as a reading comprehension dataset whose goal is to extract answers from

snippets. The authors use a model trained on open domain questions, and perform

domain adaptation from open domain to biomedical domain using BIOASQ data.

The models prior to the �rst deep learning model by (Wiese et al., 2017c) got lower

scores than the deep learning ones.
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Starting from BIOASQ 7 in 2019, BERT models are being used with different training

strategies such as training with varying paragraph data and varying data the BERT

model is pre-trained on for language modelling task. BIOBERT used Biomedical

data to pre-train BERT model and use it for BIOASQ task (J. Lee et al., 2019). And

authors of (Hosein et al., 2019) use BERT model on BIOASQ task by pre-training

BERT on Natural Questions dataset. Both BIOBERT and work by (Hosein et al.,

2019) obtain similar results on same sets and BIOBERT being generally better than

others. Both the models �rst train on open domain reading comprehension task and

perform domain adaptation in their best scored approaches.

MediQA

The MEDIQA challenge20 aims to attract further research efforts in Natural Language

Inference (NLI), Recognizing Question Entailment (RQE), and their applications in

medical Question Answering (QA).

The shared task of the workshop had a QA task which is to �lter and improve the

ranking of automatically retrieved answers. Similar to Answer Sentence Selection,

the MEDIQA task had documents (collection of paragraphs) instead of a sentence

or a small paragraph as an answer. For a given question a system had to return if

a question and an answer document pair is correct or wrong (0 or 1). The dataset

contained 104 consumer health questions and 104 simple questions about diseases.

MediQA had an automatic evaluation system21 setup by the organizers where the

participants could upload the test set predictions.

An overview of the workshop is presented by (Ben Abacha et al., 2019) where more

details about other tasks can also be found.

MRQA

Machine Reading for Question Answering (MRQA) workshop22 was organized for

the �rst time in 2018 to gather researchers to address and discuss important research

topics surrounding Machine Reading (Reading Comprehension). The goal was to

discuss aspects such as Accuracy, Interpretability, Speed, Scalability, Robustness,

Dataset Creation, Dataset Analysis, Error Analysis. The �rst task mainly covered

20https://sites.google.com/view/mediqa2019
21https://www.aicrowd.com/challenges/mediqa-2019-question-answering-qa
22https://mrqa2018.github.io/
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works such as new models, datasets, training methods, error analysis etc. onRC

task.

The second workshop along with being open to normal papers also had a shared task

where the goal was to evaluate the generalisation of models beyond the datasets they

are trained on. Intuition is that the models should do more than merely interpolate

from the training set to answer test examples drawn from the same distribution but

rather extrapolate on data from different distributions. A training set was created by

pooling six large scale datasets and test sets were ten different test sets to test the

generalisation. More details can found on the link23.

An overview and proceedings of the workshop is presented by (Choi, Seo, et al.,

2018) which also lists different works published recently.

3.4 Conclusion

In this chapter, we have detailed about question answering models and approaches

in the past, and currently used state-of-the-art systems. Indeed, the de�nition of

question answering has evolved in many different ways, resulting in various datasets

with different challenges and a large number of models with their distinct advantages

and limits. According to the issues we address, we experiment on different QA tasks,

including Reading Comprehension, Answer Sentence Selection, and OpenQA.

The current state-of-the-art models on question answering tasks mainly use neural

network based approaches. They are mainly proposed for open domain with large

datasets. In contrast, the interests in neural network models for domain speci�c

datasets, that are small scaled datasets, are much less studied. One way of using

neural network models for small sized datasets is via domain adaptation. We will

explore different possibilities for doing domain adaptation and experiment different

neural network models and different pre-training data for BIOASQ dataset.

The Reading Comprehensiontask mainly used in the context of SQUAD dataset

(Rajpurkar, J. Zhang, et al., 2016) assumes that the paragraphs given along with

the questions always contain an answer. This assumption does not hold good in

the case of the BIOASQ dataset (Tsatsaronis et al., 2015) where there are several

paragraphs that do not contain an answer. Several works on BIOASQ such as (Wiese

et al., 2017b; Yoon et al., 2019; Hosein et al., 2019) useReading Comprehension

task modelling for BIOASQ where the paragraphs that do not contain an answer

are ignored from the data. The pre-training is done on SQUAD v1.0 dataset and

23https://mrqa.github.io/shared
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�ne-tuning on the BIOASQ data in all the previous works. We believe that modelling

this task differently considering all kinds of paragraphs from BIOASQ dataset would

improve the performance of the models.

BERT model (Devlin et al., 2018) is used in many QA tasks currently. Previous best

scoring models, such as (Hosein et al., 2019; Yoon et al., 2019), �ne-tune the BERT

language model (primary task of BERT) towards the target QA tasks like BIOASQ.

(Yoon et al., 2019) pre-train on SQUAD v1.0 dataset (Rajpurkar, J. Zhang, et al.,

2016) and (Hosein et al., 2019) pre-train on Natural Questions dataset (Kwiatkowski

et al., 2019) before �ne-tuning on BIOASQ dataset. Our intuition is that the choice

of the dataset to pre-train plays a major role on the performance on BIOASQ dataset.

We will study the variation of performance when a QA model is pre-trained on

different datasets.

The performance of neural network models is based on the dataset annotation and

evaluation protocols. BIOASQ dataset lacks many variants of answer in the gold

standard dataset annotated by human experts. Since it is important to be able to

construct annotated corpus of a high quality at a reasonable cost, we will study

how structured resources, like UMLS which contain large amount of information on

biomedical domain, can be used to annotate the answer variants in order to improve

the performance of the QA models.

Since end-to-end models are one of the goals of using neural networks, not much

efforts have been put towards improving the outputs of a neural network model by

post-processing the predictions. Our hypothesis is that the semantic features and

structured information from different paragraphs can be used to post-process the

predictions to further increase the performance. In the biomedical domain, there

exists structured information such as UMLS which can help in detecting biomedical

entities and �nd the matching types between question and paragraphs. In the open

domain, the Expected Answer Typesinferred from questions can help in �nding the

matching entity types between question and paragraphs. These matching types

highlight the entity types and the entities which are likely to be the answers for the

questions. We intend to study and use these features in different ways to improve

the QA performance on different models and tasks.

In the following chapters, we detail about our two research questions of 1) Building

better models for large scale and small scale data and 2) Leveraging structured and

semantic information into QA models and present several hypothesis, experiments,

and result comparison in detail.
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4Building Models for Small Scale

and Large Scale Datasets

"Deep neural network models perform better with more data!", "One needs more

data to use a deep neural network model", "Less data? Not suitable to use deep

learning models!, "Why is it dif�culty to get annotated datasets?" are some of the

common phrases we come across in recent times.

In our work, one of the goals was to build a better question answering model for

domain speci�c data. Using deep neural network models directly on small scale datasets

would not fetch the best scores because of the small scale nature of the datasets- is one

of the popular beliefs among the deep learning community. Since the data (BIOASQ

dataset) we came across was small scale, we wanted to experimentally determine

how bad the performance of a deep neural network model (usually targeted for

large scale datasets) would be on this small scale dataset.

One of the solutions to obtain optimal performance on small scale datasets is to train

the models on large scale datasets, and then �ne-tune (retrain the model) it towards

the small scale datasets. This allows reusing the state-of-the-art models for small

scale QA datasets. This process is called asDomain Adaptation and we present a

method to perform domain adaptation from open domain data (which is generally

large scale) towards biomedical domain data (which is generally small scale).

In this chapter we report several experiments on small scale domain speci�c dataset

of BIOASQ task. We de�ne the process of domain adaptation by formalizing the

terms such asPre-training (�rst training) and Fine-tuning (retraining), and explain

three main kinds of domain adaptations.

Choosing a good model among several state-of-the-art models is a challenging task.

We present certain factors which are important to consider before choosing to work

on their implementations and explain why we choose one model over the others for

Reading Comprehension task.

To perform domain adaptation, one must �rst choose a suitable QA task to perform

the �rst training phase with a large scale dataset. We compare two QA task models

(One for Reading Comprehension taskand one for Open domain question answering
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task) for training and show one outperforms the other on BIOASQ dataset. We

also hypothesize that using different datasets (sometimes more than one combined

together) to pre-train a model impacts the downstream �netuning performance. To

show this behaviour we pre-train a single model with different datasets and �netune

it to biomedical data.

The organisation of this chapter is as follows:

• We �rst de�ne and detail the state-of-the-art question answering models used in

our work for 1) Reading comprehension, 2) Open domain question answering

models, 3) Answer sentence selection tasks.

• We detail the concept of domain adaptation, and show how to adapt these

models to biomedical domain along with general notions of pre-training and

�ne-tuning.

• We experiment with different word embedding spaces for a QA model to

determine which performs better.

• We explain about the choice of a good QA model and compare two QA task

models for pre-training.

• For performing domain adaptation, we also need a large scale dataset to pre-

train the models, we compare with several datasets and report performance

on domain adaptation.

4.1 Question Answering models

Question Answering is a broad domain of natural language processing which can

be de�ned in different ways based on the types of tasks involved. As introduced in

chapter 2, there are several tasks under question answering.

In this section we explain two QA models which we have used extensively in several

studies throughout this research work.

• Reading comprehension, a task that deals with extracting an answer from a

paragraph. The input data would ideally contain a question and a paragraph.

The model is expected to predict an answer span in the paragraph.
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• Open Question Answering, a task that deals with �nding an answer provided a

question. Sometimes there is a collection of texts provided from an IR engine

and sometimes there is no paragraph provided along with the question.

4.1.1 Reading Comprehension

Fig. 4.1: DRQAmodel by (Chen, Fisch, et al., 2017)

Reading Comprehensionor RCtask although existed since several years, it has gained

a lot of attention since the release of SQUAD dataset (Rajpurkar, J. Zhang, et al.,

2016). Many works on Reading Comprehensionor RC task can be found on the

SQUAD leaderboard1.

We chose a model namedDRQAby (Chen, Fisch, et al., 2017) for the following

three reasons. 1) The document reader model ofDRQAthat performed the best on

SQUAD dataset at the time of experimenting, 2) The code was released publicly2

to replicate the results reported in the paper, 3) The model was training rapidly (4

hours approximately on a single GPU) and performed better than models which took

longer to train and were more complex.

DRQAhas two models namelyRetrieverand Readerwhich work in a cascaded fashion

when the questions are not provided with related paragraphs. Figure 4.1 shows the

work�ow of the overall model.

1https://rajpurkar.github.io/SQuAD-explorer/
2https://github.com/facebookresearch/DrQA
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The retriever model is primarily based on a tool which uses information retrieval

(non-machine learning) techniques to retrieve relevant paragraphs (or documents)

for the question based on question terms. The reader model is a simple Bi-LSTM

model for Reading Comprehensiontask which takes as input a question and a para-

graph and aims at extracting an answer from the paragraph.

Fig. 4.2: Detailed reader model of DRQA

For our work, we only use the reader model of DRQAas we have supporting

paragraphs for questions for this task. An overview of the reader model is presented

in the �gure 4.2.

The input to the reader model are sequences of question words and paragraph

words. Both the question and the paragraph strings are tokenized and their word

embeddings are used by the model i.e. Question wordsQ = f q1; :::::; qm g and

paragraph words S = f s1; :::::; sng are sequences which are encoded using an

embedding layer of dimension D. The authors use Glove vectors by (Pennington

et al., 2014) in their work so we use the same for this model.
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E(Q) = f E(q1); ::; E (qm )g (4.1)

E(S) = f E(s1); ::; E (sn )g (4.2)

A pre-attention mechanism captures the similarity between paragraph words and

question words in the same layer. We call it as pre-attention mechanism because it

is applied before the embeddings are encoded with LSTM layers, which is usually

how attention mechanisms are used such as in (Seo et al., 2016). For this purpose,

a feature F align shown in Equation 4.3 is added as an input feature to the LSTM

layer.

F align (pi ) = � j ai;j E(qj ) (4.3)

Where ai;j is,

ai;j =
exp(� (E (si )) � � (E (qj ))

� j 0 exp(� (E (si )) � � (E (qj 0))
(4.4)

which computes the dot product between nonlinear mappings of word embeddings

of question and paragraph.

They are followed by a 3-layer Bidirectional LSTM layers for both question and

sentence encodings. Maximum length of the sequences are set as 200 tokens.

f E (q1); ::; E (qn )g = Bi-LSTM(f ~E(q1); ::; ~E(qng) (4.5)

f E (s1); ::; E (sn )g = Bi-LSTM(f ~E(s1); ::; ~E(sng) (4.6)

These LSTM states are connected to two independent classi�ers that use a bilinear

term to capture the similarity between paragraph words and question words and

compute the probabilities of each token being start or end of the answer span.

Pstart(i ) / exp (p i W sq) (4.7)

Pend(i ) / exp (p i W eq) (4.8)

During prediction, the best spans are chosen from tokeni to token i 0 such that i � i 0

� i + 15 and Pstart (i ) � Pend (i 0) is maximized.
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The combined probability predicted as shown above results in a set of predictions

and for of�cial evaluations like SQUAD, we only consider Top-1 prediction. For

tasks like BIOASQ, Top-5 can be chosen based on the decreasing order of combined

probability scores.

4.1.2 Pre-trained Large scale Language Models - BERT

Since the introduction of self attention mechanism by (Vaswani et al., 2017) which

are usually termed asTransformer models, a lot of attention has been given towards

using these as building blocks in several neural architectures such as in (A. W. Yu

et al., 2018) for question answering. Pre-trained language models which are trained

on large scale architectures like BERT by (Devlin et al., 2018) use transformer models

as building blocks instead of LSTMs such as in ELMO by (M. Peters et al., 2018b).

Fig. 4.3: BERT model modi�ed for several NLP tasks by (Devlin et al., 2018)

The authors of BERT train two large scale neural language models (BERT Base

and BERT Large) using transfer models as building blocks on two tasks namely 1)

Masked Language Modelling and 2) Next Sentence Prediction. Further they modify

the model to be able to work on several NLP tasks such as question answering,

natural language inference, named entity recognition etc. They do this by modifying

the �nal output layer to �t into target task. In our work we only use the �ne-tuning

modi�cations on a question answering task.

Figure 4.3 shows the �nal layer of BERT model modi�ed into Reading Comprehension

task SQUAD. Both the question and paragraph are packed as a single packed sequence

with question and paragraph as two different embedding representations from BERT.

Both Start and End which represents the answer span in the paragraph are two
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vectors S 2 RH and E 2 RH which are used only during �ne-tuning for SQUAD

task. The probability of word i being the start of the answer span is computed as

a dot product between Ti and S followed by a softmax over all of the words in the

paragraph:

Pi =
eS�Ti

P
j eS�Tj

(4.9)

The score of a candidate span from positioni to position j is de�ned as S � Ti + E � Tj ,

and the maximum scoring span wherej � i is used as a prediction. By doing this

small modi�cation and �ne-tuning the whole BERT model with this new layer at the

end, the authors get state of the art results in several NLP tasks includingReading

Comprehensionon SQUAD dataset.

BERT has two models namelyBERT Largeand BERT Basewhich de�nes the number

of layers and units used in the model. In our experiments, we only useBERT Baseas

it is faster and easier to �ne-tune on a single GPU machine.BERT Largeperforms

the best out of the two models but since our aim was not to fetch the best scores

possible, we rely onBERT Basemodel for all of our experiments.

We use the open source code for BERT experiments from HuggingFace Inc.3 by

(Wolf et al., 2019), whose code is compatible with PyTorch and also is modi�able

for several other NLP tasks models.

4.1.3 Open QA - Open Domain Question Answering Model

Open QAtask is a straightforward question answering task whose input is just a

question phrase without any additional information. One way of modeling this

task which we use in our work is by using a Retriever modelto retrieve relevant

paragraphs for the question, followed by using aReader modelto extract answers

from the retrieved paragraphs.

We present a model namedPSPR - Paragraph Selector and Paragraph Readerwhich

is an Open QA model by (Y. Lin et al., 2018) whose overview is presented in the

Figure 4.4 and the code is available online4. We do not use the DRQAmodel as

explained in section 4.1.1 directly for this task becauseDRQAworks only on Reading

Comprehensiontask which assumes that all questions are provided with relevant

3https://github.com/huggingface/transformers
4https://github.com/thunlp/OpenQA
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paragraphs, which is not the case forOpen QAtask which contains a mixture of

irrelevant and relevant paragraphs.

This model has two parts, namely Paragraph Selector (PS) and Paragraph Reader

(PR) in a cascade fashion, that is why we named it asPSPRmodel. Normally this

model is termed asOpenQAmodel. The authors of (Y. Lin et al., 2018) use DRQA

model in this model for modelling the Paragraph Reader (PR).

Fig. 4.4: OpenQA model by (Y. Lin et al., 2018)

Not all the paragraphs are relevant or contain the answer in theOpenQAtask and also

several paragraphs might contain the answer, therefore the paragraph probability

computed by the Paragraph Selector (PS)model and the answer probability computed

by the Paragraph Reader (PR)model are used to compute a combined probability.

Paragraphs for the questions are retrieved using an information retrieval model

where some paragraphs are relevant and some are not. The Paragraph Selector model

predicts a probability distribution P r (pi jq; P) over all the retrieved paragraphs

where P is the set of paragraphs for the question.

The Paragraph Reader model extracts answer spans as shown in theDRQAmodel for

Reading Comprehensiontask and predicts a probability P r (ajq; pi ) for each answer

span wherepi is i th paragraph in Paragraph setP.
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The reader model gives two probabilities (one for start and one for end token given

by two classi�ers) as described in equation 4.7 and 4.8. The answer probability

P r (ajq; P) is computed as shown below:

P r (ajq; pi ) =
X

j

Prs

�
aj

s

�
Pre

�
aj

e

�
(4.10)

The Paragraph Selector uses tokenized question wordsQ = f q1; :::::; qm g and tok-

enized paragraph wordsP = f p1; :::::; png which are encoded using an embedding

layer of dimension D.

E(Q) = f E(q1); ::; E (qm )g (4.11)

E(P) = f E(p1); ::; E (pn )g (4.12)

A RNN layer encodes the contextual information of the sequence.

f E (q1); ::; E (qm )g = RNN(f ~E(q1); ::; ~E(qm g) (4.13)

f E (p1); ::; E (pn )g = RNN(f ~E(p1); ::; ~E(png) (4.14)

Using this hidden representation, a self attention operation is applied to get the

question representationq:

q̂ =
X

j

� j q̂ j (4.15)

where � j encodes the importance of each question word against the other question

words which is calculated as:

� i =
exp (wbq i )P
j exp (wbq j )

(4.16)

Where w is the learnt weight vector. Finally, the probability of each paragraph is

calculated via a max-pooling and a softmax layer as shown below:

P r (pi jq; P) = sof tmax
�

max
j

�
p̂ j

i Wq
� �

(4.17)

where W is a learnt weight matrix.
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The softmax operation in equation 4.17 is applied over total number of paragraphs

per question therefore a probability value is predicted for each paragraph. Since not

all the paragraphs contain an answer in the Open QA setting, the probability scores

from equation 4.17 should indicate if there exists an answer or not.

While training, the paragraphs containing the answer are highlighted as 1 and the

rest as 0. While testing, the best answer candidate (̂a from equation 4.19) is chosen

with the highest probability P r (ajq; P) for a question q which is calculated as shown

below :

P r (ajq; P) =
X

pi 2 P

Pr (ajq; pi ) P r (pi jq; P) (4.18)

â = arg max
a

Pr(ajq; P) (4.19)

For each paragraph, the authors of (Y. Lin et al., 2018) extract 10 answer spans based

on their decreasing order of probabilities represented in equation 4.18. Choosing a

lesser value instead of 10 might affect the model performance. This is an important

hyperparameter to control the number of answer predictions per paragraph.

In the implementation provided online 5, the training process is done in three

phases:

1. Pre-training the reader model to determine which paragraph has an answer

and which doesn't based on answer presence.

2. Pre-training the selector model to learn a ranking function which is similar to

the one in Answer Sentence Selection task.

3. Training an overall model using the above two pre-trained models to perform

Reading Comprehensionby combining paragraph and answer probabilities.

4.1.4 Choosing a Good model

What de�nes as a good model? Why is it hard to choose a good model? What factors

should one consider before choosing a model for training?- these are some of the

questions we asked ourselves before we began performing experiments on QA

tasks.

5https://github.com/thunlp/OpenQA
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With the rise of deep learning models for many NLP tasks including the ones for

question answering we have listed above, there have been exploding number of

research articles and models for various tasks. It is often hard to catch up with the

latest state-of-the-art research work. If someone wants to use a model to compare for

the baseline performance, there has to be certain points to consider before jumping

on using the latest or more visibly famous (on social media such as facebook and

twitter) research models.

Here are some factors which are important to address:

1. Time required to train these models.

2. Computation power needed.

3. Model complexity and difference in performance over simple models.

Fig. 4.5: DRQA model by (Chen, Fisch, et al., 2017) (Left) and BIDAF model by (Seo et al.,
2016) (Right)

In an academic research lab scenario, we are often limited to smaller and basic

computation resources required to run some experiments. This becomes the �rst

most important aspect in choosing the right experimental setup and models.

Secondly, based on the complexity of the models, some models consume more time

to train compared to some other simpler models who train faster. Therefore time is

also an important aspect which contributes to choosing the right model needed for

some experiments.

4.1 Question Answering models 77



Model complexity and difference in performance over simple models is one of the

aspects which seems to be less of a concern while experimenting with latest research

works. When we began our work on Reading Comprehensiontask. We came across

several works which were very similar to each other in terms of model complexity

and their performance. For a QA task, research done on SQUAD dataset and the

scores reported on the SQUAD leaderboard6 are a good example to show this point.

Some models were better than the rest and simpler. Particularly we stumbled upon

two models, A simple model DRQAby (Chen, Fisch, et al., 2017) which we have

explained above and we use extensively in our works and another complex model

named BIDAF - Bidirectional Attention Flowby (Seo et al., 2016).

BIDAFproposes a bidirectional attention �ow and a complex RNN based architecture

(atleast 2 LSTM layers) whose code7 takes � 20 hours to compute on the SQUAD

train set and fetches67.7% EM score on the SQUAD dev set.DRQAwhich is a much

simpler model with just 1 layer of 3 layered Bi-LSTM trains on SQUAD train set in

� 4 hours and fetches69.5% EM score on the SQUAD dev set. The training time of

DRQAmodel is 5 times lesser than that of theBIDAFmodel.

These two models were reported and published around the same withDRQAbeing

released in March 2017 andBIDAFbeing released in November 2016 with a gap of

around 5 months. Although DRQAwas published late, the model is much simpler

and fetches better scores thanBIDAFon the exact same dataset. This difference in

model complexity and simpler model (DRQA) performing better on a comparable ex-

perimental setup on the same dataset raises suspicions about the actual contribution

of the attention layers and extra LSTM layers required for the task as presented by

(Seo et al., 2016).

Does this phenomenon occur because of engineering tricks which was done on the

DRQAcode or just hyper parameter optimization ? We could not come up with a

conclusion in this regard so we went ahead with choosingDRQAas a base model for

all our Reading Comprehensionexperiments. This phenomenon shows that using a

simple model sometimes is better than using the latest and famous (well discussed

in social media) models which may not be always better performing. Therefore we

proceed by using a simple model for our experiments.

In the following section, we introduce domain adaptation and detail about adapting

QA models which are primarily modelled for open domain question answering tasks,

towards biomedical domain question answering.

6https://rajpurkar.github.io/SQuAD-explorer/
7https://github.com/allenai/bi-att-�ow
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4.2 Domain Adaptation

Domain adaptation is a �eld associated with machine learning and transfer learning.

This scenario arises when we aim at learning from a source data distribution a well

performing model on a different (but related) target data distribution.- Wikipedia8

In our research context, we use domain adaptation to learn a model on a large scale

dataset and use the same model and its parameters to learn on a small scale dataset.

In this case both the datasets are similar in nature but come from different source

domains. This facilitates to use a deep neural network model effectively on small

scale datasets like BIOASQ data. Training a model from scratch on a small scale

dataset might not result in the best performance, therefore domain adaptation is

carried out.

We �rst present the general process of domain adaptation before presenting different

types of domain adaptations (sometimes referred as transfer learning) for biomedical

QA task BIOASQ from open domain data.

4.2.1 The process

In this section we �rst brie�y explain the process of domain adaptation in a generic

manner. In the context of domain adaptation and transfer learning for deep neural

networks, two terms are often used. 1) Pre-training - is a learning or training process

of a model with randomly initialized model weights. 2) Fine-tuning - is a learning

or training process but initialized from the model weights of the pre-trained model

and not randomly initialized model weights. Both pre-training and �ne-tuning

together can be termed asDomain Adaptationwhen the domain of the data used for

pre-training and �ne-tuning are different. For example, open domain and biomedical

domain in question answering.

Pre-training and �ne-tuning or domain adaptation can also be done in several ways.

The general approaches are listed below.

• Type 1- The target task remains the same for pre-training and �ne-tuning.

Pre-training should be done on a large scale dataset from random initialization

of parameters. Fine-tuning can be done on a small scale dataset by loading the

model parameters from pre-trained model rather than random initialization.

This approach is used when a target dataset is small scaled and using it to train

a deep neural network would result in over�tting. This type of pre-training

8https://en.wikipedia.org/wiki/Domain_adaptation
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is common in computer vision �eld where models are pre-trained on Ima-

genet (Russakovsky et al., 2015) and �ne-tuned on target image classi�cation

datasets.

• Type 2- The tasks are different for pre-training and �ne-tuning. Pre-training

should be done on a large scale dataset from random initialization of param-

eters. Fine-tuning should be done on a different model which uses certain

parameters from the pre-trained model which are frozen (non-trainable) and

learns some parameters which are randomly initialized on a different task.

These approaches in NLP were initially proposed for sequence labelling tasks

by (M. E. Peters et al., 2017) which were later evolved into ELMO (Embedding

Language Models) by (M. Peters et al., 2018a) which signi�cantly improved

the state of the art across a broad range of challenging NLP tasks such as

question answering, textual entailment and sentiment analysis. This type of

method uses special contextual text embeddings obtained from the pre-trained

models that are added as features into downstream models built for another

task.

• Type 3- The tasks are different for pre-training and �ne-tuning. Pre-training

should be done on a large scale dataset from random initialization of parame-

ters. Fine-tuning should be done on the pre-trained model by modifying certain

layers to �t to the new task. Newly added layers can be randomly initialised

and pre-trained model layers together with newly added ones are trained on

the new task. This approach is similar toType 2approach with a difference

that the reference model can be slightly modi�ed for target task rather than

building a different model. This type of approach proposed by (Devlin et al.,

2018) is being widely used in NLP tasks such as question answering, textual

entailment, sentiment analysis, named entity recognition, relation extraction

etc. which are easily done by modifying a �nal output layer of the original

model and �ne-tuned. Fine-tuning can be done either by learning the whole

model parameters or learning only a part of the model by freezing the rest.

4.2.2 Biomedical Domain Adaptation for Reading

Comprehension

As explained earlier, a neural network model like DRQAcannot be used in a straight-

forward way on a small scale dataset like BIOASQ dataset whose statistics are

presented in table 4.1. The statistics compares BIOASQ data with two other large

scale datasets and shows the difference in the number of samples. The large scale

datasetsSQUAD v1.0and QUASAR-Tand several others which are currently used

in different Question Answering tasks are at least 100 times larger than BIOASQ
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dataset. An assumption with deep neural network models is that it needs large scale

datasets to perform better. We test this assumption by experimenting with a deep

neural network model trained on small scale dataset and show the performance

difference experimentally.

An important aspect to highlight is that the formulation of questions, paragraphs and

answers from both SQUAD v1.0dataset andBIOASQdataset are very similar. Only

the vocabulary and paragraph lengths are different (BIOASQdataset has shorter

paragraph lengths in gold standard data). The task de�nition provided by the

organizers which states that all the paragraphs are useful to answer the questions,

enables to use aReading Comprehensionmodel.

Datasets Train Dev Test

BIOASQ 4b 427 59 161
BIOASQ 5b 544 75 150
BIOASQ 6b 685 94 161
SQUAD v1.0 87,599 10,570 9,533
QUASAR-T 37,012 3,000 3,000

Tab. 4.1: Datasets used in the experiments along with their splits. The numbers represent
number of questions.

At the time of performing these experiments, DRQAmodel by (Chen, Fisch, et al.,

2017) was ranking on top on the SQUAD leaderboard with the source code released

by the authors9. The model is built for the Reading Comprehensiontask i.e. the

model would take as input - a question and a paragraph, and output an answer span

in the paragraph. We use this model and modify the dataset to �t the format.

Data modi�cation

We modi�ed the BIOASQ dataset in order to �t it into Reading Comprehension

task style data by considering only those paragraphs which contained the gold

standard answer and ignoring the rest. We do this the same way as (Wiese et al.,

2017b) by performing distant supervision considering the gold standard answers

and paragraphs.

An example from SQUAD dataset and BIOASQ dataset:

Question: The atomic number of the periodic table for oxygen?

Paragraph: Oxygen is a chemical element with symbol O and atomic number8. It

9https://github.com/facebookresearch/DrQA
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is a member of the chalcogen group on the periodic table and is a highly reactive

nonmetal and oxidizing agent that readily forms compounds (notably oxides) with

most elements.

Answer: 8

Question: Which topoisomerase is essential in yeast?

Paragraph 1: Yeast DNA topoisomerase II is encoded by a single-copy, essential gene.

Paragraph 2: Topo II performs topological modi�cations on double-stranded DNA

molecules that are essential for chromosome condensation, resolution, and segrega-

tion.

Answers: Topoisomerase II, Topo II

After these modi�cations, we can highlight the differences between SQUAD dataset

and BIOASQ datasets:

• BIOASQ can have multiple paragraphs and SQUAD has 1 paragraph.

• SQUAD paragraph always contains an answer and BIOASQ paragraphs might

not always contain exact matching gold answers.

• SQUAD has 1 answer, BIOASQ has multiple answers (as shown in the above

example).

DRQAconsiders each question and a paragraph as a pair for each sample datapoint.

It does not take into account multiple paragraphs per question or multiple answers

per paragraph. Therefore in order to modify our data to match this format, we repeat

the same question with multiple paragraphs creating same number of samples as the

number of paragraphs and consider only one gold standard answer per paragraph.

We keep only the positive paragraphs (paragraphs containing an answer) in the

dataset.

The DRQAmodel is originally trained and tested on SQUAD v1.0 dataset. We use

the same model trained on SQUAD dataset, and perform domain adaptation by �ne-

tuning the model on our modi�ed BIOASQ dataset. Figure 4.6 shows the procedure

we follow.

The Open domain modelis the DRQAtrained on SQUAD v1.0 with best performing

parameters of the model (best scores on validation set). TheBiomedical + Open
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Fig. 4.6: Domain Adaptation from open domain to biomedical domain using DRQA model

domain modelis the same best performingOpen domain modeltrained again on

modi�ed BIOASQ dataset. This model is used to predict answers on test sets of

BIOASQ. Both the processes use the same Glove word embeddings.

For BIOASQ evaluation, if we have only 1 paragraph relevant for a question, we

take 5 predictions from the same paragraph as Top-5 answers and rank it based on

the decreasing score of probability. Top-1 probability answer is evaluated for the

strict accuracy as per of�cial evaluation. And Top-5 is evaluated for lenient accuracy.

If we have more than 1 paragraphs per question, we take at least 1 prediction

(best candidate prediction with highest probability) per paragraph until we have 5

predictions. Further all the predictions are ranked based on the decreasing score of

their answer probabilities.

4.2.3 Importance of Pre-Training and Fine-Tuning

To show the importance of Pre-Trainingand Fine-Tuningfor domain adaptation to

biomedical domain, and also show the necessity of doing this to be able to use deep

learning methods ef�ciently, we experimented three approaches on a single model

DRQAwithout altering any hyperparameters. Default parameters as those used by

(Chen, Fisch, et al., 2017) in their code10.

1) No-Premodel is the DRQAmodel trained on BIOASQ dataset only -Deep learning

on small scale data.

2) No-Finemodel is the DRQAmodel trained on SQUAD v1.0 dataset only. -Deep

learning on large scale data.

10https://github.com/facebookresearch/DrQA
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Datasets No. of Ques Metrics No-Pre No-Fine Pre+Fine

BIOASQ 4b

S.Acc 08.98 23.96 24.00
161 L.Acc 16.56 35.26 39.21

MRR 11.36 28.40 29.34

BIOASQ 5b

S.Acc 25.91 32.17 32.43
150 L.Acc 34.86 45.58 47.73

MRR 29.27 36.75 38.37

BIOASQ 6b

S.Acc 13.40 26.24 26.72
161 L.Acc 27.08 40.60 43.72

MRR 19.20 32.57 33.80

Average

S.Acc 16.09 27.45 27.71
L.Acc 26.16 40.48 43.55
MRR 19.94 32.57 33.83

Tab. 4.2: Results reporting the importance of Pre-Training and Fine-Tuning a model. All
scores are computed on the of�cial test sets combined into one. S.Acc is Strict
Accuracy, L.Acc is Lenient Accuracy (the correct answer is in the top 5) and MRR
is the Mean Reciprocal Rank for the correct answer in Top-5 answers.No-Preis
for No-Pretrainingon open domain, No-Fineis for No-Finetuningon biomedical
domain and Pre+Fine is for Pretraining and Finetuning on open domain and
biomedical domain.

3) Pre+Fine is the DRQAmodel trained on SQUAD v1.0 dataset and �ne-tuned on

BIOASQ dataset -Domain Adaptation .

Results are shown in the Table 4.2 for different BIOASQ test sets. When a model

is only trained on a small dataset like BIOASQ, the results are very low as shown

in the column No-Pre, because deep neural network model do not perform the best

when the source dataset is small scale. When a model is trained on a large dataset

like SQUAD v1.0, the model can be straight away used to predict results on the

biomedical dataset. No-Fineshows a clear improvement doing so, againstNo-Pre,

because of the large scale dataset it is trained on.

Lastly, Pre+Fine is the model which underwent pre-training on a large scale dataset

and �ne-tuning on the biomedical dataset which clearly shows an improvement

over the other approaches as the model which is well learnt on a large scale dataset

is tuned to �t a small scale dataset. This set of experiments show that the best

approach is to do pre-training on large scale datasets and �ne-tuning on small scale

datasets, which is a feasible approach to use deep learning models on small scale

datasets.

The difference betweenNo-Fineand Pre+Fine shows the need for domain adaptation.

The No-Finemodel is a good model with good performance because it has been

trained on a large scale dataset, but it can be further improved by doing the above

process.
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4.2.4 Comparison of word embeddings for domain

adaptation

While performing domain adaptation, one hurdle we came across was the set of

missing vocabulary terms across different domain word embeddings. The input word

embeddings for both Pre-training and Fine-tuningprocess should be the same for the

overlapping words. Therefore a word having one word vector in word embedding

space cannot be different while doing pre-training or �ne-tuning. Which means a

common word embedding space is required for this purpose.

An easy way is to keep the same word embeddings space for bothPre-training and

Fine-tuningprocesses. This gives raise to several questions.Using both domain data

together is better? or one is better than the other?, Which algorithm is the best for this

purpose?.

In order to check with different domain word embeddings, different algorithms

and different hyperparameters required to train them, we train different word

embeddings with CBOW and Skipgram models of Word2Vec by (Mikolov et al.,

2013) with different hyperparameters and different data from open domain and

biomedical domain.

For training biomedical domain word embeddings we chose the BIOASQ 5A task data

which consist of 12,834,585 PUBMED articles as an input corpus. We preprocessed

this dataset to remove special characters and use the Gensim tool11 to train word

embeddings with 50, 100, 200, 300, 400 dimensions with CBOW and Skipgram

algorithms. We also use Global Vectors (Glove) which was trained on 840B tokens,

300 dimensions and available to download freely12 to compare performance. We

also combine open domain and biomedical domain data into one big corpus and use

it to train word embeddings using Word2vec.

We do an extrinsic evaluation of word embeddings by using them on the downstream

task of question answering. BIOASQ Task B contains �ve different test batches with

distinct question sets. We retrained theDRQAmodel on BIOASQ 2017 5B training

data after removing each test set.

Table 4.3 presents the comparison of �ve word embedding spaces tested on the �ve

test sets (Test-1 to Test-5) and a set with all test sets combined (All).BIOASQ 4with

200D performed worse on our experiments. These embeddings are given by the

organizers of BIOASQ task that is available on their website.BIOASQ 5embeddings

11https://radimrehurek.com/gensim/models/word2vec.html
12https://nlp.stanford.edu/projects/glove/
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Nb. of BIOASQ 4 BIOASQ 5 Wikipedia Wiki+BIOASQ 5 Glove
Ques. |V| = 1.7M |V| = 2.1M |V| = 2.13M |V| = 4M |V| = 2.2M

|T| = 2.2B |T| = 2.3B |T| = 2.19B |T| = 4.49B |T| = 840B
Test-1 39 33.33 46.15 46.15 51.28 58.97
Test-2 31 35.48 48.39 45.16 48.38 51.61
Test-3 26 38.46 65.38 65.38 65.38 61.53
Test-4 31 35.48 45.16 51.61 41.93 41.93
Test-5 33 45.45 57.57 60.61 60.61 66.66
Average – 37.64 52.53 53.78 53.52 56.14
All 160 33.12 51.25 45.0 50.0 52.5

Tab. 4.3: Accuracy (top 5) on 4B test with different Embeddings: |V|= vocab,|T|= token
counts

were trained by us with a Skipgram model and 300D. We can see that although

Gloveembeddings are trained on Web Crawl data and not speci�cally biomedical

data, it performs better than the rest trained on biomedical data because of the large

training data of Glove. Wiki+BIOASQ 5 trained with Skipgram and 300D on data

of BIOASQ 5and Wikipedia articles, has second best accuracy afterGlovebecause

of the domain speci�c training data even though it is smaller compared to Glove's

training data.

CBOW Skipgram
Dims Strict Lenient Strict Lenient
100 30.62 48.75 31.25 50.0
200 28.75 47.5 33.75 50.0
300 31.87 48.75 31.87 51.25
400 28.75 46.87 30.0 48.75

Tab. 4.4: Comparision of Word2vec models on 4B Test set (Testset “All” from Table 4.3)

Table 4.4 presents a comparison of different embedding spaces trained on different

dimensions (namely 100, 200, 300, 400) with CBOW and Skipgram models as

described in (Mikolov et al., 2013), where the performance is calculated based on

Strict Accuracy (Top-1) measure of BIOASQ 4B test sets. It is evident from the table

that Skipgram performs better than CBOW when the dimensions are higher. But

300 dimensions is found to be optimal in terms of both strict and lenient accuracy.

Increasing it to 400 dimensions did not fetch better results.

These experiments highlight the importance of choosing right word embeddings

for biomedical domain QA system. Glove performs better on average because of

large amount of data it is trained on, and pretraining on SQUAD which has a

large set of open domain questions makes the pretrained QA model to learn better

representations. Whereas the biomedical embeddings are trained on lesser data

and domain speci�c vocabulary which has a negative impact over the pretraining of

SQUAD. Therefore we further use Glove embeddings for all our experiments as it

showed better performance in the above experiments.
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In the above set of experiments, we consider only positive paragraphs (paragraphs

containing an answer) in the datasets for answer extraction which suits the de�nition

of Reading Comprehensiontask. BIOASQ datasets consists of some negative para-

graphs (paragraphs that do not contain an answer) as well. Therefore in the next

section we experiment by modelling the task as anOpenQAtask for pre-training.

4.3 Domain adaptation with Di�erent Models and

Data

In the previous section we focussed on how domain adaptation can be done using a

Reading Comprehensiontask model DRQAwith modifying different word embedding

inputs. In this section we explore two other aspects of performing domain adaptation.

1) Different QA models. 2) Different Large Scale Datasets.

Our hypothesis is that the pre-training data and different modelling can also result

in performance variations. The following sections show which models and which

datasets are better for domain adaptation towards biomedical domain.

4.3.1 Comparison of Di�erent Pre-Training Models

In section 4.2.2 we already discussed about how aReading Comprehensionmodel

DRQAis used for domain adaptation. We now consider another question answering

task namedOpen QA. Open QAis a QA task where a question is given and the goal is

to retrieve an answer. Since this is an open task, answer can be retrieved either from

textual sources or knowledge graphs or ontologies. In our work we focus only on

textual sources. An answer has to be retrieved from a set of documents or passages

of textual sources as Wikipedia articles or news or scienti�c articles. Answers are

also usually short phrases or entities.

In deep neural network approaches for Open QA, generally answers are extracted

using a reading comprehension model on the subset of the retrieved documents or

passages considered as relevant (Dhingra, Mazaitis, and William W. Cohen, 2017b;

Joshi et al., 2017).

One of the main differences betweenReading Comprehension (RC)and Open QAtasks

is that the answer must be present in the paragraphs (or documents) forReading

Comprehension (RC), but for Open QAthis condition might not hold true because

the retrieved documents considered to be relevant to the question might not contain
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any answer. Multiple paragraphs can contain the answer as well. An effectiveOpen

QA model must consider all these into account.

Below is an example from the dataset.

Q: Which calcium channels does ethosuximide target?
A: T-type calcium channels
P1: ..neuropathic pain is blocked by ethosuximide, known to block T-type cal-
cium channels,..
P2: Theta rhythms remained disrupted during a subsequent week of with-
drawal but were restored with the T-type channel blocker ethosuximide.

However, as shown in the example one paragraph (P1) has the gold standard

answer and the other (P2) does not (i.e. it does not contain the exact match of the

answer string). Therefore this resembles more like anOpen QAtask than a Reading

Comprehensiontask because of several reasons. 1) The existence of paragraphs

without answers even though they are considered relevant. 2) Multiple paragraphs

containing the same answer. Therefore we experiment by pre-training and �ne-

tuning in three different ways for BIOASQ task by taking into account the above two

considerations.

In its general de�nition, the OpenQAtask contains questions and their short answers

without any given paragraphs. BIOASQ organizers already provide paragraphs in

the gold standard data. Therefore,OpenQAcan be formulated as a parent task which

involves two child tasks, 1) Ranking the relevant paragraphs for a question and 2)

Extracting a short answer from the paragraphs. In Open QA, the �rst task is generally

referred as paragraph selection or answer sentence selection and the second task is

often modelled as Reading Comprehension although there exists several correct and

incorrect paragraphs. Open QA models should distinguish if the paragraph is correct

and then extract the answer unlike the RC models.

We use the two models forRCand Open QAwhich are shown in the Figure 4.7.

Open QA model described in section 4.1.3 is used for the implementation. While

adapting the model to BIOASQ, the number of answers to be extracted for BIOASQ

is Top-5 and not Top-1. Because of this, instead of choosing from only the top

most probable paragraph, we select top 5 answers from combined probability scores

in equation 4.20, which might consider 1 or more paragraphs to extract answers

from.
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Fig. 4.7: Left: DRQA - Paragraph Reader (RC task). Right: PSPR - Paragraph Selector and
Paragraph Reader model (Open QA task)

Pr(ajq; P) =
X

pi 2 P

Pr (ajq; pi ) P r (pi jq; P) (4.20)

In this set of experiments, we apply Type 1domain adaptation.

The data for pre-training

Two datasets correspond to each of the two tasks: SQUAD V1.0 dataset forRCtask

and QUASAR-T dataset forOpen QAtask and we show below their differences.

• QUASAR-T which is based on Trivia questions is generated synthetically, and

SQUAD is annotated manually by humans on a crowd-sourcing platform.
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• Each question in QUASAR-T is associated to 100 sentence-level passages re-

trieved from ClueWeb09 dataset based on Lucene, whereas SQUAD 1.0 has 1

relevant paragraph from Wikipedia.

• Some paragraphs in QUASAR-T do not have an answer.13

Comparing the above differences with BIOASQ dataset, the QUASAR-T dataset

resembles more closely to BIOASQ than that of SQUAD v1.0 due to the following

reasons.

• BIOASQ data has more than 1 relevant paragraphs per question.

• Some paragraphs do not have an answer.

Experiments with Gold standard paragraphs

For studying the modelling of the BIOASQ QA task as aReading Comprehensiontask,

we use SQUAD v1.0 dataset for pre-training and experiment with theDRQAmodel

as explained in the previous section. For studying its modelling as anOpen QAtask,

we use QUASAR-T dataset for pre-training and experiment withPSPRmodel.

As the PSPRmodel is a cascaded model with paragraph selector and paragraph

reader, we use the paragraph probabilities predicted by the paragraph selector and

multiply them with the answer probabilities obtained using DRQAmodel to select

the Top-5 answers which have combined higher probabilities. ThePSPRmodel

has a selector model which predicts a probability score for each paragraph which

signi�es the answer presence. We use these paragraph probability scores fromPSPR

model and the answer probability scores fromDRQAmodel and multiply them to

choose the answer candidates. The results for this experiment is highlighted in

Table 4.5 asDRQA+PS. This is different PSPRmodel becausePSPRlearns the model

by combining probabilities, whereas DRQA+PSdoes not learn but just use output

probability scores.

Results are shown in Table 4.5 for different BIOASQ test sets. We compare different

model results with BioBert scores reported in (J. Lee et al., 2019). The scores from

PSPRmodel shows the performance on Strict and Lenient accuracy on 4b, 5b and 6b

test sets. By taking paragraph probability into accountPSPRallows to better rank

Top-1 correct answer than BioBert which extracts answers from all paragraphs and

13SQUAD 2.0 is a variant of SQUAD dataset which contains questions without answers. We do not use
this because the reference models also do not use v2.0 to pre-train.
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chooses the maximum probability scored answer only based on answer probability.

Although PSPRhas a reader model similar to DRQA, considering the paragraph

probability improves the answer extraction in PSPRmodel.

Datasets Metrics BioBert by (J. Lee et al., 2019) DRQA DRQA+PS PSPR

BIOASQ 4b

S.Acc 36.48 24.00 26.22 30.28
L.Acc 48.89 39.21 32.33 40.34
MRR 41.05 29.34 26.54 34.19

BIOASQ 5b

S.Acc 41.56 32.43 30.62 46.59
L.Acc 54.00 47.73 47.86 53.76
MRR 46.32 38.37 36.96 49.55

BIOASQ 6b

S.Acc 35.58 26.72 26.50 43.91
L.Acc 51.39 43.72 42.16 51.34
MRR 42.51 33.80 32.07 45.70

Average

S.Acc 37.87 27.71 27.78 40.26
L.Acc 51.43 43.55 40.78 48.48
MRR 43.29 33.83 31.85 43.14

Tab. 4.5: DRQAis the Reading Comprehension model by (Chen, Fisch, et al., 2017),PSPR
is the Open QA model by (Y. Lin et al., 2018), DRQA+PSis answers chosen
with scores by multiplying answer probabilities of DRQA with Paragraph Selector
probabilities of PSPR. SOTA scores are reported by (J. Lee et al., 2019) who
average the best scores from each batch (possibly from multiple different models).
Results from BIOASQ 4b, 5b and 6b test sets. 7b test set cannot be evaluated yet
due to lack of gold standard answers. S.Acc is Strict Accuracy, L.Acc is Lenient
Accuracy and MRR is Mean Reciprocal Rank. Experiments are done with the
original BIOASQ data.

Experiments with Longer paragraphs (modi�ed BIOASQ data)

For the BIOASQ task we noted that the method used by (J. Lee et al., 2019) with

BioBert modi�ed the original paragraphs. For computing the BioBert model, the

authors have retrained the original BERT model (Devlin et al., 2018) using Pubmed

and PMC articles. For applying it on the BIOASQ task, the authors use longer

documents (instead of the actual snippets) from Pubmed corresponding to the data

given by BIOASQ in the "documents" �eld to access the Pubmed documents for each

question. Therefore this modi�cation of the gold standard dataset leads to different

results for BioBert compared to the gold standard data performance.

The exact pre-processing of BIOASQ dataset in order to do this is detailed in (Yoon

et al., 2019). The authors have used different strategies and found that using full

abstracts from the pubmed document is more useful than using the BIOASQ gold
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standard snippet which is a small part of the abstract. The authors released the

data14 with full abstracts which we use in some of our experiments for comparison.

Similar to these modi�cations, the authors of (Hosein et al., 2019) perform modi�-

cations of the BIOASQ gold standard data by using pubmed abstracts as paragraphs

instead of the given gold standard paragraphs (which are part of the of the pubmed

abstracts). The authors also use the paragraphs obtained from a system which

participated in BIOASQ paragraph retrieval task.

They found that the performance is better when the full abstract text is used instead

of gold standard data in some cases, and gold standard training data worked better

in some cases. The authors conclude that the paragraph retrieval also plays major

role than the QA model itself and report that the domain adaptation is not always

useful as the non �ne-tuned model performed better in some cases. We do not

compare our scores with their work because the authors pre-train their models on

Google Natural Questions dataset (Kwiatkowski et al., 2019) which contains atleast

3 times more data than SQUAD dataset and diverse set of questions obtained from

Google search logs. Because of this pre-training difference with a different dataset,

the results are not directly comparable with the systems which have pre-trained on

SQUAD dataset. We discuss more about this in the next section.

In order to evaluate the importance of this data modi�cation, we did two experiments

and also report results on BioBert with modi�ed paragraph data from (J. Lee et

al., 2019) : 1) DRQA with longer contexts 2) BioBert with unaltered data from

BIOASQ.

The results are shown in Table 4.6. The results ofBioBert is as presented in (J. Lee

et al., 2019) where the authors have �ne-tuned the models �rst using SQUAD v1.0

dataset and adapted it to BIOASQ data. We use the modi�ed dataset to experiment

it with the DRQAmodel to determine if it would improve the performance of the

pre+�ne DRQAmodel as reported in Table 4.2. We got lower performances to that

of the DRQAmodel trained on the original BIOASQ data.

For comparison, we try the BioBert model on the original BIOASQ data i.e. para-

graphs given by BIOASQ data and not pre-processed. The results in Table 4.6,

under the column BioBert-Unalteredrepresents these results. It is evident that the

modi�cation performed on the BIOASQ data fetches better results using BioBert

model.

14https://github.com/naver/BioBert-pretrained
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Datasets Metrics SOTA DRQA BioBert-Unaltered BioBert by (J. Lee et al., 2019)

BIOASQ 4b

S.Acc 20.59 18.49 13.08 36.48
L.Acc 29.24 32.51 18.54 48.89
MRR 24.04 23.88 15.48 41.05

BIOASQ 5b

S.Acc 41.82 28.92 22.84 41.56
L.Acc 57.43 46.54 32.46 54.00
MRR 47.73 35.88 25.94 46.32

BIOASQ 6b

S.Acc 25.12 21.70 16.35 35.58
L.Acc 40.20 41.51 22.61 51.39
MRR 29.28 28.60 18.72 42.51

Average

S.Acc 29.18 23.03 17.42 37.87
L.Acc 42.29 40.18 24.53 51.43
MRR 33.68 29.45 20.04 43.29

Tab. 4.6: Experiments with data containing longer contexts (Document level) by (J. Lee
et al., 2019). DRQAis a Reading Comprehension model by (Chen, Fisch, et al.,
2017). BioBert-Unalteredis the original BIOASQ dataset with questions and
paragraphs which contain answers.BioBert by (J. Lee et al., 2019)is the modi�ed
BIOASQ dataset where the paragraphs are longer paragraphs (documents from
respective articles), where all the models are pre-trained on SQUAD v1.0 dataset
and �netuned on BIOASQ dataset. SOTA scores are reported by (J. Lee et al.,
2019) who average the best scores from each batch (possibly from multiple
different models). Results from BIOASQ 4b, 5b and 6b test sets. 7b test set cannot
be evaluated yet due to lack of gold standard answers. S.Acc is Strict Accuracy,
L.Acc is Lenient Accuracy and MRR is Mean Reciprocal Rank.

Conclusion

In this set of experiment we compare two QA models based on i.e. 1) Reading

Comprehension task 2) Open QA task, and found that the performance is better

when using an Open QA model than a Reading Comprehension model. We report the

performance on different datasets and show that in some casesOpenQAmodelling

outperforms the state-of-the-art systems of BIOASQ which use domain adaptation

using Reading Comprehensionmodel (Wiese et al., 2017a; J. Lee et al., 2019) in

average.

Based on a different pre-processing done by (J. Lee et al., 2019) on the biomedical

dataset by using longer contexts from documents than shorter contexts, we found

that the Reading Comprehension model performs worse on the pre-processed longer

contexts (which are longer documents than paragraphs) compared to the shorter

contexts (paragraphs) originally given by BIOASQ data. On the other end, a large

pre-trained language model such as BERT performs much better on the pre-processed

longer contexts than shorter contexts.
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4.3.2 Comparison of Pre-Training with Di�erent Datasets

In the previous section, the importance of Pre-training and �ne-tuning a.k.a Domain

adaptation can be seen on small scale datasets in order to use deep neural network

models effectively. We also state that the deep learning models perform better when

trained on large scale datasets. This assumption gives raise to several concerns to

address before using different datasets to train deep neural network models.

Some of those concerns are:

1. How large is large enough for a dataset?

2. What is the minimum size required for deep neural network models to learn

ef�ciently?

3. What kind of data should be used?

4. Are synthetic datasets better than human annotated ones?

5. How do we choose the best dataset for pre-training?

To address some of the above concerns in terms of question answering and deep

learning methods, we present some experiments in this section which uses a single

model namely BERT-Base (Devlin et al., 2018). BERT15 has two models 1) BERT-

Base and 2) BERT-Large. BERT-Large takes approximately 12-13 hours to �ne-tune

on SQUAD dataset on one GPU, whereas BERT-Base takes around 2 hours of time.

Therefore we decided to use BERT-Base for our experiments. The BioBert model

which we have used in other set of experiments on other datasets is pre-trained on

the BERT-Base model. The goal is to experimentally understand the performance

variation of QA models trained on different datasets and compare the performance

variation while using it for domain adaptation.

This study was inspired by the work of (Talmor and Berant, 2019) who perform

an empirical investigation of generalization of QA datasets across different other

datasets. The authors use two models 1) Bi-LSTM based attention model - DocQA

2) BERT Base for QA and perform several experiments by training models on one

dataset and testing it on another. They also do �ne-tuning on target datasets (not

always small scale) and show that the �ne-tuning does have positive impact.

15https://github.com/google-research/bert
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One of the conclusions from their study is that the QA models are often over�tting

to source datasets and their own data distributions and not well suited when data

comes from a different source or is of a different type. Therefore the authors create a

single dataset called MultiQA by using several QA datasets listed in Table 4.8 where

some percentage of questions were randomly picked from all datasets used in the

experiments to create the MultiQA dataset which fetches the best results over all the

test sets of the datasets used on theReading Comprehensiontask, using the same

model BERT-Base. Some important observations from this work are relevant to our

work:

• A model trained on suf�ciently large scale data is good at performance for

generalization.

• An ideal dataset to obtain The Bestperforming QA model involves mixing up

questions from different datasets which are created using different sources of

data and different annotation schemes.

• Generalization improves when the model learns information from the target

distribution of data.

Based on some observations and conclusions mentioned in the above study, we

decided to perform a similar study on domain adaptation by using a single model

pre-trained with different datasets to measure the performance of �ne-tuning process

towards biomedical domain.

Our intuition is that, a model with exact same hyperparameters perform differently

on a downstream task when pre-trained with different datasets. Mainly because of

the nature and the scale of the dataset. Human annotated data may perform better

than synthetic ones which is why human annotated datasets are widely used for

benchmarking QA models. Our goal is to experimentally determine these aspects on

biomedical domain adaptation.

Experiments

We pre-train the BERT Base model on datasets from Table 4.8 individually and

�ne-tune the model to BIOASQ datasets from Table 4.7 individually.

For the datasets in table 4.8, note that theSQUAD 2.0, HotpotQA, NewsQA, SearchQA

and TriviaQA are not exclusively for Reading Comprehensiontask as some datasets

have relevant and irrelevant snippets like the datasets forOpenQAtask. Therefore,
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Datasets Train Dev Test

BIOASQ 4b 427 59 161
BIOASQ 5b 544 75 150
BIOASQ 6b 685 94 161

Tab. 4.7: Small scale BIOASQ datasets used in the experiments for �ne-training, with their
splits. The numbers represent number of questions.

Datasets Train Dev Test

SQUAD v1.0 87,599 10,570 9,533
SQUAD v2.0 130,319 11,873 8,862
Hotpot QA 90,564 7,405 7,405
News QA 107,673 5,988 5,971

Tab. 4.8: Large scale datasets used in the experiments for pre-training, with their splits.
The numbers represent number of questions.

as done by the authors of (Talmor and Berant, 2019), we also pre-process and keep

only those questions whose paragraphs contain the answers. If there are irrelevant

and relevant paragraphs in the datasets, we only keep relevant paragraphs and

questions . This allows to use SQUAD v1.0 models with these datasets.

For the following experiments we use the single model and the same set of hyper

parameters for all the experiments as used in the code16 for RC task. Table 4.9 shows

experimental results on BIOASQ 4,5 & 6 task test sets.

The experiments are performed on the models trained on open domain large scale

datasets from Table 4.8 and �ne-tuned on the BIOASQ data. We have two special

datasets which are combined datasets created using several other datasets into a

single large dataset. 1) SQUAD v1.0, SQUAD v2.0, NewsQA, HotpotQA. 2) SQUAD

v1.0, SQUAD v2.0. The above datasets are created by combining the datasets

mentioned into a big collection by adding 100% of data from each set. Due to lack

of time we did not experiment more combinations of these with varying amount of

data from different sets. We compare our results with BioBert (Yoon et al., 2019)

whose work scored the best at BIOASQ 7. Since we do not have access to BIOASQ 7

gold standard data for the test sets, we cannot evaluate our models on the test set.

SQUAD v2.0dataset pre-training seems to clearly outperformSQUAD v1.0on average

on Strict Accuracy and MRR, which almost all previous works such as (Wiese et al.,

2017b; J. Lee et al., 2019) have used for pre-training their models.

16https://github.com/huggingface/transformers
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Index Datasets Measures BIOASQ 4 BIOASQ 5 BIOASQ 6 Average
Strict 30.33 44.58 37.21 37.37

1 NewsQA Lenient 46.68 57.42 52.87 52.32
MRR 36.74 49.82 43.54 43.36
Strict 31.61 36.72 33.58 33.97

2 HotpotQA Lenient 45.81 52.14 53.74 50.56
MRR 37.07 42.55 41.97 40.53
Strict 30.30 42.12 36.73 36.38

3 SQUAD v1.0 Lenient 52.66 56.99 54.60 54.75
MRR 39.51 48.16 43.83 43.83
Strict 34.00 42.91 41.01 39.30

4 SQUAD v2.0 Lenient 50.50 57.28 56.49 54.75
MRR 41.30 48.02 47.17 45.49

Strict 31.13 46.53 38.90 38.85
5 SQUAD v2.0 & v1.0 Lenient 48.24 56.47 54.88 53.19

MRR 37.92 50.11 44.78 44.27
Strict 34.70 39.36 41.41 38.49

6 SQUAD v2.0 & v1.0 Lenient 51.40 57.69 56.64 55.24
HotpotQA, NewsQA MRR 41.27 46.76 47.13 45.05

Strict 28.57 44.00 42.86 38.47
7 BioBert Lenient 47.82 56.67 57.14 53.87

at BIOASQ MRR 35.17 49.38 48.41 44.32

Tab. 4.9: Experiments with different single datasets with �ne-tuning on BIOASQ data.
Results averaged over 5 of�cial test sets. The paragraphs used in these experiments
has been obtained from the authors of BioBert (J. Lee et al., 2019) which is a
modi�ed long document data and not BIOASQ gold standard paragraphs. Best
scores are highlighted in Bold according to the different BIOASQ tasks and
Average.

For individual BIOASQ (BIOASQ 4, 5 and 6) evaluations, on BIOASQ 4 the dataset

(SQUAD v1.0, SQUAD v2.0, NewsQA, HotpotQA)fetches better scores for Strict

accuracy andSQUAD v2.0fetches better scores for MRR. On BIOASQ 5 the dataset

(SQUAD v2.0, SQUAD v1.0)fetches better scores for both Strict accuracy and MRR.

On BIOASQ 6 the dataset(SQUAD v1.0, SQUAD v2.0, NewsQA, HotpotQA)fetches

better scores for Strict accuracy andSQUAD v2.0fetches better scores for MRR.

On average, the scores ofSQUAD v2.0dataset are better than the BioBert (Yoon

et al., 2019) scores which are pretrained onSQUAD v1.0dataset. In the next set of

experiments we experiment several BERT models including BioBert on theSQUAD

v2.0 dataset.

There are multiple BERT models popular these days such as Roberta by (Y. Liu

et al., 2019), XLNet by (Zhilin Yang, Dai, et al., 2019), DistilBERT by (Sanh et al.,

2019) etc. Some are trained using different tweaks in the architectures and training

methods, and some are trained on different datasets. We are interested in testing
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Fig. 4.8: BERT model training process from Language modelling task to BIOASQ QA task.

BERT trained on different datasets like BioBert by (J. Lee et al., 2019) which was

shown to be useful for several biomedical tasks by just �ne-tuning the original BERT

model on some large scale biomedical text corpus.

The Figure 4.8 shows a pipeline of training tasks done on the BERT model to obtain

a BIOASQ QA model. In this experiment we use BERT-BASE models which have

modi�ed only the Large Scale Text Corpusdata for the language modelling task as

highlighted in red colour in the Figure 4.8. The underlying BERT model (BERT-

BASE), the QA task pre-training (SQUAD v2.0) and �ne-tuning (BIOASQ) datasets

remain the same.

We believe that the pre-training language modelling task of BERT on different

datasets, has a greater impact on the performance of BERT on downstream tasks

like QA task.

We use three BERT models trained on different domain data.

1. BERT Base Google by (Devlin et al., 2018) - the original BERT model with Base

(smaller in size) trained on large scale open datasets.

2. BioBert by (J. Lee et al., 2019) - BERT model trained on original google data

and later �netuned on PubMed 200K articles + PMC 270K articles.

3. Scibert by (Beltagy et al., 2019) - BERT model trained on multi-domain corpus

of scienti�c publications.
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Datasets Measure BIOASQ 4 BIOASQ 5 BIOASQ 6 Average
Strict 22.02 24.22 19.50 21.91

BERT Base (Google) Lenient 33.16 38.69 39.31 37.05
MRR 26.37 29.65 26.69 27.57
Strict 34.00 42.91 41.01 39.30

BioBert Lenient 50.50 57.28 56.49 54.75
MRR 41.30 48.02 47.17 45.49
Strict 28.20 32.83 33.55 31.52

SciBert Lenient 43.35 43.39 46.54 44.42
MRR 34.07 37.02 38.66 36.58

Tab. 4.10: Experiments with BERT-BASE models trained on different text corpus for Lan-
guage Modelling tasks. We pre-train these models on SQUAD V2.0 dataset and
then �ne-tune on BIOASQ dataset. Results averaged over 5 of�cial test sets.

Table 4.10 shows experimental results on BIOASQ 4, 5 & 6 task datasets on different

BERT-BASE models. We use the SQUAD v2.0 dataset for pre-training as shown above

in table 4.9 that this dataset is the better option to pre-train a BERT model and

�ne-tune to BIOASQ than the rest (excluding the combination datasets).

Table 4.10 shows that the BioBert model by (J. Lee et al., 2019) is the best choice as

shown earlier in their article. Even though Scibert is trained on scienti�c domain

data, it is not the best choice for biomedical tasks as seen in the results above. Google

BERT performed with least scores as it is not trained speci�cally on any biomedical

corpus.

In the above set of experiments, we try different datasets on BERT models and

experimentally verify that the SQUAD v2.0 is the better single dataset to pre-train

models than SQUAD v1.0 maybe because of the presence of paragraphs without

answers. And BioBert is the best suited pre-trained domain data for BERT model

on biomedical tasks. While SQUAD v2.0 performs the best among single dataset

pretraining, the combination dataset which combines 4 datasets (SQUAD v1.0,

SQUAD v2.0, NewsQA, HotpotQA) is the best option to fetch better results.

In the work of (Hosein et al., 2019), the authors pre-train Google BERT on Natural

Questions dataset by (Kwiatkowski et al., 2019) and �nd that in some cases, the

results are better than BioBert. We believe that this phenomenon would be different

for the authors if they had trained their system with SQUAD dataset and not Natural

Questions (NQ) as the NQ dataset has 3 times larger than SQUAD and contains

diverse range of questions. Our results and �ndings in this section supports our

argument that pre-training QA datasets also play a major role in downstream QA

system performance.

Also since the above experiments were conducted on BERT models which are trained

on large scale data for language modelling, the performance gain from one dataset to
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another might be subtle. It would be interesting to see how traditional deep learning

models like CNN or RNN based models likeDRQAand PSPRwould perform when pre-

trained on different datasets. Note that training DRQAmodel takes approximately 4

hours, whereas �ne-tuning BERT on SQUAD dataset takes around 2 hours which is

why we chose BERT-Base for our experiments.

4.4 Conclusion

Using deep learning models directly on the small scale datasets (especially on

different speciality domains like biomedical domain) will not fetch optimal results.

In this chapter we addressed one of our research questions on building models which

work both on small scale and large scale datasets to obtain better performance.

Choosing right models which works better on open domain and adapting it to

biomedical domain was the primary goal.

We presented and detailed three QA task models forReading Comprehension, Open

QA and Answer Sentence Selection. We also explained in brief about using BERT

model for question answering. We presented some factors which we consider as

important before choosing a model to work with and explained why we did some of

our choices of models.

In this regard, we introduced the concept of domain adaptation from open domain to

biomedical question answering and showed the impact on the performance gain. We

also formally de�ned some terminologies used for domain adaptation and showed

different ways of doing domain adaptation which is sometimes also referred to as

Transfer Learningwhen the target task is different. The domain adaptation cannot

performed be straight away because the data formats are different for the open

domain dataset and the BIOASQ data, there we modi�ed some aspects of the data

and detailed about the process. This facilitates using state-of-the-art deep learning

models for biomedical question answering.

We experimented these models with different word embeddings trained on open do-

main corpus, biomedical domain corpus and their mixture with various embeddings

models like Word2vec, Glove etc. We concluded that using Glove embeddings was

the best choice as it is trained on a large scale corpus.

While performing domain adaptation, choosing a good model is equally as important

as choosing the right training datasets or right word embeddings. We studied 2

different QA task models suitable for biomedical domain adaptation. We concluded

that the Open QAtask outperforms the Reading Comprehensiontask for modelling
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BIOASQ task. The model of (Y. Lin et al., 2018) for OpenQAtask on BIOASQ

outperforms BioBert model (Yoon et al., 2019) results on certain sets which shows

that simpler models using Bi-LSTMs can be better than massively large scaled models

like BERT on tasks like BIOASQ.

We experimented pre-training with different Reading Comprehensiondatasets by

keeping the same model architecture and hyperparameters to show variability in the

performance on downstream domain adaptation. SQUAD 2.0 dataset by (Rajpurkar,

Jia, et al., 2018) was the best performing single dataset for pre-training the models.

And a combination of 4 RC datasets for pre-training performed the best on the

�ne-tuning for BIOASQ dataset.

The neural network approaches usually focus on building end-to-end models and

seldom focus on improving the predictions by post processing them. Generally,

the objective of the neural models in QA is to score better on the Top-1 accuracy

by learning the whole model on the QA dataset. Not a lot of emphasis is put on

post-processing Top-K predictions. In the OpenQA task, a question is provided with

several paragraphs some of which might contain the answer. Our hypothesis is that

the semantic features from questions and paragraphs and structured information

from different sources like UMLS can be used to further improve the performance

of the OpenQA task. The predictions from the neural model are used to compute

the features and input into a ML classi�er which is modi�ed as a ranker to better

rank Top-1 predictions. The following chapter will focus on using different kinds of

features in biomedical domain and open domain to improve the QA performance.

Our publications related to the work described in this chapter is listed below:

• 2019 - How to Pre-Train Your Model? Comparison of Different Pre-Training

Models for Biomedical Question Answering. - Sanjay Kamath, Brigitte Grau,

Yue Ma. Proceedings of the 7th BioASQ Workshop A challenge on large-scale

biomedical semantic indexing and question answering. ECMLPKDD, September

2019.

• 2018 - An Adaption of BIOASQ Question Answering dataset for Machine

Reading systems by Manual Annotations of Answer Spans. - Sanjay Ka-

math, Brigitte Grau, Yue Ma. Proceedings of the 6th BioASQ Workshop A

challenge on large-scale biomedical semantic indexing and question answering.

EMNLP, October 2018.
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5Leveraging Structured and

Semantic Information into

Question Answering Models

In this chapter we address the topic of using existing data from different sources

into the QA models to improve their performance. Ever since deep learning models

have become prominent in the �eld of NLP, end-to-end models are on the rise which

depend only on the input data to produce outputs. Our research concern in this

regard is to use different ways to annotate, enrich and highlight certain aspects of

the text data to improve the performance of these models without changing much of

their underlying model.

When doing our experiments on BIOASQ data, we came across some issues for anno-

tating the training data and automatically evaluating the results with gold answers.

Using distant supervision with gold answers leads to omit a lot of answer variants.

Thus, to overcome this problem, after studying its impact on the system results, we

leverage biomedical entities and terminology present in the Metathesaurus UMLS1

for improving the corpus annotation. These biomedical terms, entities and their

types can be detected in free text data using Metamap. This tool gives an easy access

to use UMLS by providing an interface to input text and obtain annotations about

the biomedical entities, types and concept identi�ers etc.

Neural network models do not explicitly use the semantic information such as Lexical

and Expected Answer Types from questions which were used to improve prediction of

answers in older models. The answer types are useful in highlighting the entity types

in the paragraph text, which are likely to be the answers. We study different ways

for modelling this information, by enriching the input data, or better representing

entities by embeddings learned on semi-structured knowledge without changing the

overall architecture of the system.

In order to exploit structured and semantic information sources for question an-

swering in open domain and biomedical domain, we annotate, enrich and highlight

the existing datasets with these extra information. We use it on different QA tasks

(Answer sentence selection, Reading comprehension and Open question answering

1https://www.nlm.nih.gov/research/umls/index.html
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tasks). All experiment results are compared with plain text results to show the

performance variations.

Our third study concerns improving the system predictions in the open QA task

by introducing a post-ranking process. The features used are based on the earlier

mentioned expected answer types, and also on the redundancy of answers in several

paragraphs. We conclude our study on the open QA task by experimenting state-

of-the-art models on different and even newly built datasets, and highlight the

remaining dif�culty of this task when modelled by neural network approaches.

The organisation of this chapter is as follows:

• Annotation of Answer variants in BIOASQ dataset to highlight the actual

performance of a Reading Comprehension model when the annotation is done

extensively.

• We discuss aboutExpected Answer Typesand Lexical Answer Typesand their

importance for question answering by performing a veri�cation study with a

QA model outputs.

• Annotation of entities in plain text w.r.t Expected Answer Typesand using special

entity embeddings for Reading Comprehension, Answer Sentence Selection

and open domain question answering tasks.

• Improving the QA performance using semantic and structured information

features such as lexical answer types and semantic types match from UMLS for

biomedical data etc. for reranking answer candidates.

• Applying QA pipeline on different sub-task datasets to benchmark scores on

Open Question Answering task.

5.1 Annotation of answer variants for BIOASQ

dataset to improve performance of existing QA

models in Biomedical domain

5.1.1 Introduction

"What happens when a human (expert or non expert) annotated labelled dataset does

not contain all possible variants of answer labels in their label set? Does that hurt a
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model's performance? What about true negatives while evaluating? Is the evaluation

correctly done?"- These are some of the questions which we wondered about when

we came across BIOASQ dataset for the �rst time and built a system of QA on this

dataset.

In fact, our results were pretty low compared to what we had obtained when

manually did the evaluation ourselves (we are not biomedical experts, but we used

reference gold standard answers to decide what is correct and what is not). The

dataset of BIOASQ for question answering (task B phase B) as explained in Section

2.3.2 has gold standard answers annotated by experts, based on knowledge base

triples and plain text paragraphs provided as reference for annotators. The human

annotators provided answer spans which are the gold standard answers do not

necessarily cover all variants of the answers present in the paragraphs. i.e. these

annotations are not an exhaustive list of all answer variants which occur in the

paragraphs. They only provide one or two variants.

In this section we discuss and highlight the problem (with examples) and show how

a model can perform when the annotation is done while highlighting all the correct

variants.

5.1.2 Problems addressed

The evaluation measures computed by BIOASQ for task B phase B are Strict Accuracy,

Lenient Accuracy and Mean Reciprocal Rank (MRR). Participating systems are

required to provide an answer span (5 answers maximum) for each question. To

compute the scores automatically, the exact match of strings between the predictions

and the gold standard answers is used to decide if a system answer is correct. Strict

accuracy is the rate of Top-1 exact answers. Lenient accuracy is the rate of exact

answers in Top-5 predictions. MRR is the mean reciprocal rank computed on the

Top-5 system answers.

These measures have been the same since BIOASQ 1, although the �rst four chal-

lenges had triples and concepts along with snippets in the data. In the last three

challenges, only relevant snippets for questions are released. Similar evaluations

are performed in extractive question answering and reading comprehension tasks

like in SQUAD question answering task where Top-1 accuracy and F1 scores are

computed by comparing exact matching strings after removing stop words and

special characters. One main assumption in reading comprehension task is that the

answer strings are substrings of the snippets, which implies that answers have to be

extracted from the snippets. In BIOASQ, the answers are curated by human experts

by analyzing the triples, concepts, and snippets (or paragraphs). Thus, the BioASQ
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dataset and evaluation measures are very similar to that of reading comprehension

task, but the major difference apart from the dataset size are the answers instances

provided as gold standard which does not contain all the occurrences, abbreviations,

different forms of answers which are present in the snippets.

As in (Wiese et al., 2017c), we transform BIOASQ Phase B as a reading comprehen-

sion task with domain adaptation (we explained this process in detail in Section

4.2.2). Gold standard answer strings and their offsets are automatically searched

in the snippets for exact match and treated as answers if only they are found in

the snippets, i.e., the answer string must be a substring of the snippet. We term

this method as Distant Supervisionmethod. By doing so the dataset size is reduced

to 65% of Bioasq 5B train set which was suitable for adaptation. Other 35% of

the questions did not have matching answers in the snippets, because of different

variants of answers in the snippets, missing abbreviations, or irrelevant snippets. We

also found that in BIOASQ 6B training dataset for factoid questions, 205 out of 619

questions have false negative answers (33% of the dataset). This kind of corpus

annotation may result in some problems:

• Less data for learning.

• The model does not learn to extract all the variants because it does not learn

from all the variants.

• Evaluation is done using such gold standard data which will lower the results

even though the model is performing well.

This above explained automatic snippet annotation method results in:

• False positive: an answer mentioned in a snippet which does not answer the

question. i.e. a snippet alone does not justify the answer to the question.

• False negative: a snippet answers the question but does not have the exact

string compared to the gold standard string.

Below are some examples for which the answers returned from a reference system

is correct (when evaluated manually) but the automatic evaluation classi�es it as

incorrect.
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Q: Which calcium channels does ethosuximide target?
P: ...neuropathic pain is blocked by ethosuximide, known to block T-type
calcium channels,..

Prediction: T-type calcium
Gold standard: T-type calcium channels

Example 1: Missing keywords in predictions (False Negative)

Q: Which disease can be treated with Delamanid?
P: In conclusion, delamanid is a useful addition to the treatment options
currently available for patients with MDR-TB.

Prediction: MDR-TB
Gold standard: tuberculosis

Example 2: Abbreviations and their expansions mismatch (False Negative)

Q: Which MAP kinase phosphorylates the transcription factor c-jun?
P: c-Jun NH2-terminal kinases (JNK) play important roles in T helper cell (Th)
proliferation, differentiation, and maintenance of Th1/Th2 polarization.

Gold standard: c-Jun NH2-terminal kinase (JNK)

Example 3: Non justi�able paragraph (False Positive)

In example 1, because of a missing word "channels", the predicted answer is marked

incorrect. In example 2, MDR-TB stands forMulti-drug-resistant tuberculosis, which

is from a relevant snippet but since the gold standard has onlytuberculosis, it is

marked incorrect. Contextually both are valid answers. In example 3, the paragraph

has no relation with the question except that it contains the answer terms.

To overcome this problem and enrich the answer space correctly, we manually

annotated 618 factoid question-answers pairs from the training dataset of 6B task,

by annotating the substring of the gold standard answers in the snippets, and adding

answers with abbreviations, multi-word answers, synonyms, that are likely correct

answers. We explain this in detail in the following section.
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5.1.3 Annotations of variants

Manual Annotations

To overcome the issues mentioned above, we manually annotated answer variants in

the data. The details of the annotations on the BIOASQ 6B training dataset and the

statistics are presented here.

Our annotations include the following type of answers:

• Exact Answer - Exact match with gold standard (GS) answers, which can also

be annotated automatically, and different variants of the answers. For example,

the annotation of a single GS answer"Transcription factor EB (TFEB)"resulted

in 3 annotations, "Transcription factor EB", "TFEB", "Transcription factor EB

(TFEB)".

• Lenient Answer - a more general form or a more speci�c form of an answer.

An example is "Telomerase" for "Human telomerase reverse transcriptase".

• Paragraph Answer - The answer matches with gold standard but the snippet

alone is not relevant to the question. - this corresponds to the false positive

case.

We came across several kinds of snippets. A supporting snippet, or answering snippet,

is a snippet that contains the answer and has enough elements for justifying it. It is a

correct answer to the question (snippet starting at line 5 in Figure 5.1 for example).

A snippet that contains the answer without justi�cation towards the question will

not be annotated with the answer as correct and is considered as a non-supporting

snippet (snippet starting at line 3 in Figure 5.1). A snippet that does not contain

the answer cannot be a supporting snippet, henceforth it is an irrelevant snippet

(snippet starting at line 8 in Figure 5.1).

We use Brat2 annotation tool by (Stenetorp et al., 2012) shown in Fig. 5.1 to

perform the manual annotations of the snippets with the answer to the question. The

annotations done include the answer string along with their character offsets in the

snippet. Answers were annotated by 3 people from computer science background

2http://brat.nlplab.org
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Fig. 5.1: Brat annotation tool

and multiple discussions were held to discuss problematic answers which involved

looking upon the internet for some medical term meanings.

Annotations were initially done on the BIOASQ 5B training set and the additional

questions from 5B test sets whose answers are present in the 6B training set were

annotated later on 6B data. So the changes done (if any) on 6B training set for

previous year questions from 5B set are not considered.

The annotation �les are freely available3 and can be used by researchers who can

obtain the BIOASQ dataset from the of�cial website4.

Gold std. annotations Full annotations
Count Avg Total Avg Total
Answers 0.8 500 2.9 1814
Snippets 7.7 3286 8 4965
Questions - 426 - 618

Tab. 5.1: Annotation statistics

Some statistics of the dataset are listed in Table 5.1 for the automatically annotated

answers from gold standard data and the fully annotated data with manual annota-

tions. The annotations are done on 618 BIOASQ 6B training dataset questions. Out

of 619 factoid questions, 1 question does not have any snippets. Only 426 questions

contain answers from automatic annotation.

"Answers" are the count of answers present in the snippets.Avgscore represents an

average over the total number of questions (i.e. 618). Since in gold standard data,

only 426 questions have gold answers in snippets, it is normal for the average to

fall below 1. It is clear from the table that the full annotated data contain at least

3https://zenodo.org/record/1346193#.W3_WUZMzZQI
4http://bioasq.org/
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3 times (1814 answers) more the number of candidate answers over the provided

gold standard ones (500 answers).

We found that some answers contained the whole snippet as an answer and that

3503 snippets are repeated in the 6B train set. After �ltering those repeated snippets

we found 3286 different snippets containing exact matching answers extracted

automatically from gold standard data and 4965 unique snippets manually annotated

with correct answers.

Automatic Annotations

When we realised the problems addressed in section 5.1.2, we did not use an

automatic method to annotate answer variants as it was not straightforward to do

using string edit distance for abbreviations etc. Instead we proceeded with manual

annotations. Once we began annotating it manually, we had some intuitions of

using either rule based techniques, noun phrases and text normalizing using some

pre-processing techniques.

Manual annotations are expensive in terms of time and money (if experts are paid

to annotate). An automatic alternative approach although not very straightforward

and accurate as manual ones, is necessary to provide as an alternate solution for

future BIOASQ datasets. Hence we propose an automatic way of annotating these

answer variants in this section.

Answers often refer to biomedical entities. The answer variants would also refer to

the same biomedical entity with different syntactic structures. Since both represent

the same biomedical entity, it is easier to detect the entity than the matching strings.

We decided to use the UMLS Meta-thesaurus to determine matching entities.UMLS

- Uni�ed Medical Language System is a Metathesaurus created in 1986, which

has become an important and a large resource for biomedical science. It provides

over 3,100,000 biomedical concepts imported from nearly 200 vocabularies. Each

concept is assigned a Concept Unique Identi�er (CUI) that uniquely identi�es a

single meaning. To consistently categorize these huge number of concepts, 133

Semantic Types are de�ned in UMLS Metathesaurus. In order to further reduce the

complexity of the Metathesaurus, these semantic types are divided into 14 groups,

called Semantic Groups5. Metamap6 is a tool that exploits UMLS to annotate free

text containing biomedical entities.

5https://semanticnetwork.nlm.nih.gov/download/SemGroups.txt
6https://metamap.nlm.nih.gov
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Fig. 5.2: Output of Metamap tool for a sample paragraph containing the term MDR-TB

Figure 5.2 shows a sample output of metamap tool for a paragraph which contains a

biomedical term MDR-TB. We use PyMetamap code7 which is a python wrapper pro-

gram which uses metamap server running in the background and returns metamap

annotations. Metamap outputs an identi�er for each entity that it recognizes in the

text. This identi�er is called as a "CUI". This identi�er is unique for each concept

found in UMLS. Metamap also gives the exact paragraph span which triggered this

concept while annotating. Using this tool we �rst annotate the gold standard answer

phrases provided by BIOASQ to obtain its "CUI". We then annotate the paragraphs

with metamap in order to obtain all annotations in them and search for the gold

standard answer "CUI" in them. The matching "CUIs" found this way are the exact

same concept in UMLS as the gold standard answer terms, but might be syntactically

different such as "Multi-drug-resistant tuberculosis" and "MDR-TB". This allows to

determine the UMLS concepts forAbbreviations.

There are two cases where automatic annotations fail: 1)Missing words: Missing

words from answer phrases will not be annotated if it does not belong to the UMLS

concepts. 2) Gold standard answers with bothAbbreviationsand the expansion

together, as UMLS does not highlight both in the annotations.

To determine if the automatic or the manual annotated ones are better, we exper-

iment by training the model using both data individually and evaluate the results

with gold standard data in Section 5.1.4.

5.1.4 Experiments

In this section we report the experiments we performed on the annotated and gold

standard data. We follow the process of (Wiese et al., 2017c) and use a machine

7https://github.com/AnthonyMRios/pymetamap
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reading model developed by (Chen, Fisch, et al., 2017) that is pre-trained on SQUAD

dataset (Rajpurkar, J. Zhang, et al., 2016) for open domain questions and �ne

tuned to biomedical questions. Note that we use the same model for all experiments

without changing any model hyperparameters or methods.

To study the impact of training data sets on the evaluations, we train the models

using separately the domain adaptation done viaDistant Supervision, Automatically

annotated data and Manually annotated data. We evaluate them individually.

For the detailed explanation of the QA system and domain adaptation to biomedical

domain, please refer the section 4.2.2. Several embedding spaces were tested as

input vectors (Kamath et al., 2017a) and the best performing ones which were the

Glove embeddings trained on common crawl data with 840B tokens, were chosen as

input to the system. Unknown words were initialized as zero vectors.

As BIOASQ questions have several answer paragraphs, we treat each question and

a paragraph as a training sample which might often result in repeated questions

with different paragraphs, i.e. for each training example, there is a question, a

unique paragraph and the start and end token string offsets of the answer in the

paragraph.

Since there are multiple paragraphs per question, while predicting we consider 5

answers from each paragraph based on the decreasing order of their probabilities,

resulting in a set of 5*n answers wheren is the number of paragraphs. Top 1 and

Top 5 are chosen in this set based on their answer probabilities.

Distant supervised vs Manually annotated answers

In this section we compare the performance of systems trained on answers obtained

by the method of Distant Supervisionand Manually annotated answers.

We perform �ne-tuning on two datasets namely

• BIOASQ 5B training set, which contains the 4B training data + the answers of

the 4B test data - We term it as 5B.

• BIOASQ 6B training set, which contains the 5B training data + the answers of

the 5B test set - We term it as 6B.
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We term the distant supervised annotated data asGold, and manually annotated

data asAnno., both for train and test splits.

The pre-trained model on open domain QA data is �ne-tuned on the above listed

Bioasq datasets separately. Evaluation is performed by K-fold cross validation because

of the small scale of the data (Table 5.2), and on the of�cial test sets of Bioasq 5B

(Table 5.3), which were separated from the training data while �ne-tuning.

Train set 5B 6B
Finetune Gold Anno. Gold Anno.

Eval DeepQA Gold Anno. Gold Anno. Gold Anno. Gold Anno.
Strict - 0.2551 0.2962 0.1666 0.3333 0.2669 0.3090 0.2265 0.3948

Lenient - 0.4156 0.4444 0.2991 0.5843 0.4417 0.4724 0.3511 0.6197
MRR 0.2620 0.3138 0.3425 0.2148 0.4322 0.3334 0.3718 0.2728 0.4765

Tab. 5.2: K-fold evaluation on different train sets with Goldand Anno data. DeepQA scores
are presented by (Wiese et al., 2017b)

Train set 5B
Finetune Gold Anno.

Eval (Wiese et al., 2017c) Lab Zhu, Fudan Univer Gold Anno. Gold Anno.
Strict 0.3466 0.3533 0.3533 0.42 0.3133 0.4266

Lenient 0.5066 0.4533 0.54 0.64 0.5 0.6866
MRR - - 0.4256 0.5042 0.3884 0.5258

Tab. 5.3: Overall results calculated on of�cial test sets from 5B task. Scores from (Wiese
et al., 2017c) and Lab Zhu, Fudan Univerare reported in Bioasq 5.

Train set 5B
Finetune Gold Anno.

Eval (Wiese et al., 2017c) Lab Zhu, Fudan Univer Gold Anno. Gold Anno.
Batch 1 0.5600 0.4200 0.4733 0.5733 0.4933 0.6066
Batch 2 0.4086 0.4839 0.4274 0.5510 0.3387 0.5215
Batch 3 0.4308 0.3846 0.4070 0.4198 0.3185 0.3955
Batch 4 0.3025 0.2601 0.3595 0.4474 0.4444 0.6196
Batch 5 0.3924 0.4524 0.4271 0.4771 0.3452 0.5023

Tab. 5.4: MRR results calculated batchwise on 5B of�cial test sets.

The explanation of scores reported in table 5.2 and 5.3 along with the corresponding

experiments on the datasets listed above, is as follows. On the data ofTrain set

mentioned in the �rst row, we �ne-tune it with Finetunedata on the second row -

which is Goldor Anno. version of the answers.

The of�cial evaluation measures8 using Goldor Anno. version of the test answers are

highlighted in the third row. The strict and lenient accuracies along with the MRR

are reported.

8https://github.com/BioASQ/Evaluation-Measures
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Goldversion of 5B data contains 313 questions andGoldversion of 6B data contains

428 questions. We consider the remaining questions with no matching answers as

incorrectly answered, hence evaluating over all the questions of the datasets (5B -

486 questions, 6B - 618 questions). Annotated 5B data contains 483 questions and

6B data contains 618 questions.

Overall results of 5B test sets presented in Table 5.3 are evaluated on 150 questions

from the test sets of 5B challenge whose gold standard answers are present in 6B

challenge train set.

To compare our scores with the ones reported in (Wiese et al., 2017b) and also since

the size of the dataset is small, we perform K-Fold (5) evaluations which are reported

in Table 5.2. To compare with previously reported of�cial test scores in Bioasq 5, we

train on 5B training set and test on 5B test sets which are reported in Table 5.3.

The results shown in the tables 5.2, 5.3 and 5.4 highlights the improvements using

manually annotated data over the distance supervised annotated data on the QA

performance as well as the evaluations withGoldand Anno. versions of answers.

In Table 5.2, training on Goldand evaluating on Goldare the baseline scores.DeepQA

MRR score is the K-fold evaluation score of MRR reported on 5B train set by (Wiese et

al., 2017b). Comparing the DeepQAMRR score with the Goldand Anno. 5B versions,

there is an improvement of at least 17% (Anno. training and Anno. evaluation) to

8% (Gold training and Anno. evaluation).

In terms of accuracy, training the model on Anno. version and evaluating on Anno.

version of answers fetch best results by 3.68% and 8.58% on Strict accuracy, 14%

and 14.73% on Lenient accuracy in 5B and 6B respectively.

Training on Anno. and evaluating on Goldhas low scores in almost all experiments

because of the model which learns on different forms of answers, therefore predicts

different forms of answers which are not present in the Goldversion.

In Table 5.3, because of a low number of questions in the of�cial test sets ranging

from 25 to 35 questions for each batch, the scores are computed over all 5B batch

test sets (5B test sets - 150 questions). The scores by (Wiese et al., 2017c) andLab

Zhu, Fudan Univerare the best of�cial results in Bioasq 5. We calculated strict and

lenient accuracy as mentioned above and our scores are better than both best of�cial

results by 6.67% for strict accuracy and 13.34% lenient accuracy onGold version

training, 7.33% for strict accuracy and 18% lenient accuracy on Anno. version

training.
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In Table 5.4, MRR scores are reported separately for each batch. MRR scores in

general have the best scores compared to both (Wiese et al., 2017c) andLab Zhu,

Fudan Univerby training on Anno. and evaluating on Anno. versions.

Automatically annotated vs Manually annotated answers

To determine the usefulness of automatically annotated answers done using Metamap

with the manual annotated ones, we use the same methods to train as above done

for manually annotated answers, but train with automatically annotated answers

which are obtained as explained in section 5.1.3 of this chapter. To avoid confusion

with distant supervised data and automatically annotated data by metamap, we

present the results separately.

Evaluation - BIOASQ 5B BIOASQ 6B
- Measures Manual Auto. Manual Auto.

Strict 25.62 27.28 38.68 38.12
Gold Data Lenient 43.82 39.99 59.00 60.64

MRR 31.95 32.32 46.62 46.91
Strict 45.83 37.81 47.59 48.59

Automatically Lenient 70.23 62.34 75.68 74.70
Annotated Data MRR 53.90 46.55 58.39 58.53

Tab. 5.5: Experiments with manual and automatically annotated dataset. Evaluation done
on both BIOASQ gold standard data and annotated datasets.

In this set of experiments, we try to determine which method of annotation is better

and if automatic annotation is comparable with manual annotations. If automatic

annotations provide better or similar performance, this avoids the need of expensive

manual annotations done by experts.

Table 5.5 shows the results of the models trained on automatically annotated data

and manually annotated data. Gold Dataevaluations are done on gold standard

answers given by BIOASQ challenge andAnnotated Data evaluations are done

on respective annotated data. The results show that both automatic and manual

annotations are comparable on 6B set.Lenient accuracy(Top 5) is better with manual

annotated data than the automatically annotated data (3 out of 4 experiments). And

for Strict accuracy(Top-1) both perform very similar except BIOASQ 5B data where

manual data is better when evaluating on Annotated dataset.

Although the data used in the Table 5.5 for Manual annotated datasetand in the

previous section of experiments in the Table 5.2 forAnnotated datasetis exactly the

same, the results onGold Dataevaluation differ largely between these two tables on

Manual annotated datasettraining. The scores in Table 5.5 is much higher than Table

5.2 because of the difference in the prediction module. In the method presented in
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Table 5.2, we predict 5 answers per paragraph based on decreasing order of answer

probabilities and choose Top 1 and Top 5 based on answer probabilities of all the

resulting candidates. In the method presented in Table 5.5, if we have 1 paragraph

per question then we take 5 predictions from the same paragraph as Top 5 answers

and rank them based on the decreasing score of answer probabilities. If we have

more than 1 paragraphs per question, we take at least 1 prediction from a paragraph

which has maximum probability until we have at least 5 candidates and choose Top

1 and Top 5 based on answer probabilities of all the resulting candidates. The order

of choosing the paragraphs for answer extraction is the same as provided by BIOASQ

gold standard data.

These small changes in the prediction module has a large impact on the result mainly

because the second method considers answers from paragraphs whose top answers

might not have the highest probability compared to another paragraph top answer.

The experiments and results show that the automatically annotated dataset using

Metamap performs similar to the manually annotated datasets henceforth this

method is better, easier and cheaper to adapt future datasets to cover more answer

variants for biomedical domain. The study reported above shows the in�uence of

enriching the training data by manually and automatically annotating variants of gold

standard answers, on the evaluation performance. We used UMLS Meta-thesaurus as

a source for Metamap tool to detect and annotate biomedical vocabulary. We show

the impact of the enriched data on Reading Comprehension taskby experimenting on

two training datasets. Our method outperforms some of the best-performing systems

from BIOASQ without changing the model.

In the following section, we report our studies on using semantic features such as

Expected Answer Types both in open domain and biomedical domain on improving

the QA model performance in different tasks.

5.2 Expected Answer Types (EAT) and their

importance in Question Answering models

5.2.1 Introduction

In traditional QA systems (non deep learning approaches) on text, one of the main

criteria for selecting an answer is based on recognizing the Lexical Answer Type

(LAT) and the Expected Answer Type (EAT) in order to do a matching with candidate

answers.
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The Expected Answer Type (EAT) is a type which determines the type of answer for

a question. This type is inferred from the question. In open domain, named entity

types can be used as EAT. Table 5.6 shows the taxonomy we follow to obtain EAT

from the named entity types. We use Spacy tool9 to determine named entities and

map them to the Expected Answer Type.

Spacy annotated named entity type EAT

PERSON, ORG, NORP HUM
LOC, GPE LOC
PRODUCT, EVENT, LANGUAGE, WORK_OF_ART, LAW, FAC ENTY
DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL NUM

Tab. 5.6: Spacy tool uses this named entity annotation scheme following OntoNotes 5
corpus, which is mapped with EAT types

The Lexical Answer Type (LAT) is the word or words in a question which determines

the type of expected answers. LAT and EAT are often used in the same context but

are very different from each other. LAT corresponds to the word in the question

phrase which is used to infer an expected type, whereas an EAT is the inferred type

and not a word in the question. Some examples of questions and answers with their

lexical answer types and expected answer types are given below:

Question: What was the name of the food chain owned by Gus Fring?

Answer: Los Pollos Hermanos

Expected Answer Type (EAT): ORG.

Lexical Answer Type (LAT): food chain.

Question: What was the food joint famous for?

Answer: Fried chicken

Expected Answer Type (EAT): NO_EAT

Lexical Answer Type (LAT): What

Question: Who played the role of Walter White in the series Breaking Bad?

Answer: Bryan Cranston

Expected Answer Type (EAT): HUM.

Lexical Answer Type (LAT): Who.

9https://spacy.io/
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Question: Where was the TV show Breaking Bad primarily �lmed at?

Answer: Albuquerque

Expected Answer Type (EAT): LOC.

Lexical Answer Type (LAT): Where.

Question: Which president of the USA did not sign the Paris climate agreement?

Answer: Donald Trump

Expected Answer Type (EAT): PER

Lexical Answer Type (LAT): President

In biomedical QA, the answers do not belong to the open domain named entity

types as shown in Table 5.6. Biomedical domain Expected Answer Types (EATs) are

speci�c to the domain.

In the case of biomedical domain for entities, the UMLS gives references of semantic

types and groups which give more granular information about the entity type which

it belongs to. Therefore instead of named entity types from tools like Spacy, we

use semantic types and groups from UMLS10. There are 133 semantic types and 14

semantic groups. Metamap tool11 is used to detect these for biomedical entities.

Some examples of biomedical questions and answers with their lexical answer types

and expected answer types are given below:

Question: What disease in Loxapine prominently used for?

Answer: Schizophrenia

Expected Answer Type: Disease

Semantic Group: DISO Disease or Syndrome.

Lexical Answer Type: disease.

Question: Which drugs are utilized to treat amiodarone-induced thyroitoxicosis?

Answer: Antithyroid drugs

Expected Answer Type: Drug

Semantic Group: CHEM Chemicals & Drugs

Lexical Answer Type: drugs.

Question: What causes the majority of lung cancers?

Answer: Smoking

10https://mmtx.nlm.nih.gov/SemanticTypesAndGroups.shtml
11https://metamap.nlm.nih.gov/
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Expected Answer Type: NO_EAT

Semantic Group: None

Lexical Answer Type: causes

Traditional QA systems on text are made of several pipeline modules: question

analysis, passage selection, answer selection. Question analysis allows to extract

features that are used for selecting passages and extracting the answer. Apart from

the plain textual words, these features can be different from a system to another, but

they all make use of the Expected Answer Type (EAT) (Kolomiyets and Moens, 2011).

The de�nition of Expected Answer Type (EAT) and some examples are presented

above. Best methods for verifying if a candidate answer matches the EAT involves

feature based supervised learning based on the use of different resources, as co-

occurrences and presence in structured resources (Grappy and Grau, 2010; Grappy,

Grau, et al., 2011; Chu-Carroll et al., 2012). In medical domain, this veri�cation

was made using UMLS (Zi Yang et al., 2016; Abacha and Zweigenbaum, 2015).

Recent QA approaches are based on deep neural network architectures, mainly in

the open domain. The authors of (Weissenborn et al., 2017) for their RNN based

model introduce a supplementary feature that is the word embeddings of LAT. It is

de�ned as the question word or the words around the question word (two different

features) whose embeddings are averaged and appended as a feature vector to the

model. However they did not report results that allows to evaluate the impact of

EAT on the overall performance of the model.

For the studies presented in this chapter, some of the resources used are listed

below:

UMLS is used extensively in almost all our works involving biomedical domain data.

For example, a concept such asTranscription factor EB (TFEB)has a CUI C1420699 in

the UMLS and belongs to the[Gene or Genome]semantic type. If a textual paragraph

contains a term "TFEB" or just "Transcription factor EB" without the abbreviation, it

belongs to the same concept mentioned above and UMLS tool Metamap can be used

to map these text spans to the concept to determine its features and relations with

other concepts.

Semantic types and semantic groups have been used in various biomedical informa-

tion systems, including categorizing clinical research eligibility criteria (Luo et al.,

2011), learning biomedical ontology (Petrova et al., 2015), and representing clinical

questions for medical QA (Kobayashi and Shyu, 2006).
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Pubmed articles are used to create word embeddings for biomedical domain words

which are used for tasks such as Named Entity Recognition (NER) by (Habibi et al.,

2017), Question Answering (QA) by (Tsatsaronis et al., 2015; Wiese et al., 2017c).

In the following sections we present a study to understand the usefulness ofExpected

Answer Types (EAT)in Question Answering systems in biomedical domain and open

domain.

5.2.2 Veri�cation of the Expected Answer Types in

Biomedical Domain

In the �rst study, we begin with biomedical domain data. To understand the impor-

tance of Expected Answer Types in biomedical QA dataset, one set of experiment

involves analysing the output of our QA system for determining how many system

responses correspond to theExpected Answer Typefrom the question. For this purpose

we use theReading Comprehension taskmodel DRQAby (Chen, Fisch, et al., 2017)

which is explained in Section 4.1.1.

The model does not make use of any LAT or EAT information or any medical domain

related resources. The model only relies on input data tagged with named entities

and encoded with word embeddings. Thus the goal is to study if it can be interesting

to add information regarding the Lexical Answer Typeor Expected Answer Typeinto the

model explicitly. Alternatively we can also determine if the model already captures

the Answer Typeinformation by analysing the predictions.

For the analysis, we take the gold standard answers provided by the BIOASQ and

use Metamap tool12 to annotate the answers to determine their semantic types13

from UMLS. These semantic types are our gold standard answer Expected Answer

Types (EAT). We determine the percentage of EAT matches provided by the gold

standard answers and the QA system's response to analyze two aspects:

• If the Expected Answer Type inferred from the question by using the Lexical

Answer Type (LAT), matches gold standard answer types.

• If the Expected Answer Type inferred from the question is already captured by

the QA system's response even when the answer is wrong.

12https://metamap.nlm.nih.gov
13https://mmtx.nlm.nih.gov/SemanticTypesAndGroups.shtml

120 Chapter 5 Leveraging Structured and Semantic Information into Question Answering Models



As we explain in the previous section, an Expected Answer Type (EAT) is the type of

the answer, whereas a Lexical Answer Type (LAT) is a word or words in the question

which is used to infer the EAT.

For the biomedical domain, (Neves and Kraus, 2016) released a corpus named

BiomedLatwhich consists of LAT and EAT annotations for BIOASQ questions14 which

were manually annotated with LAT words into them and their semantic group from

UMLS which are the EAT.

For our study, we consider different representations for the EAT from the questions:

• The Semantic Group of LAT. - This refers to the LAT from the question, whose

semantic groups from the UMLS semantic network15 are used -SGEAT - Se-

mantic Group Expected Answer Type .

• a word embedding for LAT (WEEAT - Word Embedding Expected Answer

Type) - word embeddings for LAT words obtained using a pre-trained word

embedding space. We use this to measure cosine distance between answer

word embeddings and the LAT embeddings (WEEAT). For computing WEEAT

when the LAT is made of several words, we compute the average of each word

embedding of the LAT. When a word has no embedding, we set its vector to 0.

We use Word2Vec skipgram model with 300 dimensions from (Tomas Mikolov,

Sutskever, et al., 2013) for computing word embeddings on the biomedical

texts of BioAsq 5A task data which consist of 12.8 Million PUBMED articles.

To determine if the Expected Answer Type can be useful for selecting an answer, we

study if the EAT given in the BiomedLatcorpus by (Neves and Kraus, 2016) (the gold

standard EAT for questions (GoldEAT)) matches with the BIOASQ answer inferred

semantic types (the answers in the gold standard BIOASQ data (GoldAns)) and

with the answer semantic types for predicted answers by our QA system (PredAns).

Semantic types from the answers (gold or predicted) are inferred using the Metamap

tool which annotates the answers with a semantic type.

An example to explain the above terms:

Question: What disease in Loxapine prominently used for?

Gold Standard Expected Answer Type (GoldEAT) : Disease

Gold Standard Lexical Answer Type: disease.

Gold Standard Semantic Group: DISO Disease or Syndrome.

14https://github.com/mariananeves/BioMedLAT
15https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
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Answer (BIOASQ given): Schizophrenia

Answer Expected Answer Type (GoldAns): Disease

Predicted answer (QA model output): Clozapine

Predicted answer inferred Expected Answer Type (PredAns): Drug

In the above example, GoldEAT isDisease. GoldAns isDisease. Therefore the gold

standard answer given by BIOASQ matches the GoldEAT which is an expected

result.

PredAns isDrug which is inferred from the predicted answer Clozapinewhich is a

wrong answer for the question, therefore the answer types do not match.

Experiments and Results

For the experiments, we consider only the factoid questions from BiomedLat corpus.

We split the dataset into train and test sets (80% train and 20% test). The statistics

reported in the Figure 5.3 are for the factoid question test set.

We compute cosine similarities between LAT word embeddings in questions and

three different answer word embeddings which are detailed below:

• GoldStandard-maxCosine (crossed points): Answer words are Gold standard

data annotated with all answer representations that have the maximal cosine

similarity with WEEAT.

• DRQA-cosine-top1 (triangular points): Answer words are Top-1 answers from

DRQA output. The similarities of correct (resp. false) answers are plotted

above (resp. below) the X-axis.

• DRQA-maxCosine (round points): Answer words are from top 5 answers

of DRQA output that have the maximal cosine similarity with WEEAT. The

similarities of correct (resp. false) answers are plotted above (resp. below) the

X-axis.

From Figure 5.3, we can see that gold standard answers (GoldStandard-maxCosine)

show a signi�cant correlation with LAT in terms of word embeddings, although there

are 6 questions whose LAT have 0 similarity with WEEAT caused by missing word

embeddings for the medical domain vocabulary. Another clear observation is that

many of top-1 wrong answers from DRQA system have low similarities (less than
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Fig. 5.3: The distribution of answers in three different answering settings for 59 questions:
the red crossed points are for gold-standard answers that have the maximal
similarity with the question LAT word embedding; So all the crossed points are
correct answers. The blue round points above the X-axis are correct answers
returned by DRQA system with maximal cosine similarity with WEEAT; The round
points under the X-axis are false answers found by DRQA system with maximal
cosine similarity. The absolute value is the similarity. The green triangles stand for
the top-1 results of DRQA system, where the upper parts are correct answers and
the low parts are wrong answers.

0.25), which indicates that we could remove some wrong answers according to this

criterion.

Moreover, Figure 5.3 shows that there are around 50% top-1 answers having zero

similarity with question LAT. This could be caused by the out-of-vocabulary problem

of word embeddings such as short answers with speci�c words that have never

appeared in the training corpus.

For the round points below the X-axis, they also present an important similarity

(around 0.5) correlation with WEEAT, which means that by simply selecting the

answer with highest similarity as the best answer is not an effective strategy. Indeed,

when we used this re-ranking strategy to select one answer from DRQA candidate

answers, the strict accuracy with respect to the annotated gold standard decreased
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from 38% to 33%. Again, the missing word embedding for correct answers has a

strong impact on this results.

The observations above show that a �ne-grained study of word embeddings is

important for biomedical QA systems and missing vocabulary for biomedical terms

might cause performance degradations.

Tab. 5.7: SGEAT (Semantic Group Expected Answer Type) associated to answers

Dataset Answer count
Gold standard data 40/59

DRQA correct top-1 output 18/23
DRQA wrong top-1 output 16/36

To determine the importance of semantic types inferred from the lexical answer

types from question (SGEAT) in answer words, we studied if the SGEAT types are

present in the answers. We report this on three datasets, one being the Gold standard

answers in BIOASQ and other two being the correct and wrong predicted answers of

DRQA system (top-1).

Table 5.7 shows the count of matches of SGEAT and semantic types from answers. It

is clear that many correct answers (gold standard - 40/59) have a matching SGEAT.

For DRQA outputs, we compute how many correct and wrong top-1 answers has a

matching SGEAT. From the reported �ndings, there are more correctly answered

DRQA outputs (18/23) with matching SGEAT than the wrong ones (16/36) which

signi�es that the model already captures this information correctly in most of the

cases. But 44% (16/36 questions) of wrongly answered questions have the matching

Expected Answer Types, which means that this feature is useful to improve wrongly

answered questions.

We studied different representations of the LAT words and EAT, based on structured

taxonomy or word embeddings, and showed a correlation with the correct answers.

When comparing with the answers provided by our QA model, we observe that the

wrong answers might be rejected by adding a criterion when the answer types do

not match.

5.2.3 Veri�cation of the Expected Answer Types in Open

Domain

In our study of the open domain, we analyze the SQUAD dataset by (Rajpurkar,

J. Zhang, et al., 2016) for the presence ofExpected Answer Types, which is based

on Wikipedia data. For analyzing this data, we need LAT and EAT information on
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the SQUAD dataset. The authors of (Madabushi and M. Lee, 2016) built a rule

based model which is highly accurate (97.2% in their evaluations) in determining

the question classes for input questions in a taxonomy de�ned in their work. We

obtain these annotations on SQUAD dataset questions upon request which we use

for the study of EAT for open domain.

We have created a simple taxonomy by using the higher level taxonomy from their

work to a version which is suitable for our work as shown in the Table 5.8. In open

domain data setting, the named entity types are mainly used to de�ne the Expected

Answer Types (EAT). A taxonomy must be de�ned for mapping named entity types

to Expected Answer Types (EAT) of the questions. Table 5.8 shows the taxonomy we

used.

EAT Spacy annotated tag

HUM PERSON, ORG, NORP
LOC LOC, GPE, NORP
ENTY PRODUCT, EVENT, LANGUAGE, WORK_OF_ART, LAW, FAC, NORP
NUM DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL
ABBR -
DESC -

Tab. 5.8: Named entity annotation scheme following OntoNotes 5 corpus mapped with
EAT.

The annotations given by (Madabushi and M. Lee, 2016) contain high level EAT

mentioned in the table 5.8 on the left. The right side values "spacy annotated tags"

are the tags which are annotated by named entity recognition tool Spacy16 which

the answer words belong to. The mapping determines the which named entity

type belongs to which Expected Answer Type (EAT). SinceABBR - Abbreviations,

DESC- Descriptioncannot be inferred from the named entities as they refer to textual

phrases and not exclusively entities, we exclude these from the analysis. These types

are present in Figures 5.4 and 5.5 because the gold standard data were not inferred

using the named entity types.

The annotations on SQUAD dataset by (Madabushi and M. Lee, 2016) contained

the following numbers of EAT as shown in the �gures 5.4 and 5.5 across 6 different

categories of EAT.
16https://spacy.io/
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Fig. 5.4: EAT statistics on SQUAD dev set - contains 8026 annotations for 10,570 questions.

Fig. 5.5: EAT statistics on SQUAD train set - contains 66,659 annotations for 87,599 ques-
tions.

We annotate answer spans using the spacy named entity recognition tool and map

it with the EAT taxonomy as highlighted above to check how many of them match

correctly. For the dev set: There are 8026 questions with EAT annotations (subtract-

ing 24 ABBR and 1556 DESC tagged questions from 9606 total questions). 4029

questions out of 8026 match according to the EAT annotations, i.e. 50.19%. For the

train set: There are 66,659 questions with EAT annotations (subtracting 354 ABBR

and 11727 DESC tagged questions from 78,740 total questions). 31,924 questions

out of 65,419 match according to the EAT annotations. i.e. 48.79%.
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The above analysis shows that EAT match happens for 50.19% of questions on dev

set and 48.79% of questions on train set. The non matching questions might be

because of several reasons:

• Correct Expected Answer Type not being recognized by the rule based system

annotations of (Madabushi and M. Lee, 2016).

• Non recognition or wrong recognition of certain entities and their types in the

answers from the named entity recognition tool Spacy.

• Wrong taxonomy mapping for certain types. For ex: NORP named entity refers

to HUM, LOC and ENTY EAT types.

From the scores reported above, we observe that it is dif�cult to use EAT as a strong

feature for selecting an answer from the paragraph.

Experiment using QA model

In order to understand how many wrongly answered questions correspond to their

Expected Answer Type (EAT), we experiment using QA model predictions. We

only consider the questions which were wrongly answered to study if the predicted

answer type corresponds to the correct expected answer type from the question.

For this set of experiments we useDRQAmodel on Reading Comprehension task. We

train on the of�cial SQUAD train set and predict on the of�cial SQUAD dev set. We

analyze these wrong answers to check if they match the Expected Answer Types

from the questions.

The of�cial dev set has 10,570 questions and 3,242 questions (30.67%) are wrongly

answered byDRQAmodel. Out of the 3242 questions only 721 questions (22.23%)

has an EAT from the annotated set provided by (Madabushi and M. Lee, 2016) which

matched the named entity inferred answer type.

This signi�es that the QA model predicted only a few number of answers (22.23%)

in the wrongly answered set which matched the corrected EAT but failed to capture

the right entity as the answer. This shows that there is a scope for highlighting entity

types as 77.77% of wrongly answered questions (2,521 questions) did not have a

matching EAT. Since 22.23% did not have correct answers in spite of their matching

answer types, shows that the entities were not correctly recognised.
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In the following section we address these issues by highlighting EAT in the paragraphs

and using EAT in the QA models.

5.3 Using Expected Answer Types and

Embeddings for the Answer Sentence

Selection task

Expected Answer Types (EAT) is one of the vital information which is important

for question answering systems to detect which type of answers do the questions

require and �lter out the less important answer candidates. We hypothesize that this

information can be explicitly highlighted and used in the existing models to improve

performance.

In the Answer Sentence Selectiontask, a question and a set of sentences are provided

and the goal is to �nd which sentence is the correct answer to the question. There

can be multiple correct answer sentences per question. Our intuition is that when

the type of an entity (among several other entities in the sentence) present in the

sentence corresponds to the Expected Answer Type (EAT) from the question, this

sentence is more likely to be the correct answer sentence than a sentence that does

not contain such an entity type. Our goal is to better rank these kinds of sentences.

We proceed by highlighting, in the paragraphs, entities that correspond to the EAT.

We explain the process in detail in the following sections.

Our contributions in this regards are as follows. We introduce two different ways

of using Expected Answer TypeEAT. We use a simple model of a recurrent neural

network which uses a pre-attention mechanism. We experiment with several datasets

along with TrecQA to determine if this would work better for a wider range of large

scale datasets. To annotate other datasets with EAT information, we propose a

multiclass classi�er model which is trained on a dataset built by using an existing

rule-based system which predicts EAT for questions.

5.3.1 Highlighting Single Entity and Multiple Entity Types

An answer sentence contains several named entities and some of them correspond to

the Expected Answer Type (EAT). Highlighting these entities using their type might

help in improving the QA system performance. The authors of (Tayyar Madabushi

et al., 2018) propose a method for replacing words by special token embeddings

for highlighting entities that catch the EAT entity in sentences. In our work, this
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method is referred as “EAT (single type)" in the following experiments. The entities

belong to (HUM, LOC, ABBR, DESC, NUM or ENTY). HUM refers to a description,

group, individual, title. LOC refers to city, country, mountain, state. ABBR refers to

abbreviation, expansion. DESC refers to a de�nition, description, manner, reason.

NUM refers to numerical values such as code, count, date, distance, money, order etc.

ENTY refers to a numerous entity types such as animal, body, color, creation, currency,

disease etc. More details regarding the taxonomy can be found in (Madabushi and

M. Lee, 2016).

The entities, irrespective of which class they belong to, are treated similarly by replac-

ing them by two special tokens entity_left for entity occurrences and max_entity_left

for maximum occurring entity that corresponds to an entity that is at least twice the

number of occurrences when compared to the second maximum occurring entity.

Entity types are recognized using a named entity recognition tool. When an entity

type in a sentence matches the EAT from the question,entity_left token is used

to replace the entity mentions in the sentences; same applies for the maximum

occurring entity token max_entity_leftas well.

Our proposition is to replace an entity according to the type it belongs to, instead

of replacing all kinds of entity by just one word i.e. entity_left. We do it based on

the different types of EAT it belongs to based on the taxonomy used in the original

work. The intuition behind this method is that the model would learn to better map

the relations between question words and speci�c entity type tokens when used

in a model with attention mechanisms, rather than learning the relation between

question words and the same generic entity type token for all entities. This way,

we can learn a different behaviour with an entity about location and with an entity

about a person for example.

5.3.2 Answer Sentence Selection Model - RNN-Similarity

The answer sentence selection task is a question answering task which is also referred

sometimes asSentence Rerankingor Sentence Rankingtask. It involves ranking a set of

sentencesS = f S1; :::::; Sm g for a given question Q, so the correct answer sentences

are ranked higher. Sentence setS can contain the mixture of both negative and

positive sentences relevant to the question, often more than one positive sentence.

We model this task as a pairwise similarity scoring task. For each sentence related to

a question, we compute a similarity score against the question sentence and answer

sentence. i.e., (Qi � Si;j , Qi � Si;j +1 , Qi � Si;j +2 , ....Qi � Si;j + n ).
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Recurrent neural networks such as LSTMs and GRUs are widely used in several

NLP tasks like machine translation, sequence tagging, and question answering

tasks such as reading comprehension and answer sentence selection. We propose

a simple model with recurrent neural networks and an attention mechanism to

capture sequential semantic information of words in both questions and sentences

and predict similarity scores between them. We refer to this model further in this

article as RNN-Similarity model whose code is available online17. Figure 5.6 shows

the architecture of the model.

Fig. 5.6: Proposed RNN-Similarity model

Question words Q = f q1; :::::; qm g and Sentence wordsS = f s1; :::::; sng are se-

quences which are encoded using an embedding layer of dimensionD.

E(Q) = f E(q1); ::; E (qm )g (5.1)

E(S) = f E(s1); ::; E (sn )g (5.2)

A pre-attention mechanism captures the similarity between sentence words and

questions words in the same layer. For this purpose, a featureF align shown in

Equation 5.3 is added as a feature to the LSTM layer.
17https://github.com/rsanjaykamath/RNN-Similarity
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F align (pi ) = � j ai;j E(qj ) (5.3)

Where ai;j is,

ai;j =
exp(� (E (si )) � � (E (qj ))

� j 0 exp(� (E (si )) � � (E (qj 0))
(5.4)

which computes the dot products between nonlinear mappings of word embeddings

of question and sentence.

The above process is similar to theDRQAmodel by (Chen, Fisch, et al., 2017) and

PSPRmodel by (Y. Lin et al., 2018) for both Paragraph Selectorand Paragraph

Readerwho use LSTMs to encode Question and Paragraph words along with the

pre-attention mechanism as shown in Equation 5.3 . We use 3-layer Bidirectional

LSTM layers for both question and sentence encodings.

f E (q1); ::; E (qn )g = Bi-LSTM(f ~E(q1); ::; ~E(qng) (5.5)

f E (s1); ::; E (sn )g = Bi-LSTM(f ~E(s1); ::; ~E(sng) (5.6)

The LSTM output states are further connected to a linear layer and a sigmoid non-

linear activation function is applied on the output of the linear layer which outputs

the score ranging between 0-1, which signi�es the similarity between the question

and the answer sentence.

We implement the RNN-Similarity model in Pytorch, and we use MSELoss (Mean

Squared Error loss) to minimize the error of predictions for relevance scores. The

code for the model along with default hyperparameters is publicly available on

Github 18. The QA task is presented in section 5.3.2 in detail. The model's hyper-

parameters remain the same for all input settings. Only the modi�ed input text

for question and paragraph as shown in section 5.3.1 is the change which shows

differences in performance. We use adamax optimizer and keep the missing words as

zero vectors. We create a random word embedding ranging between (-0.5 - 0.5) with

dimension D for each of the EAT words and encode the word with this embedding

when it appears in all our experiments.
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- Method Question Sentence

1 Original text

Who is the author of
the book, `The Iron
Lady: a biography of
Margaret Thatcher'

in `The Iron Lady,'
Young traces ...... the
greatest woman politi-
cal leader sinceCather-
ine the Great.

2

Replacement -
(Tayyar Mad-
abushi et al.,
2018) (EAT
Single type)

Who is the author of
the book, `The Iron
Lady: a biography of
Margaret Thatcher'
max_entity_left en-
tity_left

in `The Iron Lady,'
max_entity_left traces
...... the greatest
woman political leader
sinceentity_left.

3
EAT
(Different types)

Who is the author of
the book, `The Iron
Lady: a biography of
Margaret Thatcher'
max_entity_left en-
tity_hum

in `The Iron Lady,'
max_entity_left traces
...... the greatest
woman political leader
sinceentity_hum.

4
EAT
(MAX + Dif-
ferent types)

Who is the author of
the book, `The Iron
Lady: a biography of
Margaret Thatcher'
max_entity_hum
entity_hum

in `The Iron Lady,'
max_entity_humtraces
...... the greatest
woman political leader
sinceentity_hum.

Tab. 5.9: Three methods for replacing entities along with an example from TrecQA dataset

5.3.3 Highlighting Process

The example in Table 5.9 shows the highlighting process. The row 1 is the original

text data from the dataset. The row 2 is the modi�cation done by (Tayyar Madabushi

et al., 2018) to highlight maximum occurring entity and the EAT matching entity.

The row 3 and row 4 are our modi�cations. The row 3 refers to an example that has

an EAT as “HUM" from the taxonomy, so we replace it asentity_hum. We do the same

for other expected answer types such asentity_loc for “ LOC" type, entity_enty for “

ENTY" type,entity_num for “NUM" type, entity_descfor “DESC" type,entity_abbr for

“ABBR" type. We replace the entity mentions in the text whose types are matching the

EAT from questions same as the authors of (Tayyar Madabushi et al., 2018), but we

use separate entity highlighting according to their type, instead of using entity_left

for all entities.

We also experiment with a variant where the max_entity_left is replaced with the

entity type along with other entities as done in row 4 of Table 5.9. If the maximum

18https://github.com/rsanjaykamath/RNN-Similarity
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entity is of type “HUM", we replace it as max_entity_hum. This method is referred to

as “EAT (MAX + different types)" in the following experiments.

5.3.4 Prediction of the EAT

In order to experiment on the datasets without EAT annotations, we had to develop

our own annotation tools to annotate any dataset questions with EAT entities.

Since SQUAD-EAT (see section 5.3.5) is the result of a rule-based method with a

high accuracy score (97.2% as reported in (Madabushi and M. Lee, 2016)), we use it

to train a multiclass classi�er based on a CNN model for text classi�cation19 by (Kim,

2014), by modifying the outputs into a multi-class setting. We use the original CNN

model by (Kim, 2014) built for binary classi�cation of sentiments because it captures

better semantic information from text than traditional ML models as pointed in their

work which also uses word embeddings from Word2vec (Tomas Mikolov, Sutskever,

et al., 2013) as input for their task. We further refer to our modi�ed model as EAT

Classi�er. We use 300 dimensions GloVe embeddings by (Pennington et al., 2014).

The output classes of the classi�er refer to a type based on the taxonomy such as

ABBR, DESC, ENTY, HUM, LOC, NUMand a "NO_EAT" class to signify an EAT which

is not in the above list of classes.

We train the multi-class classi�er model using the SQUAD-EAT dataset which gets an

accuracy score of 95.17% on the SQUAD-EAT dev in our experiment, according to

the annotation done by (Tayyar Madabushi et al., 2018) as reference. We release

the code for the EAT Classi�er and the SQUAD-EAT dataset on Github20.

Below is an example from SQUAD-EAT with HUM:

Question : Which NFL team represented the AFC at Super Bowl 50?

Expected Answer Type : HUM.

5.3.5 Experiments and Results

Datasets

We experimented on the TrecQA dataset which is a standard dataset used to bench-

mark state of the art systems for answer sentence selection task. The authors of

19https://github.com/cmasch/cnn-text-classi�cation
20https://github.com/rsanjaykamath/EAT-classi�er
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(Tayyar Madabushi et al., 2018; Madabushi and M. Lee, 2016) provide the EAT

annotations for the TrecQA dataset based on their rule-based approach.

We modify the QA dataset SQUAD (Rajpurkar, J. Zhang, et al., 2016) designed

for machine comprehension, into an answer sentence selection dataset to provide

the answers in their original context. We name it as SQUAD-Sent. We do this by

processing the dataset where each example is usually a triple of Question, Paragraph

and Answer span (Text and the answer start offset in the paragraph) into a dataset

where each triple is a Question, Sentence and Sentence label. The sentence label

is 1 if the answer is present inside the sentence, else it is 0. We perform sentence

tokenization using spacy toolkit21 on paragraphs of SQUAD and perform a check

for an exact match of answer strings in them. SQUAD-Sentis a special case dataset

where there is just one positive sentence per question and the other sentences

are negative examples. The motivation to do this is that we hypothesize that the

Reading Comprehensiontask on SQUAD dataset might perform better when the input

paragraph is a single sentence with an answer, instead of a paragraph with multiple

sentences. Since the answer is present in only one sentence in a paragraph, reducing

the paragraph size might increase the probability of �nding the correct answer in

the paragraph. In order to obtain the single sentence with an answer we can rely

on Answer Sentence Selectiontask. Also since SQUAD dataset is a large scale human

annotated dataset, we decided to modify this for the Answer Sentence Selectiontask.

For the expected answer types of SQUAD questions, we use SQUAD-EAT which is

a dataset with EAT annotated questions on SQUAD v1 dataset questions which is

annotated by the authors of (Tayyar Madabushi et al., 2018; Madabushi and M. Lee,

2016) on our request.

WikiQA dataset by (Y. Yang et al., 2015) is another dataset used for answer sentence

selection task which was built using Bing search engine query logs. We use a

preprocessed version as used by (Rao et al., 2016) which has removed certain

examples without any positive answers and questions with more than 40 tokens to

compare the scores. The questions and answer sentences are annotated with EAT

information as described in section 5.3.4.

Annotation of the entities in paragraphs

We detect the entities in the sentences using Dbpedia Spotlight tool by (Daiber et al.,

2013). The detected entities by the spotlight are veri�ed for their entity type match

using the Spacy NER tool which is mapped to EAT using the mapping shown in table

5.6. Only the matching entities are highlighted and others are discarded.

21https://spacy.io
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We also try using a named entity recognition tool to annotate entities in the text

directly without using Dbpedia spotlight. Spacy22 was used to annotate plain text

and the entities matching the EAT were annotated.

Dataset Split #Plain Q #EAT Q #Entities

Trec QA
Train 1229 649 (52.8%) 13.96
Dev 82 76 (92.68%) 5.02
Test 100 82 (82%) 7.82

SQUAD-Sent
Train 87,599 78,740 (89.99%) 0.44
Dev 10,570 9,606 (90.87%) 0.49
Test - - -

Wiki QA
Train 873 859 (98.39%) 0.15
Dev 126 124 (98.41%) 0.03
Test 243 236 (97.11%) 0.16

Tab. 5.10: Statistics of datasets with plain and EAT annotated questions. `#' refers to
“Number of." #Plain Q is the number of questions in the whole dataset,#EAT Q
is the number of questions which are annotated with EAT (a subset of #Plain Q),
#Entities is the number of entities on average per question in the paragraphs for
the #EAT Q question set - only those entities which match the EAT are annotated
and not the rest.

Table 5.10 shows the statistics of the datasets with EAT annotated questions and

plain word level questions (regular datasets) and the number of entities annotated

in each set. EAT version of TrecQA dataset is as reported in (Tayyar Madabushi et al.,

2018) and available through this link 23. SQUAD-Sent was annotated by the authors

of (Madabushi and M. Lee, 2016) upon our request. Wiki QA dataset although has

high number of questions with a predicted EAT (the rest are NO_EATclass), the

percentage of entities in the paragraphs which match the EAT are very low. This

can be because of three reasons as explained earlier, 1) Undetected entities in the

paragraph. 2) Wrongly predicted EAT. 3) Wrong taxonomy mapping.

Results

Table 5.11 shows various results on different versions of datasets. Note that the

questions in the following experiments of Table 5.11 contain all the questions from

the datasets, which includes questions which are highlighted with EAT and questions

which are not highlighted with EAT as well. Note that we test our systems on the

Raw version of TrecQA test dataset.

22https://spacy.io/
23www.harishmadabushi.com/research/answer-selection/
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Datasets Method Acc.@1 MAP MRR

TrecQA

Plain words - (Rao et al., 2016) - 78 83.4
EAT words - (Tayyar Madabushi et al., 2018) - 83.6 86.2
Plain words - RNN-S 78.95 80.24 84.81
EAT words (single type) - RNN-S 85.26 85.28 89.16
EAT words (different types) - RNN-S 85.26 85.48 88.11
EAT words (MAX+different types) - RNN-S 86.32 85.42 88.86

SQUAD-Sent

Plain words - Implementation of model by (Rao et al., 2016) - - 58.08
Plain words - RNN-S 83.94 - 90.5
EAT words (single type) - RNN-S 84.21 - 90.65
EAT words (different types) - RNN-S 84.26 - 90.70
EAT words (MAX+different types) - RNN-S 84.24 - 90.69

WikiQA

Plain words - (Rao et al., 2016) - 70.9 72.3
Plain words - (Tymoshenko and Moschitti, 2018) - 75.59 77.00
Plain words - RNN-S 56.79 69.07 70.55
EAT words (different types - NER) - RNN-S 55.14 66.56 68.10
EAT words (MAX+different types - NER) - RNN-S 55.14 66.25 67.92
EAT words (single type) - RNN-S 56.38 68.63 70.59
EAT words (different types) - RNN-S 58.4 70.04 71.56
EAT words (MAX+different types) - RNN-S 57.20 69.17 70.89

Tab. 5.11: Results reported on TrecQA, WikiQA, and SQUAD-Sent datasets. SQUAD-Sent
dataset is a modi�ed version for answer sentence selection task. RNN-S is
RNN-Similarity model.

TrecQA

The current state of the art system is by (Tayyar Madabushi et al., 2018) that uses

EAT on word level model of (Rao et al., 2016). Henceforth both results are presented.

Our model RNN-Similarity on plain word level data fetches better result than the

model of (Rao et al., 2016) by 2.24 % on MAP and 1.41 % on MRR. Our EAT words

(single type), EAT words (different types) and EAT words (MAX + different types)

models outperforms the state of the art performance for both MAP (1.68%) and

MRR (2.96%) scores of the previous state of the art model by (Tayyar Madabushi

et al., 2018) where the MAP and MRR scores are higher for correct sentences being

ranked as Top-1. In this way, we obtained the best accuracy scores by integrating

the occurrence of the EAT in the answer sentences.

WikiQA

WikiQA dataset was annotated by our EAT-Classi�er model which predicts EAT for the

questions. NO_EAT predicted type is excluded from the experiments. A recent model

by (Tymoshenko and Moschitti, 2018) which uses kernel methods outperforms all

the scores of our model. We note that the performance on our EAT level models is

higher than the ones on plain words. Plain text input fetches 69.07% on our RNN-S

model, whereas the entity highlighted input with different types of entities fetches
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70.04% with a slight improvement. Only a few number of entities are annotated by

spotlight compared to other datasets which is shown in the table 5.10. To annotate

entities better we experimented using Spacy NER types (marked as NER) directly

which resulted in more annotated entities but reduced the performance lower than

the word level scores.

SQUAD-Sent

SQUAD of�cial test set is hidden to the public users. Although the difference between

word level and EAT word level is little, the difference highlights the fact that the

entity words replaced in the sentence would not worsen the performance of the

systems; instead it improves it subtly. We would like to note that the MAP and MRR

values were the same because of the existence of just 1 positive sentence amongst

other negative per question. Hence we only report MRR on this dataset. Plain words

- (Rao et al., 2016) performance is obtained using the implementation available

online24, which we experimented on SQUAD-Sent dataset.

One aspect to be highlighted is that the implementation24 of word level model by

(Rao et al., 2016) originally made for TrecQA dataset performs poorly (58.05%) on

SQUAD-Sent dataset (maybe because SQUAD-Sent has only one positive answer

sentence per question whereas other datasets have several ones) which motivated

us to build a model (RNN-Similarity) which works robustly for all the three datasets

we have experimented with, without changing any speci�c hyperparameters of these

models.

Datasets Method Acc.@1 MAP MRR

TrecQA EAT words (single type) 84.15 84.81 87.17
(EAT) EAT words (different types) 85.37 85.45 88.18

EAT words (MAX+different types) 85.37 85.06 89.20
SQUAD-Sent EAT words (single type) 83.81 - 90.53

(EAT) EAT words (different types) 84.04 - 90.61
EAT words (MAX+different types) 84.16 - 90.73

WikiQA EAT words (single type) 58.02 68.91 70.99
(EAT) EAT words (different types) 55.14 67.70 69.52

EAT words (MAX+different types) 56.38 68.16 69.83
Tab. 5.12: Results reported on TrecQA, SQUAD-Sent and WikiQA datasets using RNN-

Similarity model trained only on EAT annotated questions

24https://github.com/castorini/Castor
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Table 5.12 shows various results on TrecQA SQUAD-Sent and WikiQA datasets with

only the questions which are annotated with EAT information in the train and test

sets.

Training datasets contain questions which are annotated with EAT information, if

the question does not have an EAT annotated, it is discarded from the dataset below

are the set of experiments and results:

• TrecQA (EAT): EAT words (MAX + different types) version of the dataset

fetches the best scores on the test set with only EAT annotated questions. The

same experiment with same dataset performed by (Tayyar Madabushi et al.,

2018) fetches lower results (MAP: 81.74% and MRR: 82.93%).

• SQUAD-Sent(EAT): EAT words (MAX + different types) version of the dataset

fetches the best scores on this dataset.

• WikiQA (EAT): We remove the questions with `NO-EAT' class which were 23

questions overall. The results are better with EAT (single type) which shows

that the method works well in certain cases better than different types of EAT

as in the above two datasets.

The results reported in table 5.12 show that there is not a high improvement over

different methods when trained only on questions with EAT information. Henceforth

it is better to train models with the entire dataset and highlight EAT information

only when the question contains the EAT information.

Conclusion

We report our �ndings on TrecQA, SQUAD-Sent and WikiQA dataset performance

and show that we outperform state of the art results on TrecQA dataset25 by the two

different ways of highlighting Expected Answer Types in the data compared to the

plain text input.

The Expected Answer Types are a useful piece of information that used to be

extensively exploited in the traditional QA systems. Using them with the current

state of the art DNN systems forAnswer Sentence Selectiontask improves the system

performance. We propose a simple model using recurrent neural networks which

works robustly on three different datasets without any hyperparameter tuning and

annotate entities belonging to the expected answer type of the question. Our model

25https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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outperforms the previous state of the art systems in the answer sentence selection

task on TrecQA dataset. We also propose a model to predict the expected answer

type based on the question words using a multiclass classi�er trained on a rule based

system's output on a large scale QA dataset.

In the above set of experiments, we observed that highlighting Expected Answer

Types (EAT) in the sentences works better in theAnswer Sentence Selectiontask.

Therefore we proceed to experiment on theReading Comprehensiontask, whose goal

is to extract short answers from the answer sentences, by highlighting the entities.

5.4 Using Embeddings of Entities for the Reading

Comprehension task

In the previous sections we discuss about highlighting entities with respect to

Expected Answer Typesfor Answer Sentence Selectiontask. In the case ofReading

Comprehension taskthe same technique cannot be applied in a straightforward

manner because the answer tokens or words are substrings of the answer sentences

and if an answer word is an entity then replacing it with generic entity words such

asentity_left or entity_hum etc. will result in loss of information during evaluation.

Henceforth a different approach with the same intuition is carried over in this set of

experiments.

We propose to take into account entities using entity embeddings forReading Com-

prehensiontask. Usually QA systems use pre-trained word embeddings trained using

Glove (Pennington et al., 2014), Word2Vec (Tomas Mikolov, Sutskever, et al., 2013)

or Fast-text models (Tomas Mikolov, Grave, et al., 2018) where entity words, stop

words, other words are considered. Using special entity embeddings for entities

have been shown to have better performance in certain state of the art methods for

evaluating word embeddings (Sherkat and Milios, 2017), (Dhingra, H. Liu, et al.,

2017), (Kamath et al., 2017b) and also in the above for Answer Sentence Selection

task where entities are represented with their type as a special embedding.

Often in the case ofReading Comprehensiontask the entity themselves play a role

in being the answer tokens therefore the same technique used in the above section

cannot be used here. Each entity has to be represented by its own embedding. In

order to learn specialized entity embeddings for the entities we chose to learn word

and entities embeddings (by highlighting entities during embeddings pre-training)

in the same embedding space. The intuition behind learning a representation of

words and entities is that the textual data sources such as Wikipedia dumps, news

data, common crawl data etc. often contain single or multi-word entities along with
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regular words which can be used to represent entities in a special manner along with

other non-entity words. For example, phrases "New York City" and "New Orleans"

contain the word "New" which has the same word embedding in both the phrases.

Our work shall use "New York City" as one single word embedding as it is a multi

word entity, same for "New Orleans" which will be a single word embedding. Our

hypothesis is that, doing so would improve sentence and entity matching and a

better association between the LAT word of the question and the entities without

any supplementary annotations required.

We describe our solution for encoding the information related to entities in a Reading

Comprehension QA model and show that using entity embeddings with word em-

beddings outperforms certain methods which use only word embeddings on factual

questions.

Motivation

Open-domain question answering systems often consists of question-answer pairs

where the answers are entities. As shown in Table 5.13 & 5.14, there is a high

number of questions whose answers are entities and their paragraphs contain 10

entities on average. Question answering systems input tokens in general do not

distinguish between regular words and entities. Apart from using input features

such as named entities, pos tags etc. the input tokens still remain at word level or

character level.

Data #Ques #Ques with Entities

Train Ques. 87599 61033 (69.67%)
Dev Ques. 10570 7359 (69.62%)

Tab. 5.13: Number of questions with at least one entity as answer, in SQUAD dataset

Data #Documents Avg # entities

Train Documents 87599 10
Dev Documents 10570 11

Tab. 5.14: Average number of entities in the SQUAD dataset paragraphs

We propose to use a joint representation of words and entities together in the text to

better represent entities. Multi-word entities (an entity described using more than 1

word) are clubbed into one single entity token.
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Joint Entity and Word embeddings

Concatenating a phrase of entity words into one token makes it easier to represent

multi-word entities like European Union Commissionand European Union Lawinto a

richer contextual representation to distinguish between different entities. The QA

system then will have to retrieve a single entity token rather than an N-gram of word

tokens.

Encoding symbolic information such as knowledge bases with text documents has

become a reliable way to work with such information. Word and entity embeddings

are widely used nowadays in several NLP tasks. The former have shown that it is a

great tool to capture both semantic and syntactic information about words (Tomas

Mikolov, Sutskever, et al., 2013). Several works have been proposed for their

combination (Fang et al., 2016; Yamada et al., 2016) and we opt for the recent EAT

algorithm proposed by (Moreno et al., 2017) for its simplicity. This work jointly

learns words and entities (Entity + Word ) in a unique embedding space (EW-Emb)

and restrict the entity usage to Wikipedia pages only. The underlying idea is to exploit

entity mentions, or anchor texts, within Wikipedia pages to calculate the entity

embeddings following (Tomas Mikolov, Sutskever, et al., 2013). When an anchor

text is found in a window, EAT processes two times the same window, one for the

word and another for the entity. In that way word embeddings are not downgraded

and unambiguous entity embeddings are learnt. However, extra pre-processing

steps are needed to ensure that anchor texts are not removed, entity entries in the

vocabulary are identi�ed, and entity entries are normalized to avoid redundancy

(e.g., by applying all possible redirections in Wikipedia). These embeddings are used

as input for a simple question answering system. Our implementation is based on an

optimized version of Word2Vec using TensorFlow26 with parameters (embedding

size = 200, learning rate = 0.025, 5 epochs, Skipgram con�guration, and window

size of 5). The obtained vocabulary is composed by more that 5.2M entries including

1.8M entities.

The QA system

The QA system used in this set of experiments isDRQAby (Chen, Fisch, et al., 2017)

whose model is explained in Section 4.1.1. The model remains exactly the same but

we have made certain changes for the input words.

We transform the SQUAD dataset which is built using Wikipedia dumps as shown in

the example below

26https://tinyurl.com/y8p4457e
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Q: What is the main executive body of the EU?

P: The European Commission is the main executive body of the Euro-
pean Union.

A: European Commission

Ent.Q: What is the main executive body of the Wikipage_European_Union?

Ent.P: The Wikipage_European_Commission is the main executive body of
the Wikipage_European_Union.

Ent.A: Wikipage_European_Commission

At input, we use word and entities embeddings for input tokens. The multi-word

entities become a single token because of entity embeddings. This results in change

of offsets and answer text for the answers in the paragraph which causes issues

for Exact Matchevaluations as done byReading Comprehensionsystems. Therefore

during the preprocessing time we build a mapping between multi-word entities

to their individual word offsets in the plain text paragraphs to use this during the

evaluation to perform evaluation on the of�cial dev set answers provided by SQUAD.

The evaluation however is the of�cial evaluation of SQUAD task based on plain text

entities.

An example of a QA pair is shown above, �rst box represents a regular QA pair, and

second box represents a QA pair after pre-processing with entities. Also note that

in this setting, the answer is always an entity. Offset refers to character level offset

to the start of the answer span. Mapping refers to the entity answer in plain text

which is represented by both start and end character offsets which is used during

evaluation.

We chose SQUAD data for our experiments because it is built using Wikipedia articles,

which are also used to train our embeddings. To annotate entities in SQUAD data,

we use DBpedia spotlight (Daiber et al., 2013), an off-the-shelf tool for annotating

mentions of DBpedia resources in text. We use redirections �le from dbpedia27 to

use the latest Wikipedia page titles for the entities after the redirections.

It was not suitable to �nd the wikipage for SQUAD paragraphs and use entities

from the wiki dump because Wikipedia does not annotate all entity occurrences in

27http://wiki.dbpedia.org/develop/datasets/downloads-2016-10

142 Chapter 5 Leveraging Structured and Semantic Information into Question Answering Models



the paragraph. Using Dbpedia spotlight we can annotate all the occurrences of the

entities in the text.

We evaluate on the of�cial SQUAD dev set as the test set is not available for public

testing. Along with the whole dataset we also test only questions whose answers

contain entities (for Entity question answering).

Data Of�cial (All questions) Pre-processed (Entity questions)

Train 86832 17407
Dev 10570 2705

Tab. 5.15: Number of questions in SQUAD dataset of�cial vs pre-processed

To perform the evaluation of Entity question answering, we preprocess the SQUAD

dataset - train and dev sets to retain only those questions whose answers only contain

entities. Table 5.15 shows the dataset statistics before and after the pre-processing.

Questions after pre-processing contained18% of Who, 11% of Which, 62% of What,

7% of Wheretypes of questions.

Experiments and Results

Data & Embeddings EM F1

Words | Glove 69.5 78.8
Words | EW-Emb 66.59 74.89
Ent+words | EW-Emb 65.76 75.05

Tab. 5.16: Whole SQUAD dataset system performance with dev set of 10570 questions.
EW-EMB is theentity+word embeddings

Data & Embeddings EM F1

Words | EW-Emb 67.43 71.85
Words | Fast text 70.94 75.53
Words | Glove 72.90 77.35
Ent+Words | EW-Emb 79.55 80.35

Tab. 5.17: Entity QA system performance on pre-processed SQUAD dev set of 2705 ques-
tions. The sameEW-Embspace does not perform well when used on only word
(W) representations. Glove performs the best on only words (W) representations
with comparable results on Fast text models.

We conduct experiments with three different embedding spaces:

1) EW-Emb (entity+word embeddings)

2) Global Vectors (Glove)
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3) Fast text vectors

Paragraphs with words (W) and paragraphs with Entities + Words (E+W) on entity

annotated SQUAD dataset questions and also on the whole SQUAD dataset questions.

Table 5.16 represents the results on Whole SQUAD dataset questions and 5.17

represents the results on the entity annotated SQUAD dataset questions.

One of the goal is to evaluate the performance of the system on extracting entities

from the text. We evaluate with exact match and F1 scores on the retrieved results.

Table 5.16 shows that using entity annotations and embeddings causes the results

to fall by around 1% on the whole SQUAD dataset in comparison with EW-Emb

embeddings. This might happen because the answers often are phrases and are not

tagged as entities. However theEW-Embembeddings space does not perform well

when used on only words, compared to Glove embeddings space. It is then dif�cult

to get a true conclusion about using entity embeddings on this dataset.

In Table 5.17, the questions whose answers are entities perform much better with

entity annotations and embeddings by 7% increase in performance over Glove

embeddings. The Entity+Word representation performs the best with EW-Embspace

because of presence of entity tokens with entity embeddings.

In SQUAD dataset, the answers are textual phrases sometimes containing just one

entity (like in Entity QA setting) and sometimes containing an entity along with

other surrounding contextual words which might not be entities but stop words,

pronouns etc. (whole dataset setting). In some cases even short answers which

are entities are not annotated by named entity recognition tools. Because of this

phenomenon, Entity+Word embeddings perform better only when the answers are

single entities which are short answers. Longer answer phrases are better answered

with only word embeddings.

Conclusion

Entities are widely present in open domain textual corpus and using a jointly learnt

embedding space bene�ts in better performance of QA with entities. We have

reported our �ndings of using such embeddings with an open domain QA dataset

which we have annotated with entities. Results show that the entity embeddings

improve retrieval of entity answers over the regular word embedding spaces when

the answers are entities. The performance does not improve but gets worse when

the entities are not present in the answer spans.
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In the above sections, we have discussed several ways of improving QA models which

are mainly based on neural networks. These models focus only on getting better

performance on their Top-1 accuracy scores. In the following section, we propose

to post-process the output of neural network based QA models to further improve

accuracy using semantic features from different paragraphs relative to a question.

5.5 Improving the QA Performance using Semantic

and Structured Resources in a Ranking model

Fig. 5.7: An example of answer predicitons from BIOASQ data

Question Answering systems focus mainly on optimizing Top-1 accuracy of answers.

Throughout our experiments with DRQAor PSPRmodel, we �nd that the Top-5

accuracy is always marginally higher than Top-1 accuracy. Figure 5.7 shows an

example from the BIOASQ dataset predictions by theOpenQAmodel. The answer

highlighted in Green is the correct answer for the question but it is present in Top-3

position.

To understand the importance of ranking Top-K predictions on the performance,

we analyze Top-5 predictions on obtained from a QA model on a open domain

dataset and a biomedical domain dataset. We �rst present the open domain analysis

on SQUAD dataset (Rajpurkar, J. Zhang, et al., 2016) consisting of only wrongly

answered questions based on the predictions by the DRQA model (Chen, Fisch, et al.,

2017). We consider only the wrongly answered set to evaluate how many answers

would have been correctly answered in the Top-5 predictions. Out of 3242 wrongly

answered questions, 1433 questions had correct answers in Top-5 predictions. 44.2%

of wrongly answered questions had a correct answer in Top-5. SQUAD dataset has
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10,570 total dev questions, 13.55% (1433/10,570) of questions which are wrong in

Top-1 predictions, contained an answer in Top-5 predictions.

We report a similar analysis on BIOASQ 5B (Tsatsaronis et al., 2015) dataset on the

wrongly answered questions. We use DRQA model pre-trained on SQUAD dataset

and �ne-tuned to BIOASQ 5B dataset. Out of 98 wrongly answered questions in the

overall test set, 35 questions had correct answers in Top-5 predictions. 35.71% of

wrongly answered questions had a correct answer in Top-5. BIOASQ 5B dataset has

150 overall test questions (from 5 batches), 23.33% (35/150) of questions which

are wrong in Top-1 predictions, contained an answer in Top-5 predictions.

The above statistics show that there is a scope of improvement to score better on

Top-1 using only the Top-5 predictions from the model. We experiment with other

values of Top-K by modifying K for ranking experiments. Only for the above analysis

we use Top-5 predictions.

In the case of Open Question Answering task, due to the availability of several

paragraphs which might contain the answer, the answer candidates might end up

overlapping among different paragraphs answers. This overlap feature between

these paragraphs has proven to be highly reliable for ranking answers in feature

based QA models (Grappy, Grau, et al., 2011). The same kind of data (Open Question

Answering taskdata with several paragraphs) is present in the BIOASQ task where

the answers are contained in more than 1 paragraph and sometimes there are zero

answers.

In order to take into account, the possibility of answer overlap among different

paragraphs along with the other explicit semantic features we presented in the

preceding sections, we de�ne a set of features which are detailed in the section

below and build ranking models based on Top-K answers predicted by the OpenQA

system.

5.5.1 Modelling

In this study, we intend to rank the predictions of the chosen OpenQA model,

therefore we present in detail its overall process.

The Paragraph Reader model extracts answer spans as shown in theDRQAmodel

(Chen, Fisch, et al., 2017). The model gives two probabilities (one for start and one

for end token given by two classi�ers) as described in equation 5.7 and 5.8. The

answer probability P r (ajq; pi ) for each answer span wherepi is i th paragraph in

Paragraph setP is computed as shown in the equation 5.9.
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Prs(i ) / exp (p i W sq) (5.7)

P re(i ) / exp (p i W eq) (5.8)
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The paragraph selector model gives a probability scoreP r (pi jq; P) for each para-

graph pi in the paragraph setP, where W is a learnt weight matrix and the probability

of each paragraph is calculated via a max-pooling and a softmax layer on questionq

and paragraph p̂ i inputs as shown in the equation 5.10.

P r (pi jq; P) = sof tmax
�

max
j

�
p̂ j

i Wq
� �

(5.10)

The softmax operation in equation 5.10 is applied over total number of paragraphs

per question therefore a probability value is predicted for each paragraph.

Combining the two probabilities (from eq.5.9 and eq.5.10), the overall answer (Top

1) is chosen by choosing the highest probable answer fromPr(ajq; P) for a question

q which is calculated as :

P r (ajq; P) =
X

pi 2 P

Pr (ajq; pi ) P r (pi jq; P) (5.11)

To perform ranking over Top-K predictions, we need K predictions for a pair of

question and a set of paragraphs. We use K as a hyperparameter and test with

different number of K.

The model of PSPRreturns a Top-1 answer based on the maximum combined

probability (equation 5.11) computed by multiplying individual probabilities of

paragraph (equation 5.10) and answer (equation 5.9) per paragraph and summed

over all the paragraphs per question. In our case, we use Top-K answers using

the same formula, instead of Top-1 we choose Top-K and choose paragraph which

resulted in the prediction.
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The goal is to improve the top 1 prediction by reranking the top K predictions of the

model. We model the ranking task as a classi�cation problem where only the top

answer prediction of the training data is marked as True class and other topK � 1

predictions are marked asFalseclass.

For the classi�cation task we use 1) Random Forests, 2) Adaboost, 3) MLP classi�er

implementation using scikit learn 28.

5.5.2 Features for classi�ers

We de�ne features for the classi�ers which are 1) Single features - features computed

over a single paragraph. 2) Collective features - features computed over several

paragraphs. 3) Semantic features for dealing with EAT or LAT veri�cation.

The input features to the classi�er models are described below.

Single Features

• Answer Probability - as computed in Equation 5.9 is the probability of answer

spans obtained from the reader model (top answers have higher probabilities)

• Paragraph Probability - as computed in Equation 5.10 is the probability

of paragraph obtained from the selector model (top scored paragraphs have

higher probability to contain an answer)

• Paragraph and Answer length in characters

• Answer words overlap with paragraph words - Ratio of answer words over-

lapping with paragraph words. Length of A \ P

Collective Features

• Maximum value of answer probability - Maximum answer probability for a

prediction, over the number of paragraphs.

• Maximum value of paragraph probability - Maximum paragraph probability

for a prediction.

28https://scikit-learn.org/
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• Answer presence ratio - Count of number of predicted answer occurrences

across different paragraphs, which is divided by the number of paragraphs.

• Summation of answer probability - If an answer prediction is repeated

several times coming from different paragraphs, their probabilities are summed

into one value.

• Answer rank - Rank of the predicted answer according to the model.

Semantic Features

• EAT Match - Expected Answer Type from the question matching the answer's

entity type - '0' when there is no EAT match, '1' when there is an EAT match

and '-1' when there is no EAT predicted in the question.

• Cosine distance between LAT and answer - Semantic feature - Lexical An-

swer Type words from questions and Answer prediction words are averaged

and checked for cosine distance between them in Glove word embeddings.

For the feature Cosine distance between LAT and answer , the LAT words are

computed using a classi�er built using a CRF model named Wapiti29 by (Lavergne

et al., 2010) to determine which words in the question phrase are the LAT words.

The task is a sequence labelling task where the labels are "1" or "0" to predict if

a word belongs to a LAT or not. For the training dataset, we use the annotations

provided by (Madabushi and M. Lee, 2016) which also highlights important words

which contribute as LAT words.

For the feature EAT Match - we use the EAT Classi�er explained in section 5.3.4,

which predicts an Expected Answer Type for an input question. The model is trained

on SQUAD EAT dataset provided by (Madabushi and M. Lee, 2016).

The same set of features (except the EAT Match) apply for both open domain and

biomedical datasets. We de�ne some additional ones for Biomedical domain as listed

below.

• Lexical Answer Type UMLS semantic Type match - LAT word predicted using

Wapiti is annotated with Metamap for UMLS semantic type which is checked

for matching with Answer's UMLS semantic type.

29https://wapiti.limsi.fr/
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• Lexical Answer Type UMLS semantic Group match - LAT word predicted

using Wapiti is annotated with Metamap for UMLS semantic group which is

checked for matching with Answer's UMLS semantic group.

• Lexical Answer Type UMLS CUI match - LAT word predicted using Wapiti is

annotated with Metamap for CUI (Concept Unique Identi�er) which is checked

for matching with Answer's CUI.

The above features are marked as '0' when there is no match, '1' when there is a

match and '-1' when there is no EAT predicted in the question.

5.5.3 Experiments and Results

Classi�ers

We experiment with a few classi�ers which takes as input, numerical features and

predicts either True or Falsefor input data. The scikit learn package provides several

algorithms for binary classi�cation, we experimented with 10 different classi�ers

mentioned in the post30 which compares different algorithms. We report results on

top 3 better performing classi�ers - Randomforests, Adaboost and MLP Classi�er.

Open Domain Data

Algorithm Accuracy

PSPR - Baseline 41.1
Randomforest 42.86
Adaboost 43.23
MLP classi�er 42.23

Tab. 5.18: Experiments on QUASAR-T dataset using different algorithms with best hyper
parameters with all features Single, Collective and Semantic features from above.
The bestK value was found to be 3 on this dataset.

We experiment with QUASAR-T dataset which is an OpenQA dataset with several

paragraphs per question. QUASAR-T dataset contains 37,012 training dataset ques-

tions and 3,000 dev and test dataset questions each. Results shown in Table 5.18 is

conducted using all the features explained in the section above using three different

algorithms. The results reported are chosen based on the best performing scores

validated on the of�cial dev set and tested on the of�cial test set. For all the classi�ers

30https://scikit-learn.org/stable/auto_examples/classi�cation/plot_classi�er_comparison.html
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mentioned in the table 5.18, the hyperparameter Number of estimatorswas tested

with different values from 0 - 2000 and the best performing score on dev set was

chosen and results on the test set are reported.

For each question, we consider the answers which are predicted asTrue classand

consider Top-1 as the highest scored candidate. If there is noTrue classprediction

for a question, we consider theFalse classprediction with lowest scored candidate.

Top-K Accuracy

1 - Baseline 41.1
2 42.40
3 43.23
4 43.03
5 42.9
6 42.8
10 42.63

Tab. 5.19: Experiments on choosingK value for Top-K predictions using Adaboost algorithm
with all features mentioned above on QUASAR-T dataset.

Adaboost algorithm performs better than the other two models and beats the baseline

score of PSPRmodel by 2%. The baseline scores is computed on the predictions

taken by the model implementation provided on the author's Github31 page. TheK

value for Top-K predictions for the above set of experiments was3.

Results shown in Table 5.19 show that choosingK value as3 fetches the best result

on Adaboost algorithm. The more K value is increased, the lesser the accuracy

because of imbalance in True and False classes for Top-1 data which leads to more

negative samples.

Feature ablation

In order to understand which feature is more important compared to the rest, we

do a feature ablation test by using scikit learn feature importance plot and the list

below represents the 5 most important features in decreasing order of magnitude.

1. Maximum value of paragraph probability - Max Para. Prob. - 28.46%

2. Answer presence ratio - 27.69%

3. Summation of answer probability - 15.38%

31https://github.com/thunlp/OpenQA
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4. Paragraph Probability - Sent. Prob. - 09.23%

5. Answer Probability - 06.15%

Features removed from the best model Accuracy

Best model score 43.23
- Summation of answer probability 43.03
- Answer presence ratio 42.53
- Maximum value of paragraph probability 42.23
- Sentence Probability 43.2
- Answer Probability 43.06
- (Summation of Ans Prob. + Answer presence ratio) 42.46
- (Maximum value of paragraph probability + Answer presence ratio) 41.36

Tab. 5.20: Experiments on Feature ablation and importance of features. Computing de-
crease in performance when certain features are removed from the input

To understand the importance of input features, we remove some features listed in

the 5 most important features from above, and run the experiment to compute the

decrease in performance. Results shown in Table 5.20 highlight the importance of

choosing right features to increase performance. These features are important and

suf�cient to model the complexity of the input. Removing some features penalizes

the performance. The most impactful features according to the above experiments

were Maximum value of paragraph probabilityand Answer presence ratio, removing

these two features drops the performance by 1.87%.

BIOASQ dataset

BIOASQ task expects Top-5 answers per questions to evaluateStrict Accuracy (Top-1)

and Lenient Accuracy (Top 5). Therefore in this case, we use Top-K as Top-5 for this

purpose. That is why Lenient Accuracy remains the same in all experiments. In

the previous set of experiments on open domain data in table 5.19, we found that

choosing Top 3 answers performed with better results for Top 1 ranking, and the

performance decreased upon increasingK value because of increasing number of

negative answers in the data. Therefore we do not increase above 5.

In this set of experiments, the baseline system is the output fromPSPRmodel

evaluated using of�cial BIOASQ evaluation. From the results it is clear that the

Randomforest algorithm performs better when comparing with the rest. We evaluate

this the same way do with QUASAR-T dataset by considering a dev set to check for

the best hyper parameter and later apply it on the of�cial test sets.
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Datasets Finetune BIOASQ 4 BIOASQ 5 BIOASQ 6
Strict 30.31 46.83 42.79

Baseline Lenient 45.00 52.66 53.41
Strict 39.37 44.00 45.96

Adaboost Lenient 45.00 52.66 53.41
Strict 38.75 46.00 46.58

Randomforest Lenient 45.00 52.66 53.41
Strict 34.37 46.00 38.50

MLP Lenient 45.00 52.66 53.41

Tab. 5.21: Experiments using different algorithms with best hyper parameters with all
features listed above for biomedical domain

Results shown in table 5.21 highlight the gain in the performance of Strict Accuracy

scores. For BIOASQ 4 and BIOASQ 6 datasets, there is an increase in performance,

but for BIOASQ 5 there is a small decrease in performance.

Feature ablation is important to understand which feature plays important role in

the classi�cation. Here are the few important features as calculated using scikit learn

feature important plot. The list below represents the 5 most important features in

decreasing order of magnitude.

1. Maximum value of answer probability - 21.87%

2. Answer words overlap with paragraph words - 15.28%

3. Paragraph Probability - 11.72%

4. Lexical Answer Type UMLS semantic Type match - 10.06%

5. Lexical Answer Type UMLS CUI match - 09.82%

Features removed Finetune BIOASQ 4 BIOASQ 5 BIOASQ 6
Strict 38.75 46.00 46.58

Best model score Lenient 45.00 52.66 53.41

- Max. Ans Probability
Strict 38.75 43.33 44.72

Lenient 45.00 52.66 53.41

- Answer overlap
Strict 38.75 45.33 45.96

Lenient 45.00 52.66 53.41

- LAT Semantic Type
Strict 38.75 45.33 45.96

Lenient 45.00 52.66 53.41

- Paragraph Probability
Strict 38.75 44.66 45.96

Lenient 45.00 52.66 53.41

- (Feature 1 and 2)
Strict 37.5 42.66 44.72

Lenient 45.00 52.66 53.41

Tab. 5.22: Experiments on Feature ablation and importance of features.
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The most impactful features according to the above experiments wereMaximum

Answer Probabilityand Answer words overlap with paragraph words, removing these

two features drops the performance by more than 1% on average on all the three

datasets. The semantic feature of LAT UMLS semantic type match has an impact on

the classi�er performance which shows a decrease in performance when removed.

Conclusion

With the above set of experiments, we try to rank the predictions obtained from a

neural network to further improve the accuracy. In the case of open domain data

and two sets of biomedical domain datasets, the traditional ML classi�ers work

better and improve the scores up by some margins, which gives an opportunity for

improving results of deep learning models.

5.6 Applying the Open QA model on di�erent

datasets

Question answering systems have evolved over time, the former pipeline systems

focused on answering a question by performing document retrieval, followed by

paragraph ranking, and answer extraction. And currently individual task based

systems which focus on individual tasks such as paragraph ranking or answer

extraction have emerged. The goal always has been to build end-to-end systems

where one model does it all, but since it is a hard task to tackle for a single model,

smaller goal oriented systems are built.

Since there are different models for different individual tasks, different datasets with

different task goals exist. In this section, we try to use existing datasets which were

primarily built for a different task in a way that the pipeline approach would �t and

show more realistic version of the task implementation on the datasets.

For example, SQUAD dataset by (Rajpurkar, J. Zhang, et al., 2016) assumes that the

relevant paragraphs always exist for a question and the systems built on this dataset

should comply to this assumption. But generally getting relevant paragraphs itself is

a hard task which has been researched for decades. Therefore onlyOpen Question

Answeringscenario is feasible as some paragraphs may not be relevant. Therefore

we try to use SQUAD in such a way that it would �t as a Open Question Answering

task.
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5.6.1 OpenQA on SQUAD dataset

One way to use aReading Comprehensiontask dataset as aOpenQAdataset is by

completely ignoring paragraphs and using an IR engine to fetch the paragraphs and

using it as input as done by (Chen, Fisch, et al., 2017). In this case, the IR engine

retrieval was not based on a machine learning model but used as an off-the-shelf

tool. Another way to build an end-to-end open domain question answering model is

to modify the retrieval phase as a weakly supervised task and build an end-to-end

with a single large scale model as done by (K. Lee et al., 2019) using the BERT

model.

In our work, we consider the SQUAD dataset and the paragraphs, and split the

paragraphs into sentences. In this setting we will only have one sentence with a

correct answer and all other sentences will be marked negative as they do not have an

answer. We hypothesize that determining a relevant sentence and extracting answers

from it will be better than extracting answers from a lengthy paragraph which

contains irrelevant sentences to the question. We call this dataset as SQUAD-SENT

dataset.

SQUAD-SENT dataset has been experimented onAnswer Sentence Selectiontask in

section 5.3. In this section we apply the SQUAD-SENT dataset onOpenQAtask for

answer extraction.

Model Accuracy

SQUAD-RC by (Chen, Fisch, et al., 2017) 69.5
SQUAD-SENT on PSPR 50.10
SQUAD-OPEN by (K. Lee et al., 2019) 26.5
SQUAD-OPEN by (Chen, Fisch, et al., 2017) 27.1
SQUAD-OPEN BM25+BERT by (K. Lee et al., 2019) 28.1

Tab. 5.23: Results on SQUAD variant dev datasets in Open Domain Question Answering
and Reading Comprehension settings

The results presented in Table 5.23 are on different variants of SQUAD datasets but

evaluated for the same answer extraction task as done in of�cial SQUAD evluation

setting. SQUAD-RCby (Chen, Fisch, et al., 2017) is theDRQAmodel scores on the

SQUAD dataset with correct paragraphs.

SQUAD-SENTis a sentence level dataset which contains 1 correct sentence with an

answer and rest are wrong sentences. The results presented above onSQUAD-SENT

dataset is on the model ofPSPRby (Y. Lin et al., 2018).
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SQUAD-OPENis an open setting where no paragraphs are given and the model

itself uses some techniques to �rst retrieve a paragraph and then perform answer

extraction. The results presented above by (K. Lee et al., 2019) uses a BERT model

approach and learns the paragraph retrieval and answer extraction end-to-end using

a weakly supervised approach. TheDRQAmodel by (Chen, Fisch, et al., 2017)

on the SQUAD-OPENdataset setting use an answer retriever and answer reader

in cascading fashion. Their model fetches better result than BERT (K. Lee et al.,

2019) on SQUAD-OPENdata setting. The authors of (Chen, Fisch, et al., 2017)

implement their own IR model (based on TF-IDF weighted bag-of-word vectors

and include bi-gram features) without using machine learning for fetching relevant

paragraphs.

An important highlight from these experiments is that the performance of the state-

of-the-art model BERT (Devlin et al., 2018) on SQUAD v1.0 dataset is 87%, and

the same model modi�ed to SQUAD-OPEN dataset setting which does not provide a

relevant paragraph to the model fetches 26.5% (K. Lee et al., 2019) on an end-to-

end OpenQA BERT model. It is the similar case even for the DRQA model (Chen,

Fisch, et al., 2017) which fetches 69.5% on SQUAD v1.0 dataset whereas the same

model fetches 27.1% on SQUAD-OPEN dataset setting. This shows the wide gap in

performance drop when the relevant paragraphs are not provided to the models.

Conclusion

The three different approaches with the above results show how different models

trained on SQUAD dataset (some in a realistic setting without always containing

a positive paragraph) cripples upon not having always some positive samples. As

discussed in Chapter 4 and highlighted by (Talmor and Berant, 2019), current state-

of-the-art deep learning models for QA are often over�tting on the task datasets and

failed to generalize. In this set of experiments we show that these task datasets which

are designed with speci�c goals do not perform similarly when some assumptions

do not apply.

End-to-end models for overall Question Answering (OpenQA) seems to under per-

form even when pre-trained models like BERT are used. This shows the complexity of

the overall QA task (fetching relevant paragraphs and extracting answers together).

Task speci�c models like Reading Comprehensiontasks are simpli�ed QA tasks whose

performance cannot be directly compared to OpenQA tasks.
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5.6.2 TrecQA as OpenQA task

TrecQA task had been a widely popular QA task in the past that has released several

small scale datasets released during 1999-2004 that are in different formats. From

2007 onwards, (M. Wang, Smith, et al., 2007) created and used these datasets for

Answer Sentence Selectiontask and a lot of works32 followed after that used this

dataset for the same task.

TrecQA task organizers originally released a regex pattern answer set for the QA

datasets which were used to judge the correct answers automatically. We use this

pattern set to obtain the answer spans for the paragraphs in the well known TrecQA-

13 (2004) dataset by (M. Wang, Smith, et al., 2007). We use the same regex patterns

to determine the answer span from the answer paragraphs. We create a dataset with

answer paragraphs and answer spans from the paragraph if they are relevant, if

the paragraphs are not relevant then there will not be an answer in it. We call this

dataset asTrecQA-RCand we release this publicly33. The number of questions and

paragraphs are the same as the one created by (M. Wang, Smith, et al., 2007) but

contains a binary label signifying the relevance of the paragraphs along with added

information.

We apply a QA model on this dataset to have a baseline score. Since TrecQA dataset

has both relevant and irrelevant snippets, it is more suitable for OpenQAtask to be

applied, so we apply the model of PSPRon this dataset to report the performance.

Experiments and Results

TrecQA train dataset (� 1,000 questions) is relatively very small compared to the

scale of QUASAR-T dataset (� 40,000 questions) which is another dataset of the

same type. We experiment by training a model just on the TrecQA dataset and

predict on the test set. We also experiment using the pre-training and �ne-tuning

approach by �rst training on QUASAR-T dataset and later �netuning on the TrecQA

dataset.

In table 5.24, we compare the previous state-of-the-art model results which used

non neural network approaches (Severyn and Moschitti, 2013; Yao et al., 2013a)

which report results on answer extraction task on TrecQA dataset without releasing

the dataset for this task. Both the models fetch better scores by atleast 9% higher

than the neural network models which we detail below.

32https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
33https://github.com/rsanjaykamath/trecqa-rc
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Model Accuracy

Sequence tagging model by (Yao et al., 2013a) 67.2
Tree kernels methods by (Severyn and Moschitti, 2013) 70.8
Trec only 45.68
Pretrained with QUASAR-T 49.38

RC mode 58.02
Tab. 5.24: Results on using TrecQA dataset for OpenQA task

We use the OpenQA modelPSPRwith TrecQA dataset for all experiments with slight

variations. Trec onlyexperiment is trained and tested only on TrecQA dataset using

the PSPRmodel. Since the TrecQA dataset is small scale, we use a "pretrain and

�netune" method. Pretrained with QUASAR-Texperiment is pre-trained �rstly on

QUASAR-T dataset and �ne-tuned with TrecQA dataset.

Training a DNN model for the small scale TrecQA dataset although fetches relatively

similar results to compared to the pre-trained ones with QUASAR-T, it is always

better to pre-train when there is a large scale dataset with similar task at disposal.

Our model of RNN-SIMILARITY(Kamath et al., 2019) on Answer Sentence Selection

task has results of 85.2% MAP on TrecQA dataset for selecting the right answer

sentence. But using a similar RNN model likePSPRon OpenQA task which uses

paragraph selection and extraction module fetches around 45.68% results which is

low for the answer extraction objective.

The assumption of always having an answer in the paragraph in datasets like SQUAD

v1.0 gave rise to a huge amount of DNN based models onReading Comprehension

task. We experiment with the same assumption by having only relevant paragraphs

(paragraphs with answers) to perform answer extraction. We term it as the RC

modewhere the paragraphs always contain an answer. We use the model of DRQA

on this dataset. As expected from the previous experiments above, theReading

Comprehension - RC modefetches the better scores than OpenQA mode on the

TrecQA answer extraction as all the snippets are relevant.

The above results highlight that using neural network models does not always

necessarily fetch better results than the non neural network models.
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5.7 Conclusion

Speci�c domains, like biomedical domain, have plenty of resources handcrafted

or generated or annotated by human experts. Using this along with plain text

corpus for question answering is a challenging task and is not trivial. In this

chapter, we addressed one of our research questions on leveraging these expert

curated knowledge sources and semantic information effectively into state-of-the-art

question answering models on biomedical domain and open domain systems (with

other types of information apart from free text) to improve their performances.

Our goal was to utilize the availability of different sources of information and tools

to enrich the plain text datasets with additional information for question answering.

We believe that extracting features from text using knowledge sources and inputting

them in different ways to deep learning models will have some positive impact.

Since deep learning models are not best suited for small scale datasets, results on

methods involving pre-training and �ne-tuning can further improve scores if domain

speci�c information is used in correct ways.

We highlighted the problem of lacking answer variants in biomedical domain dataset

BIOASQ and manually annotated answer variants to show the signi�cant difference

the same model fetches upon annotating the answer labels correctly. We also

proposed a method to automatically generate these variants using Metamap tool

which fetched similar or even better results in some sets compared to manually

annotated answers.

We presented the use ofExpected Answer Typesin question answering by verifying

the presence of it in the answers. In both biomedical domain data and open domain

data, there is a scope of improvement of QA model performance because there is

a signi�cant amount of wrongly answered questions whose answer types match

Expected Answer Typesfrom questions.

We used the Expected Answer Typesto highlight entities in plain text by using a

special method of annotation and entity embeddings to input this information.

These methods for open domain works well for Answer Sentence Selectionwhich

scores better than merely on plain text data of TrecQA dataset. This method however

works better on Reading Comprehensiontask only when the answers consists of

entities and not long text phrases, theReading Comprehensionmodel performs better

at �nding the right answer entities on SQUAD dataset.

Since deep learning models almost always focus towards building end-to-end systems,

not much emphasis is put towards post processing of the outputs to better rank the
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Top-K predictions. We used some traditional machine learning binary classi�cation

models to rank a better answer candidate into Top-1 position and showed that there

was a scope for improvement on the predictions from the neural network models.

This applies both on biomedical question answering and open domain question

answering models onOpen QAtask.

We found that some datasets like SQUAD which focuses onReading Comprehension

task performs poorly when the relevant paragraphs are removed and the task is

modi�ed into an OpenQAtask. We appliedOpenQAmodels on SQUAD dataset which

is modi�ed as a sentence level OpenQAtask and showed the performance drop.

We created anOpen QAversion of TrecQA task by adding answer spans from the

paragraphs which can be extracted using the answer patterns provided by Trec.

We presented some baselines scores usingPSPR modeland Reading Comprehension

models on this dataset.

Inspite of using state-of-the-art massive language models like BERT, the performance

on OpenQAtasks such as SQUAD-OPEN as shown by the authors of (K. Lee et al.,

2019) is very low (26.5 on the end-to-end BERT model). This highlights the low

performance on overall QA task with current state-of-the-art models.

Our publications related to the work described in this chapter are listed below:

• 2019 - Predicting and Integrating Expected Answer Types into a Simple

Recurrent Neural Network Model for Answer Sentence Selection. - Sanjay

Kamath, Brigitte Grau, Yue Ma. 20th International Conference on Compu-

tational Linguistics and Intelligent Text Processing - CICLING 2019, April

2019.

• 2018 - An Adaption of BIOASQ Question Answering dataset for Machine

Reading systems by Manual Annotations of Answer Spans. - Sanjay Ka-

math, Brigitte Grau, Yue Ma. Proceedings of the 6th BioASQ Workshop A

challenge on large-scale biomedical semantic indexing and question answering.

EMNLP, October 2018.

• 2018 - Veri�cation of the Expected Answer Type for Biomedical Question

Answering. - Sanjay Kamath, Brigitte Grau, Yue Ma. HQA workshop, compan-

ion proceedings of the The Web Conference 2018, April 2018.

• 2017 - A Study of Word Embeddings for Biomedical Question Answer-

ing. - Sanjay Kamath, Brigitte Grau, Yue Ma. 4e édition du Symposium sur

l'Ingénierie de l'Information Médicale, November 2017.
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6Conclusion and Future

Perspectives

In the context of GoASQ project1, our goal was to investigate, compare and combine

different approaches for answering questions formulated in natural language over

textual data using semi-structured and structured data.

We introduced question answering by de�ning and explaining the general process,

different types of tasks, different kinds of data used. Different QA systems are built

based on different types of tasks. In this thesis, we detailed all the above aspects

for the three tasks: Reading Comprehension, Answer Sentence Selectionand Open

Question Answering, and report experiments on several datasets on these tasks.

One of our research focuses was towards building better QA systems for domain

speci�c datasets like biomedical domain data, although open domain is also studied

on certain tasks, such as answer sentence selection. We listed some of the hurdles

we encountered while building a deep learning based QA system using deep learning

models and our research questions were aligned towards addressing them:

1. How can we build models which work both on small scale and large scale

datasets without dropping performance?

2. How can we leverage semantic and structured knowledge effectively into

state-of-the-art question answering models?

We found that a hybrid QA systemthat can deals with these two aspects worked

the best for the QA task in biomedical domain - the BIOASQ task. In the chapter

4 we proposed to model the task as anOpenQAtask which performed the best

and outperformed the state-of-the-art models which model BIOASQ as aReading

Comprehensiontask. We showed that pre-training on multiple Reading Comprehension

datasets obtained the best performance scores on a state-of-the-art model for BIOASQ.

In the chapter 5, we proposed a method to annotate the answer variants in the

training and test sets automatically which improved results by a large margin. This

constitutes a realistic evaluation of the system performance. We also proposed to

1https://goasq.lri.fr/

161



use using semantic and structured information features from different paragraphs

and showed that it improved the performance on the BIOASQ task.

In summary, to build a best performing model for BIOASQ QA task, we conclude

that one can use multiple datasets in combination to pre-train the model, and

�ne-tune it on all answer variants which can be annotated automatically. The

predictions from the above process can be further improved for better accuracy using

the ranking model which uses semantic and structured information features at the

post-processing phase.

In the following, we summarize the hybrid QA system details from both hybrid

model and hybrid data point of view and give some future perspectives.

Building Models for Small Scale and Large Scale Datasets

The chapter 4 presents our work on building better models for question answering

which suits both small scale and large scale datasets. The de�nition ofHybrid Data

in this context refers to building models which are trained on different datasets from

different domains to perform well on QA tasks.

Using deep learning models on small scale datasets will not fetch optimal results.

One of our �rst goals was to adapt deep learning models to work on small scale

datasets effectively. Therefore we began by choosing a model which worked well

on open domain QA dataset and adapted it to biomedical domain. This process is

called as domain adaptation. We formally de�ned domain adaptation which we

use extensively in many experiments. We adapted a RNN based QA model which

was built on open domain datasets such as SQUAD, towards biomedical dataset

BIOASQ. We show the importance of doing domain adaptation by comparing results

on models with and without domain adaptation.

According to this study, we believe that the domain adaptation will play a major

role for small scale and domain speci�c datasets. Mainly because creating large

scale datasets is not an easy task and it is more dif�cult and expensive when the

data is domain speci�c. Domain adaptation and transfer learning are the two most

important research disciplines to facilitate current open domain models to be used

on small scale datasets and different tasks.

While performing domain adaptation, we came across another way of modelling the

BIOASQ task, the OpenQA task, open domain question answering. It turns out that

OpenQA is more suitable for BIOASQ task than Reading Comprehension task because

of the nature of BIOASQ data which contains relevant and irrelevant paragraphs in
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the data relative to the gold standard answers provided. We compared two RNN

based models on these two tasks and adapt these models to biomedical domain. We

found that OpenQA model of PSPR better performed than the model of Reading

Comprehension task, which was the DRQA model. We presented some factors which

we considered as important before choosing a model to experiment and explained

why we did some of our choices of models.

Several ways of modelling reading comprehension task have been proposed lately

from works such as HotpotQA (Zhilin Yang, Qi, et al., 2018) and DROP (Dua et al.,

2019) which point out the simplicity of the original task de�ned by SQUAD dataset

(Rajpurkar, J. Zhang, et al., 2016). Harder QA tasks and datasets create a demand

for new models which focus on tackling these problems.

While performing above experiments, we wondered about pre-training the models

on different datasets. Therefore we experimented with different Reading Compre-

hension datasets by keeping the same model architecture and hyperparameters.

We showed the variability in the performance on downstream domain adaptation

when the initial models are trained with different datasets. SQUAD 2.0 dataset by

(Rajpurkar, Jia, et al., 2018) was the best performing single dataset for pre-training

the models. A combination of 4 Reading Comprehension datasets for pre-training

performed the best on the �ne-tuning for BIOASQ dataset. For the above experi-

ments, we used BERT model by (Devlin et al., 2018) which was the state-of-the-art

model while experimenting. We also compared different pre-trained BERT models

and found BIOBERT (J. Lee et al., 2019) to be the best model for biomedical domain

adaptation.

More data leads to better performance has been proven for biomedical domain

adaptation in our experiments. In the future, we believe that more datasets should

be built by explicit mention of possible biases attached with the datasets to make

more people aware about the consequences.

Towards the goal of building end-to-end models which do not use explicit features but

perform feature extraction themselves, less emphasis is put on classical techniques

which have addressed the fundamental problems of question answering and have

proposed certain useful features and methods to handle certain types of data. More

emphasis should be put on creating diverse datasets, careful analysis of bias, and

most importantly highlight where the model fails to fetch correct answers which

provides insights on improvements required for future work. But the research articles

published in the recent times do not address any negative results from the models,

and also seldom do error analysis.
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Leveraging Structured and Semantic Information into

Question Answering Models

The Chapter 5 presents our work on leveraging semantic and structured knowledge

effectively into state-of-the-art question answering models on biomedical domain

and open domain systems to improve their performances.

Our goal was to utilize the existing information from different sources and tools

to enrich plain text datasets. Our hypothesis was that the deep learning based QA

model can be further improved using semantic and structured information from

external sources pertaining to the input text. The de�nition of Hydrid Data in this

context refers to using open domain data with domain speci�c data in a domain

adaptation process, plus integrating structured knowledge for annotating training

datasets and for enriching the input data. The de�nition of Hybrid model in this

context refers to an addition of a post processing reranker to account for structured

knowledge and collective features obtained from different paragraphs.

In this regard, we highlighted the problem of lacking answer variants in biomedical

domain dataset BIOASQ and showed a large performance difference when all the

answer variants are annotated and when the model learns from such annotated

data. We provided manual annotations for these answer variants and proposed an

automatic method which uses UMLS meta-thesaurus to generate these annotations

which fetched similar results. We release the manual annotations online2 along with

the code to generate automatic variants3.

In terms of future perspectives on the BIOASQ task and the dataset, we believe that it

is important to focus research on providing better annotations, proposing guidelines

for people from other domains, and performing �ne grained analysis on the dataset

instead of just focusing on building better models which improves accuracy.

We presented the use of Expected Answer Types in question answering by verifying

the presence of it in the answers. In both biomedical domain data and open domain

data, there is a scope of improvement of QA model performance because there is a

signi�cant amount of wrongly answered questions whose correct answer type match

as of the Expected Answer Type. On open domain, we presented some statistics of

SQUAD dataset questions containing Expected Answer Types as predicted by a model

of (Madabushi and M. Lee, 2016) and on the biomedical domain, we presented

some statistics on the BIOASQ dataset questions containing Lexical and Expected

2https://zenodo.org/record/1346193#.W3
3https://github.com/rsanjaykamath
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Answer Types annotated by (Neves and Kraus, 2016) to support the above study on

veri�cation.

We use the Expected Answer Types to highlight entities in plain text by using a

special method of annotation and special embeddings to input this information.

These methods for open domain work well for Answer Sentence Selection. We

release the code for the model used in this experiment4. This method however

works better on Reading Comprehension task only when the answers consists of

entities and not long text phrases. The Reading Comprehension model performs

better at �nding the right answer entities on SQUAD dataset. In the context of

Expected Answer Types from input questions, we released the model5 which predicts

an Expected Answer Type for input questions.

In terms of future perspectives we believe that neural models must better integrate

entity representations of knowledge coming from free text as well as from structured

resources like ontologies, knowledge bases. Works such as (Ferré, 2019) align two

different types of vector representations that capture part of their meanings with

entities and text in the form of word embeddings and ontology concepts in the form

of concept embeddings. The alignment is done in a supervised manner. This can be

further extended towards complex tasks like question answering where the model

integrates the knowledge from two sources while learning.

Since deep learning models almost always focus towards building end-to-end systems,

not much emphasis is put towards post processing of the outputs to further improve

predictions. We use some traditional machine learning models like randomforests,

adaboost, multilayer perceptron etc. for binary classi�cation to rank a better answer

candidate into Top-1 position and show that there is a scope for improvement on

the predictions from the neural network models. This applies both on biomedical

question answering and open domain question answering models on Open QA

task.

Using classical ML techniques to improve predictions from deep learning models

are advantageous in the following ways: 1) Cheaper compute costs to improve

predictions than train a complex model. 2) Faster inference times. These classical

ML models might not be applicable for the overall QA task, but does improve scores

when used on the outputs of a deep learning model to further improve scores.

In the analysis of (Talmor and Berant, 2019), the authors point out the over�tting of

models to particular task and datasets they are trained. We �nd that some datasets

like SQUAD which is focused on Reading Comprehension task performs poorly when

4https://github.com/rsanjaykamath/RNN-Similarity
5https://github.com/rsanjaykamath/EAT-classi�er
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the relevant paragraphs are removed and the task is modi�ed into an OpenQA task.

We apply OpenQA models on SQUAD dataset which is modi�ed as a sentence level

OpenQA task and show the performance drop. We create an Open QA version of

TrecQA task by adding answer spans from the paragraphs which can be extracted

using the answer patterns provided by Trec. We present some baselines scores

using PSPR model and Reading Comprehension models on this dataset. We release

this dataset online6. An end-to-end model for the OpenQA task was �rst proposed

by Lee et al. (K. Lee et al., 2019), which learns the retrieval and the extraction

phase together. This is one of the �rst works which aims at building an end-to-end

model for the overall QA task. The low results obtained using the latest state-of-

the-art model shows the real complexity of the overall QA task which cannot be

easily addressed using a single end-to-end deep learning model including the latest

pre-trained language models like BERT.

While we performed the majority of the above set of experiments, the contextual

language models such as BERT by (Devlin et al., 2018) had not been released.

Ever since then, the large scale pre-trained language models (LM) have changed

the way most of the NLP tasks are addressed today. Earlier models used CNNs or

RNNs with attention mechanisms for many tasks which are now being replaced by

these large scale LM models like BERT. We believe these new models have a large

scope for various NLP tasks and the traditional ML models like the classi�ers we use

(randomforests, adaboost etc.) still hold good in certain cases where the dataset size

is small scale and might require domain expertise.

An end-to-end OpenQA model (K. Lee et al., 2019) which uses these pre-trained

contextual language models failed to obtain equivalent scores compared to LSTM

based models that use a pipeline approach. This shows the complexity involved in

building end-to-end models for overall OpenQA task. We believe that an hybrid

modelling approach is the way forward to build better systems on overall question

answering task.

6https://github.com/rsanjaykamath/trecqa-rc
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