R. Agrawal and R. Srikant, Mining Sequential Patterns, Proceedings of the Eleventh International Conference on Data Engineering, ICDE '95, p.314, 1995.

R. Agrawal and R. Srikant, Fast algorithms for mining association rules, 1994.

, Proc. 20th int. conf. very large data bases, VLDB, vol.1215, p.487499

J. Ayres, J. Flannick, J. Gehrke, Y. , and T. , Sequential pattern mining using a bitmap representation, Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '02, p.429435, 2002.

N. Béchet, P. Cellier, T. Charnois, B. Cremilleux, and M. C. Jaulent, Sequential pattern mining to discover relations between genes and rare diseases, 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), p.16, 2012.

N. Béchet, P. Cellier, T. Charnois, and B. Crémilleux, Discovering linguistic patterns using sequence mining, Computational Linguistics and Intelligent Text Processing, p.154165, 2012.

N. Béchet, P. Cellier, T. Charnois, and B. Crémilleux, Sequence mining Bibliographie under multiple constraints, Proceedings of the 30th Annual ACM Symposium on Applied Computing, p.908914, 2015.

N. Béchet, P. Cellier, T. Charnois, B. Cremilleux, and M. Jaulent, , 2012.

, Sequential pattern mining to discover relations between genes and rare diseases, Computer-Based Medical Systems (CBMS), 2012 25th International Symposium on, p.16

N. Béchet, P. Cellier, T. Charnois, B. Crémilleux, and S. Quiniou, Sdmc : un outil en ligne d'extraction de motifs séquentiels pour la fouille de textes, Conférence Francophone sur l'Extraction, 2013.

N. Béchet, M. Roche, and J. Chauché, Towards the selection of induced syntactic relations, European Conference on Information Retrieval, pp.786-790, 2009.

M. W. Berry and M. Castellanos, Survey of text mining ii : Clustering. Classication, and Retrieval, vol.1, 2007.

M. Berthold, K. Morik, and A. Siebes, Parallel Universes and Local Patterns, volume 07181. Internationales Begegnungs-und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, 2007.

J. Boulicaut, A. Bykowski, and C. Rigotti, Free-sets : A condensed representation of boolean data for the approximation of frequency queries, Data Mining and Knowledge Discovery, vol.7, issue.1, p.522, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01503814

T. Calders and B. Goethals, Non-derivable itemset mining, Data Mining and Knowledge Discovery, vol.14, issue.1, p.171206, 2007.

M. Capelle, C. Masson, and J. Boulicaut, Mining frequent sequential patterns under a similarity constraint, International Conference on Intelligent Data Engineering and Automated Learning, p.16, 2002.

A. Casali, R. Cicchetti, and L. Lakhal, Essential patterns : A perfect cover of frequent patterns, International Conference on Data Warehousing and Knowledge Discovery, p.428437, 2005.

P. Cellier, T. Charnois, and M. Plantevit, Sequential Patterns to Discover and Characterise Biological Relations, 11th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing'10), vol.6008, p.537548, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01017207

P. Cellier, T. Charnois, M. Plantevit, and B. Crémilleux, Recursive Sequence Mining to Discover Named Entity Relations, 9th International Symposium on Intelligent Data Analysis (IDA'10), vol.6065, p.3041, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01016928

E. Charton, N. Camelin, R. Acuna-agost, P. Gotab, R. Lavalley et al., Pré-traitements classiques ou par analyse distributionnelle : application aux méthodes de classication automatique déployées pour DEFT08, vol.08, 2008.

G. Chen, H. Liu, L. Yu, Q. Wei, and X. Zhang, A new approach to classication based on association rule mining, Decision Support Systems, vol.42, issue.2, p.689, 2006.

Y. Chen, L. T. Hung, and .. , Using decision trees to summarize associative classication rules, Expert Systems with Applications, vol.36, issue.2, 2009.

H. Cheng, X. Yan, J. Han, and S. Y. Philip, Direct discriminative pattern mining for eective classication, IEEE 24th International Conference on, p.169178, 2008.

N. A. Chuzhanova, A. J. Jones, and S. Margetts, Feature selection for genetic sequence classication, Bioinformatics, vol.14, issue.2, p.139143, 1998.

K. B. Cohen, BioNLP : biomedical text mining, Handbook of Natural Language Processing, 2010.

M. Collins, Discriminative training methods for hidden markov models : Theory and experiments with perceptron algorithms, Proceedings of the ACL-02 conference on Empirical methods in natural language processing, vol.10, 2002.

A. Cornuéjols and L. Miclet, Apprentissage articiel : concepts et algorithmes. Editions Eyrolles, 2011.

B. Crémilleux and J. Boulicaut, Simplest rules characterizing classes generated by delta-free sets, Proc. of the 22nd BCS SGAI International Conference on Knowledge Based Systems and Applied Articial Intelligence, 2002.

W. Daelemans and A. V. Bosch, Memory-Based Language Processing (Studies in Natural Language Processing, 2005.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classication, 2012.

Y. Dupont, Exploration de traits pour la reconnaissance d'entités nommées du français par apprentissage automatique, 24e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), p.42, 2017.

E. Egho, D. Gay, M. Boullé, N. Voisine, and F. Clérot, A user parameterfree approach for mining robust sequential classication rules. Knowledge and Information Systems, vol.52, p.5381, 2017.

A. El-kishky, Y. Song, C. Wang, C. R. Voss, and J. Han, Scalable topical phrase mining from text corpora, Proceedings of the VLDB Endowment, vol.8, pp.305-316, 2014.

W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan et al., Direct mining of discriminative and essential frequent patterns via modelbased search tree, Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, p.230238, 2008.

J. R. Finkel, T. Grenager, and C. Manning, Incorporating non-local information into information extraction systems by gibbs sampling, Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, p.363370, 2005.

J. R. Finkel, T. Grenager, and C. Manning, Incorporating non-local information into information extraction systems by gibbs sampling, Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL '05, p.363370, 2005.

A. Frank and A. Asuncion, UCI machine learning repository, 2010.

K. Gábor, D. Buscaldi, A. Schumann, B. Qasemizadeh, H. Zargayouna et al., Semeval-2018 Task 7 : Semantic relation extraction and classication in scientic papers, Proceedings of International Workshop on Semantic Evaluation (SemEval-2018), 2018.

C. Gao, J. Wang, Y. He, and L. Zhou, Ecient mining of frequent sequence generators, p.10511052, 2008.

J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, U. Dayal et al., Freespan : Frequent pattern-projected sequential pattern mining, Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '00, p.355359, 2000.

Z. S. Harris, Distributional structure. Word, vol.10, p.146162, 1954.

P. Holat, M. Plantevit, C. Raïssi, N. Tomeh, T. Charnois et al., Sequence classication based on delta-free sequential patterns, 2014 IEEE International Conference on Data Mining (ICDM), p.170179, 2014.

P. Holat, N. Tomeh, and T. Charnois, Classication de texte enrichie à l'aide de motifs séquentiels, TALN 2015, 2015.

P. Holat, N. Tomeh, T. Charnois, D. Battistelli, M. Jaulent et al., Fouille de motifs et CRF pour la reconnaissance de symptômes dans les textes biomédicaux, 2016.

P. Holat, N. Tomeh, T. Charnois, D. Battistelli, M. Jaulent et al., Weakly-supervised Symptom Recognition for Rare Diseases in Biomedical Text, IDA 2016, 2016.
URL : https://hal.archives-ouvertes.fr/halshs-01727071

A. Knobbe, B. Crémilleux, J. Fürnkranz, and M. Scholz, From local patterns to global models : the lego approach to data mining, Proceedings of the LeGo'08 : From Local Patterns to Global Models, 2008.

J. D. Laerty, A. Mccallum, and F. C. Pereira, Conditional random elds : Probabilistic models for segmenting and labeling sequence data, Proceedings of the Eighteenth International Conference on Machine Learning, ICML '01, p.282289, 2001.

T. Lavergne, O. Cappé, and F. Yvon, Practical very large scale CRFs, Proceedings the 48th Annual Meeting of the Association for Computational Linguistics (ACL), p.504513, 2010.

D. Legallois, T. Charnois, and T. Poibeau, Repérer les clichés dans les romans sentimentaux grâce à la méthode des motifs. Lidil. Revue de linguistique et de didactique des langues, p.95117, 2016.

N. Lesh, M. Zaki, and M. Ogihara, Mining features for sequence classication, KDD, p.342346, 1999.

C. S. Leslie, E. Eskin, and W. S. Noble, The spectrum kernel : A string kernel for svm protein classication, Pacic Symposium on Biocomputing, p.566575, 2002.

D. D. Lewis, Naive (bayes) at forty : The independence assumption in information retrieval, European conference on machine learning, p.415, 1998.

W. Li, J. Han, P. , and J. , Cmar : accurate and ecient classication based on multiple class-association rules, Proceedings 2001 IEEE International Conference on Data Mining, p.369376, 2001.

H. Liu and H. Motoda, Computational Methods of Feature Selection (Chapman & Hall/Crc Data Mining and Knowledge Discovery Series, 2007.

D. Lo, S. Khoo, L. , and J. , Mining and ranking generators of sequential patterns, SDM, p.553564, 2008.

H. Mannila, Local and global methods in data mining : Basic techniques and open problems, International Colloquium on Automata, Languages, and Programming, p.5768, 2002.

H. Mannila and H. Toivonen, Multiple uses of frequent sets and condensed representations (extended abstract), Proc. KDD Int. Conf. Knowledge Discovery in Databases, p.189194, 1996.

H. Mannila, H. Toivonen, and A. Verkamo, Discovery of frequent episodes in event sequences, Data Mining and Knowledge Discovery, vol.1, issue.3, p.259289, 1997.

L. Martin, D. Battistelli, and T. Charnois, Symptom extraction issue, Proceedings of BioNLP, p.107111, 2014.

F. Masseglia, F. Cathala, and P. Poncelet, The psp approach for mining sequential patterns, Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery, PKDD '98, p.176184, 1998.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Ecient estimation of word representations in vector space, CoRR, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality. CoRR, abs/1310, p.4546, 2013.

T. M. Mitchell, Machine Learning, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02564603

T. M. Mitchell, The discipline of machine learning, vol.9, 2006.

P. Moen, Attribute, event sequence and event type similarity notions for data mining, 2000.

L. T. Nguyen, B. Vo, T. Hong, T. , and H. C. , Classication based on association rules : A lattice-based approach, Expert Systems with Applications, vol.39, issue.13, p.1135711366, 2012.

K. Nigam, Using maximum entropy for text classication, IJCAI-99 Workshop on Machine Learning for Information Filtering, p.6167, 1999.

D. Nouvel, J. Antoine, N. Friburger, and A. Soulet, Fouille de règles d'annotation pour la reconnaissance d'entités nommées, Traitement Automatique des Langues, vol.54, issue.2, p.1341, 2013.

K. Park and M. Kanehisa, Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs, Bioinformatics, vol.19, issue.13, p.16561663, 2003.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Discovering frequent closed itemsets for association rules, Proceedings of the 7th International Conference on Database Theory, ICDT '99, p.398416, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00467747

J. Pei, J. Han, B. Mortazavi-asl, J. Wang, H. Pinto et al., Mining sequential patterns by pattern-growth : the prexspan approach, IEEE Transactions on Knowledge and Data Engineering, vol.16, issue.11, pp.1424-1440, 2004.

J. Pei, J. Han, W. , and W. , Constraint-based sequential pattern mining : the pattern-growth methods, Journal of Intelligent Information Systems, vol.28, issue.2, p.133160, 2007.

M. Plantevit, T. Charnois, J. Klema, C. Rigotti, and B. Crémilleux, Combining sequence and itemset mining to discover named entities in biomedical texts : a new type of pattern, International Journal of Data Mining, Modelling and Management, vol.1, issue.2, p.119148, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01011378

M. Plantevit, C. Raïssi, and B. Crémilleux, Motifs séquentiels delta-libres, 2011.

S. Quiniou, P. Cellier, T. Charnois, and D. Legallois, Fouille de données pour la stylistique : cas des motifs séquentiels émergents, Journées Internationales d'Analyse Statistique des Données Textuelles (JADT'12), p.821833, 2012.

C. Raïssi, T. Calders, and P. Poncelet, Mining conjunctive sequential patterns, Data Min. Knowl. Discov, vol.17, issue.1, p.7793, 2008.

L. A. Ramshaw and M. P. Marcus, Text chunking using transformation-based learning, 1995.

C. Roze, T. Charnois, D. Legallois, S. Ferrari, and M. Salles, Identication des noms sous-spéciés, signaux de l'organisation discursive, Actes de la, p.21, 2014.

, Conférence sur le Traitement Automatique des Langues Naturelles (TALN 2014)

H. Sahraoui, P. Holat, P. Cellier, T. Charnois, and S. Ferre, Exploration of textual sequential patterns, 14th International Conference on Formal Concept Analysis, p.99, 2017.

H. Saneifar, S. Bringay, A. Laurent, and M. Teisseire, S 2 mp : similarity measure for sequential patterns, Proceedings of the 7th Australasian Data Mining Conference, vol.87, p.95104, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324488

R. C. Schank and R. P. Abelson, Scripts, plans, goals, and understanding : An inquiry into human knowledge structures, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00692030

H. Schmid, Probabilistic part-of-speech tagging using decision trees, Proceedings of the international conference on new methods in language processing, vol.12, p.4449, 1994.

H. Schmid, Improvements in part-of-speech tagging with an application to german, Proceedings of the ACL SIGDAT-Workshop, 1995.

R. She, F. Chen, K. Wang, M. Ester, J. Gardy et al., , 2003.

, Frequent-subsequence-based prediction of outer membrane proteins, KDD, p.436445

A. Soulet and F. Rioult, Eciently depth-rst minimal pattern mining, Pacic-Asia Conference on Knowledge Discovery and Data Mining, p.2839, 2014.

R. Srikant and R. Agrawal, Mining sequential patterns : Generalizations and performance improvements, Proceedings of the 5th International Conference on Extending Database Technology : Advances in Database Technology, EDBT '96, p.317, 1996.

P. Sun, S. Chawla, A. , and B. , Mining for outliers in sequential databases, SDM, 2006.

C. Sutton and A. Mccallum, An introduction to conditional random elds, Found. Trends Mach. Learn, vol.4, issue.4, p.267373, 2012.

B. Taskar, C. Guestrin, and D. Koller, Max-margin markov networks, Advances in neural information processing systems, p.2532, 2004.

I. Tellier, Z. Makhlouf, and Y. Dupont, Sequential patterns of pos labels help to characterize language acquisition, DMNLP (ECML/PKDD Workshop), 2014.
URL : https://hal.archives-ouvertes.fr/hal-01140542

I. Tsochantaridis, T. Joachims, T. Hofmann, A. , and Y. , Large margin methods for structured and interdependent output variables, Journal of machine learning research, vol.6, p.14531484, 2005.

J. Wang and J. Han, Bide : Ecient mining of frequent closed sequences, Proceedings of the 20th International Conference on Data Engineering, ICDE '04, p.79, 2004.

J. Wang and G. Karypis, Harmony : Eciently mining the best rules for classication, Proceedings of the 2005 SIAM International Conference on Data Mining, p.205216, 2005.

T. Winograd, Procedures as a representation for data in a computer program for understanding natural language, 1971.

X. Yan, J. Han, A. , and R. , Clospan : Mining closed sequential patterns in large datasets, SDM, p.166177, 2003.

X. Yin and J. Han, Cpar : Classication based on predictive association rules, Proceedings of the 2003 SIAM International Conference on Data Mining, p.331335, 2003.

M. J. Zaki, Sequence mining in categorical domains : Incorporating constraints, Proceedings of the Ninth International Conference on Information and Knowledge Management, CIKM '00, p.422429, 2000.

M. J. Zaki, Spade : An ecient algorithm for mining frequent sequences, Machine Learning, vol.42, p.3160, 2001.

M. J. Zaki, C. D. Carothers, and B. K. Szymanski, Vogue : A variable order hidden markov model with duration based on frequent sequence mining, ACM Trans. Knowl. Discov. Data, vol.4, issue.1, 2010.

S. Zhao, E. C. Tsang, D. Chen, W. , and X. , Building a rule-based classiera fuzzy-rough set approach, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.5, p.624638, 2010.

G. K. Zipf, The Psychobiology of Language : An Introduction to Dynamic Philology, 1936.