J. Zhu and R. E. Marchant, Design Properties of Hydrogel Tissue-Engineering Scaffolds, Expert Rev. Med. Devices, vol.8, issue.5, pp.607-626, 2011.

J. Zhu, Bioactive Modification of Poly(ethylene Glycol) Hydrogels for Tissue Engineering, Biomaterials, vol.2010, issue.17, pp.4639-4656

J. M. Orban, L. B. Wilson, J. A. Kofroth, M. S. El-kurdi, T. M. Maul et al., Crosslinking of Collagen Gels by Transglutaminase, J. Biomed. Mater. Res. A, vol.68, issue.4, pp.756-762, 2004.

M. D. Shoulders and R. T. Raines, Collagen Structure and Stability, Annu. Rev. Biochem, vol.78, pp.929-958, 2009.

K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad et al., Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell, vol.139, issue.5, pp.891-906, 2009.

E. E. Antoine, P. P. Vlachos, and M. N. Rylander, Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport, Tissue Eng. Part B Rev, vol.20, issue.6, pp.683-696, 2014.

R. Khan and M. H. Khan, Use of Collagen as a Biomaterial: An Update

. Periodontol, , vol.17, pp.539-542, 2013.

T. Muthukumar, G. Sreekumar, T. P. Sastry, and M. Chamundeeswari,

, Potential Biomaterial in Biomedical Applications. Rev. Adv. Mater. Sci, vol.53, issue.1, pp.29-39, 2018.

F. S. Wong, A. C. Lo, and .. , Collagen-Based Scaffolds for Cell Therapies in the Injured Brain, 2015.

S. Kommareddy, D. B. Shenoy, and M. M. Amiji, Gelatin Nanoparticles and Their Biofunctionalization, In Nanotechnologies for the Life Sciences

M. Nikkhah, M. Akbari, A. Paul, A. Memic, A. Dolatshahi-pirouz et al., Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering, Biomaterials from Nature for Advanced Devices and Therapies

, Ltd, 2016.

K. Yue, G. T. Santiago, M. M. Alvarez, A. Tamayol, N. Annabi et al., Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl

, Hydrogels. Biomaterials, vol.73, pp.254-271, 2015.

J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas et al., Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications, Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV, vol.57, issue.1, pp.19-34, 2004.

K. Saini, Preparation Method, Properties and Crosslinking of Hydrogel: A Review

, Preparation and properties of CMC gel | M. Takigami | Request PDF

. C_gel, Jul, vol.11, 2019.

, Hydrogels: Methods of Preparation, 2019.

K. Y. Lee, D. J. Mooney, and . Alginate, Properties and Biomedical Applications, Prog. Polym. Sci, vol.2012, issue.1, pp.106-126

Á. Serrano-aroca, Enhancement of Hydrogels' Properties for Biomedical Applications: Latest Achievements. Hydrogels, 2018.

R. Bhadani and U. K. Mitra, Synthesis and Studies on Water Swelling Behaviour of Polyacrylamide Hydrogels, Macromol. Symp, vol.369, issue.1, pp.30-34, 2016.

H. S. Mittal, B. S. Kaith, and R. Jindal, Synthesis, Characterization and Swelling Behaviour of Poly(acrylamide-Comethacrylicacid) Grafted Gum Ghatti Based Superabsorbent Hydrogels, 2010.

P. C. Georges, W. J. Miller, D. F. Meaney, E. S. Sawyer, and P. A. Janmey, Matrices with Compliance Comparable to that of Brain Tissue Select Neuronal over Glial Growth in Mixed Cortical Cultures, Biophys. J, vol.90, issue.8, pp.3012-3018, 2006.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg et al., Tensional Homeostasis and the Malignant Phenotype, Cancer Cell, vol.8, issue.3, pp.241-254, 2005.

R. Tandon, I. Levental, C. Huang, F. J. Byfield, J. Ziembicki et al., HIV Infection Changes Glomerular Podocyte Cytoskeletal Composition and Results in Distinct Cellular Mechanical Properties

, Am. J. Physiol.-Ren. Physiol, vol.292, issue.2, pp.701-710, 2007.

H. M. Wyss, J. M. Henderson, F. J. Byfield, L. A. Bruggeman, Y. Ding et al., Biophysical Properties of Normal and Diseased Renal Glomeruli, Am. J. Physiol. -Cell Physiol, vol.300, issue.3, pp.397-405, 2011.

, The role of matrix stiffness in regulating cell behavior, 2019.

Z. Li, J. A. Dranoff, E. P. Chan, M. Uemura, J. Sévigny et al., Transforming Growth Factor-Beta and Substrate Stiffness Regulate Portal Fibroblast Activation in Culture

. Hepatol, . Baltim, and . Md, , vol.46, pp.1246-1256, 2007.

J. H. Miner, Glomerular Basement Membrane Composition and the Filtration Barrier

, Pediatr. Nephrol. Berl. Ger, vol.26, issue.9, pp.1413-1417, 2011.

A. Pozzi, Diseased Renal Glomeruli Are Getting Soft. Focus on "Biophysical Properties of Normal and Diseased Renal Glomeruli, Am. J. Physiol. -Cell Physiol, vol.300, issue.3, pp.394-396, 2011.

H. Pavenstädt, W. Kriz, and M. Kretzler, Cell Biology of the Glomerular Podocyte, Physiol. Rev, vol.83, issue.1, pp.253-307, 2003.

J. S. Nielsen and K. M. Mcnagny, The Role of Podocalyxin in Health and Disease, J. Am. Soc. Nephrol, vol.20, issue.8, pp.1669-1676, 2009.

. Co-culture, . Podocytes-&-endothelial-cells, and . Knowledgeshare,

J. H. Miner, Focusing on the Glomerular Slit Diaphragm, Am. J. Pathol, vol.160, issue.1, pp.3-5, 2002.

S. C. Doné, M. Takemoto, L. He, Y. Sun, K. Hultenby et al., Nephrin Is Involved in Podocyte Maturation but Not Survival during Glomerular Development, Kidney Int, vol.73, issue.6, pp.697-704, 2008.

X. Li and J. C. He, An Update: The Role of Nephrin inside and Outside the Kidney, Sci. China Life Sci, vol.58, issue.7, pp.649-657, 2015.

M. E. Cooper, P. Mundel, and G. Boner, Role of Nephrin in Renal Disease Including Diabetic Nephropathy, Semin. Nephrol, vol.22, issue.5, pp.393-398, 2002.

J. Lahdenperä, P. Kilpeläinen, X. L. Liu, T. Pikkarainen, P. Reponen et al., Clustering-Induced Tyrosine Phosphorylation of Nephrin by Src Family Kinases, Kidney Int, vol.64, issue.2, pp.404-413, 2003.

R. Verma, B. Wharram, I. Kovari, R. Kunkel, D. Nihalani et al., Fyn Binds to and Phosphorylates the Kidney Slit Diaphragm Component Nephrin, J. Biol. Chem, vol.278, issue.23, pp.20716-20723, 2003.

H. Li, S. Lemay, L. Aoudjit, H. Kawachi, and T. Takano, SRC-Family Kinase Fyn Phosphorylates the Cytoplasmic Domain of Nephrin and Modulates Its Interaction with Podocin, J. Am. Soc. Nephrol. JASN, vol.15, issue.12, pp.3006-3015, 2004.

C. E. Martin and N. Jones, Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and Beyond, Front. Endocrinol, p.9, 2018.

N. Boute, O. Gribouval, S. Roselli, F. Benessy, H. Lee et al., Encoding the Glomerular Protein Podocin, Is Mutated in Autosomal Recessive Steroid-Resistant Nephrotic Syndrome, Nat. Genet, vol.24, issue.4, pp.349-354, 2000.

S. Roselli, O. Gribouval, N. Boute, M. Sich, F. Benessy et al., Podocin Localizes in the Kidney to the Slit Diaphragm Area, Am. J. Pathol, 2002.

C. Li, V. Ruotsalainen, K. Tryggvason, A. S. Shaw, and J. H. Miner, CD2AP Is Expressed with Nephrin in Developing Podocytes and Is Found Widely in Mature Kidney and Elsewhere

, Am. J. Physiol. Renal Physiol, vol.279, issue.4, pp.785-792, 2000.

M. Schiffer, P. Mundel, A. S. Shaw, and E. P. Böttinger, A Novel Role for the Adaptor Molecule CD2-Associated Protein in Transforming Growth Factor-?-Induced Apoptosis

, Biol. Chem, issue.35, pp.37004-37012, 2004.

A. C. Chan, Rituximab's New Therapeutic Target: The Podocyte Actin Cytoskeleton

, Sci. Transl. Med, vol.2011, issue.85, pp.85-106

K. Jansen, C. C. Schuurmans, J. Jansen, R. Masereeuw, and T. Vermonden, Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and In Vivo Repair, Curr. Pharm. Des, vol.2017, issue.26, pp.3845-3857

A. E. Embry, H. Mohammadi, X. Niu, L. Liu, B. Moe et al., Biochemical and Cellular Determinants of Renal Glomerular Elasticity. PLOS ONE, vol.2016, issue.12

M. S. Chapekar, Tissue Engineering: Challenges and Opportunities. J. Biomed. Mater

. Res, , vol.53, pp.617-620, 2000.

A. Korolj, C. Laschinger, C. James, E. Hu, C. Velikonja et al.,

R. Willette and M. Radisic, Curvature Facilitates Podocyte Culture in a Biomimetic Platform, Lab. Chip, vol.18, issue.20, pp.3112-3128, 2018.

P. A. Janmey and R. T. Miller, Mechanisms of Mechanical Signaling in Development and Disease, J Cell Sci, vol.124, issue.1, pp.9-18, 2011.

S. R. Caliari and J. A. Burdick, A Practical Guide to Hydrogels for Cell Culture, Nat. Methods, vol.13, issue.5, pp.405-414, 2016.

J. R. Tse and A. J. Engler, Preparation of Hydrogel Substrates with Tunable Mechanical Properties, Curr. Protoc. Cell Biol, vol.47, issue.1, 2010.

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, Development of

, Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve, PLOS ONE, vol.2012, issue.12, p.51499

M. Hu, E. U. Azeloglu, A. Ron, K. Tran-ba, R. C. Calizo et al.,

S. Bhattacharya, G. Jayaraman, Y. Chen, and V. Rabinovich, A Biomimetic Gelatin-Based Platform Elicits a pro-Differentiation Effect on, Podocytes through Mechanotransduction. Sci. Rep, vol.7, p.43934, 2017.

H. M. Wyss, J. M. Henderson, F. J. Byfield, L. A. Bruggeman, Y. Ding et al.,

J. H. Suh, T. Franke, E. Mele, and M. R. Pollak, Biophysical Properties of Normal and Diseased Renal Glomeruli, Am. J. Physiol. -Cell Physiol, vol.300, issue.3, pp.397-405, 2011.

M. Derieppe, Y. Delmas, J. Gennisson, C. Deminière, S. Placier et al.,

C. Combe and N. Grenier, Detection of Intrarenal Microstructural Changes with Supersonic Shear Wave Elastography in Rats, Eur. Radiol, vol.2012, issue.1, pp.243-250

S. Syed, A. Karadaghy, and S. Zustiak, Simple Polyacrylamide-Based Multiwell Stiffness Assay for the Study of Stiffness-Dependent Cell Responses, J. Vis. Exp. JoVE, issue.97, 2015.

R. G. Wells, The Role of Matrix Stiffness in Regulating Cell Behavior, Hepatology, vol.47, issue.4, pp.1394-1400, 2008.

Q. Chai, Y. Jiao, and X. Yu, Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them, vol.3, p.6, 2017.

E. Caló and V. V. Khutoryanskiy, Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products, Eur. Polym. J, vol.65, pp.252-267, 2015.

M. Bassil, J. ;. Davenas, and M. El-tahchi, Electrochemical Properties and Actuation Mechanisms of Polyacrylamide Hydrogel for Artificial Muscle Application, Sens. Actuators B Chem, vol.134, issue.2, pp.496-501, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00373602

M. Bassil, M. Ibrahim, and M. E. Tahchi, Artificial Muscular Microfibers: Hydrogel with High Speed Tunable Electroactivity. Soft Matter, vol.7, pp.4833-4838, 2011.

L. Yahia, N. Chirani, L. Gritsch, F. L. Motta, and S. Soumiachirani;-fare, History and Applications of Hydrogels, J. Biomed. Sci, vol.2015, issue.2, p.4

M. Bassil, G. El-haj-moussa, and M. El-tahchi, Templating Polyacrylamide Hydrogel for Interconnected Microstructure and Improved Performance, J. Appl. Polym. Sci, vol.135, issue.17, p.46205, 2018.

T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz et al., Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion. Cell Motil, vol.60, issue.1, pp.24-34, 2005.

L. A. Flanagan, Y. Ju, B. Marg, M. Osterfield, and P. A. Janmey, Neurite Branching on Deformable Substrates, Neuroreport, vol.13, issue.18, pp.2411-2415, 2002.

A. Subramanian and H. Lin, Crosslinked Chitosan: Its Physical Properties and the Effects of Matrix Stiffness on Chondrocyte Cell Morphology and Proliferation, J. Biomed

, Mater. Res. A, vol.75, issue.3, pp.742-753, 2005.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, vol.126, issue.4, pp.677-689, 2006.

J. Solon, I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey, Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates, Biophys. J, vol.93, issue.12, pp.4453-4461, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00303616

J. H. Miner, Glomerular Basement Membrane Composition and the Filtration Barrier

, Pediatr. Nephrol. Berl. Ger, vol.26, issue.9, pp.1413-1417, 2011.

H. Pavenstädt, W. Kriz, and M. Kretzler, Cell Biology of the Glomerular Podocyte, Physiol. Rev, vol.83, issue.1, pp.253-307, 2003.

C. C. Möller, J. Flesche, and J. Reiser, Sensitizing the Slit Diaphragm with TRPC6 Ion Channels, J. Am. Soc. Nephrol, vol.20, issue.5, pp.950-953, 2009.

K. H. Vining and D. J. Mooney, Mechanical Forces Direct Stem Cell Behaviour in Development and Regeneration, Nat. Rev. Mol. Cell Biol, vol.18, issue.12, pp.728-742, 2017.

, Ueber Die Berührung Fester Elastischer Körper, J. Für Reine Angew. Math. Crelles J, issue.92, pp.156-171, 2009.

I. N. Sneddon, The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile, Int. J. Eng. Sci, vol.1965, issue.1, pp.47-57

A. Vinckier and G. Semenza, Measuring Elasticity of Biological Materials by Atomic Force Microscopy, FEBS Lett, vol.430, issue.1, pp.12-16, 1998.

H. Butt, B. Cappella, and M. Kappl, Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications, Surf. Sci. Rep, vol.59, pp.1-152, 2005.

M. Martin, O. Benzina, V. Szabo, A. Végh, O. Lucas et al., Morphology and Nanomechanics of Sensory Neurons Growth Cones Following Peripheral Nerve Injury, PLOS ONE, vol.2013, issue.2, p.56286
URL : https://hal.archives-ouvertes.fr/hal-00732458

M. Radmacher, M. Fritz, C. M. Kacher, J. P. Cleveland, and P. K. Hansma, Measuring the Viscoelastic Properties of Human Platelets with the Atomic Force Microscope, Biophys. J, vol.70, issue.1, pp.556-567, 1996.

T. Boudou, J. Ohayon, C. Picart, and P. Tracqui, An Extended Relationship for the Characterization of Young's Modulus and Poisson's Ratio of Tunable Polyacrylamide Gels, Biorheology, vol.43, issue.6, pp.721-728, 2006.

M. A. Saleem, M. J. O'hare, J. Reiser, R. J. Coward, C. D. Inward et al.,

Y. Ni, L. Mathieson, P. W. Mundel, and P. , A Conditionally Immortalized Human Podocyte Cell Line Demonstrating Nephrin and Podocin Expression, J. Am. Soc. Nephrol. JASN, vol.13, issue.3, pp.630-638, 2002.

B. Reena and M. U. Kumar, Studies on Water Absorbency of Polyacrylamide Hydrogels, J. Mater. Sci. Eng. B, vol.2015, pp.399-405

C. A. Grattoni, H. H. Al-sharji, C. Yang, A. H. Muggeridge, and R. W. Zimmerman,

, Rheology and Permeability of Crosslinked Polyacrylamide Gel, J. Colloid Interface Sci, vol.240, issue.2, pp.601-607, 2001.

L. Ferreira, M. M. Vidal, and M. H. Gil, Design of a Drug-Delivery System Based On Polyacrylamide Hydrogels. Evaluation of Structural Properties, Chem. Educ, vol.6, issue.2, pp.100-103, 2001.

X. Zhang, H. Yang, Y. Song, and Q. Zheng, Influence of Crosslinking on Crystallization, Rheological, and Mechanical Behaviors of High Density Polyethylene/ethylene-Vinyl Acetate Copolymer Blends, Polym. Eng. Sci, vol.2014, issue.12, pp.2848-2858

O. Okay, General Properties of Hydrogels, In Hydrogel Sensors and Actuators: Engineering and Technology

L. J. Hale, S. E. Howden, B. Phipson, A. Lonsdale, P. X. Er et al.,

, Personalised Podocyte Disease Modelling and Drug Screening, Nat. Commun, vol.2018, issue.1, p.5167

S. Walcott and S. X. Sun, A Mechanical Model of Actin Stress Fiber Formation and Substrate Elasticity Sensing in Adherent Cells, Proc. Natl. Acad. Sci, pp.7757-7762, 2010.

J. Reiser, M. M. Altintas, and . Podocytes, , 2005.

N. Wagner, K. Wagner, Y. Xing, H. Scholz, and A. Schedl, The Major Podocyte Protein Nephrin Is Transcriptionally Activated by the Wilms' Tumor Suppressor WT1, J. Am. Soc. Nephrol, vol.15, issue.12, pp.3044-3051, 2004.

R. E. Palmer, A. Kotsianti, B. Cadman, T. Boyd, W. Gerald et al.,

, Regulates the Expression of the Major Glomerular Podocyte Membrane Protein Podocalyxin

, Curr. Biol, vol.11, issue.22, pp.1805-1809, 2001.

I. Morkv?nait?-vilkon?ien?, A. Ramanavi?ien?, and A. Ramanavi?ius, Atomic Force Microscopy as a Tool for the Investigation of Living Cells, Med. Kaunas Lith, vol.49, issue.4, pp.155-164, 2013.

A. Suchodolskis, V. Feiza, A. Stirke, A. Timonina, A. Ramanaviciene et al., Elastic Properties of Chemically Modified Baker's Yeast Cells Studied by AFM, Surf. Interface Anal, vol.43, issue.13, pp.1636-1640, 2011.

B. Varga, M. Martin-fernandez, C. Hilaire, A. Sanchez-vicente, J. Areias et al., Myotube Elasticity of an Amyotrophic Lateral Sclerosis Mouse Model. Sci. Rep, vol.8, issue.1, pp.1-10, 2018.

G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy, J. Vis. Exp. JoVE, 2013.

, Gelatin Methacrylamide was prepared by the reaction of gelatin with methacrylic anhydride (Fig. 1) depending on previous described methods 30 . Briefly, 5g of gelatin (Gelatin from Porcine Skin, Sigma Aldrich, 48722) was dissolved in 45ml of phosphate buffer saline (PBS, Sigma Aldrich, P4417) at 60°C. After gelatin dissolution, 1ml of methacrylic anhydride (MA, Sigma Aldrich, 276685) was gently added to gelatin solution with a vigorous stirring for 3 H at 60°C

V. References,

J. R. Fuchs, B. A. Nasseri, and J. P. Vacanti, Tissue Engineering: A 21st Century Solution to Surgical Reconstruction, Ann. Thorac. Surg, vol.72, issue.2, pp.577-591, 2001.

U. A. Stock and J. P. Vacanti, Tissue Engineering: Current State and Prospects, Annu. Rev

. Med, , vol.52, pp.443-451, 2001.

M. S. Chapekar, Tissue Engineering: Challenges and Opportunities. J. Biomed. Mater

. Res, , vol.53, pp.617-620, 2000.

M. E. Furth and A. Atala, Chapter 6 -Tissue Engineering: Future Perspectives, Principles of Tissue Engineering

R. Lanza, R. Langer, and J. Vacanti, , pp.83-123, 2014.

C. Frantz, K. M. Stewart, and V. M. Weaver, The Extracellular Matrix at a Glance, J. Cell Sci, issue.24, pp.4195-4200, 2010.

W. P. Daley, S. B. Peters, and M. Larsen, Extracellular Matrix Dynamics in Development and Regenerative Medicine, J. Cell Sci, pp.255-264, 2008.

J. K. Kular, S. Basu, and R. I. Sharma, The Extracellular Matrix: Structure, Composition, Age-Related Differences, Tools for Analysis and Applications for Tissue Engineering, J. Tissue Eng, 2014.

B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Polymeric Scaffolds in Tissue Engineering Application: A Review, 2019.

C. K. Sudhakar, N. Upadhyay, A. Jain, A. Verma, R. Narayana-charyulu et al., Chapter 5 -Hydrogels-Promising Candidates for Tissue Engineering, Nanotechnology Applications for Tissue Engineering

S. Thomas, Y. Grohens, and N. Ninan, , pp.77-94, 2015.

Y. Tsou, J. Khoneisser, P. Huang, and X. Xu, Hydrogel as a Bioactive Material to Regulate Stem Cell Fate, Bioact. Mater, vol.2016, issue.1, pp.39-55

, /may/recent-advances-hydrogels-tissue-engineering, 2018.

H. Geckil, F. Xu, X. Zhang, S. Moon, and U. Demirci, Engineering Hydrogels as Extracellular Matrix Mimics, Nanomed, vol.5, issue.3, pp.469-484, 2010.

T. G. Kim, H. Shin, and D. W. Lim, Biomimetic Scaffolds for Tissue Engineering

. Funct and . Mater, , vol.22, pp.2446-2468, 2012.

K. C. Hansen, L. Kiemele, O. Maller, J. O'brien, A. Shankar et al., An In-Solution Ultrasonication-Assisted Digestion Method for Improved Extracellular Matrix Proteome Coverage, Mol. Cell. Proteomics MCP, vol.8, issue.7, pp.1648-1657, 2009.

B. D. Fairbanks, M. P. Schwartz, A. E. Halevi, C. R. Nuttelman, C. N. Bowman et al., A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization, Adv. Mater. Deerfield Beach Fla, vol.21, issue.48, pp.5005-5010, 2009.

J. A. Burmania, K. R. Stevens, and W. J. Kao, Cell Interaction with Protein-Loaded Interpenetrating Networks Containing Modified Gelatin and Poly(ethylene Glycol) Diacrylate, Biomaterials, vol.24, issue.22, pp.3921-3930, 2003.

M. A. Daniele, A. A. Adams, J. Naciri, S. H. North, and F. S. Ligler, Interpenetrating Networks Based on Gelatin Methacrylamide and PEG Formed Using Concurrent Thiol Click Chemistries for Hydrogel Tissue Engineering Scaffolds, Biomaterials, vol.35, issue.6, pp.1845-1856, 2014.

K. Xu, Y. Fu, W. Chung, X. Zheng, Y. Cui et al., Thiol-Ene-Based Biological/synthetic Hybrid Biomatrix for 3-D Living Cell Culture, Acta Biomater, vol.2012, issue.7, pp.2504-2516

K. Yue, X. Li, K. Schrobback, A. Sheikhi, N. Annabi et al., Structural Analysis of Photocrosslinkable Methacryloyl-Modified Protein Derivatives, Biomaterials, vol.139, pp.163-171, 2017.

V. B. Djagny, Z. Wang, S. Xu, and . Gelatin, A Valuable Protein for Food and Pharmaceutical Industries: Review, Crit. Rev. Food Sci. Nutr, issue.6, pp.481-492, 2001.

K. Chang, H. Liao, and . Chen,

, Gelatin/hyaluronic Acid Cryogels for Adipose Tissue Engineering: In Vitro and in Vivo Studies

, Acta Biomater, vol.2013, issue.11, pp.9012-9026

A. Jayakrishnan, S. R. Jameela, L. H. Olde-damink, P. J. Dijkstra, M. J. Van-luyn et al., Glutaraldehyde as a Fixative in Bioprostheses and Drug Delivery Matrices, J. Mater. Sci. Mater. Med, vol.17, issue.5, pp.429-434, 1995.

D. P. Speer, M. Chvapil, C. D. Eskelson, and J. Ulreich, Biological Effects of Residual Glutaraldehyde in Glutaraldehyde-Tanned Collagen Biomaterials, J. Biomed. Mater. Res, vol.14, issue.6, pp.753-764, 1980.

S. Xiao, T. Zhao, J. Wang, C. Wang, J. Du et al., Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: An Effective Strategy for Tissue Engineering, Stem Cell Rev. Rep, vol.2019, issue.5, pp.664-679

K. Yue, G. Trujillo-de-santiago, M. M. Alvarez, A. Tamayol, N. Annabi et al., Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels. Biomaterials, vol.73, pp.254-271, 2015.

J. W. Nichol, S. Koshy, H. Bae, C. M. Hwang, S. Yamanlar et al., Cell-Laden Microengineered Gelatin Methacrylate Hydrogels, Biomaterials, issue.21, pp.5536-5544, 2010.

Y. Chen, R. Lin, H. Qi, Y. Yang, H. Bae et al., Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels, Adv. Funct. Mater, vol.2012, issue.10, pp.2027-2039

C. E. Kandow, P. C. Georges, P. A. Janmey, and K. A. Beningo, Polyacrylamide Hydrogels for Cell Mechanics: Steps Toward Optimization and Alternative Uses, In Methods in Cell Biology, vol.83, pp.29-46, 2007.

A. I. Van-den-bulcke, B. Bogdanov, N. De-rooze, E. H. Schacht, M. Cornelissen et al., Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels, Biomacromolecules, vol.1, issue.1, pp.31-38, 2000.

M. Sutter, J. Siepmann, W. E. Hennink, and W. Jiskoot, Recombinant Gelatin Hydrogels for the Sustained Release of Proteins, J. Controlled Release, vol.119, issue.3, pp.301-312, 2007.

I. Pepelanova, K. Kruppa, T. Scheper, A. Lavrentieva, and . Gelatin-methacryloyl,

, Hydrogels with Defined Degree of Functionalization as a Versatile Toolkit for 3D Cell Culture and Extrusion Bioprinting, Bioeng. Basel Switz, vol.5, issue.3, 2018.

A. Serafim, C. Tucureanu, D. Petre, D. Dragusin, A. Salageanu et al., One-Pot Synthesis of Superabsorbent Hybrid Hydrogels Based on Methacrylamide Gelatin and Polyacrylamide. Effortless Control of Hydrogel Properties through Composition Design, New J. Chem, vol.38, issue.7, pp.3112-3126, 2014.

R. T. Miller and P. A. Janmey, Relationship of and Cross-Talk between Physical and Biologic Properties of the Glomerulus, Curr. Opin. Nephrol. Hypertens, vol.24, issue.4, pp.393-400, 2015.

P. A. Janmey and R. T. Miller, Mechanisms of Mechanical Signaling in Development and Disease, J Cell Sci, vol.124, issue.1, pp.9-18, 2011.

R. G. Wells, The Role of Matrix Stiffness in Regulating Cell Behavior, Hepatology, vol.47, issue.4, pp.1394-1400, 2008.

J. Reiser, M. M. Altintas, and . Podocytes, , 2005.

A. E. Embry, H. Mohammadi, X. Niu, L. Liu, B. Moe et al., Biochemical and Cellular Determinants of Renal Glomerular Elasticity. PLOS ONE, vol.2016, issue.12, p.167924

H. Fukasawa, S. Bornheimer, K. Kudlicka, and M. G. Farquhar, Slit Diaphragms Contain Tight Junction Proteins, J. Am. Soc. Nephrol. JASN, vol.20, issue.7, pp.1491-1503, 2009.

Q. Luo, D. Kuang, B. Zhang, and G. Song, Cell Stiffness Determined by Atomic Force Microscopy and Its Correlation with Cell Motility, Biochim. Biophys. Acta, issue.9, pp.1953-1960, 2016.