A. Agarwal, S. Gupta, and D. K. Singh, Review of optical flow technique for moving object detection, 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pp.409-413, 2016.

M. Aly, Real time detection of lane markers in urban streets, 2008 IEEE Intelligent Vehicles Symposium, pp.7-12, 2008.

D. C. Andrade, A Novel Strategy for Road Lane Detection and Tracking Based on a Vehicle's Forward Monocular Camera, IEEE Transactions on Intelligent Transportation Systems, vol.20, pp.1497-1507, 2019.

J. Audibert and J. Ponce, Vanishing point detection for road detection, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.96-103, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00834892

B. Hillel and A. , Recent progress in road and lane detection: a survey". en, Machine Vision and Applications 25, vol.3, pp.1432-1769, 2014.

. Bipcam,

. Bipeye,

A. Borkar, M. Hayes, and M. T. Smith, A Novel Lane Detection System With Efficient Ground Truth Generation, 16th IEEE International Conference on Image Processing (ICIP), pp.365-374, 2009.

J. A. Bourne, Unravelling the development of the visual cortex: implications for plasticity and repair". eng, Journal of Anatomy, vol.217, pp.449-468, 2010.

A. Broggi, Parallel and local feature extraction: a real-time approach to road boundary detection, IEEE Transactions on Image Processing, pp.1057-7149, 1995.

, Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios, vol.601

D. Burr and P. Thompson, Motion psychophysics: 1985-2010". In: Vision Research. Vision Research 50th Anniversary Issue: Part 2 51, vol.13, pp.42-6989, 2011.

. Bvs-tech-website,

D. Cahan, Hermann von Helmholtz and the Foundations of Nineteenth-Century Science, 1993.

J. Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6, pp.162-8828, 1986.

S. Y. Chen, Kalman Filter for Robot Vision: A Survey, IEEE Transactions on Industrial Electronics 59.11, 2012.

. Cmglee, Density of rod (dotted line) and cone (solid line) photoreceptors along a line passing through the fovea and the blind spot of a human eye vs the angle measured from the fovea, based on 'Foundations of Vision' by Brian A

W. C. Commons and . Sensitivity,

, Greensboro, North Carolina concurrency between highways, 2012.

G. Cristóbal and L. Perrinet, Biologically Inspired Computer Vision: Fundamentals and Applications, 2015.

C. Hernández and D. , Real-Time Lane Region Detection Using a Combination of Geometrical and Image Features, Sensors (Basel, 2016.

J. G. Daugman, Two-dimensional spectral analysis of cortical receptive field profiles, Vision Research 20, vol.10, pp.90065-90071, 1980.

T. Delbruck, Silicon retina with correlation-based, velocity-tuned pixels". eng, IEEE transactions on neural networks 4.3, pp.1045-9227, 1993.

. Dhp1080, , 2019.

. Dllu, Autonomous Waymo Chrysler Pacifica Hybrid minivan undergoing testing in, File: Waymo_Chrysler_Pacifica_in_Los_Altos,_2017.jpg, 2017.

, Document d'orientation de l'innovation de Défense (DOID) 2019 : les nouvelles ambitions du ministère en matière d'innovation

. Ehsan, K. D. Shoaib, and . Mcdonald-maier, On-Board Vision Processing For Small UAVs: Time to Rethink Strategy, 2015.

G. Farnebäck, Two-Frame Motion Estimation Based on Polynomial Expansion". In: Image Analysis, pp.978-981, 2003.

M. Felisa and P. Zani, Robust monocular lane detection in urban environments, 2010 IEEE Intelligent Vehicles Symposium, pp.591-596, 2010.

V. Gaikwad and S. Lokhande, Lane Departure Identification for Advanced Driver Assistance, IEEE Transactions on Intelligent Transportation Systems 16, pp.910-918, 2015.

A. Gautam, Nerve Cells, Encyclopedia of Animal Cognition and Behavior, pp.1-3, 2017.

H. Ghorayeb, Conception et mise en oeuvre d'algorithmes de vision temps réel pour la vidéo surveillance intelligente, 2007.

C. D. Gilbert and W. Li, Adult Visual Cortical Plasticity, Neuron 75, vol.2, pp.250-264, 2012.

S. Hengstler, MeshEye: A Hybrid-Resolution Smart Camera Mote for Applications in Distributed Intelligent Surveillance, Proceedings of the 6th International Conference on Information Processing in Sensor Networks, pp.360-369, 2007.

T. Hoang and . Minh, Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor, Sensors 17, vol.11, p.2475, 2017.

J. Horgan, Vision-Based Driver Assistance Systems: Survey, Taxonomy and Advances, 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp.2032-2039, 2015.

D. Hubel, Evolution of ideas on the primary visual cortex, 1955-1978: A biased historical account, Bioscience Reports, vol.2, issue.7, pp.144-8463, 1982.

N. Hueber, Next-Generation Robotics II; and Machine Intelligence and Bio-inspired Computation; Theory and Applications IX. Misty Blowers, vol.9494, 2015.

. Hustvedt, Three surveillance cameras on the corner of a building, 2008.

M. H. Ionica and D. Gregg, The Movidius Myriad Architecture's Potential for Scientific Computing, IEEE Micro 35.1, pp.272-1732, 2015.

L. Itti and C. Koch, A saliency-based search mechanism for overt and covert shifts of visual attention, Vision Research, vol.40, pp.42-6989, 2000.

|. Isis-|-neurostic, Journées NeuroSTIC, 2017.

J. Jung and S. Bae, Real-Time Road Lane Detection in Urban Areas Using LiDAR Data, p.276, 2018.

S. Jung, J. Youn, and S. Sull, Efficient Lane Detection Based on Spatiotemporal Images, IEEE Transactions on Intelligent Transportation Systems 17.1, pp.289-295, 2016.

C. Kanellakis and G. Nikolakopoulos, Survey on Computer Vision for UAVs: Current Developments and Trends, Journal of Intelligent & Robotic Systems, vol.87, pp.1573-0409, 2017.

H. Kim, Robust Foreground Extraction Technique Using Gaussian Family Model and Multiple Thresholds, Computer Vision -ACCV 2007, pp.758-768, 2007.

I. Kim and . Su, Intelligent visual surveillance -A survey, International Journal of Control, Automation and Systems, vol.8, issue.5, pp.2005-4092, 2010.

J. J. Knierim and K. Zhang, Attractor Dynamics of Spatially Correlated Neural Activity in the Limbic System, Annual Review of Neuroscience, vol.35, pp.267-285, 2012.

M. S. Livingstone and D. H. Hubel, Psychophysical evidence for separate channels for the perception of form, color, movement, and depth, Journal of Neuroscience, issue.11, pp.270-6474, 1987.

D. Malacara, Color Vision and Colorimetry: Theory and Applications, Second Edition, 2011.

G. Marcus, Deep Learning: A Critical Appraisal, 2018.

I. L. Markov, Limits on fundamental limits to computation, Nature 512.7513, pp.1476-4687, 2014.

D. Marr, S. Ullman, and T. A. Poggio, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, pp.978-978, 2010.

. Martinez-conde, S. L. Susana, D. H. Macknik, and . Hubel, Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys, Nature Neuroscience, vol.3, issue.3, pp.1546-1726, 2000.

S. Mar?elja, Mathematical description of the responses of simple cortical cells*, pp.1297-1300, 1980.

J. C. Mccall and M. M. Trivedi, Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation, IEEE Transactions on Intelligent Transportation Systems, pp.20-37, 2006.

N. V. Medathati and . Kartheek, Bio-inspired computer vision: Towards a synergistic approach of artificial and biological vision, Computer Vision and Image Understanding 150.Supplement C, pp.1077-3142, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01316103

A. V. Nefian and G. R. Bradski, Detection of Drivable Corridors for Off-Road Autonomous Navigation, 2006 International Conference on Image Processing, pp.3025-3028, 2006.

S. Ogawa, Visual cortices

N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications, 2006.

K. Ota, Deep Learning for Mobile Multimedia: A Survey, In: ACM Trans. Multimedia Comput. Commun. Appl. 13.3s, vol.34, 2017.

P. Pirim, Procede et dispositif automatise de perception avec determination et caracterisation de bords et de frontieres d'objets d'un espace, construction de contours et applications, Biomimetic and Biohybrid Systems. Lecture Notes in Computer Science, pp.228-239, 1998.

, Processeur de perception bio-inspiré : une approche neuromorphique, Techniques de l'ingénieur Innovations en électronique et optoélectronique, 2015.

, Perceptive Invariance and Associative Memory Between Perception and Semantic Representation USER a Universal SEmantic Representation Implemented in a System on Chip (SoC), Biomimetic and Biohybrid Systems, pp.275-287, 2016.

. Pixabay, . Road, . Asphalt, . Sky, . Horizon et al.,

C. Posch, Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras With Spiking Output, Proceedings of the IEEE 102, vol.10, pp.1470-1484, 2014.

D. Purves, New York: Sinauer Associates Is an Imprint of, Neuroscience, pp.978-979, 2018.

B. Ranft and C. Stiller, The Role of Machine Vision for Intelligent Vehicles, IEEE Transactions on Intelligent Vehicles 1.1, pp.8-19, 2016.

. Rennó-costa, J. E. César, P. F. Lisman, and . Verschure, A Signature of Attractor Dynamics in the CA3 Region of the Hippocampus, PLOS Computational Biology, vol.10, 2014.

P. Rita, M. E. Bach-y, K. A. Tyler, and . Kaczmarek, Seeing with the Brain, International Journal of Human-Computer Interaction, vol.15, pp.285-295, 2003.

Y. B. Saalmann and S. Kastner, Cognitive and perceptual functions of the visual thalamus, Neuron 71, vol.2, pp.209-223, 2011.

C. D. Schuman, A Survey of Neuromorphic Computing and Neural Networks in Hardware, 2017.

W. Shi, Algorithm and hardware implementation for visual perception system in autonomous vehicle: A survey, vol.59, pp.148-156, 2017.

J. Son, Real-time illumination invariant lane detection for lane departure warning system, Expert Systems with Applications 42, vol.4, pp.957-4174, 2015.

. Son, E. S. Yeongho, D. Lee, and . Kum, Robust multi-lane detection and tracking using adaptive threshold and lane classification, Machine Vision and Applications 30.1, pp.111-124, 2019.

J. Sorenson, A quadcopter camera drone in flight, 2018.

C. Stangor, Pathway of Visual Images through the Thalamus and into the Cortex

, The Retina with Its Specialized Cells

, The KITTI Vision Benchmark Suite, 2018.

P. Voc, The PASCAL Visual Object Classes, 2018.

S. Thuries and P. Pirim, Procede et dispositif de traitement en temps reel d'un flot de donnees sequence, et application au traitement de signaux video numeriques representatifs d'une image video, 1988.

M. J. Tovée, An Introduction to the Visual System, pp.978-979, 2008.

T. Veit, Evaluation of Road Marking Feature Extraction, 11th International IEEE Conference on Intelligent Transportation Systems, pp.174-181, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00402945

G. Velez and O. Otaegui, Embedding vision-based advanced driver assistance systems: a survey, IET Intelligent Transport Systems, vol.11, issue.3, pp.1751-9578, 2016.

J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic Computers EC-8.3, pp.330-334, 1959.

J. Wang, Relationship between ventral stream for object vision and dorsal stream for spatial vision: An fMRI+ERP study, Human Brain Mapping 8.4, vol.8, pp.170-181, 1999.

, Webvision -The Organization of the Retina and Visual System, 2018.

R. E. Weller, Two cortical visual systems in Old World and New World primates, Progress in Brain Research. Vision Within Extrageniculo-Striate Systems 75, pp.60487-60489, 1988.

T. N. Wiesel, The postnatal development of the visual cortex and the influence of environment, Bioscience Reports, vol.2, issue.6, pp.144-8463, 1982.

. Wikimedia, , 2006.

T. Wu and A. Ranganathan, A practical system for road marking detection and recognition, 2012 IEEE Intelligent Vehicles Symposium, pp.25-30, 2012.

. Xilinx, AI Inference Acceleration

M. Yablonski, Microsaccades are sensitive to word structure: A novel approach to study language processing, Scientific Reports 7, pp.2045-2322, 2017.

A. Yilmaz, O. Javed, and M. Shah, Object Tracking: A Survey, ACM Comput. Surv, 2006.

X. Zhang, A Fast Learning Method for Accurate and Robust Lane Detection Using Two-Stage Feature Extraction with YOLO v3, Sensors, 2018.